ARM: exynos_defconfig: Save defconfig on current linux-next
[cascardo/linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / tonga_hwmgr.c
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26 #include "linux/delay.h"
27 #include "pp_acpi.h"
28 #include "hwmgr.h"
29 #include <atombios.h>
30 #include "tonga_hwmgr.h"
31 #include "pptable.h"
32 #include "processpptables.h"
33 #include "tonga_processpptables.h"
34 #include "tonga_pptable.h"
35 #include "pp_debug.h"
36 #include "tonga_ppsmc.h"
37 #include "cgs_common.h"
38 #include "pppcielanes.h"
39 #include "tonga_dyn_defaults.h"
40 #include "smumgr.h"
41 #include "tonga_smumgr.h"
42 #include "tonga_clockpowergating.h"
43 #include "tonga_thermal.h"
44
45 #include "smu/smu_7_1_2_d.h"
46 #include "smu/smu_7_1_2_sh_mask.h"
47
48 #include "gmc/gmc_8_1_d.h"
49 #include "gmc/gmc_8_1_sh_mask.h"
50
51 #include "bif/bif_5_0_d.h"
52 #include "bif/bif_5_0_sh_mask.h"
53
54 #include "dce/dce_10_0_d.h"
55 #include "dce/dce_10_0_sh_mask.h"
56
57 #include "cgs_linux.h"
58 #include "eventmgr.h"
59 #include "amd_pcie_helpers.h"
60
61 #define MC_CG_ARB_FREQ_F0           0x0a
62 #define MC_CG_ARB_FREQ_F1           0x0b
63 #define MC_CG_ARB_FREQ_F2           0x0c
64 #define MC_CG_ARB_FREQ_F3           0x0d
65
66 #define MC_CG_SEQ_DRAMCONF_S0       0x05
67 #define MC_CG_SEQ_DRAMCONF_S1       0x06
68 #define MC_CG_SEQ_YCLK_SUSPEND      0x04
69 #define MC_CG_SEQ_YCLK_RESUME       0x0a
70
71 #define PCIE_BUS_CLK                10000
72 #define TCLK                        (PCIE_BUS_CLK / 10)
73
74 #define SMC_RAM_END 0x40000
75 #define SMC_CG_IND_START            0xc0030000
76 #define SMC_CG_IND_END              0xc0040000  /* First byte after SMC_CG_IND*/
77
78 #define VOLTAGE_SCALE               4
79 #define VOLTAGE_VID_OFFSET_SCALE1   625
80 #define VOLTAGE_VID_OFFSET_SCALE2   100
81
82 #define VDDC_VDDCI_DELTA            200
83 #define VDDC_VDDGFX_DELTA           300
84
85 #define MC_SEQ_MISC0_GDDR5_SHIFT 28
86 #define MC_SEQ_MISC0_GDDR5_MASK  0xf0000000
87 #define MC_SEQ_MISC0_GDDR5_VALUE 5
88
89 typedef uint32_t PECI_RegistryValue;
90
91 /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */
92 static const uint16_t PP_ClockStretcherLookupTable[2][4] = {
93         {600, 1050, 3, 0},
94         {600, 1050, 6, 1} };
95
96 /* [FF, SS] type, [] 4 voltage ranges, and [Floor Freq, Boundary Freq, VID min , VID max] */
97 static const uint32_t PP_ClockStretcherDDTTable[2][4][4] = {
98         { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
99         { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
100
101 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] (coming from PWR_CKS_CNTL.stretch_amount reg spec) */
102 static const uint8_t PP_ClockStretchAmountConversion[2][6] = {
103         {0, 1, 3, 2, 4, 5},
104         {0, 2, 4, 5, 6, 5} };
105
106 /* Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
107 enum DPM_EVENT_SRC {
108         DPM_EVENT_SRC_ANALOG = 0,               /* Internal analog trip point */
109         DPM_EVENT_SRC_EXTERNAL = 1,             /* External (GPIO 17) signal */
110         DPM_EVENT_SRC_DIGITAL = 2,              /* Internal digital trip point (DIG_THERM_DPM) */
111         DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,   /* Internal analog or external */
112         DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4   /* Internal digital or external */
113 };
114 typedef enum DPM_EVENT_SRC DPM_EVENT_SRC;
115
116 static const unsigned long PhwTonga_Magic = (unsigned long)(PHM_VIslands_Magic);
117
118 struct tonga_power_state *cast_phw_tonga_power_state(
119                                   struct pp_hw_power_state *hw_ps)
120 {
121         if (hw_ps == NULL)
122                 return NULL;
123
124         PP_ASSERT_WITH_CODE((PhwTonga_Magic == hw_ps->magic),
125                                 "Invalid Powerstate Type!",
126                                  return NULL);
127
128         return (struct tonga_power_state *)hw_ps;
129 }
130
131 const struct tonga_power_state *cast_const_phw_tonga_power_state(
132                                  const struct pp_hw_power_state *hw_ps)
133 {
134         if (hw_ps == NULL)
135                 return NULL;
136
137         PP_ASSERT_WITH_CODE((PhwTonga_Magic == hw_ps->magic),
138                                 "Invalid Powerstate Type!",
139                                  return NULL);
140
141         return (const struct tonga_power_state *)hw_ps;
142 }
143
144 int tonga_add_voltage(struct pp_hwmgr *hwmgr,
145         phm_ppt_v1_voltage_lookup_table *look_up_table,
146         phm_ppt_v1_voltage_lookup_record *record)
147 {
148         uint32_t i;
149         PP_ASSERT_WITH_CODE((NULL != look_up_table),
150                 "Lookup Table empty.", return -1;);
151         PP_ASSERT_WITH_CODE((0 != look_up_table->count),
152                 "Lookup Table empty.", return -1;);
153         PP_ASSERT_WITH_CODE((SMU72_MAX_LEVELS_VDDGFX >= look_up_table->count),
154                 "Lookup Table is full.", return -1;);
155
156         /* This is to avoid entering duplicate calculated records. */
157         for (i = 0; i < look_up_table->count; i++) {
158                 if (look_up_table->entries[i].us_vdd == record->us_vdd) {
159                         if (look_up_table->entries[i].us_calculated == 1)
160                                 return 0;
161                         else
162                                 break;
163                 }
164         }
165
166         look_up_table->entries[i].us_calculated = 1;
167         look_up_table->entries[i].us_vdd = record->us_vdd;
168         look_up_table->entries[i].us_cac_low = record->us_cac_low;
169         look_up_table->entries[i].us_cac_mid = record->us_cac_mid;
170         look_up_table->entries[i].us_cac_high = record->us_cac_high;
171         /* Only increment the count when we're appending, not replacing duplicate entry. */
172         if (i == look_up_table->count)
173                 look_up_table->count++;
174
175         return 0;
176 }
177
178 int tonga_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display)
179 {
180         PPSMC_Msg msg = has_display? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay;
181
182         return (smum_send_msg_to_smc(hwmgr->smumgr, msg) == 0) ?  0 : -1;
183 }
184
185 uint8_t tonga_get_voltage_id(pp_atomctrl_voltage_table *voltage_table,
186                 uint32_t voltage)
187 {
188         uint8_t count = (uint8_t) (voltage_table->count);
189         uint8_t i = 0;
190
191         PP_ASSERT_WITH_CODE((NULL != voltage_table),
192                 "Voltage Table empty.", return 0;);
193         PP_ASSERT_WITH_CODE((0 != count),
194                 "Voltage Table empty.", return 0;);
195
196         for (i = 0; i < count; i++) {
197                 /* find first voltage bigger than requested */
198                 if (voltage_table->entries[i].value >= voltage)
199                         return i;
200         }
201
202         /* voltage is bigger than max voltage in the table */
203         return i - 1;
204 }
205
206 /**
207  * @brief PhwTonga_GetVoltageOrder
208  *  Returns index of requested voltage record in lookup(table)
209  * @param hwmgr - pointer to hardware manager
210  * @param lookupTable - lookup list to search in
211  * @param voltage - voltage to look for
212  * @return 0 on success
213  */
214 uint8_t tonga_get_voltage_index(phm_ppt_v1_voltage_lookup_table *look_up_table,
215                 uint16_t voltage)
216 {
217         uint8_t count = (uint8_t) (look_up_table->count);
218         uint8_t i;
219
220         PP_ASSERT_WITH_CODE((NULL != look_up_table), "Lookup Table empty.", return 0;);
221         PP_ASSERT_WITH_CODE((0 != count), "Lookup Table empty.", return 0;);
222
223         for (i = 0; i < count; i++) {
224                 /* find first voltage equal or bigger than requested */
225                 if (look_up_table->entries[i].us_vdd >= voltage)
226                         return i;
227         }
228
229         /* voltage is bigger than max voltage in the table */
230         return i-1;
231 }
232
233 bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr)
234 {
235         /*
236          * We return the status of Voltage Control instead of checking SCLK/MCLK DPM
237          * because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM,
238          * whereas voltage control is a fundemental change that will not be disabled
239          */
240
241         return (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
242                                         FEATURE_STATUS, VOLTAGE_CONTROLLER_ON) ? 1 : 0);
243 }
244
245 /**
246  * Re-generate the DPM level mask value
247  * @param    hwmgr      the address of the hardware manager
248  */
249 static uint32_t tonga_get_dpm_level_enable_mask_value(
250                         struct tonga_single_dpm_table * dpm_table)
251 {
252         uint32_t i;
253         uint32_t mask_value = 0;
254
255         for (i = dpm_table->count; i > 0; i--) {
256                 mask_value = mask_value << 1;
257
258                 if (dpm_table->dpm_levels[i-1].enabled)
259                         mask_value |= 0x1;
260                 else
261                         mask_value &= 0xFFFFFFFE;
262         }
263         return mask_value;
264 }
265
266 /**
267  * Retrieve DPM default values from registry (if available)
268  *
269  * @param    hwmgr  the address of the powerplay hardware manager.
270  */
271 void tonga_initialize_dpm_defaults(struct pp_hwmgr *hwmgr)
272 {
273         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
274         phw_tonga_ulv_parm *ulv = &(data->ulv);
275         uint32_t tmp;
276
277         ulv->ch_ulv_parameter = PPTONGA_CGULVPARAMETER_DFLT;
278         data->voting_rights_clients0 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT0;
279         data->voting_rights_clients1 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT1;
280         data->voting_rights_clients2 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT2;
281         data->voting_rights_clients3 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT3;
282         data->voting_rights_clients4 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT4;
283         data->voting_rights_clients5 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT5;
284         data->voting_rights_clients6 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT6;
285         data->voting_rights_clients7 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT7;
286
287         data->static_screen_threshold_unit = PPTONGA_STATICSCREENTHRESHOLDUNIT_DFLT;
288         data->static_screen_threshold = PPTONGA_STATICSCREENTHRESHOLD_DFLT;
289
290         phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
291                 PHM_PlatformCaps_ABM);
292         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
293                 PHM_PlatformCaps_NonABMSupportInPPLib);
294
295         tmp = 0;
296         if (tmp == 0)
297                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
298                         PHM_PlatformCaps_DynamicACTiming);
299
300         tmp = 0;
301         if (0 != tmp)
302                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
303                         PHM_PlatformCaps_DisableMemoryTransition);
304
305         data->mclk_strobe_mode_threshold = 40000;
306         data->mclk_stutter_mode_threshold = 30000;
307         data->mclk_edc_enable_threshold = 40000;
308         data->mclk_edc_wr_enable_threshold = 40000;
309
310         tmp = 0;
311         if (tmp != 0)
312                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
313                         PHM_PlatformCaps_DisableMCLS);
314
315         data->pcie_gen_performance.max = PP_PCIEGen1;
316         data->pcie_gen_performance.min = PP_PCIEGen3;
317         data->pcie_gen_power_saving.max = PP_PCIEGen1;
318         data->pcie_gen_power_saving.min = PP_PCIEGen3;
319
320         data->pcie_lane_performance.max = 0;
321         data->pcie_lane_performance.min = 16;
322         data->pcie_lane_power_saving.max = 0;
323         data->pcie_lane_power_saving.min = 16;
324
325         tmp = 0;
326
327         if (tmp)
328                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
329                         PHM_PlatformCaps_SclkThrottleLowNotification);
330
331         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
332                 PHM_PlatformCaps_DynamicUVDState);
333
334 }
335
336 int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr)
337 {
338         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
339
340         int result = 0;
341         uint32_t low_sclk_interrupt_threshold = 0;
342
343         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
344                         PHM_PlatformCaps_SclkThrottleLowNotification)
345                 && (hwmgr->gfx_arbiter.sclk_threshold != data->low_sclk_interrupt_threshold)) {
346                 data->low_sclk_interrupt_threshold = hwmgr->gfx_arbiter.sclk_threshold;
347                 low_sclk_interrupt_threshold = data->low_sclk_interrupt_threshold;
348
349                 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
350
351                 result = tonga_copy_bytes_to_smc(
352                                 hwmgr->smumgr,
353                                 data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable,
354                                 LowSclkInterruptThreshold),
355                                 (uint8_t *)&low_sclk_interrupt_threshold,
356                                 sizeof(uint32_t),
357                                 data->sram_end
358                                 );
359         }
360
361         return result;
362 }
363
364 /**
365  * Find SCLK value that is associated with specified virtual_voltage_Id.
366  *
367  * @param    hwmgr  the address of the powerplay hardware manager.
368  * @param    virtual_voltage_Id  voltageId to look for.
369  * @param    sclk output value .
370  * @return   always 0 if success and 2 if association not found
371  */
372 static int tonga_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
373         phm_ppt_v1_voltage_lookup_table *lookup_table,
374         uint16_t virtual_voltage_id, uint32_t *sclk)
375 {
376         uint8_t entryId;
377         uint8_t voltageId;
378         struct phm_ppt_v1_information *pptable_info =
379                                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
380
381         PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -1);
382
383         /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
384         for (entryId = 0; entryId < pptable_info->vdd_dep_on_sclk->count; entryId++) {
385                 voltageId = pptable_info->vdd_dep_on_sclk->entries[entryId].vddInd;
386                 if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
387                         break;
388         }
389
390         PP_ASSERT_WITH_CODE(entryId < pptable_info->vdd_dep_on_sclk->count,
391                         "Can't find requested voltage id in vdd_dep_on_sclk table!",
392                         return -1;
393                         );
394
395         *sclk = pptable_info->vdd_dep_on_sclk->entries[entryId].clk;
396
397         return 0;
398 }
399
400 /**
401  * Get Leakage VDDC based on leakage ID.
402  *
403  * @param    hwmgr  the address of the powerplay hardware manager.
