dma: imx-sdma: remove the unused completion
[cascardo/linux.git] / drivers / dma / imx-sdma.c
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/of_dma.h>
40
41 #include <asm/irq.h>
42 #include <linux/platform_data/dma-imx-sdma.h>
43 #include <linux/platform_data/dma-imx.h>
44
45 #include "dmaengine.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR            0x000
49 #define SDMA_H_INTR             0x004
50 #define SDMA_H_STATSTOP         0x008
51 #define SDMA_H_START            0x00c
52 #define SDMA_H_EVTOVR           0x010
53 #define SDMA_H_DSPOVR           0x014
54 #define SDMA_H_HOSTOVR          0x018
55 #define SDMA_H_EVTPEND          0x01c
56 #define SDMA_H_DSPENBL          0x020
57 #define SDMA_H_RESET            0x024
58 #define SDMA_H_EVTERR           0x028
59 #define SDMA_H_INTRMSK          0x02c
60 #define SDMA_H_PSW              0x030
61 #define SDMA_H_EVTERRDBG        0x034
62 #define SDMA_H_CONFIG           0x038
63 #define SDMA_ONCE_ENB           0x040
64 #define SDMA_ONCE_DATA          0x044
65 #define SDMA_ONCE_INSTR         0x048
66 #define SDMA_ONCE_STAT          0x04c
67 #define SDMA_ONCE_CMD           0x050
68 #define SDMA_EVT_MIRROR         0x054
69 #define SDMA_ILLINSTADDR        0x058
70 #define SDMA_CHN0ADDR           0x05c
71 #define SDMA_ONCE_RTB           0x060
72 #define SDMA_XTRIG_CONF1        0x070
73 #define SDMA_XTRIG_CONF2        0x074
74 #define SDMA_CHNENBL0_IMX35     0x200
75 #define SDMA_CHNENBL0_IMX31     0x080
76 #define SDMA_CHNPRI_0           0x100
77
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125
126 /*
127  * Mode/Count of data node descriptors - IPCv2
128  */
129 struct sdma_mode_count {
130         u32 count   : 16; /* size of the buffer pointed by this BD */
131         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
132         u32 command :  8; /* command mostlky used for channel 0 */
133 };
134
135 /*
136  * Buffer descriptor
137  */
138 struct sdma_buffer_descriptor {
139         struct sdma_mode_count  mode;
140         u32 buffer_addr;        /* address of the buffer described */
141         u32 ext_buffer_addr;    /* extended buffer address */
142 } __attribute__ ((packed));
143
144 /**
145  * struct sdma_channel_control - Channel control Block
146  *
147  * @current_bd_ptr      current buffer descriptor processed
148  * @base_bd_ptr         first element of buffer descriptor array
149  * @unused              padding. The SDMA engine expects an array of 128 byte
150  *                      control blocks
151  */
152 struct sdma_channel_control {
153         u32 current_bd_ptr;
154         u32 base_bd_ptr;
155         u32 unused[2];
156 } __attribute__ ((packed));
157
158 /**
159  * struct sdma_state_registers - SDMA context for a channel
160  *
161  * @pc:         program counter
162  * @t:          test bit: status of arithmetic & test instruction
163  * @rpc:        return program counter
164  * @sf:         source fault while loading data
165  * @spc:        loop start program counter
166  * @df:         destination fault while storing data
167  * @epc:        loop end program counter
168  * @lm:         loop mode
169  */
170 struct sdma_state_registers {
171         u32 pc     :14;
172         u32 unused1: 1;
173         u32 t      : 1;
174         u32 rpc    :14;
175         u32 unused0: 1;
176         u32 sf     : 1;
177         u32 spc    :14;
178         u32 unused2: 1;
179         u32 df     : 1;
180         u32 epc    :14;
181         u32 lm     : 2;
182 } __attribute__ ((packed));
183
184 /**
185  * struct sdma_context_data - sdma context specific to a channel
186  *
187  * @channel_state:      channel state bits
188  * @gReg:               general registers
189  * @mda:                burst dma destination address register
190  * @msa:                burst dma source address register
191  * @ms:                 burst dma status register
192  * @md:                 burst dma data register
193  * @pda:                peripheral dma destination address register
194  * @psa:                peripheral dma source address register
195  * @ps:                 peripheral dma status register
196  * @pd:                 peripheral dma data register
197  * @ca:                 CRC polynomial register
198  * @cs:                 CRC accumulator register
199  * @dda:                dedicated core destination address register
200  * @dsa:                dedicated core source address register
201  * @ds:                 dedicated core status register
202  * @dd:                 dedicated core data register
203  */
204 struct sdma_context_data {
205         struct sdma_state_registers  channel_state;
206         u32  gReg[8];
207         u32  mda;
208         u32  msa;
209         u32  ms;
210         u32  md;
211         u32  pda;
212         u32  psa;
213         u32  ps;
214         u32  pd;
215         u32  ca;
216         u32  cs;
217         u32  dda;
218         u32  dsa;
219         u32  ds;
220         u32  dd;
221         u32  scratch0;
222         u32  scratch1;
223         u32  scratch2;
224         u32  scratch3;
225         u32  scratch4;
226         u32  scratch5;
227         u32  scratch6;
228         u32  scratch7;
229 } __attribute__ ((packed));
230
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232
233 struct sdma_engine;
234
235 /**
236  * struct sdma_channel - housekeeping for a SDMA channel
237  *
238  * @sdma                pointer to the SDMA engine for this channel
239  * @channel             the channel number, matches dmaengine chan_id + 1
240  * @direction           transfer type. Needed for setting SDMA script
241  * @peripheral_type     Peripheral type. Needed for setting SDMA script
242  * @event_id0           aka dma request line
243  * @event_id1           for channels that use 2 events
244  * @word_size           peripheral access size
245  * @buf_tail            ID of the buffer that was processed
246  * @num_bd              max NUM_BD. number of descriptors currently handling
247  */
248 struct sdma_channel {
249         struct sdma_engine              *sdma;
250         unsigned int                    channel;
251         enum dma_transfer_direction             direction;
252         enum sdma_peripheral_type       peripheral_type;
253         unsigned int                    event_id0;
254         unsigned int                    event_id1;
255         enum dma_slave_buswidth         word_size;
256         unsigned int                    buf_tail;
257         unsigned int                    num_bd;
258         struct sdma_buffer_descriptor   *bd;
