firewire: fw-sbp2: better fix for NULL pointer dereference in scsi_remove_device
[cascardo/linux.git] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/blkdev.h>
32 #include <linux/delay.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/kernel.h>
36 #include <linux/mod_devicetable.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/scatterlist.h>
40 #include <linux/string.h>
41 #include <linux/stringify.h>
42 #include <linux/timer.h>
43 #include <linux/workqueue.h>
44 #include <asm/system.h>
45
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_host.h>
50
51 #include "fw-device.h"
52 #include "fw-topology.h"
53 #include "fw-transaction.h"
54
55 /*
56  * So far only bridges from Oxford Semiconductor are known to support
57  * concurrent logins. Depending on firmware, four or two concurrent logins
58  * are possible on OXFW911 and newer Oxsemi bridges.
59  *
60  * Concurrent logins are useful together with cluster filesystems.
61  */
62 static int sbp2_param_exclusive_login = 1;
63 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
64 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
65                  "(default = Y, use N for concurrent initiators)");
66
67 /*
68  * Flags for firmware oddities
69  *
70  * - 128kB max transfer
71  *   Limit transfer size. Necessary for some old bridges.
72  *
73  * - 36 byte inquiry
74  *   When scsi_mod probes the device, let the inquiry command look like that
75  *   from MS Windows.
76  *
77  * - skip mode page 8
78  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
79  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
80  *
81  * - fix capacity
82  *   Tell sd_mod to correct the last sector number reported by read_capacity.
83  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
84  *   Don't use this with devices which don't have this bug.
85  *
86  * - delay inquiry
87  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
88  *
89  * - override internal blacklist
90  *   Instead of adding to the built-in blacklist, use only the workarounds
91  *   specified in the module load parameter.
92  *   Useful if a blacklist entry interfered with a non-broken device.
93  */
94 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
95 #define SBP2_WORKAROUND_INQUIRY_36      0x2
96 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
97 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
98 #define SBP2_WORKAROUND_DELAY_INQUIRY   0x10
99 #define SBP2_INQUIRY_DELAY              12
100 #define SBP2_WORKAROUND_OVERRIDE        0x100
101
102 static int sbp2_param_workarounds;
103 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
104 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
105         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
106         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
107         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
108         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
109         ", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
110         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
111         ", or a combination)");
112
113 /* I don't know why the SCSI stack doesn't define something like this... */
114 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
115
116 static const char sbp2_driver_name[] = "sbp2";
117
118 /*
119  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
120  * and one struct scsi_device per sbp2_logical_unit.
121  */
122 struct sbp2_logical_unit {
123         struct sbp2_target *tgt;
124         struct list_head link;
125         struct fw_address_handler address_handler;
126         struct list_head orb_list;
127
128         u64 command_block_agent_address;
129         u16 lun;
130         int login_id;
131
132         /*
133          * The generation is updated once we've logged in or reconnected
134          * to the logical unit.  Thus, I/O to the device will automatically
135          * fail and get retried if it happens in a window where the device
136          * is not ready, e.g. after a bus reset but before we reconnect.
137          */
138         int generation;
139         int retries;
140         struct delayed_work work;
141         bool has_sdev;
142         bool blocked;
143 };
144
145 /*
146  * We create one struct sbp2_target per IEEE 1212 Unit Directory
147  * and one struct Scsi_Host per sbp2_target.
148  */
149 struct sbp2_target {
150         struct kref kref;
151         struct fw_unit *unit;
152         const char *bus_id;
153         struct list_head lu_list;
154
155         u64 management_agent_address;
156         int directory_id;
157         int node_id;
158         int address_high;
159         unsigned int workarounds;
160         unsigned int mgt_orb_timeout;
161
162         int dont_block; /* counter for each logical unit */
163         int blocked;    /* ditto */
164 };
165
166 /*
167  * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
168  * provided in the config rom. Most devices do provide a value, which
169  * we'll use for login management orbs, but with some sane limits.
170  */
171 #define SBP2_MIN_LOGIN_ORB_TIMEOUT      5000U   /* Timeout in ms */
172 #define SBP2_MAX_LOGIN_ORB_TIMEOUT      40000U  /* Timeout in ms */
173 #define SBP2_ORB_TIMEOUT                2000U   /* Timeout in ms */
174 #define SBP2_ORB_NULL                   0x80000000
175 #define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
176
177 #define SBP2_DIRECTION_TO_MEDIA         0x0
178 #define SBP2_DIRECTION_FROM_MEDIA       0x1
179
180 /* Unit directory keys */
181 #define SBP2_CSR_UNIT_CHARACTERISTICS   0x3a
182 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
183 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
184 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
185
186 /* Management orb opcodes */
187 #define SBP2_LOGIN_REQUEST              0x0
188 #define SBP2_QUERY_LOGINS_REQUEST       0x1
189 #define SBP2_RECONNECT_REQUEST          0x3
190 #define SBP2_SET_PASSWORD_REQUEST       0x4
191 #define SBP2_LOGOUT_REQUEST             0x7
192 #define SBP2_ABORT_TASK_REQUEST         0xb
193 #define SBP2_ABORT_TASK_SET             0xc
194 #define SBP2_LOGICAL_UNIT_RESET         0xe
195 #define SBP2_TARGET_RESET_REQUEST       0xf
196
197 /* Offsets for command block agent registers */
198 #define SBP2_AGENT_STATE                0x00
199 #define SBP2_AGENT_RESET                0x04
200 #define SBP2_ORB_POINTER                0x08
201 #define SBP2_DOORBELL                   0x10
202 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
203
204 /* Status write response codes */
205 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
206 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
207 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
208 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
209
210 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
211 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
212 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
213 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
214 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
215 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
216 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
217 #define STATUS_GET_DATA(v)              ((v).data)
218
219 struct sbp2_status {
220         u32 status;
221         u32 orb_low;
222         u8 data[24];
223 };
224
225 struct sbp2_pointer {
226         u32 high;
227         u32 low;
228 };
229
230 struct sbp2_orb {
231         struct fw_transaction t;
232         struct kref kref;
233         dma_addr_t request_bus;
234         int rcode;
235         struct sbp2_pointer pointer;
236         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
237         struct list_head link;
238 };
239
240 #define MANAGEMENT_ORB_LUN(v)                   ((v))
241 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
242 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
243 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
244 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
245 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
246
247 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
248 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
249
250 struct sbp2_management_orb {
251         struct sbp2_orb base;
252         struct {
253                 struct sbp2_pointer password;
254                 struct sbp2_pointer response;
255                 u32 misc;
256                 u32 length;
257                 struct sbp2_pointer status_fifo;
258         } request;
259         __be32 response[4];
260         dma_addr_t response_bus;
261         struct completion done;
262         struct sbp2_status status;
263 };
264
265 #define LOGIN_RESPONSE_GET_LOGIN_ID(v)  ((v).misc & 0xffff)
266 #define LOGIN_RESPONSE_GET_LENGTH(v)    (((v).misc >> 16) & 0xffff)
267
268 struct sbp2_login_response {
269         u32 misc;
270         struct sbp2_pointer command_block_agent;
271         u32 reconnect_hold;
272 };
273 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
274 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
275 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
276 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
277 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
278 #define COMMAND_ORB_DIRECTION(v)        ((v) << 27)
279 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
280 #define COMMAND_ORB_NOTIFY              ((1) << 31)
281
282 struct sbp2_command_orb {
283         struct sbp2_orb base;
284         struct {
285                 struct sbp2_pointer next;
286                 struct sbp2_pointer data_descriptor;
287                 u32 misc;
288                 u8 command_block[12];
289         } request;
290         struct scsi_cmnd *cmd;
291         scsi_done_fn_t done;
292         struct sbp2_logical_unit *lu;
293
294         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
295         dma_addr_t page_table_bus;
296 };
297
298 /*
299  * List of devices with known bugs.
