aef3572035937bf5e561b9b6976cf67fec17fdbf
[cascardo/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 #include <asm/cpufeature.h>
35
36 #define BYT_RATIOS              0x66a
37 #define BYT_VIDS                0x66b
38 #define BYT_TURBO_RATIOS        0x66c
39 #define BYT_TURBO_VIDS          0x66d
40
41 #define FRAC_BITS 8
42 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
43 #define fp_toint(X) ((X) >> FRAC_BITS)
44
45
46 static inline int32_t mul_fp(int32_t x, int32_t y)
47 {
48         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
49 }
50
51 static inline int32_t div_fp(int32_t x, int32_t y)
52 {
53         return div_s64((int64_t)x << FRAC_BITS, y);
54 }
55
56 static inline int ceiling_fp(int32_t x)
57 {
58         int mask, ret;
59
60         ret = fp_toint(x);
61         mask = (1 << FRAC_BITS) - 1;
62         if (x & mask)
63                 ret += 1;
64         return ret;
65 }
66
67 struct sample {
68         int32_t core_pct_busy;
69         u64 aperf;
70         u64 mperf;
71         u64 tsc;
72         int freq;
73         ktime_t time;
74 };
75
76 struct pstate_data {
77         int     current_pstate;
78         int     min_pstate;
79         int     max_pstate;
80         int     scaling;
81         int     turbo_pstate;
82 };
83
84 struct vid_data {
85         int min;
86         int max;
87         int turbo;
88         int32_t ratio;
89 };
90
91 struct _pid {
92         int setpoint;
93         int32_t integral;
94         int32_t p_gain;
95         int32_t i_gain;
96         int32_t d_gain;
97         int deadband;
98         int32_t last_err;
99 };
100
101 struct cpudata {
102         int cpu;
103
104         struct timer_list timer;
105
106         struct pstate_data pstate;
107         struct vid_data vid;
108         struct _pid pid;
109
110         ktime_t last_sample_time;
111         u64     prev_aperf;
112         u64     prev_mperf;
113         u64     prev_tsc;
114         struct sample sample;
115 };
116
117 static struct cpudata **all_cpu_data;
118 struct pstate_adjust_policy {
119         int sample_rate_ms;
120         int deadband;
121         int setpoint;
122         int p_gain_pct;
123         int d_gain_pct;
124         int i_gain_pct;
125 };
126
127 struct pstate_funcs {
128         int (*get_max)(void);
129         int (*get_min)(void);
130         int (*get_turbo)(void);
131         int (*get_scaling)(void);
132         void (*set)(struct cpudata*, int pstate);
133         void (*get_vid)(struct cpudata *);
134 };
135
136 struct cpu_defaults {
137         struct pstate_adjust_policy pid_policy;
138         struct pstate_funcs funcs;
139 };
140
141 static struct pstate_adjust_policy pid_params;
142 static struct pstate_funcs pstate_funcs;
143 static int hwp_active;
144
145 struct perf_limits {
146         int no_turbo;
147         int turbo_disabled;
148         int max_perf_pct;
149         int min_perf_pct;
150         int32_t max_perf;
151         int32_t min_perf;
152         int max_policy_pct;
153         int max_sysfs_pct;
154         int min_policy_pct;
155         int min_sysfs_pct;
156 };
157
158 static struct perf_limits limits = {
159         .no_turbo = 0,
160         .turbo_disabled = 0,
161         .max_perf_pct = 100,
162         .max_perf = int_tofp(1),
163         .min_perf_pct = 0,
164         .min_perf = 0,
165         .max_policy_pct = 100,
166         .max_sysfs_pct = 100,
167         .min_policy_pct = 0,
168         .min_sysfs_pct = 0,
169 };
170
171 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
172                              int deadband, int integral) {
173         pid->setpoint = setpoint;
174         pid->deadband  = deadband;
175         pid->integral  = int_tofp(integral);
176         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
177 }
178
179 static inline void pid_p_gain_set(struct _pid *pid, int percent)
180 {
181         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
182 }
183
184 static inline void pid_i_gain_set(struct _pid *pid, int percent)
185 {
186         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
187 }
188
189 static inline void pid_d_gain_set(struct _pid *pid, int percent)
190 {
191         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
192 }
193
194 static signed int pid_calc(struct _pid *pid, int32_t busy)
195 {
196         signed int result;
197         int32_t pterm, dterm, fp_error;
198         int32_t integral_limit;
199
200         fp_error = int_tofp(pid->setpoint) - busy;
201
202         if (abs(fp_error) <= int_tofp(pid->deadband))
203                 return 0;
204
205         pterm = mul_fp(pid->p_gain, fp_error);
206
207         pid->integral += fp_error;
208
209         /*
210          * We limit the integral here so that it will never
211          * get higher than 30.  This prevents it from becoming
212          * too large an input over long periods of time and allows
213          * it to get factored out sooner.
