x86/mm: Clean up types in xlate_dev_mem_ptr() some more
[cascardo/linux.git] / drivers / gpu / drm / amd / amdkfd / kfd_device_queue_manager.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include <linux/slab.h>
25 #include <linux/list.h>
26 #include <linux/types.h>
27 #include <linux/printk.h>
28 #include <linux/bitops.h>
29 #include <linux/sched.h>
30 #include "kfd_priv.h"
31 #include "kfd_device_queue_manager.h"
32 #include "kfd_mqd_manager.h"
33 #include "cik_regs.h"
34 #include "kfd_kernel_queue.h"
35
36 /* Size of the per-pipe EOP queue */
37 #define CIK_HPD_EOP_BYTES_LOG2 11
38 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
39
40 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
41                                         unsigned int pasid, unsigned int vmid);
42
43 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
44                                         struct queue *q,
45                                         struct qcm_process_device *qpd);
46
47 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
48 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock);
49
50 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
51                                         struct queue *q,
52                                         struct qcm_process_device *qpd);
53
54 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
55                                 unsigned int sdma_queue_id);
56
57 static inline
58 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
59 {
60         if (type == KFD_QUEUE_TYPE_SDMA)
61                 return KFD_MQD_TYPE_SDMA;
62         return KFD_MQD_TYPE_CP;
63 }
64
65 unsigned int get_first_pipe(struct device_queue_manager *dqm)
66 {
67         BUG_ON(!dqm || !dqm->dev);
68         return dqm->dev->shared_resources.first_compute_pipe;
69 }
70
71 unsigned int get_pipes_num(struct device_queue_manager *dqm)
72 {
73         BUG_ON(!dqm || !dqm->dev);
74         return dqm->dev->shared_resources.compute_pipe_count;
75 }
76
77 static inline unsigned int get_pipes_num_cpsch(void)
78 {
79         return PIPE_PER_ME_CP_SCHEDULING;
80 }
81
82 void program_sh_mem_settings(struct device_queue_manager *dqm,
83                                         struct qcm_process_device *qpd)
84 {
85         return dqm->dev->kfd2kgd->program_sh_mem_settings(
86                                                 dqm->dev->kgd, qpd->vmid,
87                                                 qpd->sh_mem_config,
88                                                 qpd->sh_mem_ape1_base,
89                                                 qpd->sh_mem_ape1_limit,
90                                                 qpd->sh_mem_bases);
91 }
92
93 static int allocate_vmid(struct device_queue_manager *dqm,
94                         struct qcm_process_device *qpd,
95                         struct queue *q)
96 {
97         int bit, allocated_vmid;
98
99         if (dqm->vmid_bitmap == 0)
100                 return -ENOMEM;
101
102         bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
103         clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
104
105         /* Kaveri kfd vmid's starts from vmid 8 */
106         allocated_vmid = bit + KFD_VMID_START_OFFSET;
107         pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
108         qpd->vmid = allocated_vmid;
109         q->properties.vmid = allocated_vmid;
110
111         set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
112         program_sh_mem_settings(dqm, qpd);
113
114         return 0;
115 }
116
117 static void deallocate_vmid(struct device_queue_manager *dqm,
118                                 struct qcm_process_device *qpd,
119                                 struct queue *q)
120 {
121         int bit = qpd->vmid - KFD_VMID_START_OFFSET;
122
123         /* Release the vmid mapping */
124         set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
125
126         set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
127         qpd->vmid = 0;
128         q->properties.vmid = 0;
129 }
130
131 static int create_queue_nocpsch(struct device_queue_manager *dqm,
132                                 struct queue *q,
133                                 struct qcm_process_device *qpd,
134                                 int *allocated_vmid)
135 {
136         int retval;
137
138         BUG_ON(!dqm || !q || !qpd || !allocated_vmid);
139
140         pr_debug("kfd: In func %s\n", __func__);
141         print_queue(q);
142
143         mutex_lock(&dqm->lock);
144
145         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
146                 pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
147                                 dqm->total_queue_count);
148                 mutex_unlock(&dqm->lock);
149                 return -EPERM;
150         }
151
152         if (list_empty(&qpd->queues_list)) {
153                 retval = allocate_vmid(dqm, qpd, q);
154                 if (retval != 0) {
155                         mutex_unlock(&dqm->lock);
156                         return retval;
157                 }
158         }
159         *allocated_vmid = qpd->vmid;
160         q->properties.vmid = qpd->vmid;
161
162         if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
163                 retval = create_compute_queue_nocpsch(dqm, q, qpd);
164         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
165                 retval = create_sdma_queue_nocpsch(dqm, q, qpd);
166
167         if (retval != 0) {
168                 if (list_empty(&qpd->queues_list)) {
169                         deallocate_vmid(dqm, qpd, q);
170                         *allocated_vmid = 0;
171                 }
172                 mutex_unlock(&dqm->lock);
173                 return retval;
174         }
175
176         list_add(&q->list, &qpd->queues_list);
177         if (q->properties.is_active)
178                 dqm->queue_count++;
179
180         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
181                 dqm->sdma_queue_count++;
182
183         /*
184          * Unconditionally increment this counter, regardless of the queue's
185          * type or whether the queue is active.