404  * @return   2 if vddgfx returned is greater than 2V or if BIOS
405  */
406 int tonga_get_evv_voltage(struct pp_hwmgr *hwmgr)
407 {
408         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
409         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
410         phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
411         uint16_t    virtual_voltage_id;
412         uint16_t    vddc = 0;
413         uint16_t    vddgfx = 0;
414         uint16_t    i, j;
415         uint32_t  sclk = 0;
416
417         /* retrieve voltage for leakage ID (0xff01 + i) */
418         for (i = 0; i < TONGA_MAX_LEAKAGE_COUNT; i++) {
419                 virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
420
421                 /* in split mode we should have only vddgfx EVV leakages */
422                 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
423                         if (0 == tonga_get_sclk_for_voltage_evv(hwmgr,
424                                                 pptable_info->vddgfx_lookup_table, virtual_voltage_id, &sclk)) {
425                                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
426                                                         PHM_PlatformCaps_ClockStretcher)) {
427                                         for (j = 1; j < sclk_table->count; j++) {
428                                                 if (sclk_table->entries[j].clk == sclk &&
429                                                                 sclk_table->entries[j].cks_enable == 0) {
430                                                         sclk += 5000;
431                                                         break;
432                                                 }
433                                         }
434                                 }
435                                 if (0 == atomctrl_get_voltage_evv_on_sclk
436                                     (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk,
437                                      virtual_voltage_id, &vddgfx)) {
438                                         /* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */
439                                         PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -1);
440
441                                         /* the voltage should not be zero nor equal to leakage ID */
442                                         if (vddgfx != 0 && vddgfx != virtual_voltage_id) {
443                                                 data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx;
444                                                 data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = virtual_voltage_id;
445                                                 data->vddcgfx_leakage.count++;
446                                         }
447                                 } else {
448                                         printk("Error retrieving EVV voltage value!\n");
449                                 }
450                         }
451                 } else {
452                         /*  in merged mode we have only vddc EVV leakages */
453                         if (0 == tonga_get_sclk_for_voltage_evv(hwmgr,
454                                                 pptable_info->vddc_lookup_table,
455                                                 virtual_voltage_id, &sclk)) {
456                                 if (0 == atomctrl_get_voltage_evv_on_sclk
457                                     (hwmgr, VOLTAGE_TYPE_VDDC, sclk,
458                                      virtual_voltage_id, &vddc)) {
459                                         /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
460                                         PP_ASSERT_WITH_CODE(vddc < 2000, "Invalid VDDC value!", return -1);
461
462                                         /* the voltage should not be zero nor equal to leakage ID */
463                                         if (vddc != 0 && vddc != virtual_voltage_id) {
464                                                 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc;
465                                                 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id;
466                                                 data->vddc_leakage.count++;
467                                         }
468                                 } else {
469                                         printk("Error retrieving EVV voltage value!\n");
470                                 }
471                         }
472                 }
473         }
474
475         return 0;
476 }
477
478 int tonga_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
479 {
480         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
481
482         /* enable SCLK dpm */
483         if (0 == data->sclk_dpm_key_disabled) {
484                 PP_ASSERT_WITH_CODE(
485                                 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
486                                                    PPSMC_MSG_DPM_Enable)),
487                                 "Failed to enable SCLK DPM during DPM Start Function!",
488                                 return -1);
489         }
490
491         /* enable MCLK dpm */
492         if (0 == data->mclk_dpm_key_disabled) {
493                 PP_ASSERT_WITH_CODE(
494                                 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
495                                              PPSMC_MSG_MCLKDPM_Enable)),
496                                 "Failed to enable MCLK DPM during DPM Start Function!",
497                                 return -1);
498
499                 PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
500
501                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
502                         ixLCAC_MC0_CNTL, 0x05);/* CH0,1 read */
503                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
504                         ixLCAC_MC1_CNTL, 0x05);/* CH2,3 read */
505                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
506                         ixLCAC_CPL_CNTL, 0x100005);/*Read */
507
508                 udelay(10);
509
510                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
511                         ixLCAC_MC0_CNTL, 0x400005);/* CH0,1 write */
512                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
513                         ixLCAC_MC1_CNTL, 0x400005);/* CH2,3 write */
514                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
515                         ixLCAC_CPL_CNTL, 0x500005);/* write */
516
517         }
518
519         return 0;
520 }
521
522 int tonga_start_dpm(struct pp_hwmgr *hwmgr)
523 {
524         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
525
526         /* enable general power management */
527         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 1);
528         /* enable sclk deep sleep */
529         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 1);
530
531         /* prepare for PCIE DPM */
532         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start +
533                         offsetof(SMU72_SoftRegisters, VoltageChangeTimeout), 0x1000);
534
535         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, SWRST_COMMAND_1, RESETLC, 0x0);
536
537         PP_ASSERT_WITH_CODE(
538                         (0 == smum_send_msg_to_smc(hwmgr->smumgr,
539                                         PPSMC_MSG_Voltage_Cntl_Enable)),
540                         "Failed to enable voltage DPM during DPM Start Function!",
541                         return -1);
542
543         if (0 != tonga_enable_sclk_mclk_dpm(hwmgr)) {
544                 PP_ASSERT_WITH_CODE(0, "Failed to enable Sclk DPM and Mclk DPM!", return -1);
545         }
546
547         /* enable PCIE dpm */
548         if (0 == data->pcie_dpm_key_disabled) {
549                 PP_ASSERT_WITH_CODE(
550                                 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
551                                                 PPSMC_MSG_PCIeDPM_Enable)),
552                                 "Failed to enable pcie DPM during DPM Start Function!",
553                                 return -1
554                                 );
555         }
556
557         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
558                                 PHM_PlatformCaps_Falcon_QuickTransition)) {
559                                    smum_send_msg_to_smc(hwmgr->smumgr,
560                                     PPSMC_MSG_EnableACDCGPIOInterrupt);
561         }
562
563         return 0;
564 }
565
566 int tonga_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
567 {
568         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
569
570         /* disable SCLK dpm */
571         if (0 == data->sclk_dpm_key_disabled) {
572                 /* Checking if DPM is running.  If we discover hang because of this, we should skip this message.*/
573                 PP_ASSERT_WITH_CODE(
574                                 (0 == tonga_is_dpm_running(hwmgr)),
575                                 "Trying to Disable SCLK DPM when DPM is disabled",
576                                 return -1
577                                 );
578
579                 PP_ASSERT_WITH_CODE(
580                                 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
581                                                   PPSMC_MSG_DPM_Disable)),
582                                 "Failed to disable SCLK DPM during DPM stop Function!",
583                                 return -1);
584         }
585
586         /* disable MCLK dpm */
587         if (0 == data->mclk_dpm_key_disabled) {
588                 /* Checking if DPM is running.  If we discover hang because of this, we should skip this message. */
589                 PP_ASSERT_WITH_CODE(
590                                 (0 == tonga_is_dpm_running(hwmgr)),
591                                 "Trying to Disable MCLK DPM when DPM is disabled",
592                                 return -1
593                                 );
594
595                 PP_ASSERT_WITH_CODE(
596                                 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
597                                             PPSMC_MSG_MCLKDPM_Disable)),
598                                 "Failed to Disable MCLK DPM during DPM stop Function!",
599                                 return -1);
600         }
601
602         return 0;
603 }
604
605 int tonga_stop_dpm(struct pp_hwmgr *hwmgr)
606 {
607         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
608
609         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 0);
610         /* disable sclk deep sleep*/
611         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 0);
612
613         /* disable PCIE dpm */
614         if (0 == data->pcie_dpm_key_disabled) {
615                 /* Checking if DPM is running.  If we discover hang because of this, we should skip this message.*/
616                 PP_ASSERT_WITH_CODE(
617                                 (0 == tonga_is_dpm_running(hwmgr)),
618                                 "Trying to Disable PCIE DPM when DPM is disabled",
619                                 return -1
620                                 );
621                 PP_ASSERT_WITH_CODE(
622                                 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
623                                                 PPSMC_MSG_PCIeDPM_Disable)),
624                                 "Failed to disable pcie DPM during DPM stop Function!",
625                                 return -1);
626         }
627
628         if (0 != tonga_disable_sclk_mclk_dpm(hwmgr))
629                 PP_ASSERT_WITH_CODE(0, "Failed to disable Sclk DPM and Mclk DPM!", return -1);
630
631         /* Checking if DPM is running.  If we discover hang because of this, we should skip this message.*/
632         PP_ASSERT_WITH_CODE(
633                         (0 == tonga_is_dpm_running(hwmgr)),
634                         "Trying to Disable Voltage CNTL when DPM is disabled",
635                         return -1
636                         );
637
638         PP_ASSERT_WITH_CODE(
639                         (0 == smum_send_msg_to_smc(hwmgr->smumgr,
640                                         PPSMC_MSG_Voltage_Cntl_Disable)),
641                         "Failed to disable voltage DPM during DPM stop Function!",
642                         return -1);
643
644         return 0;
645 }
646
647 int tonga_enable_sclk_control(struct pp_hwmgr *hwmgr)
648 {
649         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, 0);
650
651         return 0;
652 }
653
654 /**
655  * Send a message to the SMC and return a parameter
656  *
657  * @param    hwmgr:  the address of the powerplay hardware manager.
658  * @param    msg: the message to send.
659  * @param    parameter: pointer to the received parameter
660  * @return   The response that came from the SMC.
661  */
662 PPSMC_Result tonga_send_msg_to_smc_return_parameter(
663                 struct pp_hwmgr *hwmgr,
664                 PPSMC_Msg msg,
665                 uint32_t *parameter)
666 {
667         int result;
668
669         result = smum_send_msg_to_smc(hwmgr->smumgr, msg);
670
671         if ((0 == result) && parameter) {
672                 *parameter = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
673         }
674
675         return result;
676 }
677
678 /**
679  * force DPM power State
680  *
681  * @param    hwmgr:  the address of the powerplay hardware manager.
682  * @param    n     :  DPM level
683  * @return   The response that came from the SMC.
684  */
685 int tonga_dpm_force_state(struct pp_hwmgr *hwmgr, uint32_t n)
686 {
687         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
688         uint32_t level_mask = 1 << n;
689
690         /* Checking if DPM is running.  If we discover hang because of this, we should skip this message. */
691         PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
692                         "Trying to force SCLK when DPM is disabled", return -1;);
693         if (0 == data->sclk_dpm_key_disabled)
694                 return (0 == smum_send_msg_to_smc_with_parameter(
695                                                              hwmgr->smumgr,
696                      (PPSMC_Msg)(PPSMC_MSG_SCLKDPM_SetEnabledMask),
697                                                     level_mask) ? 0 : 1);
698
699         return 0;
700 }
701
702 /**
703  * force DPM power State
704  *
705  * @param    hwmgr:  the address of the powerplay hardware manager.
706  * @param    n     :  DPM level
707  * @return   The response that came from the SMC.
708  */
709 int tonga_dpm_force_state_mclk(struct pp_hwmgr *hwmgr, uint32_t n)
710 {
711         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
712         uint32_t level_mask = 1 << n;
713
714         /* Checking if DPM is running.  If we discover hang because of this, we should skip this message. */
715         PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
716                         "Trying to Force MCLK when DPM is disabled", return -1;);
717         if (0 == data->mclk_dpm_key_disabled)
718                 return (0 == smum_send_msg_to_smc_with_parameter(
719                                                                 hwmgr->smumgr,
720                                                                 (PPSMC_Msg)(PPSMC_MSG_MCLKDPM_SetEnabledMask),
721                                                                 level_mask) ? 0 : 1);
722
723         return 0;
724 }
725
726 /**
727  * force DPM power State
728  *
729  * @param    hwmgr:  the address of the powerplay hardware manager.
730  * @param    n     :  DPM level
731  * @return   The response that came from the SMC.
732  */
733 int tonga_dpm_force_state_pcie(struct pp_hwmgr *hwmgr, uint32_t n)
734 {
735         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
736
737         /* Checking if DPM is running.  If we discover hang because of this, we should skip this message.*/
738         PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
739                         "Trying to Force PCIE level when DPM is disabled", return -1;);
740         if (0 == data->pcie_dpm_key_disabled)
741                 return (0 == smum_send_msg_to_smc_with_parameter(
742                                                              hwmgr->smumgr,
743                            (PPSMC_Msg)(PPSMC_MSG_PCIeDPM_ForceLevel),
744                                                                 n) ? 0 : 1);
745
746         return 0;
747 }
748
749 /**
750  * Set the initial state by calling SMC to switch to this state directly
751  *
752  * @param    hwmgr  the address of the powerplay hardware manager.
753  * @return   always 0
754  */
755 int tonga_set_boot_state(struct pp_hwmgr *hwmgr)
756 {
757         /*
758         * SMC only stores one state that SW will ask to switch too,
759         * so we switch the the just uploaded one
760         */
761         return (0 == tonga_disable_sclk_mclk_dpm(hwmgr)) ? 0 : 1;
762 }
763
764 /**
765  * Get the location of various tables inside the FW image.
766  *
767  * @param    hwmgr  the address of the powerplay hardware manager.
768  * @return   always 0
769  */
770 int tonga_process_firmware_header(struct pp_hwmgr *hwmgr)
771 {
772         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
773         struct tonga_smumgr *tonga_smu = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
774
775         uint32_t tmp;
776         int result;
777         bool error = 0;
778
779         result = tonga_read_smc_sram_dword(hwmgr->smumgr,
780                                 SMU72_FIRMWARE_HEADER_LOCATION +
781                                 offsetof(SMU72_Firmware_Header, DpmTable),
782                                 &tmp, data->sram_end);
783
784         if (0 == result) {
785                 data->dpm_table_start = tmp;
786         }
787
788         error |= (0 != result);
789
790         result = tonga_read_smc_sram_dword(hwmgr->smumgr,
791                                 SMU72_FIRMWARE_HEADER_LOCATION +
792                                 offsetof(SMU72_Firmware_Header, SoftRegisters),
793                                 &tmp, data->sram_end);
794
795         if (0 == result) {
796                 data->soft_regs_start = tmp;
797                 tonga_smu->ulSoftRegsStart = tmp;
798         }
799
800         error |= (0 != result);
801
802
803         result = tonga_read_smc_sram_dword(hwmgr->smumgr,
804                                 SMU72_FIRMWARE_HEADER_LOCATION +
805                                 offsetof(SMU72_Firmware_Header, mcRegisterTable),
806                                 &tmp, data->sram_end);
807
808         if (0 == result) {
809                 data->mc_reg_table_start = tmp;
810         }
811
812         result = tonga_read_smc_sram_dword(hwmgr->smumgr,
813                                 SMU72_FIRMWARE_HEADER_LOCATION +
814                                 offsetof(SMU72_Firmware_Header, FanTable),
815                                 &tmp, data->sram_end);
816
817         if (0 == result) {
818                 data->fan_table_start = tmp;
819         }
820
821         error |= (0 != result);
822
823         result = tonga_read_smc_sram_dword(hwmgr->smumgr,
824                                 SMU72_FIRMWARE_HEADER_LOCATION +
825                                 offsetof(SMU72_Firmware_Header, mcArbDramTimingTable),
826                                 &tmp, data->sram_end);
827
828         if (0 == result) {
829                 data->arb_table_start = tmp;
830         }
831
832         error |= (0 != result);
833
834
835         result = tonga_read_smc_sram_dword(hwmgr->smumgr,
836                                 SMU72_FIRMWARE_HEADER_LOCATION +
837                                 offsetof(SMU72_Firmware_Header, Version),
838                                 &tmp, data->sram_end);
839
840         if (0 == result) {
841                 hwmgr->microcode_version_info.SMC = tmp;
842         }
843
844         error |= (0 != result);
845
846         return error ? 1 : 0;
847 }
848
849 /**
850  * Read clock related registers.
851  *
852  * @param    hwmgr  the address of the powerplay hardware manager.
853  * @return   always 0
854  */
855 int tonga_read_clock_registers(struct pp_hwmgr *hwmgr)
856 {
857         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
858
859         data->clock_registers.vCG_SPLL_FUNC_CNTL         =
860                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
861         data->clock_registers.vCG_SPLL_FUNC_CNTL_2       =
862                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
863         data->clock_registers.vCG_SPLL_FUNC_CNTL_3       =
864                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
865         data->clock_registers.vCG_SPLL_FUNC_CNTL_4       =
866                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
867         data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM   =
868                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
869         data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
870                 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
871         data->clock_registers.vDLL_CNTL                  =
872                 cgs_read_register(hwmgr->device, mmDLL_CNTL);
873         data->clock_registers.vMCLK_PWRMGT_CNTL          =
874                 cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
875         data->clock_registers.vMPLL_AD_FUNC_CNTL         =
876                 cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
877         data->clock_registers.vMPLL_DQ_FUNC_CNTL         =
878                 cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
879         data->clock_registers.vMPLL_FUNC_CNTL            =
880                 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
881         data->clock_registers.vMPLL_FUNC_CNTL_1          =
882                 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
883         data->clock_registers.vMPLL_FUNC_CNTL_2          =
884                 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
885         data->clock_registers.vMPLL_SS1                  =
886                 cgs_read_register(hwmgr->device, mmMPLL_SS1);
887         data->clock_registers.vMPLL_SS2                  =
888                 cgs_read_register(hwmgr->device, mmMPLL_SS2);
889
890         return 0;
891 }
892
893 /**
894  * Find out if memory is GDDR5.
895  *
896  * @param    hwmgr  the address of the powerplay hardware manager.
897  * @return   always 0
898  */
899 int tonga_get_memory_type(struct pp_hwmgr *hwmgr)
900 {
901         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
902         uint32_t temp;
903
904         temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
905
906         data->is_memory_GDDR5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
907                         ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
908                          MC_SEQ_MISC0_GDDR5_SHIFT));
909
910         return 0;
911 }
912
913 /**
914  * Enables Dynamic Power Management by SMC
915  *
916  * @param    hwmgr  the address of the powerplay hardware manager.
917  * @return   always 0
918  */
919 int tonga_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
920 {
921         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, STATIC_PM_EN, 1);
922
923         return 0;
924 }
925
926 /**
927  * Initialize PowerGating States for different engines
928  *
929  * @param    hwmgr  the address of the powerplay hardware manager.
930  * @return   always 0
931  */
932 int tonga_init_power_gate_state(struct pp_hwmgr *hwmgr)
933 {
934         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
935
936         data->uvd_power_gated = 0;
937         data->vce_power_gated = 0;
938         data->samu_power_gated = 0;
939         data->acp_power_gated = 0;
940         data->pg_acp_init = 1;
941
942         return 0;
943 }
944
945 /**
946  * Checks if DPM is enabled
947  *
948  * @param    hwmgr  the address of the powerplay hardware manager.
949  * @return   always 0
950  */
951 int tonga_check_for_dpm_running(struct pp_hwmgr *hwmgr)
952 {
953         /*
954          * We return the status of Voltage Control instead of checking SCLK/MCLK DPM
955          * because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM,
956          * whereas voltage control is a fundemental change that will not be disabled
957          */
958         return (0 == tonga_is_dpm_running(hwmgr) ? 0 : 1);
959 }
960
961 /**
962  * Checks if DPM is stopped
963  *
964  * @param    hwmgr  the address of the powerplay hardware manager.
965  * @return   always 0
966  */
967 int tonga_check_for_dpm_stopped(struct pp_hwmgr *hwmgr)
968 {
969         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
970
971         if (0 != tonga_is_dpm_running(hwmgr)) {
972                 /* If HW Virtualization is enabled, dpm_table_start will not have a valid value */
973                 if (!data->dpm_table_start) {
974                         return 1;
975                 }
976         }
977
978         return 0;
979 }
980
981 /**
982  * Remove repeated voltage values and create table with unique values.
983  *
984  * @param    hwmgr  the address of the powerplay hardware manager.