214          *
215          * The value of 30 was chosen through experimentation.
216          */
217         integral_limit = int_tofp(30);
218         if (pid->integral > integral_limit)
219                 pid->integral = integral_limit;
220         if (pid->integral < -integral_limit)
221                 pid->integral = -integral_limit;
222
223         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
224         pid->last_err = fp_error;
225
226         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
227         result = result + (1 << (FRAC_BITS-1));
228         return (signed int)fp_toint(result);
229 }
230
231 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
232 {
233         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
234         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
235         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
236
237         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
238 }
239
240 static inline void intel_pstate_reset_all_pid(void)
241 {
242         unsigned int cpu;
243
244         for_each_online_cpu(cpu) {
245                 if (all_cpu_data[cpu])
246                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
247         }
248 }
249
250 static inline void update_turbo_state(void)
251 {
252         u64 misc_en;
253         struct cpudata *cpu;
254
255         cpu = all_cpu_data[0];
256         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
257         limits.turbo_disabled =
258                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
259                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
260 }
261
262 #define PCT_TO_HWP(x) (x * 255 / 100)
263 static void intel_pstate_hwp_set(void)
264 {
265         int min, max, cpu;
266         u64 value, freq;
267
268         get_online_cpus();
269
270         for_each_online_cpu(cpu) {
271                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
272                 min = PCT_TO_HWP(limits.min_perf_pct);
273                 value &= ~HWP_MIN_PERF(~0L);
274                 value |= HWP_MIN_PERF(min);
275
276                 max = PCT_TO_HWP(limits.max_perf_pct);
277                 if (limits.no_turbo) {
278                         rdmsrl( MSR_HWP_CAPABILITIES, freq);
279                         max = HWP_GUARANTEED_PERF(freq);
280                 }
281
282                 value &= ~HWP_MAX_PERF(~0L);
283                 value |= HWP_MAX_PERF(max);
284                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
285         }
286
287         put_online_cpus();
288 }
289
290 /************************** debugfs begin ************************/
291 static int pid_param_set(void *data, u64 val)
292 {
293         *(u32 *)data = val;
294         intel_pstate_reset_all_pid();
295         return 0;
296 }
297
298 static int pid_param_get(void *data, u64 *val)
299 {
300         *val = *(u32 *)data;
301         return 0;
302 }
303 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
304
305 struct pid_param {
306         char *name;
307         void *value;
308 };
309
310 static struct pid_param pid_files[] = {
311         {"sample_rate_ms", &pid_params.sample_rate_ms},
312         {"d_gain_pct", &pid_params.d_gain_pct},
313         {"i_gain_pct", &pid_params.i_gain_pct},
314         {"deadband", &pid_params.deadband},
315         {"setpoint", &pid_params.setpoint},
316         {"p_gain_pct", &pid_params.p_gain_pct},
317         {NULL, NULL}
318 };
319
320 static void __init intel_pstate_debug_expose_params(void)
321 {
322         struct dentry *debugfs_parent;
323         int i = 0;
324
325         if (hwp_active)
326                 return;
327         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
328         if (IS_ERR_OR_NULL(debugfs_parent))
329                 return;
330         while (pid_files[i].name) {
331                 debugfs_create_file(pid_files[i].name, 0660,
332                                     debugfs_parent, pid_files[i].value,
333                                     &fops_pid_param);
334                 i++;
335         }
336 }
337
338 /************************** debugfs end ************************/
339
340 /************************** sysfs begin ************************/
341 #define show_one(file_name, object)                                     \
342         static ssize_t show_##file_name                                 \
343         (struct kobject *kobj, struct attribute *attr, char *buf)       \
344         {                                                               \
345                 return sprintf(buf, "%u\n", limits.object);             \
346         }
347
348 static ssize_t show_turbo_pct(struct kobject *kobj,
349                                 struct attribute *attr, char *buf)
350 {
351         struct cpudata *cpu;
352         int total, no_turbo, turbo_pct;
353         uint32_t turbo_fp;
354
355         cpu = all_cpu_data[0];
356
357         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
358         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
