Merge branch 'linux_next' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[cascardo/linux.git] / drivers / dma / imx-sdma.c
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/clk.h>
26 #include <linux/wait.h>
27 #include <linux/sched.h>
28 #include <linux/semaphore.h>
29 #include <linux/spinlock.h>
30 #include <linux/device.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/firmware.h>
33 #include <linux/slab.h>
34 #include <linux/platform_device.h>
35 #include <linux/dmaengine.h>
36 #include <linux/of.h>
37 #include <linux/of_device.h>
38
39 #include <asm/irq.h>
40 #include <mach/sdma.h>
41 #include <mach/dma.h>
42 #include <mach/hardware.h>
43
44 /* SDMA registers */
45 #define SDMA_H_C0PTR            0x000
46 #define SDMA_H_INTR             0x004
47 #define SDMA_H_STATSTOP         0x008
48 #define SDMA_H_START            0x00c
49 #define SDMA_H_EVTOVR           0x010
50 #define SDMA_H_DSPOVR           0x014
51 #define SDMA_H_HOSTOVR          0x018
52 #define SDMA_H_EVTPEND          0x01c
53 #define SDMA_H_DSPENBL          0x020
54 #define SDMA_H_RESET            0x024
55 #define SDMA_H_EVTERR           0x028
56 #define SDMA_H_INTRMSK          0x02c
57 #define SDMA_H_PSW              0x030
58 #define SDMA_H_EVTERRDBG        0x034
59 #define SDMA_H_CONFIG           0x038
60 #define SDMA_ONCE_ENB           0x040
61 #define SDMA_ONCE_DATA          0x044
62 #define SDMA_ONCE_INSTR         0x048
63 #define SDMA_ONCE_STAT          0x04c
64 #define SDMA_ONCE_CMD           0x050
65 #define SDMA_EVT_MIRROR         0x054
66 #define SDMA_ILLINSTADDR        0x058
67 #define SDMA_CHN0ADDR           0x05c
68 #define SDMA_ONCE_RTB           0x060
69 #define SDMA_XTRIG_CONF1        0x070
70 #define SDMA_XTRIG_CONF2        0x074
71 #define SDMA_CHNENBL0_IMX35     0x200
72 #define SDMA_CHNENBL0_IMX31     0x080
73 #define SDMA_CHNPRI_0           0x100
74
75 /*
76  * Buffer descriptor status values.
77  */
78 #define BD_DONE  0x01
79 #define BD_WRAP  0x02
80 #define BD_CONT  0x04
81 #define BD_INTR  0x08
82 #define BD_RROR  0x10
83 #define BD_LAST  0x20
84 #define BD_EXTD  0x80
85
86 /*
87  * Data Node descriptor status values.
88  */
89 #define DND_END_OF_FRAME  0x80
90 #define DND_END_OF_XFER   0x40
91 #define DND_DONE          0x20
92 #define DND_UNUSED        0x01
93
94 /*
95  * IPCV2 descriptor status values.
96  */
97 #define BD_IPCV2_END_OF_FRAME  0x40
98
99 #define IPCV2_MAX_NODES        50
100 /*
101  * Error bit set in the CCB status field by the SDMA,
102  * in setbd routine, in case of a transfer error
103  */
104 #define DATA_ERROR  0x10000000
105
106 /*
107  * Buffer descriptor commands.
108  */
109 #define C0_ADDR             0x01
110 #define C0_LOAD             0x02
111 #define C0_DUMP             0x03
112 #define C0_SETCTX           0x07
113 #define C0_GETCTX           0x03
114 #define C0_SETDM            0x01
115 #define C0_SETPM            0x04
116 #define C0_GETDM            0x02
117 #define C0_GETPM            0x08
118 /*
119  * Change endianness indicator in the BD command field
120  */
121 #define CHANGE_ENDIANNESS   0x80
122
123 /*
124  * Mode/Count of data node descriptors - IPCv2
125  */
126 struct sdma_mode_count {
127         u32 count   : 16; /* size of the buffer pointed by this BD */
128         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
129         u32 command :  8; /* command mostlky used for channel 0 */
130 };
131
132 /*
133  * Buffer descriptor
134  */
135 struct sdma_buffer_descriptor {
136         struct sdma_mode_count  mode;
137         u32 buffer_addr;        /* address of the buffer described */
138         u32 ext_buffer_addr;    /* extended buffer address */
139 } __attribute__ ((packed));
140
141 /**
142  * struct sdma_channel_control - Channel control Block
143  *
144  * @current_bd_ptr      current buffer descriptor processed
145  * @base_bd_ptr         first element of buffer descriptor array
146  * @unused              padding. The SDMA engine expects an array of 128 byte
147  *                      control blocks
148  */
149 struct sdma_channel_control {
150         u32 current_bd_ptr;
151         u32 base_bd_ptr;
152         u32 unused[2];
153 } __attribute__ ((packed));
154
155 /**
156  * struct sdma_state_registers - SDMA context for a channel
157  *
158  * @pc:         program counter
159  * @t:          test bit: status of arithmetic & test instruction
160  * @rpc:        return program counter
161  * @sf:         source fault while loading data
162  * @spc:        loop start program counter
163  * @df:         destination fault while storing data
164  * @epc:        loop end program counter
165  * @lm:         loop mode
166  */
167 struct sdma_state_registers {
168         u32 pc     :14;
169         u32 unused1: 1;
170         u32 t      : 1;
171         u32 rpc    :14;
172         u32 unused0: 1;
173         u32 sf     : 1;
174         u32 spc    :14;
175         u32 unused2: 1;
176         u32 df     : 1;
177         u32 epc    :14;
178         u32 lm     : 2;
179 } __attribute__ ((packed));
180
181 /**
182  * struct sdma_context_data - sdma context specific to a channel
183  *
184  * @channel_state:      channel state bits
185  * @gReg:               general registers
186  * @mda:                burst dma destination address register
187  * @msa:                burst dma source address register
188  * @ms:                 burst dma status register