985  * @param    voltage_table  the pointer to changing voltage table
986  * @return    1 in success
987  */
988
989 static int tonga_trim_voltage_table(struct pp_hwmgr *hwmgr,
990                         pp_atomctrl_voltage_table *voltage_table)
991 {
992         uint32_t table_size, i, j;
993         uint16_t vvalue;
994         bool bVoltageFound = 0;
995         pp_atomctrl_voltage_table *table;
996
997         PP_ASSERT_WITH_CODE((NULL != voltage_table), "Voltage Table empty.", return -1;);
998         table_size = sizeof(pp_atomctrl_voltage_table);
999         table = kzalloc(table_size, GFP_KERNEL);
1000
1001         if (NULL == table)
1002                 return -ENOMEM;
1003
1004         memset(table, 0x00, table_size);
1005         table->mask_low = voltage_table->mask_low;
1006         table->phase_delay = voltage_table->phase_delay;
1007
1008         for (i = 0; i < voltage_table->count; i++) {
1009                 vvalue = voltage_table->entries[i].value;
1010                 bVoltageFound = 0;
1011
1012                 for (j = 0; j < table->count; j++) {
1013                         if (vvalue == table->entries[j].value) {
1014                                 bVoltageFound = 1;
1015                                 break;
1016                         }
1017                 }
1018
1019                 if (!bVoltageFound) {
1020                         table->entries[table->count].value = vvalue;
1021                         table->entries[table->count].smio_low =
1022                                 voltage_table->entries[i].smio_low;
1023                         table->count++;
1024                 }
1025         }
1026
1027         memcpy(table, voltage_table, sizeof(pp_atomctrl_voltage_table));
1028
1029         kfree(table);
1030
1031         return 0;
1032 }
1033
1034 static int tonga_get_svi2_vdd_ci_voltage_table(
1035                 struct pp_hwmgr *hwmgr,
1036                 phm_ppt_v1_clock_voltage_dependency_table *voltage_dependency_table)
1037 {
1038         uint32_t i;
1039         int result;
1040         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1041         pp_atomctrl_voltage_table *vddci_voltage_table = &(data->vddci_voltage_table);
1042
1043         PP_ASSERT_WITH_CODE((0 != voltage_dependency_table->count),
1044                         "Voltage Dependency Table empty.", return -1;);
1045
1046         vddci_voltage_table->mask_low = 0;
1047         vddci_voltage_table->phase_delay = 0;
1048         vddci_voltage_table->count = voltage_dependency_table->count;
1049
1050         for (i = 0; i < voltage_dependency_table->count; i++) {
1051                 vddci_voltage_table->entries[i].value =
1052                         voltage_dependency_table->entries[i].vddci;
1053                 vddci_voltage_table->entries[i].smio_low = 0;
1054         }
1055
1056         result = tonga_trim_voltage_table(hwmgr, vddci_voltage_table);
1057         PP_ASSERT_WITH_CODE((0 == result),
1058                         "Failed to trim VDDCI table.", return result;);
1059
1060         return 0;
1061 }
1062
1063
1064
1065 static int tonga_get_svi2_vdd_voltage_table(
1066                 struct pp_hwmgr *hwmgr,
1067                 phm_ppt_v1_voltage_lookup_table *look_up_table,
1068                 pp_atomctrl_voltage_table *voltage_table)
1069 {
1070         uint8_t i = 0;
1071
1072         PP_ASSERT_WITH_CODE((0 != look_up_table->count),
1073                         "Voltage Lookup Table empty.", return -1;);
1074
1075         voltage_table->mask_low = 0;
1076         voltage_table->phase_delay = 0;
1077
1078         voltage_table->count = look_up_table->count;
1079
1080         for (i = 0; i < voltage_table->count; i++) {
1081                 voltage_table->entries[i].value = look_up_table->entries[i].us_vdd;
1082                 voltage_table->entries[i].smio_low = 0;
1083         }
1084
1085         return 0;
1086 }
1087
1088 /*
1089  * -------------------------------------------------------- Voltage Tables --------------------------------------------------------------------------
1090  * If the voltage table would be bigger than what will fit into the state table on the SMC keep only the higher entries.
1091  */
1092
1093 static void tonga_trim_voltage_table_to_fit_state_table(
1094                 struct pp_hwmgr *hwmgr,
1095                 uint32_t max_voltage_steps,
1096                 pp_atomctrl_voltage_table *voltage_table)
1097 {
1098         unsigned int i, diff;
1099
1100         if (voltage_table->count <= max_voltage_steps) {
1101                 return;
1102         }
1103
1104         diff = voltage_table->count - max_voltage_steps;
1105
1106         for (i = 0; i < max_voltage_steps; i++) {
1107                 voltage_table->entries[i] = voltage_table->entries[i + diff];
1108         }
1109
1110         voltage_table->count = max_voltage_steps;
1111
1112         return;
1113 }
1114
1115 /**
1116  * Create Voltage Tables.
1117  *
1118  * @param    hwmgr  the address of the powerplay hardware manager.
1119  * @return   always 0
1120  */
1121 int tonga_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1122 {
1123         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1124         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1125         int result;
1126
1127         /* MVDD has only GPIO voltage control */
1128         if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1129                 result = atomctrl_get_voltage_table_v3(hwmgr,
1130                                         VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, &(data->mvdd_voltage_table));
1131                 PP_ASSERT_WITH_CODE((0 == result),
1132                         "Failed to retrieve MVDD table.", return result;);
1133         }
1134
1135         if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
1136                 /* GPIO voltage */
1137                 result = atomctrl_get_voltage_table_v3(hwmgr,
1138                                         VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, &(data->vddci_voltage_table));
1139                 PP_ASSERT_WITH_CODE((0 == result),
1140                         "Failed to retrieve VDDCI table.", return result;);
1141         } else if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
1142                 /* SVI2 voltage */
1143                 result = tonga_get_svi2_vdd_ci_voltage_table(hwmgr,
1144                                         pptable_info->vdd_dep_on_mclk);
1145                 PP_ASSERT_WITH_CODE((0 == result),
1146                         "Failed to retrieve SVI2 VDDCI table from dependancy table.", return result;);
1147         }
1148
1149         if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
1150                 /* VDDGFX has only SVI2 voltage control */
1151                 result = tonga_get_svi2_vdd_voltage_table(hwmgr,
1152                                         pptable_info->vddgfx_lookup_table, &(data->vddgfx_voltage_table));
1153                 PP_ASSERT_WITH_CODE((0 == result),
1154                         "Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;);
1155         }
1156
1157         if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1158                 /* VDDC has only SVI2 voltage control */
1159                 result = tonga_get_svi2_vdd_voltage_table(hwmgr,
1160                                         pptable_info->vddc_lookup_table, &(data->vddc_voltage_table));
1161                 PP_ASSERT_WITH_CODE((0 == result),
1162                         "Failed to retrieve SVI2 VDDC table from lookup table.", return result;);
1163         }
1164
1165         PP_ASSERT_WITH_CODE(
1166                         (data->vddc_voltage_table.count <= (SMU72_MAX_LEVELS_VDDC)),
1167                         "Too many voltage values for VDDC. Trimming to fit state table.",
1168                         tonga_trim_voltage_table_to_fit_state_table(hwmgr,
1169                         SMU72_MAX_LEVELS_VDDC, &(data->vddc_voltage_table));
1170                         );
1171
1172         PP_ASSERT_WITH_CODE(
1173                         (data->vddgfx_voltage_table.count <= (SMU72_MAX_LEVELS_VDDGFX)),
1174                         "Too many voltage values for VDDGFX. Trimming to fit state table.",
1175                         tonga_trim_voltage_table_to_fit_state_table(hwmgr,
1176                         SMU72_MAX_LEVELS_VDDGFX, &(data->vddgfx_voltage_table));
1177                         );
1178
1179         PP_ASSERT_WITH_CODE(
1180                         (data->vddci_voltage_table.count <= (SMU72_MAX_LEVELS_VDDCI)),
1181                         "Too many voltage values for VDDCI. Trimming to fit state table.",
1182                         tonga_trim_voltage_table_to_fit_state_table(hwmgr,
1183                         SMU72_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table));
1184                         );
1185
1186         PP_ASSERT_WITH_CODE(
1187                         (data->mvdd_voltage_table.count <= (SMU72_MAX_LEVELS_MVDD)),
1188                         "Too many voltage values for MVDD. Trimming to fit state table.",
1189                         tonga_trim_voltage_table_to_fit_state_table(hwmgr,
1190                         SMU72_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table));
1191                         );
1192
1193         return 0;
1194 }
1195
1196 /**
1197  * Vddc table preparation for SMC.
1198  *
1199  * @param    hwmgr      the address of the hardware manager
1200  * @param    table     the SMC DPM table structure to be populated
1201  * @return   always 0
1202  */
1203 static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
1204                         SMU72_Discrete_DpmTable *table)
1205 {
1206         unsigned int count;
1207         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1208
1209         if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1210                 table->VddcLevelCount = data->vddc_voltage_table.count;
1211                 for (count = 0; count < table->VddcLevelCount; count++) {
1212                         table->VddcTable[count] =
1213                                 PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE);
1214                 }
1215                 CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
1216         }
1217         return 0;
1218 }
1219
1220 /**
1221  * VddGfx table preparation for SMC.
1222  *
1223  * @param    hwmgr      the address of the hardware manager
1224  * @param    table     the SMC DPM table structure to be populated
1225  * @return   always 0
1226  */
1227 static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr,
1228                         SMU72_Discrete_DpmTable *table)
1229 {
1230         unsigned int count;
1231         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1232
1233         if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
1234                 table->VddGfxLevelCount = data->vddgfx_voltage_table.count;
1235                 for (count = 0; count < data->vddgfx_voltage_table.count; count++) {
1236                         table->VddGfxTable[count] =
1237                                 PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE);
1238                 }
1239                 CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount);
1240         }
1241         return 0;
1242 }
1243
1244 /**
1245  * Vddci table preparation for SMC.
1246  *
1247  * @param    *hwmgr The address of the hardware manager.
1248  * @param    *table The SMC DPM table structure to be populated.
1249  * @return   0
1250  */
1251 static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
1252                         SMU72_Discrete_DpmTable *table)
1253 {
1254         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1255         uint32_t count;
1256
1257         table->VddciLevelCount = data->vddci_voltage_table.count;
1258         for (count = 0; count < table->VddciLevelCount; count++) {
1259                 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
1260                         table->VddciTable[count] =
1261                                 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
1262                 } else if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
1263                         table->SmioTable1.Pattern[count].Voltage =
1264                                 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
1265                         /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */
1266                         table->SmioTable1.Pattern[count].Smio =
1267                                 (uint8_t) count;
1268                         table->Smio[count] |=
1269                                 data->vddci_voltage_table.entries[count].smio_low;
1270                         table->VddciTable[count] =
1271                                 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
1272                 }
1273         }
1274
1275         table->SmioMask1 = data->vddci_voltage_table.mask_low;
1276         CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
1277
1278         return 0;
1279 }
1280
1281 /**
1282  * Mvdd table preparation for SMC.
1283  *
1284  * @param    *hwmgr The address of the hardware manager.
1285  * @param    *table The SMC DPM table structure to be populated.
1286  * @return   0
1287  */
1288 static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
1289                         SMU72_Discrete_DpmTable *table)
1290 {
1291         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1292         uint32_t count;
1293
1294         if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1295                 table->MvddLevelCount = data->mvdd_voltage_table.count;
1296                 for (count = 0; count < table->MvddLevelCount; count++) {
1297                         table->SmioTable2.Pattern[count].Voltage =
1298                                 PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
1299                         /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
1300                         table->SmioTable2.Pattern[count].Smio =
1301                                 (uint8_t) count;
1302                         table->Smio[count] |=
1303                                 data->mvdd_voltage_table.entries[count].smio_low;
1304                 }
1305                 table->SmioMask2 = data->vddci_voltage_table.mask_low;
1306
1307                 CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
1308         }
1309
1310         return 0;
1311 }
1312
1313 /**
1314  * Convert a voltage value in mv unit to VID number required by SMU firmware
1315  */
1316 static uint8_t convert_to_vid(uint16_t vddc)
1317 {
1318         return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
1319 }
1320
1321
1322 /**
1323  * Preparation of vddc and vddgfx CAC tables for SMC.
1324  *
1325  * @param    hwmgr      the address of the hardware manager
1326  * @param    table     the SMC DPM table structure to be populated
1327  * @return   always 0
1328  */
1329 static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr,
1330                         SMU72_Discrete_DpmTable *table)
1331 {
1332         uint32_t count;
1333         uint8_t index;
1334         int result = 0;
1335         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1336         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1337         struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table = pptable_info->vddgfx_lookup_table;
1338         struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table = pptable_info->vddc_lookup_table;
1339
1340         /* pTables is already swapped, so in order to use the value from it, we need to swap it back. */
1341         uint32_t vddcLevelCount = PP_SMC_TO_HOST_UL(table->VddcLevelCount);
1342         uint32_t vddgfxLevelCount = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount);
1343
1344         for (count = 0; count < vddcLevelCount; count++) {
1345                 /* We are populating vddc CAC data to BapmVddc table in split and merged mode */
1346                 index = tonga_get_voltage_index(vddc_lookup_table,
1347                         data->vddc_voltage_table.entries[count].value);
1348                 table->BapmVddcVidLoSidd[count] =
1349                         convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
1350                 table->BapmVddcVidHiSidd[count] =
1351                         convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
1352                 table->BapmVddcVidHiSidd2[count] =
1353                         convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
1354         }
1355
1356         if ((data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2)) {
1357                 /* We are populating vddgfx CAC data to BapmVddgfx table in split mode */
1358                 for (count = 0; count < vddgfxLevelCount; count++) {
1359                         index = tonga_get_voltage_index(vddgfx_lookup_table,
1360                                 data->vddgfx_voltage_table.entries[count].value);
1361                         table->BapmVddGfxVidLoSidd[count] =
1362                                 convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_low);
1363                         table->BapmVddGfxVidHiSidd[count] =
1364                                 convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid);
1365                         table->BapmVddGfxVidHiSidd2[count] =
1366                                 convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high);
1367                 }
1368         } else {
1369                 for (count = 0; count < vddcLevelCount; count++) {
1370                         index = tonga_get_voltage_index(vddc_lookup_table,
1371                                 data->vddc_voltage_table.entries[count].value);
1372                         table->BapmVddGfxVidLoSidd[count] =
1373                                 convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
1374                         table->BapmVddGfxVidHiSidd[count] =
1375                                 convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
1376                         table->BapmVddGfxVidHiSidd2[count] =
1377                                 convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
1378                 }
1379         }
1380
1381         return result;
1382 }
1383
1384
1385 /**
1386  * Preparation of voltage tables for SMC.
1387  *
1388  * @param    hwmgr      the address of the hardware manager
1389  * @param    table     the SMC DPM table structure to be populated
1390  * @return   always 0
1391  */
1392
1393 int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
1394         SMU72_Discrete_DpmTable *table)
1395 {
1396         int result;
1397
1398         result = tonga_populate_smc_vddc_table(hwmgr, table);
1399         PP_ASSERT_WITH_CODE(0 == result,
1400                         "can not populate VDDC voltage table to SMC", return -1);
1401
1402         result = tonga_populate_smc_vdd_ci_table(hwmgr, table);
1403         PP_ASSERT_WITH_CODE(0 == result,
1404                         "can not populate VDDCI voltage table to SMC", return -1);
1405
1406         result = tonga_populate_smc_vdd_gfx_table(hwmgr, table);
1407         PP_ASSERT_WITH_CODE(0 == result,
1408                         "can not populate VDDGFX voltage table to SMC", return -1);
1409
1410         result = tonga_populate_smc_mvdd_table(hwmgr, table);
1411         PP_ASSERT_WITH_CODE(0 == result,
1412                         "can not populate MVDD voltage table to SMC", return -1);
1413
1414         result = tonga_populate_cac_tables(hwmgr, table);
1415         PP_ASSERT_WITH_CODE(0 == result,
1416                         "can not populate CAC voltage tables to SMC", return -1);
1417
1418         return 0;
1419 }
1420
1421 /**
1422  * Populates the SMC VRConfig field in DPM table.
1423  *
1424  * @param    hwmgr      the address of the hardware manager
1425  * @param    table     the SMC DPM table structure to be populated
1426  * @return   always 0
1427  */
1428 static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr,
1429                         SMU72_Discrete_DpmTable *table)
1430 {
1431         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1432         uint16_t config;
1433
1434         if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
1435                 /*  Splitted mode */
1436                 config = VR_SVI2_PLANE_1;
1437                 table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1438
1439                 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1440                         config = VR_SVI2_PLANE_2;
1441                         table->VRConfig |= config;
1442                 } else {
1443                         printk(KERN_ERR "[ powerplay ] VDDC and VDDGFX should be both on SVI2 control in splitted mode! \n");
1444                 }
1445         } else {
1446                 /* Merged mode  */
1447                 config = VR_MERGED_WITH_VDDC;
1448                 table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1449
1450                 /* Set Vddc Voltage Controller  */
1451                 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1452                         config = VR_SVI2_PLANE_1;
1453                         table->VRConfig |= config;
1454                 } else {
1455                         printk(KERN_ERR "[ powerplay ] VDDC should be on SVI2 control in merged mode! \n");
1456                 }
1457         }
1458
1459         /* Set Vddci Voltage Controller  */
1460         if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
1461                 config = VR_SVI2_PLANE_2;  /* only in merged mode */
1462                 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1463         } else if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
1464                 config = VR_SMIO_PATTERN_1;
1465                 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1466         }
1467
1468         /* Set Mvdd Voltage Controller */
1469         if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1470                 config = VR_SMIO_PATTERN_2;
1471                 table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1472         }
1473
1474         return 0;
1475 }
1476
1477 static int tonga_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr,
1478         phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table,
1479         uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
1480 {
1481         uint32_t i = 0;
1482         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1483         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1484
1485         /* clock - voltage dependency table is empty table */
1486         if (allowed_clock_voltage_table->count == 0)
1487                 return -1;
1488
1489         for (i = 0; i < allowed_clock_voltage_table->count; i++) {
1490                 /* find first sclk bigger than request */
1491                 if (allowed_clock_voltage_table->entries[i].clk >= clock) {
1492                         voltage->VddGfx = tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1493                                                                 allowed_clock_voltage_table->entries[i].vddgfx);
1494
1495                         voltage->Vddc = tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1496                                                                 allowed_clock_voltage_table->entries[i].vddc);
1497
1498                         if (allowed_clock_voltage_table->entries[i].vddci) {
1499                                 voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
1500                                                                         allowed_clock_voltage_table->entries[i].vddci);
1501                         } else {
1502                                 voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
1503                                                                         allowed_clock_voltage_table->entries[i].vddc - data->vddc_vddci_delta);
1504                         }
1505
1506                         if (allowed_clock_voltage_table->entries[i].mvdd) {
1507                                 *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd;
1508                         }
1509
1510                         voltage->Phases = 1;
1511                         return 0;
1512                 }
1513         }
1514
1515         /* sclk is bigger than max sclk in the dependence table */
1516         voltage->VddGfx = tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1517                 allowed_clock_voltage_table->entries[i-1].vddgfx);
1518         voltage->Vddc = tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1519                 allowed_clock_voltage_table->entries[i-1].vddc);
1520
1521         if (allowed_clock_voltage_table->entries[i-1].vddci) {
1522                 voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
1523                         allowed_clock_voltage_table->entries[i-1].vddci);
1524         }
1525         if (allowed_clock_voltage_table->entries[i-1].mvdd) {
1526                 *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd;
1527         }
1528
1529         return 0;
1530 }
1531
1532 /**
1533  * Call SMC to reset S0/S1 to S1 and Reset SMIO to initial value
1534  *
1535  * @param    hwmgr  the address of the powerplay hardware manager.