359         turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
360         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
361         return sprintf(buf, "%u\n", turbo_pct);
362 }
363
364 static ssize_t show_num_pstates(struct kobject *kobj,
365                                 struct attribute *attr, char *buf)
366 {
367         struct cpudata *cpu;
368         int total;
369
370         cpu = all_cpu_data[0];
371         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
372         return sprintf(buf, "%u\n", total);
373 }
374
375 static ssize_t show_no_turbo(struct kobject *kobj,
376                              struct attribute *attr, char *buf)
377 {
378         ssize_t ret;
379
380         update_turbo_state();
381         if (limits.turbo_disabled)
382                 ret = sprintf(buf, "%u\n", limits.turbo_disabled);
383         else
384                 ret = sprintf(buf, "%u\n", limits.no_turbo);
385
386         return ret;
387 }
388
389 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
390                               const char *buf, size_t count)
391 {
392         unsigned int input;
393         int ret;
394
395         ret = sscanf(buf, "%u", &input);
396         if (ret != 1)
397                 return -EINVAL;
398
399         update_turbo_state();
400         if (limits.turbo_disabled) {
401                 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
402                 return -EPERM;
403         }
404
405         limits.no_turbo = clamp_t(int, input, 0, 1);
406
407         if (hwp_active)
408                 intel_pstate_hwp_set();
409
410         return count;
411 }
412
413 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
414                                   const char *buf, size_t count)
415 {
416         unsigned int input;
417         int ret;
418
419         ret = sscanf(buf, "%u", &input);
420         if (ret != 1)
421                 return -EINVAL;
422
423         limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
424         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
425         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
426
427         if (hwp_active)
428                 intel_pstate_hwp_set();
429         return count;
430 }
431
432 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
433                                   const char *buf, size_t count)
434 {
435         unsigned int input;
436         int ret;
437
438         ret = sscanf(buf, "%u", &input);
439         if (ret != 1)
440                 return -EINVAL;
441
442         limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
443         limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
444         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
445
446         if (hwp_active)
447                 intel_pstate_hwp_set();
448         return count;
449 }
450
451 show_one(max_perf_pct, max_perf_pct);
452 show_one(min_perf_pct, min_perf_pct);
453
454 define_one_global_rw(no_turbo);
455 define_one_global_rw(max_perf_pct);
456 define_one_global_rw(min_perf_pct);
457 define_one_global_ro(turbo_pct);
458 define_one_global_ro(num_pstates);
459
460 static struct attribute *intel_pstate_attributes[] = {
461         &no_turbo.attr,
462         &max_perf_pct.attr,
463         &min_perf_pct.attr,
464         &turbo_pct.attr,
465         &num_pstates.attr,
466         NULL
467 };
468
469 static struct attribute_group intel_pstate_attr_group = {
470         .attrs = intel_pstate_attributes,
471 };
472
473 static void __init intel_pstate_sysfs_expose_params(void)
474 {
475         struct kobject *intel_pstate_kobject;
476         int rc;
477
478         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
479                                                 &cpu_subsys.dev_root->kobj);
480         BUG_ON(!intel_pstate_kobject);
481         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
482         BUG_ON(rc);
483 }
484 /************************** sysfs end ************************/
485
486 static void intel_pstate_hwp_enable(void)
487 {
488         hwp_active++;
489         pr_info("intel_pstate: HWP enabled\n");
490
491         wrmsrl( MSR_PM_ENABLE, 0x1);
492 }
493
494 static int byt_get_min_pstate(void)
495 {
496         u64 value;
497
498         rdmsrl(BYT_RATIOS, value);
499         return (value >> 8) & 0x7F;
500 }
501
502 static int byt_get_max_pstate(void)
503 {
504         u64 value;
505
506         rdmsrl(BYT_RATIOS, value);
507         return (value >> 16) & 0x7F;
508 }
509
510 static int byt_get_turbo_pstate(void)
511 {
512         u64 value;
513
514         rdmsrl(BYT_TURBO_RATIOS, value);
515         return value & 0x7F;
516 }
517
518 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
519 {
520         u64 val;
521         int32_t vid_fp;
522         u32 vid;
523
524         val = pstate << 8;
525         if (limits.no_turbo && !limits.turbo_disabled)
526                 val |= (u64)1 << 32;
527
528         vid_fp = cpudata->vid.min + mul_fp(
529                 int_tofp(pstate - cpudata->pstate.min_pstate),