186          */
187         dqm->total_queue_count++;
188         pr_debug("Total of %d queues are accountable so far\n",
189                         dqm->total_queue_count);
190
191         mutex_unlock(&dqm->lock);
192         return 0;
193 }
194
195 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
196 {
197         bool set;
198         int pipe, bit, i;
199
200         set = false;
201
202         for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_num(dqm);
203                         pipe = ((pipe + 1) % get_pipes_num(dqm)), ++i) {
204                 if (dqm->allocated_queues[pipe] != 0) {
205                         bit = find_first_bit(
206                                 (unsigned long *)&dqm->allocated_queues[pipe],
207                                 QUEUES_PER_PIPE);
208
209                         clear_bit(bit,
210                                 (unsigned long *)&dqm->allocated_queues[pipe]);
211                         q->pipe = pipe;
212                         q->queue = bit;
213                         set = true;
214                         break;
215                 }
216         }
217
218         if (set == false)
219                 return -EBUSY;
220
221         pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
222                                 __func__, q->pipe, q->queue);
223         /* horizontal hqd allocation */
224         dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);
225
226         return 0;
227 }
228
229 static inline void deallocate_hqd(struct device_queue_manager *dqm,
230                                 struct queue *q)
231 {
232         set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
233 }
234
235 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
236                                         struct queue *q,
237                                         struct qcm_process_device *qpd)
238 {
239         int retval;
240         struct mqd_manager *mqd;
241
242         BUG_ON(!dqm || !q || !qpd);
243
244         mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
245         if (mqd == NULL)
246                 return -ENOMEM;
247
248         retval = allocate_hqd(dqm, q);
249         if (retval != 0)
250                 return retval;
251
252         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
253                                 &q->gart_mqd_addr, &q->properties);
254         if (retval != 0) {
255                 deallocate_hqd(dqm, q);
256                 return retval;
257         }
258
259         pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
260                         q->pipe,
261                         q->queue);
262
263         retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
264                         q->queue, (uint32_t __user *) q->properties.write_ptr);
265         if (retval != 0) {
266                 deallocate_hqd(dqm, q);
267                 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
268                 return retval;
269         }
270
271         return 0;
272 }
273
274 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
275                                 struct qcm_process_device *qpd,
276                                 struct queue *q)
277 {
278         int retval;
279         struct mqd_manager *mqd;
280
281         BUG_ON(!dqm || !q || !q->mqd || !qpd);
282
283         retval = 0;
284
285         pr_debug("kfd: In Func %s\n", __func__);
286
287         mutex_lock(&dqm->lock);
288
289         if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
290                 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
291                 if (mqd == NULL) {
292                         retval = -ENOMEM;
293                         goto out;
294                 }
295                 deallocate_hqd(dqm, q);
296         } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
297                 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
298                 if (mqd == NULL) {
299                         retval = -ENOMEM;
300                         goto out;
301                 }
302                 dqm->sdma_queue_count--;
303                 deallocate_sdma_queue(dqm, q->sdma_id);
304         } else {
305                 pr_debug("q->properties.type is invalid (%d)\n",
306                                 q->properties.type);
307                 retval = -EINVAL;
308                 goto out;
309         }
310
311         retval = mqd->destroy_mqd(mqd, q->mqd,
312                                 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
313                                 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
314                                 q->pipe, q->queue);
315
316         if (retval != 0)
317                 goto out;
318
319         mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
320
321         list_del(&q->list);
322         if (list_empty(&qpd->queues_list))
323                 deallocate_vmid(dqm, qpd, q);
324         if (q->properties.is_active)
325                 dqm->queue_count--;