259         dma_addr_t                      bd_phys;
260         unsigned int                    pc_from_device, pc_to_device;
261         unsigned long                   flags;
262         dma_addr_t                      per_address;
263         unsigned long                   event_mask[2];
264         unsigned long                   watermark_level;
265         u32                             shp_addr, per_addr;
266         struct dma_chan                 chan;
267         spinlock_t                      lock;
268         struct dma_async_tx_descriptor  desc;
269         enum dma_status                 status;
270         unsigned int                    chn_count;
271         unsigned int                    chn_real_count;
272         struct tasklet_struct           tasklet;
273 };
274
275 #define IMX_DMA_SG_LOOP         BIT(0)
276
277 #define MAX_DMA_CHANNELS 32
278 #define MXC_SDMA_DEFAULT_PRIORITY 1
279 #define MXC_SDMA_MIN_PRIORITY 1
280 #define MXC_SDMA_MAX_PRIORITY 7
281
282 #define SDMA_FIRMWARE_MAGIC 0x414d4453
283
284 /**
285  * struct sdma_firmware_header - Layout of the firmware image
286  *
287  * @magic               "SDMA"
288  * @version_major       increased whenever layout of struct sdma_script_start_addrs
289  *                      changes.
290  * @version_minor       firmware minor version (for binary compatible changes)
291  * @script_addrs_start  offset of struct sdma_script_start_addrs in this image
292  * @num_script_addrs    Number of script addresses in this image
293  * @ram_code_start      offset of SDMA ram image in this firmware image
294  * @ram_code_size       size of SDMA ram image
295  * @script_addrs        Stores the start address of the SDMA scripts
296  *                      (in SDMA memory space)
297  */
298 struct sdma_firmware_header {
299         u32     magic;
300         u32     version_major;
301         u32     version_minor;
302         u32     script_addrs_start;
303         u32     num_script_addrs;
304         u32     ram_code_start;
305         u32     ram_code_size;
306 };
307
308 enum sdma_devtype {
309         IMX31_SDMA,     /* runs on i.mx31 */
310         IMX35_SDMA,     /* runs on i.mx35 and later */
311 };
312
313 struct sdma_engine {
314         struct device                   *dev;
315         struct device_dma_parameters    dma_parms;
316         struct sdma_channel             channel[MAX_DMA_CHANNELS];
317         struct sdma_channel_control     *channel_control;
318         void __iomem                    *regs;
319         enum sdma_devtype               devtype;
320         unsigned int                    num_events;
321         struct sdma_context_data        *context;
322         dma_addr_t                      context_phys;
323         struct dma_device               dma_device;
324         struct clk                      *clk_ipg;
325         struct clk                      *clk_ahb;
326         spinlock_t                      channel_0_lock;
327         struct sdma_script_start_addrs  *script_addrs;
328 };
329
330 static struct platform_device_id sdma_devtypes[] = {
331         {
332                 .name = "imx31-sdma",
333                 .driver_data = IMX31_SDMA,
334         }, {
335                 .name = "imx35-sdma",
336                 .driver_data = IMX35_SDMA,
337         }, {
338                 /* sentinel */
339         }
340 };
341 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
342
343 static const struct of_device_id sdma_dt_ids[] = {
344         { .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
345         { .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
346         { /* sentinel */ }
347 };
348 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
349
350 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
351 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
352 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
353 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
354
355 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
356 {
357         u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
358                                                       SDMA_CHNENBL0_IMX35);
359         return chnenbl0 + event * 4;
360 }
361
362 static int sdma_config_ownership(struct sdma_channel *sdmac,
363                 bool event_override, bool mcu_override, bool dsp_override)
364 {
365         struct sdma_engine *sdma = sdmac->sdma;
366         int channel = sdmac->channel;
367         unsigned long evt, mcu, dsp;
368
369         if (event_override && mcu_override && dsp_override)
370                 return -EINVAL;
371
372         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
373         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
374         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
375
376         if (dsp_override)
377                 __clear_bit(channel, &dsp);
378         else
379                 __set_bit(channel, &dsp);
380
381         if (event_override)
382                 __clear_bit(channel, &evt);
383         else
384                 __set_bit(channel, &evt);
385
386         if (mcu_override)
387                 __clear_bit(channel, &mcu);
388         else
389                 __set_bit(channel, &mcu);
390
391         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
392         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
393         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
394
395         return 0;
396 }
397
398 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
399 {
400         writel(BIT(channel), sdma->regs + SDMA_H_START);
401 }
402
403 /*
404  * sdma_run_channel0 - run a channel and wait till it's done
405  */
406 static int sdma_run_channel0(struct sdma_engine *sdma)
407 {
408         int ret;
409         unsigned long timeout = 500;
410
411         sdma_enable_channel(sdma, 0);
412
413         while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
414                 if (timeout-- <= 0)
415                         break;
416                 udelay(1);
417         }
418
419         if (ret) {
420                 /* Clear the interrupt status */
421                 writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
422         } else {
423                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
424         }
425
426         return ret ? 0 : -ETIMEDOUT;
427 }
428
429 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
430                 u32 address)
431 {
432         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