189  * @md:                 burst dma data register
190  * @pda:                peripheral dma destination address register
191  * @psa:                peripheral dma source address register
192  * @ps:                 peripheral dma status register
193  * @pd:                 peripheral dma data register
194  * @ca:                 CRC polynomial register
195  * @cs:                 CRC accumulator register
196  * @dda:                dedicated core destination address register
197  * @dsa:                dedicated core source address register
198  * @ds:                 dedicated core status register
199  * @dd:                 dedicated core data register
200  */
201 struct sdma_context_data {
202         struct sdma_state_registers  channel_state;
203         u32  gReg[8];
204         u32  mda;
205         u32  msa;
206         u32  ms;
207         u32  md;
208         u32  pda;
209         u32  psa;
210         u32  ps;
211         u32  pd;
212         u32  ca;
213         u32  cs;
214         u32  dda;
215         u32  dsa;
216         u32  ds;
217         u32  dd;
218         u32  scratch0;
219         u32  scratch1;
220         u32  scratch2;
221         u32  scratch3;
222         u32  scratch4;
223         u32  scratch5;
224         u32  scratch6;
225         u32  scratch7;
226 } __attribute__ ((packed));
227
228 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
229
230 struct sdma_engine;
231
232 /**
233  * struct sdma_channel - housekeeping for a SDMA channel
234  *
235  * @sdma                pointer to the SDMA engine for this channel
236  * @channel             the channel number, matches dmaengine chan_id + 1
237  * @direction           transfer type. Needed for setting SDMA script
238  * @peripheral_type     Peripheral type. Needed for setting SDMA script
239  * @event_id0           aka dma request line
240  * @event_id1           for channels that use 2 events
241  * @word_size           peripheral access size
242  * @buf_tail            ID of the buffer that was processed
243  * @done                channel completion
244  * @num_bd              max NUM_BD. number of descriptors currently handling
245  */
246 struct sdma_channel {
247         struct sdma_engine              *sdma;
248         unsigned int                    channel;
249         enum dma_transfer_direction             direction;
250         enum sdma_peripheral_type       peripheral_type;
251         unsigned int                    event_id0;
252         unsigned int                    event_id1;
253         enum dma_slave_buswidth         word_size;
254         unsigned int                    buf_tail;
255         struct completion               done;
256         unsigned int                    num_bd;
257         struct sdma_buffer_descriptor   *bd;
258         dma_addr_t                      bd_phys;
259         unsigned int                    pc_from_device, pc_to_device;
260         unsigned long                   flags;
261         dma_addr_t                      per_address;
262         u32                             event_mask0, event_mask1;
263         u32                             watermark_level;
264         u32                             shp_addr, per_addr;
265         struct dma_chan                 chan;
266         spinlock_t                      lock;
267         struct dma_async_tx_descriptor  desc;
268         dma_cookie_t                    last_completed;
269         enum dma_status                 status;
270         unsigned int                    chn_count;
271         unsigned int                    chn_real_count;
272 };
273
274 #define IMX_DMA_SG_LOOP         (1 << 0)
275
276 #define MAX_DMA_CHANNELS 32
277 #define MXC_SDMA_DEFAULT_PRIORITY 1
278 #define MXC_SDMA_MIN_PRIORITY 1
279 #define MXC_SDMA_MAX_PRIORITY 7
280
281 #define SDMA_FIRMWARE_MAGIC 0x414d4453
282
283 /**
284  * struct sdma_firmware_header - Layout of the firmware image
285  *
286  * @magic               "SDMA"
287  * @version_major       increased whenever layout of struct sdma_script_start_addrs
288  *                      changes.
289  * @version_minor       firmware minor version (for binary compatible changes)
290  * @script_addrs_start  offset of struct sdma_script_start_addrs in this image
291  * @num_script_addrs    Number of script addresses in this image
292  * @ram_code_start      offset of SDMA ram image in this firmware image
293  * @ram_code_size       size of SDMA ram image
294  * @script_addrs        Stores the start address of the SDMA scripts
295  *                      (in SDMA memory space)
296  */
297 struct sdma_firmware_header {
298         u32     magic;
299         u32     version_major;
300         u32     version_minor;
301         u32     script_addrs_start;
302         u32     num_script_addrs;
303         u32     ram_code_start;
304         u32     ram_code_size;
305 };
306
307 enum sdma_devtype {
308         IMX31_SDMA,     /* runs on i.mx31 */
309         IMX35_SDMA,     /* runs on i.mx35 and later */
310 };
311
312 struct sdma_engine {
313         struct device                   *dev;
314         struct device_dma_parameters    dma_parms;
315         struct sdma_channel             channel[MAX_DMA_CHANNELS];
316         struct sdma_channel_control     *channel_control;
317         void __iomem                    *regs;
318         enum sdma_devtype               devtype;
319         unsigned int                    num_events;