326
327         /*
328          * Unconditionally decrement this counter, regardless of the queue's
329          * type
330          */
331         dqm->total_queue_count--;
332         pr_debug("Total of %d queues are accountable so far\n",
333                         dqm->total_queue_count);
334
335 out:
336         mutex_unlock(&dqm->lock);
337         return retval;
338 }
339
340 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
341 {
342         int retval;
343         struct mqd_manager *mqd;
344         bool prev_active = false;
345
346         BUG_ON(!dqm || !q || !q->mqd);
347
348         mutex_lock(&dqm->lock);
349         mqd = dqm->ops.get_mqd_manager(dqm,
350                         get_mqd_type_from_queue_type(q->properties.type));
351         if (mqd == NULL) {
352                 mutex_unlock(&dqm->lock);
353                 return -ENOMEM;
354         }
355
356         if (q->properties.is_active == true)
357                 prev_active = true;
358
359         /*
360          *
361          * check active state vs. the previous state
362          * and modify counter accordingly
363          */
364         retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
365         if ((q->properties.is_active == true) && (prev_active == false))
366                 dqm->queue_count++;
367         else if ((q->properties.is_active == false) && (prev_active == true))
368                 dqm->queue_count--;
369
370         if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
371                 retval = execute_queues_cpsch(dqm, false);
372
373         mutex_unlock(&dqm->lock);
374         return retval;
375 }
376
377 static struct mqd_manager *get_mqd_manager_nocpsch(
378                 struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
379 {
380         struct mqd_manager *mqd;
381
382         BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);
383
384         pr_debug("kfd: In func %s mqd type %d\n", __func__, type);
385
386         mqd = dqm->mqds[type];
387         if (!mqd) {
388                 mqd = mqd_manager_init(type, dqm->dev);
389                 if (mqd == NULL)
390                         pr_err("kfd: mqd manager is NULL");
391                 dqm->mqds[type] = mqd;
392         }
393
394         return mqd;
395 }
396
397 static int register_process_nocpsch(struct device_queue_manager *dqm,
398                                         struct qcm_process_device *qpd)
399 {
400         struct device_process_node *n;
401         int retval;
402
403         BUG_ON(!dqm || !qpd);
404
405         pr_debug("kfd: In func %s\n", __func__);
406
407         n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
408         if (!n)
409                 return -ENOMEM;
410
411         n->qpd = qpd;
412
413         mutex_lock(&dqm->lock);
414         list_add(&n->list, &dqm->queues);
415
416         retval = dqm->ops_asic_specific.register_process(dqm, qpd);
417
418         dqm->processes_count++;
419
420         mutex_unlock(&dqm->lock);
421
422         return retval;
423 }
424
425 static int unregister_process_nocpsch(struct device_queue_manager *dqm,
426                                         struct qcm_process_device *qpd)
427 {
428         int retval;
429         struct device_process_node *cur, *next;
430
431         BUG_ON(!dqm || !qpd);
432
433         BUG_ON(!list_empty(&qpd->queues_list));
434
435         pr_debug("kfd: In func %s\n", __func__);
436
437         retval = 0;
438         mutex_lock(&dqm->lock);
439
440         list_for_each_entry_safe(cur, next, &dqm->queues, list) {
441                 if (qpd == cur->qpd) {
442                         list_del(&cur->list);
443                         kfree(cur);
444                         dqm->processes_count--;
445                         goto out;
446                 }
447         }
448         /* qpd not found in dqm list */
449         retval = 1;
450 out:
451         mutex_unlock(&dqm->lock);
452         return retval;
453 }
454
455 static int
456 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
457                         unsigned int vmid)
458 {
459         uint32_t pasid_mapping;
460
461         pasid_mapping = (pasid == 0) ? 0 :
462                 (uint32_t)pasid |
463                 ATC_VMID_PASID_MAPPING_VALID;
464
465         return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
466                                                 dqm->dev->kgd, pasid_mapping,
467                                                 vmid);
468 }
469
470 int init_pipelines(struct device_queue_manager *dqm,
471                         unsigned int pipes_num, unsigned int first_pipe)
472 {
473         void *hpdptr;
474         struct mqd_manager *mqd;
475         unsigned int i, err, inx;
476         uint64_t pipe_hpd_addr;
477
478         BUG_ON(!dqm || !dqm->dev);
479
480         pr_debug("kfd: In func %s\n", __func__);
481
482         /*
483          * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
484          * The driver never accesses this memory after zeroing it.