530                 cpudata->vid.ratio);
531
532         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
533         vid = ceiling_fp(vid_fp);
534
535         if (pstate > cpudata->pstate.max_pstate)
536                 vid = cpudata->vid.turbo;
537
538         val |= vid;
539
540         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
541 }
542
543 #define BYT_BCLK_FREQS 5
544 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
545
546 static int byt_get_scaling(void)
547 {
548         u64 value;
549         int i;
550
551         rdmsrl(MSR_FSB_FREQ, value);
552         i = value & 0x3;
553
554         BUG_ON(i > BYT_BCLK_FREQS);
555
556         return byt_freq_table[i] * 100;
557 }
558
559 static void byt_get_vid(struct cpudata *cpudata)
560 {
561         u64 value;
562
563         rdmsrl(BYT_VIDS, value);
564         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
565         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
566         cpudata->vid.ratio = div_fp(
567                 cpudata->vid.max - cpudata->vid.min,
568                 int_tofp(cpudata->pstate.max_pstate -
569                         cpudata->pstate.min_pstate));
570
571         rdmsrl(BYT_TURBO_VIDS, value);
572         cpudata->vid.turbo = value & 0x7f;
573 }
574
575 static int core_get_min_pstate(void)
576 {
577         u64 value;
578
579         rdmsrl(MSR_PLATFORM_INFO, value);
580         return (value >> 40) & 0xFF;
581 }
582
583 static int core_get_max_pstate(void)
584 {
585         u64 value;
586
587         rdmsrl(MSR_PLATFORM_INFO, value);
588         return (value >> 8) & 0xFF;
589 }
590
591 static int core_get_turbo_pstate(void)
592 {
593         u64 value;
594         int nont, ret;
595
596         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
597         nont = core_get_max_pstate();
598         ret = (value) & 255;
599         if (ret <= nont)
600                 ret = nont;
601         return ret;
602 }
603
604 static inline int core_get_scaling(void)
605 {
606         return 100000;
607 }
608
609 static void core_set_pstate(struct cpudata *cpudata, int pstate)
610 {
611         u64 val;
612
613         val = pstate << 8;
614         if (limits.no_turbo && !limits.turbo_disabled)
615                 val |= (u64)1 << 32;
616
617         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
618 }
619
620 static int knl_get_turbo_pstate(void)
621 {
622         u64 value;
623         int nont, ret;
624
625         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
626         nont = core_get_max_pstate();
627         ret = (((value) >> 8) & 0xFF);
628         if (ret <= nont)
629                 ret = nont;
630         return ret;
631 }
632
633 static struct cpu_defaults core_params = {
634         .pid_policy = {
635                 .sample_rate_ms = 10,
636                 .deadband = 0,
637                 .setpoint = 97,
638                 .p_gain_pct = 20,
639                 .d_gain_pct = 0,
640                 .i_gain_pct = 0,
641         },
642         .funcs = {
643                 .get_max = core_get_max_pstate,
644                 .get_min = core_get_min_pstate,
645                 .get_turbo = core_get_turbo_pstate,
646                 .get_scaling = core_get_scaling,
647                 .set = core_set_pstate,
648         },
649 };
650
651 static struct cpu_defaults byt_params = {
652         .pid_policy = {
653                 .sample_rate_ms = 10,
654                 .deadband = 0,
655                 .setpoint = 60,
656                 .p_gain_pct = 14,
657                 .d_gain_pct = 0,
658                 .i_gain_pct = 4,
659         },
660         .funcs = {
661                 .get_max = byt_get_max_pstate,
662                 .get_min = byt_get_min_pstate,
663                 .get_turbo = byt_get_turbo_pstate,
664                 .set = byt_set_pstate,
665                 .get_scaling = byt_get_scaling,
666                 .get_vid = byt_get_vid,
667         },
668 };
669
670 static struct cpu_defaults knl_params = {
671         .pid_policy = {
672                 .sample_rate_ms = 10,
673                 .deadband = 0,
674                 .setpoint = 97,
675                 .p_gain_pct = 20,
676                 .d_gain_pct = 0,
677                 .i_gain_pct = 0,
678         },
679         .funcs = {
680                 .get_max = core_get_max_pstate,
681                 .get_min = core_get_min_pstate,
682                 .get_turbo = knl_get_turbo_pstate,
683                 .set = core_set_pstate,
684         },
685 };
686
687 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
688 {
689         int max_perf = cpu->pstate.turbo_pstate;
690         int max_perf_adj;
691         int min_perf;
692
693         if (limits.no_turbo || limits.turbo_disabled)
694                 max_perf = cpu->pstate.max_pstate;
695
696         /*
697          * performance can be limited by user through sysfs, by cpufreq
698          * policy, or by cpu specific default values determined through
699          * experimentation.
