KVM: arm/arm64: Stop leaking vcpu pid references
[cascardo/linux.git] / drivers / edac / sb_edac.c
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *       Mauro Carvalho Chehab
11  */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <linux/mod_devicetable.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/processor.h>
27 #include <asm/mce.h>
28
29 #include "edac_core.h"
30
31 /* Static vars */
32 static LIST_HEAD(sbridge_edac_list);
33
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.1.1 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)                      \
44         edac_printk(level, "sbridge", fmt, ##arg)
45
46 #define sbridge_mc_printk(mci, level, fmt, arg...)              \
47         edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi) \
53         (((v) & GENMASK_ULL(hi, lo)) >> (lo))
54
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule[] = {
57         0x80, 0x88, 0x90, 0x98, 0xa0,
58         0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
59 };
60
61 static const u32 ibridge_dram_rule[] = {
62         0x60, 0x68, 0x70, 0x78, 0x80,
63         0x88, 0x90, 0x98, 0xa0, 0xa8,
64         0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65         0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
66 };
67
68 static const u32 knl_dram_rule[] = {
69         0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
70         0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
71         0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
72         0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
73         0x100, 0x108, 0x110, 0x118,   /* 20-23 */
74 };
75
76 #define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
77 #define A7MODE(reg)             GET_BITFIELD(reg, 26, 26)
78
79 static char *show_dram_attr(u32 attr)
80 {
81         switch (attr) {
82                 case 0:
83                         return "DRAM";
84                 case 1:
85                         return "MMCFG";
86                 case 2:
87                         return "NXM";
88                 default:
89                         return "unknown";
90         }
91 }
92
93 static const u32 sbridge_interleave_list[] = {
94         0x84, 0x8c, 0x94, 0x9c, 0xa4,
95         0xac, 0xb4, 0xbc, 0xc4, 0xcc,
96 };
97
98 static const u32 ibridge_interleave_list[] = {
99         0x64, 0x6c, 0x74, 0x7c, 0x84,
100         0x8c, 0x94, 0x9c, 0xa4, 0xac,
101         0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
102         0xdc, 0xe4, 0xec, 0xf4, 0xfc,
103 };
104
105 static const u32 knl_interleave_list[] = {
106         0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
107         0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
108         0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
109         0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
110         0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
111 };
112
113 struct interleave_pkg {
114         unsigned char start;
115         unsigned char end;
116 };
117
118 static const struct interleave_pkg sbridge_interleave_pkg[] = {
119         { 0, 2 },
120         { 3, 5 },
121         { 8, 10 },
122         { 11, 13 },
123         { 16, 18 },
124         { 19, 21 },
125         { 24, 26 },
126         { 27, 29 },
127 };
128
129 static const struct interleave_pkg ibridge_interleave_pkg[] = {
130         { 0, 3 },
131         { 4, 7 },
132         { 8, 11 },
133         { 12, 15 },
134         { 16, 19 },
135         { 20, 23 },
136         { 24, 27 },
137         { 28, 31 },
138 };
139
140 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
141                           int interleave)
142 {
143         return GET_BITFIELD(reg, table[interleave].start,
144                             table[interleave].end);
145 }
146
147 /* Devices 12 Function 7 */
148
149 #define TOLM            0x80
150 #define TOHM            0x84
151 #define HASWELL_TOLM    0xd0
152 #define HASWELL_TOHM_0  0xd4
153 #define HASWELL_TOHM_1  0xd8
154 #define KNL_TOLM        0xd0
155 #define KNL_TOHM_0      0xd4
156 #define KNL_TOHM_1      0xd8
157
158 #define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
159 #define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
160
161 /* Device 13 Function 6 */
162
163 #define SAD_TARGET      0xf0
164
165 #define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
166
167 #define SOURCE_ID_KNL(reg)      GET_BITFIELD(reg, 12, 14)
168
169 #define SAD_CONTROL     0xf4
170
171 /* Device 14 function 0 */
172
173 static const u32 tad_dram_rule[] = {
174         0x40, 0x44, 0x48, 0x4c,
175         0x50, 0x54, 0x58, 0x5c,
176         0x60, 0x64, 0x68, 0x6c,
177 };
178 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
179
180 #define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
181 #define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
182 #define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
183 #define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
184 #define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
185 #define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
186 #define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
187
188 /* Device 15, function 0 */
189
190 #define MCMTR                   0x7c
191 #define KNL_MCMTR               0x624
192
193 #define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
194 #define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
195 #define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
196
197 /* Device 15, function 1 */
198
199 #define RASENABLES              0xac
200 #define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
201
202 /* Device 15, functions 2-5 */
203
204 static const int mtr_regs[] = {
205         0x80, 0x84, 0x88,
206 };
207
208 static const int knl_mtr_reg = 0xb60;
209
210 #define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
211 #define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
212 #define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
213 #define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
214 #define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
215
216 static const u32 tad_ch_nilv_offset[] = {
217         0x90, 0x94, 0x98, 0x9c,
218         0xa0, 0xa4, 0xa8, 0xac,
219         0xb0, 0xb4, 0xb8, 0xbc,
220 };
221 #define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
222 #define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
223
224 static const u32 rir_way_limit[] = {
225         0x108, 0x10c, 0x110, 0x114, 0x118,
226 };
227 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
228
229 #define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
230 #define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
231
232 #define MAX_RIR_WAY     8
233
234 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
235         { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
236         { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
237         { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
238         { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
239         { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
240 };
241
242 #define RIR_RNK_TGT(reg)                GET_BITFIELD(reg, 16, 19)
243 #define RIR_OFFSET(reg)         GET_BITFIELD(reg,  2, 14)
244
245 /* Device 16, functions 2-7 */
246
247 /*
248  * FIXME: Implement the error count reads directly
249  */
250
251 static const u32 correrrcnt[] = {
252         0x104, 0x108, 0x10c, 0x110,
253 };
254
255 #define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
256 #define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
257 #define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
258 #define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
259
260 static const u32 correrrthrsld[] = {
261         0x11c, 0x120, 0x124, 0x128,
262 };
263
264 #define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
265 #define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
266
267
268 /* Device 17, function 0 */
269
270 #define SB_RANK_CFG_A           0x0328
271
272 #define IB_RANK_CFG_A           0x0320
273
274 /*
275  * sbridge structs
276  */
277
278 #define NUM_CHANNELS            8       /* 2MC per socket, four chan per MC */
279 #define MAX_DIMMS               3       /* Max DIMMS per channel */
280 #define KNL_MAX_CHAS            38      /* KNL max num. of Cache Home Agents */
281 #define KNL_MAX_CHANNELS        6       /* KNL max num. of PCI channels */
282 #define KNL_MAX_EDCS            8       /* Embedded DRAM controllers */
283 #define CHANNEL_UNSPECIFIED     0xf     /* Intel IA32 SDM 15-14 */
284
285 enum type {
286         SANDY_BRIDGE,
287         IVY_BRIDGE,
288         HASWELL,
289         BROADWELL,
290         KNIGHTS_LANDING,
291 };
292
293 struct sbridge_pvt;
294 struct sbridge_info {
295         enum type       type;
296         u32             mcmtr;
297         u32             rankcfgr;
298         u64             (*get_tolm)(struct sbridge_pvt *pvt);
299         u64             (*get_tohm)(struct sbridge_pvt *pvt);
300         u64             (*rir_limit)(u32 reg);
301         u64             (*sad_limit)(u32 reg);
302         u32             (*interleave_mode)(u32 reg);
303         char*           (*show_interleave_mode)(u32 reg);
304         u32             (*dram_attr)(u32 reg);
305         const u32       *dram_rule;
306         const u32       *interleave_list;
307         const struct interleave_pkg *interleave_pkg;
308         u8              max_sad;
309         u8              max_interleave;
310         u8              (*get_node_id)(struct sbridge_pvt *pvt);
311         enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
312         enum dev_type   (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
313         struct pci_dev  *pci_vtd;
314 };
315
316 struct sbridge_channel {
317         u32             ranks;
318         u32             dimms;
319 };
320
321 struct pci_id_descr {
322         int                     dev_id;
323         int                     optional;
324 };
325
326 struct pci_id_table {
327         const struct pci_id_descr       *descr;
328         int                             n_devs;
329 };
330
331 struct sbridge_dev {
332         struct list_head        list;
333         u8                      bus, mc;
334         u8                      node_id, source_id;
335         struct pci_dev          **pdev;
336         int                     n_devs;
337         struct mem_ctl_info     *mci;
338 };
339
340 struct knl_pvt {
341         struct pci_dev          *pci_cha[KNL_MAX_CHAS];
342         struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
343         struct pci_dev          *pci_mc0;
344         struct pci_dev          *pci_mc1;
345         struct pci_dev          *pci_mc0_misc;
346         struct pci_dev          *pci_mc1_misc;
347         struct pci_dev          *pci_mc_info; /* tolm, tohm */
348 };
349
350 struct sbridge_pvt {
351         struct pci_dev          *pci_ta, *pci_ddrio, *pci_ras;
352         struct pci_dev          *pci_sad0, *pci_sad1;
353         struct pci_dev          *pci_ha0, *pci_ha1;
354         struct pci_dev          *pci_br0, *pci_br1;
355         struct pci_dev          *pci_ha1_ta;
356         struct pci_dev          *pci_tad[NUM_CHANNELS];
357
358         struct sbridge_dev      *sbridge_dev;
359
360         struct sbridge_info     info;
361         struct sbridge_channel  channel[NUM_CHANNELS];
362
363         /* Memory type detection */
364         bool                    is_mirrored, is_lockstep, is_close_pg;
365         bool                    is_chan_hash;
366
367         /* Memory description */
368         u64                     tolm, tohm;
369         struct knl_pvt knl;
370 };
371
372 #define PCI_DESCR(device_id, opt)       \
373         .dev_id = (device_id),          \
374         .optional = opt
375
376 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
377                 /* Processor Home Agent */
378         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)     },
379
380                 /* Memory controller */
381         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)      },
382         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)     },
383         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)    },
384         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)    },
385         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)    },
386         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)    },
387         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)   },
388
389                 /* System Address Decoder */
390         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)        },
391         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)        },
392
393                 /* Broadcast Registers */
394         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)          },
395 };
396
397 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
398 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
399         PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
400         {0,}                    /* 0 terminated list. */
401 };
402
403 /* This changes depending if 1HA or 2HA:
404  * 1HA:
405  *      0x0eb8 (17.0) is DDRIO0
406  * 2HA:
407  *      0x0ebc (17.4) is DDRIO0
408  */
409 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
410 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
411
412 /* pci ids */
413 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
414 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
415 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
416 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
417 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
418 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
419 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
420 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
421 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
422 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
423 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
424 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
425 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
426 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
427 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
428 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2        0x0e6c
429 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3        0x0e6d
430
431 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
432                 /* Processor Home Agent */
433         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)             },
434
435                 /* Memory controller */
436         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)          },
437         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)         },
438         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)        },
439         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)        },
440         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)        },
441         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)        },
442
443                 /* System Address Decoder */
444         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)                 },
445
446                 /* Broadcast Registers */
447         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)                 },
448         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)                 },
449
450                 /* Optional, mode 2HA */
451         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)             },
452 #if 0
453         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)  },
454         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1) },
455 #endif
456         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)        },
457         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)        },
458         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1)        },
459         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1)        },
460
461         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)      },
462         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)      },
463 };
464
465 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
466         PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
467         {0,}                    /* 0 terminated list. */
468 };
469
470 /* Haswell support */
471 /* EN processor:
472  *      - 1 IMC
473  *      - 3 DDR3 channels, 2 DPC per channel
474  * EP processor:
475  *      - 1 or 2 IMC
476  *      - 4 DDR4 channels, 3 DPC per channel
477  * EP 4S processor:
478  *      - 2 IMC
479  *      - 4 DDR4 channels, 3 DPC per channel
480  * EX processor:
481  *      - 2 IMC
482  *      - each IMC interfaces with a SMI 2 channel
483  *      - each SMI channel interfaces with a scalable memory buffer
484  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
485  */
486 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
487 #define HASWELL_HASYSDEFEATURE2 0x84
488 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
489 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0     0x2fa0
490 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1     0x2f60
491 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
492 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
493 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
494 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
495 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
496 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
497 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
498 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
499 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
500 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
501 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
502 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
503 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
504 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
505 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
506 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
507 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
508 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
509 static const struct pci_id_descr pci_dev_descr_haswell[] = {
510         /* first item must be the HA */
511         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)             },
512
513         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)        },
514         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)        },
515
516         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)             },
517
518         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)          },
519         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)     },
520         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)        },
521         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)        },
522         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)        },
523         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)        },
524
525         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)          },
526         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1)          },
527         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1)          },
528         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1)          },
529
530         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)          },
531         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)     },
532         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)        },
533         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)        },
534         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)        },
535         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)        },
536 };
537
538 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
539         PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
540         {0,}                    /* 0 terminated list. */
541 };
542
543 /* Knight's Landing Support */
544 /*
545  * KNL's memory channels are swizzled between memory controllers.