485          * It doesn't even have to be saved/restored on suspend/resume
486          * because it contains no data when there are no active queues.
487          */
488
489         err = kfd_gtt_sa_allocate(dqm->dev, CIK_HPD_EOP_BYTES * pipes_num,
490                                         &dqm->pipeline_mem);
491
492         if (err) {
493                 pr_err("kfd: error allocate vidmem num pipes: %d\n",
494                         pipes_num);
495                 return -ENOMEM;
496         }
497
498         hpdptr = dqm->pipeline_mem->cpu_ptr;
499         dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;
500
501         memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);
502
503         mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
504         if (mqd == NULL) {
505                 kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
506                 return -ENOMEM;
507         }
508
509         for (i = 0; i < pipes_num; i++) {
510                 inx = i + first_pipe;
511                 /*
512                  * HPD buffer on GTT is allocated by amdkfd, no need to waste
513                  * space in GTT for pipelines we don't initialize
514                  */
515                 pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
516                 pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
517                 /* = log2(bytes/4)-1 */
518                 dqm->dev->kfd2kgd->init_pipeline(dqm->dev->kgd, inx,
519                                 CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
520         }
521
522         return 0;
523 }
524
525 static int init_scheduler(struct device_queue_manager *dqm)
526 {
527         int retval;
528
529         BUG_ON(!dqm);
530
531         pr_debug("kfd: In %s\n", __func__);
532
533         retval = init_pipelines(dqm, get_pipes_num(dqm), get_first_pipe(dqm));
534         return retval;
535 }
536
537 static int initialize_nocpsch(struct device_queue_manager *dqm)
538 {
539         int i;
540
541         BUG_ON(!dqm);
542
543         pr_debug("kfd: In func %s num of pipes: %d\n",
544                         __func__, get_pipes_num(dqm));
545
546         mutex_init(&dqm->lock);
547         INIT_LIST_HEAD(&dqm->queues);
548         dqm->queue_count = dqm->next_pipe_to_allocate = 0;
549         dqm->sdma_queue_count = 0;
550         dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
551                                         sizeof(unsigned int), GFP_KERNEL);
552         if (!dqm->allocated_queues) {
553                 mutex_destroy(&dqm->lock);
554                 return -ENOMEM;
555         }
556
557         for (i = 0; i < get_pipes_num(dqm); i++)
558                 dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;
559
560         dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
561         dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
562
563         init_scheduler(dqm);
564         return 0;
565 }
566
567 static void uninitialize_nocpsch(struct device_queue_manager *dqm)
568 {
569         int i;
570
571         BUG_ON(!dqm);
572
573         BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
574
575         kfree(dqm->allocated_queues);
576         for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
577                 kfree(dqm->mqds[i]);
578         mutex_destroy(&dqm->lock);
579         kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
580 }
581
582 static int start_nocpsch(struct device_queue_manager *dqm)
583 {
584         return 0;
585 }
586
587 static int stop_nocpsch(struct device_queue_manager *dqm)
588 {
589         return 0;
590 }
591
592 static int allocate_sdma_queue(struct device_queue_manager *dqm,
593                                 unsigned int *sdma_queue_id)
594 {
595         int bit;
596
597         if (dqm->sdma_bitmap == 0)
598                 return -ENOMEM;
599
600         bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap,
601                                 CIK_SDMA_QUEUES);
602
603         clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap);
604         *sdma_queue_id = bit;
605
606         return 0;
607 }
608
609 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
610                                 unsigned int sdma_queue_id)
611 {
612         if (sdma_queue_id >= CIK_SDMA_QUEUES)
613                 return;
614         set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap);
615 }
616
617 static void init_sdma_vm(struct device_queue_manager *dqm, struct queue *q,
618                                 struct qcm_process_device *qpd)
619 {
620         uint32_t value = SDMA_ATC;
621
622         if (q->process->is_32bit_user_mode)
623                 value |= SDMA_VA_PTR32 | get_sh_mem_bases_32(qpd_to_pdd(qpd));
624         else
625                 value |= SDMA_VA_SHARED_BASE(get_sh_mem_bases_nybble_64(
626                                                         qpd_to_pdd(qpd)));
627         q->properties.sdma_vm_addr = value;
628 }
629
630 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
631                                         struct queue *q,
632                                         struct qcm_process_device *qpd)
633 {
634         struct mqd_manager *mqd;
635         int retval;
636
637         mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
638         if (!mqd)
639                 return -ENOMEM;
640
641         retval = allocate_sdma_queue(dqm, &q->sdma_id);
642         if (retval != 0)
643                 return retval;
644
645         q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