1536  * @return   always 0
1537  */
1538 int tonga_reset_to_default(struct pp_hwmgr *hwmgr)
1539 {
1540         return (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_ResetToDefaults) == 0) ? 0 : 1;
1541 }
1542
1543 int tonga_populate_memory_timing_parameters(
1544                 struct pp_hwmgr *hwmgr,
1545                 uint32_t engine_clock,
1546                 uint32_t memory_clock,
1547                 struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs
1548                 )
1549 {
1550         uint32_t dramTiming;
1551         uint32_t dramTiming2;
1552         uint32_t burstTime;
1553         int result;
1554
1555         result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1556                                 engine_clock, memory_clock);
1557
1558         PP_ASSERT_WITH_CODE(result == 0,
1559                 "Error calling VBIOS to set DRAM_TIMING.", return result);
1560
1561         dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1562         dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1563         burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1564
1565         arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
1566         arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1567         arb_regs->McArbBurstTime = (uint8_t)burstTime;
1568
1569         return 0;
1570 }
1571
1572 /**
1573  * Setup parameters for the MC ARB.
1574  *
1575  * @param    hwmgr  the address of the powerplay hardware manager.
1576  * @return   always 0
1577  * This function is to be called from the SetPowerState table.
1578  */
1579 int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1580 {
1581         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1582         int result = 0;
1583         SMU72_Discrete_MCArbDramTimingTable  arb_regs;
1584         uint32_t i, j;
1585
1586         memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable));
1587
1588         for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1589                 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1590                         result = tonga_populate_memory_timing_parameters
1591                                 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1592                                  data->dpm_table.mclk_table.dpm_levels[j].value,
1593                                  &arb_regs.entries[i][j]);
1594
1595                         if (0 != result) {
1596                                 break;
1597                         }
1598                 }
1599         }
1600
1601         if (0 == result) {
1602                 result = tonga_copy_bytes_to_smc(
1603                                 hwmgr->smumgr,
1604                                 data->arb_table_start,
1605                                 (uint8_t *)&arb_regs,
1606                                 sizeof(SMU72_Discrete_MCArbDramTimingTable),
1607                                 data->sram_end
1608                                 );
1609         }
1610
1611         return result;
1612 }
1613
1614 static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table)
1615 {
1616         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1617         struct tonga_dpm_table *dpm_table = &data->dpm_table;
1618         uint32_t i;
1619
1620         /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
1621         for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1622                 table->LinkLevel[i].PcieGenSpeed  =
1623                         (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1624                 table->LinkLevel[i].PcieLaneCount =
1625                         (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
1626                 table->LinkLevel[i].EnabledForActivity =
1627                         1;
1628                 table->LinkLevel[i].SPC =
1629                         (uint8_t)(data->pcie_spc_cap & 0xff);
1630                 table->LinkLevel[i].DownThreshold =
1631                         PP_HOST_TO_SMC_UL(5);
1632                 table->LinkLevel[i].UpThreshold =
1633                         PP_HOST_TO_SMC_UL(30);
1634         }
1635
1636         data->smc_state_table.LinkLevelCount =
1637                 (uint8_t)dpm_table->pcie_speed_table.count;
1638         data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1639                 tonga_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1640
1641         return 0;
1642 }
1643
1644 static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1645                                         SMU72_Discrete_DpmTable *table)
1646 {
1647         int result = 0;
1648
1649         uint8_t count;
1650         pp_atomctrl_clock_dividers_vi dividers;
1651         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1652         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1653         phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1654
1655         table->UvdLevelCount = (uint8_t) (mm_table->count);
1656         table->UvdBootLevel = 0;
1657
1658         for (count = 0; count < table->UvdLevelCount; count++) {
1659                 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1660                 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1661                 table->UvdLevel[count].MinVoltage.Vddc =
1662                         tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1663                                                 mm_table->entries[count].vddc);
1664                 table->UvdLevel[count].MinVoltage.VddGfx =
1665                         (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
1666                         tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1667                                                 mm_table->entries[count].vddgfx) : 0;
1668                 table->UvdLevel[count].MinVoltage.Vddci =
1669                         tonga_get_voltage_id(&data->vddci_voltage_table,
1670                                              mm_table->entries[count].vddc - data->vddc_vddci_delta);
1671                 table->UvdLevel[count].MinVoltage.Phases = 1;
1672
1673                 /* retrieve divider value for VBIOS */
1674                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1675                                                           table->UvdLevel[count].VclkFrequency, &dividers);
1676                 PP_ASSERT_WITH_CODE((0 == result),
1677                                     "can not find divide id for Vclk clock", return result);
1678
1679                 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1680
1681                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1682                                                           table->UvdLevel[count].DclkFrequency, &dividers);
1683                 PP_ASSERT_WITH_CODE((0 == result),
1684                                     "can not find divide id for Dclk clock", return result);
1685
1686                 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1687
1688                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1689                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1690                 //CONVERT_FROM_HOST_TO_SMC_UL((uint32_t)table->UvdLevel[count].MinVoltage);
1691         }
1692
1693         return result;
1694
1695 }
1696
1697 static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1698                 SMU72_Discrete_DpmTable *table)
1699 {
1700         int result = 0;
1701
1702         uint8_t count;
1703         pp_atomctrl_clock_dividers_vi dividers;
1704         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1705         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1706         phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1707
1708         table->VceLevelCount = (uint8_t) (mm_table->count);
1709         table->VceBootLevel = 0;
1710
1711         for (count = 0; count < table->VceLevelCount; count++) {
1712                 table->VceLevel[count].Frequency =
1713                         mm_table->entries[count].eclk;
1714                 table->VceLevel[count].MinVoltage.Vddc =
1715                         tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1716                                 mm_table->entries[count].vddc);
1717                 table->VceLevel[count].MinVoltage.VddGfx =
1718                         (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
1719                         tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1720                                 mm_table->entries[count].vddgfx) : 0;
1721                 table->VceLevel[count].MinVoltage.Vddci =
1722                         tonga_get_voltage_id(&data->vddci_voltage_table,
1723                                 mm_table->entries[count].vddc - data->vddc_vddci_delta);
1724                 table->VceLevel[count].MinVoltage.Phases = 1;
1725
1726                 /* retrieve divider value for VBIOS */
1727                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1728                                         table->VceLevel[count].Frequency, &dividers);
1729                 PP_ASSERT_WITH_CODE((0 == result),
1730                                 "can not find divide id for VCE engine clock", return result);
1731
1732                 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1733
1734                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1735         }
1736
1737         return result;
1738 }
1739
1740 static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1741                 SMU72_Discrete_DpmTable *table)
1742 {
1743         int result = 0;
1744         uint8_t count;
1745         pp_atomctrl_clock_dividers_vi dividers;
1746         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1747         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1748         phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1749
1750         table->AcpLevelCount = (uint8_t) (mm_table->count);
1751         table->AcpBootLevel = 0;
1752
1753         for (count = 0; count < table->AcpLevelCount; count++) {
1754                 table->AcpLevel[count].Frequency =
1755                         pptable_info->mm_dep_table->entries[count].aclk;
1756                 table->AcpLevel[count].MinVoltage.Vddc =
1757                         tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1758                         mm_table->entries[count].vddc);
1759                 table->AcpLevel[count].MinVoltage.VddGfx =
1760                         (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
1761                         tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1762                                 mm_table->entries[count].vddgfx) : 0;
1763                 table->AcpLevel[count].MinVoltage.Vddci =
1764                         tonga_get_voltage_id(&data->vddci_voltage_table,
1765                                 mm_table->entries[count].vddc - data->vddc_vddci_delta);
1766                 table->AcpLevel[count].MinVoltage.Phases = 1;
1767
1768                 /* retrieve divider value for VBIOS */
1769                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1770                         table->AcpLevel[count].Frequency, &dividers);
1771                 PP_ASSERT_WITH_CODE((0 == result),
1772                         "can not find divide id for engine clock", return result);
1773
1774                 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1775
1776                 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1777         }
1778
1779         return result;
1780 }
1781
1782 static int tonga_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
1783         SMU72_Discrete_DpmTable *table)
1784 {
1785         int result = 0;
1786         uint8_t count;
1787         pp_atomctrl_clock_dividers_vi dividers;
1788         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1789         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1790         phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1791
1792         table->SamuBootLevel = 0;
1793         table->SamuLevelCount = (uint8_t) (mm_table->count);
1794
1795         for (count = 0; count < table->SamuLevelCount; count++) {
1796                 /* not sure whether we need evclk or not */
1797                 table->SamuLevel[count].Frequency =
1798                         pptable_info->mm_dep_table->entries[count].samclock;
1799                 table->SamuLevel[count].MinVoltage.Vddc =
1800                         tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1801                                 mm_table->entries[count].vddc);
1802                 table->SamuLevel[count].MinVoltage.VddGfx =
1803                         (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
1804                         tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1805                                 mm_table->entries[count].vddgfx) : 0;
1806                 table->SamuLevel[count].MinVoltage.Vddci =
1807                         tonga_get_voltage_id(&data->vddci_voltage_table,
1808                                 mm_table->entries[count].vddc - data->vddc_vddci_delta);
1809                 table->SamuLevel[count].MinVoltage.Phases = 1;
1810
1811                 /* retrieve divider value for VBIOS */
1812                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1813                                         table->SamuLevel[count].Frequency, &dividers);
1814                 PP_ASSERT_WITH_CODE((0 == result),
1815                         "can not find divide id for samu clock", return result);
1816
1817                 table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1818
1819                 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
1820         }
1821
1822         return result;
1823 }
1824
1825 /**
1826  * Populates the SMC MCLK structure using the provided memory clock
1827  *
1828  * @param    hwmgr      the address of the hardware manager
1829  * @param    memory_clock the memory clock to use to populate the structure
1830  * @param    sclk        the SMC SCLK structure to be populated
1831  */
1832 static int tonga_calculate_mclk_params(
1833                 struct pp_hwmgr *hwmgr,
1834                 uint32_t memory_clock,
1835                 SMU72_Discrete_MemoryLevel *mclk,
1836                 bool strobe_mode,
1837                 bool dllStateOn
1838                 )
1839 {
1840         const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1841         uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
1842         uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1843         uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1844         uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1845         uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1846         uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1847         uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1848         uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
1849         uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;
1850
1851         pp_atomctrl_memory_clock_param mpll_param;
1852         int result;
1853
1854         result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1855                                 memory_clock, &mpll_param, strobe_mode);
1856         PP_ASSERT_WITH_CODE(0 == result,
1857                 "Error retrieving Memory Clock Parameters from VBIOS.", return result);
1858
1859         /* MPLL_FUNC_CNTL setup*/
1860         mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1861
1862         /* MPLL_FUNC_CNTL_1 setup*/
1863         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1864                                                         MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1865         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1866                                                         MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1867         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1868                                                         MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1869
1870         /* MPLL_AD_FUNC_CNTL setup*/
1871         mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1872                                                         MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1873
1874         if (data->is_memory_GDDR5) {
1875                 /* MPLL_DQ_FUNC_CNTL setup*/
1876                 mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1877                                                                 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1878                 mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1879                                                                 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1880         }
1881
1882         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1883                         PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1884                 /*
1885                  ************************************
1886                  Fref = Reference Frequency
1887                  NF = Feedback divider ratio
1888                  NR = Reference divider ratio
1889                  Fnom = Nominal VCO output frequency = Fref * NF / NR
1890                  Fs = Spreading Rate
1891                  D = Percentage down-spread / 2
1892                  Fint = Reference input frequency to PFD = Fref / NR
1893                  NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
1894                  CLKS = NS - 1 = ISS_STEP_NUM[11:0]
1895                  NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
1896                  CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
1897                  *************************************
1898                  */
1899                 pp_atomctrl_internal_ss_info ss_info;
1900                 uint32_t freq_nom;
1901                 uint32_t tmp;
1902                 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1903
1904                 /* for GDDR5 for all modes and DDR3 */
1905                 if (1 == mpll_param.qdr)
1906                         freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1907                 else
1908                         freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1909
1910                 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
1911                 tmp = (freq_nom / reference_clock);
1912                 tmp = tmp * tmp;
1913
1914                 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1915                         /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
1916                         /* ss.Info.speed_spectrum_rate -- in unit of khz */
1917                         /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
1918                         /*     = reference_clock * 5 / speed_spectrum_rate */
1919                         uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1920
1921                         /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
1922                         /*     = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
1923                         uint32_t clkv =
1924                                 (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1925                                                         ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1926
1927                         mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1928                         mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1929                 }
1930         }
1931
1932         /* MCLK_PWRMGT_CNTL setup */
1933         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1934                 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1935         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1936                 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1937         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1938                 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1939
1940
1941         /* Save the result data to outpupt memory level structure */
1942         mclk->MclkFrequency   = memory_clock;
1943         mclk->MpllFuncCntl    = mpll_func_cntl;
1944         mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
1945         mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
1946         mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
1947         mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
1948         mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
1949         mclk->DllCntl         = dll_cntl;
1950         mclk->MpllSs1         = mpll_ss1;
1951         mclk->MpllSs2         = mpll_ss2;
1952
1953         return 0;
1954 }
1955
1956 static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock,
1957                 bool strobe_mode)
1958 {
1959         uint8_t mc_para_index;
1960
1961         if (strobe_mode) {
1962                 if (memory_clock < 12500) {
1963                         mc_para_index = 0x00;
1964                 } else if (memory_clock > 47500) {
1965                         mc_para_index = 0x0f;
1966                 } else {
1967                         mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1968                 }
1969         } else {
1970                 if (memory_clock < 65000) {
1971                         mc_para_index = 0x00;
1972                 } else if (memory_clock > 135000) {
1973                         mc_para_index = 0x0f;
1974                 } else {
1975                         mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1976                 }
1977         }
1978
1979         return mc_para_index;
1980 }
1981
1982 static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1983 {
1984         uint8_t mc_para_index;
1985
1986         if (memory_clock < 10000) {
1987                 mc_para_index = 0;
1988         } else if (memory_clock >= 80000) {
1989                 mc_para_index = 0x0f;
1990         } else {
1991                 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1992         }
1993
1994         return mc_para_index;
1995 }
1996
1997 static int tonga_populate_single_memory_level(
1998                 struct pp_hwmgr *hwmgr,
1999                 uint32_t memory_clock,
2000                 SMU72_Discrete_MemoryLevel *memory_level
2001                 )
2002 {
2003         uint32_t minMvdd = 0;
2004         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2005         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2006         int result = 0;
2007         bool dllStateOn;
2008         struct cgs_display_info info = {0};
2009
2010
2011         if (NULL != pptable_info->vdd_dep_on_mclk) {
2012                 result = tonga_get_dependecy_volt_by_clk(hwmgr,
2013                         pptable_info->vdd_dep_on_mclk, memory_clock, &memory_level->MinVoltage, &minMvdd);
2014                 PP_ASSERT_WITH_CODE((0 == result),
2015                         "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
2016         }
2017
2018         if (data->mvdd_control == TONGA_VOLTAGE_CONTROL_NONE) {
2019                 memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value;
2020         } else {
2021                 memory_level->MinMvdd = minMvdd;
2022         }
2023         memory_level->EnabledForThrottle = 1;
2024         memory_level->EnabledForActivity = 0;
2025         memory_level->UpHyst = 0;
2026         memory_level->DownHyst = 100;
2027         memory_level->VoltageDownHyst = 0;
2028
2029         /* Indicates maximum activity level for this performance level.*/
2030         memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
2031         memory_level->StutterEnable = 0;
2032         memory_level->StrobeEnable = 0;
2033         memory_level->EdcReadEnable = 0;
2034         memory_level->EdcWriteEnable = 0;
2035         memory_level->RttEnable = 0;
2036
2037         /* default set to low watermark. Highest level will be set to high later.*/
2038         memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2039
2040         cgs_get_active_displays_info(hwmgr->device, &info);
2041         data->display_timing.num_existing_displays = info.display_count;
2042
2043         if ((data->mclk_stutter_mode_threshold != 0) &&
2044             (memory_clock <= data->mclk_stutter_mode_threshold) &&
2045             (data->is_uvd_enabled == 0)
2046             && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)
2047             && (data->display_timing.num_existing_displays <= 2)
2048             && (data->display_timing.num_existing_displays != 0))
2049                 memory_level->StutterEnable = 1;
2050
2051         /* decide strobe mode*/
2052         memory_level->StrobeEnable = (data->mclk_strobe_mode_threshold != 0) &&
2053                 (memory_clock <= data->mclk_strobe_mode_threshold);
2054
2055         /* decide EDC mode and memory clock ratio*/
2056         if (data->is_memory_GDDR5) {
2057                 memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock,
2058                                         memory_level->StrobeEnable);
2059
2060                 if ((data->mclk_edc_enable_threshold != 0) &&
2061                                 (memory_clock > data->mclk_edc_enable_threshold)) {
2062                         memory_level->EdcReadEnable = 1;
2063                 }
2064
2065                 if ((data->mclk_edc_wr_enable_threshold != 0) &&
2066                                 (memory_clock > data->mclk_edc_wr_enable_threshold)) {
2067                         memory_level->EdcWriteEnable = 1;
2068                 }
2069
2070                 if (memory_level->StrobeEnable) {
2071                         if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >=
2072                                         ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) {
2073                                 dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
2074                         } else {
2075                                 dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
2076                         }
2077
2078                 } else {
2079                         dllStateOn = data->dll_defaule_on;
2080                 }
2081         } else {
2082                 memory_level->StrobeRatio =
2083                         tonga_get_ddr3_mclk_frequency_ratio(memory_clock);
2084                 dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
2085         }
2086
2087         result = tonga_calculate_mclk_params(hwmgr,
2088                 memory_clock, memory_level, memory_level->StrobeEnable, dllStateOn);
2089
2090         if (0 == result) {
2091                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd);
2092                 /* MCLK frequency in units of 10KHz*/
2093                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
2094                 /* Indicates maximum activity level for this performance level.*/
2095                 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
2096                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
2097                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
2098                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
2099                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
2100                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
2101                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
2102                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
2103                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
2104                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
2105         }
2106
2107         return result;
2108 }
2109
2110 /**
2111  * Populates the SMC MVDD structure using the provided memory clock.
