MAINTAINERS: mmc: Move the mmc tree to kernel.org
[cascardo/linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / ppatomctrl.c
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26
27 #include "ppatomctrl.h"
28 #include "atombios.h"
29 #include "cgs_common.h"
30 #include "pp_debug.h"
31 #include "ppevvmath.h"
32
33 #define MEM_ID_MASK           0xff000000
34 #define MEM_ID_SHIFT          24
35 #define CLOCK_RANGE_MASK      0x00ffffff
36 #define CLOCK_RANGE_SHIFT     0
37 #define LOW_NIBBLE_MASK       0xf
38 #define DATA_EQU_PREV         0
39 #define DATA_FROM_TABLE       4
40
41 union voltage_object_info {
42         struct _ATOM_VOLTAGE_OBJECT_INFO v1;
43         struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
44         struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
45 };
46
47 static int atomctrl_retrieve_ac_timing(
48                 uint8_t index,
49                 ATOM_INIT_REG_BLOCK *reg_block,
50                 pp_atomctrl_mc_reg_table *table)
51 {
52         uint32_t i, j;
53         uint8_t tmem_id;
54         ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
55                 ((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
56
57         uint8_t num_ranges = 0;
58
59         while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
60                         num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
61                 tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
62
63                 if (index == tmem_id) {
64                         table->mc_reg_table_entry[num_ranges].mclk_max =
65                                 (uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
66                                                 CLOCK_RANGE_SHIFT);
67
68                         for (i = 0, j = 1; i < table->last; i++) {
69                                 if ((table->mc_reg_address[i].uc_pre_reg_data &
70                                                         LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
71                                         table->mc_reg_table_entry[num_ranges].mc_data[i] =
72                                                 (uint32_t)*((uint32_t *)reg_data + j);
73                                         j++;
74                                 } else if ((table->mc_reg_address[i].uc_pre_reg_data &
75                                                         LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
76                                         table->mc_reg_table_entry[num_ranges].mc_data[i] =
77                                                 table->mc_reg_table_entry[num_ranges].mc_data[i-1];
78                                 }
79                         }
80                         num_ranges++;
81                 }
82
83                 reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
84                         ((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
85         }
86
87         PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
88                         "Invalid VramInfo table.", return -1);
89         table->num_entries = num_ranges;
90
91         return 0;
92 }
93
94 /**
95  * Get memory clock AC timing registers index from VBIOS table
96  * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
97  * @param    reg_block the address ATOM_INIT_REG_BLOCK
98  * @param    table the address of MCRegTable
99  * @return   0
100  */
101 static int atomctrl_set_mc_reg_address_table(
102                 ATOM_INIT_REG_BLOCK *reg_block,
103                 pp_atomctrl_mc_reg_table *table)
104 {
105         uint8_t i = 0;
106         uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
107                         / sizeof(ATOM_INIT_REG_INDEX_FORMAT));
108         ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
109
110         num_entries--;        /* subtract 1 data end mark entry */
111
112         PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
113                         "Invalid VramInfo table.", return -1);
114
115         /* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
116         while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
117                         (i < num_entries)) {
118                 table->mc_reg_address[i].s1 =
119                         (uint16_t)(le16_to_cpu(format->usRegIndex));
120                 table->mc_reg_address[i].uc_pre_reg_data =
121                         format->ucPreRegDataLength;
122
123                 i++;
124                 format = (ATOM_INIT_REG_INDEX_FORMAT *)
125                         ((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
126         }
127
128         table->last = i;
129         return 0;
130 }
131
132
133 int atomctrl_initialize_mc_reg_table(
134                 struct pp_hwmgr *hwmgr,
135                 uint8_t module_index,
136                 pp_atomctrl_mc_reg_table *table)
137 {
138         ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
139         ATOM_INIT_REG_BLOCK *reg_block;
140         int result = 0;
141         u8 frev, crev;
142         u16 size;
143
144         vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
145                 cgs_atom_get_data_table(hwmgr->device,
146                                 GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
147
148         if (module_index >= vram_info->ucNumOfVRAMModule) {
149                 printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
150                 result = -1;
151         } else if (vram_info->sHeader.ucTableFormatRevision < 2) {
152                 printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
153                 result = -1;
154         }
155
156         if (0 == result) {
157                 reg_block = (ATOM_INIT_REG_BLOCK *)
158                         ((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
159                 result = atomctrl_set_mc_reg_address_table(reg_block, table);
160         }
161
162         if (0 == result) {
163                 result = atomctrl_retrieve_ac_timing(module_index,
164                                         reg_block, table);
165         }
166
167         return result;
168 }
169
170 /**
171  * Set DRAM timings based on engine clock and memory clock.
172  */
173 int atomctrl_set_engine_dram_timings_rv770(
174                 struct pp_hwmgr *hwmgr,
175                 uint32_t engine_clock,
176                 uint32_t memory_clock)
177 {
178         SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
179
180         /* They are both in 10KHz Units. */
181         engine_clock_parameters.ulTargetEngineClock =
182                 cpu_to_le32((engine_clock & SET_CLOCK_FREQ_MASK) |
183                             ((COMPUTE_ENGINE_PLL_PARAM << 24)));
184
185         /* in 10 khz units.*/
186         engine_clock_parameters.sReserved.ulClock =
187                 cpu_to_le32(memory_clock & SET_CLOCK_FREQ_MASK);
188         return cgs_atom_exec_cmd_table(hwmgr->device,
189                         GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
190                         &engine_clock_parameters);
191 }
192
193 /**
194  * Private Function to get the PowerPlay Table Address.