300  *
301  * The firmware_revision field, masked with 0xffff00, is the best
302  * indicator for the type of bridge chip of a device.  It yields a few
303  * false positives but this did not break correctly behaving devices
304  * so far.  We use ~0 as a wildcard, since the 24 bit values we get
305  * from the config rom can never match that.
306  */
307 static const struct {
308         u32 firmware_revision;
309         u32 model;
310         unsigned int workarounds;
311 } sbp2_workarounds_table[] = {
312         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
313                 .firmware_revision      = 0x002800,
314                 .model                  = 0x001010,
315                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
316                                           SBP2_WORKAROUND_MODE_SENSE_8,
317         },
318         /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
319                 .firmware_revision      = 0x002800,
320                 .model                  = 0x000000,
321                 .workarounds            = SBP2_WORKAROUND_DELAY_INQUIRY,
322         },
323         /* Initio bridges, actually only needed for some older ones */ {
324                 .firmware_revision      = 0x000200,
325                 .model                  = ~0,
326                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
327         },
328         /* Symbios bridge */ {
329                 .firmware_revision      = 0xa0b800,
330                 .model                  = ~0,
331                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
332         },
333
334         /*
335          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
336          * these iPods do not feature the read_capacity bug according
337          * to one report.  Read_capacity behaviour as well as model_id
338          * could change due to Apple-supplied firmware updates though.
339          */
340
341         /* iPod 4th generation. */ {
342                 .firmware_revision      = 0x0a2700,
343                 .model                  = 0x000021,
344                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
345         },
346         /* iPod mini */ {
347                 .firmware_revision      = 0x0a2700,
348                 .model                  = 0x000023,
349                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
350         },
351         /* iPod Photo */ {
352                 .firmware_revision      = 0x0a2700,
353                 .model                  = 0x00007e,
354                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
355         }
356 };
357
358 static void
359 free_orb(struct kref *kref)
360 {
361         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
362
363         kfree(orb);
364 }
365
366 static void
367 sbp2_status_write(struct fw_card *card, struct fw_request *request,
368                   int tcode, int destination, int source,
369                   int generation, int speed,
370                   unsigned long long offset,
371                   void *payload, size_t length, void *callback_data)
372 {
373         struct sbp2_logical_unit *lu = callback_data;
374         struct sbp2_orb *orb;
375         struct sbp2_status status;
376         size_t header_size;
377         unsigned long flags;
378
379         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
380             length == 0 || length > sizeof(status)) {
381                 fw_send_response(card, request, RCODE_TYPE_ERROR);
382                 return;
383         }
384
385         header_size = min(length, 2 * sizeof(u32));
386         fw_memcpy_from_be32(&status, payload, header_size);
387         if (length > header_size)
388                 memcpy(status.data, payload + 8, length - header_size);
389         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
390                 fw_notify("non-orb related status write, not handled\n");
391                 fw_send_response(card, request, RCODE_COMPLETE);
392                 return;
393         }
394
395         /* Lookup the orb corresponding to this status write. */
396         spin_lock_irqsave(&card->lock, flags);
397         list_for_each_entry(orb, &lu->orb_list, link) {
398                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
399                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
400                         orb->rcode = RCODE_COMPLETE;
401                         list_del(&orb->link);
402                         break;
403                 }
404         }
405         spin_unlock_irqrestore(&card->lock, flags);
406
407         if (&orb->link != &lu->orb_list)
408                 orb->callback(orb, &status);
409         else
410                 fw_error("status write for unknown orb\n");
411
412         kref_put(&orb->kref, free_orb);
413
414         fw_send_response(card, request, RCODE_COMPLETE);
415 }
416
417 static void
418 complete_transaction(struct fw_card *card, int rcode,
419                      void *payload, size_t length, void *data)
420 {
421         struct sbp2_orb *orb = data;
422         unsigned long flags;
423
424         /*
425          * This is a little tricky.  We can get the status write for
426          * the orb before we get this callback.  The status write
427          * handler above will assume the orb pointer transaction was
428          * successful and set the rcode to RCODE_COMPLETE for the orb.
429          * So this callback only sets the rcode if it hasn't already
430          * been set and only does the cleanup if the transaction
431          * failed and we didn't already get a status write.