2112  *
2113  * @param    hwmgr      the address of the hardware manager
2114  * @param    mclk        the MCLK value to be used in the decision if MVDD should be high or low.
2115  * @param    voltage     the SMC VOLTAGE structure to be populated
2116  */
2117 int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, SMIO_Pattern *smio_pattern)
2118 {
2119         const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2120         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2121         uint32_t i = 0;
2122
2123         if (TONGA_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
2124                 /* find mvdd value which clock is more than request */
2125                 for (i = 0; i < pptable_info->vdd_dep_on_mclk->count; i++) {
2126                         if (mclk <= pptable_info->vdd_dep_on_mclk->entries[i].clk) {
2127                                 /* Always round to higher voltage. */
2128                                 smio_pattern->Voltage = data->mvdd_voltage_table.entries[i].value;
2129                                 break;
2130                         }
2131                 }
2132
2133                 PP_ASSERT_WITH_CODE(i < pptable_info->vdd_dep_on_mclk->count,
2134                         "MVDD Voltage is outside the supported range.", return -1);
2135
2136         } else {
2137                 return -1;
2138         }
2139
2140         return 0;
2141 }
2142
2143
2144 static int tonga_populate_smv_acpi_level(struct pp_hwmgr *hwmgr,
2145         SMU72_Discrete_DpmTable *table)
2146 {
2147         int result = 0;
2148         const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2149         pp_atomctrl_clock_dividers_vi dividers;
2150         SMIO_Pattern voltage_level;
2151         uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
2152         uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
2153         uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
2154         uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
2155
2156         /* The ACPI state should not do DPM on DC (or ever).*/
2157         table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
2158
2159         table->ACPILevel.MinVoltage = data->smc_state_table.GraphicsLevel[0].MinVoltage;
2160
2161         /* assign zero for now*/
2162         table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
2163
2164         /* get the engine clock dividers for this clock value*/
2165         result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
2166                 table->ACPILevel.SclkFrequency,  &dividers);
2167
2168         PP_ASSERT_WITH_CODE(result == 0,
2169                 "Error retrieving Engine Clock dividers from VBIOS.", return result);
2170
2171         /* divider ID for required SCLK*/
2172         table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
2173         table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2174         table->ACPILevel.DeepSleepDivId = 0;
2175
2176         spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
2177                                                         CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
2178         spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
2179                                                         CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
2180         spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
2181                                                         CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);
2182
2183         table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
2184         table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
2185         table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
2186         table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
2187         table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
2188         table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
2189         table->ACPILevel.CcPwrDynRm = 0;
2190         table->ACPILevel.CcPwrDynRm1 = 0;
2191
2192
2193         /* For various features to be enabled/disabled while this level is active.*/
2194         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
2195         /* SCLK frequency in units of 10KHz*/
2196         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
2197         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
2198         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
2199         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
2200         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
2201         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
2202         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
2203         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
2204         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
2205
2206         /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
2207         table->MemoryACPILevel.MinVoltage = data->smc_state_table.MemoryLevel[0].MinVoltage;
2208
2209         /*  CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/
2210
2211         if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level))
2212                 table->MemoryACPILevel.MinMvdd =
2213                         PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
2214         else
2215                 table->MemoryACPILevel.MinMvdd = 0;
2216
2217         /* Force reset on DLL*/
2218         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2219                 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
2220         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2221                 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
2222
2223         /* Disable DLL in ACPIState*/
2224         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2225                 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
2226         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2227                 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
2228
2229         /* Enable DLL bypass signal*/
2230         dll_cntl            = PHM_SET_FIELD(dll_cntl,
2231                 DLL_CNTL, MRDCK0_BYPASS, 0);
2232         dll_cntl            = PHM_SET_FIELD(dll_cntl,
2233                 DLL_CNTL, MRDCK1_BYPASS, 0);
2234
2235         table->MemoryACPILevel.DllCntl            =
2236                 PP_HOST_TO_SMC_UL(dll_cntl);
2237         table->MemoryACPILevel.MclkPwrmgtCntl     =
2238                 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
2239         table->MemoryACPILevel.MpllAdFuncCntl     =
2240                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
2241         table->MemoryACPILevel.MpllDqFuncCntl     =
2242                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
2243         table->MemoryACPILevel.MpllFuncCntl       =
2244                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
2245         table->MemoryACPILevel.MpllFuncCntl_1     =
2246                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
2247         table->MemoryACPILevel.MpllFuncCntl_2     =
2248                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
2249         table->MemoryACPILevel.MpllSs1            =
2250                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
2251         table->MemoryACPILevel.MpllSs2            =
2252                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
2253
2254         table->MemoryACPILevel.EnabledForThrottle = 0;
2255         table->MemoryACPILevel.EnabledForActivity = 0;
2256         table->MemoryACPILevel.UpHyst = 0;
2257         table->MemoryACPILevel.DownHyst = 100;
2258         table->MemoryACPILevel.VoltageDownHyst = 0;
2259         /* Indicates maximum activity level for this performance level.*/
2260         table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
2261
2262         table->MemoryACPILevel.StutterEnable = 0;
2263         table->MemoryACPILevel.StrobeEnable = 0;
2264         table->MemoryACPILevel.EdcReadEnable = 0;
2265         table->MemoryACPILevel.EdcWriteEnable = 0;
2266         table->MemoryACPILevel.RttEnable = 0;
2267
2268         return result;
2269 }
2270
2271 static int tonga_find_boot_level(struct tonga_single_dpm_table *table, uint32_t value, uint32_t *boot_level)
2272 {
2273         int result = 0;
2274         uint32_t i;
2275
2276         for (i = 0; i < table->count; i++) {
2277                 if (value == table->dpm_levels[i].value) {
2278                         *boot_level = i;
2279                         result = 0;
2280                 }
2281         }
2282         return result;
2283 }
2284
2285 static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
2286                         SMU72_Discrete_DpmTable *table)
2287 {
2288         int result = 0;
2289         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2290
2291         table->GraphicsBootLevel  = 0;        /* 0 == DPM[0] (low), etc. */
2292         table->MemoryBootLevel    = 0;        /* 0 == DPM[0] (low), etc. */
2293
2294         /* find boot level from dpm table*/
2295         result = tonga_find_boot_level(&(data->dpm_table.sclk_table),
2296         data->vbios_boot_state.sclk_bootup_value,
2297         (uint32_t *)&(data->smc_state_table.GraphicsBootLevel));
2298
2299         if (0 != result) {
2300                 data->smc_state_table.GraphicsBootLevel = 0;
2301                 printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \
2302                         in dependency table. Using Graphics DPM level 0!");
2303                 result = 0;
2304         }
2305
2306         result = tonga_find_boot_level(&(data->dpm_table.mclk_table),
2307                 data->vbios_boot_state.mclk_bootup_value,
2308                 (uint32_t *)&(data->smc_state_table.MemoryBootLevel));
2309
2310         if (0 != result) {
2311                 data->smc_state_table.MemoryBootLevel = 0;
2312                 printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \
2313                         in dependency table. Using Memory DPM level 0!");
2314                 result = 0;
2315         }
2316
2317         table->BootVoltage.Vddc =
2318                 tonga_get_voltage_id(&(data->vddc_voltage_table),
2319                         data->vbios_boot_state.vddc_bootup_value);
2320         table->BootVoltage.VddGfx =
2321                 tonga_get_voltage_id(&(data->vddgfx_voltage_table),
2322                         data->vbios_boot_state.vddgfx_bootup_value);
2323         table->BootVoltage.Vddci =
2324                 tonga_get_voltage_id(&(data->vddci_voltage_table),
2325                         data->vbios_boot_state.vddci_bootup_value);
2326         table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
2327
2328         CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
2329
2330         return result;
2331 }
2332
2333
2334 /**
2335  * Calculates the SCLK dividers using the provided engine clock
2336  *
2337  * @param    hwmgr      the address of the hardware manager
2338  * @param    engine_clock the engine clock to use to populate the structure
2339  * @param    sclk        the SMC SCLK structure to be populated
2340  */
2341 int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr,
2342                 uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk)
2343 {
2344         const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2345         pp_atomctrl_clock_dividers_vi dividers;
2346         uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
2347         uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
2348         uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
2349         uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
2350         uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
2351         uint32_t    reference_clock;
2352         uint32_t reference_divider;
2353         uint32_t fbdiv;
2354         int result;
2355
2356         /* get the engine clock dividers for this clock value*/
2357         result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock,  &dividers);
2358
2359         PP_ASSERT_WITH_CODE(result == 0,
2360                 "Error retrieving Engine Clock dividers from VBIOS.", return result);
2361
2362         /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
2363         reference_clock = atomctrl_get_reference_clock(hwmgr);
2364
2365         reference_divider = 1 + dividers.uc_pll_ref_div;
2366
2367         /* low 14 bits is fraction and high 12 bits is divider*/
2368         fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
2369
2370         /* SPLL_FUNC_CNTL setup*/
2371         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2372                 CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
2373         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2374                 CG_SPLL_FUNC_CNTL, SPLL_PDIV_A,  dividers.uc_pll_post_div);
2375
2376         /* SPLL_FUNC_CNTL_3 setup*/
2377         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
2378                 CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
2379
2380         /* set to use fractional accumulation*/
2381         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
2382                 CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
2383
2384         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2385                         PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
2386                 pp_atomctrl_internal_ss_info ss_info;
2387
2388                 uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
2389                 if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
2390                         /*
2391                         * ss_info.speed_spectrum_percentage -- in unit of 0.01%
2392                         * ss_info.speed_spectrum_rate -- in unit of khz
2393                         */
2394                         /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
2395                         uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
2396
2397                         /* clkv = 2 * D * fbdiv / NS */
2398                         uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
2399
2400                         cg_spll_spread_spectrum =
2401                                 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
2402                         cg_spll_spread_spectrum =
2403                                 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
2404                         cg_spll_spread_spectrum_2 =
2405                                 PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
2406                 }
2407         }
2408
2409         sclk->SclkFrequency        = engine_clock;
2410         sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
2411         sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
2412         sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
2413         sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
2414         sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
2415
2416         return 0;
2417 }
2418
2419 static uint8_t tonga_get_sleep_divider_id_from_clock(uint32_t engine_clock,
2420                 uint32_t min_engine_clock_in_sr)
2421 {
2422         uint32_t i, temp;
2423         uint32_t min = max(min_engine_clock_in_sr, (uint32_t)TONGA_MINIMUM_ENGINE_CLOCK);
2424
2425         PP_ASSERT_WITH_CODE((engine_clock >= min),
2426                         "Engine clock can't satisfy stutter requirement!", return 0);
2427
2428         for (i = TONGA_MAX_DEEPSLEEP_DIVIDER_ID;; i--) {
2429                 temp = engine_clock >> i;
2430
2431                 if(temp >= min || i == 0)
2432                         break;
2433         }
2434         return (uint8_t)i;
2435 }
2436
2437 /**
2438  * Populates single SMC SCLK structure using the provided engine clock
2439  *
2440  * @param    hwmgr      the address of the hardware manager
2441  * @param    engine_clock the engine clock to use to populate the structure
2442  * @param    sclk        the SMC SCLK structure to be populated
2443  */
2444 static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr, uint32_t engine_clock, uint16_t sclk_activity_level_threshold, SMU72_Discrete_GraphicsLevel *graphic_level)
2445 {
2446         int result;
2447         uint32_t threshold;
2448         uint32_t mvdd;
2449         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2450         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2451
2452         result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
2453
2454
2455         /* populate graphics levels*/
2456         result = tonga_get_dependecy_volt_by_clk(hwmgr,
2457                 pptable_info->vdd_dep_on_sclk, engine_clock,
2458                 &graphic_level->MinVoltage, &mvdd);
2459         PP_ASSERT_WITH_CODE((0 == result),
2460                 "can not find VDDC voltage value for VDDC       \
2461                 engine clock dependency table", return result);
2462
2463         /* SCLK frequency in units of 10KHz*/
2464         graphic_level->SclkFrequency = engine_clock;
2465
2466         /* Indicates maximum activity level for this performance level. 50% for now*/
2467         graphic_level->ActivityLevel = sclk_activity_level_threshold;
2468
2469         graphic_level->CcPwrDynRm = 0;
2470         graphic_level->CcPwrDynRm1 = 0;
2471         /* this level can be used if activity is high enough.*/
2472         graphic_level->EnabledForActivity = 0;
2473         /* this level can be used for throttling.*/
2474         graphic_level->EnabledForThrottle = 1;
2475         graphic_level->UpHyst = 0;
2476         graphic_level->DownHyst = 0;
2477         graphic_level->VoltageDownHyst = 0;
2478         graphic_level->PowerThrottle = 0;
2479
2480         threshold = engine_clock * data->fast_watemark_threshold / 100;
2481 /*
2482         *get the DAL clock. do it in funture.
2483         PECI_GetMinClockSettings(hwmgr->peci, &minClocks);
2484         data->display_timing.min_clock_insr = minClocks.engineClockInSR;
2485 */
2486         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2487                         PHM_PlatformCaps_SclkDeepSleep))
2488                 graphic_level->DeepSleepDivId =
2489                                 tonga_get_sleep_divider_id_from_clock(engine_clock,
2490                                                 data->display_timing.min_clock_insr);
2491
2492         /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
2493         graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2494
2495         if (0 == result) {
2496                 /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/
2497                 /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/
2498                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
2499                 CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
2500                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
2501                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
2502                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
2503                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
2504                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
2505                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
2506         }
2507
2508         return result;
2509 }
2510
2511 /**
2512  * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
2513  *
2514  * @param    hwmgr      the address of the hardware manager
2515  */
2516 static int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
2517 {
2518         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2519         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2520         struct tonga_dpm_table *dpm_table = &data->dpm_table;
2521         phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
2522         uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count;
2523         int result = 0;
2524         uint32_t level_array_adress = data->dpm_table_start +
2525                 offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
2526         uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) *
2527                 SMU72_MAX_LEVELS_GRAPHICS;   /* 64 -> long; 32 -> int*/
2528         SMU72_Discrete_GraphicsLevel *levels = data->smc_state_table.GraphicsLevel;
2529         uint32_t i, maxEntry;
2530         uint8_t highest_pcie_level_enabled = 0, lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0, count = 0;
2531         PECI_RegistryValue reg_value;
2532         memset(levels, 0x00, level_array_size);
2533
2534         for (i = 0; i < dpm_table->sclk_table.count; i++) {
2535                 result = tonga_populate_single_graphic_level(hwmgr,
2536                                         dpm_table->sclk_table.dpm_levels[i].value,
2537                                         (uint16_t)data->activity_target[i],
2538                                         &(data->smc_state_table.GraphicsLevel[i]));
2539
2540                 if (0 != result)
2541                         return result;
2542
2543                 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
2544                 if (i > 1)
2545                         data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
2546
2547                 if (0 == i) {
2548                         reg_value = 0;
2549                         if (reg_value != 0)
2550                                 data->smc_state_table.GraphicsLevel[0].UpHyst = (uint8_t)reg_value;
2551                 }
2552
2553                 if (1 == i) {
2554                         reg_value = 0;
2555                         if (reg_value != 0)
2556                                 data->smc_state_table.GraphicsLevel[1].UpHyst = (uint8_t)reg_value;
2557                 }
2558         }
2559
2560         /* Only enable level 0 for now. */
2561         data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
2562
2563         /* set highest level watermark to high */
2564         if (dpm_table->sclk_table.count > 1)
2565                 data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
2566                         PPSMC_DISPLAY_WATERMARK_HIGH;
2567
2568         data->smc_state_table.GraphicsDpmLevelCount =
2569                 (uint8_t)dpm_table->sclk_table.count;
2570         data->dpm_level_enable_mask.sclk_dpm_enable_mask =
2571                 tonga_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
2572
2573         if (pcie_table != NULL) {
2574                 PP_ASSERT_WITH_CODE((pcie_entry_count >= 1),
2575                         "There must be 1 or more PCIE levels defined in PPTable.", return -1);
2576                 maxEntry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/
2577                 for (i = 0; i < dpm_table->sclk_table.count; i++) {
2578                         data->smc_state_table.GraphicsLevel[i].pcieDpmLevel =
2579                                 (uint8_t) ((i < maxEntry) ? i : maxEntry);
2580                 }
2581         } else {
2582                 if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask)
2583                         printk(KERN_ERR "[ powerplay ] Pcie Dpm Enablemask is 0!");
2584
2585                 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2586                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2587                                         (1<<(highest_pcie_level_enabled+1))) != 0)) {
2588                         highest_pcie_level_enabled++;
2589                 }
2590
2591                 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2592                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2593                                         (1<<lowest_pcie_level_enabled)) == 0)) {
2594                         lowest_pcie_level_enabled++;
2595                 }
2596
2597                 while ((count < highest_pcie_level_enabled) &&
2598                                 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2599                                         (1<<(lowest_pcie_level_enabled+1+count))) == 0)) {
2600                         count++;
2601                 }
2602                 mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
2603                         (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
2604
2605
2606                 /* set pcieDpmLevel to highest_pcie_level_enabled*/
2607                 for (i = 2; i < dpm_table->sclk_table.count; i++) {
2608                         data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
2609                 }
2610
2611                 /* set pcieDpmLevel to lowest_pcie_level_enabled*/
2612                 data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
2613
2614                 /* set pcieDpmLevel to mid_pcie_level_enabled*/
2615                 data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
2616         }
2617         /* level count will send to smc once at init smc table and never change*/
2618         result = tonga_copy_bytes_to_smc(hwmgr->smumgr, level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end);
2619
2620         if (0 != result)
2621                 return result;
2622
2623         return 0;
2624 }
2625
2626 /**
2627  * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
2628  *
2629  * @param    hwmgr      the address of the hardware manager
2630  */
2631
2632 static int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
2633 {
2634         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2635         struct tonga_dpm_table *dpm_table = &data->dpm_table;
2636         int result;
2637         /* populate MCLK dpm table to SMU7 */
2638         uint32_t level_array_adress = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
2639         uint32_t level_array_size = sizeof(SMU72_Discrete_MemoryLevel) * SMU72_MAX_LEVELS_MEMORY;
2640         SMU72_Discrete_MemoryLevel *levels = data->smc_state_table.MemoryLevel;
2641         uint32_t i;
2642
2643         memset(levels, 0x00, level_array_size);
2644
2645         for (i = 0; i < dpm_table->mclk_table.count; i++) {
2646                 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
2647                         "can not populate memory level as memory clock is zero", return -1);
2648                 result = tonga_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
2649                         &(data->smc_state_table.MemoryLevel[i]));
2650                 if (0 != result) {
2651                         return result;
2652                 }
2653         }
2654
2655         /* Only enable level 0 for now.*/
2656         data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
2657
2658         /*
2659         * in order to prevent MC activity from stutter mode to push DPM up.
