EDAC, sb_edac: Remove double buffering of error records
[cascardo/linux.git] / drivers / edac / sb_edac.c
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *       Mauro Carvalho Chehab
11  */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26
27 #include "edac_core.h"
28
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.1.1 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)                      \
44         edac_printk(level, "sbridge", fmt, ##arg)
45
46 #define sbridge_mc_printk(mci, level, fmt, arg...)              \
47         edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi) \
53         (((v) & GENMASK_ULL(hi, lo)) >> (lo))
54
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule[] = {
57         0x80, 0x88, 0x90, 0x98, 0xa0,
58         0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
59 };
60
61 static const u32 ibridge_dram_rule[] = {
62         0x60, 0x68, 0x70, 0x78, 0x80,
63         0x88, 0x90, 0x98, 0xa0, 0xa8,
64         0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65         0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
66 };
67
68 static const u32 knl_dram_rule[] = {
69         0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
70         0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
71         0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
72         0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
73         0x100, 0x108, 0x110, 0x118,   /* 20-23 */
74 };
75
76 #define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
77 #define A7MODE(reg)             GET_BITFIELD(reg, 26, 26)
78
79 static char *show_dram_attr(u32 attr)
80 {
81         switch (attr) {
82                 case 0:
83                         return "DRAM";
84                 case 1:
85                         return "MMCFG";
86                 case 2:
87                         return "NXM";
88                 default:
89                         return "unknown";
90         }
91 }
92
93 static const u32 sbridge_interleave_list[] = {
94         0x84, 0x8c, 0x94, 0x9c, 0xa4,
95         0xac, 0xb4, 0xbc, 0xc4, 0xcc,
96 };
97
98 static const u32 ibridge_interleave_list[] = {
99         0x64, 0x6c, 0x74, 0x7c, 0x84,
100         0x8c, 0x94, 0x9c, 0xa4, 0xac,
101         0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
102         0xdc, 0xe4, 0xec, 0xf4, 0xfc,
103 };
104
105 static const u32 knl_interleave_list[] = {
106         0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
107         0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
108         0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
109         0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
110         0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
111 };
112
113 struct interleave_pkg {
114         unsigned char start;
115         unsigned char end;
116 };
117
118 static const struct interleave_pkg sbridge_interleave_pkg[] = {
119         { 0, 2 },
120         { 3, 5 },
121         { 8, 10 },
122         { 11, 13 },
123         { 16, 18 },
124         { 19, 21 },
125         { 24, 26 },
126         { 27, 29 },
127 };
128
129 static const struct interleave_pkg ibridge_interleave_pkg[] = {
130         { 0, 3 },
131         { 4, 7 },
132         { 8, 11 },
133         { 12, 15 },
134         { 16, 19 },
135         { 20, 23 },
136         { 24, 27 },
137         { 28, 31 },
138 };
139
140 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
141                           int interleave)
142 {
143         return GET_BITFIELD(reg, table[interleave].start,
144                             table[interleave].end);
145 }
146
147 /* Devices 12 Function 7 */
148
149 #define TOLM            0x80
150 #define TOHM            0x84
151 #define HASWELL_TOLM    0xd0
152 #define HASWELL_TOHM_0  0xd4
153 #define HASWELL_TOHM_1  0xd8
154 #define KNL_TOLM        0xd0
155 #define KNL_TOHM_0      0xd4
156 #define KNL_TOHM_1      0xd8
157
158 #define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
159 #define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
160
161 /* Device 13 Function 6 */
162
163 #define SAD_TARGET      0xf0
164
165 #define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
166
167 #define SOURCE_ID_KNL(reg)      GET_BITFIELD(reg, 12, 14)
168
169 #define SAD_CONTROL     0xf4
170
171 /* Device 14 function 0 */
172
173 static const u32 tad_dram_rule[] = {
174         0x40, 0x44, 0x48, 0x4c,
175         0x50, 0x54, 0x58, 0x5c,
176         0x60, 0x64, 0x68, 0x6c,
177 };
178 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
179
180 #define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
181 #define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
182 #define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
183 #define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
184 #define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
185 #define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
186 #define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
187
188 /* Device 15, function 0 */
189
190 #define MCMTR                   0x7c
191 #define KNL_MCMTR               0x624
192
193 #define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
194 #define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
195 #define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
196
197 /* Device 15, function 1 */
198
199 #define RASENABLES              0xac
200 #define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
201
202 /* Device 15, functions 2-5 */
203
204 static const int mtr_regs[] = {
205         0x80, 0x84, 0x88,
206 };
207
208 static const int knl_mtr_reg = 0xb60;
209
210 #define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
211 #define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
212 #define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
213 #define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
214 #define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
215
216 static const u32 tad_ch_nilv_offset[] = {
217         0x90, 0x94, 0x98, 0x9c,
218         0xa0, 0xa4, 0xa8, 0xac,
219         0xb0, 0xb4, 0xb8, 0xbc,
220 };
221 #define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
222 #define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
223
224 static const u32 rir_way_limit[] = {
225         0x108, 0x10c, 0x110, 0x114, 0x118,
226 };
227 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
228
229 #define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
230 #define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
231
232 #define MAX_RIR_WAY     8
233
234 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
235         { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
236         { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
237         { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
238         { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
239         { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
240 };
241
242 #define RIR_RNK_TGT(reg)                GET_BITFIELD(reg, 16, 19)
243 #define RIR_OFFSET(reg)         GET_BITFIELD(reg,  2, 14)
244
245 /* Device 16, functions 2-7 */
246
247 /*
248  * FIXME: Implement the error count reads directly
249  */
250
251 static const u32 correrrcnt[] = {
252         0x104, 0x108, 0x10c, 0x110,
253 };
254
255 #define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
256 #define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
257 #define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
258 #define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
259
260 static const u32 correrrthrsld[] = {
261         0x11c, 0x120, 0x124, 0x128,
262 };
263
264 #define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
265 #define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
266
267
268 /* Device 17, function 0 */
269
270 #define SB_RANK_CFG_A           0x0328
271
272 #define IB_RANK_CFG_A           0x0320
273
274 /*
275  * sbridge structs
276  */
277
278 #define NUM_CHANNELS            8       /* 2MC per socket, four chan per MC */
279 #define MAX_DIMMS               3       /* Max DIMMS per channel */
280 #define KNL_MAX_CHAS            38      /* KNL max num. of Cache Home Agents */
281 #define KNL_MAX_CHANNELS        6       /* KNL max num. of PCI channels */
282 #define KNL_MAX_EDCS            8       /* Embedded DRAM controllers */
283 #define CHANNEL_UNSPECIFIED     0xf     /* Intel IA32 SDM 15-14 */
284
285 enum type {
286         SANDY_BRIDGE,
287         IVY_BRIDGE,
288         HASWELL,
289         BROADWELL,
290         KNIGHTS_LANDING,
291 };
292
293 struct sbridge_pvt;
294 struct sbridge_info {
295         enum type       type;
296         u32             mcmtr;
297         u32             rankcfgr;
298         u64             (*get_tolm)(struct sbridge_pvt *pvt);
299         u64             (*get_tohm)(struct sbridge_pvt *pvt);
300         u64             (*rir_limit)(u32 reg);
301         u64             (*sad_limit)(u32 reg);
302         u32             (*interleave_mode)(u32 reg);
303         char*           (*show_interleave_mode)(u32 reg);
304         u32             (*dram_attr)(u32 reg);
305         const u32       *dram_rule;
306         const u32       *interleave_list;
307         const struct interleave_pkg *interleave_pkg;
308         u8              max_sad;
309         u8              max_interleave;
310         u8              (*get_node_id)(struct sbridge_pvt *pvt);
311         enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
312         enum dev_type   (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
313         struct pci_dev  *pci_vtd;
314 };
315
316 struct sbridge_channel {
317         u32             ranks;
318         u32             dimms;
319 };
320
321 struct pci_id_descr {
322         int                     dev_id;
323         int                     optional;
324 };
325
326 struct pci_id_table {
327         const struct pci_id_descr       *descr;
328         int                             n_devs;
329 };
330
331 struct sbridge_dev {
332         struct list_head        list;
333         u8                      bus, mc;
334         u8                      node_id, source_id;
335         struct pci_dev          **pdev;
336         int                     n_devs;
337         struct mem_ctl_info     *mci;
338 };
339
340 struct knl_pvt {
341         struct pci_dev          *pci_cha[KNL_MAX_CHAS];
342         struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
343         struct pci_dev          *pci_mc0;
344         struct pci_dev          *pci_mc1;
345         struct pci_dev          *pci_mc0_misc;
346         struct pci_dev          *pci_mc1_misc;
347         struct pci_dev          *pci_mc_info; /* tolm, tohm */
348 };
349
350 struct sbridge_pvt {
351         struct pci_dev          *pci_ta, *pci_ddrio, *pci_ras;
352         struct pci_dev          *pci_sad0, *pci_sad1;
353         struct pci_dev          *pci_ha0, *pci_ha1;
354         struct pci_dev          *pci_br0, *pci_br1;
355         struct pci_dev          *pci_ha1_ta;
356         struct pci_dev          *pci_tad[NUM_CHANNELS];
357
358         struct sbridge_dev      *sbridge_dev;
359
360         struct sbridge_info     info;
361         struct sbridge_channel  channel[NUM_CHANNELS];
362
363         /* Memory type detection */
364         bool                    is_mirrored, is_lockstep, is_close_pg;
365
366         /* Memory description */
367         u64                     tolm, tohm;
368         struct knl_pvt knl;
369 };
370
371 #define PCI_DESCR(device_id, opt)       \
372         .dev_id = (device_id),          \
373         .optional = opt
374
375 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
376                 /* Processor Home Agent */
377         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)     },
378
379                 /* Memory controller */
380         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)      },
381         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)     },
382         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)    },
383         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)    },
384         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)    },
385         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)    },
386         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)   },
387
388                 /* System Address Decoder */
389         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)        },
390         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)        },
391
392                 /* Broadcast Registers */
393         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)          },
394 };
395
396 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
397 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
398         PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
399         {0,}                    /* 0 terminated list. */
400 };
401
402 /* This changes depending if 1HA or 2HA:
403  * 1HA:
404  *      0x0eb8 (17.0) is DDRIO0
405  * 2HA:
406  *      0x0ebc (17.4) is DDRIO0
407  */
408 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
409 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
410
411 /* pci ids */
412 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
413 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
414 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
415 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
416 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
417 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
418 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
419 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
420 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
421 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
422 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
423 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
424 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
425 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
426 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
427 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2        0x0e6c
428 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3        0x0e6d
429
430 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
431                 /* Processor Home Agent */
432         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)             },
433
434                 /* Memory controller */
435         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)          },
436         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)         },
437         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)        },
438         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)        },
439         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)        },
440         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)        },
441
442                 /* System Address Decoder */
443         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)                 },
444
445                 /* Broadcast Registers */
446         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)                 },
447         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)                 },
448
449                 /* Optional, mode 2HA */
450         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)             },
451 #if 0
452         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)  },
453         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1) },
454 #endif
455         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)        },
456         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)        },
457         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1)        },
458         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1)        },
459
460         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)      },
461         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)      },
462 };
463
464 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
465         PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
466         {0,}                    /* 0 terminated list. */
467 };
468
469 /* Haswell support */
470 /* EN processor:
471  *      - 1 IMC
472  *      - 3 DDR3 channels, 2 DPC per channel
473  * EP processor:
474  *      - 1 or 2 IMC
475  *      - 4 DDR4 channels, 3 DPC per channel
476  * EP 4S processor:
477  *      - 2 IMC
478  *      - 4 DDR4 channels, 3 DPC per channel
479  * EX processor:
480  *      - 2 IMC
481  *      - each IMC interfaces with a SMI 2 channel
482  *      - each SMI channel interfaces with a scalable memory buffer
483  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
484  */
485 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
486 #define HASWELL_HASYSDEFEATURE2 0x84
487 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
488 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0     0x2fa0
489 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1     0x2f60
490 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
491 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
492 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
493 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
494 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
495 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
496 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
497 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
498 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
499 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
500 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
501 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
502 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
503 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
504 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
505 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
506 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
507 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
508 static const struct pci_id_descr pci_dev_descr_haswell[] = {
509         /* first item must be the HA */
510         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)             },
511
512         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)        },
513         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)        },
514
515         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)             },
516
517         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)          },
518         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)     },
519         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)        },
520         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)        },
521         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)        },
522         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)        },
523
524         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)          },
525         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1)          },
526         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1)          },
527         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1)          },
528
529         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)          },
530         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)     },
531         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)        },
532         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)        },
533         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)        },
534         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)        },
535 };
536
537 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
538         PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
539         {0,}                    /* 0 terminated list. */
540 };
541
542 /* Knight's Landing Support */
543 /*
544  * KNL's memory channels are swizzled between memory controllers.