432          */
433         spin_lock_irqsave(&card->lock, flags);
434
435         if (orb->rcode == -1)
436                 orb->rcode = rcode;
437         if (orb->rcode != RCODE_COMPLETE) {
438                 list_del(&orb->link);
439                 spin_unlock_irqrestore(&card->lock, flags);
440                 orb->callback(orb, NULL);
441         } else {
442                 spin_unlock_irqrestore(&card->lock, flags);
443         }
444
445         kref_put(&orb->kref, free_orb);
446 }
447
448 static void
449 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
450               int node_id, int generation, u64 offset)
451 {
452         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
453         unsigned long flags;
454
455         orb->pointer.high = 0;
456         orb->pointer.low = orb->request_bus;
457         fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
458
459         spin_lock_irqsave(&device->card->lock, flags);
460         list_add_tail(&orb->link, &lu->orb_list);
461         spin_unlock_irqrestore(&device->card->lock, flags);
462
463         /* Take a ref for the orb list and for the transaction callback. */
464         kref_get(&orb->kref);
465         kref_get(&orb->kref);
466
467         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
468                         node_id, generation, device->max_speed, offset,
469                         &orb->pointer, sizeof(orb->pointer),
470                         complete_transaction, orb);
471 }
472
473 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
474 {
475         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
476         struct sbp2_orb *orb, *next;
477         struct list_head list;
478         unsigned long flags;
479         int retval = -ENOENT;
480
481         INIT_LIST_HEAD(&list);
482         spin_lock_irqsave(&device->card->lock, flags);
483         list_splice_init(&lu->orb_list, &list);
484         spin_unlock_irqrestore(&device->card->lock, flags);
485
486         list_for_each_entry_safe(orb, next, &list, link) {
487                 retval = 0;
488                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
489                         continue;
490
491                 orb->rcode = RCODE_CANCELLED;
492                 orb->callback(orb, NULL);
493         }
494
495         return retval;
496 }
497
498 static void
499 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
500 {
501         struct sbp2_management_orb *orb =
502                 container_of(base_orb, struct sbp2_management_orb, base);
503
504         if (status)
505                 memcpy(&orb->status, status, sizeof(*status));
506         complete(&orb->done);
507 }
508
509 static int
510 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
511                          int generation, int function, int lun_or_login_id,
512                          void *response)
513 {
514         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
515         struct sbp2_management_orb *orb;
516         unsigned int timeout;
517         int retval = -ENOMEM;
518
519         if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
520                 return 0;
521
522         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
523         if (orb == NULL)
524                 return -ENOMEM;
525
526         kref_init(&orb->base.kref);
527         orb->response_bus =
528                 dma_map_single(device->card->device, &orb->response,
529                                sizeof(orb->response), DMA_FROM_DEVICE);
530         if (dma_mapping_error(orb->response_bus))
531                 goto fail_mapping_response;
532
533         orb->request.response.high    = 0;
534         orb->request.response.low     = orb->response_bus;
535
536         orb->request.misc =
537                 MANAGEMENT_ORB_NOTIFY |
538                 MANAGEMENT_ORB_FUNCTION(function) |
539                 MANAGEMENT_ORB_LUN(lun_or_login_id);
540         orb->request.length =
541                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
542
543         orb->request.status_fifo.high = lu->address_handler.offset >> 32;
544         orb->request.status_fifo.low  = lu->address_handler.offset;
545
546         if (function == SBP2_LOGIN_REQUEST) {
547                 /* Ask for 2^2 == 4 seconds reconnect grace period */
548                 orb->request.misc |=
549                         MANAGEMENT_ORB_RECONNECT(2) |
550                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
551                 timeout = lu->tgt->mgt_orb_timeout;
552         } else {
553                 timeout = SBP2_ORB_TIMEOUT;
554         }
555
556         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
557
558         init_completion(&orb->done);
559         orb->base.callback = complete_management_orb;
560
561         orb->base.request_bus =
562                 dma_map_single(device->card->device, &orb->request,
563                                sizeof(orb->request), DMA_TO_DEVICE);
564         if (dma_mapping_error(orb->base.request_bus))
565                 goto fail_mapping_request;
566
567         sbp2_send_orb(&orb->base, lu, node_id, generation,
568                       lu->tgt->management_agent_address);
569
570         wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
571
572         retval = -EIO;
573         if (sbp2_cancel_orbs(lu) == 0) {
574                 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
575                          lu->tgt->bus_id, orb->base.rcode);
576                 goto out;
577         }
578
579         if (orb->base.rcode != RCODE_COMPLETE) {
580                 fw_error("%s: management write failed, rcode 0x%02x\n",
581                          lu->tgt->bus_id, orb->base.rcode);
582                 goto out;
583         }
584
585         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
586             STATUS_GET_SBP_STATUS(orb->status) != 0) {
587                 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
588                          STATUS_GET_RESPONSE(orb->status),
589                          STATUS_GET_SBP_STATUS(orb->status));
590                 goto out;
591         }
592
593         retval = 0;
594  out:
595         dma_unmap_single(device->card->device, orb->base.request_bus,
596                          sizeof(orb->request), DMA_TO_DEVICE);
597  fail_mapping_request:
598         dma_unmap_single(device->card->device, orb->response_bus,
599                          sizeof(orb->response), DMA_FROM_DEVICE);
600  fail_mapping_response:
601         if (response)
602                 fw_memcpy_from_be32(response,
603                                     orb->response, sizeof(orb->response));
604         kref_put(&orb->base.kref, free_orb);
605
606         return retval;
607 }
608
609 static void
610 complete_agent_reset_write(struct fw_card *card, int rcode,
611                            void *payload, size_t length, void *done)
612 {
613         complete(done);
614 }
615
616 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
617 {
618         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
619         DECLARE_COMPLETION_ONSTACK(done);
620         struct fw_transaction t;
621         static u32 z;
622
623         fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
624                         lu->tgt->node_id, lu->generation, device->max_speed,
625                         lu->command_block_agent_address + SBP2_AGENT_RESET,
626                         &z, sizeof(z), complete_agent_reset_write, &done);
627         wait_for_completion(&done);
628 }
629
630 static void
631 complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
632                                    void *payload, size_t length, void *data)
633 {
634         kfree(data);
635 }
636
637 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
638 {
639         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
640         struct fw_transaction *t;
641         static u32 z;
642
643         t = kmalloc(sizeof(*t), GFP_ATOMIC);
644         if (t == NULL)
645                 return;
646
647         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
648                         lu->tgt->node_id, lu->generation, device->max_speed,
649                         lu->command_block_agent_address + SBP2_AGENT_RESET,
650                         &z, sizeof(z), complete_agent_reset_write_no_wait, t);
651 }
652
653 static void sbp2_set_generation(struct sbp2_logical_unit *lu, int generation)
654 {
655         struct fw_card *card = fw_device(lu->tgt->unit->device.parent)->card;
656         unsigned long flags;
657
658         /* serialize with comparisons of lu->generation and card->generation */
659         spin_lock_irqsave(&card->lock, flags);
660         lu->generation = generation;
661         spin_unlock_irqrestore(&card->lock, flags);
662 }
663
664 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
665 {
666         /*
667          * We may access dont_block without taking card->lock here:
668          * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
669          * are currently serialized against each other.