320         struct sdma_context_data        *context;
321         dma_addr_t                      context_phys;
322         struct dma_device               dma_device;
323         struct clk                      *clk;
324         struct mutex                    channel_0_lock;
325         struct sdma_script_start_addrs  *script_addrs;
326 };
327
328 static struct platform_device_id sdma_devtypes[] = {
329         {
330                 .name = "imx31-sdma",
331                 .driver_data = IMX31_SDMA,
332         }, {
333                 .name = "imx35-sdma",
334                 .driver_data = IMX35_SDMA,
335         }, {
336                 /* sentinel */
337         }
338 };
339 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
340
341 static const struct of_device_id sdma_dt_ids[] = {
342         { .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
343         { .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
344         { /* sentinel */ }
345 };
346 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
347
348 #define SDMA_H_CONFIG_DSPDMA    (1 << 12) /* indicates if the DSPDMA is used */
349 #define SDMA_H_CONFIG_RTD_PINS  (1 << 11) /* indicates if Real-Time Debug pins are enabled */
350 #define SDMA_H_CONFIG_ACR       (1 << 4)  /* indicates if AHB freq /core freq = 2 or 1 */
351 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
352
353 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
354 {
355         u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
356                                                       SDMA_CHNENBL0_IMX35);
357         return chnenbl0 + event * 4;
358 }
359
360 static int sdma_config_ownership(struct sdma_channel *sdmac,
361                 bool event_override, bool mcu_override, bool dsp_override)
362 {
363         struct sdma_engine *sdma = sdmac->sdma;
364         int channel = sdmac->channel;
365         u32 evt, mcu, dsp;
366
367         if (event_override && mcu_override && dsp_override)
368                 return -EINVAL;
369
370         evt = __raw_readl(sdma->regs + SDMA_H_EVTOVR);
371         mcu = __raw_readl(sdma->regs + SDMA_H_HOSTOVR);
372         dsp = __raw_readl(sdma->regs + SDMA_H_DSPOVR);
373
374         if (dsp_override)
375                 dsp &= ~(1 << channel);
376         else
377                 dsp |= (1 << channel);
378
379         if (event_override)
380                 evt &= ~(1 << channel);
381         else
382                 evt |= (1 << channel);
383
384         if (mcu_override)
385                 mcu &= ~(1 << channel);
386         else
387                 mcu |= (1 << channel);
388
389         __raw_writel(evt, sdma->regs + SDMA_H_EVTOVR);
390         __raw_writel(mcu, sdma->regs + SDMA_H_HOSTOVR);
391         __raw_writel(dsp, sdma->regs + SDMA_H_DSPOVR);
392
393         return 0;
394 }
395
396 /*
397  * sdma_run_channel - run a channel and wait till it's done
398  */
399 static int sdma_run_channel(struct sdma_channel *sdmac)
400 {
401         struct sdma_engine *sdma = sdmac->sdma;
402         int channel = sdmac->channel;
403         int ret;
404
405         init_completion(&sdmac->done);
406
407         __raw_writel(1 << channel, sdma->regs + SDMA_H_START);
408
409         ret = wait_for_completion_timeout(&sdmac->done, HZ);
410
411         return ret ? 0 : -ETIMEDOUT;
412 }
413
414 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
415                 u32 address)
416 {
417         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
418         void *buf_virt;
419         dma_addr_t buf_phys;
420         int ret;
421
422         mutex_lock(&sdma->channel_0_lock);
423
424         buf_virt = dma_alloc_coherent(NULL,
425                         size,
426                         &buf_phys, GFP_KERNEL);
427         if (!buf_virt) {
428                 ret = -ENOMEM;
429                 goto err_out;
430         }
431
432         bd0->mode.command = C0_SETPM;
433         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
434         bd0->mode.count = size / 2;
435         bd0->buffer_addr = buf_phys;
436         bd0->ext_buffer_addr = address;
437
438         memcpy(buf_virt, buf, size);
439
440         ret = sdma_run_channel(&sdma->channel[0]);
441
442         dma_free_coherent(NULL, size, buf_virt, buf_phys);
443
444 err_out:
445         mutex_unlock(&sdma->channel_0_lock);
446
447         return ret;
448 }
449
450 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
451 {
452         struct sdma_engine *sdma = sdmac->sdma;
453         int channel = sdmac->channel;
454         u32 val;
455         u32 chnenbl = chnenbl_ofs(sdma, event);
456
457         val = __raw_readl(sdma->regs + chnenbl);
458         val |= (1 << channel);
459         __raw_writel(val, sdma->regs + chnenbl);
460 }
461
462 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
463 {
464         struct sdma_engine *sdma = sdmac->sdma;
465         int channel = sdmac->channel;
466         u32 chnenbl = chnenbl_ofs(sdma, event);
467         u32 val;
468
469         val = __raw_readl(sdma->regs + chnenbl);
470         val &= ~(1 << channel);
471         __raw_writel(val, sdma->regs + chnenbl);
472 }
473
474 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
475 {
476         struct sdma_buffer_descriptor *bd;
477
478         /*
479          * loop mode. Iterate over descriptors, re-setup them and
480          * call callback function.