545  * MC0 is mapped to CH3,5,6 and MC1 is mapped to CH0,1,2
546  */
547 #define knl_channel_remap(channel) ((channel + 3) % 6)
548
549 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
550 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
551 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
552 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL  0x7843
553 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
554 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
555 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
556 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
557 /* SAD target - 1-29-1 (1 of these) */
558 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
559 /* Caching / Home Agent */
560 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
561 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
562 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
563
564 /*
565  * KNL differs from SB, IB, and Haswell in that it has multiple
566  * instances of the same device with the same device ID, so we handle that
567  * by creating as many copies in the table as we expect to find.
568  * (Like device ID must be grouped together.)
569  */
570
571 static const struct pci_id_descr pci_dev_descr_knl[] = {
572         [0]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0) },
573         [1]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0) },
574         [2 ... 3]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0)},
575         [4 ... 41]  = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0) },
576         [42 ... 47] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL, 0) },
577         [48]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0) },
578         [49]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0) },
579 };
580
581 static const struct pci_id_table pci_dev_descr_knl_table[] = {
582         PCI_ID_TABLE_ENTRY(pci_dev_descr_knl),
583         {0,}
584 };
585
586 /*
587  * Broadwell support
588  *
589  * DE processor:
590  *      - 1 IMC
591  *      - 2 DDR3 channels, 2 DPC per channel
592  * EP processor:
593  *      - 1 or 2 IMC
594  *      - 4 DDR4 channels, 3 DPC per channel
595  * EP 4S processor:
596  *      - 2 IMC
597  *      - 4 DDR4 channels, 3 DPC per channel
598  * EX processor:
599  *      - 2 IMC
600  *      - each IMC interfaces with a SMI 2 channel
601  *      - each SMI channel interfaces with a scalable memory buffer
602  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
603  */
604 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
605 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0   0x6fa0
606 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1   0x6f60
607 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA        0x6fa8
608 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
609 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA        0x6f68
610 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
611 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
612 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
613 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
614 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
615 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
616 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
617 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
618 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
619 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
620 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
621 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
622
623 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
624         /* first item must be the HA */
625         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)           },
626
627         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)      },
628         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)      },
629
630         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1)           },
631
632         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)        },
633         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)   },
634         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)      },
635         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)      },
636         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1)      },
637         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1)      },
638
639         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)        },
640
641         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1)        },
642         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL, 1)   },
643         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1)      },
644         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1)      },
645         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1)      },
646         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1)      },
647 };
648
649 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
650         PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell),
651         {0,}                    /* 0 terminated list. */
652 };
653
654 /*
655  *      pci_device_id   table for which devices we are looking for
656  */
657 static const struct pci_device_id sbridge_pci_tbl[] = {
658         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
659         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
660         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
661         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)},
662         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0)},
663         {0,}                    /* 0 terminated list. */
664 };
665
666
667 /****************************************************************************
668                         Ancillary status routines
669  ****************************************************************************/
670
671 static inline int numrank(enum type type, u32 mtr)
672 {
673         int ranks = (1 << RANK_CNT_BITS(mtr));
674         int max = 4;
675
676         if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
677                 max = 8;
678
679         if (ranks > max) {
680                 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
681                          ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
682                 return -EINVAL;
683         }
684
685         return ranks;
686 }
687
688 static inline int numrow(u32 mtr)
689 {
690         int rows = (RANK_WIDTH_BITS(mtr) + 12);
691
692         if (rows < 13 || rows > 18) {
693                 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
694                          rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
695                 return -EINVAL;
696         }
697
698         return 1 << rows;
699 }
700
701 static inline int numcol(u32 mtr)
702 {
703         int cols = (COL_WIDTH_BITS(mtr) + 10);
704
705         if (cols > 12) {
706                 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
707                          cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
708                 return -EINVAL;
709         }
710
711         return 1 << cols;
712 }
713
714 static struct sbridge_dev *get_sbridge_dev(u8 bus, int multi_bus)
715 {
716         struct sbridge_dev *sbridge_dev;
717
718         /*
719          * If we have devices scattered across several busses that pertain
720          * to the same memory controller, we'll lump them all together.
721          */
722         if (multi_bus) {
723                 return list_first_entry_or_null(&sbridge_edac_list,
724                                 struct sbridge_dev, list);
725         }
726
727         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
728                 if (sbridge_dev->bus == bus)
729                         return sbridge_dev;
730         }
731
732         return NULL;
733 }
734
735 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
736                                            const struct pci_id_table *table)
737 {
738         struct sbridge_dev *sbridge_dev;
739
740         sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
741         if (!sbridge_dev)
742                 return NULL;
743
744         sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
745                                    GFP_KERNEL);
746         if (!sbridge_dev->pdev) {
747                 kfree(sbridge_dev);
748                 return NULL;
749         }
750
751         sbridge_dev->bus = bus;
752         sbridge_dev->n_devs = table->n_devs;
753         list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
754
755         return sbridge_dev;
756 }
757
758 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
759 {
760         list_del(&sbridge_dev->list);
761         kfree(sbridge_dev->pdev);
762         kfree(sbridge_dev);
763 }
764
765 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
766 {
767         u32 reg;
768
769         /* Address range is 32:28 */
770         pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
771         return GET_TOLM(reg);
772 }
773
774 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
775 {
776         u32 reg;
777
778         pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
779         return GET_TOHM(reg);
780 }
781
782 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
783 {
784         u32 reg;
785
786         pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
787
788         return GET_TOLM(reg);
789 }
790
791 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
792 {
793         u32 reg;
794
795         pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
796
797         return GET_TOHM(reg);
798 }
799
800 static u64 rir_limit(u32 reg)
801 {
802         return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
803 }
804
805 static u64 sad_limit(u32 reg)
806 {
807         return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
808 }
809
810 static u32 interleave_mode(u32 reg)
811 {
812         return GET_BITFIELD(reg, 1, 1);
813 }
814
815 char *show_interleave_mode(u32 reg)
816 {
817         return interleave_mode(reg) ? "8:6" : "[8:6]XOR[18:16]";
818 }
819
820 static u32 dram_attr(u32 reg)
821 {
822         return GET_BITFIELD(reg, 2, 3);
823 }
824
825 static u64 knl_sad_limit(u32 reg)
826 {
827         return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
828 }
829
830 static u32 knl_interleave_mode(u32 reg)
831 {
832         return GET_BITFIELD(reg, 1, 2);
833 }
834
835 static char *knl_show_interleave_mode(u32 reg)
836 {
837         char *s;
838
839         switch (knl_interleave_mode(reg)) {
840         case 0:
841                 s = "use address bits [8:6]";
842                 break;
843         case 1:
844                 s = "use address bits [10:8]";
845                 break;
846         case 2:
847                 s = "use address bits [14:12]";
848                 break;
849         case 3:
850                 s = "use address bits [32:30]";
851                 break;
852         default:
853                 WARN_ON(1);
854                 break;
855         }
856
857         return s;
858 }
859
860 static u32 dram_attr_knl(u32 reg)
861 {
862         return GET_BITFIELD(reg, 3, 4);
863 }
864
865
866 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
867 {
868         u32 reg;
869         enum mem_type mtype;
870
871         if (pvt->pci_ddrio) {
872                 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
873                                       &reg);
874                 if (GET_BITFIELD(reg, 11, 11))
875                         /* FIXME: Can also be LRDIMM */
876                         mtype = MEM_RDDR3;
877                 else
878                         mtype = MEM_DDR3;
879         } else
880                 mtype = MEM_UNKNOWN;
881
882         return mtype;
883 }
884
885 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
886 {
887         u32 reg;
888         bool registered = false;
889         enum mem_type mtype = MEM_UNKNOWN;
890
891         if (!pvt->pci_ddrio)
892                 goto out;
893
894         pci_read_config_dword(pvt->pci_ddrio,
895                               HASWELL_DDRCRCLKCONTROLS, &reg);
896         /* Is_Rdimm */
897         if (GET_BITFIELD(reg, 16, 16))
898                 registered = true;
899
900         pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
901         if (GET_BITFIELD(reg, 14, 14)) {
902                 if (registered)
903                         mtype = MEM_RDDR4;
904                 else
905                         mtype = MEM_DDR4;
906         } else {
907                 if (registered)
908                         mtype = MEM_RDDR3;
909                 else
910                         mtype = MEM_DDR3;
911         }
912
913 out:
914         return mtype;
915 }
916
917 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
918 {
919         /* for KNL value is fixed */
920         return DEV_X16;
921 }
922
923 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
924 {
925         /* there's no way to figure out */
926         return DEV_UNKNOWN;
927 }
928
929 static enum dev_type __ibridge_get_width(u32 mtr)
930 {
931         enum dev_type type;
932
933         switch (mtr) {
934         case 3:
935                 type = DEV_UNKNOWN;
936                 break;
937         case 2:
938                 type = DEV_X16;
939                 break;
940         case 1:
941                 type = DEV_X8;
942                 break;
943         case 0:
944                 type = DEV_X4;
945                 break;
946         }
947
948         return type;
949 }
950
951 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
952 {
953         /*
954          * ddr3_width on the documentation but also valid for DDR4 on
955          * Haswell
956          */
957         return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
958 }
959
960 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
961 {
962         /* ddr3_width on the documentation but also valid for DDR4 */
963         return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
964 }
965
966 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
967 {
968         /* DDR4 RDIMMS and LRDIMMS are supported */
969         return MEM_RDDR4;
970 }
971
972 static u8 get_node_id(struct sbridge_pvt *pvt)
973 {
974         u32 reg;
975         pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
976         return GET_BITFIELD(reg, 0, 2);
977 }
978
979 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
980 {
981         u32 reg;
982
983         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
984         return GET_BITFIELD(reg, 0, 3);
985 }
986
987 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
988 {
989         u32 reg;
990
991         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
992         return GET_BITFIELD(reg, 0, 2);
993 }
994
995
996 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
997 {
998         u32 reg;
999
1000         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1001         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1002 }
1003
1004 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1005 {
1006         u64 rc;
1007         u32 reg;
1008
1009         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1010         rc = GET_BITFIELD(reg, 26, 31);
1011         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1012         rc = ((reg << 6) | rc) << 26;
1013
1014         return rc | 0x1ffffff;
1015 }
1016
1017 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1018 {
1019         u32 reg;
1020
1021         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1022         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1023 }
1024
1025 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1026 {
1027         u64 rc;
1028         u32 reg_lo, reg_hi;
1029
1030         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1031         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1032         rc = ((u64)reg_hi << 32) | reg_lo;
1033         return rc | 0x3ffffff;
1034 }
1035
1036
1037 static u64 haswell_rir_limit(u32 reg)
1038 {
1039         return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1040 }
1041
1042 static inline u8 sad_pkg_socket(u8 pkg)
1043 {
1044         /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1045         return ((pkg >> 3) << 2) | (pkg & 0x3);
1046 }
1047
1048 static inline u8 sad_pkg_ha(u8 pkg)
1049 {
1050         return (pkg >> 2) & 0x1;
1051 }
1052
1053 /****************************************************************************
1054                         Memory check routines
1055  ****************************************************************************/
1056 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
1057 {
1058         struct pci_dev *pdev = NULL;
1059
1060         do {
1061                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
1062                 if (pdev && pdev->bus->number == bus)
1063                         break;
1064         } while (pdev);
1065
1066         return pdev;
1067 }
1068
1069 /**
1070  * check_if_ecc_is_active() - Checks if ECC is active
1071  * @bus:        Device bus
1072  * @type:       Memory controller type
1073  * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
1074  *          disabled
1075  */
1076 static int check_if_ecc_is_active(const u8 bus, enum type type)
1077 {
1078         struct pci_dev *pdev = NULL;
1079         u32 mcmtr, id;
1080
1081         switch (type) {
1082         case IVY_BRIDGE:
1083                 id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
1084                 break;
1085         case HASWELL:
1086                 id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
1087                 break;
1088         case SANDY_BRIDGE:
1089                 id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
1090                 break;
1091         case BROADWELL:
1092                 id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
1093                 break;
1094         case KNIGHTS_LANDING:
1095                 /*
1096                  * KNL doesn't group things by bus the same way
1097                  * SB/IB/Haswell does.