700          */
701         max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
702         *max = clamp_t(int, max_perf_adj,
703                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
704
705         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
706         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
707 }
708
709 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
710 {
711         int max_perf, min_perf;
712
713         if (force) {
714                 update_turbo_state();
715
716                 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
717
718                 pstate = clamp_t(int, pstate, min_perf, max_perf);
719
720                 if (pstate == cpu->pstate.current_pstate)
721                         return;
722         }
723         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
724
725         cpu->pstate.current_pstate = pstate;
726
727         pstate_funcs.set(cpu, pstate);
728 }
729
730 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
731 {
732         cpu->pstate.min_pstate = pstate_funcs.get_min();
733         cpu->pstate.max_pstate = pstate_funcs.get_max();
734         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
735         cpu->pstate.scaling = pstate_funcs.get_scaling();
736
737         if (pstate_funcs.get_vid)
738                 pstate_funcs.get_vid(cpu);
739         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
740 }
741
742 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
743 {
744         struct sample *sample = &cpu->sample;
745         int64_t core_pct;
746
747         core_pct = int_tofp(sample->aperf) * int_tofp(100);
748         core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
749
750         sample->freq = fp_toint(
751                 mul_fp(int_tofp(
752                         cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
753                         core_pct));
754
755         sample->core_pct_busy = (int32_t)core_pct;
756 }
757
758 static inline void intel_pstate_sample(struct cpudata *cpu)
759 {
760         u64 aperf, mperf;
761         unsigned long flags;
762         u64 tsc;
763
764         local_irq_save(flags);
765         rdmsrl(MSR_IA32_APERF, aperf);
766         rdmsrl(MSR_IA32_MPERF, mperf);
767         tsc = native_read_tsc();
768         local_irq_restore(flags);
769
770         cpu->last_sample_time = cpu->sample.time;
771         cpu->sample.time = ktime_get();
772         cpu->sample.aperf = aperf;
773         cpu->sample.mperf = mperf;
774         cpu->sample.tsc =  tsc;
775         cpu->sample.aperf -= cpu->prev_aperf;
776         cpu->sample.mperf -= cpu->prev_mperf;
777         cpu->sample.tsc -= cpu->prev_tsc;
778
779         intel_pstate_calc_busy(cpu);
780
781         cpu->prev_aperf = aperf;
782         cpu->prev_mperf = mperf;
783         cpu->prev_tsc = tsc;
784 }
785
786 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
787 {
788         int delay;
789
790         delay = msecs_to_jiffies(50);
791         mod_timer_pinned(&cpu->timer, jiffies + delay);
792 }
793
794 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
795 {
796         int delay;
797
798         delay = msecs_to_jiffies(pid_params.sample_rate_ms);
799         mod_timer_pinned(&cpu->timer, jiffies + delay);
800 }
801
802 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
803 {
804         int32_t core_busy, max_pstate, current_pstate, sample_ratio;
805         u32 duration_us;
806         u32 sample_time;
807
808         /*
809          * core_busy is the ratio of actual performance to max
810          * max_pstate is the max non turbo pstate available
811          * current_pstate was the pstate that was requested during
812          *      the last sample period.
813          *
814          * We normalize core_busy, which was our actual percent
815          * performance to what we requested during the last sample
816          * period. The result will be a percentage of busy at a
817          * specified pstate.
818          */
819         core_busy = cpu->sample.core_pct_busy;
820         max_pstate = int_tofp(cpu->pstate.max_pstate);
821         current_pstate = int_tofp(cpu->pstate.current_pstate);
822         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
823
824         /*
825          * Since we have a deferred timer, it will not fire unless
826          * we are in C0.  So, determine if the actual elapsed time
827          * is significantly greater (3x) than our sample interval.  If it
828          * is, then we were idle for a long enough period of time
829          * to adjust our busyness.