481          */
482         while (1) {
483                 bd = &sdmac->bd[sdmac->buf_tail];
484
485                 if (bd->mode.status & BD_DONE)
486                         break;
487
488                 if (bd->mode.status & BD_RROR)
489                         sdmac->status = DMA_ERROR;
490                 else
491                         sdmac->status = DMA_IN_PROGRESS;
492
493                 bd->mode.status |= BD_DONE;
494                 sdmac->buf_tail++;
495                 sdmac->buf_tail %= sdmac->num_bd;
496
497                 if (sdmac->desc.callback)
498                         sdmac->desc.callback(sdmac->desc.callback_param);
499         }
500 }
501
502 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
503 {
504         struct sdma_buffer_descriptor *bd;
505         int i, error = 0;
506
507         sdmac->chn_real_count = 0;
508         /*
509          * non loop mode. Iterate over all descriptors, collect
510          * errors and call callback function
511          */
512         for (i = 0; i < sdmac->num_bd; i++) {
513                 bd = &sdmac->bd[i];
514
515                  if (bd->mode.status & (BD_DONE | BD_RROR))
516                         error = -EIO;
517                  sdmac->chn_real_count += bd->mode.count;
518         }
519
520         if (error)
521                 sdmac->status = DMA_ERROR;
522         else
523                 sdmac->status = DMA_SUCCESS;
524
525         sdmac->last_completed = sdmac->desc.cookie;
526         if (sdmac->desc.callback)
527                 sdmac->desc.callback(sdmac->desc.callback_param);
528 }
529
530 static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
531 {
532         complete(&sdmac->done);
533
534         /* not interested in channel 0 interrupts */
535         if (sdmac->channel == 0)
536                 return;
537
538         if (sdmac->flags & IMX_DMA_SG_LOOP)
539                 sdma_handle_channel_loop(sdmac);
540         else
541                 mxc_sdma_handle_channel_normal(sdmac);
542 }
543
544 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
545 {
546         struct sdma_engine *sdma = dev_id;
547         u32 stat;
548
549         stat = __raw_readl(sdma->regs + SDMA_H_INTR);
550         __raw_writel(stat, sdma->regs + SDMA_H_INTR);
551
552         while (stat) {
553                 int channel = fls(stat) - 1;
554                 struct sdma_channel *sdmac = &sdma->channel[channel];
555
556                 mxc_sdma_handle_channel(sdmac);
557
558                 stat &= ~(1 << channel);
559         }
560
561         return IRQ_HANDLED;
562 }
563
564 /*
565  * sets the pc of SDMA script according to the peripheral type
566  */
567 static void sdma_get_pc(struct sdma_channel *sdmac,
568                 enum sdma_peripheral_type peripheral_type)
569 {
570         struct sdma_engine *sdma = sdmac->sdma;
571         int per_2_emi = 0, emi_2_per = 0;
572         /*
573          * These are needed once we start to support transfers between
574          * two peripherals or memory-to-memory transfers
575          */
576         int per_2_per = 0, emi_2_emi = 0;
577
578         sdmac->pc_from_device = 0;
579         sdmac->pc_to_device = 0;
580
581         switch (peripheral_type) {
582         case IMX_DMATYPE_MEMORY:
583                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
584                 break;
585         case IMX_DMATYPE_DSP:
586                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
587                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
588                 break;
589         case IMX_DMATYPE_FIRI:
590                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
591                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
592                 break;
593         case IMX_DMATYPE_UART:
594                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
595                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
596                 break;
597         case IMX_DMATYPE_UART_SP:
598                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
599                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
600                 break;
601         case IMX_DMATYPE_ATA:
602                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
603                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
604                 break;
605         case IMX_DMATYPE_CSPI:
606         case IMX_DMATYPE_EXT:
607         case IMX_DMATYPE_SSI:
608                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
609                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
610                 break;
611         case IMX_DMATYPE_SSI_SP:
612         case IMX_DMATYPE_MMC:
613         case IMX_DMATYPE_SDHC:
614         case IMX_DMATYPE_CSPI_SP:
615         case IMX_DMATYPE_ESAI:
616         case IMX_DMATYPE_MSHC_SP:
617                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
618                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
619                 break;
620         case IMX_DMATYPE_ASRC:
621                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
622                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
623                 per_2_per = sdma->script_addrs->per_2_per_addr;
624                 break;
625         case IMX_DMATYPE_MSHC:
626                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
627                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
628                 break;
629         case IMX_DMATYPE_CCM:
630                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
631                 break;
632         case IMX_DMATYPE_SPDIF:
633                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
634                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
635                 break;
636         case IMX_DMATYPE_IPU_MEMORY:
637                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
638                 break;
639         default:
640                 break;
641         }
642
643         sdmac->pc_from_device = per_2_emi;
644         sdmac->pc_to_device = emi_2_per;
645 }
646
647 static int sdma_load_context(struct sdma_channel *sdmac)
648 {
649         struct sdma_engine *sdma = sdmac->sdma;
650         int channel = sdmac->channel;
651         int load_address;
652         struct sdma_context_data *context = sdma->context;
653         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
654         int ret;
655
656         if (sdmac->direction == DMA_DEV_TO_MEM) {
657                 load_address = sdmac->pc_from_device;
658         } else {
659                 load_address = sdmac->pc_to_device;
660         }
661
662         if (load_address < 0)
663                 return load_address;
664
665         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
666         dev_dbg(sdma->dev, "wml = 0x%08x\n", sdmac->watermark_level);
667         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
668         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
669         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", sdmac->event_mask0);