1098                  */
1099                 id = PCI_DEVICE_ID_INTEL_KNL_IMC_TA;
1100                 break;
1101         default:
1102                 return -ENODEV;
1103         }
1104
1105         if (type != KNIGHTS_LANDING)
1106                 pdev = get_pdev_same_bus(bus, id);
1107         else
1108                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, 0);
1109
1110         if (!pdev) {
1111                 sbridge_printk(KERN_ERR, "Couldn't find PCI device "
1112                                         "%04x:%04x! on bus %02d\n",
1113                                         PCI_VENDOR_ID_INTEL, id, bus);
1114                 return -ENODEV;
1115         }
1116
1117         pci_read_config_dword(pdev,
1118                         type == KNIGHTS_LANDING ? KNL_MCMTR : MCMTR, &mcmtr);
1119         if (!IS_ECC_ENABLED(mcmtr)) {
1120                 sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
1121                 return -ENODEV;
1122         }
1123         return 0;
1124 }
1125
1126 /* Low bits of TAD limit, and some metadata. */
1127 static const u32 knl_tad_dram_limit_lo[] = {
1128         0x400, 0x500, 0x600, 0x700,
1129         0x800, 0x900, 0xa00, 0xb00,
1130 };
1131
1132 /* Low bits of TAD offset. */
1133 static const u32 knl_tad_dram_offset_lo[] = {
1134         0x404, 0x504, 0x604, 0x704,
1135         0x804, 0x904, 0xa04, 0xb04,
1136 };
1137
1138 /* High 16 bits of TAD limit and offset. */
1139 static const u32 knl_tad_dram_hi[] = {
1140         0x408, 0x508, 0x608, 0x708,
1141         0x808, 0x908, 0xa08, 0xb08,
1142 };
1143
1144 /* Number of ways a tad entry is interleaved. */
1145 static const u32 knl_tad_ways[] = {
1146         8, 6, 4, 3, 2, 1,
1147 };
1148
1149 /*
1150  * Retrieve the n'th Target Address Decode table entry
1151  * from the memory controller's TAD table.
1152  *
1153  * @pvt:        driver private data
1154  * @entry:      which entry you want to retrieve
1155  * @mc:         which memory controller (0 or 1)
1156  * @offset:     output tad range offset
1157  * @limit:      output address of first byte above tad range
1158  * @ways:       output number of interleave ways
1159  *
1160  * The offset value has curious semantics.  It's a sort of running total
1161  * of the sizes of all the memory regions that aren't mapped in this
1162  * tad table.
1163  */
1164 static int knl_get_tad(const struct sbridge_pvt *pvt,
1165                 const int entry,
1166                 const int mc,
1167                 u64 *offset,
1168                 u64 *limit,
1169                 int *ways)
1170 {
1171         u32 reg_limit_lo, reg_offset_lo, reg_hi;
1172         struct pci_dev *pci_mc;
1173         int way_id;
1174
1175         switch (mc) {
1176         case 0:
1177                 pci_mc = pvt->knl.pci_mc0;
1178                 break;
1179         case 1:
1180                 pci_mc = pvt->knl.pci_mc1;
1181                 break;
1182         default:
1183                 WARN_ON(1);
1184                 return -EINVAL;
1185         }
1186
1187         pci_read_config_dword(pci_mc,
1188                         knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1189         pci_read_config_dword(pci_mc,
1190                         knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1191         pci_read_config_dword(pci_mc,
1192                         knl_tad_dram_hi[entry], &reg_hi);
1193
1194         /* Is this TAD entry enabled? */
1195         if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1196                 return -ENODEV;
1197
1198         way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1199
1200         if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1201                 *ways = knl_tad_ways[way_id];
1202         } else {
1203                 *ways = 0;
1204                 sbridge_printk(KERN_ERR,
1205                                 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1206                                 way_id);
1207                 return -ENODEV;
1208         }
1209
1210         /*
1211          * The least significant 6 bits of base and limit are truncated.
1212          * For limit, we fill the missing bits with 1s.
1213          */
1214         *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1215                                 ((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1216         *limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1217                                 ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1218
1219         return 0;
1220 }
1221
1222 /* Determine which memory controller is responsible for a given channel. */
1223 static int knl_channel_mc(int channel)
1224 {
1225         WARN_ON(channel < 0 || channel >= 6);
1226
1227         return channel < 3 ? 1 : 0;
1228 }
1229
1230 /*
1231  * Get the Nth entry from EDC_ROUTE_TABLE register.
1232  * (This is the per-tile mapping of logical interleave targets to
1233  *  physical EDC modules.)
1234  *
1235  * entry 0: 0:2
1236  *       1: 3:5
1237  *       2: 6:8
1238  *       3: 9:11
1239  *       4: 12:14
1240  *       5: 15:17
1241  *       6: 18:20
1242  *       7: 21:23
1243  * reserved: 24:31
1244  */
1245 static u32 knl_get_edc_route(int entry, u32 reg)
1246 {
1247         WARN_ON(entry >= KNL_MAX_EDCS);
1248         return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1249 }
1250
1251 /*
1252  * Get the Nth entry from MC_ROUTE_TABLE register.
1253  * (This is the per-tile mapping of logical interleave targets to
1254  *  physical DRAM channels modules.)
1255  *
1256  * entry 0: mc 0:2   channel 18:19
1257  *       1: mc 3:5   channel 20:21
1258  *       2: mc 6:8   channel 22:23
1259  *       3: mc 9:11  channel 24:25
1260  *       4: mc 12:14 channel 26:27
1261  *       5: mc 15:17 channel 28:29
1262  * reserved: 30:31
1263  *
1264  * Though we have 3 bits to identify the MC, we should only see
1265  * the values 0 or 1.
1266  */
1267
1268 static u32 knl_get_mc_route(int entry, u32 reg)
1269 {
1270         int mc, chan;
1271
1272         WARN_ON(entry >= KNL_MAX_CHANNELS);
1273
1274         mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1275         chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1276
1277         return knl_channel_remap(mc*3 + chan);
1278 }
1279
1280 /*
1281  * Render the EDC_ROUTE register in human-readable form.
1282  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1283  */
1284 static void knl_show_edc_route(u32 reg, char *s)
1285 {
1286         int i;
1287
1288         for (i = 0; i < KNL_MAX_EDCS; i++) {
1289                 s[i*2] = knl_get_edc_route(i, reg) + '0';
1290                 s[i*2+1] = '-';
1291         }
1292
1293         s[KNL_MAX_EDCS*2 - 1] = '\0';
1294 }
1295
1296 /*
1297  * Render the MC_ROUTE register in human-readable form.
1298  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1299  */
1300 static void knl_show_mc_route(u32 reg, char *s)
1301 {
1302         int i;
1303
1304         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1305                 s[i*2] = knl_get_mc_route(i, reg) + '0';
1306                 s[i*2+1] = '-';
1307         }
1308
1309         s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1310 }
1311
1312 #define KNL_EDC_ROUTE 0xb8
1313 #define KNL_MC_ROUTE 0xb4
1314
1315 /* Is this dram rule backed by regular DRAM in flat mode? */
1316 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1317
1318 /* Is this dram rule cached? */
1319 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1320
1321 /* Is this rule backed by edc ? */
1322 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1323
1324 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1325 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1326
1327 /* Is this rule mod3? */
1328 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1329
1330 /*
1331  * Figure out how big our RAM modules are.
1332  *
1333  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1334  * have to figure this out from the SAD rules, interleave lists, route tables,
1335  * and TAD rules.
1336  *
1337  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1338  * inspect the TAD rules to figure out how large the SAD regions really are.
1339  *
1340  * When we know the real size of a SAD region and how many ways it's
1341  * interleaved, we know the individual contribution of each channel to
1342  * TAD is size/ways.
1343  *
1344  * Finally, we have to check whether each channel participates in each SAD
1345  * region.
1346  *
1347  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1348  * much memory the channel uses, we know the DIMM is at least that large.
1349  * (The BIOS might possibly choose not to map all available memory, in which
1350  * case we will underreport the size of the DIMM.)
1351  *
1352  * In theory, we could try to determine the EDC sizes as well, but that would
1353  * only work in flat mode, not in cache mode.
1354  *
1355  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1356  *            elements)
1357  */
1358 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1359 {
1360         u64 sad_base, sad_size, sad_limit = 0;
1361         u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1362         int sad_rule = 0;
1363         int tad_rule = 0;
1364         int intrlv_ways, tad_ways;
1365         u32 first_pkg, pkg;
1366         int i;
1367         u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1368         u32 dram_rule, interleave_reg;
1369         u32 mc_route_reg[KNL_MAX_CHAS];
1370         u32 edc_route_reg[KNL_MAX_CHAS];
1371         int edram_only;
1372         char edc_route_string[KNL_MAX_EDCS*2];
1373         char mc_route_string[KNL_MAX_CHANNELS*2];
1374         int cur_reg_start;
1375         int mc;
1376         int channel;
1377         int way;
1378         int participants[KNL_MAX_CHANNELS];
1379         int participant_count = 0;
1380
1381         for (i = 0; i < KNL_MAX_CHANNELS; i++)
1382                 mc_sizes[i] = 0;
1383
1384         /* Read the EDC route table in each CHA. */
1385         cur_reg_start = 0;
1386         for (i = 0; i < KNL_MAX_CHAS; i++) {
1387                 pci_read_config_dword(pvt->knl.pci_cha[i],
1388                                 KNL_EDC_ROUTE, &edc_route_reg[i]);
1389
1390                 if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1391                         knl_show_edc_route(edc_route_reg[i-1],
1392                                         edc_route_string);
1393                         if (cur_reg_start == i-1)
1394                                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1395                                         cur_reg_start, edc_route_string);
1396                         else
1397                                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1398                                         cur_reg_start, i-1, edc_route_string);
1399                         cur_reg_start = i;
1400                 }
1401         }
1402         knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1403         if (cur_reg_start == i-1)
1404                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1405                         cur_reg_start, edc_route_string);
1406         else
1407                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1408                         cur_reg_start, i-1, edc_route_string);
1409
1410         /* Read the MC route table in each CHA. */
1411         cur_reg_start = 0;
1412         for (i = 0; i < KNL_MAX_CHAS; i++) {
1413                 pci_read_config_dword(pvt->knl.pci_cha[i],
1414                         KNL_MC_ROUTE, &mc_route_reg[i]);
1415
1416                 if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1417                         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1418                         if (cur_reg_start == i-1)
1419                                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1420                                         cur_reg_start, mc_route_string);
1421                         else
1422                                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1423                                         cur_reg_start, i-1, mc_route_string);
1424                         cur_reg_start = i;
1425                 }
1426         }
1427         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1428         if (cur_reg_start == i-1)
1429                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1430                         cur_reg_start, mc_route_string);
1431         else
1432                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1433                         cur_reg_start, i-1, mc_route_string);
1434
1435         /* Process DRAM rules */
1436         for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1437                 /* previous limit becomes the new base */
1438                 sad_base = sad_limit;
1439
1440                 pci_read_config_dword(pvt->pci_sad0,
1441                         pvt->info.dram_rule[sad_rule], &dram_rule);
1442
1443                 if (!DRAM_RULE_ENABLE(dram_rule))
1444                         break;
1445
1446                 edram_only = KNL_EDRAM_ONLY(dram_rule);
1447
1448                 sad_limit = pvt->info.sad_limit(dram_rule)+1;
1449                 sad_size = sad_limit - sad_base;
1450
1451                 pci_read_config_dword(pvt->pci_sad0,
1452                         pvt->info.interleave_list[sad_rule], &interleave_reg);
1453
1454                 /*
1455                  * Find out how many ways this dram rule is interleaved.
1456                  * We stop when we see the first channel again.
1457                  */
1458                 first_pkg = sad_pkg(pvt->info.interleave_pkg,
1459                                                 interleave_reg, 0);
1460                 for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1461                         pkg = sad_pkg(pvt->info.interleave_pkg,
1462                                                 interleave_reg, intrlv_ways);
1463
1464                         if ((pkg & 0x8) == 0) {
1465                                 /*
1466                                  * 0 bit means memory is non-local,
1467                                  * which KNL doesn't support
1468                                  */
1469                                 edac_dbg(0, "Unexpected interleave target %d\n",
1470                                         pkg);
1471                                 return -1;
1472                         }
1473
1474                         if (pkg == first_pkg)
1475                                 break;
1476                 }
1477                 if (KNL_MOD3(dram_rule))
1478                         intrlv_ways *= 3;
1479
1480                 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1481                         sad_rule,
1482                         sad_base,
1483                         sad_limit,
1484                         intrlv_ways,
1485                         edram_only ? ", EDRAM" : "");
1486
1487                 /*
1488                  * Find out how big the SAD region really is by iterating
1489                  * over TAD tables (SAD regions may contain holes).
1490                  * Each memory controller might have a different TAD table, so
1491                  * we have to look at both.
1492                  *
1493                  * Livespace is the memory that's mapped in this TAD table,
1494                  * deadspace is the holes (this could be the MMIO hole, or it
1495                  * could be memory that's mapped by the other TAD table but
1496                  * not this one).