670          * And a wrong result in sbp2_conditionally_block()'s access of
671          * dont_block is rather harmless, it simply misses its first chance.
672          */
673         --lu->tgt->dont_block;
674 }
675
676 /*
677  * Blocks lu->tgt if all of the following conditions are met:
678  *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
679  *     logical units have been finished (indicated by dont_block == 0).
680  *   - lu->generation is stale.
681  *
682  * Note, scsi_block_requests() must be called while holding card->lock,
683  * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
684  * unblock the target.
685  */
686 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
687 {
688         struct sbp2_target *tgt = lu->tgt;
689         struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
690         struct Scsi_Host *shost =
691                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
692         unsigned long flags;
693
694         spin_lock_irqsave(&card->lock, flags);
695         if (!tgt->dont_block && !lu->blocked &&
696             lu->generation != card->generation) {
697                 lu->blocked = true;
698                 if (++tgt->blocked == 1) {
699                         scsi_block_requests(shost);
700                         fw_notify("blocked %s\n", lu->tgt->bus_id);
701                 }
702         }
703         spin_unlock_irqrestore(&card->lock, flags);
704 }
705
706 /*
707  * Unblocks lu->tgt as soon as all its logical units can be unblocked.
708  * Note, it is harmless to run scsi_unblock_requests() outside the
709  * card->lock protected section.  On the other hand, running it inside
710  * the section might clash with shost->host_lock.
711  */
712 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
713 {
714         struct sbp2_target *tgt = lu->tgt;
715         struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
716         struct Scsi_Host *shost =
717                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
718         unsigned long flags;
719         bool unblock = false;
720
721         spin_lock_irqsave(&card->lock, flags);
722         if (lu->blocked && lu->generation == card->generation) {
723                 lu->blocked = false;
724                 unblock = --tgt->blocked == 0;
725         }
726         spin_unlock_irqrestore(&card->lock, flags);
727
728         if (unblock) {
729                 scsi_unblock_requests(shost);
730                 fw_notify("unblocked %s\n", lu->tgt->bus_id);
731         }
732 }
733
734 /*
735  * Prevents future blocking of tgt and unblocks it.
736  * Note, it is harmless to run scsi_unblock_requests() outside the
737  * card->lock protected section.  On the other hand, running it inside
738  * the section might clash with shost->host_lock.
739  */
740 static void sbp2_unblock(struct sbp2_target *tgt)
741 {
742         struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
743         struct Scsi_Host *shost =
744                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
745         unsigned long flags;
746
747         spin_lock_irqsave(&card->lock, flags);
748         ++tgt->dont_block;
749         spin_unlock_irqrestore(&card->lock, flags);
750
751         scsi_unblock_requests(shost);
752 }
753
754 static int sbp2_lun2int(u16 lun)
755 {
756         struct scsi_lun eight_bytes_lun;
757
758         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
759         eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
760         eight_bytes_lun.scsi_lun[1] = lun & 0xff;
761
762         return scsilun_to_int(&eight_bytes_lun);
763 }
764
765 static void sbp2_release_target(struct kref *kref)
766 {
767         struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
768         struct sbp2_logical_unit *lu, *next;
769         struct Scsi_Host *shost =
770                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
771         struct scsi_device *sdev;
772
773         /* prevent deadlocks */
774         sbp2_unblock(tgt);
775
776         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
777                 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
778                 if (sdev) {
779                         scsi_remove_device(sdev);
780                         scsi_device_put(sdev);
781                 }
782                 sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
783                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
784
785                 fw_core_remove_address_handler(&lu->address_handler);
786                 list_del(&lu->link);
787                 kfree(lu);
788         }
789         scsi_remove_host(shost);
790         fw_notify("released %s\n", tgt->bus_id);
791
792         put_device(&tgt->unit->device);
793         scsi_host_put(shost);
794 }
795
796 static struct workqueue_struct *sbp2_wq;
797
798 /*
799  * Always get the target's kref when scheduling work on one its units.
800  * Each workqueue job is responsible to call sbp2_target_put() upon return.
801  */
802 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
803 {
804         if (queue_delayed_work(sbp2_wq, &lu->work, delay))
805                 kref_get(&lu->tgt->kref);
806 }
807
808 static void sbp2_target_put(struct sbp2_target *tgt)
809 {
810         kref_put(&tgt->kref, sbp2_release_target);
811 }
812
813 static void sbp2_reconnect(struct work_struct *work);
814
815 static void sbp2_login(struct work_struct *work)
816 {
817         struct sbp2_logical_unit *lu =
818                 container_of(work, struct sbp2_logical_unit, work.work);
819         struct sbp2_target *tgt = lu->tgt;
820         struct fw_device *device = fw_device(tgt->unit->device.parent);
821         struct Scsi_Host *shost;
822         struct scsi_device *sdev;
823         struct sbp2_login_response response;
824         int generation, node_id, local_node_id;
825
826         if (fw_device_is_shutdown(device))
827                 goto out;
828
829         generation    = device->generation;
830         smp_rmb();    /* node_id must not be older than generation */
831         node_id       = device->node_id;
832         local_node_id = device->card->node_id;
833
834         /* If this is a re-login attempt, log out, or we might be rejected. */
835         if (lu->has_sdev)
836                 sbp2_send_management_orb(lu, device->node_id, generation,
837                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
838
839         if (sbp2_send_management_orb(lu, node_id, generation,
840                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
841                 if (lu->retries++ < 5) {
842                         sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
843                 } else {
844                         fw_error("%s: failed to login to LUN %04x\n",
845                                  tgt->bus_id, lu->lun);
846                         /* Let any waiting I/O fail from now on. */
847                         sbp2_unblock(lu->tgt);
848                 }
849                 goto out;
850         }
851
852         tgt->node_id      = node_id;
853         tgt->address_high = local_node_id << 16;
854         sbp2_set_generation(lu, generation);
855
856         /* Get command block agent offset and login id. */
857         lu->command_block_agent_address =
858                 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
859                 response.command_block_agent.low;
860         lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
861
862         fw_notify("%s: logged in to LUN %04x (%d retries)\n",
863                   tgt->bus_id, lu->lun, lu->retries);
864
865 #if 0
866         /* FIXME: The linux1394 sbp2 does this last step. */
867         sbp2_set_busy_timeout(scsi_id);
868 #endif
869
870         PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
871         sbp2_agent_reset(lu);
872
873         /* This was a re-login. */
874         if (lu->has_sdev) {
875                 sbp2_cancel_orbs(lu);
876                 sbp2_conditionally_unblock(lu);
877                 goto out;
878         }
879
880         if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
881                 ssleep(SBP2_INQUIRY_DELAY);
882
883         shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
884         sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
885         /*
886          * FIXME:  We are unable to perform reconnects while in sbp2_login().