433         void *buf_virt;
434         dma_addr_t buf_phys;
435         int ret;
436         unsigned long flags;
437
438         buf_virt = dma_alloc_coherent(NULL,
439                         size,
440                         &buf_phys, GFP_KERNEL);
441         if (!buf_virt) {
442                 return -ENOMEM;
443         }
444
445         spin_lock_irqsave(&sdma->channel_0_lock, flags);
446
447         bd0->mode.command = C0_SETPM;
448         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
449         bd0->mode.count = size / 2;
450         bd0->buffer_addr = buf_phys;
451         bd0->ext_buffer_addr = address;
452
453         memcpy(buf_virt, buf, size);
454
455         ret = sdma_run_channel0(sdma);
456
457         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
458
459         dma_free_coherent(NULL, size, buf_virt, buf_phys);
460
461         return ret;
462 }
463
464 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
465 {
466         struct sdma_engine *sdma = sdmac->sdma;
467         int channel = sdmac->channel;
468         unsigned long val;
469         u32 chnenbl = chnenbl_ofs(sdma, event);
470
471         val = readl_relaxed(sdma->regs + chnenbl);
472         __set_bit(channel, &val);
473         writel_relaxed(val, sdma->regs + chnenbl);
474 }
475
476 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
477 {
478         struct sdma_engine *sdma = sdmac->sdma;
479         int channel = sdmac->channel;
480         u32 chnenbl = chnenbl_ofs(sdma, event);
481         unsigned long val;
482
483         val = readl_relaxed(sdma->regs + chnenbl);
484         __clear_bit(channel, &val);
485         writel_relaxed(val, sdma->regs + chnenbl);
486 }
487
488 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
489 {
490         struct sdma_buffer_descriptor *bd;
491
492         /*
493          * loop mode. Iterate over descriptors, re-setup them and
494          * call callback function.
495          */
496         while (1) {
497                 bd = &sdmac->bd[sdmac->buf_tail];
498
499                 if (bd->mode.status & BD_DONE)
500                         break;
501
502                 if (bd->mode.status & BD_RROR)
503                         sdmac->status = DMA_ERROR;
504                 else
505                         sdmac->status = DMA_IN_PROGRESS;
506
507                 bd->mode.status |= BD_DONE;
508                 sdmac->buf_tail++;
509                 sdmac->buf_tail %= sdmac->num_bd;
510
511                 if (sdmac->desc.callback)
512                         sdmac->desc.callback(sdmac->desc.callback_param);
513         }
514 }
515
516 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
517 {
518         struct sdma_buffer_descriptor *bd;
519         int i, error = 0;
520
521         sdmac->chn_real_count = 0;
522         /*
523          * non loop mode. Iterate over all descriptors, collect
524          * errors and call callback function
525          */
526         for (i = 0; i < sdmac->num_bd; i++) {
527                 bd = &sdmac->bd[i];
528
529                  if (bd->mode.status & (BD_DONE | BD_RROR))
530                         error = -EIO;
531                  sdmac->chn_real_count += bd->mode.count;
532         }
533
534         if (error)
535                 sdmac->status = DMA_ERROR;
536         else
537                 sdmac->status = DMA_SUCCESS;
538
539         dma_cookie_complete(&sdmac->desc);
540         if (sdmac->desc.callback)
541                 sdmac->desc.callback(sdmac->desc.callback_param);
542 }
543
544 static void sdma_tasklet(unsigned long data)
545 {
546         struct sdma_channel *sdmac = (struct sdma_channel *) data;
547
548         if (sdmac->flags & IMX_DMA_SG_LOOP)
549                 sdma_handle_channel_loop(sdmac);
550         else
551                 mxc_sdma_handle_channel_normal(sdmac);
552 }
553
554 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
555 {
556         struct sdma_engine *sdma = dev_id;
557         unsigned long stat;
558
559         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
560         /* not interested in channel 0 interrupts */
561         stat &= ~1;
562         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
563
564         while (stat) {
565                 int channel = fls(stat) - 1;
566                 struct sdma_channel *sdmac = &sdma->channel[channel];
567
568                 tasklet_schedule(&sdmac->tasklet);
569
570                 __clear_bit(channel, &stat);
571         }
572
573         return IRQ_HANDLED;
574 }
575
576 /*
577  * sets the pc of SDMA script according to the peripheral type
578  */
579 static void sdma_get_pc(struct sdma_channel *sdmac,
580                 enum sdma_peripheral_type peripheral_type)
581 {
582         struct sdma_engine *sdma = sdmac->sdma;
583         int per_2_emi = 0, emi_2_per = 0;
584         /*
585          * These are needed once we start to support transfers between
586          * two peripherals or memory-to-memory transfers
587          */
588         int per_2_per = 0, emi_2_emi = 0;
589
590         sdmac->pc_from_device = 0;
591         sdmac->pc_to_device = 0;
592
593         switch (peripheral_type) {
594         case IMX_DMATYPE_MEMORY:
595                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
596                 break;
597         case IMX_DMATYPE_DSP:
598                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
599                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
600                 break;
601         case IMX_DMATYPE_FIRI:
602                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
603                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
604                 break;
605         case IMX_DMATYPE_UART:
606                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
607                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
608                 break;
609         case IMX_DMATYPE_UART_SP:
610                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
611                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
612                 break;
613         case IMX_DMATYPE_ATA:
614                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
615                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
616                 break;
617         case IMX_DMATYPE_CSPI:
618         case IMX_DMATYPE_EXT:
619         case IMX_DMATYPE_SSI:
620                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