1497                  */
1498                 for (mc = 0; mc < 2; mc++) {
1499                         sad_actual_size[mc] = 0;
1500                         tad_livespace = 0;
1501                         for (tad_rule = 0;
1502                                         tad_rule < ARRAY_SIZE(
1503                                                 knl_tad_dram_limit_lo);
1504                                         tad_rule++) {
1505                                 if (knl_get_tad(pvt,
1506                                                 tad_rule,
1507                                                 mc,
1508                                                 &tad_deadspace,
1509                                                 &tad_limit,
1510                                                 &tad_ways))
1511                                         break;
1512
1513                                 tad_size = (tad_limit+1) -
1514                                         (tad_livespace + tad_deadspace);
1515                                 tad_livespace += tad_size;
1516                                 tad_base = (tad_limit+1) - tad_size;
1517
1518                                 if (tad_base < sad_base) {
1519                                         if (tad_limit > sad_base)
1520                                                 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1521                                 } else if (tad_base < sad_limit) {
1522                                         if (tad_limit+1 > sad_limit) {
1523                                                 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1524                                         } else {
1525                                                 /* TAD region is completely inside SAD region */
1526                                                 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1527                                                         tad_rule, tad_base,
1528                                                         tad_limit, tad_size,
1529                                                         mc);
1530                                                 sad_actual_size[mc] += tad_size;
1531                                         }
1532                                 }
1533                                 tad_base = tad_limit+1;
1534                         }
1535                 }
1536
1537                 for (mc = 0; mc < 2; mc++) {
1538                         edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1539                                 mc, sad_actual_size[mc], sad_actual_size[mc]);
1540                 }
1541
1542                 /* Ignore EDRAM rule */
1543                 if (edram_only)
1544                         continue;
1545
1546                 /* Figure out which channels participate in interleave. */
1547                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1548                         participants[channel] = 0;
1549
1550                 /* For each channel, does at least one CHA have
1551                  * this channel mapped to the given target?
1552                  */
1553                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1554                         for (way = 0; way < intrlv_ways; way++) {
1555                                 int target;
1556                                 int cha;
1557
1558                                 if (KNL_MOD3(dram_rule))
1559                                         target = way;
1560                                 else
1561                                         target = 0x7 & sad_pkg(
1562                                 pvt->info.interleave_pkg, interleave_reg, way);
1563
1564                                 for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1565                                         if (knl_get_mc_route(target,
1566                                                 mc_route_reg[cha]) == channel
1567                                                 && !participants[channel]) {
1568                                                 participant_count++;
1569                                                 participants[channel] = 1;
1570                                                 break;
1571                                         }
1572                                 }
1573                         }
1574                 }
1575
1576                 if (participant_count != intrlv_ways)
1577                         edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
1578                                 participant_count, intrlv_ways);
1579
1580                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1581                         mc = knl_channel_mc(channel);
1582                         if (participants[channel]) {
1583                                 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1584                                         channel,
1585                                         sad_actual_size[mc]/intrlv_ways,
1586                                         sad_rule);
1587                                 mc_sizes[channel] +=
1588                                         sad_actual_size[mc]/intrlv_ways;
1589                         }
1590                 }
1591         }
1592
1593         return 0;
1594 }
1595
1596 static int get_dimm_config(struct mem_ctl_info *mci)
1597 {
1598         struct sbridge_pvt *pvt = mci->pvt_info;
1599         struct dimm_info *dimm;
1600         unsigned i, j, banks, ranks, rows, cols, npages;
1601         u64 size;
1602         u32 reg;
1603         enum edac_type mode;
1604         enum mem_type mtype;
1605         int channels = pvt->info.type == KNIGHTS_LANDING ?
1606                 KNL_MAX_CHANNELS : NUM_CHANNELS;
1607         u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1608
1609         if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1610                         pvt->info.type == KNIGHTS_LANDING)
1611                 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1612         else
1613                 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1614
1615         if (pvt->info.type == KNIGHTS_LANDING)
1616                 pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1617         else
1618                 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1619
1620         pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1621         edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1622                  pvt->sbridge_dev->mc,
1623                  pvt->sbridge_dev->node_id,
1624                  pvt->sbridge_dev->source_id);
1625
1626         /* KNL doesn't support mirroring or lockstep,
1627          * and is always closed page
1628          */
1629         if (pvt->info.type == KNIGHTS_LANDING) {
1630                 mode = EDAC_S4ECD4ED;
1631                 pvt->is_mirrored = false;
1632
1633                 if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1634                         return -1;
1635         } else {
1636                 pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
1637                 if (IS_MIRROR_ENABLED(reg)) {
1638                         edac_dbg(0, "Memory mirror is enabled\n");
1639                         pvt->is_mirrored = true;
1640                 } else {
1641                         edac_dbg(0, "Memory mirror is disabled\n");
1642                         pvt->is_mirrored = false;
1643                 }
1644
1645                 pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
1646                 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1647                         edac_dbg(0, "Lockstep is enabled\n");
1648                         mode = EDAC_S8ECD8ED;
1649                         pvt->is_lockstep = true;
1650                 } else {
1651                         edac_dbg(0, "Lockstep is disabled\n");
1652                         mode = EDAC_S4ECD4ED;
1653                         pvt->is_lockstep = false;
1654                 }
1655                 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1656                         edac_dbg(0, "address map is on closed page mode\n");
1657                         pvt->is_close_pg = true;
1658                 } else {
1659                         edac_dbg(0, "address map is on open page mode\n");
1660                         pvt->is_close_pg = false;
1661                 }
1662         }
1663
1664         mtype = pvt->info.get_memory_type(pvt);
1665         if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1666                 edac_dbg(0, "Memory is registered\n");
1667         else if (mtype == MEM_UNKNOWN)
1668                 edac_dbg(0, "Cannot determine memory type\n");
1669         else
1670                 edac_dbg(0, "Memory is unregistered\n");
1671
1672         if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1673                 banks = 16;
1674         else
1675                 banks = 8;
1676
1677         for (i = 0; i < channels; i++) {
1678                 u32 mtr;
1679
1680                 int max_dimms_per_channel;
1681
1682                 if (pvt->info.type == KNIGHTS_LANDING) {
1683                         max_dimms_per_channel = 1;
1684                         if (!pvt->knl.pci_channel[i])
1685                                 continue;
1686                 } else {
1687                         max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1688                         if (!pvt->pci_tad[i])
1689                                 continue;
1690                 }
1691
1692                 for (j = 0; j < max_dimms_per_channel; j++) {
1693                         dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1694                                        i, j, 0);
1695                         if (pvt->info.type == KNIGHTS_LANDING) {
1696                                 pci_read_config_dword(pvt->knl.pci_channel[i],
1697                                         knl_mtr_reg, &mtr);
1698                         } else {
1699                                 pci_read_config_dword(pvt->pci_tad[i],
1700                                         mtr_regs[j], &mtr);
1701                         }
1702                         edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1703                         if (IS_DIMM_PRESENT(mtr)) {
1704                                 pvt->channel[i].dimms++;
1705
1706                                 ranks = numrank(pvt->info.type, mtr);
1707
1708                                 if (pvt->info.type == KNIGHTS_LANDING) {
1709                                         /* For DDR4, this is fixed. */
1710                                         cols = 1 << 10;
1711                                         rows = knl_mc_sizes[i] /
1712                                                 ((u64) cols * ranks * banks * 8);
1713                                 } else {
1714                                         rows = numrow(mtr);
1715                                         cols = numcol(mtr);
1716                                 }
1717
1718                                 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1719                                 npages = MiB_TO_PAGES(size);
1720
1721                                 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1722                                          pvt->sbridge_dev->mc, i/4, i%4, j,
1723                                          size, npages,
1724                                          banks, ranks, rows, cols);
1725
1726                                 dimm->nr_pages = npages;
1727                                 dimm->grain = 32;
1728                                 dimm->dtype = pvt->info.get_width(pvt, mtr);
1729                                 dimm->mtype = mtype;
1730                                 dimm->edac_mode = mode;
1731                                 snprintf(dimm->label, sizeof(dimm->label),
1732                                          "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1733                                          pvt->sbridge_dev->source_id, i/4, i%4, j);
1734                         }
1735                 }
1736         }
1737
1738         return 0;
1739 }
1740
1741 static void get_memory_layout(const struct mem_ctl_info *mci)
1742 {
1743         struct sbridge_pvt *pvt = mci->pvt_info;
1744         int i, j, k, n_sads, n_tads, sad_interl;
1745         u32 reg;
1746         u64 limit, prv = 0;
1747         u64 tmp_mb;
1748         u32 gb, mb;
1749         u32 rir_way;
1750
1751         /*
1752          * Step 1) Get TOLM/TOHM ranges
1753          */
1754
1755         pvt->tolm = pvt->info.get_tolm(pvt);
1756         tmp_mb = (1 + pvt->tolm) >> 20;
1757
1758         gb = div_u64_rem(tmp_mb, 1024, &mb);
1759         edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1760                 gb, (mb*1000)/1024, (u64)pvt->tolm);
1761
1762         /* Address range is already 45:25 */
1763         pvt->tohm = pvt->info.get_tohm(pvt);
1764         tmp_mb = (1 + pvt->tohm) >> 20;
1765
1766         gb = div_u64_rem(tmp_mb, 1024, &mb);
1767         edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1768                 gb, (mb*1000)/1024, (u64)pvt->tohm);
1769
1770         /*
1771          * Step 2) Get SAD range and SAD Interleave list
1772          * TAD registers contain the interleave wayness. However, it
1773          * seems simpler to just discover it indirectly, with the
1774          * algorithm bellow.
1775          */
1776         prv = 0;
1777         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1778                 /* SAD_LIMIT Address range is 45:26 */
1779                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1780                                       &reg);
1781                 limit = pvt->info.sad_limit(reg);
1782
1783                 if (!DRAM_RULE_ENABLE(reg))
1784                         continue;
1785
1786                 if (limit <= prv)
1787                         break;
1788
1789                 tmp_mb = (limit + 1) >> 20;
1790                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1791                 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1792                          n_sads,
1793                          show_dram_attr(pvt->info.dram_attr(reg)),
1794                          gb, (mb*1000)/1024,
1795                          ((u64)tmp_mb) << 20L,
1796                          pvt->info.show_interleave_mode(reg),
1797                          reg);
1798                 prv = limit;
1799
1800                 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1801                                       &reg);
1802                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1803                 for (j = 0; j < 8; j++) {
1804                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1805                         if (j > 0 && sad_interl == pkg)
1806                                 break;
1807
1808                         edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1809                                  n_sads, j, pkg);
1810                 }
1811         }
1812
1813         if (pvt->info.type == KNIGHTS_LANDING)
1814                 return;
1815
1816         /*
1817          * Step 3) Get TAD range
1818          */
1819         prv = 0;
1820         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1821                 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
1822                                       &reg);
1823                 limit = TAD_LIMIT(reg);
1824                 if (limit <= prv)
1825                         break;
1826                 tmp_mb = (limit + 1) >> 20;
1827
1828                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1829                 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1830                          n_tads, gb, (mb*1000)/1024,
1831                          ((u64)tmp_mb) << 20L,
1832                          (u32)(1 << TAD_SOCK(reg)),
1833                          (u32)TAD_CH(reg) + 1,
1834                          (u32)TAD_TGT0(reg),
1835                          (u32)TAD_TGT1(reg),
1836                          (u32)TAD_TGT2(reg),
1837                          (u32)TAD_TGT3(reg),
1838                          reg);
1839                 prv = limit;
1840         }
1841
1842         /*
1843          * Step 4) Get TAD offsets, per each channel
1844          */
1845         for (i = 0; i < NUM_CHANNELS; i++) {
1846                 if (!pvt->channel[i].dimms)
1847                         continue;
1848                 for (j = 0; j < n_tads; j++) {
1849                         pci_read_config_dword(pvt->pci_tad[i],
1850                                               tad_ch_nilv_offset[j],
1851                                               &reg);
1852                         tmp_mb = TAD_OFFSET(reg) >> 20;
1853                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1854                         edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1855                                  i, j,
1856                                  gb, (mb*1000)/1024,
1857                                  ((u64)tmp_mb) << 20L,
1858                                  reg);
1859                 }
1860         }
1861
1862         /*
1863          * Step 6) Get RIR Wayness/Limit, per each channel
1864          */
1865         for (i = 0; i < NUM_CHANNELS; i++) {
1866                 if (!pvt->channel[i].dimms)
1867                         continue;
1868                 for (j = 0; j < MAX_RIR_RANGES; j++) {
1869                         pci_read_config_dword(pvt->pci_tad[i],
1870                                               rir_way_limit[j],
1871                                               &reg);
1872
1873                         if (!IS_RIR_VALID(reg))
1874                                 continue;
1875
1876                         tmp_mb = pvt->info.rir_limit(reg) >> 20;
1877                         rir_way = 1 << RIR_WAY(reg);
1878                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1879                         edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1880                                  i, j,
1881                                  gb, (mb*1000)/1024,
1882                                  ((u64)tmp_mb) << 20L,
1883                                  rir_way,
1884                                  reg);
1885
1886                         for (k = 0; k < rir_way; k++) {
1887                                 pci_read_config_dword(pvt->pci_tad[i],
1888                                                       rir_offset[j][k],
1889                                                       &reg);
1890                                 tmp_mb = RIR_OFFSET(reg) << 6;
1891
1892                                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1893                                 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1894                                          i, j, k,
1895                                          gb, (mb*1000)/1024,
1896                                          ((u64)tmp_mb) << 20L,
1897                                          (u32)RIR_RNK_TGT(reg),
1898                                          reg);
1899                         }
1900                 }
1901         }
1902 }
1903
1904 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1905 {
1906         struct sbridge_dev *sbridge_dev;
1907
1908         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1909                 if (sbridge_dev->node_id == node_id)
1910                         return sbridge_dev->mci;
1911         }
1912         return NULL;
1913 }
1914
1915 static int get_memory_error_data(struct mem_ctl_info *mci,
1916                                  u64 addr,
1917                                  u8 *socket, u8 *ha,
1918                                  long *channel_mask,
1919                                  u8 *rank,
1920                                  char **area_type, char *msg)
1921 {
1922         struct mem_ctl_info     *new_mci;
1923         struct sbridge_pvt *pvt = mci->pvt_info;
1924         struct pci_dev          *pci_ha;
1925         int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
1926         int                     sad_interl, idx, base_ch;
1927         int                     interleave_mode, shiftup = 0;
1928         unsigned                sad_interleave[pvt->info.max_interleave];
1929         u32                     reg, dram_rule;
1930         u8                      ch_way, sck_way, pkg, sad_ha = 0, ch_add = 0;
1931         u32                     tad_offset;
1932         u32                     rir_way;
1933         u32                     mb, gb;
1934         u64                     ch_addr, offset, limit = 0, prv = 0;
1935
1936
1937         /*
1938          * Step 0) Check if the address is at special memory ranges
1939          * The check bellow is probably enough to fill all cases where
1940          * the error is not inside a memory, except for the legacy
1941          * range (e. g. VGA addresses). It is unlikely, however, that the
1942          * memory controller would generate an error on that range.