670         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", sdmac->event_mask1);
671
672         mutex_lock(&sdma->channel_0_lock);
673
674         memset(context, 0, sizeof(*context));
675         context->channel_state.pc = load_address;
676
677         /* Send by context the event mask,base address for peripheral
678          * and watermark level
679          */
680         context->gReg[0] = sdmac->event_mask1;
681         context->gReg[1] = sdmac->event_mask0;
682         context->gReg[2] = sdmac->per_addr;
683         context->gReg[6] = sdmac->shp_addr;
684         context->gReg[7] = sdmac->watermark_level;
685
686         bd0->mode.command = C0_SETDM;
687         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
688         bd0->mode.count = sizeof(*context) / 4;
689         bd0->buffer_addr = sdma->context_phys;
690         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
691
692         ret = sdma_run_channel(&sdma->channel[0]);
693
694         mutex_unlock(&sdma->channel_0_lock);
695
696         return ret;
697 }
698
699 static void sdma_disable_channel(struct sdma_channel *sdmac)
700 {
701         struct sdma_engine *sdma = sdmac->sdma;
702         int channel = sdmac->channel;
703
704         __raw_writel(1 << channel, sdma->regs + SDMA_H_STATSTOP);
705         sdmac->status = DMA_ERROR;
706 }
707
708 static int sdma_config_channel(struct sdma_channel *sdmac)
709 {
710         int ret;
711
712         sdma_disable_channel(sdmac);
713
714         sdmac->event_mask0 = 0;
715         sdmac->event_mask1 = 0;
716         sdmac->shp_addr = 0;
717         sdmac->per_addr = 0;
718
719         if (sdmac->event_id0) {
720                 if (sdmac->event_id0 > 32)
721                         return -EINVAL;
722                 sdma_event_enable(sdmac, sdmac->event_id0);
723         }
724
725         switch (sdmac->peripheral_type) {
726         case IMX_DMATYPE_DSP:
727                 sdma_config_ownership(sdmac, false, true, true);
728                 break;
729         case IMX_DMATYPE_MEMORY:
730                 sdma_config_ownership(sdmac, false, true, false);
731                 break;
732         default:
733                 sdma_config_ownership(sdmac, true, true, false);
734                 break;
735         }
736
737         sdma_get_pc(sdmac, sdmac->peripheral_type);
738
739         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
740                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
741                 /* Handle multiple event channels differently */
742                 if (sdmac->event_id1) {
743                         sdmac->event_mask1 = 1 << (sdmac->event_id1 % 32);
744                         if (sdmac->event_id1 > 31)
745                                 sdmac->watermark_level |= 1 << 31;
746                         sdmac->event_mask0 = 1 << (sdmac->event_id0 % 32);
747                         if (sdmac->event_id0 > 31)
748                                 sdmac->watermark_level |= 1 << 30;
749                 } else {
750                         sdmac->event_mask0 = 1 << sdmac->event_id0;
751                         sdmac->event_mask1 = 1 << (sdmac->event_id0 - 32);
752                 }
753                 /* Watermark Level */
754                 sdmac->watermark_level |= sdmac->watermark_level;
755                 /* Address */
756                 sdmac->shp_addr = sdmac->per_address;
757         } else {
758                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
759         }
760
761         ret = sdma_load_context(sdmac);
762
763         return ret;
764 }
765
766 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
767                 unsigned int priority)
768 {
769         struct sdma_engine *sdma = sdmac->sdma;
770         int channel = sdmac->channel;
771
772         if (priority < MXC_SDMA_MIN_PRIORITY
773             || priority > MXC_SDMA_MAX_PRIORITY) {
774                 return -EINVAL;
775         }
776
777         __raw_writel(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
778
779         return 0;
780 }
781
782 static int sdma_request_channel(struct sdma_channel *sdmac)
783 {
784         struct sdma_engine *sdma = sdmac->sdma;
785         int channel = sdmac->channel;
786         int ret = -EBUSY;
787
788         sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
789         if (!sdmac->bd) {
790                 ret = -ENOMEM;
791                 goto out;
792         }
793
794         memset(sdmac->bd, 0, PAGE_SIZE);
795
796         sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
797         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
798
799         clk_enable(sdma->clk);
800
801         sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
802
803         init_completion(&sdmac->done);
804
805         sdmac->buf_tail = 0;
806
807         return 0;
808 out:
809
810         return ret;
811 }
812
813 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
814 {
815         __raw_writel(1 << channel, sdma->regs + SDMA_H_START);
816 }
817
818 static dma_cookie_t sdma_assign_cookie(struct sdma_channel *sdmac)
819 {
820         dma_cookie_t cookie = sdmac->chan.cookie;
821
822         if (++cookie < 0)
823                 cookie = 1;
824
825         sdmac->chan.cookie = cookie;
826         sdmac->desc.cookie = cookie;
827
828         return cookie;
829 }
830
831 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
832 {
833         return container_of(chan, struct sdma_channel, chan);
834 }
835
836 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
837 {
838         unsigned long flags;
839         struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
840         struct sdma_engine *sdma = sdmac->sdma;
841         dma_cookie_t cookie;
842
843         spin_lock_irqsave(&sdmac->lock, flags);
844
845         cookie = sdma_assign_cookie(sdmac);
846
847         sdma_enable_channel(sdma, sdmac->channel);
848
849         spin_unlock_irqrestore(&sdmac->lock, flags);
850
851         return cookie;
852 }
853
854 static int sdma_alloc_chan_resources(struct dma_chan *chan)
855 {
856         struct sdma_channel *sdmac = to_sdma_chan(chan);
857         struct imx_dma_data *data = chan->private;
858         int prio, ret;
859
860         if (!data)
861                 return -EINVAL;
862
863         switch (data->priority) {
864         case DMA_PRIO_HIGH:
865                 prio = 3;
866                 break;
867         case DMA_PRIO_MEDIUM:
868                 prio = 2;
869                 break;
870         case DMA_PRIO_LOW:
871         default:
872                 prio = 1;
873                 break;
874         }
875
876         sdmac->peripheral_type = data->peripheral_type;
877         sdmac->event_id0 = data->dma_request;
878         ret = sdma_set_channel_priority(sdmac, prio);
879         if (ret)
880                 return ret;
881
882         ret = sdma_request_channel(sdmac);
883         if (ret)
884                 return ret;
885
886         dma_async_tx_descriptor_init(&sdmac->desc, chan);
887         sdmac->desc.tx_submit = sdma_tx_submit;
888         /* txd.flags will be overwritten in prep funcs */