195  * WARNING: The tabled returned by this function is in
196  * dynamically allocated memory.
197  * The caller has to release if by calling kfree.
198  */
199 static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
200 {
201         int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
202         u8 frev, crev;
203         u16 size;
204         union voltage_object_info *voltage_info;
205
206         voltage_info = (union voltage_object_info *)
207                 cgs_atom_get_data_table(device, index,
208                         &size, &frev, &crev);
209
210         if (voltage_info != NULL)
211                 return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
212         else
213                 return NULL;
214 }
215
216 static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
217                 const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
218                 uint8_t voltage_type, uint8_t voltage_mode)
219 {
220         unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
221         unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
222         uint8_t *start = (uint8_t *)voltage_object_info_table;
223
224         while (offset < size) {
225                 const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
226                         (const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
227
228                 if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
229                         voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
230                         return voltage_object;
231
232                 offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
233         }
234
235         return NULL;
236 }
237
238 /** atomctrl_get_memory_pll_dividers_si().
239  *
240  * @param hwmgr                 input parameter: pointer to HwMgr
241  * @param clock_value             input parameter: memory clock
242  * @param dividers                 output parameter: memory PLL dividers
243  * @param strobe_mode            input parameter: 1 for strobe mode,  0 for performance mode
244  */
245 int atomctrl_get_memory_pll_dividers_si(
246                 struct pp_hwmgr *hwmgr,
247                 uint32_t clock_value,
248                 pp_atomctrl_memory_clock_param *mpll_param,
249                 bool strobe_mode)
250 {
251         COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
252         int result;
253
254         mpll_parameters.ulClock = cpu_to_le32(clock_value);
255         mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
256
257         result = cgs_atom_exec_cmd_table
258                 (hwmgr->device,
259                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
260                  &mpll_parameters);
261
262         if (0 == result) {
263                 mpll_param->mpll_fb_divider.clk_frac =
264                         le16_to_cpu(mpll_parameters.ulFbDiv.usFbDivFrac);
265                 mpll_param->mpll_fb_divider.cl_kf =
266                         le16_to_cpu(mpll_parameters.ulFbDiv.usFbDiv);
267                 mpll_param->mpll_post_divider =
268                         (uint32_t)mpll_parameters.ucPostDiv;
269                 mpll_param->vco_mode =
270                         (uint32_t)(mpll_parameters.ucPllCntlFlag &
271                                         MPLL_CNTL_FLAG_VCO_MODE_MASK);
272                 mpll_param->yclk_sel =
273                         (uint32_t)((mpll_parameters.ucPllCntlFlag &
274                                                 MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
275                 mpll_param->qdr =
276                         (uint32_t)((mpll_parameters.ucPllCntlFlag &
277                                                 MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
278                 mpll_param->half_rate =
279                         (uint32_t)((mpll_parameters.ucPllCntlFlag &
280                                                 MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
281                 mpll_param->dll_speed =
282                         (uint32_t)(mpll_parameters.ucDllSpeed);
283                 mpll_param->bw_ctrl =
284                         (uint32_t)(mpll_parameters.ucBWCntl);
285         }
286
287         return result;
288 }
289
290 /** atomctrl_get_memory_pll_dividers_vi().
291  *
292  * @param hwmgr                 input parameter: pointer to HwMgr
293  * @param clock_value             input parameter: memory clock
294  * @param dividers               output parameter: memory PLL dividers
295  */
296 int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
297                 uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
298 {
299         COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
300         int result;
301
302         mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
303
304         result = cgs_atom_exec_cmd_table(hwmgr->device,
305                         GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
306                         &mpll_parameters);
307
308         if (!result)
309                 mpll_param->mpll_post_divider =
310                                 (uint32_t)mpll_parameters.ulClock.ucPostDiv;
311
312         return result;
313 }
314
315 int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
316                                           uint32_t clock_value,
317                                           pp_atomctrl_clock_dividers_kong *dividers)
318 {
319         COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
320         int result;
321
322         pll_parameters.ulClock = cpu_to_le32(clock_value);
323
324         result = cgs_atom_exec_cmd_table
325                 (hwmgr->device,
326                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