621                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
622                 break;
623         case IMX_DMATYPE_SSI_SP:
624         case IMX_DMATYPE_MMC:
625         case IMX_DMATYPE_SDHC:
626         case IMX_DMATYPE_CSPI_SP:
627         case IMX_DMATYPE_ESAI:
628         case IMX_DMATYPE_MSHC_SP:
629                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
630                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
631                 break;
632         case IMX_DMATYPE_ASRC:
633                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
634                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
635                 per_2_per = sdma->script_addrs->per_2_per_addr;
636                 break;
637         case IMX_DMATYPE_MSHC:
638                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
639                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
640                 break;
641         case IMX_DMATYPE_CCM:
642                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
643                 break;
644         case IMX_DMATYPE_SPDIF:
645                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
646                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
647                 break;
648         case IMX_DMATYPE_IPU_MEMORY:
649                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
650                 break;
651         default:
652                 break;
653         }
654
655         sdmac->pc_from_device = per_2_emi;
656         sdmac->pc_to_device = emi_2_per;
657 }
658
659 static int sdma_load_context(struct sdma_channel *sdmac)
660 {
661         struct sdma_engine *sdma = sdmac->sdma;
662         int channel = sdmac->channel;
663         int load_address;
664         struct sdma_context_data *context = sdma->context;
665         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
666         int ret;
667         unsigned long flags;
668
669         if (sdmac->direction == DMA_DEV_TO_MEM) {
670                 load_address = sdmac->pc_from_device;
671         } else {
672                 load_address = sdmac->pc_to_device;
673         }
674
675         if (load_address < 0)
676                 return load_address;
677
678         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
679         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
680         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
681         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
682         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
683         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
684
685         spin_lock_irqsave(&sdma->channel_0_lock, flags);
686
687         memset(context, 0, sizeof(*context));
688         context->channel_state.pc = load_address;
689
690         /* Send by context the event mask,base address for peripheral
691          * and watermark level
692          */
693         context->gReg[0] = sdmac->event_mask[1];
694         context->gReg[1] = sdmac->event_mask[0];
695         context->gReg[2] = sdmac->per_addr;
696         context->gReg[6] = sdmac->shp_addr;
697         context->gReg[7] = sdmac->watermark_level;
698
699         bd0->mode.command = C0_SETDM;
700         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
701         bd0->mode.count = sizeof(*context) / 4;
702         bd0->buffer_addr = sdma->context_phys;
703         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
704         ret = sdma_run_channel0(sdma);
705
706         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
707
708         return ret;
709 }
710
711 static void sdma_disable_channel(struct sdma_channel *sdmac)
712 {
713         struct sdma_engine *sdma = sdmac->sdma;
714         int channel = sdmac->channel;
715
716         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
717         sdmac->status = DMA_ERROR;
718 }
719
720 static int sdma_config_channel(struct sdma_channel *sdmac)
721 {
722         int ret;
723
724         sdma_disable_channel(sdmac);
725
726         sdmac->event_mask[0] = 0;
727         sdmac->event_mask[1] = 0;
728         sdmac->shp_addr = 0;
729         sdmac->per_addr = 0;
730
731         if (sdmac->event_id0) {
732                 if (sdmac->event_id0 >= sdmac->sdma->num_events)
733                         return -EINVAL;
734                 sdma_event_enable(sdmac, sdmac->event_id0);
735         }
736
737         switch (sdmac->peripheral_type) {
738         case IMX_DMATYPE_DSP:
739                 sdma_config_ownership(sdmac, false, true, true);
740                 break;
741         case IMX_DMATYPE_MEMORY:
742                 sdma_config_ownership(sdmac, false, true, false);
743                 break;
744         default:
745                 sdma_config_ownership(sdmac, true, true, false);
746                 break;
747         }
748
749         sdma_get_pc(sdmac, sdmac->peripheral_type);
750
751         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
752                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
753                 /* Handle multiple event channels differently */
754                 if (sdmac->event_id1) {
755                         sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
756                         if (sdmac->event_id1 > 31)
757                                 __set_bit(31, &sdmac->watermark_level);
758                         sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
759                         if (sdmac->event_id0 > 31)
760                                 __set_bit(30, &sdmac->watermark_level);
761                 } else {
762                         __set_bit(sdmac->event_id0, sdmac->event_mask);
763                 }
764                 /* Watermark Level */
765                 sdmac->watermark_level |= sdmac->watermark_level;
766                 /* Address */
767                 sdmac->shp_addr = sdmac->per_address;
768         } else {
769                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
770         }
771
772         ret = sdma_load_context(sdmac);
773
774         return ret;
775 }
776
777 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
778                 unsigned int priority)
779 {
780         struct sdma_engine *sdma = sdmac->sdma;
781         int channel = sdmac->channel;
782
783         if (priority < MXC_SDMA_MIN_PRIORITY
784             || priority > MXC_SDMA_MAX_PRIORITY) {
785                 return -EINVAL;
786         }
787
788         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