1943          */
1944         if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1945                 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1946                 return -EINVAL;
1947         }
1948         if (addr >= (u64)pvt->tohm) {
1949                 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1950                 return -EINVAL;
1951         }
1952
1953         /*
1954          * Step 1) Get socket
1955          */
1956         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1957                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1958                                       &reg);
1959
1960                 if (!DRAM_RULE_ENABLE(reg))
1961                         continue;
1962
1963                 limit = pvt->info.sad_limit(reg);
1964                 if (limit <= prv) {
1965                         sprintf(msg, "Can't discover the memory socket");
1966                         return -EINVAL;
1967                 }
1968                 if  (addr <= limit)
1969                         break;
1970                 prv = limit;
1971         }
1972         if (n_sads == pvt->info.max_sad) {
1973                 sprintf(msg, "Can't discover the memory socket");
1974                 return -EINVAL;
1975         }
1976         dram_rule = reg;
1977         *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1978         interleave_mode = pvt->info.interleave_mode(dram_rule);
1979
1980         pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1981                               &reg);
1982
1983         if (pvt->info.type == SANDY_BRIDGE) {
1984                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1985                 for (sad_way = 0; sad_way < 8; sad_way++) {
1986                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1987                         if (sad_way > 0 && sad_interl == pkg)
1988                                 break;
1989                         sad_interleave[sad_way] = pkg;
1990                         edac_dbg(0, "SAD interleave #%d: %d\n",
1991                                  sad_way, sad_interleave[sad_way]);
1992                 }
1993                 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1994                          pvt->sbridge_dev->mc,
1995                          n_sads,
1996                          addr,
1997                          limit,
1998                          sad_way + 7,
1999                          !interleave_mode ? "" : "XOR[18:16]");
2000                 if (interleave_mode)
2001                         idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2002                 else
2003                         idx = (addr >> 6) & 7;
2004                 switch (sad_way) {
2005                 case 1:
2006                         idx = 0;
2007                         break;
2008                 case 2:
2009                         idx = idx & 1;
2010                         break;
2011                 case 4:
2012                         idx = idx & 3;
2013                         break;
2014                 case 8:
2015                         break;
2016                 default:
2017                         sprintf(msg, "Can't discover socket interleave");
2018                         return -EINVAL;
2019                 }
2020                 *socket = sad_interleave[idx];
2021                 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2022                          idx, sad_way, *socket);
2023         } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2024                 int bits, a7mode = A7MODE(dram_rule);
2025
2026                 if (a7mode) {
2027                         /* A7 mode swaps P9 with P6 */
2028                         bits = GET_BITFIELD(addr, 7, 8) << 1;
2029                         bits |= GET_BITFIELD(addr, 9, 9);
2030                 } else
2031                         bits = GET_BITFIELD(addr, 6, 8);
2032
2033                 if (interleave_mode == 0) {
2034                         /* interleave mode will XOR {8,7,6} with {18,17,16} */
2035                         idx = GET_BITFIELD(addr, 16, 18);
2036                         idx ^= bits;
2037                 } else
2038                         idx = bits;
2039
2040                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2041                 *socket = sad_pkg_socket(pkg);
2042                 sad_ha = sad_pkg_ha(pkg);
2043                 if (sad_ha)
2044                         ch_add = 4;
2045
2046                 if (a7mode) {
2047                         /* MCChanShiftUpEnable */
2048                         pci_read_config_dword(pvt->pci_ha0,
2049                                               HASWELL_HASYSDEFEATURE2, &reg);
2050                         shiftup = GET_BITFIELD(reg, 22, 22);
2051                 }
2052
2053                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2054                          idx, *socket, sad_ha, shiftup);
2055         } else {
2056                 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2057                 idx = (addr >> 6) & 7;
2058                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2059                 *socket = sad_pkg_socket(pkg);
2060                 sad_ha = sad_pkg_ha(pkg);
2061                 if (sad_ha)
2062                         ch_add = 4;
2063                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2064                          idx, *socket, sad_ha);
2065         }
2066
2067         *ha = sad_ha;
2068
2069         /*
2070          * Move to the proper node structure, in order to access the
2071          * right PCI registers
2072          */
2073         new_mci = get_mci_for_node_id(*socket);
2074         if (!new_mci) {
2075                 sprintf(msg, "Struct for socket #%u wasn't initialized",
2076                         *socket);
2077                 return -EINVAL;
2078         }
2079         mci = new_mci;
2080         pvt = mci->pvt_info;
2081
2082         /*
2083          * Step 2) Get memory channel
2084          */
2085         prv = 0;
2086         if (pvt->info.type == SANDY_BRIDGE)
2087                 pci_ha = pvt->pci_ha0;
2088         else {
2089                 if (sad_ha)
2090                         pci_ha = pvt->pci_ha1;
2091                 else
2092                         pci_ha = pvt->pci_ha0;
2093         }
2094         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2095                 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2096                 limit = TAD_LIMIT(reg);
2097                 if (limit <= prv) {
2098                         sprintf(msg, "Can't discover the memory channel");
2099                         return -EINVAL;
2100                 }
2101                 if  (addr <= limit)
2102                         break;
2103                 prv = limit;
2104         }
2105         if (n_tads == MAX_TAD) {
2106                 sprintf(msg, "Can't discover the memory channel");
2107                 return -EINVAL;
2108         }
2109
2110         ch_way = TAD_CH(reg) + 1;
2111         sck_way = 1 << TAD_SOCK(reg);
2112
2113         if (ch_way == 3)
2114                 idx = addr >> 6;
2115         else
2116                 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2117         idx = idx % ch_way;
2118
2119         /*
2120          * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2121          */
2122         switch (idx) {
2123         case 0:
2124                 base_ch = TAD_TGT0(reg);
2125                 break;
2126         case 1:
2127                 base_ch = TAD_TGT1(reg);
2128                 break;
2129         case 2:
2130                 base_ch = TAD_TGT2(reg);
2131                 break;
2132         case 3:
2133                 base_ch = TAD_TGT3(reg);
2134                 break;
2135         default:
2136                 sprintf(msg, "Can't discover the TAD target");
2137                 return -EINVAL;
2138         }
2139         *channel_mask = 1 << base_ch;
2140
2141         pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2142                                 tad_ch_nilv_offset[n_tads],
2143                                 &tad_offset);
2144
2145         if (pvt->is_mirrored) {
2146                 *channel_mask |= 1 << ((base_ch + 2) % 4);
2147                 switch(ch_way) {
2148                 case 2:
2149                 case 4:
2150                         sck_xch = 1 << sck_way * (ch_way >> 1);
2151                         break;
2152                 default:
2153                         sprintf(msg, "Invalid mirror set. Can't decode addr");
2154                         return -EINVAL;
2155                 }
2156         } else
2157                 sck_xch = (1 << sck_way) * ch_way;
2158
2159         if (pvt->is_lockstep)
2160                 *channel_mask |= 1 << ((base_ch + 1) % 4);
2161
2162         offset = TAD_OFFSET(tad_offset);
2163
2164         edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2165                  n_tads,
2166                  addr,
2167                  limit,
2168                  sck_way,
2169                  ch_way,
2170                  offset,
2171                  idx,
2172                  base_ch,
2173                  *channel_mask);
2174
2175         /* Calculate channel address */
2176         /* Remove the TAD offset */
2177
2178         if (offset > addr) {
2179                 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2180                         offset, addr);
2181                 return -EINVAL;
2182         }
2183
2184         ch_addr = addr - offset;
2185         ch_addr >>= (6 + shiftup);
2186         ch_addr /= ch_way * sck_way;
2187         ch_addr <<= (6 + shiftup);
2188         ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2189
2190         /*
2191          * Step 3) Decode rank
2192          */
2193         for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2194                 pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2195                                       rir_way_limit[n_rir],
2196                                       &reg);
2197
2198                 if (!IS_RIR_VALID(reg))
2199                         continue;
2200
2201                 limit = pvt->info.rir_limit(reg);
2202                 gb = div_u64_rem(limit >> 20, 1024, &mb);
2203                 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2204                          n_rir,
2205                          gb, (mb*1000)/1024,
2206                          limit,
2207                          1 << RIR_WAY(reg));
2208                 if  (ch_addr <= limit)
2209                         break;
2210         }
2211         if (n_rir == MAX_RIR_RANGES) {
2212                 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2213                         ch_addr);
2214                 return -EINVAL;
2215         }
2216         rir_way = RIR_WAY(reg);
2217
2218         if (pvt->is_close_pg)
2219                 idx = (ch_addr >> 6);
2220         else
2221                 idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
2222         idx %= 1 << rir_way;
2223
2224         pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2225                               rir_offset[n_rir][idx],
2226                               &reg);
2227         *rank = RIR_RNK_TGT(reg);
2228
2229         edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2230                  n_rir,
2231                  ch_addr,
2232                  limit,
2233                  rir_way,
2234                  idx);
2235
2236         return 0;
2237 }
2238
2239 /****************************************************************************
2240         Device initialization routines: put/get, init/exit
2241  ****************************************************************************/
2242
2243 /*
2244  *      sbridge_put_all_devices 'put' all the devices that we have
2245  *                              reserved via 'get'
2246  */
2247 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2248 {
2249         int i;
2250
2251         edac_dbg(0, "\n");
2252         for (i = 0; i < sbridge_dev->n_devs; i++) {
2253                 struct pci_dev *pdev = sbridge_dev->pdev[i];
2254                 if (!pdev)
2255                         continue;
2256                 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2257                          pdev->bus->number,
2258                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2259                 pci_dev_put(pdev);
2260         }
2261 }
2262
2263 static void sbridge_put_all_devices(void)
2264 {
2265         struct sbridge_dev *sbridge_dev, *tmp;
2266
2267         list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2268                 sbridge_put_devices(sbridge_dev);
2269                 free_sbridge_dev(sbridge_dev);
2270         }
2271 }
2272
2273 static int sbridge_get_onedevice(struct pci_dev **prev,
2274                                  u8 *num_mc,
2275                                  const struct pci_id_table *table,
2276                                  const unsigned devno,
2277                                  const int multi_bus)
2278 {
2279         struct sbridge_dev *sbridge_dev;
2280         const struct pci_id_descr *dev_descr = &table->descr[devno];
2281         struct pci_dev *pdev = NULL;
2282         u8 bus = 0;
2283
2284         sbridge_printk(KERN_DEBUG,
2285                 "Seeking for: PCI ID %04x:%04x\n",
2286                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2287
2288         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2289                               dev_descr->dev_id, *prev);
2290
2291         if (!pdev) {
2292                 if (*prev) {
2293                         *prev = pdev;
2294                         return 0;
2295                 }
2296
2297                 if (dev_descr->optional)
2298                         return 0;
2299
2300                 /* if the HA wasn't found */
2301                 if (devno == 0)
2302                         return -ENODEV;
2303
2304                 sbridge_printk(KERN_INFO,
2305                         "Device not found: %04x:%04x\n",
2306                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2307
2308                 /* End of list, leave */
2309                 return -ENODEV;
2310         }
2311         bus = pdev->bus->number;
2312
2313         sbridge_dev = get_sbridge_dev(bus, multi_bus);
2314         if (!sbridge_dev) {
2315                 sbridge_dev = alloc_sbridge_dev(bus, table);
2316                 if (!sbridge_dev) {
2317                         pci_dev_put(pdev);
2318                         return -ENOMEM;
2319                 }
2320                 (*num_mc)++;
2321         }
2322
2323         if (sbridge_dev->pdev[devno]) {
2324                 sbridge_printk(KERN_ERR,
2325                         "Duplicated device for %04x:%04x\n",
2326                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2327                 pci_dev_put(pdev);
2328                 return -ENODEV;
2329         }
2330
2331         sbridge_dev->pdev[devno] = pdev;
2332
2333         /* Be sure that the device is enabled */
2334         if (unlikely(pci_enable_device(pdev) < 0)) {
2335                 sbridge_printk(KERN_ERR,
2336                         "Couldn't enable %04x:%04x\n",
2337                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2338                 return -ENODEV;
2339         }
2340
2341         edac_dbg(0, "Detected %04x:%04x\n",
2342                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2343
2344         /*
2345          * As stated on drivers/pci/search.c, the reference count for
2346          * @from is always decremented if it is not %NULL. So, as we need
2347          * to get all devices up to null, we need to do a get for the device
2348          */
2349         pci_dev_get(pdev);
2350
2351         *prev = pdev;
2352
2353         return 0;
2354 }
2355
2356 /*
2357  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2358  *                           devices we want to reference for this driver.