546  * MC0 is mapped to CH3,5,6 and MC1 is mapped to CH0,1,2
547  */
548 #define knl_channel_remap(channel) ((channel + 3) % 6)
549
550 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
551 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
552 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
553 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL  0x7843
554 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
555 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
556 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
557 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
558 /* SAD target - 1-29-1 (1 of these) */
559 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
560 /* Caching / Home Agent */
561 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
562 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
563 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
564
565 /*
566  * KNL differs from SB, IB, and Haswell in that it has multiple
567  * instances of the same device with the same device ID, so we handle that
568  * by creating as many copies in the table as we expect to find.
569  * (Like device ID must be grouped together.)
570  */
571
572 static const struct pci_id_descr pci_dev_descr_knl[] = {
573         [0]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0) },
574         [1]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0) },
575         [2 ... 3]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0)},
576         [4 ... 41]  = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0) },
577         [42 ... 47] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL, 0) },
578         [48]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0) },
579         [49]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0) },
580 };
581
582 static const struct pci_id_table pci_dev_descr_knl_table[] = {
583         PCI_ID_TABLE_ENTRY(pci_dev_descr_knl),
584         {0,}
585 };
586
587 /*
588  * Broadwell support
589  *
590  * DE processor:
591  *      - 1 IMC
592  *      - 2 DDR3 channels, 2 DPC per channel
593  * EP processor:
594  *      - 1 or 2 IMC
595  *      - 4 DDR4 channels, 3 DPC per channel
596  * EP 4S processor:
597  *      - 2 IMC
598  *      - 4 DDR4 channels, 3 DPC per channel
599  * EX processor:
600  *      - 2 IMC
601  *      - each IMC interfaces with a SMI 2 channel
602  *      - each SMI channel interfaces with a scalable memory buffer
603  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
604  */
605 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
606 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0   0x6fa0
607 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1   0x6f60
608 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA        0x6fa8
609 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
610 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA        0x6f68
611 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
612 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
613 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
614 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
615 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
616 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
617 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
618 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
619 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
620 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
621 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
622 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
623
624 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
625         /* first item must be the HA */
626         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)           },
627
628         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)      },
629         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)      },
630
631         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1)           },
632
633         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)        },
634         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)   },
635         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)      },
636         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)      },
637         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1)      },
638         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1)      },
639
640         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)        },
641
642         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1)        },
643         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL, 1)   },
644         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1)      },
645         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1)      },
646         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1)      },
647         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1)      },
648 };
649
650 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
651         PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell),
652         {0,}                    /* 0 terminated list. */
653 };
654
655
656 /****************************************************************************
657                         Ancillary status routines
658  ****************************************************************************/
659
660 static inline int numrank(enum type type, u32 mtr)
661 {
662         int ranks = (1 << RANK_CNT_BITS(mtr));
663         int max = 4;
664
665         if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
666                 max = 8;
667
668         if (ranks > max) {
669                 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
670                          ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
671                 return -EINVAL;
672         }
673
674         return ranks;
675 }
676
677 static inline int numrow(u32 mtr)
678 {
679         int rows = (RANK_WIDTH_BITS(mtr) + 12);
680
681         if (rows < 13 || rows > 18) {
682                 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
683                          rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
684                 return -EINVAL;
685         }
686
687         return 1 << rows;
688 }
689
690 static inline int numcol(u32 mtr)
691 {
692         int cols = (COL_WIDTH_BITS(mtr) + 10);
693
694         if (cols > 12) {
695                 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
696                          cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
697                 return -EINVAL;
698         }
699
700         return 1 << cols;
701 }
702
703 static struct sbridge_dev *get_sbridge_dev(u8 bus, int multi_bus)
704 {
705         struct sbridge_dev *sbridge_dev;
706
707         /*
708          * If we have devices scattered across several busses that pertain
709          * to the same memory controller, we'll lump them all together.
710          */
711         if (multi_bus) {
712                 return list_first_entry_or_null(&sbridge_edac_list,
713                                 struct sbridge_dev, list);
714         }
715
716         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
717                 if (sbridge_dev->bus == bus)
718                         return sbridge_dev;
719         }
720
721         return NULL;
722 }
723
724 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
725                                            const struct pci_id_table *table)
726 {
727         struct sbridge_dev *sbridge_dev;
728
729         sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
730         if (!sbridge_dev)
731                 return NULL;
732
733         sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
734                                    GFP_KERNEL);
735         if (!sbridge_dev->pdev) {
736                 kfree(sbridge_dev);
737                 return NULL;
738         }
739
740         sbridge_dev->bus = bus;
741         sbridge_dev->n_devs = table->n_devs;
742         list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
743
744         return sbridge_dev;
745 }
746
747 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
748 {
749         list_del(&sbridge_dev->list);
750         kfree(sbridge_dev->pdev);
751         kfree(sbridge_dev);
752 }
753
754 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
755 {
756         u32 reg;
757
758         /* Address range is 32:28 */
759         pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
760         return GET_TOLM(reg);
761 }
762
763 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
764 {
765         u32 reg;
766
767         pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
768         return GET_TOHM(reg);
769 }
770
771 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
772 {
773         u32 reg;
774
775         pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
776
777         return GET_TOLM(reg);
778 }
779
780 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
781 {
782         u32 reg;
783
784         pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
785
786         return GET_TOHM(reg);
787 }
788
789 static u64 rir_limit(u32 reg)
790 {
791         return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
792 }
793
794 static u64 sad_limit(u32 reg)
795 {
796         return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
797 }
798
799 static u32 interleave_mode(u32 reg)
800 {
801         return GET_BITFIELD(reg, 1, 1);
802 }
803
804 char *show_interleave_mode(u32 reg)
805 {
806         return interleave_mode(reg) ? "8:6" : "[8:6]XOR[18:16]";
807 }
808
809 static u32 dram_attr(u32 reg)
810 {
811         return GET_BITFIELD(reg, 2, 3);
812 }
813
814 static u64 knl_sad_limit(u32 reg)
815 {
816         return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
817 }
818
819 static u32 knl_interleave_mode(u32 reg)
820 {
821         return GET_BITFIELD(reg, 1, 2);
822 }
823
824 static char *knl_show_interleave_mode(u32 reg)
825 {
826         char *s;
827
828         switch (knl_interleave_mode(reg)) {
829         case 0:
830                 s = "use address bits [8:6]";
831                 break;
832         case 1:
833                 s = "use address bits [10:8]";
834                 break;
835         case 2:
836                 s = "use address bits [14:12]";
837                 break;
838         case 3:
839                 s = "use address bits [32:30]";
840                 break;
841         default:
842                 WARN_ON(1);
843                 break;
844         }
845
846         return s;
847 }
848
849 static u32 dram_attr_knl(u32 reg)
850 {
851         return GET_BITFIELD(reg, 3, 4);
852 }
853
854
855 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
856 {
857         u32 reg;
858         enum mem_type mtype;
859
860         if (pvt->pci_ddrio) {
861                 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
862                                       &reg);
863                 if (GET_BITFIELD(reg, 11, 11))
864                         /* FIXME: Can also be LRDIMM */
865                         mtype = MEM_RDDR3;
866                 else
867                         mtype = MEM_DDR3;
868         } else
869                 mtype = MEM_UNKNOWN;
870
871         return mtype;
872 }
873
874 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
875 {
876         u32 reg;
877         bool registered = false;
878         enum mem_type mtype = MEM_UNKNOWN;
879
880         if (!pvt->pci_ddrio)
881                 goto out;
882
883         pci_read_config_dword(pvt->pci_ddrio,
884                               HASWELL_DDRCRCLKCONTROLS, &reg);
885         /* Is_Rdimm */
886         if (GET_BITFIELD(reg, 16, 16))
887                 registered = true;
888
889         pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
890         if (GET_BITFIELD(reg, 14, 14)) {
891                 if (registered)
892                         mtype = MEM_RDDR4;
893                 else
894                         mtype = MEM_DDR4;
895         } else {
896                 if (registered)
897                         mtype = MEM_RDDR3;
898                 else
899                         mtype = MEM_DDR3;
900         }
901
902 out:
903         return mtype;
904 }
905
906 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
907 {
908         /* for KNL value is fixed */
909         return DEV_X16;
910 }
911
912 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
913 {
914         /* there's no way to figure out */
915         return DEV_UNKNOWN;
916 }
917
918 static enum dev_type __ibridge_get_width(u32 mtr)
919 {
920         enum dev_type type;
921
922         switch (mtr) {
923         case 3:
924                 type = DEV_UNKNOWN;
925                 break;
926         case 2:
927                 type = DEV_X16;
928                 break;
929         case 1:
930                 type = DEV_X8;
931                 break;
932         case 0:
933                 type = DEV_X4;
934                 break;
935         }
936
937         return type;
938 }
939
940 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
941 {
942         /*
943          * ddr3_width on the documentation but also valid for DDR4 on
944          * Haswell
945          */
946         return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
947 }
948
949 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
950 {
951         /* ddr3_width on the documentation but also valid for DDR4 */
952         return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
953 }
954
955 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
956 {
957         /* DDR4 RDIMMS and LRDIMMS are supported */
958         return MEM_RDDR4;
959 }
960
961 static u8 get_node_id(struct sbridge_pvt *pvt)
962 {
963         u32 reg;
964         pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
965         return GET_BITFIELD(reg, 0, 2);
966 }
967
968 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
969 {
970         u32 reg;
971
972         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
973         return GET_BITFIELD(reg, 0, 3);
974 }
975
976 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
977 {
978         u32 reg;
979
980         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
981         return GET_BITFIELD(reg, 0, 2);
982 }
983
984
985 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
986 {
987         u32 reg;
988
989         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
990         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
991 }
992
993 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
994 {
995         u64 rc;
996         u32 reg;
997
998         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
999         rc = GET_BITFIELD(reg, 26, 31);
1000         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1001         rc = ((reg << 6) | rc) << 26;
1002
1003         return rc | 0x1ffffff;
1004 }
1005
1006 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1007 {
1008         u32 reg;
1009
1010         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1011         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1012 }
1013
1014 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1015 {
1016         u64 rc;
1017         u32 reg_lo, reg_hi;
1018
1019         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1020         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1021         rc = ((u64)reg_hi << 32) | reg_lo;
1022         return rc | 0x3ffffff;
1023 }
1024
1025
1026 static u64 haswell_rir_limit(u32 reg)
1027 {
1028         return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1029 }
1030
1031 static inline u8 sad_pkg_socket(u8 pkg)
1032 {
1033         /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1034         return ((pkg >> 3) << 2) | (pkg & 0x3);
1035 }
1036
1037 static inline u8 sad_pkg_ha(u8 pkg)
1038 {
1039         return (pkg >> 2) & 0x1;
1040 }
1041
1042 static int haswell_chan_hash(int idx, u64 addr)
1043 {
1044         int i;
1045
1046         /*
1047          * XOR even bits from 12:26 to bit0 of idx,
1048          *     odd bits from 13:27 to bit1
1049          */
1050         for (i = 12; i < 28; i += 2)
1051                 idx ^= (addr >> i) & 3;
1052
1053         return idx;
1054 }
1055
1056 /****************************************************************************
1057                         Memory check routines
1058  ****************************************************************************/
1059 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
1060 {
1061         struct pci_dev *pdev = NULL;
1062
1063         do {
1064                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
1065                 if (pdev && pdev->bus->number == bus)
1066                         break;
1067         } while (pdev);
1068
1069         return pdev;
1070 }
1071
1072 /**
1073  * check_if_ecc_is_active() - Checks if ECC is active
1074  * @bus:        Device bus
1075  * @type:       Memory controller type
1076  * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
1077  *          disabled
1078  */
1079 static int check_if_ecc_is_active(const u8 bus, enum type type)
1080 {
1081         struct pci_dev *pdev = NULL;
1082         u32 mcmtr, id;
1083
1084         switch (type) {
1085         case IVY_BRIDGE:
1086                 id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
1087                 break;
1088         case HASWELL:
1089                 id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
1090                 break;
1091         case SANDY_BRIDGE:
1092                 id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
1093                 break;
1094         case BROADWELL:
1095                 id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
1096                 break;
1097         case KNIGHTS_LANDING:
1098                 /*
1099                  * KNL doesn't group things by bus the same way
1100                  * SB/IB/Haswell does.