889         sdmac->desc.flags = DMA_CTRL_ACK;
890
891         return 0;
892 }
893
894 static void sdma_free_chan_resources(struct dma_chan *chan)
895 {
896         struct sdma_channel *sdmac = to_sdma_chan(chan);
897         struct sdma_engine *sdma = sdmac->sdma;
898
899         sdma_disable_channel(sdmac);
900
901         if (sdmac->event_id0)
902                 sdma_event_disable(sdmac, sdmac->event_id0);
903         if (sdmac->event_id1)
904                 sdma_event_disable(sdmac, sdmac->event_id1);
905
906         sdmac->event_id0 = 0;
907         sdmac->event_id1 = 0;
908
909         sdma_set_channel_priority(sdmac, 0);
910
911         dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
912
913         clk_disable(sdma->clk);
914 }
915
916 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
917                 struct dma_chan *chan, struct scatterlist *sgl,
918                 unsigned int sg_len, enum dma_transfer_direction direction,
919                 unsigned long flags)
920 {
921         struct sdma_channel *sdmac = to_sdma_chan(chan);
922         struct sdma_engine *sdma = sdmac->sdma;
923         int ret, i, count;
924         int channel = sdmac->channel;
925         struct scatterlist *sg;
926
927         if (sdmac->status == DMA_IN_PROGRESS)
928                 return NULL;
929         sdmac->status = DMA_IN_PROGRESS;
930
931         sdmac->flags = 0;
932
933         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
934                         sg_len, channel);
935
936         sdmac->direction = direction;
937         ret = sdma_load_context(sdmac);
938         if (ret)
939                 goto err_out;
940
941         if (sg_len > NUM_BD) {
942                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
943                                 channel, sg_len, NUM_BD);
944                 ret = -EINVAL;
945                 goto err_out;
946         }
947
948         sdmac->chn_count = 0;
949         for_each_sg(sgl, sg, sg_len, i) {
950                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
951                 int param;
952
953                 bd->buffer_addr = sg->dma_address;
954
955                 count = sg->length;
956
957                 if (count > 0xffff) {
958                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
959                                         channel, count, 0xffff);
960                         ret = -EINVAL;
961                         goto err_out;
962                 }
963
964                 bd->mode.count = count;
965                 sdmac->chn_count += count;
966
967                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
968                         ret =  -EINVAL;
969                         goto err_out;
970                 }
971
972                 switch (sdmac->word_size) {
973                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
974                         bd->mode.command = 0;
975                         if (count & 3 || sg->dma_address & 3)
976                                 return NULL;
977                         break;
978                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
979                         bd->mode.command = 2;
980                         if (count & 1 || sg->dma_address & 1)
981                                 return NULL;
982                         break;
983                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
984                         bd->mode.command = 1;
985                         break;
986                 default:
987                         return NULL;
988                 }
989
990                 param = BD_DONE | BD_EXTD | BD_CONT;
991
992                 if (i + 1 == sg_len) {
993                         param |= BD_INTR;
994                         param |= BD_LAST;
995                         param &= ~BD_CONT;
996                 }
997
998                 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
999                                 i, count, sg->dma_address,
1000                                 param & BD_WRAP ? "wrap" : "",
1001                                 param & BD_INTR ? " intr" : "");
1002
1003                 bd->mode.status = param;
1004         }
1005
1006         sdmac->num_bd = sg_len;
1007         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1008
1009         return &sdmac->desc;
1010 err_out:
1011         sdmac->status = DMA_ERROR;
1012         return NULL;
1013 }
1014
1015 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1016                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1017                 size_t period_len, enum dma_transfer_direction direction)
1018 {
1019         struct sdma_channel *sdmac = to_sdma_chan(chan);
1020         struct sdma_engine *sdma = sdmac->sdma;
1021         int num_periods = buf_len / period_len;
1022         int channel = sdmac->channel;
1023         int ret, i = 0, buf = 0;
1024
1025         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1026
1027         if (sdmac->status == DMA_IN_PROGRESS)
1028                 return NULL;
1029
1030         sdmac->status = DMA_IN_PROGRESS;
1031
1032         sdmac->flags |= IMX_DMA_SG_LOOP;
1033         sdmac->direction = direction;
1034         ret = sdma_load_context(sdmac);
1035         if (ret)
1036                 goto err_out;
1037
1038         if (num_periods > NUM_BD) {
1039                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1040                                 channel, num_periods, NUM_BD);
1041                 goto err_out;
1042         }
1043
1044         if (period_len > 0xffff) {
1045                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1046                                 channel, period_len, 0xffff);
1047                 goto err_out;
1048         }
1049
1050         while (buf < buf_len) {
1051                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1052                 int param;
1053
1054                 bd->buffer_addr = dma_addr;
1055
1056                 bd->mode.count = period_len;
1057
1058                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1059                         goto err_out;
1060                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1061                         bd->mode.command = 0;
1062                 else
1063                         bd->mode.command = sdmac->word_size;
1064
1065                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1066                 if (i + 1 == num_periods)
1067                         param |= BD_WRAP;
1068
1069                 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1070                                 i, period_len, dma_addr,
1071                                 param & BD_WRAP ? "wrap" : "",
1072                                 param & BD_INTR ? " intr" : "");
1073
1074                 bd->mode.status = param;
1075
1076                 dma_addr += period_len;
1077                 buf += period_len;
1078
1079                 i++;
1080         }
1081
1082         sdmac->num_bd = num_periods;
1083         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1084