887          * Therefore __scsi_add_device() will get into trouble if a bus reset
888          * happens in parallel.  It will either fail or leave us with an
889          * unusable sdev.  As a workaround we check for this and retry the
890          * whole login and SCSI probing.
891          */
892
893         /* Reported error during __scsi_add_device() */
894         if (IS_ERR(sdev))
895                 goto out_logout_login;
896
897         /* Unreported error during __scsi_add_device() */
898         smp_rmb(); /* get current card generation */
899         if (generation != device->card->generation) {
900                 scsi_remove_device(sdev);
901                 scsi_device_put(sdev);
902                 goto out_logout_login;
903         }
904
905         /* No error during __scsi_add_device() */
906         lu->has_sdev = true;
907         scsi_device_put(sdev);
908         sbp2_allow_block(lu);
909         goto out;
910
911  out_logout_login:
912         smp_rmb(); /* generation may have changed */
913         generation = device->generation;
914         smp_rmb(); /* node_id must not be older than generation */
915
916         sbp2_send_management_orb(lu, device->node_id, generation,
917                                  SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
918         /*
919          * If a bus reset happened, sbp2_update will have requeued
920          * lu->work already.  Reset the work from reconnect to login.
921          */
922         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
923  out:
924         sbp2_target_put(tgt);
925 }
926
927 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
928 {
929         struct sbp2_logical_unit *lu;
930
931         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
932         if (!lu)
933                 return -ENOMEM;
934
935         lu->address_handler.length           = 0x100;
936         lu->address_handler.address_callback = sbp2_status_write;
937         lu->address_handler.callback_data    = lu;
938
939         if (fw_core_add_address_handler(&lu->address_handler,
940                                         &fw_high_memory_region) < 0) {
941                 kfree(lu);
942                 return -ENOMEM;
943         }
944
945         lu->tgt      = tgt;
946         lu->lun      = lun_entry & 0xffff;
947         lu->retries  = 0;
948         lu->has_sdev = false;
949         lu->blocked  = false;
950         ++tgt->dont_block;
951         INIT_LIST_HEAD(&lu->orb_list);
952         INIT_DELAYED_WORK(&lu->work, sbp2_login);
953
954         list_add_tail(&lu->link, &tgt->lu_list);
955         return 0;
956 }
957
958 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
959 {
960         struct fw_csr_iterator ci;
961         int key, value;
962
963         fw_csr_iterator_init(&ci, directory);
964         while (fw_csr_iterator_next(&ci, &key, &value))
965                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
966                     sbp2_add_logical_unit(tgt, value) < 0)
967                         return -ENOMEM;
968         return 0;
969 }
970
971 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
972                               u32 *model, u32 *firmware_revision)
973 {
974         struct fw_csr_iterator ci;
975         int key, value;
976         unsigned int timeout;
977
978         fw_csr_iterator_init(&ci, directory);
979         while (fw_csr_iterator_next(&ci, &key, &value)) {
980                 switch (key) {
981
982                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
983                         tgt->management_agent_address =
984                                         CSR_REGISTER_BASE + 4 * value;
985                         break;
986
987                 case CSR_DIRECTORY_ID:
988                         tgt->directory_id = value;
989                         break;
990
991                 case CSR_MODEL:
992                         *model = value;
993                         break;
994
995                 case SBP2_CSR_FIRMWARE_REVISION:
996                         *firmware_revision = value;
997                         break;
998
999                 case SBP2_CSR_UNIT_CHARACTERISTICS:
1000                         /* the timeout value is stored in 500ms units */
1001                         timeout = ((unsigned int) value >> 8 & 0xff) * 500;
1002                         timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
1003                         tgt->mgt_orb_timeout =
1004                                   min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
1005
1006                         if (timeout > tgt->mgt_orb_timeout)
1007                                 fw_notify("%s: config rom contains %ds "
1008                                           "management ORB timeout, limiting "
1009                                           "to %ds\n", tgt->bus_id,
1010                                           timeout / 1000,
1011                                           tgt->mgt_orb_timeout / 1000);
1012                         break;
1013
1014                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1015                         if (sbp2_add_logical_unit(tgt, value) < 0)
1016                                 return -ENOMEM;
1017                         break;
1018
1019                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1020                         if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
1021                                 return -ENOMEM;
1022                         break;
1023                 }
1024         }
1025         return 0;
1026 }
1027
1028 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1029                                   u32 firmware_revision)
1030 {
1031         int i;
1032         unsigned int w = sbp2_param_workarounds;
1033
1034         if (w)
1035                 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1036                           "if you need the workarounds parameter for %s\n",