327                  &pll_parameters);
328
329         if (0 == result) {
330                 dividers->pll_post_divider = pll_parameters.ucPostDiv;
331                 dividers->real_clock = le32_to_cpu(pll_parameters.ulClock);
332         }
333
334         return result;
335 }
336
337 int atomctrl_get_engine_pll_dividers_vi(
338                 struct pp_hwmgr *hwmgr,
339                 uint32_t clock_value,
340                 pp_atomctrl_clock_dividers_vi *dividers)
341 {
342         COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
343         int result;
344
345         pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
346         pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
347
348         result = cgs_atom_exec_cmd_table
349                 (hwmgr->device,
350                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
351                  &pll_patameters);
352
353         if (0 == result) {
354                 dividers->pll_post_divider =
355                         pll_patameters.ulClock.ucPostDiv;
356                 dividers->real_clock =
357                         le32_to_cpu(pll_patameters.ulClock.ulClock);
358
359                 dividers->ul_fb_div.ul_fb_div_frac =
360                         le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
361                 dividers->ul_fb_div.ul_fb_div =
362                         le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
363
364                 dividers->uc_pll_ref_div =
365                         pll_patameters.ucPllRefDiv;
366                 dividers->uc_pll_post_div =
367                         pll_patameters.ucPllPostDiv;
368                 dividers->uc_pll_cntl_flag =
369                         pll_patameters.ucPllCntlFlag;
370         }
371
372         return result;
373 }
374
375 int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
376                 uint32_t clock_value,
377                 pp_atomctrl_clock_dividers_ai *dividers)
378 {
379         COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
380         int result;
381
382         pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
383         pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
384
385         result = cgs_atom_exec_cmd_table
386                 (hwmgr->device,
387                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
388                  &pll_patameters);
389
390         if (0 == result) {
391                 dividers->usSclk_fcw_frac     = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
392                 dividers->usSclk_fcw_int      = le16_to_cpu(pll_patameters.usSclk_fcw_int);
393                 dividers->ucSclkPostDiv       = pll_patameters.ucSclkPostDiv;
394                 dividers->ucSclkVcoMode       = pll_patameters.ucSclkVcoMode;
395                 dividers->ucSclkPllRange      = pll_patameters.ucSclkPllRange;
396                 dividers->ucSscEnable         = pll_patameters.ucSscEnable;
397                 dividers->usSsc_fcw1_frac     = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
398                 dividers->usSsc_fcw1_int      = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
399                 dividers->usPcc_fcw_int       = le16_to_cpu(pll_patameters.usPcc_fcw_int);
400                 dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
401                 dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
402         }
403         return result;
404 }
405
406 int atomctrl_get_dfs_pll_dividers_vi(
407                 struct pp_hwmgr *hwmgr,
408                 uint32_t clock_value,
409                 pp_atomctrl_clock_dividers_vi *dividers)
410 {
411         COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
412         int result;
413
414         pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
415         pll_patameters.ulClock.ucPostDiv =
416                 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
417
418         result = cgs_atom_exec_cmd_table
419                 (hwmgr->device,
420                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
421                  &pll_patameters);
422
423         if (0 == result) {
424                 dividers->pll_post_divider =
425                         pll_patameters.ulClock.ucPostDiv;
426                 dividers->real_clock =
427                         le32_to_cpu(pll_patameters.ulClock.ulClock);
428
429                 dividers->ul_fb_div.ul_fb_div_frac =
430                         le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
431                 dividers->ul_fb_div.ul_fb_div =
432                         le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
433
434                 dividers->uc_pll_ref_div =
435                         pll_patameters.ucPllRefDiv;
436                 dividers->uc_pll_post_div =
437                         pll_patameters.ucPllPostDiv;
438                 dividers->uc_pll_cntl_flag =
439                         pll_patameters.ucPllCntlFlag;
440         }
441
442         return result;
443 }
444
445 /**
446  * Get the reference clock in 10KHz
447  */
448 uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
449 {
450         ATOM_FIRMWARE_INFO *fw_info;
451         u8 frev, crev;
452         u16 size;
453         uint32_t clock;
454
455         fw_info = (ATOM_FIRMWARE_INFO *)
456                 cgs_atom_get_data_table(hwmgr->device,
457                         GetIndexIntoMasterTable(DATA, FirmwareInfo),
458                         &size, &frev, &crev);
459
460         if (fw_info == NULL)
461                 clock = 2700;
462         else
463                 clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
464
465         return clock;
466 }
467
468 /**
469  * Returns true if the given voltage type is controlled by GPIO pins.