830          */
831         sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
832         duration_us = (u32) ktime_us_delta(cpu->sample.time,
833                                            cpu->last_sample_time);
834         if (duration_us > sample_time * 3) {
835                 sample_ratio = div_fp(int_tofp(sample_time),
836                                       int_tofp(duration_us));
837                 core_busy = mul_fp(core_busy, sample_ratio);
838         }
839
840         return core_busy;
841 }
842
843 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
844 {
845         int32_t busy_scaled;
846         struct _pid *pid;
847         signed int ctl;
848         int from;
849         struct sample *sample;
850
851         from = cpu->pstate.current_pstate;
852
853         pid = &cpu->pid;
854         busy_scaled = intel_pstate_get_scaled_busy(cpu);
855
856         ctl = pid_calc(pid, busy_scaled);
857
858         /* Negative values of ctl increase the pstate and vice versa */
859         intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
860
861         sample = &cpu->sample;
862         trace_pstate_sample(fp_toint(sample->core_pct_busy),
863                 fp_toint(busy_scaled),
864                 from,
865                 cpu->pstate.current_pstate,
866                 sample->mperf,
867                 sample->aperf,
868                 sample->tsc,
869                 sample->freq);
870 }
871
872 static void intel_hwp_timer_func(unsigned long __data)
873 {
874         struct cpudata *cpu = (struct cpudata *) __data;
875
876         intel_pstate_sample(cpu);
877         intel_hwp_set_sample_time(cpu);
878 }
879
880 static void intel_pstate_timer_func(unsigned long __data)
881 {
882         struct cpudata *cpu = (struct cpudata *) __data;
883
884         intel_pstate_sample(cpu);
885
886         intel_pstate_adjust_busy_pstate(cpu);
887
888         intel_pstate_set_sample_time(cpu);
889 }
890
891 #define ICPU(model, policy) \
892         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
893                         (unsigned long)&policy }
894
895 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
896         ICPU(0x2a, core_params),
897         ICPU(0x2d, core_params),
898         ICPU(0x37, byt_params),
899         ICPU(0x3a, core_params),
900         ICPU(0x3c, core_params),
901         ICPU(0x3d, core_params),
902         ICPU(0x3e, core_params),
903         ICPU(0x3f, core_params),
904         ICPU(0x45, core_params),
905         ICPU(0x46, core_params),
906         ICPU(0x47, core_params),
907         ICPU(0x4c, byt_params),
908         ICPU(0x4e, core_params),
909         ICPU(0x4f, core_params),
910         ICPU(0x56, core_params),
911         ICPU(0x57, knl_params),
912         {}
913 };
914 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
915
916 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
917         ICPU(0x56, core_params),
918         {}
919 };
920
921 static int intel_pstate_init_cpu(unsigned int cpunum)
922 {
923         struct cpudata *cpu;
924
925         if (!all_cpu_data[cpunum])
926                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
927                                                GFP_KERNEL);
928         if (!all_cpu_data[cpunum])
929                 return -ENOMEM;
930
931         cpu = all_cpu_data[cpunum];
932
933         cpu->cpu = cpunum;
934         intel_pstate_get_cpu_pstates(cpu);
935
936         init_timer_deferrable(&cpu->timer);
937         cpu->timer.data = (unsigned long)cpu;
938         cpu->timer.expires = jiffies + HZ/100;
939
940         if (!hwp_active)
941                 cpu->timer.function = intel_pstate_timer_func;
942         else
943                 cpu->timer.function = intel_hwp_timer_func;
944
945         intel_pstate_busy_pid_reset(cpu);
946         intel_pstate_sample(cpu);
947
948         add_timer_on(&cpu->timer, cpunum);
949
950         pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
951
952         return 0;
953 }
954
955 static unsigned int intel_pstate_get(unsigned int cpu_num)
956 {
957         struct sample *sample;
958         struct cpudata *cpu;
959
960         cpu = all_cpu_data[cpu_num];
961         if (!cpu)
962                 return 0;
963         sample = &cpu->sample;
964         return sample->freq;
965 }
966
967 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
968 {
969         if (!policy->cpuinfo.max_freq)
970                 return -ENODEV;
971
972         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
973             policy->max >= policy->cpuinfo.max_freq) {
974                 limits.min_policy_pct = 100;
975                 limits.min_perf_pct = 100;
976                 limits.min_perf = int_tofp(1);
977                 limits.max_policy_pct = 100;
978                 limits.max_perf_pct = 100;
979                 limits.max_perf = int_tofp(1);
980                 limits.no_turbo = 0;
981                 return 0;
982         }
983
984         limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
985         limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
986         limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
987         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