1101                  */
1102                 id = PCI_DEVICE_ID_INTEL_KNL_IMC_TA;
1103                 break;
1104         default:
1105                 return -ENODEV;
1106         }
1107
1108         if (type != KNIGHTS_LANDING)
1109                 pdev = get_pdev_same_bus(bus, id);
1110         else
1111                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, 0);
1112
1113         if (!pdev) {
1114                 sbridge_printk(KERN_ERR, "Couldn't find PCI device "
1115                                         "%04x:%04x! on bus %02d\n",
1116                                         PCI_VENDOR_ID_INTEL, id, bus);
1117                 return -ENODEV;
1118         }
1119
1120         pci_read_config_dword(pdev,
1121                         type == KNIGHTS_LANDING ? KNL_MCMTR : MCMTR, &mcmtr);
1122         if (!IS_ECC_ENABLED(mcmtr)) {
1123                 sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
1124                 return -ENODEV;
1125         }
1126         return 0;
1127 }
1128
1129 /* Low bits of TAD limit, and some metadata. */
1130 static const u32 knl_tad_dram_limit_lo[] = {
1131         0x400, 0x500, 0x600, 0x700,
1132         0x800, 0x900, 0xa00, 0xb00,
1133 };
1134
1135 /* Low bits of TAD offset. */
1136 static const u32 knl_tad_dram_offset_lo[] = {
1137         0x404, 0x504, 0x604, 0x704,
1138         0x804, 0x904, 0xa04, 0xb04,
1139 };
1140
1141 /* High 16 bits of TAD limit and offset. */
1142 static const u32 knl_tad_dram_hi[] = {
1143         0x408, 0x508, 0x608, 0x708,
1144         0x808, 0x908, 0xa08, 0xb08,
1145 };
1146
1147 /* Number of ways a tad entry is interleaved. */
1148 static const u32 knl_tad_ways[] = {
1149         8, 6, 4, 3, 2, 1,
1150 };
1151
1152 /*
1153  * Retrieve the n'th Target Address Decode table entry
1154  * from the memory controller's TAD table.
1155  *
1156  * @pvt:        driver private data
1157  * @entry:      which entry you want to retrieve
1158  * @mc:         which memory controller (0 or 1)
1159  * @offset:     output tad range offset
1160  * @limit:      output address of first byte above tad range
1161  * @ways:       output number of interleave ways
1162  *
1163  * The offset value has curious semantics.  It's a sort of running total
1164  * of the sizes of all the memory regions that aren't mapped in this
1165  * tad table.
1166  */
1167 static int knl_get_tad(const struct sbridge_pvt *pvt,
1168                 const int entry,
1169                 const int mc,
1170                 u64 *offset,
1171                 u64 *limit,
1172                 int *ways)
1173 {
1174         u32 reg_limit_lo, reg_offset_lo, reg_hi;
1175         struct pci_dev *pci_mc;
1176         int way_id;
1177
1178         switch (mc) {
1179         case 0:
1180                 pci_mc = pvt->knl.pci_mc0;
1181                 break;
1182         case 1:
1183                 pci_mc = pvt->knl.pci_mc1;
1184                 break;
1185         default:
1186                 WARN_ON(1);
1187                 return -EINVAL;
1188         }
1189
1190         pci_read_config_dword(pci_mc,
1191                         knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1192         pci_read_config_dword(pci_mc,
1193                         knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1194         pci_read_config_dword(pci_mc,
1195                         knl_tad_dram_hi[entry], &reg_hi);
1196
1197         /* Is this TAD entry enabled? */
1198         if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1199                 return -ENODEV;
1200
1201         way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1202
1203         if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1204                 *ways = knl_tad_ways[way_id];
1205         } else {
1206                 *ways = 0;
1207                 sbridge_printk(KERN_ERR,
1208                                 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1209                                 way_id);
1210                 return -ENODEV;
1211         }
1212
1213         /*
1214          * The least significant 6 bits of base and limit are truncated.
1215          * For limit, we fill the missing bits with 1s.
1216          */
1217         *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1218                                 ((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1219         *limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1220                                 ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1221
1222         return 0;
1223 }
1224
1225 /* Determine which memory controller is responsible for a given channel. */
1226 static int knl_channel_mc(int channel)
1227 {
1228         WARN_ON(channel < 0 || channel >= 6);
1229
1230         return channel < 3 ? 1 : 0;
1231 }
1232
1233 /*
1234  * Get the Nth entry from EDC_ROUTE_TABLE register.
1235  * (This is the per-tile mapping of logical interleave targets to
1236  *  physical EDC modules.)
1237  *
1238  * entry 0: 0:2
1239  *       1: 3:5
1240  *       2: 6:8
1241  *       3: 9:11
1242  *       4: 12:14
1243  *       5: 15:17
1244  *       6: 18:20
1245  *       7: 21:23
1246  * reserved: 24:31
1247  */
1248 static u32 knl_get_edc_route(int entry, u32 reg)
1249 {
1250         WARN_ON(entry >= KNL_MAX_EDCS);
1251         return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1252 }
1253
1254 /*
1255  * Get the Nth entry from MC_ROUTE_TABLE register.
1256  * (This is the per-tile mapping of logical interleave targets to
1257  *  physical DRAM channels modules.)
1258  *
1259  * entry 0: mc 0:2   channel 18:19
1260  *       1: mc 3:5   channel 20:21
1261  *       2: mc 6:8   channel 22:23
1262  *       3: mc 9:11  channel 24:25
1263  *       4: mc 12:14 channel 26:27
1264  *       5: mc 15:17 channel 28:29
1265  * reserved: 30:31
1266  *
1267  * Though we have 3 bits to identify the MC, we should only see
1268  * the values 0 or 1.
1269  */
1270
1271 static u32 knl_get_mc_route(int entry, u32 reg)
1272 {
1273         int mc, chan;
1274
1275         WARN_ON(entry >= KNL_MAX_CHANNELS);
1276
1277         mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1278         chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1279
1280         return knl_channel_remap(mc*3 + chan);
1281 }
1282
1283 /*
1284  * Render the EDC_ROUTE register in human-readable form.
1285  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1286  */
1287 static void knl_show_edc_route(u32 reg, char *s)
1288 {
1289         int i;
1290
1291         for (i = 0; i < KNL_MAX_EDCS; i++) {
1292                 s[i*2] = knl_get_edc_route(i, reg) + '0';
1293                 s[i*2+1] = '-';
1294         }
1295
1296         s[KNL_MAX_EDCS*2 - 1] = '\0';
1297 }
1298
1299 /*
1300  * Render the MC_ROUTE register in human-readable form.
1301  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1302  */
1303 static void knl_show_mc_route(u32 reg, char *s)
1304 {
1305         int i;
1306
1307         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1308                 s[i*2] = knl_get_mc_route(i, reg) + '0';
1309                 s[i*2+1] = '-';
1310         }
1311
1312         s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1313 }
1314
1315 #define KNL_EDC_ROUTE 0xb8
1316 #define KNL_MC_ROUTE 0xb4
1317
1318 /* Is this dram rule backed by regular DRAM in flat mode? */
1319 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1320
1321 /* Is this dram rule cached? */
1322 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1323
1324 /* Is this rule backed by edc ? */
1325 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1326
1327 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1328 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1329
1330 /* Is this rule mod3? */
1331 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1332
1333 /*
1334  * Figure out how big our RAM modules are.
1335  *
1336  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1337  * have to figure this out from the SAD rules, interleave lists, route tables,
1338  * and TAD rules.
1339  *
1340  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1341  * inspect the TAD rules to figure out how large the SAD regions really are.
1342  *
1343  * When we know the real size of a SAD region and how many ways it's
1344  * interleaved, we know the individual contribution of each channel to
1345  * TAD is size/ways.
1346  *
1347  * Finally, we have to check whether each channel participates in each SAD
1348  * region.
1349  *
1350  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1351  * much memory the channel uses, we know the DIMM is at least that large.
1352  * (The BIOS might possibly choose not to map all available memory, in which
1353  * case we will underreport the size of the DIMM.)
1354  *
1355  * In theory, we could try to determine the EDC sizes as well, but that would
1356  * only work in flat mode, not in cache mode.
1357  *
1358  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1359  *            elements)
1360  */
1361 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1362 {
1363         u64 sad_base, sad_size, sad_limit = 0;
1364         u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1365         int sad_rule = 0;
1366         int tad_rule = 0;
1367         int intrlv_ways, tad_ways;
1368         u32 first_pkg, pkg;
1369         int i;
1370         u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1371         u32 dram_rule, interleave_reg;
1372         u32 mc_route_reg[KNL_MAX_CHAS];
1373         u32 edc_route_reg[KNL_MAX_CHAS];
1374         int edram_only;
1375         char edc_route_string[KNL_MAX_EDCS*2];
1376         char mc_route_string[KNL_MAX_CHANNELS*2];
1377         int cur_reg_start;
1378         int mc;
1379         int channel;
1380         int way;
1381         int participants[KNL_MAX_CHANNELS];
1382         int participant_count = 0;
1383
1384         for (i = 0; i < KNL_MAX_CHANNELS; i++)
1385                 mc_sizes[i] = 0;
1386
1387         /* Read the EDC route table in each CHA. */
1388         cur_reg_start = 0;
1389         for (i = 0; i < KNL_MAX_CHAS; i++) {
1390                 pci_read_config_dword(pvt->knl.pci_cha[i],
1391                                 KNL_EDC_ROUTE, &edc_route_reg[i]);
1392
1393                 if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1394                         knl_show_edc_route(edc_route_reg[i-1],
1395                                         edc_route_string);
1396                         if (cur_reg_start == i-1)
1397                                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1398                                         cur_reg_start, edc_route_string);
1399                         else
1400                                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1401                                         cur_reg_start, i-1, edc_route_string);
1402                         cur_reg_start = i;
1403                 }
1404         }
1405         knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1406         if (cur_reg_start == i-1)
1407                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1408                         cur_reg_start, edc_route_string);
1409         else
1410                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1411                         cur_reg_start, i-1, edc_route_string);
1412
1413         /* Read the MC route table in each CHA. */
1414         cur_reg_start = 0;
1415         for (i = 0; i < KNL_MAX_CHAS; i++) {
1416                 pci_read_config_dword(pvt->knl.pci_cha[i],
1417                         KNL_MC_ROUTE, &mc_route_reg[i]);
1418
1419                 if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1420                         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1421                         if (cur_reg_start == i-1)
1422                                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1423                                         cur_reg_start, mc_route_string);
1424                         else
1425                                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1426                                         cur_reg_start, i-1, mc_route_string);
1427                         cur_reg_start = i;
1428                 }
1429         }
1430         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1431         if (cur_reg_start == i-1)
1432                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1433                         cur_reg_start, mc_route_string);
1434         else
1435                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1436                         cur_reg_start, i-1, mc_route_string);
1437
1438         /* Process DRAM rules */
1439         for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1440                 /* previous limit becomes the new base */
1441                 sad_base = sad_limit;
1442
1443                 pci_read_config_dword(pvt->pci_sad0,
1444                         pvt->info.dram_rule[sad_rule], &dram_rule);
1445
1446                 if (!DRAM_RULE_ENABLE(dram_rule))
1447                         break;
1448
1449                 edram_only = KNL_EDRAM_ONLY(dram_rule);
1450
1451                 sad_limit = pvt->info.sad_limit(dram_rule)+1;
1452                 sad_size = sad_limit - sad_base;
1453
1454                 pci_read_config_dword(pvt->pci_sad0,
1455                         pvt->info.interleave_list[sad_rule], &interleave_reg);
1456
1457                 /*
1458                  * Find out how many ways this dram rule is interleaved.
1459                  * We stop when we see the first channel again.
1460                  */
1461                 first_pkg = sad_pkg(pvt->info.interleave_pkg,
1462                                                 interleave_reg, 0);
1463                 for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1464                         pkg = sad_pkg(pvt->info.interleave_pkg,
1465                                                 interleave_reg, intrlv_ways);
1466
1467                         if ((pkg & 0x8) == 0) {
1468                                 /*
1469                                  * 0 bit means memory is non-local,
1470                                  * which KNL doesn't support
1471                                  */
1472                                 edac_dbg(0, "Unexpected interleave target %d\n",
1473                                         pkg);
1474                                 return -1;
1475                         }
1476
1477                         if (pkg == first_pkg)
1478                                 break;
1479                 }
1480                 if (KNL_MOD3(dram_rule))
1481                         intrlv_ways *= 3;
1482
1483                 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1484                         sad_rule,
1485                         sad_base,
1486                         sad_limit,
1487                         intrlv_ways,
1488                         edram_only ? ", EDRAM" : "");
1489
1490                 /*
1491                  * Find out how big the SAD region really is by iterating
1492                  * over TAD tables (SAD regions may contain holes).