470  * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
471  * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
472  * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
473  */
474 bool atomctrl_is_voltage_controled_by_gpio_v3(
475                 struct pp_hwmgr *hwmgr,
476                 uint8_t voltage_type,
477                 uint8_t voltage_mode)
478 {
479         ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
480                 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
481         bool ret;
482
483         PP_ASSERT_WITH_CODE((NULL != voltage_info),
484                         "Could not find Voltage Table in BIOS.", return false;);
485
486         ret = (NULL != atomctrl_lookup_voltage_type_v3
487                         (voltage_info, voltage_type, voltage_mode)) ? true : false;
488
489         return ret;
490 }
491
492 int atomctrl_get_voltage_table_v3(
493                 struct pp_hwmgr *hwmgr,
494                 uint8_t voltage_type,
495                 uint8_t voltage_mode,
496                 pp_atomctrl_voltage_table *voltage_table)
497 {
498         ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
499                 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
500         const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
501         unsigned int i;
502
503         PP_ASSERT_WITH_CODE((NULL != voltage_info),
504                         "Could not find Voltage Table in BIOS.", return -1;);
505
506         voltage_object = atomctrl_lookup_voltage_type_v3
507                 (voltage_info, voltage_type, voltage_mode);
508
509         if (voltage_object == NULL)
510                 return -1;
511
512         PP_ASSERT_WITH_CODE(
513                         (voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
514                         PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
515                         "Too many voltage entries!",
516                         return -1;
517                         );
518
519         for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
520                 voltage_table->entries[i].value =
521                         le16_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue);
522                 voltage_table->entries[i].smio_low =
523                         le32_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId);
524         }
525
526         voltage_table->mask_low    =
527                 le32_to_cpu(voltage_object->asGpioVoltageObj.ulGpioMaskVal);
528         voltage_table->count      =
529                 voltage_object->asGpioVoltageObj.ucGpioEntryNum;
530         voltage_table->phase_delay =
531                 voltage_object->asGpioVoltageObj.ucPhaseDelay;
532
533         return 0;
534 }
535
536 static bool atomctrl_lookup_gpio_pin(
537                 ATOM_GPIO_PIN_LUT * gpio_lookup_table,
538                 const uint32_t pinId,
539                 pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
540 {
541         unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
542         unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
543         uint8_t *start = (uint8_t *)gpio_lookup_table;
544
545         while (offset < size) {
546                 const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
547                         (const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
548
549                 if (pinId == pin_assignment->ucGPIO_ID) {
550                         gpio_pin_assignment->uc_gpio_pin_bit_shift =
551                                 pin_assignment->ucGpioPinBitShift;
552                         gpio_pin_assignment->us_gpio_pin_aindex =
553                                 le16_to_cpu(pin_assignment->usGpioPin_AIndex);
554                         return true;
555                 }
556
557                 offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
558         }
559
560         return false;
561 }
562
563 /**
564  * Private Function to get the PowerPlay Table Address.
565  * WARNING: The tabled returned by this function is in
566  * dynamically allocated memory.
567  * The caller has to release if by calling kfree.
568  */
569 static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
570 {
571         u8 frev, crev;
572         u16 size;
573         void *table_address;
574
575         table_address = (ATOM_GPIO_PIN_LUT *)
576                 cgs_atom_get_data_table(device,
577                                 GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
578                                 &size, &frev, &crev);
579
580         PP_ASSERT_WITH_CODE((NULL != table_address),
581                         "Error retrieving BIOS Table Address!", return NULL;);
582
583         return (ATOM_GPIO_PIN_LUT *)table_address;
584 }
585
586 /**
587  * Returns 1 if the given pin id find in lookup table.
588  */
589 bool atomctrl_get_pp_assign_pin(
590                 struct pp_hwmgr *hwmgr,
591                 const uint32_t pinId,
592                 pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
593 {
594         bool bRet = false;
595         ATOM_GPIO_PIN_LUT *gpio_lookup_table =
596                 get_gpio_lookup_table(hwmgr->device);
597
598         PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
599                         "Could not find GPIO lookup Table in BIOS.", return false);
600
601         bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
602                 gpio_pin_assignment);
603
604         return bRet;
605 }
606
607 int atomctrl_calculate_voltage_evv_on_sclk(
608                 struct pp_hwmgr *hwmgr,
609                 uint8_t voltage_type,
610                 uint32_t sclk,
611                 uint16_t virtual_voltage_Id,
612                 uint16_t *voltage,
613                 uint16_t dpm_level,
614                 bool debug)
615 {
616         ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
617
618         EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
619         EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
620         EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
621         EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
622         EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
623         EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
624         EFUSE_INPUT_PARAMETER sInput_FuseValues;
625         READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
626
627         uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
628         fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
629         fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
630         fInt fLkg_FT, repeat;
631         fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
632         fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
633         fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
634         fInt fSclk_margin, fSclk, fEVV_V;
635         fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
636         uint32_t ul_FT_Lkg_V0NORM;
637         fInt fLn_MaxDivMin, fMin, fAverage, fRange;
638         fInt fRoots[2];
639         fInt fStepSize = GetScaledFraction(625, 100000);
640
641         int result;
642
643         getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
644                         cgs_atom_get_data_table(hwmgr->device,
645                                         GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
646                                         NULL, NULL, NULL);
647
648         if (!getASICProfilingInfo)
649                 return -1;
650
651         if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
652             (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
653              getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
654                 return -1;
655
656         /*-----------------------------------------------------------
657          *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
658          *-----------------------------------------------------------
659          */
660         fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
661
662         switch (dpm_level) {
663         case 1:
664                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm1));
665                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
666                 break;
667         case 2:
668                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm2));
669                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
670                 break;
671         case 3:
672                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm3));
673                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
674                 break;
675         case 4:
676                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm4));
677                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
678                 break;
679         case 5:
680                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm5));
681                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
682                 break;
683         case 6:
684                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm6));
685                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
686                 break;
687         case 7:
688                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm7));
689                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
690                 break;
691         default:
692                 printk(KERN_ERR "DPM Level not supported\n");
693                 fPowerDPMx = Convert_ULONG_ToFraction(1);
694                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
695         }
696
697         /*-------------------------
698          * DECODING FUSE VALUES
699          * ------------------------
700          */
701         /*Decode RO_Fused*/
702         sRO_fuse = getASICProfilingInfo->sRoFuse;
703
704         sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
705         sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
706         sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
707
708         sOutput_FuseValues.sEfuse = sInput_FuseValues;
709
710         result = cgs_atom_exec_cmd_table(hwmgr->device,
711                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
712                         &sOutput_FuseValues);
713
714         if (result)
715                 return result;
716
717         /* Finally, the actual fuse value */
718         ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
719         fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
720         fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
721         fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
722
723         sCACm_fuse = getASICProfilingInfo->sCACm;
724
725         sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
726         sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
727         sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
728
729         sOutput_FuseValues.sEfuse = sInput_FuseValues;
730
731         result = cgs_atom_exec_cmd_table(hwmgr->device,
732                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
733                         &sOutput_FuseValues);
734
735         if (result)
736                 return result;
737
738         ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
739         fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
740         fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000);
741
742         fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
743
744         sCACb_fuse = getASICProfilingInfo->sCACb;
745
746         sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
747         sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
748         sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
749         sOutput_FuseValues.sEfuse = sInput_FuseValues;
750
751         result = cgs_atom_exec_cmd_table(hwmgr->device,
752                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
753                         &sOutput_FuseValues);
754
755         if (result)
756                 return result;
757
758         ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
759         fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
760         fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000);
761
762         fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
763
764         sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
765
766         sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
767         sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
768         sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
769
770         sOutput_FuseValues.sEfuse = sInput_FuseValues;
771
772         result = cgs_atom_exec_cmd_table(hwmgr->device,
773                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
774                         &sOutput_FuseValues);
775
776         if (result)
777                 return result;
778
779         ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
780         fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
781         fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
782
783         fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
784                         fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
785
786         sKv_m_fuse = getASICProfilingInfo->sKv_m;
787
788         sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
789         sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
790         sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
791
792         sOutput_FuseValues.sEfuse = sInput_FuseValues;
793
794         result = cgs_atom_exec_cmd_table(hwmgr->device,
795                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
796                         &sOutput_FuseValues);
797         if (result)
798                 return result;
799
800         ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
801         fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
802         fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000);
803         fRange = fMultiply(fRange, ConvertToFraction(-1));
804
805         fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
806                         fAverage, fRange, sKv_m_fuse.ucEfuseLength);
807
808         sKv_b_fuse = getASICProfilingInfo->sKv_b;
809
810         sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
811         sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
812         sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
813         sOutput_FuseValues.sEfuse = sInput_FuseValues;
814
815         result = cgs_atom_exec_cmd_table(hwmgr->device,
816                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
817                         &sOutput_FuseValues);
818
819         if (result)
820                 return result;
821
822         ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
823         fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
824         fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000);
825
826         fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
827                         fAverage, fRange, sKv_b_fuse.ucEfuseLength);
828
829         /* Decoding the Leakage - No special struct container */
830         /*
831          * usLkgEuseIndex=56
832          * ucLkgEfuseBitLSB=6
833          * ucLkgEfuseLength=10
834          * ulLkgEncodeLn_MaxDivMin=69077
835          * ulLkgEncodeMax=1000000
836          * ulLkgEncodeMin=1000
837          * ulEfuseLogisticAlpha=13
838          */
839
840         sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
841         sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
842         sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
843
844         sOutput_FuseValues.sEfuse = sInput_FuseValues;
845
846         result = cgs_atom_exec_cmd_table(hwmgr->device,
847                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
848                         &sOutput_FuseValues);
849
850         if (result)
851                 return result;
852
853         ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
854         fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000);
855         fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
856
857         fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
858                         fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
859         fLkg_FT = fFT_Lkg_V0NORM;
860
861         /*-------------------------------------------
862          * PART 2 - Grabbing all required values
863          *-------------------------------------------
864          */
865         fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000),
866                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
867         fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000),
868                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
869         fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
870                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
871         fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000),
872                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
873         fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000),
874                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
875         fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
876                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
877         fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
878                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
879         fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
880                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
881
882         fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
883         fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
884         fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
885
886         fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
887
888         fMargin_FMAX_mean = GetScaledFraction(