2660         * the UVD change complements this by putting the MCLK in a higher state
2661         * by default such that we are not effected by up threshold or and MCLK DPM latency.
2662         */
2663         data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
2664         CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.MemoryLevel[0].ActivityLevel);
2665
2666         data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
2667         data->dpm_level_enable_mask.mclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
2668         /* set highest level watermark to high*/
2669         data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
2670
2671         /* level count will send to smc once at init smc table and never change*/
2672         result = tonga_copy_bytes_to_smc(hwmgr->smumgr,
2673                 level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end);
2674
2675         if (0 != result) {
2676                 return result;
2677         }
2678
2679         return 0;
2680 }
2681
2682 struct TONGA_DLL_SPEED_SETTING {
2683         uint16_t            Min;                          /* Minimum Data Rate*/
2684         uint16_t            Max;                          /* Maximum Data Rate*/
2685         uint32_t                        dll_speed;                     /* The desired DLL_SPEED setting*/
2686 };
2687
2688 static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
2689 {
2690         return 0;
2691 }
2692
2693 /* ---------------------------------------- ULV related functions ----------------------------------------------------*/
2694
2695
2696 static int tonga_reset_single_dpm_table(
2697         struct pp_hwmgr *hwmgr,
2698         struct tonga_single_dpm_table *dpm_table,
2699         uint32_t count)
2700 {
2701         uint32_t i;
2702         if (!(count <= MAX_REGULAR_DPM_NUMBER))
2703                 printk(KERN_ERR "[ powerplay ] Fatal error, can not set up single DPM \
2704                         table entries to exceed max number! \n");
2705
2706         dpm_table->count = count;
2707         for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++) {
2708                 dpm_table->dpm_levels[i].enabled = 0;
2709         }
2710
2711         return 0;
2712 }
2713
2714 static void tonga_setup_pcie_table_entry(
2715         struct tonga_single_dpm_table *dpm_table,
2716         uint32_t index, uint32_t pcie_gen,
2717         uint32_t pcie_lanes)
2718 {
2719         dpm_table->dpm_levels[index].value = pcie_gen;
2720         dpm_table->dpm_levels[index].param1 = pcie_lanes;
2721         dpm_table->dpm_levels[index].enabled = 1;
2722 }
2723
2724 static int tonga_setup_default_pcie_tables(struct pp_hwmgr *hwmgr)
2725 {
2726         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2727         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2728         phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
2729         uint32_t i, maxEntry;
2730
2731         if (data->use_pcie_performance_levels && !data->use_pcie_power_saving_levels) {
2732                 data->pcie_gen_power_saving = data->pcie_gen_performance;
2733                 data->pcie_lane_power_saving = data->pcie_lane_performance;
2734         } else if (!data->use_pcie_performance_levels && data->use_pcie_power_saving_levels) {
2735                 data->pcie_gen_performance = data->pcie_gen_power_saving;
2736                 data->pcie_lane_performance = data->pcie_lane_power_saving;
2737         }
2738
2739         tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.pcie_speed_table, SMU72_MAX_LEVELS_LINK);
2740
2741         if (pcie_table != NULL) {
2742                 /*
2743                 * maxEntry is used to make sure we reserve one PCIE level for boot level (fix for A+A PSPP issue).
2744                 * If PCIE table from PPTable have ULV entry + 8 entries, then ignore the last entry.
2745                 */
2746                 maxEntry = (SMU72_MAX_LEVELS_LINK < pcie_table->count) ?
2747                                                 SMU72_MAX_LEVELS_LINK : pcie_table->count;
2748                 for (i = 1; i < maxEntry; i++) {
2749                         tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i-1,
2750                                 get_pcie_gen_support(data->pcie_gen_cap, pcie_table->entries[i].gen_speed),
2751                                 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2752                 }
2753                 data->dpm_table.pcie_speed_table.count = maxEntry - 1;
2754         } else {
2755                 /* Hardcode Pcie Table */
2756                 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
2757                         get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
2758                         get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2759                 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
2760                         get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
2761                         get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2762                 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
2763                         get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
2764                         get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2765                 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
2766                         get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
2767                         get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2768                 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
2769                         get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
2770                         get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2771                 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
2772                         get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
2773                         get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2774                 data->dpm_table.pcie_speed_table.count = 6;
2775         }
2776         /* Populate last level for boot PCIE level, but do not increment count. */
2777         tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
2778                 data->dpm_table.pcie_speed_table.count,
2779                 get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
2780                 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2781
2782         return 0;
2783
2784 }
2785
2786 /*
2787  * This function is to initalize all DPM state tables for SMU7 based on the dependency table.
2788  * Dynamic state patching function will then trim these state tables to the allowed range based
2789  * on the power policy or external client requests, such as UVD request, etc.
2790  */
2791 static int tonga_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
2792 {
2793         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2794         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2795         uint32_t i;
2796
2797         phm_ppt_v1_clock_voltage_dependency_table *allowed_vdd_sclk_table =
2798                 pptable_info->vdd_dep_on_sclk;
2799         phm_ppt_v1_clock_voltage_dependency_table *allowed_vdd_mclk_table =
2800                 pptable_info->vdd_dep_on_mclk;
2801
2802         PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
2803                 "SCLK dependency table is missing. This table is mandatory", return -1);
2804         PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
2805                 "SCLK dependency table has to have is missing. This table is mandatory", return -1);
2806
2807         PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
2808                 "MCLK dependency table is missing. This table is mandatory", return -1);
2809         PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
2810                 "VMCLK dependency table has to have is missing. This table is mandatory", return -1);
2811
2812         /* clear the state table to reset everything to default */
2813         memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));
2814         tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.sclk_table, SMU72_MAX_LEVELS_GRAPHICS);
2815         tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.mclk_table, SMU72_MAX_LEVELS_MEMORY);
2816         /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.VddcTable, SMU72_MAX_LEVELS_VDDC); */
2817         /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.vdd_gfx_table, SMU72_MAX_LEVELS_VDDGFX);*/
2818         /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.vdd_ci_table, SMU72_MAX_LEVELS_VDDCI);*/
2819         /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.mvdd_table, SMU72_MAX_LEVELS_MVDD);*/
2820
2821         PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
2822                 "SCLK dependency table is missing. This table is mandatory", return -1);
2823         /* Initialize Sclk DPM table based on allow Sclk values*/
2824         data->dpm_table.sclk_table.count = 0;
2825
2826         for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
2827                 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
2828                                 allowed_vdd_sclk_table->entries[i].clk) {
2829                         data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
2830                                 allowed_vdd_sclk_table->entries[i].clk;
2831                         data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; to do */
2832                         data->dpm_table.sclk_table.count++;
2833                 }
2834         }
2835
2836         PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
2837                 "MCLK dependency table is missing. This table is mandatory", return -1);
2838         /* Initialize Mclk DPM table based on allow Mclk values */
2839         data->dpm_table.mclk_table.count = 0;
2840         for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
2841                 if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
2842                         allowed_vdd_mclk_table->entries[i].clk) {
2843                         data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
2844                                 allowed_vdd_mclk_table->entries[i].clk;
2845                         data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; */
2846                         data->dpm_table.mclk_table.count++;
2847                 }
2848         }
2849
2850         /* Initialize Vddc DPM table based on allow Vddc values.  And populate corresponding std values. */
2851         for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
2852                 data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].vddc;
2853                 /* tonga_hwmgr->dpm_table.VddcTable.dpm_levels[i].param1 = stdVoltageTable->entries[i].Leakage; */
2854                 /* param1 is for corresponding std voltage */
2855                 data->dpm_table.vddc_table.dpm_levels[i].enabled = 1;
2856         }
2857         data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
2858
2859         if (NULL != allowed_vdd_mclk_table) {
2860                 /* Initialize Vddci DPM table based on allow Mclk values */
2861                 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
2862                         data->dpm_table.vdd_ci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].vddci;
2863                         data->dpm_table.vdd_ci_table.dpm_levels[i].enabled = 1;
2864                         data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].mvdd;
2865                         data->dpm_table.mvdd_table.dpm_levels[i].enabled = 1;
2866                 }
2867                 data->dpm_table.vdd_ci_table.count = allowed_vdd_mclk_table->count;
2868                 data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
2869         }
2870
2871         /* setup PCIE gen speed levels*/
2872         tonga_setup_default_pcie_tables(hwmgr);
2873
2874         /* save a copy of the default DPM table*/
2875         memcpy(&(data->golden_dpm_table), &(data->dpm_table), sizeof(struct tonga_dpm_table));
2876
2877         return 0;
2878 }
2879
2880 int tonga_populate_smc_initial_state(struct pp_hwmgr *hwmgr,
2881                 const struct tonga_power_state *bootState)
2882 {
2883         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2884         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2885         uint8_t count, level;
2886
2887         count = (uint8_t) (pptable_info->vdd_dep_on_sclk->count);
2888         for (level = 0; level < count; level++) {
2889                 if (pptable_info->vdd_dep_on_sclk->entries[level].clk >=
2890                         bootState->performance_levels[0].engine_clock) {
2891                         data->smc_state_table.GraphicsBootLevel = level;
2892                         break;
2893                 }
2894         }
2895
2896         count = (uint8_t) (pptable_info->vdd_dep_on_mclk->count);
2897         for (level = 0; level < count; level++) {
2898                 if (pptable_info->vdd_dep_on_mclk->entries[level].clk >=
2899                         bootState->performance_levels[0].memory_clock) {
2900                         data->smc_state_table.MemoryBootLevel = level;
2901                         break;
2902                 }
2903         }
2904
2905         return 0;
2906 }
2907
2908 /**
2909  * Initializes the SMC table and uploads it
2910  *
2911  * @param    hwmgr  the address of the powerplay hardware manager.
2912  * @param    pInput  the pointer to input data (PowerState)
2913  * @return   always 0
2914  */
2915 int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
2916 {
2917         int result;
2918         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2919         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2920         SMU72_Discrete_DpmTable  *table = &(data->smc_state_table);
2921         const phw_tonga_ulv_parm *ulv = &(data->ulv);
2922         uint8_t i;
2923         PECI_RegistryValue reg_value;
2924         pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
2925
2926         result = tonga_setup_default_dpm_tables(hwmgr);
2927         PP_ASSERT_WITH_CODE(0 == result,
2928                 "Failed to setup default DPM tables!", return result;);
2929         memset(&(data->smc_state_table), 0x00, sizeof(data->smc_state_table));
2930         if (TONGA_VOLTAGE_CONTROL_NONE != data->voltage_control) {
2931                 tonga_populate_smc_voltage_tables(hwmgr, table);
2932         }
2933
2934         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2935                         PHM_PlatformCaps_AutomaticDCTransition)) {
2936                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
2937         }
2938
2939         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2940                         PHM_PlatformCaps_StepVddc)) {
2941                 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
2942         }
2943
2944         if (data->is_memory_GDDR5) {
2945                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
2946         }
2947
2948         i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN);
2949
2950         if (i == 1 || i == 0) {
2951                 table->SystemFlags |= PPSMC_SYSTEMFLAG_12CHANNEL;
2952         }
2953
2954         if (ulv->ulv_supported && pptable_info->us_ulv_voltage_offset) {
2955                 PP_ASSERT_WITH_CODE(0 == result,
2956                         "Failed to initialize ULV state!", return result;);
2957
2958                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2959                         ixCG_ULV_PARAMETER, ulv->ch_ulv_parameter);
2960         }
2961
2962         result = tonga_populate_smc_link_level(hwmgr, table);
2963         PP_ASSERT_WITH_CODE(0 == result,
2964                 "Failed to initialize Link Level!", return result;);
2965
2966         result = tonga_populate_all_graphic_levels(hwmgr);
2967         PP_ASSERT_WITH_CODE(0 == result,
2968                 "Failed to initialize Graphics Level!", return result;);
2969
2970         result = tonga_populate_all_memory_levels(hwmgr);
2971         PP_ASSERT_WITH_CODE(0 == result,
2972                 "Failed to initialize Memory Level!", return result;);
2973
2974         result = tonga_populate_smv_acpi_level(hwmgr, table);
2975         PP_ASSERT_WITH_CODE(0 == result,
2976                 "Failed to initialize ACPI Level!", return result;);
2977
2978         result = tonga_populate_smc_vce_level(hwmgr, table);
2979         PP_ASSERT_WITH_CODE(0 == result,
2980                 "Failed to initialize VCE Level!", return result;);
2981
2982         result = tonga_populate_smc_acp_level(hwmgr, table);
2983         PP_ASSERT_WITH_CODE(0 == result,
2984                 "Failed to initialize ACP Level!", return result;);
2985
2986         result = tonga_populate_smc_samu_level(hwmgr, table);
2987         PP_ASSERT_WITH_CODE(0 == result,
2988                 "Failed to initialize SAMU Level!", return result;);
2989
2990         /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
2991         /* need to populate the  ARB settings for the initial state. */
2992         result = tonga_program_memory_timing_parameters(hwmgr);
2993         PP_ASSERT_WITH_CODE(0 == result,
2994                 "Failed to Write ARB settings for the initial state.", return result;);
2995
2996         result = tonga_populate_smc_uvd_level(hwmgr, table);
2997         PP_ASSERT_WITH_CODE(0 == result,
2998                 "Failed to initialize UVD Level!", return result;);
2999
3000         result = tonga_populate_smc_boot_level(hwmgr, table);
3001         PP_ASSERT_WITH_CODE(0 == result,
3002                 "Failed to initialize Boot Level!", return result;);
3003
3004         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3005                         PHM_PlatformCaps_ClockStretcher)) {
3006                 result = tonga_populate_clock_stretcher_data_table(hwmgr);
3007                 PP_ASSERT_WITH_CODE(0 == result,
3008                         "Failed to populate Clock Stretcher Data Table!", return result;);
3009         }
3010         table->GraphicsVoltageChangeEnable  = 1;
3011         table->GraphicsThermThrottleEnable  = 1;
3012         table->GraphicsInterval = 1;
3013         table->VoltageInterval  = 1;
3014         table->ThermalInterval  = 1;
3015         table->TemperatureLimitHigh =
3016                 pptable_info->cac_dtp_table->usTargetOperatingTemp *
3017                 TONGA_Q88_FORMAT_CONVERSION_UNIT;
3018         table->TemperatureLimitLow =
3019                 (pptable_info->cac_dtp_table->usTargetOperatingTemp - 1) *
3020                 TONGA_Q88_FORMAT_CONVERSION_UNIT;
3021         table->MemoryVoltageChangeEnable  = 1;
3022         table->MemoryInterval  = 1;
3023         table->VoltageResponseTime  = 0;
3024         table->PhaseResponseTime  = 0;
3025         table->MemoryThermThrottleEnable  = 1;
3026
3027         /*
3028         * Cail reads current link status and reports it as cap (we cannot change this due to some previous issues we had)
3029         * SMC drops the link status to lowest level after enabling DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again
3030         * but this time Cail reads current link status which was set to low by SMC and reports it as cap to powerplay
3031         * To avoid it, we set PCIeBootLinkLevel to highest dpm level
3032         */
3033         PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
3034                         "There must be 1 or more PCIE levels defined in PPTable.",
3035                         return -1);
3036
3037         table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count);
3038
3039         table->PCIeGenInterval  = 1;
3040
3041         result = tonga_populate_vr_config(hwmgr, table);
3042         PP_ASSERT_WITH_CODE(0 == result,
3043                 "Failed to populate VRConfig setting!", return result);
3044
3045         table->ThermGpio  = 17;
3046         table->SclkStepSize = 0x4000;
3047
3048         reg_value = 0;
3049         if ((0 == reg_value) &&
3050                 (0 == atomctrl_get_pp_assign_pin(hwmgr,
3051                         VDDC_VRHOT_GPIO_PINID, &gpio_pin_assignment))) {
3052                 table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
3053                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3054                         PHM_PlatformCaps_RegulatorHot);
3055         } else {
3056                 table->VRHotGpio = TONGA_UNUSED_GPIO_PIN;
3057                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3058                         PHM_PlatformCaps_RegulatorHot);
3059         }
3060
3061         /* ACDC Switch GPIO */
3062         reg_value = 0;
3063         if ((0 == reg_value) &&
3064                 (0 == atomctrl_get_pp_assign_pin(hwmgr,
3065                         PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin_assignment))) {
3066                 table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
3067                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3068                         PHM_PlatformCaps_AutomaticDCTransition);
3069         } else {
3070                 table->AcDcGpio = TONGA_UNUSED_GPIO_PIN;
3071                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3072                         PHM_PlatformCaps_AutomaticDCTransition);
3073         }
3074
3075         phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3076                 PHM_PlatformCaps_Falcon_QuickTransition);
3077
3078         reg_value = 0;
3079         if (1 == reg_value) {
3080                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3081                         PHM_PlatformCaps_AutomaticDCTransition);
3082                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3083                         PHM_PlatformCaps_Falcon_QuickTransition);
3084         }
3085
3086         reg_value = 0;
3087         if ((0 == reg_value) &&
3088                 (0 == atomctrl_get_pp_assign_pin(hwmgr,
3089                         THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment))) {
3090                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3091                         PHM_PlatformCaps_ThermalOutGPIO);
3092
3093                 table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
3094
3095                 table->ThermOutPolarity =
3096                         (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
3097                         (1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1:0;
3098
3099                 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
3100
3101                 /* if required, combine VRHot/PCC with thermal out GPIO*/
3102                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3103                         PHM_PlatformCaps_RegulatorHot) &&
3104                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3105                         PHM_PlatformCaps_CombinePCCWithThermalSignal)){
3106                         table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
3107                 }
3108         } else {
3109                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3110                         PHM_PlatformCaps_ThermalOutGPIO);
3111
3112                 table->ThermOutGpio = 17;
3113                 table->ThermOutPolarity = 1;