1493                  * Each memory controller might have a different TAD table, so
1494                  * we have to look at both.
1495                  *
1496                  * Livespace is the memory that's mapped in this TAD table,
1497                  * deadspace is the holes (this could be the MMIO hole, or it
1498                  * could be memory that's mapped by the other TAD table but
1499                  * not this one).
1500                  */
1501                 for (mc = 0; mc < 2; mc++) {
1502                         sad_actual_size[mc] = 0;
1503                         tad_livespace = 0;
1504                         for (tad_rule = 0;
1505                                         tad_rule < ARRAY_SIZE(
1506                                                 knl_tad_dram_limit_lo);
1507                                         tad_rule++) {
1508                                 if (knl_get_tad(pvt,
1509                                                 tad_rule,
1510                                                 mc,
1511                                                 &tad_deadspace,
1512                                                 &tad_limit,
1513                                                 &tad_ways))
1514                                         break;
1515
1516                                 tad_size = (tad_limit+1) -
1517                                         (tad_livespace + tad_deadspace);
1518                                 tad_livespace += tad_size;
1519                                 tad_base = (tad_limit+1) - tad_size;
1520
1521                                 if (tad_base < sad_base) {
1522                                         if (tad_limit > sad_base)
1523                                                 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1524                                 } else if (tad_base < sad_limit) {
1525                                         if (tad_limit+1 > sad_limit) {
1526                                                 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1527                                         } else {
1528                                                 /* TAD region is completely inside SAD region */
1529                                                 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1530                                                         tad_rule, tad_base,
1531                                                         tad_limit, tad_size,
1532                                                         mc);
1533                                                 sad_actual_size[mc] += tad_size;
1534                                         }
1535                                 }
1536                                 tad_base = tad_limit+1;
1537                         }
1538                 }
1539
1540                 for (mc = 0; mc < 2; mc++) {
1541                         edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1542                                 mc, sad_actual_size[mc], sad_actual_size[mc]);
1543                 }
1544
1545                 /* Ignore EDRAM rule */
1546                 if (edram_only)
1547                         continue;
1548
1549                 /* Figure out which channels participate in interleave. */
1550                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1551                         participants[channel] = 0;
1552
1553                 /* For each channel, does at least one CHA have
1554                  * this channel mapped to the given target?
1555                  */
1556                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1557                         for (way = 0; way < intrlv_ways; way++) {
1558                                 int target;
1559                                 int cha;
1560
1561                                 if (KNL_MOD3(dram_rule))
1562                                         target = way;
1563                                 else
1564                                         target = 0x7 & sad_pkg(
1565                                 pvt->info.interleave_pkg, interleave_reg, way);
1566
1567                                 for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1568                                         if (knl_get_mc_route(target,
1569                                                 mc_route_reg[cha]) == channel
1570                                                 && !participants[channel]) {
1571                                                 participant_count++;
1572                                                 participants[channel] = 1;
1573                                                 break;
1574                                         }
1575                                 }
1576                         }
1577                 }
1578
1579                 if (participant_count != intrlv_ways)
1580                         edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
1581                                 participant_count, intrlv_ways);
1582
1583                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1584                         mc = knl_channel_mc(channel);
1585                         if (participants[channel]) {
1586                                 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1587                                         channel,
1588                                         sad_actual_size[mc]/intrlv_ways,
1589                                         sad_rule);
1590                                 mc_sizes[channel] +=
1591                                         sad_actual_size[mc]/intrlv_ways;
1592                         }
1593                 }
1594         }
1595
1596         return 0;
1597 }
1598
1599 static int get_dimm_config(struct mem_ctl_info *mci)
1600 {
1601         struct sbridge_pvt *pvt = mci->pvt_info;
1602         struct dimm_info *dimm;
1603         unsigned i, j, banks, ranks, rows, cols, npages;
1604         u64 size;
1605         u32 reg;
1606         enum edac_type mode;
1607         enum mem_type mtype;
1608         int channels = pvt->info.type == KNIGHTS_LANDING ?
1609                 KNL_MAX_CHANNELS : NUM_CHANNELS;
1610         u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1611
1612         if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1613                 pci_read_config_dword(pvt->pci_ha0, HASWELL_HASYSDEFEATURE2, &reg);
1614                 pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1615         }
1616         if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1617                         pvt->info.type == KNIGHTS_LANDING)
1618                 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1619         else
1620                 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1621
1622         if (pvt->info.type == KNIGHTS_LANDING)
1623                 pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1624         else
1625                 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1626
1627         pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1628         edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1629                  pvt->sbridge_dev->mc,
1630                  pvt->sbridge_dev->node_id,
1631                  pvt->sbridge_dev->source_id);
1632
1633         /* KNL doesn't support mirroring or lockstep,
1634          * and is always closed page
1635          */
1636         if (pvt->info.type == KNIGHTS_LANDING) {
1637                 mode = EDAC_S4ECD4ED;
1638                 pvt->is_mirrored = false;
1639
1640                 if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1641                         return -1;
1642         } else {
1643                 pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
1644                 if (IS_MIRROR_ENABLED(reg)) {
1645                         edac_dbg(0, "Memory mirror is enabled\n");
1646                         pvt->is_mirrored = true;
1647                 } else {
1648                         edac_dbg(0, "Memory mirror is disabled\n");
1649                         pvt->is_mirrored = false;
1650                 }
1651
1652                 pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
1653                 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1654                         edac_dbg(0, "Lockstep is enabled\n");
1655                         mode = EDAC_S8ECD8ED;
1656                         pvt->is_lockstep = true;
1657                 } else {
1658                         edac_dbg(0, "Lockstep is disabled\n");
1659                         mode = EDAC_S4ECD4ED;
1660                         pvt->is_lockstep = false;
1661                 }
1662                 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1663                         edac_dbg(0, "address map is on closed page mode\n");
1664                         pvt->is_close_pg = true;
1665                 } else {
1666                         edac_dbg(0, "address map is on open page mode\n");
1667                         pvt->is_close_pg = false;
1668                 }
1669         }
1670
1671         mtype = pvt->info.get_memory_type(pvt);
1672         if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1673                 edac_dbg(0, "Memory is registered\n");
1674         else if (mtype == MEM_UNKNOWN)
1675                 edac_dbg(0, "Cannot determine memory type\n");
1676         else
1677                 edac_dbg(0, "Memory is unregistered\n");
1678
1679         if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1680                 banks = 16;
1681         else
1682                 banks = 8;
1683
1684         for (i = 0; i < channels; i++) {
1685                 u32 mtr;
1686
1687                 int max_dimms_per_channel;
1688
1689                 if (pvt->info.type == KNIGHTS_LANDING) {
1690                         max_dimms_per_channel = 1;
1691                         if (!pvt->knl.pci_channel[i])
1692                                 continue;
1693                 } else {
1694                         max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1695                         if (!pvt->pci_tad[i])
1696                                 continue;
1697                 }
1698
1699                 for (j = 0; j < max_dimms_per_channel; j++) {
1700                         dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1701                                        i, j, 0);
1702                         if (pvt->info.type == KNIGHTS_LANDING) {
1703                                 pci_read_config_dword(pvt->knl.pci_channel[i],
1704                                         knl_mtr_reg, &mtr);
1705                         } else {
1706                                 pci_read_config_dword(pvt->pci_tad[i],
1707                                         mtr_regs[j], &mtr);
1708                         }
1709                         edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1710                         if (IS_DIMM_PRESENT(mtr)) {
1711                                 pvt->channel[i].dimms++;
1712
1713                                 ranks = numrank(pvt->info.type, mtr);
1714
1715                                 if (pvt->info.type == KNIGHTS_LANDING) {
1716                                         /* For DDR4, this is fixed. */
1717                                         cols = 1 << 10;
1718                                         rows = knl_mc_sizes[i] /
1719                                                 ((u64) cols * ranks * banks * 8);
1720                                 } else {
1721                                         rows = numrow(mtr);
1722                                         cols = numcol(mtr);
1723                                 }
1724
1725                                 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1726                                 npages = MiB_TO_PAGES(size);
1727
1728                                 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1729                                          pvt->sbridge_dev->mc, i/4, i%4, j,
1730                                          size, npages,
1731                                          banks, ranks, rows, cols);
1732
1733                                 dimm->nr_pages = npages;
1734                                 dimm->grain = 32;
1735                                 dimm->dtype = pvt->info.get_width(pvt, mtr);
1736                                 dimm->mtype = mtype;
1737                                 dimm->edac_mode = mode;
1738                                 snprintf(dimm->label, sizeof(dimm->label),
1739                                          "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1740                                          pvt->sbridge_dev->source_id, i/4, i%4, j);
1741                         }
1742                 }
1743         }
1744
1745         return 0;
1746 }
1747
1748 static void get_memory_layout(const struct mem_ctl_info *mci)
1749 {
1750         struct sbridge_pvt *pvt = mci->pvt_info;
1751         int i, j, k, n_sads, n_tads, sad_interl;
1752         u32 reg;
1753         u64 limit, prv = 0;
1754         u64 tmp_mb;
1755         u32 gb, mb;
1756         u32 rir_way;
1757
1758         /*
1759          * Step 1) Get TOLM/TOHM ranges
1760          */
1761
1762         pvt->tolm = pvt->info.get_tolm(pvt);
1763         tmp_mb = (1 + pvt->tolm) >> 20;
1764
1765         gb = div_u64_rem(tmp_mb, 1024, &mb);
1766         edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1767                 gb, (mb*1000)/1024, (u64)pvt->tolm);
1768
1769         /* Address range is already 45:25 */
1770         pvt->tohm = pvt->info.get_tohm(pvt);
1771         tmp_mb = (1 + pvt->tohm) >> 20;
1772
1773         gb = div_u64_rem(tmp_mb, 1024, &mb);
1774         edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1775                 gb, (mb*1000)/1024, (u64)pvt->tohm);
1776
1777         /*
1778          * Step 2) Get SAD range and SAD Interleave list
1779          * TAD registers contain the interleave wayness. However, it
1780          * seems simpler to just discover it indirectly, with the
1781          * algorithm bellow.