988
989         limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
990         limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
991         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
992         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
993
994         if (hwp_active)
995                 intel_pstate_hwp_set();
996
997         return 0;
998 }
999
1000 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1001 {
1002         cpufreq_verify_within_cpu_limits(policy);
1003
1004         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1005             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1006                 return -EINVAL;
1007
1008         return 0;
1009 }
1010
1011 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1012 {
1013         int cpu_num = policy->cpu;
1014         struct cpudata *cpu = all_cpu_data[cpu_num];
1015
1016         pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1017
1018         del_timer_sync(&all_cpu_data[cpu_num]->timer);
1019         if (hwp_active)
1020                 return;
1021
1022         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1023 }
1024
1025 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1026 {
1027         struct cpudata *cpu;
1028         int rc;
1029
1030         rc = intel_pstate_init_cpu(policy->cpu);
1031         if (rc)
1032                 return rc;
1033
1034         cpu = all_cpu_data[policy->cpu];
1035
1036         if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
1037                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1038         else
1039                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1040
1041         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1042         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1043
1044         /* cpuinfo and default policy values */
1045         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1046         policy->cpuinfo.max_freq =
1047                 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1048         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1049         cpumask_set_cpu(policy->cpu, policy->cpus);
1050
1051         return 0;
1052 }
1053
1054 static struct cpufreq_driver intel_pstate_driver = {
1055         .flags          = CPUFREQ_CONST_LOOPS,
1056         .verify         = intel_pstate_verify_policy,
1057         .setpolicy      = intel_pstate_set_policy,
1058         .get            = intel_pstate_get,
1059         .init           = intel_pstate_cpu_init,
1060         .stop_cpu       = intel_pstate_stop_cpu,
1061         .name           = "intel_pstate",
1062 };
1063
1064 static int __initdata no_load;
1065 static int __initdata no_hwp;
1066 static int __initdata hwp_only;
1067 static unsigned int force_load;
1068
1069 static int intel_pstate_msrs_not_valid(void)
1070 {
1071         if (!pstate_funcs.get_max() ||
1072             !pstate_funcs.get_min() ||
1073             !pstate_funcs.get_turbo())
1074                 return -ENODEV;
1075
1076         return 0;
1077 }
1078
1079 static void copy_pid_params(struct pstate_adjust_policy *policy)
1080 {
1081         pid_params.sample_rate_ms = policy->sample_rate_ms;
1082         pid_params.p_gain_pct = policy->p_gain_pct;
1083         pid_params.i_gain_pct = policy->i_gain_pct;
1084         pid_params.d_gain_pct = policy->d_gain_pct;
1085         pid_params.deadband = policy->deadband;
1086         pid_params.setpoint = policy->setpoint;
1087 }
1088
1089 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1090 {
1091         pstate_funcs.get_max   = funcs->get_max;
1092         pstate_funcs.get_min   = funcs->get_min;
1093         pstate_funcs.get_turbo = funcs->get_turbo;
1094         pstate_funcs.get_scaling = funcs->get_scaling;
1095         pstate_funcs.set       = funcs->set;
1096         pstate_funcs.get_vid   = funcs->get_vid;
1097 }
1098
1099 #if IS_ENABLED(CONFIG_ACPI)
1100 #include <acpi/processor.h>
1101
1102 static bool intel_pstate_no_acpi_pss(void)
1103 {
1104         int i;
1105
1106         for_each_possible_cpu(i) {
1107                 acpi_status status;
1108                 union acpi_object *pss;
1109                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1110                 struct acpi_processor *pr = per_cpu(processors, i);
1111
1112                 if (!pr)
1113                         continue;
1114
1115                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1116                 if (ACPI_FAILURE(status))
1117                         continue;
1118
1119                 pss = buffer.pointer;
1120                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1121                         kfree(pss);
1122                         return false;
1123                 }
1124
1125                 kfree(pss);
1126         }
1127
1128         return true;
1129 }
1130
1131 static bool intel_pstate_has_acpi_ppc(void)
1132 {
1133         int i;
1134
1135         for_each_possible_cpu(i) {
1136                 struct acpi_processor *pr = per_cpu(processors, i);
1137
1138                 if (!pr)
1139                         continue;
1140                 if (acpi_has_method(pr->handle, "_PPC"))