1037                           tgt->bus_id);
1038
1039         if (w & SBP2_WORKAROUND_OVERRIDE)
1040                 goto out;
1041
1042         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1043
1044                 if (sbp2_workarounds_table[i].firmware_revision !=
1045                     (firmware_revision & 0xffffff00))
1046                         continue;
1047
1048                 if (sbp2_workarounds_table[i].model != model &&
1049                     sbp2_workarounds_table[i].model != ~0)
1050                         continue;
1051
1052                 w |= sbp2_workarounds_table[i].workarounds;
1053                 break;
1054         }
1055  out:
1056         if (w)
1057                 fw_notify("Workarounds for %s: 0x%x "
1058                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1059                           tgt->bus_id, w, firmware_revision, model);
1060         tgt->workarounds = w;
1061 }
1062
1063 static struct scsi_host_template scsi_driver_template;
1064
1065 static int sbp2_probe(struct device *dev)
1066 {
1067         struct fw_unit *unit = fw_unit(dev);
1068         struct fw_device *device = fw_device(unit->device.parent);
1069         struct sbp2_target *tgt;
1070         struct sbp2_logical_unit *lu;
1071         struct Scsi_Host *shost;
1072         u32 model, firmware_revision;
1073
1074         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1075         if (shost == NULL)
1076                 return -ENOMEM;
1077
1078         tgt = (struct sbp2_target *)shost->hostdata;
1079         unit->device.driver_data = tgt;
1080         tgt->unit = unit;
1081         kref_init(&tgt->kref);
1082         INIT_LIST_HEAD(&tgt->lu_list);
1083         tgt->bus_id = unit->device.bus_id;
1084
1085         if (fw_device_enable_phys_dma(device) < 0)
1086                 goto fail_shost_put;
1087
1088         if (scsi_add_host(shost, &unit->device) < 0)
1089                 goto fail_shost_put;
1090
1091         /* Initialize to values that won't match anything in our table. */
1092         firmware_revision = 0xff000000;
1093         model = 0xff000000;
1094
1095         /* implicit directory ID */
1096         tgt->directory_id = ((unit->directory - device->config_rom) * 4
1097                              + CSR_CONFIG_ROM) & 0xffffff;
1098
1099         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1100                                &firmware_revision) < 0)
1101                 goto fail_tgt_put;
1102
1103         sbp2_init_workarounds(tgt, model, firmware_revision);
1104
1105         get_device(&unit->device);
1106
1107         /* Do the login in a workqueue so we can easily reschedule retries. */
1108         list_for_each_entry(lu, &tgt->lu_list, link)
1109                 sbp2_queue_work(lu, 0);
1110         return 0;
1111
1112  fail_tgt_put:
1113         sbp2_target_put(tgt);
1114         return -ENOMEM;
1115
1116  fail_shost_put:
1117         scsi_host_put(shost);
1118         return -ENOMEM;
1119 }
1120
1121 static int sbp2_remove(struct device *dev)
1122 {
1123         struct fw_unit *unit = fw_unit(dev);
1124         struct sbp2_target *tgt = unit->device.driver_data;
1125
1126         sbp2_target_put(tgt);
1127         return 0;
1128 }
1129
1130 static void sbp2_reconnect(struct work_struct *work)
1131 {
1132         struct sbp2_logical_unit *lu =
1133                 container_of(work, struct sbp2_logical_unit, work.work);
1134         struct sbp2_target *tgt = lu->tgt;
1135         struct fw_device *device = fw_device(tgt->unit->device.parent);
1136         int generation, node_id, local_node_id;
1137
1138         if (fw_device_is_shutdown(device))
1139                 goto out;
1140
1141         generation    = device->generation;
1142         smp_rmb();    /* node_id must not be older than generation */
1143         node_id       = device->node_id;
1144         local_node_id = device->card->node_id;
1145
1146         if (sbp2_send_management_orb(lu, node_id, generation,
1147                                      SBP2_RECONNECT_REQUEST,
1148                                      lu->login_id, NULL) < 0) {
1149                 /*
1150                  * If reconnect was impossible even though we are in the
1151                  * current generation, fall back and try to log in again.
1152                  *
1153                  * We could check for "Function rejected" status, but
1154                  * looking at the bus generation as simpler and more general.
1155                  */
1156                 smp_rmb(); /* get current card generation */
1157                 if (generation == device->card->generation ||
1158                     lu->retries++ >= 5) {
1159                         fw_error("%s: failed to reconnect\n", tgt->bus_id);
1160                         lu->retries = 0;
1161                         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1162                 }
1163                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1164                 goto out;
1165         }
1166
1167         tgt->node_id      = node_id;
1168         tgt->address_high = local_node_id << 16;
1169         sbp2_set_generation(lu, generation);
1170
1171         fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1172                   tgt->bus_id, lu->lun, lu->retries);
1173
1174         sbp2_agent_reset(lu);
1175         sbp2_cancel_orbs(lu);
1176         sbp2_conditionally_unblock(lu);
1177  out:
1178         sbp2_target_put(tgt);
1179 }
1180
1181 static void sbp2_update(struct fw_unit *unit)
1182 {
1183         struct sbp2_target *tgt = unit->device.driver_data;
1184         struct sbp2_logical_unit *lu;
1185
1186         fw_device_enable_phys_dma(fw_device(unit->device.parent));
1187
1188         /*
1189          * Fw-core serializes sbp2_update() against sbp2_remove().
1190          * Iteration over tgt->lu_list is therefore safe here.