1782          */
1783         prv = 0;
1784         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1785                 /* SAD_LIMIT Address range is 45:26 */
1786                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1787                                       &reg);
1788                 limit = pvt->info.sad_limit(reg);
1789
1790                 if (!DRAM_RULE_ENABLE(reg))
1791                         continue;
1792
1793                 if (limit <= prv)
1794                         break;
1795
1796                 tmp_mb = (limit + 1) >> 20;
1797                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1798                 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1799                          n_sads,
1800                          show_dram_attr(pvt->info.dram_attr(reg)),
1801                          gb, (mb*1000)/1024,
1802                          ((u64)tmp_mb) << 20L,
1803                          pvt->info.show_interleave_mode(reg),
1804                          reg);
1805                 prv = limit;
1806
1807                 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1808                                       &reg);
1809                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1810                 for (j = 0; j < 8; j++) {
1811                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1812                         if (j > 0 && sad_interl == pkg)
1813                                 break;
1814
1815                         edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1816                                  n_sads, j, pkg);
1817                 }
1818         }
1819
1820         if (pvt->info.type == KNIGHTS_LANDING)
1821                 return;
1822
1823         /*
1824          * Step 3) Get TAD range
1825          */
1826         prv = 0;
1827         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1828                 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
1829                                       &reg);
1830                 limit = TAD_LIMIT(reg);
1831                 if (limit <= prv)
1832                         break;
1833                 tmp_mb = (limit + 1) >> 20;
1834
1835                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1836                 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1837                          n_tads, gb, (mb*1000)/1024,
1838                          ((u64)tmp_mb) << 20L,
1839                          (u32)(1 << TAD_SOCK(reg)),
1840                          (u32)TAD_CH(reg) + 1,
1841                          (u32)TAD_TGT0(reg),
1842                          (u32)TAD_TGT1(reg),
1843                          (u32)TAD_TGT2(reg),
1844                          (u32)TAD_TGT3(reg),
1845                          reg);
1846                 prv = limit;
1847         }
1848
1849         /*
1850          * Step 4) Get TAD offsets, per each channel
1851          */
1852         for (i = 0; i < NUM_CHANNELS; i++) {
1853                 if (!pvt->channel[i].dimms)
1854                         continue;
1855                 for (j = 0; j < n_tads; j++) {
1856                         pci_read_config_dword(pvt->pci_tad[i],
1857                                               tad_ch_nilv_offset[j],
1858                                               &reg);
1859                         tmp_mb = TAD_OFFSET(reg) >> 20;
1860                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1861                         edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1862                                  i, j,
1863                                  gb, (mb*1000)/1024,
1864                                  ((u64)tmp_mb) << 20L,
1865                                  reg);
1866                 }
1867         }
1868
1869         /*
1870          * Step 6) Get RIR Wayness/Limit, per each channel
1871          */
1872         for (i = 0; i < NUM_CHANNELS; i++) {
1873                 if (!pvt->channel[i].dimms)
1874                         continue;
1875                 for (j = 0; j < MAX_RIR_RANGES; j++) {
1876                         pci_read_config_dword(pvt->pci_tad[i],
1877                                               rir_way_limit[j],
1878                                               &reg);
1879
1880                         if (!IS_RIR_VALID(reg))
1881                                 continue;
1882
1883                         tmp_mb = pvt->info.rir_limit(reg) >> 20;
1884                         rir_way = 1 << RIR_WAY(reg);
1885                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1886                         edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1887                                  i, j,
1888                                  gb, (mb*1000)/1024,
1889                                  ((u64)tmp_mb) << 20L,
1890                                  rir_way,
1891                                  reg);
1892
1893                         for (k = 0; k < rir_way; k++) {
1894                                 pci_read_config_dword(pvt->pci_tad[i],
1895                                                       rir_offset[j][k],
1896                                                       &reg);
1897                                 tmp_mb = RIR_OFFSET(reg) << 6;
1898
1899                                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1900                                 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1901                                          i, j, k,
1902                                          gb, (mb*1000)/1024,
1903                                          ((u64)tmp_mb) << 20L,
1904                                          (u32)RIR_RNK_TGT(reg),
1905                                          reg);
1906                         }
1907                 }
1908         }
1909 }
1910
1911 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1912 {
1913         struct sbridge_dev *sbridge_dev;
1914
1915         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1916                 if (sbridge_dev->node_id == node_id)
1917                         return sbridge_dev->mci;
1918         }
1919         return NULL;
1920 }
1921
1922 static int get_memory_error_data(struct mem_ctl_info *mci,
1923                                  u64 addr,
1924                                  u8 *socket, u8 *ha,
1925                                  long *channel_mask,
1926                                  u8 *rank,
1927                                  char **area_type, char *msg)
1928 {
1929         struct mem_ctl_info     *new_mci;
1930         struct sbridge_pvt *pvt = mci->pvt_info;
1931         struct pci_dev          *pci_ha;
1932         int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
1933         int                     sad_interl, idx, base_ch;
1934         int                     interleave_mode, shiftup = 0;
1935         unsigned                sad_interleave[pvt->info.max_interleave];
1936         u32                     reg, dram_rule;
1937         u8                      ch_way, sck_way, pkg, sad_ha = 0, ch_add = 0;
1938         u32                     tad_offset;
1939         u32                     rir_way;
1940         u32                     mb, gb;
1941         u64                     ch_addr, offset, limit = 0, prv = 0;
1942
1943
1944         /*
1945          * Step 0) Check if the address is at special memory ranges
1946          * The check bellow is probably enough to fill all cases where
1947          * the error is not inside a memory, except for the legacy
1948          * range (e. g. VGA addresses). It is unlikely, however, that the
1949          * memory controller would generate an error on that range.
1950          */
1951         if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1952                 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1953                 return -EINVAL;
1954         }
1955         if (addr >= (u64)pvt->tohm) {
1956                 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1957                 return -EINVAL;
1958         }
1959
1960         /*
1961          * Step 1) Get socket
1962          */
1963         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1964                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1965                                       &reg);
1966
1967                 if (!DRAM_RULE_ENABLE(reg))
1968                         continue;
1969
1970                 limit = pvt->info.sad_limit(reg);
1971                 if (limit <= prv) {
1972                         sprintf(msg, "Can't discover the memory socket");
1973                         return -EINVAL;
1974                 }
1975                 if  (addr <= limit)
1976                         break;
1977                 prv = limit;
1978         }
1979         if (n_sads == pvt->info.max_sad) {
1980                 sprintf(msg, "Can't discover the memory socket");
1981                 return -EINVAL;
1982         }
1983         dram_rule = reg;
1984         *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1985         interleave_mode = pvt->info.interleave_mode(dram_rule);
1986
1987         pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1988                               &reg);
1989
1990         if (pvt->info.type == SANDY_BRIDGE) {
1991                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1992                 for (sad_way = 0; sad_way < 8; sad_way++) {
1993                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1994                         if (sad_way > 0 && sad_interl == pkg)
1995                                 break;
1996                         sad_interleave[sad_way] = pkg;
1997                         edac_dbg(0, "SAD interleave #%d: %d\n",
1998                                  sad_way, sad_interleave[sad_way]);
1999                 }
2000                 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2001                          pvt->sbridge_dev->mc,
2002                          n_sads,
2003                          addr,
2004                          limit,
2005                          sad_way + 7,
2006                          !interleave_mode ? "" : "XOR[18:16]");
2007                 if (interleave_mode)
2008                         idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2009                 else
2010                         idx = (addr >> 6) & 7;
2011                 switch (sad_way) {
2012                 case 1:
2013                         idx = 0;
2014                         break;
2015                 case 2:
2016                         idx = idx & 1;
2017                         break;
2018                 case 4:
2019                         idx = idx & 3;
2020                         break;
2021                 case 8:
2022                         break;
2023                 default:
2024                         sprintf(msg, "Can't discover socket interleave");
2025                         return -EINVAL;
2026                 }
2027                 *socket = sad_interleave[idx];
2028                 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2029                          idx, sad_way, *socket);
2030         } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2031                 int bits, a7mode = A7MODE(dram_rule);
2032
2033                 if (a7mode) {
2034                         /* A7 mode swaps P9 with P6 */
2035                         bits = GET_BITFIELD(addr, 7, 8) << 1;
2036                         bits |= GET_BITFIELD(addr, 9, 9);
2037                 } else
2038                         bits = GET_BITFIELD(addr, 6, 8);
2039
2040                 if (interleave_mode == 0) {
2041                         /* interleave mode will XOR {8,7,6} with {18,17,16} */
2042                         idx = GET_BITFIELD(addr, 16, 18);
2043                         idx ^= bits;
2044                 } else
2045                         idx = bits;
2046
2047                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2048                 *socket = sad_pkg_socket(pkg);
2049                 sad_ha = sad_pkg_ha(pkg);
2050                 if (sad_ha)
2051                         ch_add = 4;
2052
2053                 if (a7mode) {
2054                         /* MCChanShiftUpEnable */
2055                         pci_read_config_dword(pvt->pci_ha0,
2056                                               HASWELL_HASYSDEFEATURE2, &reg);
2057                         shiftup = GET_BITFIELD(reg, 22, 22);
2058                 }
2059
2060                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2061                          idx, *socket, sad_ha, shiftup);
2062         } else {
2063                 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2064                 idx = (addr >> 6) & 7;
2065                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2066                 *socket = sad_pkg_socket(pkg);
2067                 sad_ha = sad_pkg_ha(pkg);
2068                 if (sad_ha)
2069                         ch_add = 4;
2070                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2071                          idx, *socket, sad_ha);
2072         }
2073
2074         *ha = sad_ha;
2075
2076         /*
2077          * Move to the proper node structure, in order to access the
2078          * right PCI registers
2079          */
2080         new_mci = get_mci_for_node_id(*socket);
2081         if (!new_mci) {
2082                 sprintf(msg, "Struct for socket #%u wasn't initialized",
2083                         *socket);
2084                 return -EINVAL;
2085         }
2086         mci = new_mci;
2087         pvt = mci->pvt_info;
2088
2089         /*
2090          * Step 2) Get memory channel
2091          */
2092         prv = 0;
2093         if (pvt->info.type == SANDY_BRIDGE)
2094                 pci_ha = pvt->pci_ha0;
2095         else {
2096                 if (sad_ha)
2097                         pci_ha = pvt->pci_ha1;
2098                 else
2099                         pci_ha = pvt->pci_ha0;
2100         }
2101         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2102                 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2103                 limit = TAD_LIMIT(reg);
2104                 if (limit <= prv) {
2105                         sprintf(msg, "Can't discover the memory channel");
2106                         return -EINVAL;
2107                 }
2108                 if  (addr <= limit)
2109                         break;
2110                 prv = limit;
2111         }
2112         if (n_tads == MAX_TAD) {
2113                 sprintf(msg, "Can't discover the memory channel");
2114                 return -EINVAL;
2115         }
2116
2117         ch_way = TAD_CH(reg) + 1;
2118         sck_way = TAD_SOCK(reg);
2119
2120         if (ch_way == 3)
2121                 idx = addr >> 6;
2122         else {
2123                 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2124                 if (pvt->is_chan_hash)
2125                         idx = haswell_chan_hash(idx, addr);
2126         }
2127         idx = idx % ch_way;
2128
2129         /*
2130          * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2131          */
2132         switch (idx) {
2133         case 0:
2134                 base_ch = TAD_TGT0(reg);
2135                 break;
2136         case 1:
2137                 base_ch = TAD_TGT1(reg);
2138                 break;
2139         case 2:
2140                 base_ch = TAD_TGT2(reg);
2141                 break;
2142         case 3:
2143                 base_ch = TAD_TGT3(reg);
2144                 break;
2145         default:
2146                 sprintf(msg, "Can't discover the TAD target");
2147                 return -EINVAL;
2148         }
2149         *channel_mask = 1 << base_ch;
2150
2151         pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2152                                 tad_ch_nilv_offset[n_tads],
2153                                 &tad_offset);
2154
2155         if (pvt->is_mirrored) {
2156                 *channel_mask |= 1 << ((base_ch + 2) % 4);
2157                 switch(ch_way) {
2158                 case 2:
2159                 case 4:
2160                         sck_xch = (1 << sck_way) * (ch_way >> 1);
2161                         break;
2162                 default:
2163                         sprintf(msg, "Invalid mirror set. Can't decode addr");
2164                         return -EINVAL;
2165                 }
2166         } else
2167                 sck_xch = (1 << sck_way) * ch_way;
2168
2169         if (pvt->is_lockstep)
2170                 *channel_mask |= 1 << ((base_ch + 1) % 4);
2171
2172         offset = TAD_OFFSET(tad_offset);
2173
2174         edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2175                  n_tads,
2176                  addr,
2177                  limit,
2178                  sck_way,
2179                  ch_way,
2180                  offset,
2181                  idx,
2182                  base_ch,
2183                  *channel_mask);
2184
2185         /* Calculate channel address */
2186         /* Remove the TAD offset */
2187
2188         if (offset > addr) {
2189                 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2190                         offset, addr);
2191                 return -EINVAL;
2192         }
2193
2194         ch_addr = addr - offset;
2195         ch_addr >>= (6 + shiftup);
2196         ch_addr /= sck_xch;
2197         ch_addr <<= (6 + shiftup);
2198         ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2199
2200         /*
2201          * Step 3) Decode rank
2202          */
2203         for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2204                 pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2205                                       rir_way_limit[n_rir],
2206                                       &reg);
2207
2208                 if (!IS_RIR_VALID(reg))
2209                         continue;
2210
2211                 limit = pvt->info.rir_limit(reg);
2212                 gb = div_u64_rem(limit >> 20, 1024, &mb);
2213                 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2214                          n_rir,
2215                          gb, (mb*1000)/1024,
2216                          limit,
2217                          1 << RIR_WAY(reg));
2218                 if  (ch_addr <= limit)
2219                         break;
2220         }
2221         if (n_rir == MAX_RIR_RANGES) {
2222                 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2223                         ch_addr);
2224                 return -EINVAL;
2225         }
2226         rir_way = RIR_WAY(reg);
2227
2228         if (pvt->is_close_pg)
2229                 idx = (ch_addr >> 6);
2230         else
2231                 idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
2232         idx %= 1 << rir_way;
2233
2234         pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2235                               rir_offset[n_rir][idx],
2236                               &reg);
2237         *rank = RIR_RNK_TGT(reg);
2238
2239         edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2240                  n_rir,
2241                  ch_addr,
2242                  limit,
2243                  rir_way,
2244                  idx);
2245
2246         return 0;
2247 }
2248
2249 /****************************************************************************
2250         Device initialization routines: put/get, init/exit
2251  ****************************************************************************/
2252
2253 /*
2254  *      sbridge_put_all_devices 'put' all the devices that we have
2255  *                              reserved via 'get'
2256  */
2257 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2258 {
2259         int i;
2260
2261         edac_dbg(0, "\n");
2262         for (i = 0; i < sbridge_dev->n_devs; i++) {
2263                 struct pci_dev *pdev = sbridge_dev->pdev[i];
2264                 if (!pdev)
2265                         continue;
2266                 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2267                          pdev->bus->number,
2268                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2269                 pci_dev_put(pdev);
2270         }
2271 }
2272
2273 static void sbridge_put_all_devices(void)
2274 {
2275         struct sbridge_dev *sbridge_dev, *tmp;
2276
2277         list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2278                 sbridge_put_devices(sbridge_dev);
2279                 free_sbridge_dev(sbridge_dev);
2280         }
2281 }
2282
2283 static int sbridge_get_onedevice(struct pci_dev **prev,
2284                                  u8 *num_mc,
2285                                  const struct pci_id_table *table,
2286                                  const unsigned devno,
2287                                  const int multi_bus)
2288 {
2289         struct sbridge_dev *sbridge_dev;
2290         const struct pci_id_descr *dev_descr = &table->descr[devno];
2291         struct pci_dev *pdev = NULL;
2292         u8 bus = 0;
2293
2294         sbridge_printk(KERN_DEBUG,
2295                 "Seeking for: PCI ID %04x:%04x\n",
2296                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2297
2298         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2299                               dev_descr->dev_id, *prev);
2300
2301         if (!pdev) {
2302                 if (*prev) {
2303                         *prev = pdev;
2304                         return 0;
2305                 }
2306
2307                 if (dev_descr->optional)
2308                         return 0;
2309
2310                 /* if the HA wasn't found */
2311                 if (devno == 0)
2312                         return -ENODEV;
2313
2314                 sbridge_printk(KERN_INFO,
2315                         "Device not found: %04x:%04x\n",
2316                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2317
2318                 /* End of list, leave */
2319                 return -ENODEV;
2320         }
2321         bus = pdev->bus->number;
2322
2323         sbridge_dev = get_sbridge_dev(bus, multi_bus);
2324         if (!sbridge_dev) {
2325                 sbridge_dev = alloc_sbridge_dev(bus, table);
2326                 if (!sbridge_dev) {
2327                         pci_dev_put(pdev);
2328                         return -ENOMEM;
2329                 }
2330                 (*num_mc)++;
2331         }
2332
2333         if (sbridge_dev->pdev[devno]) {
2334                 sbridge_printk(KERN_ERR,
2335                         "Duplicated device for %04x:%04x\n",
2336                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2337                 pci_dev_put(pdev);
2338                 return -ENODEV;
2339         }
2340
2341         sbridge_dev->pdev[devno] = pdev;
2342
2343         /* Be sure that the device is enabled */
2344         if (unlikely(pci_enable_device(pdev) < 0)) {
2345                 sbridge_printk(KERN_ERR,
2346                         "Couldn't enable %04x:%04x\n",
2347                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2348                 return -ENODEV;
2349         }
2350
2351         edac_dbg(0, "Detected %04x:%04x\n",
2352                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2353
2354         /*
2355          * As stated on drivers/pci/search.c, the reference count for
2356          * @from is always decremented if it is not %NULL. So, as we need
2357          * to get all devices up to null, we need to do a get for the device
2358          */
2359         pci_dev_get(pdev);
2360
2361         *prev = pdev;
2362
2363         return 0;
2364 }
2365
2366 /*
2367  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2368  *                           devices we want to reference for this driver.