889                 le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
890         fMargin_Plat_mean = GetScaledFraction(
891                 le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
892         fMargin_FMAX_sigma = GetScaledFraction(
893                 le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
894         fMargin_Plat_sigma = GetScaledFraction(
895                 le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
896
897         fMargin_DC_sigma = GetScaledFraction(
898                 le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
899         fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
900
901         fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
902         fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
903         fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
904         fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
905         fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
906
907         fSclk = GetScaledFraction(sclk, 100);
908
909         fV_max = fDivide(GetScaledFraction(
910                                  le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4));
911         fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
912         fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
913         fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
914         fV_FT = fDivide(GetScaledFraction(
915                                 le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4));
916         fV_min = fDivide(GetScaledFraction(
917                                  le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4));
918
919         /*-----------------------
920          * PART 3
921          *-----------------------
922          */
923
924         fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
925         fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
926         fC_Term = fAdd(fMargin_RO_c,
927                         fAdd(fMultiply(fSM_A0, fLkg_FT),
928                         fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
929                         fAdd(fMultiply(fSM_A3, fSclk),
930                         fSubtract(fSM_A7, fRO_fused)))));
931
932         fVDDC_base = fSubtract(fRO_fused,
933                         fSubtract(fMargin_RO_c,
934                                         fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
935         fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
936
937         repeat = fSubtract(fVDDC_base,
938                         fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
939
940         fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
941                         fGetSquare(repeat)),
942                         fAdd(fMultiply(fMargin_RO_b, repeat),
943                         fMargin_RO_c));
944
945         fDC_SCLK = fSubtract(fRO_fused,
946                         fSubtract(fRO_DC_margin,
947                         fSubtract(fSM_A3,
948                         fMultiply(fSM_A2, repeat))));
949         fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
950
951         fSigma_DC = fSubtract(fSclk, fDC_SCLK);
952
953         fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
954         fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
955         fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
956         fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
957
958         fSquared_Sigma_DC = fGetSquare(fSigma_DC);
959         fSquared_Sigma_CR = fGetSquare(fSigma_CR);
960         fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
961
962         fSclk_margin = fAdd(fMicro_FMAX,
963                         fAdd(fMicro_CR,
964                         fAdd(fMargin_fixed,
965                         fSqrt(fAdd(fSquared_Sigma_FMAX,
966                         fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
967         /*
968          fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
969          fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
970          fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
971          */
972
973         fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
974         fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
975         fC_Term = fAdd(fRO_DC_margin,
976                         fAdd(fMultiply(fSM_A0, fLkg_FT),
977                         fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
978                         fAdd(fSclk, fSclk_margin)),
979                         fAdd(fMultiply(fSM_A3,
980                         fAdd(fSclk, fSclk_margin)),
981                         fSubtract(fSM_A7, fRO_fused)))));
982
983         SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
984
985         if (GreaterThan(fRoots[0], fRoots[1]))
986                 fEVV_V = fRoots[1];
987         else
988                 fEVV_V = fRoots[0];
989
990         if (GreaterThan(fV_min, fEVV_V))
991                 fEVV_V = fV_min;
992         else if (GreaterThan(fEVV_V, fV_max))
993                 fEVV_V = fSubtract(fV_max, fStepSize);
994
995         fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
996
997         /*-----------------
998          * PART 4
999          *-----------------
1000          */
1001
1002         fV_x = fV_min;
1003
1004         while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
1005                 fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
1006                                 fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
1007                                 fGetSquare(fV_x)), fDerateTDP);
1008
1009                 fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
1010                                 fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
1011                                 fT_prod), fKv_b_fused), fV_x)), fV_x)));
1012                 fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
1013                                 fKt_Beta_fused, fT_prod)));
1014                 fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1015                                 fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
1016                 fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1017                                 fKt_Beta_fused, fT_FT)));
1018
1019                 fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
1020
1021                 fTDP_Current = fDivide(fTDP_Power, fV_x);
1022
1023                 fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
1024                                 ConvertToFraction(10)));
1025
1026                 fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
1027
1028                 if (GreaterThan(fV_max, fV_NL) &&
1029                         (GreaterThan(fV_NL, fEVV_V) ||
1030                         Equal(fV_NL, fEVV_V))) {
1031                         fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
1032
1033                         *voltage = (uint16_t)fV_NL.partial.real;
1034                         break;
1035                 } else
1036                         fV_x = fAdd(fV_x, fStepSize);
1037         }
1038
1039         return result;
1040 }
1041
1042 /** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
1043  * @param hwmgr input: pointer to hwManager
1044  * @param voltage_type            input: type of EVV voltage VDDC or VDDGFX
1045  * @param sclk                        input: in 10Khz unit. DPM state SCLK frequency
1046  *              which is define in PPTable SCLK/VDDC dependence
1047  *                              table associated with this virtual_voltage_Id
1048  * @param virtual_voltage_Id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1049  * @param voltage                      output: real voltage level in unit of mv
1050  */
1051 int atomctrl_get_voltage_evv_on_sclk(
1052                 struct pp_hwmgr *hwmgr,
1053                 uint8_t voltage_type,
1054                 uint32_t sclk, uint16_t virtual_voltage_Id,
1055                 uint16_t *voltage)
1056 {
1057         int result;
1058         GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1059
1060         get_voltage_info_param_space.ucVoltageType   =
1061                 voltage_type;
1062         get_voltage_info_param_space.ucVoltageMode   =
1063                 ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1064         get_voltage_info_param_space.usVoltageLevel  =
1065                 cpu_to_le16(virtual_voltage_Id);
1066         get_voltage_info_param_space.ulSCLKFreq      =
1067                 cpu_to_le32(sclk);
1068
1069         result = cgs_atom_exec_cmd_table(hwmgr->device,
1070                         GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1071                         &get_voltage_info_param_space);
1072
1073         if (0 != result)
1074                 return result;
1075
1076         *voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1077                                 (&get_voltage_info_param_space))->usVoltageLevel);
1078
1079         return result;
1080 }
1081
1082 /**
1083  * atomctrl_get_voltage_evv gets voltage via call to ATOM COMMAND table.