1191          */
1192         list_for_each_entry(lu, &tgt->lu_list, link) {
1193                 sbp2_conditionally_block(lu);
1194                 lu->retries = 0;
1195                 sbp2_queue_work(lu, 0);
1196         }
1197 }
1198
1199 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1200 #define SBP2_SW_VERSION_ENTRY   0x00010483
1201
1202 static const struct fw_device_id sbp2_id_table[] = {
1203         {
1204                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
1205                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1206                 .version      = SBP2_SW_VERSION_ENTRY,
1207         },
1208         { }
1209 };
1210
1211 static struct fw_driver sbp2_driver = {
1212         .driver   = {
1213                 .owner  = THIS_MODULE,
1214                 .name   = sbp2_driver_name,
1215                 .bus    = &fw_bus_type,
1216                 .probe  = sbp2_probe,
1217                 .remove = sbp2_remove,
1218         },
1219         .update   = sbp2_update,
1220         .id_table = sbp2_id_table,
1221 };
1222
1223 static unsigned int
1224 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1225 {
1226         int sam_status;
1227
1228         sense_data[0] = 0x70;
1229         sense_data[1] = 0x0;
1230         sense_data[2] = sbp2_status[1];
1231         sense_data[3] = sbp2_status[4];
1232         sense_data[4] = sbp2_status[5];
1233         sense_data[5] = sbp2_status[6];
1234         sense_data[6] = sbp2_status[7];
1235         sense_data[7] = 10;
1236         sense_data[8] = sbp2_status[8];
1237         sense_data[9] = sbp2_status[9];
1238         sense_data[10] = sbp2_status[10];
1239         sense_data[11] = sbp2_status[11];
1240         sense_data[12] = sbp2_status[2];
1241         sense_data[13] = sbp2_status[3];
1242         sense_data[14] = sbp2_status[12];
1243         sense_data[15] = sbp2_status[13];
1244
1245         sam_status = sbp2_status[0] & 0x3f;
1246
1247         switch (sam_status) {
1248         case SAM_STAT_GOOD:
1249         case SAM_STAT_CHECK_CONDITION:
1250         case SAM_STAT_CONDITION_MET:
1251         case SAM_STAT_BUSY:
1252         case SAM_STAT_RESERVATION_CONFLICT:
1253         case SAM_STAT_COMMAND_TERMINATED:
1254                 return DID_OK << 16 | sam_status;
1255
1256         default:
1257                 return DID_ERROR << 16;
1258         }
1259 }
1260
1261 static void
1262 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1263 {
1264         struct sbp2_command_orb *orb =
1265                 container_of(base_orb, struct sbp2_command_orb, base);
1266         struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1267         int result;
1268
1269         if (status != NULL) {
1270                 if (STATUS_GET_DEAD(*status))
1271                         sbp2_agent_reset_no_wait(orb->lu);
1272
1273                 switch (STATUS_GET_RESPONSE(*status)) {
1274                 case SBP2_STATUS_REQUEST_COMPLETE:
1275                         result = DID_OK << 16;
1276                         break;
1277                 case SBP2_STATUS_TRANSPORT_FAILURE:
1278                         result = DID_BUS_BUSY << 16;
1279                         break;
1280                 case SBP2_STATUS_ILLEGAL_REQUEST:
1281                 case SBP2_STATUS_VENDOR_DEPENDENT:
1282                 default:
1283                         result = DID_ERROR << 16;
1284                         break;
1285                 }
1286
1287                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1288                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1289                                                            orb->cmd->sense_buffer);
1290         } else {
1291                 /*
1292                  * If the orb completes with status == NULL, something
1293                  * went wrong, typically a bus reset happened mid-orb
1294                  * or when sending the write (less likely).
1295                  */
1296                 result = DID_BUS_BUSY << 16;
1297                 sbp2_conditionally_block(orb->lu);
1298         }
1299
1300         dma_unmap_single(device->card->device, orb->base.request_bus,
1301                          sizeof(orb->request), DMA_TO_DEVICE);
1302
1303         if (scsi_sg_count(orb->cmd) > 0)
1304                 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1305                              scsi_sg_count(orb->cmd),
1306                              orb->cmd->sc_data_direction);
1307
1308         if (orb->page_table_bus != 0)
1309                 dma_unmap_single(device->card->device, orb->page_table_bus,
1310                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1311
1312         orb->cmd->result = result;
1313         orb->done(orb->cmd);
1314 }
1315
1316 static int
1317 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1318                      struct sbp2_logical_unit *lu)
1319 {
1320         struct scatterlist *sg;
1321         int sg_len, l, i, j, count;
1322         dma_addr_t sg_addr;
1323
1324         sg = scsi_sglist(orb->cmd);
1325         count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1326                            orb->cmd->sc_data_direction);
1327         if (count == 0)
1328                 goto fail;
1329
1330         /*
1331          * Handle the special case where there is only one element in
1332          * the scatter list by converting it to an immediate block
1333          * request. This is also a workaround for broken devices such
1334          * as the second generation iPod which doesn't support page
1335          * tables.
1336          */
1337         if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1338                 orb->request.data_descriptor.high = lu->tgt->address_high;
1339                 orb->request.data_descriptor.low  = sg_dma_address(sg);
1340                 orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1341                 return 0;
1342         }
1343
1344         /*
1345          * Convert the scatterlist to an sbp2 page table.  If any
1346          * scatterlist entries are too big for sbp2, we split them as we
1347          * go.  Even if we ask the block I/O layer to not give us sg
1348          * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1349          * during DMA mapping, and Linux currently doesn't prevent this.
1350          */
1351         for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
1352                 sg_len = sg_dma_len(sg);
1353                 sg_addr = sg_dma_address(sg);
1354                 while (sg_len) {
1355                         /* FIXME: This won't get us out of the pinch. */
1356                         if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1357                                 fw_error("page table overflow\n");
1358                                 goto fail_page_table;
1359                         }
1360                         l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1361                         orb->page_table[j].low = sg_addr;
1362                         orb->page_table[j].high = (l << 16);
1363                         sg_addr += l;
1364                         sg_len -= l;
1365                         j++;
1366                 }
1367         }
1368
1369         fw_memcpy_to_be32(orb->page_table, orb->page_table,
1370                           sizeof(orb->page_table[0]) * j);
1371         orb->page_table_bus =
1372                 dma_map_single(device->card->device, orb->page_table,
1373                                sizeof(orb->page_table), DMA_TO_DEVICE);
1374         if (dma_mapping_error(orb->page_table_bus))
1375                 goto fail_page_table;
1376
1377         /*
1378          * The data_descriptor pointer is the one case where we need
1379          * to fill in the node ID part of the address.  All other
1380          * pointers assume that the data referenced reside on the
1381          * initiator (i.e. us), but data_descriptor can refer to data
1382          * on other nodes so we need to put our ID in descriptor.high.
1383          */
1384         orb->request.data_descriptor.high = lu->tgt->address_high;
1385         orb->request.data_descriptor.low  = orb->page_table_bus;
1386         orb->request.misc |=
1387                 COMMAND_ORB_PAGE_TABLE_PRESENT |
1388                 COMMAND_ORB_DATA_SIZE(j);
1389
1390         return 0;
1391
1392  fail_page_table:
1393         dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1394                      orb->cmd->sc_data_direction);
1395  fail:
1396         return -ENOMEM;
1397 }
1398
1399 /* SCSI stack integration */
1400
1401 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1402 {
1403         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1404         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1405         struct sbp2_command_orb *orb;
1406         unsigned int max_payload;
1407         int retval = SCSI_MLQUEUE_HOST_BUSY;
1408
1409         /*
1410          * Bidirectional commands are not yet implemented, and unknown
1411          * transfer direction not handled.