646         q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM;
647
648         pr_debug("kfd: sdma id is:    %d\n", q->sdma_id);
649         pr_debug("     sdma queue id: %d\n", q->properties.sdma_queue_id);
650         pr_debug("     sdma engine id: %d\n", q->properties.sdma_engine_id);
651
652         init_sdma_vm(dqm, q, qpd);
653         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
654                                 &q->gart_mqd_addr, &q->properties);
655         if (retval != 0) {
656                 deallocate_sdma_queue(dqm, q->sdma_id);
657                 return retval;
658         }
659
660         retval = mqd->load_mqd(mqd, q->mqd, 0,
661                                 0, NULL);
662         if (retval != 0) {
663                 deallocate_sdma_queue(dqm, q->sdma_id);
664                 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
665                 return retval;
666         }
667
668         return 0;
669 }
670
671 /*
672  * Device Queue Manager implementation for cp scheduler
673  */
674
675 static int set_sched_resources(struct device_queue_manager *dqm)
676 {
677         struct scheduling_resources res;
678         unsigned int queue_num, queue_mask;
679
680         BUG_ON(!dqm);
681
682         pr_debug("kfd: In func %s\n", __func__);
683
684         queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
685         queue_mask = (1 << queue_num) - 1;
686         res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
687         res.vmid_mask <<= KFD_VMID_START_OFFSET;
688         res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
689         res.gws_mask = res.oac_mask = res.gds_heap_base =
690                                                 res.gds_heap_size = 0;
691
692         pr_debug("kfd: scheduling resources:\n"
693                         "      vmid mask: 0x%8X\n"
694                         "      queue mask: 0x%8llX\n",
695                         res.vmid_mask, res.queue_mask);
696
697         return pm_send_set_resources(&dqm->packets, &res);
698 }
699
700 static int initialize_cpsch(struct device_queue_manager *dqm)
701 {
702         int retval;
703
704         BUG_ON(!dqm);
705
706         pr_debug("kfd: In func %s num of pipes: %d\n",
707                         __func__, get_pipes_num_cpsch());
708
709         mutex_init(&dqm->lock);
710         INIT_LIST_HEAD(&dqm->queues);
711         dqm->queue_count = dqm->processes_count = 0;
712         dqm->sdma_queue_count = 0;
713         dqm->active_runlist = false;
714         retval = dqm->ops_asic_specific.initialize(dqm);
715         if (retval != 0)
716                 goto fail_init_pipelines;
717
718         return 0;
719
720 fail_init_pipelines:
721         mutex_destroy(&dqm->lock);
722         return retval;
723 }
724
725 static int start_cpsch(struct device_queue_manager *dqm)
726 {
727         struct device_process_node *node;
728         int retval;
729
730         BUG_ON(!dqm);
731
732         retval = 0;
733
734         retval = pm_init(&dqm->packets, dqm);
735         if (retval != 0)
736                 goto fail_packet_manager_init;
737
738         retval = set_sched_resources(dqm);
739         if (retval != 0)
740                 goto fail_set_sched_resources;
741
742         pr_debug("kfd: allocating fence memory\n");
743
744         /* allocate fence memory on the gart */
745         retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
746                                         &dqm->fence_mem);
747
748         if (retval != 0)
749                 goto fail_allocate_vidmem;
750
751         dqm->fence_addr = dqm->fence_mem->cpu_ptr;
752         dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
753         list_for_each_entry(node, &dqm->queues, list)
754                 if (node->qpd->pqm->process && dqm->dev)
755                         kfd_bind_process_to_device(dqm->dev,
756                                                 node->qpd->pqm->process);
757
758         execute_queues_cpsch(dqm, true);
759
760         return 0;
761 fail_allocate_vidmem:
762 fail_set_sched_resources:
763         pm_uninit(&dqm->packets);
764 fail_packet_manager_init:
765         return retval;
766 }
767
768 static int stop_cpsch(struct device_queue_manager *dqm)
769 {
770         struct device_process_node *node;
771         struct kfd_process_device *pdd;
772
773         BUG_ON(!dqm);
774
775         destroy_queues_cpsch(dqm, true);
776
777         list_for_each_entry(node, &dqm->queues, list) {
778                 pdd = qpd_to_pdd(node->qpd);
779                 pdd->bound = false;
780         }
781         kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
782         pm_uninit(&dqm->packets);
783
784         return 0;
785 }
786
787 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
788                                         struct kernel_queue *kq,
789                                         struct qcm_process_device *qpd)
790 {
791         BUG_ON(!dqm || !kq || !qpd);
792
793         pr_debug("kfd: In func %s\n", __func__);
794
795         mutex_lock(&dqm->lock);
796         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
797                 pr_warn("amdkfd: Can't create new kernel queue because %d queues were already created\n",
798                                 dqm->total_queue_count);
799                 mutex_unlock(&dqm->lock);
800                 return -EPERM;
801         }
802
803         /*
804          * Unconditionally increment this counter, regardless of the queue's
805          * type or whether the queue is active.