789
790         return 0;
791 }
792
793 static int sdma_request_channel(struct sdma_channel *sdmac)
794 {
795         struct sdma_engine *sdma = sdmac->sdma;
796         int channel = sdmac->channel;
797         int ret = -EBUSY;
798
799         sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
800         if (!sdmac->bd) {
801                 ret = -ENOMEM;
802                 goto out;
803         }
804
805         memset(sdmac->bd, 0, PAGE_SIZE);
806
807         sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
808         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
809
810         sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
811         return 0;
812 out:
813
814         return ret;
815 }
816
817 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
818 {
819         return container_of(chan, struct sdma_channel, chan);
820 }
821
822 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
823 {
824         unsigned long flags;
825         struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
826         dma_cookie_t cookie;
827
828         spin_lock_irqsave(&sdmac->lock, flags);
829
830         cookie = dma_cookie_assign(tx);
831
832         spin_unlock_irqrestore(&sdmac->lock, flags);
833
834         return cookie;
835 }
836
837 static int sdma_alloc_chan_resources(struct dma_chan *chan)
838 {
839         struct sdma_channel *sdmac = to_sdma_chan(chan);
840         struct imx_dma_data *data = chan->private;
841         int prio, ret;
842
843         if (!data)
844                 return -EINVAL;
845
846         switch (data->priority) {
847         case DMA_PRIO_HIGH:
848                 prio = 3;
849                 break;
850         case DMA_PRIO_MEDIUM:
851                 prio = 2;
852                 break;
853         case DMA_PRIO_LOW:
854         default:
855                 prio = 1;
856                 break;
857         }
858
859         sdmac->peripheral_type = data->peripheral_type;
860         sdmac->event_id0 = data->dma_request;
861
862         clk_enable(sdmac->sdma->clk_ipg);
863         clk_enable(sdmac->sdma->clk_ahb);
864
865         ret = sdma_request_channel(sdmac);
866         if (ret)
867                 return ret;
868
869         ret = sdma_set_channel_priority(sdmac, prio);
870         if (ret)
871                 return ret;
872
873         dma_async_tx_descriptor_init(&sdmac->desc, chan);
874         sdmac->desc.tx_submit = sdma_tx_submit;
875         /* txd.flags will be overwritten in prep funcs */
876         sdmac->desc.flags = DMA_CTRL_ACK;
877
878         return 0;
879 }
880
881 static void sdma_free_chan_resources(struct dma_chan *chan)
882 {
883         struct sdma_channel *sdmac = to_sdma_chan(chan);
884         struct sdma_engine *sdma = sdmac->sdma;
885
886         sdma_disable_channel(sdmac);
887
888         if (sdmac->event_id0)
889                 sdma_event_disable(sdmac, sdmac->event_id0);
890         if (sdmac->event_id1)
891                 sdma_event_disable(sdmac, sdmac->event_id1);
892
893         sdmac->event_id0 = 0;
894         sdmac->event_id1 = 0;
895
896         sdma_set_channel_priority(sdmac, 0);
897
898         dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
899
900         clk_disable(sdma->clk_ipg);
901         clk_disable(sdma->clk_ahb);
902 }
903
904 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
905                 struct dma_chan *chan, struct scatterlist *sgl,
906                 unsigned int sg_len, enum dma_transfer_direction direction,
907                 unsigned long flags, void *context)
908 {
909         struct sdma_channel *sdmac = to_sdma_chan(chan);
910         struct sdma_engine *sdma = sdmac->sdma;
911         int ret, i, count;
912         int channel = sdmac->channel;
913         struct scatterlist *sg;
914
915         if (sdmac->status == DMA_IN_PROGRESS)
916                 return NULL;
917         sdmac->status = DMA_IN_PROGRESS;
918
919         sdmac->flags = 0;
920
921         sdmac->buf_tail = 0;
922
923         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
924                         sg_len, channel);
925
926         sdmac->direction = direction;
927         ret = sdma_load_context(sdmac);
928         if (ret)
929                 goto err_out;
930
931         if (sg_len > NUM_BD) {
932                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
933                                 channel, sg_len, NUM_BD);
934                 ret = -EINVAL;
935                 goto err_out;
936         }
937
938         sdmac->chn_count = 0;
939         for_each_sg(sgl, sg, sg_len, i) {
940                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
941                 int param;
942
943                 bd->buffer_addr = sg->dma_address;
944
945                 count = sg_dma_len(sg);
946
947                 if (count > 0xffff) {
948                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
949                                         channel, count, 0xffff);
950                         ret = -EINVAL;
951                         goto err_out;
952                 }
953
954                 bd->mode.count = count;
955                 sdmac->chn_count += count;
956
957                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
958                         ret =  -EINVAL;
959                         goto err_out;
960                 }
961
962                 switch (sdmac->word_size) {
963                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
964                         bd->mode.command = 0;
965                         if (count & 3 || sg->dma_address & 3)
966                                 return NULL;
967                         break;
968                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
969                         bd->mode.command = 2;
970                         if (count & 1 || sg->dma_address & 1)
971                                 return NULL;
972                         break;
973                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
974                         bd->mode.command = 1;
975                         break;
976                 default:
977                         return NULL;
978                 }
979
980                 param = BD_DONE | BD_EXTD | BD_CONT;
981
982                 if (i + 1 == sg_len) {
983                         param |= BD_INTR;
984                         param |= BD_LAST;
985                         param &= ~BD_CONT;
986                 }
987