2359  * @num_mc: pointer to the memory controllers count, to be incremented in case
2360  *          of success.
2361  * @table: model specific table
2362  * @allow_dups: allow for multiple devices to exist with the same device id
2363  *              (as implemented, this isn't expected to work correctly in the
2364  *              multi-socket case).
2365  * @multi_bus: don't assume devices on different buses belong to different
2366  *             memory controllers.
2367  *
2368  * returns 0 in case of success or error code
2369  */
2370 static int sbridge_get_all_devices_full(u8 *num_mc,
2371                                         const struct pci_id_table *table,
2372                                         int allow_dups,
2373                                         int multi_bus)
2374 {
2375         int i, rc;
2376         struct pci_dev *pdev = NULL;
2377
2378         while (table && table->descr) {
2379                 for (i = 0; i < table->n_devs; i++) {
2380                         if (!allow_dups || i == 0 ||
2381                                         table->descr[i].dev_id !=
2382                                                 table->descr[i-1].dev_id) {
2383                                 pdev = NULL;
2384                         }
2385                         do {
2386                                 rc = sbridge_get_onedevice(&pdev, num_mc,
2387                                                            table, i, multi_bus);
2388                                 if (rc < 0) {
2389                                         if (i == 0) {
2390                                                 i = table->n_devs;
2391                                                 break;
2392                                         }
2393                                         sbridge_put_all_devices();
2394                                         return -ENODEV;
2395                                 }
2396                         } while (pdev && !allow_dups);
2397                 }
2398                 table++;
2399         }
2400
2401         return 0;
2402 }
2403
2404 #define sbridge_get_all_devices(num_mc, table) \
2405                 sbridge_get_all_devices_full(num_mc, table, 0, 0)
2406 #define sbridge_get_all_devices_knl(num_mc, table) \
2407                 sbridge_get_all_devices_full(num_mc, table, 1, 1)
2408
2409 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2410                                  struct sbridge_dev *sbridge_dev)
2411 {
2412         struct sbridge_pvt *pvt = mci->pvt_info;
2413         struct pci_dev *pdev;
2414         u8 saw_chan_mask = 0;
2415         int i;
2416
2417         for (i = 0; i < sbridge_dev->n_devs; i++) {
2418                 pdev = sbridge_dev->pdev[i];
2419                 if (!pdev)
2420                         continue;
2421
2422                 switch (pdev->device) {
2423                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2424                         pvt->pci_sad0 = pdev;
2425                         break;
2426                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2427                         pvt->pci_sad1 = pdev;
2428                         break;
2429                 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2430                         pvt->pci_br0 = pdev;
2431                         break;
2432                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2433                         pvt->pci_ha0 = pdev;
2434                         break;
2435                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2436                         pvt->pci_ta = pdev;
2437                         break;
2438                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2439                         pvt->pci_ras = pdev;
2440                         break;
2441                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2442                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2443                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2444                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2445                 {
2446                         int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
2447                         pvt->pci_tad[id] = pdev;
2448                         saw_chan_mask |= 1 << id;
2449                 }
2450                         break;
2451                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2452                         pvt->pci_ddrio = pdev;
2453                         break;
2454                 default:
2455                         goto error;
2456                 }
2457
2458                 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2459                          pdev->vendor, pdev->device,
2460                          sbridge_dev->bus,
2461                          pdev);
2462         }
2463
2464         /* Check if everything were registered */
2465         if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
2466             !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
2467                 goto enodev;
2468
2469         if (saw_chan_mask != 0x0f)
2470                 goto enodev;
2471         return 0;
2472
2473 enodev:
2474         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2475         return -ENODEV;
2476
2477 error:
2478         sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2479                        PCI_VENDOR_ID_INTEL, pdev->device);
2480         return -EINVAL;
2481 }
2482
2483 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2484                                  struct sbridge_dev *sbridge_dev)
2485 {
2486         struct sbridge_pvt *pvt = mci->pvt_info;
2487         struct pci_dev *pdev;
2488         u8 saw_chan_mask = 0;
2489         int i;
2490
2491         for (i = 0; i < sbridge_dev->n_devs; i++) {
2492                 pdev = sbridge_dev->pdev[i];
2493                 if (!pdev)
2494                         continue;
2495
2496                 switch (pdev->device) {
2497                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2498                         pvt->pci_ha0 = pdev;
2499                         break;
2500                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2501                         pvt->pci_ta = pdev;
2502                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2503                         pvt->pci_ras = pdev;
2504                         break;
2505                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2506                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2507                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2508                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2509                 {
2510                         int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
2511                         pvt->pci_tad[id] = pdev;
2512                         saw_chan_mask |= 1 << id;
2513                 }
2514                         break;
2515                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2516                         pvt->pci_ddrio = pdev;
2517                         break;
2518                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2519                         pvt->pci_ddrio = pdev;
2520                         break;
2521                 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2522                         pvt->pci_sad0 = pdev;
2523                         break;
2524                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2525                         pvt->pci_br0 = pdev;
2526                         break;
2527                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2528                         pvt->pci_br1 = pdev;
2529                         break;
2530                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2531                         pvt->pci_ha1 = pdev;
2532                         break;
2533                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2534                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2535                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2536                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2537                 {
2538                         int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 4;
2539                         pvt->pci_tad[id] = pdev;
2540                         saw_chan_mask |= 1 << id;
2541                 }
2542                         break;
2543                 default:
2544                         goto error;
2545                 }
2546
2547                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2548                          sbridge_dev->bus,
2549                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2550                          pdev);
2551         }
2552
2553         /* Check if everything were registered */
2554         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
2555             !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
2556             !pvt->pci_ta)
2557                 goto enodev;
2558
2559         if (saw_chan_mask != 0x0f && /* -EN */
2560             saw_chan_mask != 0x33 && /* -EP */
2561             saw_chan_mask != 0xff)   /* -EX */
2562                 goto enodev;
2563         return 0;
2564
2565 enodev:
2566         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2567         return -ENODEV;
2568
2569 error:
2570         sbridge_printk(KERN_ERR,
2571                        "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2572                         pdev->device);
2573         return -EINVAL;
2574 }
2575
2576 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2577                                  struct sbridge_dev *sbridge_dev)
2578 {
2579         struct sbridge_pvt *pvt = mci->pvt_info;
2580         struct pci_dev *pdev;
2581         u8 saw_chan_mask = 0;
2582         int i;
2583
2584         /* there's only one device per system; not tied to any bus */
2585         if (pvt->info.pci_vtd == NULL)
2586                 /* result will be checked later */
2587                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2588                                                    PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2589                                                    NULL);
2590
2591         for (i = 0; i < sbridge_dev->n_devs; i++) {
2592                 pdev = sbridge_dev->pdev[i];
2593                 if (!pdev)
2594                         continue;
2595
2596                 switch (pdev->device) {
2597                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2598                         pvt->pci_sad0 = pdev;
2599                         break;
2600                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2601                         pvt->pci_sad1 = pdev;
2602                         break;
2603                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2604                         pvt->pci_ha0 = pdev;
2605                         break;
2606                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2607                         pvt->pci_ta = pdev;
2608                         break;
2609                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
2610                         pvt->pci_ras = pdev;
2611                         break;
2612                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2613                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2614                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2615                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2616                 {
2617                         int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0;
2618
2619                         pvt->pci_tad[id] = pdev;
2620                         saw_chan_mask |= 1 << id;
2621                 }
2622                         break;
2623                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2624                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2625                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2626                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2627                 {
2628                         int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 + 4;
2629
2630                         pvt->pci_tad[id] = pdev;
2631                         saw_chan_mask |= 1 << id;
2632                 }
2633                         break;
2634                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2635                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2636                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2637                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2638                         if (!pvt->pci_ddrio)
2639                                 pvt->pci_ddrio = pdev;
2640                         break;
2641                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2642                         pvt->pci_ha1 = pdev;
2643                         break;
2644                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2645                         pvt->pci_ha1_ta = pdev;
2646                         break;
2647                 default:
2648                         break;
2649                 }
2650
2651                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2652                          sbridge_dev->bus,
2653                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2654                          pdev);
2655         }
2656
2657         /* Check if everything were registered */
2658         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2659             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2660                 goto enodev;
2661
2662         if (saw_chan_mask != 0x0f && /* -EN */
2663             saw_chan_mask != 0x33 && /* -EP */
2664             saw_chan_mask != 0xff)   /* -EX */
2665                 goto enodev;
2666         return 0;
2667
2668 enodev:
2669         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2670         return -ENODEV;
2671 }
2672
2673 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2674                                  struct sbridge_dev *sbridge_dev)
2675 {
2676         struct sbridge_pvt *pvt = mci->pvt_info;
2677         struct pci_dev *pdev;
2678         u8 saw_chan_mask = 0;
2679         int i;
2680
2681         /* there's only one device per system; not tied to any bus */
2682         if (pvt->info.pci_vtd == NULL)
2683                 /* result will be checked later */
2684                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2685                                                    PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2686                                                    NULL);
2687
2688         for (i = 0; i < sbridge_dev->n_devs; i++) {
2689                 pdev = sbridge_dev->pdev[i];
2690                 if (!pdev)
2691                         continue;
2692
2693                 switch (pdev->device) {
2694                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2695                         pvt->pci_sad0 = pdev;
2696                         break;
2697                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2698                         pvt->pci_sad1 = pdev;
2699                         break;
2700                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2701                         pvt->pci_ha0 = pdev;
2702                         break;
2703                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2704                         pvt->pci_ta = pdev;
2705                         break;
2706                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
2707                         pvt->pci_ras = pdev;
2708                         break;
2709                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2710                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2711                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2712                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2713                 {
2714                         int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0;
2715                         pvt->pci_tad[id] = pdev;
2716                         saw_chan_mask |= 1 << id;
2717                 }
2718                         break;
2719                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2720                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2721                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2722                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2723                 {
2724                         int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 + 4;
2725                         pvt->pci_tad[id] = pdev;
2726                         saw_chan_mask |= 1 << id;
2727                 }
2728                         break;
2729                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2730                         pvt->pci_ddrio = pdev;
2731                         break;
2732                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2733                         pvt->pci_ha1 = pdev;
2734                         break;
2735                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2736                         pvt->pci_ha1_ta = pdev;
2737                         break;
2738                 default:
2739                         break;
2740                 }
2741
2742                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2743                          sbridge_dev->bus,
2744                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2745                          pdev);
2746         }
2747
2748         /* Check if everything were registered */
2749         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2750             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2751                 goto enodev;
2752
2753         if (saw_chan_mask != 0x0f && /* -EN */
2754             saw_chan_mask != 0x33 && /* -EP */
2755             saw_chan_mask != 0xff)   /* -EX */
2756                 goto enodev;
2757         return 0;
2758
2759 enodev:
2760         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2761         return -ENODEV;
2762 }
2763
2764 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2765                         struct sbridge_dev *sbridge_dev)
2766 {
2767         struct sbridge_pvt *pvt = mci->pvt_info;
2768         struct pci_dev *pdev;
2769         int dev, func;
2770
2771         int i;
2772         int devidx;
2773
2774         for (i = 0; i < sbridge_dev->n_devs; i++) {
2775                 pdev = sbridge_dev->pdev[i];
2776                 if (!pdev)
2777                         continue;
2778
2779                 /* Extract PCI device and function. */
2780                 dev = (pdev->devfn >> 3) & 0x1f;
2781                 func = pdev->devfn & 0x7;
2782
2783                 switch (pdev->device) {
2784                 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2785                         if (dev == 8)
2786                                 pvt->knl.pci_mc0 = pdev;
2787                         else if (dev == 9)
2788                                 pvt->knl.pci_mc1 = pdev;
2789                         else {
2790                                 sbridge_printk(KERN_ERR,
2791                                         "Memory controller in unexpected place! (dev %d, fn %d)\n",
2792                                         dev, func);
2793                                 continue;
2794                         }
2795                         break;
2796
2797                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2798                         pvt->pci_sad0 = pdev;
2799                         break;
2800
2801                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2802                         pvt->pci_sad1 = pdev;
2803                         break;
2804
2805                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2806                         /* There are one of these per tile, and range from
2807                          * 1.14.0 to 1.18.5.