806          */
807         dqm->total_queue_count++;
808         pr_debug("Total of %d queues are accountable so far\n",
809                         dqm->total_queue_count);
810
811         list_add(&kq->list, &qpd->priv_queue_list);
812         dqm->queue_count++;
813         qpd->is_debug = true;
814         execute_queues_cpsch(dqm, false);
815         mutex_unlock(&dqm->lock);
816
817         return 0;
818 }
819
820 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
821                                         struct kernel_queue *kq,
822                                         struct qcm_process_device *qpd)
823 {
824         BUG_ON(!dqm || !kq);
825
826         pr_debug("kfd: In %s\n", __func__);
827
828         mutex_lock(&dqm->lock);
829         destroy_queues_cpsch(dqm, false);
830         list_del(&kq->list);
831         dqm->queue_count--;
832         qpd->is_debug = false;
833         execute_queues_cpsch(dqm, false);
834         /*
835          * Unconditionally decrement this counter, regardless of the queue's
836          * type.
837          */
838         dqm->total_queue_count--;
839         pr_debug("Total of %d queues are accountable so far\n",
840                         dqm->total_queue_count);
841         mutex_unlock(&dqm->lock);
842 }
843
844 static void select_sdma_engine_id(struct queue *q)
845 {
846         static int sdma_id;
847
848         q->sdma_id = sdma_id;
849         sdma_id = (sdma_id + 1) % 2;
850 }
851
852 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
853                         struct qcm_process_device *qpd, int *allocate_vmid)
854 {
855         int retval;
856         struct mqd_manager *mqd;
857
858         BUG_ON(!dqm || !q || !qpd);
859
860         retval = 0;
861
862         if (allocate_vmid)
863                 *allocate_vmid = 0;
864
865         mutex_lock(&dqm->lock);
866
867         if (dqm->total_queue_count >= max_num_of_queues_per_device) {
868                 pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
869                                 dqm->total_queue_count);
870                 retval = -EPERM;
871                 goto out;
872         }
873
874         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
875                 select_sdma_engine_id(q);
876
877         mqd = dqm->ops.get_mqd_manager(dqm,
878                         get_mqd_type_from_queue_type(q->properties.type));
879
880         if (mqd == NULL) {
881                 mutex_unlock(&dqm->lock);
882                 return -ENOMEM;
883         }
884
885         retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
886                                 &q->gart_mqd_addr, &q->properties);
887         if (retval != 0)
888                 goto out;
889
890         list_add(&q->list, &qpd->queues_list);
891         if (q->properties.is_active) {
892                 dqm->queue_count++;
893                 retval = execute_queues_cpsch(dqm, false);
894         }
895
896         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
897                         dqm->sdma_queue_count++;
898         /*
899          * Unconditionally increment this counter, regardless of the queue's
900          * type or whether the queue is active.