988                 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
989                                 i, count, sg->dma_address,
990                                 param & BD_WRAP ? "wrap" : "",
991                                 param & BD_INTR ? " intr" : "");
992
993                 bd->mode.status = param;
994         }
995
996         sdmac->num_bd = sg_len;
997         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
998
999         return &sdmac->desc;
1000 err_out:
1001         sdmac->status = DMA_ERROR;
1002         return NULL;
1003 }
1004
1005 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1006                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1007                 size_t period_len, enum dma_transfer_direction direction,
1008                 unsigned long flags, void *context)
1009 {
1010         struct sdma_channel *sdmac = to_sdma_chan(chan);
1011         struct sdma_engine *sdma = sdmac->sdma;
1012         int num_periods = buf_len / period_len;
1013         int channel = sdmac->channel;
1014         int ret, i = 0, buf = 0;
1015
1016         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1017
1018         if (sdmac->status == DMA_IN_PROGRESS)
1019                 return NULL;
1020
1021         sdmac->status = DMA_IN_PROGRESS;
1022
1023         sdmac->buf_tail = 0;
1024
1025         sdmac->flags |= IMX_DMA_SG_LOOP;
1026         sdmac->direction = direction;
1027         ret = sdma_load_context(sdmac);
1028         if (ret)
1029                 goto err_out;
1030
1031         if (num_periods > NUM_BD) {
1032                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1033                                 channel, num_periods, NUM_BD);
1034                 goto err_out;
1035         }
1036
1037         if (period_len > 0xffff) {
1038                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1039                                 channel, period_len, 0xffff);
1040                 goto err_out;
1041         }
1042
1043         while (buf < buf_len) {
1044                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1045                 int param;
1046
1047                 bd->buffer_addr = dma_addr;
1048
1049                 bd->mode.count = period_len;
1050
1051                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1052                         goto err_out;
1053                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1054                         bd->mode.command = 0;
1055                 else
1056                         bd->mode.command = sdmac->word_size;
1057
1058                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1059                 if (i + 1 == num_periods)
1060                         param |= BD_WRAP;
1061
1062                 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1063                                 i, period_len, dma_addr,
1064                                 param & BD_WRAP ? "wrap" : "",
1065                                 param & BD_INTR ? " intr" : "");
1066
1067                 bd->mode.status = param;
1068
1069                 dma_addr += period_len;
1070                 buf += period_len;
1071
1072                 i++;
1073         }
1074
1075         sdmac->num_bd = num_periods;
1076         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1077
1078         return &sdmac->desc;
1079 err_out:
1080         sdmac->status = DMA_ERROR;
1081         return NULL;
1082 }
1083
1084 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1085                 unsigned long arg)
1086 {
1087         struct sdma_channel *sdmac = to_sdma_chan(chan);
1088         struct dma_slave_config *dmaengine_cfg = (void *)arg;
1089
1090         switch (cmd) {
1091         case DMA_TERMINATE_ALL:
1092                 sdma_disable_channel(sdmac);
1093                 return 0;
1094         case DMA_SLAVE_CONFIG:
1095                 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1096                         sdmac->per_address = dmaengine_cfg->src_addr;
1097                         sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1098                                                 dmaengine_cfg->src_addr_width;
1099                         sdmac->word_size = dmaengine_cfg->src_addr_width;
1100                 } else {
1101                         sdmac->per_address = dmaengine_cfg->dst_addr;
1102                         sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1103                                                 dmaengine_cfg->dst_addr_width;
1104                         sdmac->word_size = dmaengine_cfg->dst_addr_width;
1105                 }
1106                 sdmac->direction = dmaengine_cfg->direction;
1107                 return sdma_config_channel(sdmac);
1108         default:
1109                 return -ENOSYS;
1110         }
1111
1112         return -EINVAL;
1113 }
1114
1115 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1116                                       dma_cookie_t cookie,
1117                                       struct dma_tx_state *txstate)
1118 {
1119         struct sdma_channel *sdmac = to_sdma_chan(chan);
1120
1121         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1122                         sdmac->chn_count - sdmac->chn_real_count);
1123
1124         return sdmac->status;
1125 }
1126
1127 static void sdma_issue_pending(struct dma_chan *chan)
1128 {
1129         struct sdma_channel *sdmac = to_sdma_chan(chan);
1130         struct sdma_engine *sdma = sdmac->sdma;
1131
1132         if (sdmac->status == DMA_IN_PROGRESS)
1133                 sdma_enable_channel(sdma, sdmac->channel);
1134 }
1135
1136 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1137
1138 static void sdma_add_scripts(struct sdma_engine *sdma,
1139                 const struct sdma_script_start_addrs *addr)
1140 {
1141         s32 *addr_arr = (u32 *)addr;
1142         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1143         int i;
1144
1145         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1146                 if (addr_arr[i] > 0)
1147                         saddr_arr[i] = addr_arr[i];
1148 }
1149
1150 static void sdma_load_firmware(const struct firmware *fw, void *context)
1151 {
1152         struct sdma_engine *sdma = context;
1153         const struct sdma_firmware_header *header;
1154         const struct sdma_script_start_addrs *addr;
1155         unsigned short *ram_code;
1156
1157         if (!fw) {
1158                 dev_err(sdma->dev, "firmware not found\n");