2369  * @num_mc: pointer to the memory controllers count, to be incremented in case
2370  *          of success.
2371  * @table: model specific table
2372  * @allow_dups: allow for multiple devices to exist with the same device id
2373  *              (as implemented, this isn't expected to work correctly in the
2374  *              multi-socket case).
2375  * @multi_bus: don't assume devices on different buses belong to different
2376  *             memory controllers.
2377  *
2378  * returns 0 in case of success or error code
2379  */
2380 static int sbridge_get_all_devices_full(u8 *num_mc,
2381                                         const struct pci_id_table *table,
2382                                         int allow_dups,
2383                                         int multi_bus)
2384 {
2385         int i, rc;
2386         struct pci_dev *pdev = NULL;
2387
2388         while (table && table->descr) {
2389                 for (i = 0; i < table->n_devs; i++) {
2390                         if (!allow_dups || i == 0 ||
2391                                         table->descr[i].dev_id !=
2392                                                 table->descr[i-1].dev_id) {
2393                                 pdev = NULL;
2394                         }
2395                         do {
2396                                 rc = sbridge_get_onedevice(&pdev, num_mc,
2397                                                            table, i, multi_bus);
2398                                 if (rc < 0) {
2399                                         if (i == 0) {
2400                                                 i = table->n_devs;
2401                                                 break;
2402                                         }
2403                                         sbridge_put_all_devices();
2404                                         return -ENODEV;
2405                                 }
2406                         } while (pdev && !allow_dups);
2407                 }
2408                 table++;
2409         }
2410
2411         return 0;
2412 }
2413
2414 #define sbridge_get_all_devices(num_mc, table) \
2415                 sbridge_get_all_devices_full(num_mc, table, 0, 0)
2416 #define sbridge_get_all_devices_knl(num_mc, table) \
2417                 sbridge_get_all_devices_full(num_mc, table, 1, 1)
2418
2419 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2420                                  struct sbridge_dev *sbridge_dev)
2421 {
2422         struct sbridge_pvt *pvt = mci->pvt_info;
2423         struct pci_dev *pdev;
2424         u8 saw_chan_mask = 0;
2425         int i;
2426
2427         for (i = 0; i < sbridge_dev->n_devs; i++) {
2428                 pdev = sbridge_dev->pdev[i];
2429                 if (!pdev)
2430                         continue;
2431
2432                 switch (pdev->device) {
2433                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2434                         pvt->pci_sad0 = pdev;
2435                         break;
2436                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2437                         pvt->pci_sad1 = pdev;
2438                         break;
2439                 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2440                         pvt->pci_br0 = pdev;
2441                         break;
2442                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2443                         pvt->pci_ha0 = pdev;
2444                         break;
2445                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2446                         pvt->pci_ta = pdev;
2447                         break;
2448                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2449                         pvt->pci_ras = pdev;
2450                         break;
2451                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2452                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2453                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2454                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2455                 {
2456                         int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
2457                         pvt->pci_tad[id] = pdev;
2458                         saw_chan_mask |= 1 << id;
2459                 }
2460                         break;
2461                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2462                         pvt->pci_ddrio = pdev;
2463                         break;
2464                 default:
2465                         goto error;
2466                 }
2467
2468                 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2469                          pdev->vendor, pdev->device,
2470                          sbridge_dev->bus,
2471                          pdev);
2472         }
2473
2474         /* Check if everything were registered */
2475         if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
2476             !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
2477                 goto enodev;
2478
2479         if (saw_chan_mask != 0x0f)
2480                 goto enodev;
2481         return 0;
2482
2483 enodev:
2484         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2485         return -ENODEV;
2486
2487 error:
2488         sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2489                        PCI_VENDOR_ID_INTEL, pdev->device);
2490         return -EINVAL;
2491 }
2492
2493 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2494                                  struct sbridge_dev *sbridge_dev)
2495 {
2496         struct sbridge_pvt *pvt = mci->pvt_info;
2497         struct pci_dev *pdev;
2498         u8 saw_chan_mask = 0;
2499         int i;
2500
2501         for (i = 0; i < sbridge_dev->n_devs; i++) {
2502                 pdev = sbridge_dev->pdev[i];
2503                 if (!pdev)
2504                         continue;
2505
2506                 switch (pdev->device) {
2507                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2508                         pvt->pci_ha0 = pdev;
2509                         break;
2510                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2511                         pvt->pci_ta = pdev;
2512                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2513                         pvt->pci_ras = pdev;
2514                         break;
2515                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2516                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2517                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2518                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2519                 {
2520                         int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
2521                         pvt->pci_tad[id] = pdev;
2522                         saw_chan_mask |= 1 << id;
2523                 }
2524                         break;
2525                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2526                         pvt->pci_ddrio = pdev;
2527                         break;
2528                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2529                         pvt->pci_ddrio = pdev;
2530                         break;
2531                 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2532                         pvt->pci_sad0 = pdev;
2533                         break;
2534                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2535                         pvt->pci_br0 = pdev;
2536                         break;
2537                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2538                         pvt->pci_br1 = pdev;
2539                         break;
2540                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2541                         pvt->pci_ha1 = pdev;
2542                         break;
2543                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2544                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2545                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2546                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2547                 {
2548                         int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 4;
2549                         pvt->pci_tad[id] = pdev;
2550                         saw_chan_mask |= 1 << id;
2551                 }
2552                         break;
2553                 default:
2554                         goto error;
2555                 }
2556
2557                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2558                          sbridge_dev->bus,
2559                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2560                          pdev);
2561         }
2562
2563         /* Check if everything were registered */
2564         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
2565             !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
2566             !pvt->pci_ta)
2567                 goto enodev;
2568
2569         if (saw_chan_mask != 0x0f && /* -EN */
2570             saw_chan_mask != 0x33 && /* -EP */
2571             saw_chan_mask != 0xff)   /* -EX */
2572                 goto enodev;
2573         return 0;
2574
2575 enodev:
2576         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2577         return -ENODEV;
2578
2579 error:
2580         sbridge_printk(KERN_ERR,
2581                        "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2582                         pdev->device);
2583         return -EINVAL;
2584 }
2585
2586 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2587                                  struct sbridge_dev *sbridge_dev)
2588 {
2589         struct sbridge_pvt *pvt = mci->pvt_info;
2590         struct pci_dev *pdev;
2591         u8 saw_chan_mask = 0;
2592         int i;
2593
2594         /* there's only one device per system; not tied to any bus */
2595         if (pvt->info.pci_vtd == NULL)
2596                 /* result will be checked later */
2597                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2598                                                    PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2599                                                    NULL);
2600
2601         for (i = 0; i < sbridge_dev->n_devs; i++) {
2602                 pdev = sbridge_dev->pdev[i];
2603                 if (!pdev)
2604                         continue;
2605
2606                 switch (pdev->device) {
2607                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2608                         pvt->pci_sad0 = pdev;
2609                         break;
2610                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2611                         pvt->pci_sad1 = pdev;
2612                         break;
2613                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2614                         pvt->pci_ha0 = pdev;
2615                         break;
2616                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2617                         pvt->pci_ta = pdev;
2618                         break;
2619                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
2620                         pvt->pci_ras = pdev;
2621                         break;
2622                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2623                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2624                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2625                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2626                 {
2627                         int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0;
2628
2629                         pvt->pci_tad[id] = pdev;
2630                         saw_chan_mask |= 1 << id;
2631                 }
2632                         break;
2633                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2634                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2635                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2636                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2637                 {
2638                         int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 + 4;
2639
2640                         pvt->pci_tad[id] = pdev;
2641                         saw_chan_mask |= 1 << id;
2642                 }
2643                         break;
2644                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2645                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2646                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2647                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2648                         if (!pvt->pci_ddrio)
2649                                 pvt->pci_ddrio = pdev;
2650                         break;
2651                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2652                         pvt->pci_ha1 = pdev;
2653                         break;
2654                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2655                         pvt->pci_ha1_ta = pdev;
2656                         break;
2657                 default:
2658                         break;
2659                 }
2660
2661                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2662                          sbridge_dev->bus,
2663                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2664                          pdev);
2665         }
2666
2667         /* Check if everything were registered */
2668         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2669             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2670                 goto enodev;
2671
2672         if (saw_chan_mask != 0x0f && /* -EN */
2673             saw_chan_mask != 0x33 && /* -EP */
2674             saw_chan_mask != 0xff)   /* -EX */
2675                 goto enodev;
2676         return 0;
2677
2678 enodev:
2679         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2680         return -ENODEV;
2681 }
2682
2683 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2684                                  struct sbridge_dev *sbridge_dev)
2685 {
2686         struct sbridge_pvt *pvt = mci->pvt_info;
2687         struct pci_dev *pdev;
2688         u8 saw_chan_mask = 0;
2689         int i;
2690
2691         /* there's only one device per system; not tied to any bus */
2692         if (pvt->info.pci_vtd == NULL)
2693                 /* result will be checked later */
2694                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2695                                                    PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2696                                                    NULL);
2697
2698         for (i = 0; i < sbridge_dev->n_devs; i++) {
2699                 pdev = sbridge_dev->pdev[i];
2700                 if (!pdev)
2701                         continue;
2702
2703                 switch (pdev->device) {
2704                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2705                         pvt->pci_sad0 = pdev;
2706                         break;
2707                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2708                         pvt->pci_sad1 = pdev;
2709                         break;
2710                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2711                         pvt->pci_ha0 = pdev;
2712                         break;
2713                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2714                         pvt->pci_ta = pdev;
2715                         break;
2716                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
2717                         pvt->pci_ras = pdev;
2718                         break;
2719                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2720                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2721                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2722                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2723                 {
2724                         int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0;
2725                         pvt->pci_tad[id] = pdev;
2726                         saw_chan_mask |= 1 << id;
2727                 }
2728                         break;
2729                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2730                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2731                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2732                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2733                 {
2734                         int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 + 4;
2735                         pvt->pci_tad[id] = pdev;
2736                         saw_chan_mask |= 1 << id;
2737                 }
2738                         break;
2739                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2740                         pvt->pci_ddrio = pdev;
2741                         break;
2742                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2743                         pvt->pci_ha1 = pdev;
2744                         break;
2745                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2746                         pvt->pci_ha1_ta = pdev;
2747                         break;
2748                 default:
2749                         break;
2750                 }
2751
2752                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2753                          sbridge_dev->bus,
2754                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2755                          pdev);
2756         }
2757
2758         /* Check if everything were registered */
2759         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2760             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2761                 goto enodev;
2762
2763         if (saw_chan_mask != 0x0f && /* -EN */
2764             saw_chan_mask != 0x33 && /* -EP */
2765             saw_chan_mask != 0xff)   /* -EX */
2766                 goto enodev;
2767         return 0;
2768
2769 enodev:
2770         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2771         return -ENODEV;
2772 }
2773
2774 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2775                         struct sbridge_dev *sbridge_dev)
2776 {
2777         struct sbridge_pvt *pvt = mci->pvt_info;
2778         struct pci_dev *pdev;
2779         int dev, func;
2780
2781         int i;
2782         int devidx;
2783
2784         for (i = 0; i < sbridge_dev->n_devs; i++) {
2785                 pdev = sbridge_dev->pdev[i];
2786                 if (!pdev)
2787                         continue;
2788
2789                 /* Extract PCI device and function. */
2790                 dev = (pdev->devfn >> 3) & 0x1f;
2791                 func = pdev->devfn & 0x7;
2792
2793                 switch (pdev->device) {
2794                 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2795                         if (dev == 8)
2796                                 pvt->knl.pci_mc0 = pdev;
2797                         else if (dev == 9)
2798                                 pvt->knl.pci_mc1 = pdev;
2799                         else {
2800                                 sbridge_printk(KERN_ERR,
2801                                         "Memory controller in unexpected place! (dev %d, fn %d)\n",
2802                                         dev, func);
2803                                 continue;
2804                         }
2805                         break;
2806
2807                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2808                         pvt->pci_sad0 = pdev;
2809                         break;
2810
2811                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2812                         pvt->pci_sad1 = pdev;
2813                         break;
2814
2815                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2816                         /* There are one of these per tile, and range from
2817                          * 1.14.0 to 1.18.5.