1141                         return true;
1142         }
1143         return false;
1144 }
1145
1146 enum {
1147         PSS,
1148         PPC,
1149 };
1150
1151 struct hw_vendor_info {
1152         u16  valid;
1153         char oem_id[ACPI_OEM_ID_SIZE];
1154         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1155         int  oem_pwr_table;
1156 };
1157
1158 /* Hardware vendor-specific info that has its own power management modes */
1159 static struct hw_vendor_info vendor_info[] = {
1160         {1, "HP    ", "ProLiant", PSS},
1161         {1, "ORACLE", "X4-2    ", PPC},
1162         {1, "ORACLE", "X4-2L   ", PPC},
1163         {1, "ORACLE", "X4-2B   ", PPC},
1164         {1, "ORACLE", "X3-2    ", PPC},
1165         {1, "ORACLE", "X3-2L   ", PPC},
1166         {1, "ORACLE", "X3-2B   ", PPC},
1167         {1, "ORACLE", "X4470M2 ", PPC},
1168         {1, "ORACLE", "X4270M3 ", PPC},
1169         {1, "ORACLE", "X4270M2 ", PPC},
1170         {1, "ORACLE", "X4170M2 ", PPC},
1171         {0, "", ""},
1172 };
1173
1174 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1175 {
1176         struct acpi_table_header hdr;
1177         struct hw_vendor_info *v_info;
1178         const struct x86_cpu_id *id;
1179         u64 misc_pwr;
1180
1181         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1182         if (id) {
1183                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1184                 if ( misc_pwr & (1 << 8))
1185                         return true;
1186         }
1187
1188         if (acpi_disabled ||
1189             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1190                 return false;
1191
1192         for (v_info = vendor_info; v_info->valid; v_info++) {
1193                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1194                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1195                                                 ACPI_OEM_TABLE_ID_SIZE))
1196                         switch (v_info->oem_pwr_table) {
1197                         case PSS:
1198                                 return intel_pstate_no_acpi_pss();
1199                         case PPC:
1200                                 return intel_pstate_has_acpi_ppc() &&
1201                                         (!force_load);
1202                         }
1203         }
1204
1205         return false;
1206 }
1207 #else /* CONFIG_ACPI not enabled */
1208 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1209 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1210 #endif /* CONFIG_ACPI */
1211
1212 static int __init intel_pstate_init(void)
1213 {
1214         int cpu, rc = 0;
1215         const struct x86_cpu_id *id;
1216         struct cpu_defaults *cpu_def;
1217
1218         if (no_load)
1219                 return -ENODEV;
1220
1221         id = x86_match_cpu(intel_pstate_cpu_ids);
1222         if (!id)
1223                 return -ENODEV;
1224
1225         /*
1226          * The Intel pstate driver will be ignored if the platform
1227          * firmware has its own power management modes.
1228          */
1229         if (intel_pstate_platform_pwr_mgmt_exists())
1230                 return -ENODEV;
1231
1232         cpu_def = (struct cpu_defaults *)id->driver_data;
1233
1234         copy_pid_params(&cpu_def->pid_policy);
1235         copy_cpu_funcs(&cpu_def->funcs);
1236
1237         if (intel_pstate_msrs_not_valid())
1238                 return -ENODEV;
1239
1240         pr_info("Intel P-state driver initializing.\n");
1241
1242         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1243         if (!all_cpu_data)
1244                 return -ENOMEM;
1245
1246         if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
1247                 intel_pstate_hwp_enable();
1248
1249         if (!hwp_active && hwp_only)
1250                 goto out;
1251
1252         rc = cpufreq_register_driver(&intel_pstate_driver);
1253         if (rc)
1254                 goto out;
1255
1256         intel_pstate_debug_expose_params();
1257         intel_pstate_sysfs_expose_params();
1258
1259         return rc;
1260 out:
1261         get_online_cpus();
1262         for_each_online_cpu(cpu) {
1263                 if (all_cpu_data[cpu]) {
1264                         del_timer_sync(&all_cpu_data[cpu]->timer);
1265                         kfree(all_cpu_data[cpu]);
1266                 }
1267         }
1268
1269         put_online_cpus();
1270         vfree(all_cpu_data);
1271         return -ENODEV;
1272 }
1273 device_initcall(intel_pstate_init);
1274
1275 static int __init intel_pstate_setup(char *str)
1276 {
1277         if (!str)
1278                 return -EINVAL;
1279
1280         if (!strcmp(str, "disable"))
1281                 no_load = 1;
1282         if (!strcmp(str, "no_hwp"))
1283                 no_hwp = 1;
1284         if (!strcmp(str, "force"))
1285                 force_load = 1;
1286         if (!strcmp(str, "hwp_only"))
1287                 hwp_only = 1;
1288         return 0;
1289 }
1290 early_param("intel_pstate", intel_pstate_setup);
1291
1292 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1293 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1294 MODULE_LICENSE("GPL");