1085         return &sdmac->desc;
1086 err_out:
1087         sdmac->status = DMA_ERROR;
1088         return NULL;
1089 }
1090
1091 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1092                 unsigned long arg)
1093 {
1094         struct sdma_channel *sdmac = to_sdma_chan(chan);
1095         struct dma_slave_config *dmaengine_cfg = (void *)arg;
1096
1097         switch (cmd) {
1098         case DMA_TERMINATE_ALL:
1099                 sdma_disable_channel(sdmac);
1100                 return 0;
1101         case DMA_SLAVE_CONFIG:
1102                 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1103                         sdmac->per_address = dmaengine_cfg->src_addr;
1104                         sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1105                                                 dmaengine_cfg->src_addr_width;
1106                         sdmac->word_size = dmaengine_cfg->src_addr_width;
1107                 } else {
1108                         sdmac->per_address = dmaengine_cfg->dst_addr;
1109                         sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1110                                                 dmaengine_cfg->dst_addr_width;
1111                         sdmac->word_size = dmaengine_cfg->dst_addr_width;
1112                 }
1113                 sdmac->direction = dmaengine_cfg->direction;
1114                 return sdma_config_channel(sdmac);
1115         default:
1116                 return -ENOSYS;
1117         }
1118
1119         return -EINVAL;
1120 }
1121
1122 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1123                                             dma_cookie_t cookie,
1124                                             struct dma_tx_state *txstate)
1125 {
1126         struct sdma_channel *sdmac = to_sdma_chan(chan);
1127         dma_cookie_t last_used;
1128
1129         last_used = chan->cookie;
1130
1131         dma_set_tx_state(txstate, sdmac->last_completed, last_used,
1132                         sdmac->chn_count - sdmac->chn_real_count);
1133
1134         return sdmac->status;
1135 }
1136
1137 static void sdma_issue_pending(struct dma_chan *chan)
1138 {
1139         /*
1140          * Nothing to do. We only have a single descriptor
1141          */
1142 }
1143
1144 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1145
1146 static void sdma_add_scripts(struct sdma_engine *sdma,
1147                 const struct sdma_script_start_addrs *addr)
1148 {
1149         s32 *addr_arr = (u32 *)addr;
1150         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1151         int i;
1152
1153         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1154                 if (addr_arr[i] > 0)
1155                         saddr_arr[i] = addr_arr[i];
1156 }
1157
1158 static void sdma_load_firmware(const struct firmware *fw, void *context)
1159 {
1160         struct sdma_engine *sdma = context;
1161         const struct sdma_firmware_header *header;
1162         const struct sdma_script_start_addrs *addr;
1163         unsigned short *ram_code;
1164
1165         if (!fw) {
1166                 dev_err(sdma->dev, "firmware not found\n");
1167                 return;
1168         }
1169
1170         if (fw->size < sizeof(*header))
1171                 goto err_firmware;
1172
1173         header = (struct sdma_firmware_header *)fw->data;
1174
1175         if (header->magic != SDMA_FIRMWARE_MAGIC)
1176                 goto err_firmware;
1177         if (header->ram_code_start + header->ram_code_size > fw->size)
1178                 goto err_firmware;
1179
1180         addr = (void *)header + header->script_addrs_start;
1181         ram_code = (void *)header + header->ram_code_start;
1182
1183         clk_enable(sdma->clk);
1184         /* download the RAM image for SDMA */
1185         sdma_load_script(sdma, ram_code,
1186                         header->ram_code_size,
1187                         addr->ram_code_start_addr);
1188         clk_disable(sdma->clk);
1189
1190         sdma_add_scripts(sdma, addr);
1191
1192         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1193                         header->version_major,
1194                         header->version_minor);
1195
1196 err_firmware:
1197         release_firmware(fw);
1198 }
1199
1200 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1201                 const char *fw_name)
1202 {
1203         int ret;
1204
1205         ret = request_firmware_nowait(THIS_MODULE,
1206                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1207                         GFP_KERNEL, sdma, sdma_load_firmware);
1208
1209         return ret;
1210 }
1211
1212 static int __init sdma_init(struct sdma_engine *sdma)
1213 {
1214         int i, ret;
1215         dma_addr_t ccb_phys;
1216
1217         switch (sdma->devtype) {
1218         case IMX31_SDMA:
1219                 sdma->num_events = 32;
1220                 break;
1221         case IMX35_SDMA:
1222                 sdma->num_events = 48;
1223                 break;
1224         default:
1225                 dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1226                         sdma->devtype);
1227                 return -ENODEV;
1228         }
1229
1230         clk_enable(sdma->clk);
1231
1232         /* Be sure SDMA has not started yet */
1233         __raw_writel(0, sdma->regs + SDMA_H_C0PTR);
1234
1235         sdma->channel_control = dma_alloc_coherent(NULL,
1236                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1237                         sizeof(struct sdma_context_data),
1238                         &ccb_phys, GFP_KERNEL);
1239
1240         if (!sdma->channel_control) {
1241                 ret = -ENOMEM;
1242                 goto err_dma_alloc;
1243         }
1244
1245         sdma->context = (void *)sdma->channel_control +
1246                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1247         sdma->context_phys = ccb_phys +
1248                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1249
1250         /* Zero-out the CCB structures array just allocated */
1251         memset(sdma->channel_control, 0,
1252                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1253
1254         /* disable all channels */
1255         for (i = 0; i < sdma->num_events; i++)
1256                 __raw_writel(0, sdma->regs + chnenbl_ofs(sdma, i));
1257
1258         /* All channels have priority 0 */
1259         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1260                 __raw_writel(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1261
1262         ret = sdma_request_channel(&sdma->channel[0]);
1263         if (ret)
1264                 goto err_dma_alloc;
1265
1266         sdma_config_ownership(&sdma->channel[0], false, true, false);
1267
1268         /* Set Command Channel (Channel Zero) */
1269         __raw_writel(0x4050, sdma->regs + SDMA_CHN0ADDR);
1270
1271         /* Set bits of CONFIG register but with static context switching */
1272         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1273         __raw_writel(0, sdma->regs + SDMA_H_CONFIG);