1412          */
1413         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1414                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1415                 cmd->result = DID_ERROR << 16;
1416                 done(cmd);
1417                 return 0;
1418         }
1419
1420         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1421         if (orb == NULL) {
1422                 fw_notify("failed to alloc orb\n");
1423                 return SCSI_MLQUEUE_HOST_BUSY;
1424         }
1425
1426         /* Initialize rcode to something not RCODE_COMPLETE. */
1427         orb->base.rcode = -1;
1428         kref_init(&orb->base.kref);
1429
1430         orb->lu   = lu;
1431         orb->done = done;
1432         orb->cmd  = cmd;
1433
1434         orb->request.next.high   = SBP2_ORB_NULL;
1435         orb->request.next.low    = 0x0;
1436         /*
1437          * At speed 100 we can do 512 bytes per packet, at speed 200,
1438          * 1024 bytes per packet etc.  The SBP-2 max_payload field
1439          * specifies the max payload size as 2 ^ (max_payload + 2), so
1440          * if we set this to max_speed + 7, we get the right value.
1441          */
1442         max_payload = min(device->max_speed + 7,
1443                           device->card->max_receive - 1);
1444         orb->request.misc =
1445                 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1446                 COMMAND_ORB_SPEED(device->max_speed) |
1447                 COMMAND_ORB_NOTIFY;
1448
1449         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1450                 orb->request.misc |=
1451                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1452         else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1453                 orb->request.misc |=
1454                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1455
1456         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1457                 goto out;
1458
1459         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1460
1461         memset(orb->request.command_block,
1462                0, sizeof(orb->request.command_block));
1463         memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1464
1465         orb->base.callback = complete_command_orb;
1466         orb->base.request_bus =
1467                 dma_map_single(device->card->device, &orb->request,
1468                                sizeof(orb->request), DMA_TO_DEVICE);
1469         if (dma_mapping_error(orb->base.request_bus))
1470                 goto out;
1471
1472         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1473                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1474         retval = 0;
1475  out:
1476         kref_put(&orb->base.kref, free_orb);
1477         return retval;
1478 }
1479
1480 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1481 {
1482         struct sbp2_logical_unit *lu = sdev->hostdata;
1483
1484         /* (Re-)Adding logical units via the SCSI stack is not supported. */
1485         if (!lu)
1486                 return -ENOSYS;
1487
1488         sdev->allow_restart = 1;
1489
1490         /*
1491          * Update the dma alignment (minimum alignment requirements for
1492          * start and end of DMA transfers) to be a sector
1493          */
1494         blk_queue_update_dma_alignment(sdev->request_queue, 511);
1495
1496         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1497                 sdev->inquiry_len = 36;
1498
1499         return 0;
1500 }
1501
1502 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1503 {
1504         struct sbp2_logical_unit *lu = sdev->hostdata;
1505
1506         sdev->use_10_for_rw = 1;
1507
1508         if (sdev->type == TYPE_ROM)
1509                 sdev->use_10_for_ms = 1;
1510
1511         if (sdev->type == TYPE_DISK &&
1512             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1513                 sdev->skip_ms_page_8 = 1;
1514
1515         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1516                 sdev->fix_capacity = 1;
1517
1518         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1519                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1520
1521         return 0;
1522 }
1523
1524 /*
1525  * Called by scsi stack when something has really gone wrong.  Usually
1526  * called when a command has timed-out for some reason.
1527  */
1528 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1529 {
1530         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1531
1532         fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1533         sbp2_agent_reset(lu);
1534         sbp2_cancel_orbs(lu);
1535
1536         return SUCCESS;
1537 }
1538
1539 /*
1540  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1541  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1542  *
1543  * This is the concatenation of target port identifier and logical unit
1544  * identifier as per SAM-2...SAM-4 annex A.
1545  */
1546 static ssize_t
1547 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1548                             char *buf)
1549 {
1550         struct scsi_device *sdev = to_scsi_device(dev);
1551         struct sbp2_logical_unit *lu;
1552         struct fw_device *device;
1553
1554         if (!sdev)
1555                 return 0;
1556
1557         lu = sdev->hostdata;
1558         device = fw_device(lu->tgt->unit->device.parent);
1559
1560         return sprintf(buf, "%08x%08x:%06x:%04x\n",
1561                         device->config_rom[3], device->config_rom[4],
1562                         lu->tgt->directory_id, lu->lun);
1563 }
1564
1565 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1566
1567 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1568         &dev_attr_ieee1394_id,
1569         NULL
1570 };
1571
1572 static struct scsi_host_template scsi_driver_template = {
1573         .module                 = THIS_MODULE,
1574         .name                   = "SBP-2 IEEE-1394",
1575         .proc_name              = sbp2_driver_name,
1576         .queuecommand           = sbp2_scsi_queuecommand,
1577         .slave_alloc            = sbp2_scsi_slave_alloc,
1578         .slave_configure        = sbp2_scsi_slave_configure,
1579         .eh_abort_handler       = sbp2_scsi_abort,
1580         .this_id                = -1,
1581         .sg_tablesize           = SG_ALL,
1582         .use_clustering         = ENABLE_CLUSTERING,
1583         .cmd_per_lun            = 1,
1584         .can_queue              = 1,
1585         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1586 };
1587
1588 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1589 MODULE_DESCRIPTION("SCSI over IEEE1394");
1590 MODULE_LICENSE("GPL");
1591 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1592
1593 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1594 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1595 MODULE_ALIAS("sbp2");
1596 #endif
1597
1598 static int __init sbp2_init(void)
1599 {
1600         sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1601         if (!sbp2_wq)
1602                 return -ENOMEM;
1603
1604         return driver_register(&sbp2_driver.driver);
1605 }
1606
1607 static void __exit sbp2_cleanup(void)
1608 {
1609         driver_unregister(&sbp2_driver.driver);
1610         destroy_workqueue(sbp2_wq);
1611 }
1612
1613 module_init(sbp2_init);
1614 module_exit(sbp2_cleanup);