2808                          */
2809                         devidx = ((dev-14)*8)+func;
2810
2811                         if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2812                                 sbridge_printk(KERN_ERR,
2813                                         "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2814                                         dev, func);
2815                                 continue;
2816                         }
2817
2818                         WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2819
2820                         pvt->knl.pci_cha[devidx] = pdev;
2821                         break;
2822
2823                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL:
2824                         devidx = -1;
2825
2826                         /*
2827                          *  MC0 channels 0-2 are device 9 function 2-4,
2828                          *  MC1 channels 3-5 are device 8 function 2-4.
2829                          */
2830
2831                         if (dev == 9)
2832                                 devidx = func-2;
2833                         else if (dev == 8)
2834                                 devidx = 3 + (func-2);
2835
2836                         if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2837                                 sbridge_printk(KERN_ERR,
2838                                         "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2839                                         dev, func);
2840                                 continue;
2841                         }
2842
2843                         WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2844                         pvt->knl.pci_channel[devidx] = pdev;
2845                         break;
2846
2847                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2848                         pvt->knl.pci_mc_info = pdev;
2849                         break;
2850
2851                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2852                         pvt->pci_ta = pdev;
2853                         break;
2854
2855                 default:
2856                         sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2857                                 pdev->device);
2858                         break;
2859                 }
2860         }
2861
2862         if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2863             !pvt->pci_sad0     || !pvt->pci_sad1    ||
2864             !pvt->pci_ta) {
2865                 goto enodev;
2866         }
2867
2868         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2869                 if (!pvt->knl.pci_channel[i]) {
2870                         sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2871                         goto enodev;
2872                 }
2873         }
2874
2875         for (i = 0; i < KNL_MAX_CHAS; i++) {
2876                 if (!pvt->knl.pci_cha[i]) {
2877                         sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2878                         goto enodev;
2879                 }
2880         }
2881
2882         return 0;
2883
2884 enodev:
2885         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2886         return -ENODEV;
2887 }
2888
2889 /****************************************************************************
2890                         Error check routines
2891  ****************************************************************************/
2892
2893 /*
2894  * While Sandy Bridge has error count registers, SMI BIOS read values from
2895  * and resets the counters. So, they are not reliable for the OS to read
2896  * from them. So, we have no option but to just trust on whatever MCE is
2897  * telling us about the errors.
2898  */
2899 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2900                                     const struct mce *m)
2901 {
2902         struct mem_ctl_info *new_mci;
2903         struct sbridge_pvt *pvt = mci->pvt_info;
2904         enum hw_event_mc_err_type tp_event;
2905         char *type, *optype, msg[256];
2906         bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2907         bool overflow = GET_BITFIELD(m->status, 62, 62);
2908         bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2909         bool recoverable;
2910         u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2911         u32 mscod = GET_BITFIELD(m->status, 16, 31);
2912         u32 errcode = GET_BITFIELD(m->status, 0, 15);
2913         u32 channel = GET_BITFIELD(m->status, 0, 3);
2914         u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2915         long channel_mask, first_channel;
2916         u8  rank, socket, ha;
2917         int rc, dimm;
2918         char *area_type = NULL;
2919
2920         if (pvt->info.type != SANDY_BRIDGE)
2921                 recoverable = true;
2922         else
2923                 recoverable = GET_BITFIELD(m->status, 56, 56);
2924
2925         if (uncorrected_error) {
2926                 if (ripv) {
2927                         type = "FATAL";
2928                         tp_event = HW_EVENT_ERR_FATAL;
2929                 } else {
2930                         type = "NON_FATAL";
2931                         tp_event = HW_EVENT_ERR_UNCORRECTED;
2932                 }
2933         } else {
2934                 type = "CORRECTED";
2935                 tp_event = HW_EVENT_ERR_CORRECTED;
2936         }
2937
2938         /*
2939          * According with Table 15-9 of the Intel Architecture spec vol 3A,
2940          * memory errors should fit in this mask:
2941          *      000f 0000 1mmm cccc (binary)
2942          * where:
2943          *      f = Correction Report Filtering Bit. If 1, subsequent errors
2944          *          won't be shown
2945          *      mmm = error type
2946          *      cccc = channel
2947          * If the mask doesn't match, report an error to the parsing logic
2948          */
2949         if (! ((errcode & 0xef80) == 0x80)) {
2950                 optype = "Can't parse: it is not a mem";
2951         } else {
2952                 switch (optypenum) {
2953                 case 0:
2954                         optype = "generic undef request error";
2955                         break;
2956                 case 1:
2957                         optype = "memory read error";
2958                         break;
2959                 case 2:
2960                         optype = "memory write error";
2961                         break;
2962                 case 3:
2963                         optype = "addr/cmd error";
2964                         break;
2965                 case 4:
2966                         optype = "memory scrubbing error";
2967                         break;
2968                 default:
2969                         optype = "reserved";
2970                         break;
2971                 }
2972         }
2973
2974         /* Only decode errors with an valid address (ADDRV) */
2975         if (!GET_BITFIELD(m->status, 58, 58))
2976                 return;
2977
2978         if (pvt->info.type == KNIGHTS_LANDING) {
2979                 if (channel == 14) {
2980                         edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2981                                 overflow ? " OVERFLOW" : "",
2982                                 (uncorrected_error && recoverable)
2983                                 ? " recoverable" : "",
2984                                 mscod, errcode,
2985                                 m->bank);
2986                 } else {
2987                         char A = *("A");
2988
2989                         channel = knl_channel_remap(channel);
2990                         channel_mask = 1 << channel;
2991                         snprintf(msg, sizeof(msg),
2992                                 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
2993                                 overflow ? " OVERFLOW" : "",
2994                                 (uncorrected_error && recoverable)
2995                                 ? " recoverable" : " ",
2996                                 mscod, errcode, channel, A + channel);
2997                         edac_mc_handle_error(tp_event, mci, core_err_cnt,
2998                                 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2999                                 channel, 0, -1,
3000                                 optype, msg);
3001                 }
3002                 return;
3003         } else {
3004                 rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3005                                 &channel_mask, &rank, &area_type, msg);
3006         }
3007
3008         if (rc < 0)
3009                 goto err_parsing;
3010         new_mci = get_mci_for_node_id(socket);
3011         if (!new_mci) {
3012                 strcpy(msg, "Error: socket got corrupted!");
3013                 goto err_parsing;
3014         }
3015         mci = new_mci;
3016         pvt = mci->pvt_info;
3017
3018         first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3019
3020         if (rank < 4)
3021                 dimm = 0;
3022         else if (rank < 8)
3023                 dimm = 1;
3024         else
3025                 dimm = 2;
3026
3027
3028         /*
3029          * FIXME: On some memory configurations (mirror, lockstep), the
3030          * Memory Controller can't point the error to a single DIMM. The
3031          * EDAC core should be handling the channel mask, in order to point
3032          * to the group of dimm's where the error may be happening.
3033          */
3034         if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
3035                 channel = first_channel;
3036
3037         snprintf(msg, sizeof(msg),
3038                  "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3039                  overflow ? " OVERFLOW" : "",
3040                  (uncorrected_error && recoverable) ? " recoverable" : "",
3041                  area_type,
3042                  mscod, errcode,
3043                  socket, ha,
3044                  channel_mask,
3045                  rank);
3046
3047         edac_dbg(0, "%s\n", msg);
3048
3049         /* FIXME: need support for channel mask */
3050
3051         if (channel == CHANNEL_UNSPECIFIED)
3052                 channel = -1;
3053
3054         /* Call the helper to output message */
3055         edac_mc_handle_error(tp_event, mci, core_err_cnt,
3056                              m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3057                              4*ha+channel, dimm, -1,
3058                              optype, msg);
3059         return;
3060 err_parsing:
3061         edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3062                              -1, -1, -1,
3063                              msg, "");
3064
3065 }
3066
3067 /*
3068  * Check that logging is enabled and that this is the right type
3069  * of error for us to handle.
3070  */
3071 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3072                                    void *data)
3073 {
3074         struct mce *mce = (struct mce *)data;
3075         struct mem_ctl_info *mci;
3076         struct sbridge_pvt *pvt;
3077         char *type;
3078
3079         if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3080                 return NOTIFY_DONE;
3081
3082         mci = get_mci_for_node_id(mce->socketid);
3083         if (!mci)
3084                 return NOTIFY_BAD;
3085         pvt = mci->pvt_info;
3086
3087         /*
3088          * Just let mcelog handle it if the error is
3089          * outside the memory controller. A memory error
3090          * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3091          * bit 12 has an special meaning.
3092          */
3093         if ((mce->status & 0xefff) >> 7 != 1)
3094                 return NOTIFY_DONE;
3095
3096         if (mce->mcgstatus & MCG_STATUS_MCIP)
3097                 type = "Exception";
3098         else
3099                 type = "Event";
3100
3101         sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3102
3103         sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3104                           "Bank %d: %016Lx\n", mce->extcpu, type,
3105                           mce->mcgstatus, mce->bank, mce->status);
3106         sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3107         sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3108         sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3109
3110         sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3111                           "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3112                           mce->time, mce->socketid, mce->apicid);
3113
3114         sbridge_mce_output_error(mci, mce);
3115
3116         /* Advice mcelog that the error were handled */
3117         return NOTIFY_STOP;
3118 }
3119
3120 static struct notifier_block sbridge_mce_dec = {
3121         .notifier_call      = sbridge_mce_check_error,
3122 };
3123
3124 /****************************************************************************
3125                         EDAC register/unregister logic
3126  ****************************************************************************/
3127
3128 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3129 {
3130         struct mem_ctl_info *mci = sbridge_dev->mci;
3131         struct sbridge_pvt *pvt;
3132
3133         if (unlikely(!mci || !mci->pvt_info)) {
3134                 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3135
3136                 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3137                 return;
3138         }
3139
3140         pvt = mci->pvt_info;
3141
3142         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3143                  mci, &sbridge_dev->pdev[0]->dev);
3144
3145         /* Remove MC sysfs nodes */
3146         edac_mc_del_mc(mci->pdev);
3147
3148         edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3149         kfree(mci->ctl_name);
3150         edac_mc_free(mci);
3151         sbridge_dev->mci = NULL;
3152 }
3153
3154 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3155 {
3156         struct mem_ctl_info *mci;
3157         struct edac_mc_layer layers[2];
3158         struct sbridge_pvt *pvt;
3159         struct pci_dev *pdev = sbridge_dev->pdev[0];
3160         int rc;
3161
3162         /* Check the number of active and not disabled channels */
3163         rc = check_if_ecc_is_active(sbridge_dev->bus, type);
3164         if (unlikely(rc < 0))
3165                 return rc;
3166
3167         /* allocate a new MC control structure */
3168         layers[0].type = EDAC_MC_LAYER_CHANNEL;
3169         layers[0].size = type == KNIGHTS_LANDING ?