901          */
902         dqm->total_queue_count++;
903
904         pr_debug("Total of %d queues are accountable so far\n",
905                         dqm->total_queue_count);
906
907 out:
908         mutex_unlock(&dqm->lock);
909         return retval;
910 }
911
912 static int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
913                                 unsigned int fence_value,
914                                 unsigned long timeout)
915 {
916         BUG_ON(!fence_addr);
917         timeout += jiffies;
918
919         while (*fence_addr != fence_value) {
920                 if (time_after(jiffies, timeout)) {
921                         pr_err("kfd: qcm fence wait loop timeout expired\n");
922                         return -ETIME;
923                 }
924                 schedule();
925         }
926
927         return 0;
928 }
929
930 static int destroy_sdma_queues(struct device_queue_manager *dqm,
931                                 unsigned int sdma_engine)
932 {
933         return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
934                         KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false,
935                         sdma_engine);
936 }
937
938 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock)
939 {
940         int retval;
941
942         BUG_ON(!dqm);
943
944         retval = 0;
945
946         if (lock)
947                 mutex_lock(&dqm->lock);
948         if (dqm->active_runlist == false)
949                 goto out;
950
951         pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n",
952                 dqm->sdma_queue_count);
953
954         if (dqm->sdma_queue_count > 0) {
955                 destroy_sdma_queues(dqm, 0);
956                 destroy_sdma_queues(dqm, 1);
957         }
958
959         retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
960                         KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false, 0);
961         if (retval != 0)
962                 goto out;
963
964         *dqm->fence_addr = KFD_FENCE_INIT;
965         pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
966                                 KFD_FENCE_COMPLETED);
967         /* should be timed out */
968         amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
969                                 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
970         pm_release_ib(&dqm->packets);
971         dqm->active_runlist = false;
972
973 out:
974         if (lock)
975                 mutex_unlock(&dqm->lock);
976         return retval;
977 }
978
979 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
980 {
981         int retval;
982
983         BUG_ON(!dqm);
984
985         if (lock)
986                 mutex_lock(&dqm->lock);
987
988         retval = destroy_queues_cpsch(dqm, false);
989         if (retval != 0) {
990                 pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
991                 goto out;
992         }
993
994         if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
995                 retval = 0;
996                 goto out;
997         }
998
999         if (dqm->active_runlist) {
1000                 retval = 0;
1001                 goto out;
1002         }
1003
1004         retval = pm_send_runlist(&dqm->packets, &dqm->queues);
1005         if (retval != 0) {
1006                 pr_err("kfd: failed to execute runlist");
1007                 goto out;
1008         }
1009         dqm->active_runlist = true;
1010
1011 out:
1012         if (lock)
1013                 mutex_unlock(&dqm->lock);
1014         return retval;
1015 }
1016
1017 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1018                                 struct qcm_process_device *qpd,
1019                                 struct queue *q)
1020 {
1021         int retval;
1022         struct mqd_manager *mqd;
1023
1024         BUG_ON(!dqm || !qpd || !q);
1025
1026         retval = 0;
1027
1028         /* remove queue from list to prevent rescheduling after preemption */
1029         mutex_lock(&dqm->lock);
1030         mqd = dqm->ops.get_mqd_manager(dqm,
1031                         get_mqd_type_from_queue_type(q->properties.type));
1032         if (!mqd) {
1033                 retval = -ENOMEM;
1034                 goto failed;
1035         }
1036
1037         if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1038                 dqm->sdma_queue_count--;
1039
1040         list_del(&q->list);
1041         if (q->properties.is_active)
1042                 dqm->queue_count--;
1043
1044         execute_queues_cpsch(dqm, false);
1045
1046         mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
1047
1048         /*
1049          * Unconditionally decrement this counter, regardless of the queue's
1050          * type
1051          */
1052         dqm->total_queue_count--;
1053         pr_debug("Total of %d queues are accountable so far\n",
1054                         dqm->total_queue_count);
1055
1056         mutex_unlock(&dqm->lock);
1057
1058         return 0;
1059
1060 failed:
1061         mutex_unlock(&dqm->lock);
1062         return retval;
1063 }
1064
1065 /*
1066  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1067  * stay in user mode.
1068  */
1069 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1070 /* APE1 limit is inclusive and 64K aligned. */
1071 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1072
1073 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1074                                    struct qcm_process_device *qpd,
1075                                    enum cache_policy default_policy,
1076                                    enum cache_policy alternate_policy,
1077                                    void __user *alternate_aperture_base,
1078                                    uint64_t alternate_aperture_size)
1079 {
1080         bool retval;
1081
1082         pr_debug("kfd: In func %s\n", __func__);
1083
1084         mutex_lock(&dqm->lock);
1085
1086         if (alternate_aperture_size == 0) {
1087                 /* base > limit disables APE1 */
1088                 qpd->sh_mem_ape1_base = 1;
1089                 qpd->sh_mem_ape1_limit = 0;
1090         } else {
1091                 /*
1092                  * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1093                  *                      SH_MEM_APE1_BASE[31:0], 0x0000 }
1094                  * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1095                  *                      SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1096                  * Verify that the base and size parameters can be
1097                  * represented in this format and convert them.