2818                          */
2819                         devidx = ((dev-14)*8)+func;
2820
2821                         if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2822                                 sbridge_printk(KERN_ERR,
2823                                         "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2824                                         dev, func);
2825                                 continue;
2826                         }
2827
2828                         WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2829
2830                         pvt->knl.pci_cha[devidx] = pdev;
2831                         break;
2832
2833                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL:
2834                         devidx = -1;
2835
2836                         /*
2837                          *  MC0 channels 0-2 are device 9 function 2-4,
2838                          *  MC1 channels 3-5 are device 8 function 2-4.
2839                          */
2840
2841                         if (dev == 9)
2842                                 devidx = func-2;
2843                         else if (dev == 8)
2844                                 devidx = 3 + (func-2);
2845
2846                         if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2847                                 sbridge_printk(KERN_ERR,
2848                                         "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2849                                         dev, func);
2850                                 continue;
2851                         }
2852
2853                         WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2854                         pvt->knl.pci_channel[devidx] = pdev;
2855                         break;
2856
2857                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2858                         pvt->knl.pci_mc_info = pdev;
2859                         break;
2860
2861                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2862                         pvt->pci_ta = pdev;
2863                         break;
2864
2865                 default:
2866                         sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2867                                 pdev->device);
2868                         break;
2869                 }
2870         }
2871
2872         if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2873             !pvt->pci_sad0     || !pvt->pci_sad1    ||
2874             !pvt->pci_ta) {
2875                 goto enodev;
2876         }
2877
2878         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2879                 if (!pvt->knl.pci_channel[i]) {
2880                         sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2881                         goto enodev;
2882                 }
2883         }
2884
2885         for (i = 0; i < KNL_MAX_CHAS; i++) {
2886                 if (!pvt->knl.pci_cha[i]) {
2887                         sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2888                         goto enodev;
2889                 }
2890         }
2891
2892         return 0;
2893
2894 enodev:
2895         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2896         return -ENODEV;
2897 }
2898
2899 /****************************************************************************
2900                         Error check routines
2901  ****************************************************************************/
2902
2903 /*
2904  * While Sandy Bridge has error count registers, SMI BIOS read values from
2905  * and resets the counters. So, they are not reliable for the OS to read
2906  * from them. So, we have no option but to just trust on whatever MCE is
2907  * telling us about the errors.
2908  */
2909 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2910                                     const struct mce *m)
2911 {
2912         struct mem_ctl_info *new_mci;
2913         struct sbridge_pvt *pvt = mci->pvt_info;
2914         enum hw_event_mc_err_type tp_event;
2915         char *type, *optype, msg[256];
2916         bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2917         bool overflow = GET_BITFIELD(m->status, 62, 62);
2918         bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2919         bool recoverable;
2920         u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2921         u32 mscod = GET_BITFIELD(m->status, 16, 31);
2922         u32 errcode = GET_BITFIELD(m->status, 0, 15);
2923         u32 channel = GET_BITFIELD(m->status, 0, 3);
2924         u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2925         long channel_mask, first_channel;
2926         u8  rank, socket, ha;
2927         int rc, dimm;
2928         char *area_type = NULL;
2929
2930         if (pvt->info.type != SANDY_BRIDGE)
2931                 recoverable = true;
2932         else
2933                 recoverable = GET_BITFIELD(m->status, 56, 56);
2934
2935         if (uncorrected_error) {
2936                 if (ripv) {
2937                         type = "FATAL";
2938                         tp_event = HW_EVENT_ERR_FATAL;
2939                 } else {
2940                         type = "NON_FATAL";
2941                         tp_event = HW_EVENT_ERR_UNCORRECTED;
2942                 }
2943         } else {
2944                 type = "CORRECTED";
2945                 tp_event = HW_EVENT_ERR_CORRECTED;
2946         }
2947
2948         /*
2949          * According with Table 15-9 of the Intel Architecture spec vol 3A,
2950          * memory errors should fit in this mask:
2951          *      000f 0000 1mmm cccc (binary)
2952          * where:
2953          *      f = Correction Report Filtering Bit. If 1, subsequent errors
2954          *          won't be shown
2955          *      mmm = error type
2956          *      cccc = channel
2957          * If the mask doesn't match, report an error to the parsing logic
2958          */
2959         if (! ((errcode & 0xef80) == 0x80)) {
2960                 optype = "Can't parse: it is not a mem";
2961         } else {
2962                 switch (optypenum) {
2963                 case 0:
2964                         optype = "generic undef request error";
2965                         break;
2966                 case 1:
2967                         optype = "memory read error";
2968                         break;
2969                 case 2:
2970                         optype = "memory write error";
2971                         break;
2972                 case 3:
2973                         optype = "addr/cmd error";
2974                         break;
2975                 case 4:
2976                         optype = "memory scrubbing error";
2977                         break;
2978                 default:
2979                         optype = "reserved";
2980                         break;
2981                 }
2982         }
2983
2984         /* Only decode errors with an valid address (ADDRV) */
2985         if (!GET_BITFIELD(m->status, 58, 58))
2986                 return;
2987
2988         if (pvt->info.type == KNIGHTS_LANDING) {
2989                 if (channel == 14) {
2990                         edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2991                                 overflow ? " OVERFLOW" : "",
2992                                 (uncorrected_error && recoverable)
2993                                 ? " recoverable" : "",
2994                                 mscod, errcode,
2995                                 m->bank);
2996                 } else {
2997                         char A = *("A");
2998
2999                         channel = knl_channel_remap(channel);
3000                         channel_mask = 1 << channel;
3001                         snprintf(msg, sizeof(msg),
3002                                 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3003                                 overflow ? " OVERFLOW" : "",
3004                                 (uncorrected_error && recoverable)
3005                                 ? " recoverable" : " ",
3006                                 mscod, errcode, channel, A + channel);
3007                         edac_mc_handle_error(tp_event, mci, core_err_cnt,
3008                                 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3009                                 channel, 0, -1,
3010                                 optype, msg);
3011                 }
3012                 return;
3013         } else {
3014                 rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3015                                 &channel_mask, &rank, &area_type, msg);
3016         }
3017
3018         if (rc < 0)
3019                 goto err_parsing;
3020         new_mci = get_mci_for_node_id(socket);
3021         if (!new_mci) {
3022                 strcpy(msg, "Error: socket got corrupted!");
3023                 goto err_parsing;
3024         }
3025         mci = new_mci;
3026         pvt = mci->pvt_info;
3027
3028         first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3029
3030         if (rank < 4)
3031                 dimm = 0;
3032         else if (rank < 8)
3033                 dimm = 1;
3034         else
3035                 dimm = 2;
3036
3037
3038         /*
3039          * FIXME: On some memory configurations (mirror, lockstep), the
3040          * Memory Controller can't point the error to a single DIMM. The
3041          * EDAC core should be handling the channel mask, in order to point
3042          * to the group of dimm's where the error may be happening.
3043          */
3044         if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
3045                 channel = first_channel;
3046
3047         snprintf(msg, sizeof(msg),
3048                  "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3049                  overflow ? " OVERFLOW" : "",
3050                  (uncorrected_error && recoverable) ? " recoverable" : "",
3051                  area_type,
3052                  mscod, errcode,
3053                  socket, ha,
3054                  channel_mask,
3055                  rank);
3056
3057         edac_dbg(0, "%s\n", msg);
3058
3059         /* FIXME: need support for channel mask */
3060
3061         if (channel == CHANNEL_UNSPECIFIED)
3062                 channel = -1;
3063
3064         /* Call the helper to output message */
3065         edac_mc_handle_error(tp_event, mci, core_err_cnt,
3066                              m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3067                              4*ha+channel, dimm, -1,
3068                              optype, msg);
3069         return;
3070 err_parsing:
3071         edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3072                              -1, -1, -1,
3073                              msg, "");
3074
3075 }
3076
3077 /*
3078  * Check that logging is enabled and that this is the right type
3079  * of error for us to handle.
3080  */
3081 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3082                                    void *data)
3083 {
3084         struct mce *mce = (struct mce *)data;
3085         struct mem_ctl_info *mci;
3086         struct sbridge_pvt *pvt;
3087         char *type;
3088
3089         if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3090                 return NOTIFY_DONE;
3091
3092         mci = get_mci_for_node_id(mce->socketid);
3093         if (!mci)
3094                 return NOTIFY_DONE;
3095         pvt = mci->pvt_info;
3096
3097         /*
3098          * Just let mcelog handle it if the error is
3099          * outside the memory controller. A memory error
3100          * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3101          * bit 12 has an special meaning.
3102          */
3103         if ((mce->status & 0xefff) >> 7 != 1)
3104                 return NOTIFY_DONE;
3105
3106         if (mce->mcgstatus & MCG_STATUS_MCIP)
3107                 type = "Exception";
3108         else
3109                 type = "Event";
3110
3111         sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3112
3113         sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3114                           "Bank %d: %016Lx\n", mce->extcpu, type,
3115                           mce->mcgstatus, mce->bank, mce->status);
3116         sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3117         sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3118         sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3119
3120         sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3121                           "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3122                           mce->time, mce->socketid, mce->apicid);
3123
3124         sbridge_mce_output_error(mci, mce);
3125
3126         /* Advice mcelog that the error were handled */
3127         return NOTIFY_STOP;
3128 }
3129
3130 static struct notifier_block sbridge_mce_dec = {
3131         .notifier_call      = sbridge_mce_check_error,
3132 };
3133
3134 /****************************************************************************
3135                         EDAC register/unregister logic
3136  ****************************************************************************/
3137
3138 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3139 {
3140         struct mem_ctl_info *mci = sbridge_dev->mci;
3141         struct sbridge_pvt *pvt;
3142
3143         if (unlikely(!mci || !mci->pvt_info)) {
3144                 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3145
3146                 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3147                 return;
3148         }
3149
3150         pvt = mci->pvt_info;
3151
3152         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3153                  mci, &sbridge_dev->pdev[0]->dev);
3154
3155         /* Remove MC sysfs nodes */
3156         edac_mc_del_mc(mci->pdev);
3157
3158         edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3159         kfree(mci->ctl_name);
3160         edac_mc_free(mci);
3161         sbridge_dev->mci = NULL;
3162 }
3163
3164 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3165 {
3166         struct mem_ctl_info *mci;
3167         struct edac_mc_layer layers[2];
3168         struct sbridge_pvt *pvt;
3169         struct pci_dev *pdev = sbridge_dev->pdev[0];
3170         int rc;
3171
3172         /* Check the number of active and not disabled channels */
3173         rc = check_if_ecc_is_active(sbridge_dev->bus, type);
3174         if (unlikely(rc < 0))
3175                 return rc;
3176
3177         /* allocate a new MC control structure */
3178         layers[0].type = EDAC_MC_LAYER_CHANNEL;
3179         layers[0].size = type == KNIGHTS_LANDING ?