3170                 KNL_MAX_CHANNELS : NUM_CHANNELS;
3171         layers[0].is_virt_csrow = false;
3172         layers[1].type = EDAC_MC_LAYER_SLOT;
3173         layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3174         layers[1].is_virt_csrow = true;
3175         mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3176                             sizeof(*pvt));
3177
3178         if (unlikely(!mci))
3179                 return -ENOMEM;
3180
3181         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3182                  mci, &pdev->dev);
3183
3184         pvt = mci->pvt_info;
3185         memset(pvt, 0, sizeof(*pvt));
3186
3187         /* Associate sbridge_dev and mci for future usage */
3188         pvt->sbridge_dev = sbridge_dev;
3189         sbridge_dev->mci = mci;
3190
3191         mci->mtype_cap = type == KNIGHTS_LANDING ?
3192                 MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3193         mci->edac_ctl_cap = EDAC_FLAG_NONE;
3194         mci->edac_cap = EDAC_FLAG_NONE;
3195         mci->mod_name = "sbridge_edac.c";
3196         mci->mod_ver = SBRIDGE_REVISION;
3197         mci->dev_name = pci_name(pdev);
3198         mci->ctl_page_to_phys = NULL;
3199
3200         pvt->info.type = type;
3201         switch (type) {
3202         case IVY_BRIDGE:
3203                 pvt->info.rankcfgr = IB_RANK_CFG_A;
3204                 pvt->info.get_tolm = ibridge_get_tolm;
3205                 pvt->info.get_tohm = ibridge_get_tohm;
3206                 pvt->info.dram_rule = ibridge_dram_rule;
3207                 pvt->info.get_memory_type = get_memory_type;
3208                 pvt->info.get_node_id = get_node_id;
3209                 pvt->info.rir_limit = rir_limit;
3210                 pvt->info.sad_limit = sad_limit;
3211                 pvt->info.interleave_mode = interleave_mode;
3212                 pvt->info.show_interleave_mode = show_interleave_mode;
3213                 pvt->info.dram_attr = dram_attr;
3214                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3215                 pvt->info.interleave_list = ibridge_interleave_list;
3216                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3217                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3218                 pvt->info.get_width = ibridge_get_width;
3219                 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
3220
3221                 /* Store pci devices at mci for faster access */
3222                 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3223                 if (unlikely(rc < 0))
3224                         goto fail0;
3225                 break;
3226         case SANDY_BRIDGE:
3227                 pvt->info.rankcfgr = SB_RANK_CFG_A;
3228                 pvt->info.get_tolm = sbridge_get_tolm;
3229                 pvt->info.get_tohm = sbridge_get_tohm;
3230                 pvt->info.dram_rule = sbridge_dram_rule;
3231                 pvt->info.get_memory_type = get_memory_type;
3232                 pvt->info.get_node_id = get_node_id;
3233                 pvt->info.rir_limit = rir_limit;
3234                 pvt->info.sad_limit = sad_limit;
3235                 pvt->info.interleave_mode = interleave_mode;
3236                 pvt->info.show_interleave_mode = show_interleave_mode;
3237                 pvt->info.dram_attr = dram_attr;
3238                 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3239                 pvt->info.interleave_list = sbridge_interleave_list;
3240                 pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
3241                 pvt->info.interleave_pkg = sbridge_interleave_pkg;
3242                 pvt->info.get_width = sbridge_get_width;
3243                 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
3244
3245                 /* Store pci devices at mci for faster access */
3246                 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3247                 if (unlikely(rc < 0))
3248                         goto fail0;
3249                 break;
3250         case HASWELL:
3251                 /* rankcfgr isn't used */
3252                 pvt->info.get_tolm = haswell_get_tolm;
3253                 pvt->info.get_tohm = haswell_get_tohm;
3254                 pvt->info.dram_rule = ibridge_dram_rule;
3255                 pvt->info.get_memory_type = haswell_get_memory_type;
3256                 pvt->info.get_node_id = haswell_get_node_id;
3257                 pvt->info.rir_limit = haswell_rir_limit;
3258                 pvt->info.sad_limit = sad_limit;
3259                 pvt->info.interleave_mode = interleave_mode;
3260                 pvt->info.show_interleave_mode = show_interleave_mode;
3261                 pvt->info.dram_attr = dram_attr;
3262                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3263                 pvt->info.interleave_list = ibridge_interleave_list;
3264                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3265                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3266                 pvt->info.get_width = ibridge_get_width;
3267                 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
3268
3269                 /* Store pci devices at mci for faster access */
3270                 rc = haswell_mci_bind_devs(mci, sbridge_dev);
3271                 if (unlikely(rc < 0))
3272                         goto fail0;
3273                 break;
3274         case BROADWELL:
3275                 /* rankcfgr isn't used */
3276                 pvt->info.get_tolm = haswell_get_tolm;
3277                 pvt->info.get_tohm = haswell_get_tohm;
3278                 pvt->info.dram_rule = ibridge_dram_rule;
3279                 pvt->info.get_memory_type = haswell_get_memory_type;
3280                 pvt->info.get_node_id = haswell_get_node_id;
3281                 pvt->info.rir_limit = haswell_rir_limit;
3282                 pvt->info.sad_limit = sad_limit;
3283                 pvt->info.interleave_mode = interleave_mode;
3284                 pvt->info.show_interleave_mode = show_interleave_mode;
3285                 pvt->info.dram_attr = dram_attr;
3286                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3287                 pvt->info.interleave_list = ibridge_interleave_list;
3288                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3289                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3290                 pvt->info.get_width = broadwell_get_width;
3291                 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
3292
3293                 /* Store pci devices at mci for faster access */
3294                 rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3295                 if (unlikely(rc < 0))
3296                         goto fail0;
3297                 break;
3298         case KNIGHTS_LANDING:
3299                 /* pvt->info.rankcfgr == ??? */
3300                 pvt->info.get_tolm = knl_get_tolm;
3301                 pvt->info.get_tohm = knl_get_tohm;
3302                 pvt->info.dram_rule = knl_dram_rule;
3303                 pvt->info.get_memory_type = knl_get_memory_type;
3304                 pvt->info.get_node_id = knl_get_node_id;
3305                 pvt->info.rir_limit = NULL;
3306                 pvt->info.sad_limit = knl_sad_limit;
3307                 pvt->info.interleave_mode = knl_interleave_mode;
3308                 pvt->info.show_interleave_mode = knl_show_interleave_mode;
3309                 pvt->info.dram_attr = dram_attr_knl;
3310                 pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3311                 pvt->info.interleave_list = knl_interleave_list;
3312                 pvt->info.max_interleave = ARRAY_SIZE(knl_interleave_list);
3313                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3314                 pvt->info.get_width = knl_get_width;
3315                 mci->ctl_name = kasprintf(GFP_KERNEL,
3316                         "Knights Landing Socket#%d", mci->mc_idx);
3317
3318                 rc = knl_mci_bind_devs(mci, sbridge_dev);
3319                 if (unlikely(rc < 0))
3320                         goto fail0;
3321                 break;
3322         }
3323
3324         /* Get dimm basic config and the memory layout */
3325         get_dimm_config(mci);
3326         get_memory_layout(mci);
3327
3328         /* record ptr to the generic device */
3329         mci->pdev = &pdev->dev;
3330
3331         /* add this new MC control structure to EDAC's list of MCs */
3332         if (unlikely(edac_mc_add_mc(mci))) {
3333                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3334                 rc = -EINVAL;
3335                 goto fail0;
3336         }
3337
3338         return 0;
3339
3340 fail0:
3341         kfree(mci->ctl_name);
3342         edac_mc_free(mci);
3343         sbridge_dev->mci = NULL;
3344         return rc;
3345 }
3346
3347 /*
3348  *      sbridge_probe   Probe for ONE instance of device to see if it is
3349  *                      present.
3350  *      return:
3351  *              0 for FOUND a device
3352  *              < 0 for error code
3353  */
3354
3355 static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3356 {
3357         int rc = -ENODEV;
3358         u8 mc, num_mc = 0;
3359         struct sbridge_dev *sbridge_dev;
3360         enum type type = SANDY_BRIDGE;
3361
3362         /* get the pci devices we want to reserve for our use */
3363         mutex_lock(&sbridge_edac_lock);
3364
3365         /*
3366          * All memory controllers are allocated at the first pass.
3367          */
3368         if (unlikely(probed >= 1)) {
3369                 mutex_unlock(&sbridge_edac_lock);
3370                 return -ENODEV;
3371         }
3372         probed++;
3373
3374         switch (pdev->device) {
3375         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
3376                 rc = sbridge_get_all_devices(&num_mc,
3377                                         pci_dev_descr_ibridge_table);
3378                 type = IVY_BRIDGE;
3379                 break;
3380         case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
3381                 rc = sbridge_get_all_devices(&num_mc,
3382                                         pci_dev_descr_sbridge_table);
3383                 type = SANDY_BRIDGE;
3384                 break;
3385         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
3386                 rc = sbridge_get_all_devices(&num_mc,
3387                                         pci_dev_descr_haswell_table);
3388                 type = HASWELL;
3389                 break;
3390         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
3391                 rc = sbridge_get_all_devices(&num_mc,
3392                                         pci_dev_descr_broadwell_table);
3393                 type = BROADWELL;
3394             break;
3395         case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
3396                 rc = sbridge_get_all_devices_knl(&num_mc,
3397                                         pci_dev_descr_knl_table);
3398                 type = KNIGHTS_LANDING;
3399                 break;
3400         }
3401         if (unlikely(rc < 0)) {
3402                 edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device);
3403                 goto fail0;
3404         }
3405
3406         mc = 0;
3407
3408         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3409                 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3410                          mc, mc + 1, num_mc);
3411
3412                 sbridge_dev->mc = mc++;
3413                 rc = sbridge_register_mci(sbridge_dev, type);
3414                 if (unlikely(rc < 0))
3415                         goto fail1;
3416         }
3417
3418         sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3419
3420         mutex_unlock(&sbridge_edac_lock);
3421         return 0;
3422
3423 fail1:
3424         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3425                 sbridge_unregister_mci(sbridge_dev);
3426
3427         sbridge_put_all_devices();
3428 fail0:
3429         mutex_unlock(&sbridge_edac_lock);
3430         return rc;
3431 }
3432
3433 /*
3434  *      sbridge_remove  destructor for one instance of device
3435  *
3436  */
3437 static void sbridge_remove(struct pci_dev *pdev)
3438 {
3439         struct sbridge_dev *sbridge_dev;
3440
3441         edac_dbg(0, "\n");
3442
3443         /*
3444          * we have a trouble here: pdev value for removal will be wrong, since
3445          * it will point to the X58 register used to detect that the machine
3446          * is a Nehalem or upper design. However, due to the way several PCI
3447          * devices are grouped together to provide MC functionality, we need
3448          * to use a different method for releasing the devices
3449          */
3450
3451         mutex_lock(&sbridge_edac_lock);
3452
3453         if (unlikely(!probed)) {
3454                 mutex_unlock(&sbridge_edac_lock);
3455                 return;
3456         }
3457
3458         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3459                 sbridge_unregister_mci(sbridge_dev);
3460
3461         /* Release PCI resources */
3462         sbridge_put_all_devices();
3463
3464         probed--;
3465
3466         mutex_unlock(&sbridge_edac_lock);
3467 }
3468
3469 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
3470
3471 /*
3472  *      sbridge_driver  pci_driver structure for this module
3473  *
3474  */
3475 static struct pci_driver sbridge_driver = {
3476         .name     = "sbridge_edac",
3477         .probe    = sbridge_probe,
3478         .remove   = sbridge_remove,
3479         .id_table = sbridge_pci_tbl,
3480 };
3481
3482 /*
3483  *      sbridge_init            Module entry function
3484  *                      Try to initialize this module for its devices
3485  */
3486 static int __init sbridge_init(void)
3487 {
3488         int pci_rc;
3489
3490         edac_dbg(2, "\n");
3491
3492         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3493         opstate_init();
3494
3495         pci_rc = pci_register_driver(&sbridge_driver);
3496         if (pci_rc >= 0) {
3497                 mce_register_decode_chain(&sbridge_mce_dec);
3498                 if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3499                         sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3500                 return 0;
3501         }
3502
3503         sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3504                       pci_rc);
3505
3506         return pci_rc;
3507 }
3508
3509 /*
3510  *      sbridge_exit()  Module exit function
3511  *                      Unregister the driver
3512  */
3513 static void __exit sbridge_exit(void)
3514 {
3515         edac_dbg(2, "\n");
3516         pci_unregister_driver(&sbridge_driver);
3517         mce_unregister_decode_chain(&sbridge_mce_dec);
3518 }
3519
3520 module_init(sbridge_init);
3521 module_exit(sbridge_exit);
3522
3523 module_param(edac_op_state, int, 0444);
3524 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3525
3526 MODULE_LICENSE("GPL");
3527 MODULE_AUTHOR("Mauro Carvalho Chehab");
3528 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3529 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3530                    SBRIDGE_REVISION);