1274
1275         __raw_writel(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1276
1277         /* Set bits of CONFIG register with given context switching mode */
1278         __raw_writel(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1279
1280         /* Initializes channel's priorities */
1281         sdma_set_channel_priority(&sdma->channel[0], 7);
1282
1283         clk_disable(sdma->clk);
1284
1285         return 0;
1286
1287 err_dma_alloc:
1288         clk_disable(sdma->clk);
1289         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1290         return ret;
1291 }
1292
1293 static int __init sdma_probe(struct platform_device *pdev)
1294 {
1295         const struct of_device_id *of_id =
1296                         of_match_device(sdma_dt_ids, &pdev->dev);
1297         struct device_node *np = pdev->dev.of_node;
1298         const char *fw_name;
1299         int ret;
1300         int irq;
1301         struct resource *iores;
1302         struct sdma_platform_data *pdata = pdev->dev.platform_data;
1303         int i;
1304         struct sdma_engine *sdma;
1305         s32 *saddr_arr;
1306
1307         sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1308         if (!sdma)
1309                 return -ENOMEM;
1310
1311         mutex_init(&sdma->channel_0_lock);
1312
1313         sdma->dev = &pdev->dev;
1314
1315         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1316         irq = platform_get_irq(pdev, 0);
1317         if (!iores || irq < 0) {
1318                 ret = -EINVAL;
1319                 goto err_irq;
1320         }
1321
1322         if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1323                 ret = -EBUSY;
1324                 goto err_request_region;
1325         }
1326
1327         sdma->clk = clk_get(&pdev->dev, NULL);
1328         if (IS_ERR(sdma->clk)) {
1329                 ret = PTR_ERR(sdma->clk);
1330                 goto err_clk;
1331         }
1332
1333         sdma->regs = ioremap(iores->start, resource_size(iores));
1334         if (!sdma->regs) {
1335                 ret = -ENOMEM;
1336                 goto err_ioremap;
1337         }
1338
1339         ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1340         if (ret)
1341                 goto err_request_irq;
1342
1343         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1344         if (!sdma->script_addrs) {
1345                 ret = -ENOMEM;
1346                 goto err_alloc;
1347         }
1348
1349         /* initially no scripts available */
1350         saddr_arr = (s32 *)sdma->script_addrs;
1351         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1352                 saddr_arr[i] = -EINVAL;
1353
1354         if (of_id)
1355                 pdev->id_entry = of_id->data;
1356         sdma->devtype = pdev->id_entry->driver_data;
1357
1358         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1359         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1360
1361         INIT_LIST_HEAD(&sdma->dma_device.channels);
1362         /* Initialize channel parameters */
1363         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1364                 struct sdma_channel *sdmac = &sdma->channel[i];
1365
1366                 sdmac->sdma = sdma;
1367                 spin_lock_init(&sdmac->lock);
1368
1369                 sdmac->chan.device = &sdma->dma_device;
1370                 sdmac->channel = i;
1371
1372                 /*
1373                  * Add the channel to the DMAC list. Do not add channel 0 though
1374                  * because we need it internally in the SDMA driver. This also means
1375                  * that channel 0 in dmaengine counting matches sdma channel 1.
1376                  */
1377                 if (i)
1378                         list_add_tail(&sdmac->chan.device_node,
1379                                         &sdma->dma_device.channels);
1380         }
1381
1382         ret = sdma_init(sdma);
1383         if (ret)
1384                 goto err_init;
1385
1386         if (pdata && pdata->script_addrs)
1387                 sdma_add_scripts(sdma, pdata->script_addrs);
1388
1389         if (pdata) {
1390                 sdma_get_firmware(sdma, pdata->fw_name);
1391         } else {
1392                 /*
1393                  * Because that device tree does not encode ROM script address,
1394                  * the RAM script in firmware is mandatory for device tree
1395                  * probe, otherwise it fails.
1396                  */
1397                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1398                                               &fw_name);
1399                 if (ret) {
1400                         dev_err(&pdev->dev, "failed to get firmware name\n");
1401                         goto err_init;
1402                 }
1403
1404                 ret = sdma_get_firmware(sdma, fw_name);
1405                 if (ret) {
1406                         dev_err(&pdev->dev, "failed to get firmware\n");
1407                         goto err_init;
1408                 }
1409         }
1410
1411         sdma->dma_device.dev = &pdev->dev;
1412
1413         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1414         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1415         sdma->dma_device.device_tx_status = sdma_tx_status;
1416         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1417         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1418         sdma->dma_device.device_control = sdma_control;
1419         sdma->dma_device.device_issue_pending = sdma_issue_pending;
1420         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1421         dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1422
1423         ret = dma_async_device_register(&sdma->dma_device);
1424         if (ret) {
1425                 dev_err(&pdev->dev, "unable to register\n");
1426                 goto err_init;
1427         }
1428
1429         dev_info(sdma->dev, "initialized\n");
1430
1431         return 0;
1432
1433 err_init:
1434         kfree(sdma->script_addrs);
1435 err_alloc:
1436         free_irq(irq, sdma);
1437 err_request_irq:
1438         iounmap(sdma->regs);
1439 err_ioremap:
1440         clk_put(sdma->clk);
1441 err_clk:
1442         release_mem_region(iores->start, resource_size(iores));
1443 err_request_region:
1444 err_irq:
1445         kfree(sdma);
1446         return ret;
1447 }
1448
1449 static int __exit sdma_remove(struct platform_device *pdev)
1450 {
1451         return -EBUSY;
1452 }
1453
1454 static struct platform_driver sdma_driver = {
1455         .driver         = {
1456                 .name   = "imx-sdma",
1457                 .of_match_table = sdma_dt_ids,
1458         },
1459         .id_table       = sdma_devtypes,
1460         .remove         = __exit_p(sdma_remove),
1461 };
1462
1463 static int __init sdma_module_init(void)
1464 {
1465         return platform_driver_probe(&sdma_driver, sdma_probe);
1466 }
1467 module_init(sdma_module_init);
1468
1469 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1470 MODULE_DESCRIPTION("i.MX SDMA driver");
1471 MODULE_LICENSE("GPL");