3180                 KNL_MAX_CHANNELS : NUM_CHANNELS;
3181         layers[0].is_virt_csrow = false;
3182         layers[1].type = EDAC_MC_LAYER_SLOT;
3183         layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3184         layers[1].is_virt_csrow = true;
3185         mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3186                             sizeof(*pvt));
3187
3188         if (unlikely(!mci))
3189                 return -ENOMEM;
3190
3191         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3192                  mci, &pdev->dev);
3193
3194         pvt = mci->pvt_info;
3195         memset(pvt, 0, sizeof(*pvt));
3196
3197         /* Associate sbridge_dev and mci for future usage */
3198         pvt->sbridge_dev = sbridge_dev;
3199         sbridge_dev->mci = mci;
3200
3201         mci->mtype_cap = type == KNIGHTS_LANDING ?
3202                 MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3203         mci->edac_ctl_cap = EDAC_FLAG_NONE;
3204         mci->edac_cap = EDAC_FLAG_NONE;
3205         mci->mod_name = "sbridge_edac.c";
3206         mci->mod_ver = SBRIDGE_REVISION;
3207         mci->dev_name = pci_name(pdev);
3208         mci->ctl_page_to_phys = NULL;
3209
3210         pvt->info.type = type;
3211         switch (type) {
3212         case IVY_BRIDGE:
3213                 pvt->info.rankcfgr = IB_RANK_CFG_A;
3214                 pvt->info.get_tolm = ibridge_get_tolm;
3215                 pvt->info.get_tohm = ibridge_get_tohm;
3216                 pvt->info.dram_rule = ibridge_dram_rule;
3217                 pvt->info.get_memory_type = get_memory_type;
3218                 pvt->info.get_node_id = get_node_id;
3219                 pvt->info.rir_limit = rir_limit;
3220                 pvt->info.sad_limit = sad_limit;
3221                 pvt->info.interleave_mode = interleave_mode;
3222                 pvt->info.show_interleave_mode = show_interleave_mode;
3223                 pvt->info.dram_attr = dram_attr;
3224                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3225                 pvt->info.interleave_list = ibridge_interleave_list;
3226                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3227                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3228                 pvt->info.get_width = ibridge_get_width;
3229                 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
3230
3231                 /* Store pci devices at mci for faster access */
3232                 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3233                 if (unlikely(rc < 0))
3234                         goto fail0;
3235                 break;
3236         case SANDY_BRIDGE:
3237                 pvt->info.rankcfgr = SB_RANK_CFG_A;
3238                 pvt->info.get_tolm = sbridge_get_tolm;
3239                 pvt->info.get_tohm = sbridge_get_tohm;
3240                 pvt->info.dram_rule = sbridge_dram_rule;
3241                 pvt->info.get_memory_type = get_memory_type;
3242                 pvt->info.get_node_id = get_node_id;
3243                 pvt->info.rir_limit = rir_limit;
3244                 pvt->info.sad_limit = sad_limit;
3245                 pvt->info.interleave_mode = interleave_mode;
3246                 pvt->info.show_interleave_mode = show_interleave_mode;
3247                 pvt->info.dram_attr = dram_attr;
3248                 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3249                 pvt->info.interleave_list = sbridge_interleave_list;
3250                 pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
3251                 pvt->info.interleave_pkg = sbridge_interleave_pkg;
3252                 pvt->info.get_width = sbridge_get_width;
3253                 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
3254
3255                 /* Store pci devices at mci for faster access */
3256                 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3257                 if (unlikely(rc < 0))
3258                         goto fail0;
3259                 break;
3260         case HASWELL:
3261                 /* rankcfgr isn't used */
3262                 pvt->info.get_tolm = haswell_get_tolm;
3263                 pvt->info.get_tohm = haswell_get_tohm;
3264                 pvt->info.dram_rule = ibridge_dram_rule;
3265                 pvt->info.get_memory_type = haswell_get_memory_type;
3266                 pvt->info.get_node_id = haswell_get_node_id;
3267                 pvt->info.rir_limit = haswell_rir_limit;
3268                 pvt->info.sad_limit = sad_limit;
3269                 pvt->info.interleave_mode = interleave_mode;
3270                 pvt->info.show_interleave_mode = show_interleave_mode;
3271                 pvt->info.dram_attr = dram_attr;
3272                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3273                 pvt->info.interleave_list = ibridge_interleave_list;
3274                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3275                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3276                 pvt->info.get_width = ibridge_get_width;
3277                 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
3278
3279                 /* Store pci devices at mci for faster access */
3280                 rc = haswell_mci_bind_devs(mci, sbridge_dev);
3281                 if (unlikely(rc < 0))
3282                         goto fail0;
3283                 break;
3284         case BROADWELL:
3285                 /* rankcfgr isn't used */
3286                 pvt->info.get_tolm = haswell_get_tolm;
3287                 pvt->info.get_tohm = haswell_get_tohm;
3288                 pvt->info.dram_rule = ibridge_dram_rule;
3289                 pvt->info.get_memory_type = haswell_get_memory_type;
3290                 pvt->info.get_node_id = haswell_get_node_id;
3291                 pvt->info.rir_limit = haswell_rir_limit;
3292                 pvt->info.sad_limit = sad_limit;
3293                 pvt->info.interleave_mode = interleave_mode;
3294                 pvt->info.show_interleave_mode = show_interleave_mode;
3295                 pvt->info.dram_attr = dram_attr;
3296                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3297                 pvt->info.interleave_list = ibridge_interleave_list;
3298                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3299                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3300                 pvt->info.get_width = broadwell_get_width;
3301                 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
3302
3303                 /* Store pci devices at mci for faster access */
3304                 rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3305                 if (unlikely(rc < 0))
3306                         goto fail0;
3307                 break;
3308         case KNIGHTS_LANDING:
3309                 /* pvt->info.rankcfgr == ??? */
3310                 pvt->info.get_tolm = knl_get_tolm;
3311                 pvt->info.get_tohm = knl_get_tohm;
3312                 pvt->info.dram_rule = knl_dram_rule;
3313                 pvt->info.get_memory_type = knl_get_memory_type;
3314                 pvt->info.get_node_id = knl_get_node_id;
3315                 pvt->info.rir_limit = NULL;
3316                 pvt->info.sad_limit = knl_sad_limit;
3317                 pvt->info.interleave_mode = knl_interleave_mode;
3318                 pvt->info.show_interleave_mode = knl_show_interleave_mode;
3319                 pvt->info.dram_attr = dram_attr_knl;
3320                 pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3321                 pvt->info.interleave_list = knl_interleave_list;
3322                 pvt->info.max_interleave = ARRAY_SIZE(knl_interleave_list);
3323                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3324                 pvt->info.get_width = knl_get_width;
3325                 mci->ctl_name = kasprintf(GFP_KERNEL,
3326                         "Knights Landing Socket#%d", mci->mc_idx);
3327
3328                 rc = knl_mci_bind_devs(mci, sbridge_dev);
3329                 if (unlikely(rc < 0))
3330                         goto fail0;
3331                 break;
3332         }
3333
3334         /* Get dimm basic config and the memory layout */
3335         get_dimm_config(mci);
3336         get_memory_layout(mci);
3337
3338         /* record ptr to the generic device */
3339         mci->pdev = &pdev->dev;
3340
3341         /* add this new MC control structure to EDAC's list of MCs */
3342         if (unlikely(edac_mc_add_mc(mci))) {
3343                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3344                 rc = -EINVAL;
3345                 goto fail0;
3346         }
3347
3348         return 0;
3349
3350 fail0:
3351         kfree(mci->ctl_name);
3352         edac_mc_free(mci);
3353         sbridge_dev->mci = NULL;
3354         return rc;
3355 }
3356
3357 #define ICPU(model, table) \
3358         { X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
3359
3360 /* Order here must match "enum type" */
3361 static const struct x86_cpu_id sbridge_cpuids[] = {
3362         ICPU(0x2d, pci_dev_descr_sbridge_table),        /* SANDY_BRIDGE */
3363         ICPU(0x3e, pci_dev_descr_ibridge_table),        /* IVY_BRIDGE */
3364         ICPU(0x3f, pci_dev_descr_haswell_table),        /* HASWELL */
3365         ICPU(0x4f, pci_dev_descr_broadwell_table),      /* BROADWELL */
3366         ICPU(0x57, pci_dev_descr_knl_table),            /* KNIGHTS_LANDING */
3367         { }
3368 };
3369 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3370
3371 /*
3372  *      sbridge_probe   Get all devices and register memory controllers
3373  *                      present.
3374  *      return:
3375  *              0 for FOUND a device
3376  *              < 0 for error code
3377  */
3378
3379 static int sbridge_probe(const struct x86_cpu_id *id)
3380 {
3381         int rc = -ENODEV;
3382         u8 mc, num_mc = 0;
3383         struct sbridge_dev *sbridge_dev;
3384         struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3385
3386         /* get the pci devices we want to reserve for our use */
3387         rc = sbridge_get_all_devices(&num_mc, ptable);
3388
3389         if (unlikely(rc < 0)) {
3390                 edac_dbg(0, "couldn't get all devices\n");
3391                 goto fail0;
3392         }
3393
3394         mc = 0;
3395
3396         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3397                 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3398                          mc, mc + 1, num_mc);
3399
3400                 sbridge_dev->mc = mc++;
3401                 rc = sbridge_register_mci(sbridge_dev, id - sbridge_cpuids);
3402                 if (unlikely(rc < 0))
3403                         goto fail1;
3404         }
3405
3406         sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3407
3408         return 0;
3409
3410 fail1:
3411         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3412                 sbridge_unregister_mci(sbridge_dev);
3413
3414         sbridge_put_all_devices();
3415 fail0:
3416         return rc;
3417 }
3418
3419 /*
3420  *      sbridge_remove  cleanup
3421  *
3422  */
3423 static void sbridge_remove(void)
3424 {
3425         struct sbridge_dev *sbridge_dev;
3426
3427         edac_dbg(0, "\n");
3428
3429         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3430                 sbridge_unregister_mci(sbridge_dev);
3431
3432         /* Release PCI resources */
3433         sbridge_put_all_devices();
3434 }
3435
3436 /*
3437  *      sbridge_init            Module entry function
3438  *                      Try to initialize this module for its devices
3439  */
3440 static int __init sbridge_init(void)
3441 {
3442         const struct x86_cpu_id *id;
3443         int rc;
3444
3445         edac_dbg(2, "\n");
3446
3447         id = x86_match_cpu(sbridge_cpuids);
3448         if (!id)
3449                 return -ENODEV;
3450
3451         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3452         opstate_init();
3453
3454         rc = sbridge_probe(id);
3455
3456         if (rc >= 0) {
3457                 mce_register_decode_chain(&sbridge_mce_dec);
3458                 if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3459                         sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3460                 return 0;
3461         }
3462
3463         sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3464                       rc);
3465
3466         return rc;
3467 }
3468
3469 /*
3470  *      sbridge_exit()  Module exit function
3471  *                      Unregister the driver
3472  */
3473 static void __exit sbridge_exit(void)
3474 {
3475         edac_dbg(2, "\n");
3476         sbridge_remove();
3477         mce_unregister_decode_chain(&sbridge_mce_dec);
3478 }
3479
3480 module_init(sbridge_init);
3481 module_exit(sbridge_exit);
3482
3483 module_param(edac_op_state, int, 0444);
3484 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3485
3486 MODULE_LICENSE("GPL");
3487 MODULE_AUTHOR("Mauro Carvalho Chehab");
3488 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3489 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3490                    SBRIDGE_REVISION);