1159                 return;
1160         }
1161
1162         if (fw->size < sizeof(*header))
1163                 goto err_firmware;
1164
1165         header = (struct sdma_firmware_header *)fw->data;
1166
1167         if (header->magic != SDMA_FIRMWARE_MAGIC)
1168                 goto err_firmware;
1169         if (header->ram_code_start + header->ram_code_size > fw->size)
1170                 goto err_firmware;
1171
1172         addr = (void *)header + header->script_addrs_start;
1173         ram_code = (void *)header + header->ram_code_start;
1174
1175         clk_enable(sdma->clk_ipg);
1176         clk_enable(sdma->clk_ahb);
1177         /* download the RAM image for SDMA */
1178         sdma_load_script(sdma, ram_code,
1179                         header->ram_code_size,
1180                         addr->ram_code_start_addr);
1181         clk_disable(sdma->clk_ipg);
1182         clk_disable(sdma->clk_ahb);
1183
1184         sdma_add_scripts(sdma, addr);
1185
1186         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1187                         header->version_major,
1188                         header->version_minor);
1189
1190 err_firmware:
1191         release_firmware(fw);
1192 }
1193
1194 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1195                 const char *fw_name)
1196 {
1197         int ret;
1198
1199         ret = request_firmware_nowait(THIS_MODULE,
1200                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1201                         GFP_KERNEL, sdma, sdma_load_firmware);
1202
1203         return ret;
1204 }
1205
1206 static int __init sdma_init(struct sdma_engine *sdma)
1207 {
1208         int i, ret;
1209         dma_addr_t ccb_phys;
1210
1211         switch (sdma->devtype) {
1212         case IMX31_SDMA:
1213                 sdma->num_events = 32;
1214                 break;
1215         case IMX35_SDMA:
1216                 sdma->num_events = 48;
1217                 break;
1218         default:
1219                 dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1220                         sdma->devtype);
1221                 return -ENODEV;
1222         }
1223
1224         clk_enable(sdma->clk_ipg);
1225         clk_enable(sdma->clk_ahb);
1226
1227         /* Be sure SDMA has not started yet */
1228         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1229
1230         sdma->channel_control = dma_alloc_coherent(NULL,
1231                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1232                         sizeof(struct sdma_context_data),
1233                         &ccb_phys, GFP_KERNEL);
1234
1235         if (!sdma->channel_control) {
1236                 ret = -ENOMEM;
1237                 goto err_dma_alloc;
1238         }
1239
1240         sdma->context = (void *)sdma->channel_control +
1241                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1242         sdma->context_phys = ccb_phys +
1243                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1244
1245         /* Zero-out the CCB structures array just allocated */
1246         memset(sdma->channel_control, 0,
1247                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1248
1249         /* disable all channels */
1250         for (i = 0; i < sdma->num_events; i++)
1251                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1252
1253         /* All channels have priority 0 */
1254         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1255                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1256
1257         ret = sdma_request_channel(&sdma->channel[0]);
1258         if (ret)
1259                 goto err_dma_alloc;
1260
1261         sdma_config_ownership(&sdma->channel[0], false, true, false);
1262
1263         /* Set Command Channel (Channel Zero) */
1264         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1265
1266         /* Set bits of CONFIG register but with static context switching */
1267         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1268         writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1269
1270         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1271
1272         /* Set bits of CONFIG register with given context switching mode */
1273         writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1274
1275         /* Initializes channel's priorities */
1276         sdma_set_channel_priority(&sdma->channel[0], 7);
1277
1278         clk_disable(sdma->clk_ipg);
1279         clk_disable(sdma->clk_ahb);
1280
1281         return 0;
1282
1283 err_dma_alloc:
1284         clk_disable(sdma->clk_ipg);
1285         clk_disable(sdma->clk_ahb);
1286         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1287         return ret;
1288 }
1289
1290 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1291 {
1292         struct imx_dma_data *data = fn_param;
1293
1294         if (!imx_dma_is_general_purpose(chan))
1295                 return false;
1296
1297         chan->private = data;
1298
1299         return true;
1300 }
1301
1302 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1303                                    struct of_dma *ofdma)
1304 {
1305         struct sdma_engine *sdma = ofdma->of_dma_data;
1306         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1307         struct imx_dma_data data;
1308
1309         if (dma_spec->args_count != 3)
1310                 return NULL;
1311
1312         data.dma_request = dma_spec->args[0];
1313         data.peripheral_type = dma_spec->args[1];
1314         data.priority = dma_spec->args[2];
1315
1316         return dma_request_channel(mask, sdma_filter_fn, &data);
1317 }
1318
1319 static int __init sdma_probe(struct platform_device *pdev)
1320 {
1321         const struct of_device_id *of_id =
1322                         of_match_device(sdma_dt_ids, &pdev->dev);
1323         struct device_node *np = pdev->dev.of_node;
1324         const char *fw_name;
1325         int ret;
1326         int irq;
1327         struct resource *iores;
1328         struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1329         int i;
1330         struct sdma_engine *sdma;
1331         s32 *saddr_arr;
1332
1333         sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1334         if (!sdma)
1335                 return -ENOMEM;
1336
1337         spin_lock_init(&sdma->channel_0_lock);
1338
1339         sdma->dev = &pdev->dev;
1340
1341         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1342         irq = platform_get_irq(pdev, 0);