1084  * @param hwmgr input: pointer to hwManager
1085  * @param virtual_voltage_id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1086  * @param voltage                      output: real voltage level in unit of mv
1087  */
1088 int atomctrl_get_voltage_evv(struct pp_hwmgr *hwmgr,
1089                              uint16_t virtual_voltage_id,
1090                              uint16_t *voltage)
1091 {
1092         int result;
1093         int entry_id;
1094         GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1095
1096         /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
1097         for (entry_id = 0; entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count; entry_id++) {
1098                 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].v == virtual_voltage_id) {
1099                         /* found */
1100                         break;
1101                 }
1102         }
1103
1104         PP_ASSERT_WITH_CODE(entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count,
1105                 "Can't find requested voltage id in vddc_dependency_on_sclk table!",
1106                 return -EINVAL;
1107         );
1108
1109         get_voltage_info_param_space.ucVoltageType = VOLTAGE_TYPE_VDDC;
1110         get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1111         get_voltage_info_param_space.usVoltageLevel = virtual_voltage_id;
1112         get_voltage_info_param_space.ulSCLKFreq =
1113                 cpu_to_le32(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].clk);
1114
1115         result = cgs_atom_exec_cmd_table(hwmgr->device,
1116                         GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1117                         &get_voltage_info_param_space);
1118
1119         if (0 != result)
1120                 return result;
1121
1122         *voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1123                                 (&get_voltage_info_param_space))->usVoltageLevel);
1124
1125         return result;
1126 }
1127
1128 /**
1129  * Get the mpll reference clock in 10KHz
1130  */
1131 uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
1132 {
1133         ATOM_COMMON_TABLE_HEADER *fw_info;
1134         uint32_t clock;
1135         u8 frev, crev;
1136         u16 size;
1137
1138         fw_info = (ATOM_COMMON_TABLE_HEADER *)
1139                 cgs_atom_get_data_table(hwmgr->device,
1140                                 GetIndexIntoMasterTable(DATA, FirmwareInfo),
1141                                 &size, &frev, &crev);
1142
1143         if (fw_info == NULL)
1144                 clock = 2700;
1145         else {
1146                 if ((fw_info->ucTableFormatRevision == 2) &&
1147                         (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
1148                         ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
1149                                 (ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
1150                         clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
1151                 } else {
1152                         ATOM_FIRMWARE_INFO *fwInfo_0_0 =
1153                                 (ATOM_FIRMWARE_INFO *)fw_info;
1154                         clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
1155                 }
1156         }
1157
1158         return clock;
1159 }
1160
1161 /**
1162  * Get the asic internal spread spectrum table
1163  */
1164 static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
1165 {
1166         ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
1167         u8 frev, crev;
1168         u16 size;
1169
1170         table = (ATOM_ASIC_INTERNAL_SS_INFO *)
1171                 cgs_atom_get_data_table(device,
1172                         GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
1173                         &size, &frev, &crev);
1174
1175         return table;
1176 }
1177
1178 /**
1179  * Get the asic internal spread spectrum assignment
1180  */
1181 static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
1182                 const uint8_t clockSource,
1183                 const uint32_t clockSpeed,
1184                 pp_atomctrl_internal_ss_info *ssEntry)
1185 {
1186         ATOM_ASIC_INTERNAL_SS_INFO *table;
1187         ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
1188         int entry_found = 0;
1189
1190         memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
1191
1192         table = asic_internal_ss_get_ss_table(hwmgr->device);
1193
1194         if (NULL == table)
1195                 return -1;
1196
1197         ssInfo = &table->asSpreadSpectrum[0];
1198
1199         while (((uint8_t *)ssInfo - (uint8_t *)table) <
1200                 le16_to_cpu(table->sHeader.usStructureSize)) {
1201                 if ((clockSource == ssInfo->ucClockIndication) &&
1202                         ((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
1203                         entry_found = 1;
1204                         break;
1205                 }
1206
1207                 ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
1208                                 sizeof(ATOM_ASIC_SS_ASSIGNMENT));
1209         }
1210
1211         if (entry_found) {
1212                 ssEntry->speed_spectrum_percentage =
1213                         le16_to_cpu(ssInfo->usSpreadSpectrumPercentage);
1214                 ssEntry->speed_spectrum_rate = le16_to_cpu(ssInfo->usSpreadRateInKhz);
1215
1216                 if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
1217                         (GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
1218                         (GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
1219                         ssEntry->speed_spectrum_rate /= 100;
1220                 }
1221
1222                 switch (ssInfo->ucSpreadSpectrumMode) {
1223                 case 0:
1224                         ssEntry->speed_spectrum_mode =
1225                                 pp_atomctrl_spread_spectrum_mode_down;
1226                         break;
1227                 case 1:
1228                         ssEntry->speed_spectrum_mode =
1229                                 pp_atomctrl_spread_spectrum_mode_center;
1230                         break;
1231                 default:
1232                         ssEntry->speed_spectrum_mode =
1233                                 pp_atomctrl_spread_spectrum_mode_down;
1234                         break;
1235                 }
1236         }
1237
1238         return entry_found ? 0 : 1;
1239 }
1240
1241 /**
1242  * Get the memory clock spread spectrum info
1243  */
1244 int atomctrl_get_memory_clock_spread_spectrum(
1245                 struct pp_hwmgr *hwmgr,
1246                 const uint32_t memory_clock,
1247                 pp_atomctrl_internal_ss_info *ssInfo)
1248 {
1249         return asic_internal_ss_get_ss_asignment(hwmgr,
1250                         ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
1251 }
1252 /**
1253  * Get the engine clock spread spectrum info
1254  */
1255 int atomctrl_get_engine_clock_spread_spectrum(