3114                 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
3115         }
3116
3117         for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++) {
3118                 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
3119         }
3120         CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
3121         CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
3122         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
3123         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
3124         CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
3125         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
3126         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
3127         CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
3128         CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
3129
3130         /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
3131         result = tonga_copy_bytes_to_smc(hwmgr->smumgr, data->dpm_table_start +
3132                                                                                 offsetof(SMU72_Discrete_DpmTable, SystemFlags),
3133                                                                                 (uint8_t *)&(table->SystemFlags),
3134                                                                                 sizeof(SMU72_Discrete_DpmTable)-3 * sizeof(SMU72_PIDController),
3135                                                                                 data->sram_end);
3136
3137         PP_ASSERT_WITH_CODE(0 == result,
3138                 "Failed to upload dpm data to SMC memory!", return result;);
3139
3140         return result;
3141 }
3142
3143 /* Look up the voltaged based on DAL's requested level. and then send the requested VDDC voltage to SMC*/
3144 static void tonga_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr)
3145 {
3146         return;
3147 }
3148
3149 int tonga_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
3150 {
3151         PPSMC_Result result;
3152         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3153
3154         /* Apply minimum voltage based on DAL's request level */
3155         tonga_apply_dal_minimum_voltage_request(hwmgr);
3156
3157         if (0 == data->sclk_dpm_key_disabled) {
3158                 /* Checking if DPM is running.  If we discover hang because of this, we should skip this message.*/
3159                 if (0 != tonga_is_dpm_running(hwmgr))
3160                         printk(KERN_ERR "[ powerplay ] Trying to set Enable Mask when DPM is disabled \n");
3161
3162                 if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3163                         result = smum_send_msg_to_smc_with_parameter(
3164                                                                 hwmgr->smumgr,
3165                                 (PPSMC_Msg)PPSMC_MSG_SCLKDPM_SetEnabledMask,
3166                                 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3167                         PP_ASSERT_WITH_CODE((0 == result),
3168                                 "Set Sclk Dpm enable Mask failed", return -1);
3169                 }
3170         }
3171
3172         if (0 == data->mclk_dpm_key_disabled) {
3173                 /* Checking if DPM is running.  If we discover hang because of this, we should skip this message.*/
3174                 if (0 != tonga_is_dpm_running(hwmgr))
3175                         printk(KERN_ERR "[ powerplay ] Trying to set Enable Mask when DPM is disabled \n");
3176
3177                 if (0 != data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3178                         result = smum_send_msg_to_smc_with_parameter(
3179                                                                 hwmgr->smumgr,
3180                                 (PPSMC_Msg)PPSMC_MSG_MCLKDPM_SetEnabledMask,
3181                                 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3182                         PP_ASSERT_WITH_CODE((0 == result),
3183                                 "Set Mclk Dpm enable Mask failed", return -1);
3184                 }
3185         }
3186
3187         return 0;
3188 }
3189
3190
3191 int tonga_force_dpm_highest(struct pp_hwmgr *hwmgr)
3192 {
3193         uint32_t level, tmp;
3194         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3195
3196         if (0 == data->pcie_dpm_key_disabled) {
3197                 /* PCIE */
3198                 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask != 0) {
3199                         level = 0;
3200                         tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
3201                         while (tmp >>= 1)
3202                                 level++ ;
3203
3204                         if (0 != level) {
3205                                 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_pcie(hwmgr, level)),
3206                                         "force highest pcie dpm state failed!", return -1);
3207                         }
3208                 }
3209         }
3210
3211         if (0 == data->sclk_dpm_key_disabled) {
3212                 /* SCLK */
3213                 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask != 0) {
3214                         level = 0;
3215                         tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3216                         while (tmp >>= 1)
3217                                 level++ ;
3218
3219                         if (0 != level) {
3220                                 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state(hwmgr, level)),
3221                                         "force highest sclk dpm state failed!", return -1);
3222                                 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
3223                                         CGS_IND_REG__SMC, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX) != level)
3224                                         printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
3225                                                 Curr_Sclk_Index does not match the level \n");
3226
3227                         }
3228                 }
3229         }
3230
3231         if (0 == data->mclk_dpm_key_disabled) {
3232                 /* MCLK */
3233                 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask != 0) {
3234                         level = 0;
3235                         tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3236                         while (tmp >>= 1)
3237                                 level++ ;
3238
3239                         if (0 != level) {
3240                                 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_mclk(hwmgr, level)),
3241                                         "force highest mclk dpm state failed!", return -1);
3242                                 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3243                                         TARGET_AND_CURRENT_PROFILE_INDEX, CURR_MCLK_INDEX) != level)
3244                                         printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
3245                                                 Curr_Mclk_Index does not match the level \n");
3246                         }
3247                 }
3248         }
3249
3250         return 0;
3251 }
3252
3253 /**
3254  * Find the MC microcode version and store it in the HwMgr struct
3255  *
3256  * @param    hwmgr  the address of the powerplay hardware manager.
3257  * @return   always 0
3258  */
3259 int tonga_get_mc_microcode_version (struct pp_hwmgr *hwmgr)
3260 {
3261         cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
3262
3263         hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
3264
3265         return 0;
3266 }
3267
3268 /**
3269  * Initialize Dynamic State Adjustment Rule Settings
3270  *
3271  * @param    hwmgr  the address of the powerplay hardware manager.
3272  */
3273 int tonga_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr)
3274 {
3275         uint32_t table_size;
3276         struct phm_clock_voltage_dependency_table *table_clk_vlt;
3277         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3278
3279         hwmgr->dyn_state.mclk_sclk_ratio = 4;
3280         hwmgr->dyn_state.sclk_mclk_delta = 15000;      /* 150 MHz */
3281         hwmgr->dyn_state.vddc_vddci_delta = 200;       /* 200mV */
3282
3283         /* initialize vddc_dep_on_dal_pwrl table */
3284         table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record);
3285         table_clk_vlt = (struct phm_clock_voltage_dependency_table *)kzalloc(table_size, GFP_KERNEL);
3286
3287         if (NULL == table_clk_vlt) {
3288                 printk(KERN_ERR "[ powerplay ] Can not allocate space for vddc_dep_on_dal_pwrl! \n");
3289                 return -ENOMEM;
3290         } else {
3291                 table_clk_vlt->count = 4;
3292                 table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW;
3293                 table_clk_vlt->entries[0].v = 0;
3294                 table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW;
3295                 table_clk_vlt->entries[1].v = 720;
3296                 table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL;
3297                 table_clk_vlt->entries[2].v = 810;
3298                 table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE;
3299                 table_clk_vlt->entries[3].v = 900;
3300                 pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt;
3301                 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
3302         }
3303
3304         return 0;
3305 }
3306
3307 static int tonga_set_private_var_based_on_pptale(struct pp_hwmgr *hwmgr)
3308 {
3309         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3310         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3311
3312         phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
3313                 pptable_info->vdd_dep_on_sclk;
3314         phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
3315                 pptable_info->vdd_dep_on_mclk;
3316
3317         PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
3318                 "VDD dependency on SCLK table is missing.       \
3319                 This table is mandatory", return -1);
3320         PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
3321                 "VDD dependency on SCLK table has to have is missing.   \
3322                 This table is mandatory", return -1);
3323
3324         PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
3325                 "VDD dependency on MCLK table is missing.       \
3326                 This table is mandatory", return -1);
3327         PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
3328                 "VDD dependency on MCLK table has to have is missing.    \
3329                 This table is mandatory", return -1);
3330
3331         data->min_vddc_in_pp_table = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc;
3332         data->max_vddc_in_pp_table = (uint16_t)allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
3333
3334         pptable_info->max_clock_voltage_on_ac.sclk =
3335                 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
3336         pptable_info->max_clock_voltage_on_ac.mclk =
3337                 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
3338         pptable_info->max_clock_voltage_on_ac.vddc =
3339                 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
3340         pptable_info->max_clock_voltage_on_ac.vddci =
3341                 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
3342
3343         hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
3344                 pptable_info->max_clock_voltage_on_ac.sclk;
3345         hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
3346                 pptable_info->max_clock_voltage_on_ac.mclk;
3347         hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
3348                 pptable_info->max_clock_voltage_on_ac.vddc;
3349         hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
3350                 pptable_info->max_clock_voltage_on_ac.vddci;
3351
3352         return 0;
3353 }
3354
3355 int tonga_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3356 {
3357         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3358         int result = 1;
3359
3360         PP_ASSERT_WITH_CODE (0 == tonga_is_dpm_running(hwmgr),
3361                 "Trying to Unforce DPM when DPM is disabled. Returning without sending SMC message.",
3362                                                         return result);
3363
3364         if (0 == data->pcie_dpm_key_disabled) {
3365                 PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(
3366                                                              hwmgr->smumgr,
3367                                         PPSMC_MSG_PCIeDPM_UnForceLevel)),
3368                                            "unforce pcie level failed!",
3369                                                                 return -1);
3370         }
3371
3372         result = tonga_upload_dpm_level_enable_mask(hwmgr);
3373
3374         return result;
3375 }
3376
3377 static uint32_t tonga_get_lowest_enable_level(
3378                                 struct pp_hwmgr *hwmgr, uint32_t level_mask)
3379 {
3380         uint32_t level = 0;
3381
3382         while (0 == (level_mask & (1 << level)))
3383                 level++;
3384
3385         return level;
3386 }
3387
3388 static int tonga_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3389 {
3390         uint32_t level;
3391         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3392
3393         if (0 == data->pcie_dpm_key_disabled) {
3394                 /* PCIE */
3395                 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask != 0) {
3396                         level = tonga_get_lowest_enable_level(hwmgr,
3397                                                               data->dpm_level_enable_mask.pcie_dpm_enable_mask);
3398                         PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_pcie(hwmgr, level)),
3399                                             "force lowest pcie dpm state failed!", return -1);
3400                 }
3401         }
3402
3403         if (0 == data->sclk_dpm_key_disabled) {
3404                 /* SCLK */
3405                 if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3406                         level = tonga_get_lowest_enable_level(hwmgr,
3407                                                               data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3408
3409                         PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state(hwmgr, level)),
3410                                             "force sclk dpm state failed!", return -1);
3411
3412                         if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
3413                                                          CGS_IND_REG__SMC, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX) != level)
3414                                 printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index.        \
3415                                 Curr_Sclk_Index does not match the level \n");
3416                 }
3417         }
3418
3419         if (0 == data->mclk_dpm_key_disabled) {
3420                 /* MCLK */
3421                 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask != 0) {
3422                         level = tonga_get_lowest_enable_level(hwmgr,
3423                                                               data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3424                         PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_mclk(hwmgr, level)),
3425                                             "force lowest mclk dpm state failed!", return -1);
3426                         if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3427                                                          TARGET_AND_CURRENT_PROFILE_INDEX, CURR_MCLK_INDEX) != level)
3428                                 printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
3429                                                 Curr_Mclk_Index does not match the level \n");
3430                 }
3431         }
3432
3433         return 0;
3434 }
3435
3436 static int tonga_patch_voltage_dependency_tables_with_lookup_table(struct pp_hwmgr *hwmgr)
3437 {
3438         uint8_t entryId;
3439         uint8_t voltageId;
3440         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3441         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3442
3443         phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
3444         phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
3445         phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
3446
3447         if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
3448                 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
3449                         voltageId = sclk_table->entries[entryId].vddInd;
3450                         sclk_table->entries[entryId].vddgfx =
3451                                 pptable_info->vddgfx_lookup_table->entries[voltageId].us_vdd;
3452                 }
3453         } else {
3454                 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
3455                         voltageId = sclk_table->entries[entryId].vddInd;
3456                         sclk_table->entries[entryId].vddc =
3457                                 pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
3458                 }
3459         }
3460
3461         for (entryId = 0; entryId < mclk_table->count; ++entryId) {
3462                 voltageId = mclk_table->entries[entryId].vddInd;
3463                 mclk_table->entries[entryId].vddc =
3464                         pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
3465         }
3466
3467         for (entryId = 0; entryId < mm_table->count; ++entryId) {
3468                 voltageId = mm_table->entries[entryId].vddcInd;
3469                 mm_table->entries[entryId].vddc =
3470                         pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
3471         }
3472
3473         return 0;
3474
3475 }
3476
3477 static int tonga_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
3478 {
3479         uint8_t entryId;
3480         phm_ppt_v1_voltage_lookup_record v_record;
3481         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3482         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3483
3484         phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
3485         phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
3486
3487         if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
3488                 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
3489                         if (sclk_table->entries[entryId].vdd_offset & (1 << 15))
3490                                 v_record.us_vdd = sclk_table->entries[entryId].vddgfx +
3491                                         sclk_table->entries[entryId].vdd_offset - 0xFFFF;
3492                         else
3493                                 v_record.us_vdd = sclk_table->entries[entryId].vddgfx +
3494                                         sclk_table->entries[entryId].vdd_offset;
3495
3496                         sclk_table->entries[entryId].vddc =
3497                                 v_record.us_cac_low = v_record.us_cac_mid =
3498                                 v_record.us_cac_high = v_record.us_vdd;
3499
3500                         tonga_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record);
3501                 }
3502
3503                 for (entryId = 0; entryId < mclk_table->count; ++entryId) {
3504                         if (mclk_table->entries[entryId].vdd_offset & (1 << 15))
3505                                 v_record.us_vdd = mclk_table->entries[entryId].vddc +
3506                                         mclk_table->entries[entryId].vdd_offset - 0xFFFF;
3507                         else
3508                                 v_record.us_vdd = mclk_table->entries[entryId].vddc +
3509                                         mclk_table->entries[entryId].vdd_offset;
3510
3511                         mclk_table->entries[entryId].vddgfx = v_record.us_cac_low =
3512                                 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
3513                         tonga_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
3514                 }
3515         }
3516
3517         return 0;
3518
3519 }
3520
3521 static int tonga_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
3522 {
3523         uint32_t entryId;
3524         phm_ppt_v1_voltage_lookup_record v_record;
3525         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3526         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3527         phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
3528
3529         if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
3530                 for (entryId = 0; entryId < mm_table->count; entryId++) {
3531                         if (mm_table->entries[entryId].vddgfx_offset & (1 << 15))
3532                                 v_record.us_vdd = mm_table->entries[entryId].vddc +
3533                                         mm_table->entries[entryId].vddgfx_offset - 0xFFFF;
3534                         else
3535                                 v_record.us_vdd = mm_table->entries[entryId].vddc +
3536                                         mm_table->entries[entryId].vddgfx_offset;
3537
3538                         /* Add the calculated VDDGFX to the VDDGFX lookup table */
3539                         mm_table->entries[entryId].vddgfx = v_record.us_cac_low =
3540                                 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
3541                         tonga_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
3542                 }
3543         }
3544         return 0;
3545 }
3546
3547
3548 /**
3549  * Change virtual leakage voltage to actual value.
3550  *
3551  * @param     hwmgr  the address of the powerplay hardware manager.
3552  * @param     pointer to changing voltage
3553  * @param     pointer to leakage table
3554  */
3555 static void tonga_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
3556                 uint16_t *voltage, phw_tonga_leakage_voltage *pLeakageTable)
3557 {
3558         uint32_t leakage_index;
3559
3560         /* search for leakage voltage ID 0xff01 ~ 0xff08 */
3561         for (leakage_index = 0; leakage_index < pLeakageTable->count; leakage_index++) {
3562                 /* if this voltage matches a leakage voltage ID */
3563                 /* patch with actual leakage voltage */
3564                 if (pLeakageTable->leakage_id[leakage_index] == *voltage) {
3565                         *voltage = pLeakageTable->actual_voltage[leakage_index];
3566                         break;
3567                 }
3568         }
3569
3570         if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
3571                 printk(KERN_ERR "[ powerplay ] Voltage value looks like a Leakage ID but it's not patched \n");
3572 }
3573
3574 /**
3575  * Patch voltage lookup table by EVV leakages.
3576  *
3577  * @param     hwmgr  the address of the powerplay hardware manager.