1343         if (!iores || irq < 0) {
1344                 ret = -EINVAL;
1345                 goto err_irq;
1346         }
1347
1348         if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1349                 ret = -EBUSY;
1350                 goto err_request_region;
1351         }
1352
1353         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1354         if (IS_ERR(sdma->clk_ipg)) {
1355                 ret = PTR_ERR(sdma->clk_ipg);
1356                 goto err_clk;
1357         }
1358
1359         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1360         if (IS_ERR(sdma->clk_ahb)) {
1361                 ret = PTR_ERR(sdma->clk_ahb);
1362                 goto err_clk;
1363         }
1364
1365         clk_prepare(sdma->clk_ipg);
1366         clk_prepare(sdma->clk_ahb);
1367
1368         sdma->regs = ioremap(iores->start, resource_size(iores));
1369         if (!sdma->regs) {
1370                 ret = -ENOMEM;
1371                 goto err_ioremap;
1372         }
1373
1374         ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1375         if (ret)
1376                 goto err_request_irq;
1377
1378         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1379         if (!sdma->script_addrs) {
1380                 ret = -ENOMEM;
1381                 goto err_alloc;
1382         }
1383
1384         /* initially no scripts available */
1385         saddr_arr = (s32 *)sdma->script_addrs;
1386         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1387                 saddr_arr[i] = -EINVAL;
1388
1389         if (of_id)
1390                 pdev->id_entry = of_id->data;
1391         sdma->devtype = pdev->id_entry->driver_data;
1392
1393         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1394         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1395
1396         INIT_LIST_HEAD(&sdma->dma_device.channels);
1397         /* Initialize channel parameters */
1398         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1399                 struct sdma_channel *sdmac = &sdma->channel[i];
1400
1401                 sdmac->sdma = sdma;
1402                 spin_lock_init(&sdmac->lock);
1403
1404                 sdmac->chan.device = &sdma->dma_device;
1405                 dma_cookie_init(&sdmac->chan);
1406                 sdmac->channel = i;
1407
1408                 tasklet_init(&sdmac->tasklet, sdma_tasklet,
1409                              (unsigned long) sdmac);
1410                 /*
1411                  * Add the channel to the DMAC list. Do not add channel 0 though
1412                  * because we need it internally in the SDMA driver. This also means
1413                  * that channel 0 in dmaengine counting matches sdma channel 1.
1414                  */
1415                 if (i)
1416                         list_add_tail(&sdmac->chan.device_node,
1417                                         &sdma->dma_device.channels);
1418         }
1419
1420         ret = sdma_init(sdma);
1421         if (ret)
1422                 goto err_init;
1423
1424         if (pdata && pdata->script_addrs)
1425                 sdma_add_scripts(sdma, pdata->script_addrs);
1426
1427         if (pdata) {
1428                 ret = sdma_get_firmware(sdma, pdata->fw_name);
1429                 if (ret)
1430                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1431         } else {
1432                 /*
1433                  * Because that device tree does not encode ROM script address,
1434                  * the RAM script in firmware is mandatory for device tree
1435                  * probe, otherwise it fails.
1436                  */
1437                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1438                                               &fw_name);
1439                 if (ret)
1440                         dev_warn(&pdev->dev, "failed to get firmware name\n");
1441                 else {
1442                         ret = sdma_get_firmware(sdma, fw_name);
1443                         if (ret)
1444                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1445                 }
1446         }
1447
1448         sdma->dma_device.dev = &pdev->dev;
1449
1450         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1451         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1452         sdma->dma_device.device_tx_status = sdma_tx_status;
1453         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1454         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1455         sdma->dma_device.device_control = sdma_control;
1456         sdma->dma_device.device_issue_pending = sdma_issue_pending;
1457         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1458         dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1459
1460         ret = dma_async_device_register(&sdma->dma_device);
1461         if (ret) {
1462                 dev_err(&pdev->dev, "unable to register\n");
1463                 goto err_init;
1464         }
1465
1466         if (np) {
1467                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
1468                 if (ret) {
1469                         dev_err(&pdev->dev, "failed to register controller\n");
1470                         goto err_register;
1471                 }
1472         }
1473
1474         dev_info(sdma->dev, "initialized\n");
1475
1476         return 0;
1477
1478 err_register:
1479         dma_async_device_unregister(&sdma->dma_device);
1480 err_init:
1481         kfree(sdma->script_addrs);
1482 err_alloc:
1483         free_irq(irq, sdma);
1484 err_request_irq:
1485         iounmap(sdma->regs);
1486 err_ioremap:
1487 err_clk:
1488         release_mem_region(iores->start, resource_size(iores));
1489 err_request_region:
1490 err_irq:
1491         kfree(sdma);
1492         return ret;
1493 }
1494
1495 static int sdma_remove(struct platform_device *pdev)
1496 {
1497         return -EBUSY;
1498 }
1499
1500 static struct platform_driver sdma_driver = {
1501         .driver         = {
1502                 .name   = "imx-sdma",
1503                 .of_match_table = sdma_dt_ids,
1504         },
1505         .id_table       = sdma_devtypes,
1506         .remove         = sdma_remove,
1507 };
1508
1509 static int __init sdma_module_init(void)
1510 {
1511         return platform_driver_probe(&sdma_driver, sdma_probe);
1512 }
1513 module_init(sdma_module_init);
1514
1515 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1516 MODULE_DESCRIPTION("i.MX SDMA driver");
1517 MODULE_LICENSE("GPL");