1256                 struct pp_hwmgr *hwmgr,
1257                 const uint32_t engine_clock,
1258                 pp_atomctrl_internal_ss_info *ssInfo)
1259 {
1260         return asic_internal_ss_get_ss_asignment(hwmgr,
1261                         ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
1262 }
1263
1264 int atomctrl_read_efuse(void *device, uint16_t start_index,
1265                 uint16_t end_index, uint32_t mask, uint32_t *efuse)
1266 {
1267         int result;
1268         READ_EFUSE_VALUE_PARAMETER efuse_param;
1269
1270         efuse_param.sEfuse.usEfuseIndex = cpu_to_le16((start_index / 32) * 4);
1271         efuse_param.sEfuse.ucBitShift = (uint8_t)
1272                         (start_index - ((start_index / 32) * 32));
1273         efuse_param.sEfuse.ucBitLength  = (uint8_t)
1274                         ((end_index - start_index) + 1);
1275
1276         result = cgs_atom_exec_cmd_table(device,
1277                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
1278                         &efuse_param);
1279         if (!result)
1280                 *efuse = le32_to_cpu(efuse_param.ulEfuseValue) & mask;
1281
1282         return result;
1283 }
1284
1285 int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
1286                               uint8_t level)
1287 {
1288         DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
1289         int result;
1290
1291         memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq =
1292                 memory_clock & SET_CLOCK_FREQ_MASK;
1293         memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag =
1294                 ADJUST_MC_SETTING_PARAM;
1295         memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
1296
1297         result = cgs_atom_exec_cmd_table
1298                 (hwmgr->device,
1299                  GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
1300                  &memory_clock_parameters);
1301
1302         return result;
1303 }
1304
1305 int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1306                                 uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
1307 {
1308
1309         int result;
1310         GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
1311
1312         get_voltage_info_param_space.ucVoltageType = voltage_type;
1313         get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1314         get_voltage_info_param_space.usVoltageLevel = cpu_to_le16(virtual_voltage_Id);
1315         get_voltage_info_param_space.ulSCLKFreq = cpu_to_le32(sclk);
1316
1317         result = cgs_atom_exec_cmd_table(hwmgr->device,
1318                         GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1319                         &get_voltage_info_param_space);
1320
1321         if (0 != result)
1322                 return result;
1323
1324         *voltage = le32_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)(&get_voltage_info_param_space))->ulVoltageLevel);
1325
1326         return result;
1327 }
1328
1329 int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
1330 {
1331
1332         int i;
1333         u8 frev, crev;
1334         u16 size;
1335
1336         ATOM_SMU_INFO_V2_1 *psmu_info =
1337                 (ATOM_SMU_INFO_V2_1 *)cgs_atom_get_data_table(hwmgr->device,
1338                         GetIndexIntoMasterTable(DATA, SMU_Info),
1339                         &size, &frev, &crev);
1340
1341
1342         for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
1343                 table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
1344                 table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
1345                 table->entry[i].usFcw_pcc =
1346                         le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc);
1347                 table->entry[i].usFcw_trans_upper =
1348                         le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper);
1349                 table->entry[i].usRcw_trans_lower =
1350                         le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower);
1351         }
1352
1353         return 0;
1354 }
1355
1356 int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
1357                                   struct pp_atom_ctrl__avfs_parameters *param)
1358 {
1359         ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
1360
1361         if (param == NULL)
1362                 return -EINVAL;
1363
1364         profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
1365                         cgs_atom_get_data_table(hwmgr->device,
1366                                         GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1367                                         NULL, NULL, NULL);
1368         if (!profile)
1369                 return -1;
1370
1371         param->ulAVFS_meanNsigma_Acontant0 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant0);
1372         param->ulAVFS_meanNsigma_Acontant1 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant1);
1373         param->ulAVFS_meanNsigma_Acontant2 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant2);
1374         param->usAVFS_meanNsigma_DC_tol_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_DC_tol_sigma);
1375         param->usAVFS_meanNsigma_Platform_mean = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_mean);
1376         param->usAVFS_meanNsigma_Platform_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_sigma);
1377         param->ulGB_VDROOP_TABLE_CKSOFF_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a0);
1378         param->ulGB_VDROOP_TABLE_CKSOFF_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a1);
1379         param->ulGB_VDROOP_TABLE_CKSOFF_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a2);
1380         param->ulGB_VDROOP_TABLE_CKSON_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a0);
1381         param->ulGB_VDROOP_TABLE_CKSON_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a1);
1382         param->ulGB_VDROOP_TABLE_CKSON_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a2);
1383         param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1384         param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1385         param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1386         param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_m1);
1387         param->usAVFSGB_FUSE_TABLE_CKSON_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSON_m2);
1388         param->ulAVFSGB_FUSE_TABLE_CKSON_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_b);
1389         param->usMaxVoltage_0_25mv = le16_to_cpu(profile->usMaxVoltage_0_25mv);
1390         param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
1391         param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
1392         param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
1393         param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
1394         param->usPSM_Age_ComFactor = le16_to_cpu(profile->usPSM_Age_ComFactor);
1395         param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
1396
1397         return 0;
1398 }