1098                  * Additionally restrict APE1 to user-mode addresses.
1099                  */
1100
1101                 uint64_t base = (uintptr_t)alternate_aperture_base;
1102                 uint64_t limit = base + alternate_aperture_size - 1;
1103
1104                 if (limit <= base)
1105                         goto out;
1106
1107                 if ((base & APE1_FIXED_BITS_MASK) != 0)
1108                         goto out;
1109
1110                 if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
1111                         goto out;
1112
1113                 qpd->sh_mem_ape1_base = base >> 16;
1114                 qpd->sh_mem_ape1_limit = limit >> 16;
1115         }
1116
1117         retval = dqm->ops_asic_specific.set_cache_memory_policy(
1118                         dqm,
1119                         qpd,
1120                         default_policy,
1121                         alternate_policy,
1122                         alternate_aperture_base,
1123                         alternate_aperture_size);
1124
1125         if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1126                 program_sh_mem_settings(dqm, qpd);
1127
1128         pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1129                 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1130                 qpd->sh_mem_ape1_limit);
1131
1132         mutex_unlock(&dqm->lock);
1133         return retval;
1134
1135 out:
1136         mutex_unlock(&dqm->lock);
1137         return false;
1138 }
1139
1140 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1141 {
1142         struct device_queue_manager *dqm;
1143
1144         BUG_ON(!dev);
1145
1146         pr_debug("kfd: loading device queue manager\n");
1147
1148         dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
1149         if (!dqm)
1150                 return NULL;
1151
1152         dqm->dev = dev;
1153         switch (sched_policy) {
1154         case KFD_SCHED_POLICY_HWS:
1155         case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1156                 /* initialize dqm for cp scheduling */
1157                 dqm->ops.create_queue = create_queue_cpsch;
1158                 dqm->ops.initialize = initialize_cpsch;
1159                 dqm->ops.start = start_cpsch;
1160                 dqm->ops.stop = stop_cpsch;
1161                 dqm->ops.destroy_queue = destroy_queue_cpsch;
1162                 dqm->ops.update_queue = update_queue;
1163                 dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1164                 dqm->ops.register_process = register_process_nocpsch;
1165                 dqm->ops.unregister_process = unregister_process_nocpsch;
1166                 dqm->ops.uninitialize = uninitialize_nocpsch;
1167                 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1168                 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1169                 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1170                 break;
1171         case KFD_SCHED_POLICY_NO_HWS:
1172                 /* initialize dqm for no cp scheduling */
1173                 dqm->ops.start = start_nocpsch;
1174                 dqm->ops.stop = stop_nocpsch;
1175                 dqm->ops.create_queue = create_queue_nocpsch;
1176                 dqm->ops.destroy_queue = destroy_queue_nocpsch;
1177                 dqm->ops.update_queue = update_queue;
1178                 dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1179                 dqm->ops.register_process = register_process_nocpsch;
1180                 dqm->ops.unregister_process = unregister_process_nocpsch;
1181                 dqm->ops.initialize = initialize_nocpsch;
1182                 dqm->ops.uninitialize = uninitialize_nocpsch;
1183                 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1184                 break;
1185         default:
1186                 BUG();
1187                 break;
1188         }
1189
1190         switch (dev->device_info->asic_family) {
1191         case CHIP_CARRIZO:
1192                 device_queue_manager_init_vi(&dqm->ops_asic_specific);
1193                 break;
1194
1195         case CHIP_KAVERI:
1196                 device_queue_manager_init_cik(&dqm->ops_asic_specific);
1197                 break;
1198         }
1199
1200         if (dqm->ops.initialize(dqm) != 0) {
1201                 kfree(dqm);
1202                 return NULL;
1203         }
1204
1205         return dqm;
1206 }
1207
1208 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1209 {
1210         BUG_ON(!dqm);
1211
1212         dqm->ops.uninitialize(dqm);
1213         kfree(dqm);
1214 }