3578  * @param     pointer to voltage lookup table
3579  * @param     pointer to leakage table
3580  * @return     always 0
3581  */
3582 static int tonga_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
3583                 phm_ppt_v1_voltage_lookup_table *lookup_table,
3584                 phw_tonga_leakage_voltage *pLeakageTable)
3585 {
3586         uint32_t i;
3587
3588         for (i = 0; i < lookup_table->count; i++) {
3589                 tonga_patch_with_vdd_leakage(hwmgr,
3590                         &lookup_table->entries[i].us_vdd, pLeakageTable);
3591         }
3592
3593         return 0;
3594 }
3595
3596 static int tonga_patch_clock_voltage_lomits_with_vddc_leakage(struct pp_hwmgr *hwmgr,
3597                 phw_tonga_leakage_voltage *pLeakageTable, uint16_t *Vddc)
3598 {
3599         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3600
3601         tonga_patch_with_vdd_leakage(hwmgr, (uint16_t *)Vddc, pLeakageTable);
3602         hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
3603                 pptable_info->max_clock_voltage_on_dc.vddc;
3604
3605         return 0;
3606 }
3607
3608 static int tonga_patch_clock_voltage_limits_with_vddgfx_leakage(
3609                 struct pp_hwmgr *hwmgr, phw_tonga_leakage_voltage *pLeakageTable,
3610                 uint16_t *Vddgfx)
3611 {
3612         tonga_patch_with_vdd_leakage(hwmgr, (uint16_t *)Vddgfx, pLeakageTable);
3613         return 0;
3614 }
3615
3616 int tonga_sort_lookup_table(struct pp_hwmgr *hwmgr,
3617                 phm_ppt_v1_voltage_lookup_table *lookup_table)
3618 {
3619         uint32_t table_size, i, j;
3620         phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
3621         table_size = lookup_table->count;
3622
3623         PP_ASSERT_WITH_CODE(0 != lookup_table->count,
3624                 "Lookup table is empty", return -1);
3625
3626         /* Sorting voltages */
3627         for (i = 0; i < table_size - 1; i++) {
3628                 for (j = i + 1; j > 0; j--) {
3629                         if (lookup_table->entries[j].us_vdd < lookup_table->entries[j-1].us_vdd) {
3630                                 tmp_voltage_lookup_record = lookup_table->entries[j-1];
3631                                 lookup_table->entries[j-1] = lookup_table->entries[j];
3632                                 lookup_table->entries[j] = tmp_voltage_lookup_record;
3633                         }
3634                 }
3635         }
3636
3637         return 0;
3638 }
3639
3640 static int tonga_complete_dependency_tables(struct pp_hwmgr *hwmgr)
3641 {
3642         int result = 0;
3643         int tmp_result;
3644         tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
3645         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3646
3647         if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
3648                 tmp_result = tonga_patch_lookup_table_with_leakage(hwmgr,
3649                         pptable_info->vddgfx_lookup_table, &(data->vddcgfx_leakage));
3650                 if (tmp_result != 0)
3651                         result = tmp_result;
3652
3653                 tmp_result = tonga_patch_clock_voltage_limits_with_vddgfx_leakage(hwmgr,
3654                         &(data->vddcgfx_leakage), &pptable_info->max_clock_voltage_on_dc.vddgfx);
3655                 if (tmp_result != 0)
3656                         result = tmp_result;
3657         } else {
3658                 tmp_result = tonga_patch_lookup_table_with_leakage(hwmgr,
3659                         pptable_info->vddc_lookup_table, &(data->vddc_leakage));
3660                 if (tmp_result != 0)
3661                         result = tmp_result;
3662
3663                 tmp_result = tonga_patch_clock_voltage_lomits_with_vddc_leakage(hwmgr,
3664                         &(data->vddc_leakage), &pptable_info->max_clock_voltage_on_dc.vddc);
3665                 if (tmp_result != 0)
3666                         result = tmp_result;
3667         }
3668
3669         tmp_result = tonga_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
3670         if (tmp_result != 0)
3671                 result = tmp_result;
3672
3673         tmp_result = tonga_calc_voltage_dependency_tables(hwmgr);
3674         if (tmp_result != 0)
3675                 result = tmp_result;
3676
3677         tmp_result = tonga_calc_mm_voltage_dependency_table(hwmgr);
3678         if (tmp_result != 0)
3679                 result = tmp_result;
3680
3681         tmp_result = tonga_sort_lookup_table(hwmgr, pptable_info->vddgfx_lookup_table);
3682         if (tmp_result != 0)
3683                 result = tmp_result;
3684
3685         tmp_result = tonga_sort_lookup_table(hwmgr, pptable_info->vddc_lookup_table);
3686         if (tmp_result != 0)
3687                 result = tmp_result;
3688
3689         return result;
3690 }
3691
3692 int tonga_init_sclk_threshold(struct pp_hwmgr *hwmgr)
3693 {
3694         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3695         data->low_sclk_interrupt_threshold = 0;
3696
3697         return 0;
3698 }
3699
3700 int tonga_setup_asic_task(struct pp_hwmgr *hwmgr)
3701 {
3702         int tmp_result, result = 0;
3703
3704         tmp_result = tonga_read_clock_registers(hwmgr);
3705         PP_ASSERT_WITH_CODE((0 == tmp_result),
3706                 "Failed to read clock registers!", result = tmp_result);
3707
3708         tmp_result = tonga_get_memory_type(hwmgr);
3709         PP_ASSERT_WITH_CODE((0 == tmp_result),
3710                 "Failed to get memory type!", result = tmp_result);
3711
3712         tmp_result = tonga_enable_acpi_power_management(hwmgr);
3713         PP_ASSERT_WITH_CODE((0 == tmp_result),
3714                 "Failed to enable ACPI power management!", result = tmp_result);
3715
3716         tmp_result = tonga_init_power_gate_state(hwmgr);
3717         PP_ASSERT_WITH_CODE((0 == tmp_result),
3718                 "Failed to init power gate state!", result = tmp_result);
3719
3720         tmp_result = tonga_get_mc_microcode_version(hwmgr);
3721         PP_ASSERT_WITH_CODE((0 == tmp_result),
3722                 "Failed to get MC microcode version!", result = tmp_result);
3723
3724         tmp_result = tonga_init_sclk_threshold(hwmgr);
3725         PP_ASSERT_WITH_CODE((0 == tmp_result),
3726                 "Failed to init sclk threshold!", result = tmp_result);
3727
3728         return result;
3729 }
3730
3731 /**
3732  * Enable voltage control
3733  *
3734  * @param    hwmgr  the address of the powerplay hardware manager.
3735  * @return   always 0
3736  */
3737 int tonga_enable_voltage_control(struct pp_hwmgr *hwmgr)
3738 {
3739         /* enable voltage control */
3740         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
3741
3742         return 0;
3743 }
3744
3745 /**
3746  * Checks if we want to support voltage control
3747  *
3748  * @param    hwmgr  the address of the powerplay hardware manager.
3749  */
3750 bool cf_tonga_voltage_control(const struct pp_hwmgr *hwmgr)
3751 {
3752         const struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
3753
3754         return(TONGA_VOLTAGE_CONTROL_NONE != data->voltage_control);
3755 }
3756
3757 /*---------------------------MC----------------------------*/
3758
3759 uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr)
3760 {
3761         return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
3762 }
3763
3764 bool tonga_check_s0_mc_reg_index(uint16_t inReg, uint16_t *outReg)
3765 {
3766         bool result = 1;
3767
3768         switch (inReg) {
3769         case  mmMC_SEQ_RAS_TIMING:
3770                 *outReg = mmMC_SEQ_RAS_TIMING_LP;
3771                 break;
3772
3773         case  mmMC_SEQ_DLL_STBY:
3774                 *outReg = mmMC_SEQ_DLL_STBY_LP;
3775                 break;
3776
3777         case  mmMC_SEQ_G5PDX_CMD0:
3778                 *outReg = mmMC_SEQ_G5PDX_CMD0_LP;
3779                 break;
3780
3781         case  mmMC_SEQ_G5PDX_CMD1:
3782                 *outReg = mmMC_SEQ_G5PDX_CMD1_LP;
3783                 break;
3784
3785         case  mmMC_SEQ_G5PDX_CTRL:
3786                 *outReg = mmMC_SEQ_G5PDX_CTRL_LP;
3787                 break;
3788
3789         case mmMC_SEQ_CAS_TIMING:
3790                 *outReg = mmMC_SEQ_CAS_TIMING_LP;
3791                 break;
3792
3793         case mmMC_SEQ_MISC_TIMING:
3794                 *outReg = mmMC_SEQ_MISC_TIMING_LP;
3795                 break;
3796
3797         case mmMC_SEQ_MISC_TIMING2:
3798                 *outReg = mmMC_SEQ_MISC_TIMING2_LP;
3799                 break;
3800
3801         case mmMC_SEQ_PMG_DVS_CMD:
3802                 *outReg = mmMC_SEQ_PMG_DVS_CMD_LP;
3803                 break;
3804
3805         case mmMC_SEQ_PMG_DVS_CTL:
3806                 *outReg = mmMC_SEQ_PMG_DVS_CTL_LP;
3807                 break;
3808
3809         case mmMC_SEQ_RD_CTL_D0:
3810                 *outReg = mmMC_SEQ_RD_CTL_D0_LP;
3811                 break;
3812
3813         case mmMC_SEQ_RD_CTL_D1:
3814                 *outReg = mmMC_SEQ_RD_CTL_D1_LP;
3815                 break;
3816
3817         case mmMC_SEQ_WR_CTL_D0:
3818                 *outReg = mmMC_SEQ_WR_CTL_D0_LP;
3819                 break;
3820
3821         case mmMC_SEQ_WR_CTL_D1:
3822                 *outReg = mmMC_SEQ_WR_CTL_D1_LP;
3823                 break;
3824
3825         case mmMC_PMG_CMD_EMRS:
3826                 *outReg = mmMC_SEQ_PMG_CMD_EMRS_LP;
3827                 break;
3828
3829         case mmMC_PMG_CMD_MRS:
3830                 *outReg = mmMC_SEQ_PMG_CMD_MRS_LP;
3831                 break;
3832
3833         case mmMC_PMG_CMD_MRS1:
3834                 *outReg = mmMC_SEQ_PMG_CMD_MRS1_LP;
3835                 break;
3836
3837         case mmMC_SEQ_PMG_TIMING:
3838                 *outReg = mmMC_SEQ_PMG_TIMING_LP;
3839                 break;
3840
3841         case mmMC_PMG_CMD_MRS2:
3842                 *outReg = mmMC_SEQ_PMG_CMD_MRS2_LP;
3843                 break;
3844
3845         case mmMC_SEQ_WR_CTL_2:
3846                 *outReg = mmMC_SEQ_WR_CTL_2_LP;
3847                 break;
3848
3849         default:
3850                 result = 0;
3851                 break;
3852         }
3853
3854         return result;
3855 }
3856
3857 int tonga_set_s0_mc_reg_index(phw_tonga_mc_reg_table *table)
3858 {
3859         uint32_t i;
3860         uint16_t address;
3861
3862         for (i = 0; i < table->last; i++) {
3863                 table->mc_reg_address[i].s0 =
3864                         tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
3865                         ? address : table->mc_reg_address[i].s1;
3866         }
3867         return 0;
3868 }
3869
3870 int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, phw_tonga_mc_reg_table *ni_table)
3871 {
3872         uint8_t i, j;
3873
3874         PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3875                 "Invalid VramInfo table.", return -1);
3876         PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
3877                 "Invalid VramInfo table.", return -1);
3878
3879         for (i = 0; i < table->last; i++) {
3880                 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
3881         }
3882         ni_table->last = table->last;
3883
3884         for (i = 0; i < table->num_entries; i++) {
3885                 ni_table->mc_reg_table_entry[i].mclk_max =
3886                         table->mc_reg_table_entry[i].mclk_max;
3887                 for (j = 0; j < table->last; j++) {
3888                         ni_table->mc_reg_table_entry[i].mc_data[j] =
3889                                 table->mc_reg_table_entry[i].mc_data[j];
3890                 }
3891         }
3892
3893         ni_table->num_entries = table->num_entries;
3894
3895         return 0;
3896 }
3897
3898 /**
3899  * VBIOS omits some information to reduce size, we need to recover them here.
3900  * 1.   when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to  mmMC_PMG_CMD_EMRS /_LP[15:0].
3901  *      Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0]
3902  * 2.   when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to mmMC_PMG_CMD_MRS1/_LP[15:0].
3903  * 3.   need to set these data for each clock range
3904  *
3905  * @param    hwmgr the address of the powerplay hardware manager.
3906  * @param    table the address of MCRegTable
3907  * @return   always 0
3908  */
3909 int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr, phw_tonga_mc_reg_table *table)
3910 {
3911         uint8_t i, j, k;
3912         uint32_t temp_reg;
3913         const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
3914
3915         for (i = 0, j = table->last; i < table->last; i++) {
3916                 PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3917                         "Invalid VramInfo table.", return -1);
3918                 switch (table->mc_reg_address[i].s1) {
3919                 /*
3920                 * mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to  mmMC_PMG_CMD_EMRS /_LP[15:0].
3921                 * Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0]
3922                 */
3923                 case mmMC_SEQ_MISC1:
3924                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
3925                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
3926                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
3927                         for (k = 0; k < table->num_entries; k++) {
3928                                 table->mc_reg_table_entry[k].mc_data[j] =
3929                                         ((temp_reg & 0xffff0000)) |
3930                                         ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
3931                         }
3932                         j++;
3933                         PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3934                                 "Invalid VramInfo table.", return -1);
3935
3936                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
3937                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
3938                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
3939                         for (k = 0; k < table->num_entries; k++) {
3940                                 table->mc_reg_table_entry[k].mc_data[j] =
3941                                         (temp_reg & 0xffff0000) |
3942                                         (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
3943
3944                                 if (!data->is_memory_GDDR5) {
3945                                         table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
3946                                 }
3947                         }
3948                         j++;
3949                         PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3950                                 "Invalid VramInfo table.", return -1);
3951
3952                         if (!data->is_memory_GDDR5) {
3953                                 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
3954                                 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
3955                                 for (k = 0; k < table->num_entries; k++) {
3956                                         table->mc_reg_table_entry[k].mc_data[j] =
3957                                                 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
3958                                 }
3959                                 j++;
3960                                 PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3961                                         "Invalid VramInfo table.", return -1);
3962                         }
3963
3964                         break;
3965
3966                 case mmMC_SEQ_RESERVE_M:
3967                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
3968                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
3969                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
3970                         for (k = 0; k < table->num_entries; k++) {
3971                                 table->mc_reg_table_entry[k].mc_data[j] =
3972                                         (temp_reg & 0xffff0000) |
3973                                         (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
3974                         }
3975                         j++;
3976                         PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3977                                 "Invalid VramInfo table.", return -1);
3978                         break;
3979
3980                 default:
3981                         break;
3982                 }
3983
3984         }
3985
3986         table->last = j;
3987
3988         return 0;
3989 }
3990
3991 int tonga_set_valid_flag(phw_tonga_mc_reg_table *table)
3992 {
3993         uint8_t i, j;
3994         for (i = 0; i < table->last; i++) {
3995                 for (j = 1; j < table->num_entries; j++) {
3996                         if (table->mc_reg_table_entry[j-1].mc_data[i] !=
3997                                 table->mc_reg_table_entry[j].mc_data[i]) {
3998                                 table->validflag |= (1<<i);
3999                                 break;
4000                         }
4001                 }
4002         }
4003
4004         return 0;
4005 }
4006
4007 int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
4008 {
4009         int result;
4010         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
4011         pp_atomctrl_mc_reg_table *table;
4012         phw_tonga_mc_reg_table *ni_table = &data->tonga_mc_reg_table;
4013         uint8_t module_index = tonga_get_memory_modile_index(hwmgr);
4014
4015         table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
4016
4017         if (NULL == table)
4018                 return -ENOMEM;
4019
4020         /* Program additional LP registers that are no longer programmed by VBIOS */
4021         cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
4022         cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
4023         cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
4024         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
4025         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
4026         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
4027         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
4028         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
4029         cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
4030         cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
4031         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
4032         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
4033         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
4034         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
4035         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
4036         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
4037         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
4038         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
4039         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
4040         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
4041
4042         memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table));
4043
4044         result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
4045
4046         if (0 == result)
4047                 result = tonga_copy_vbios_smc_reg_table(table, ni_table);
4048
4049         if (0 == result) {
4050                 tonga_set_s0_mc_reg_index(ni_table);
4051                 result = tonga_set_mc_special_registers(hwmgr, ni_table);
4052         }
4053
4054         if (0 == result)
4055                 tonga_set_valid_flag(ni_table);
4056
4057         kfree(table);
4058         return result;
4059 }
4060
4061 /*
4062 * Copy one arb setting to another and then switch the active set.
4063 * arbFreqSrc and arbFreqDest is one of the MC_CG_ARB_FREQ_Fx constants.
4064 */
4065 int tonga_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
4066                 uint32_t arbFreqSrc, uint32_t arbFreqDest)
4067 {
4068         uint32_t mc_arb_dram_timing;
4069         uint32_t mc_arb_dram_timing2;
4070         uint32_t burst_time;
4071         uint32_t mc_cg_config;
4072
4073         switch (arbFreqSrc) {
4074         case MC_CG_ARB_FREQ_F0:
4075                 mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
4076                 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
4077                 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
4078                 break;
4079
4080         case MC_CG_ARB_FREQ_F1:
4081                 mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
4082                 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
4083                 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
4084                 break;
4085
4086         default:
4087                 return -1;
4088         }
4089
4090         switch (arbFreqDest) {
4091         case MC_CG_ARB_FREQ_F0:
4092                 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
4093                 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
4094                 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
4095                 break;
4096
4097         case MC_CG_ARB_FREQ_F1:
4098                 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
4099                 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
4100                 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
4101                 break;
4102
4103         default:
4104                 return -1;
4105         }
4106
4107         mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
4108         mc_cg_config |= 0x0000000F;
4109         cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
4110         PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arbFreqDest);
4111
4112         return 0;
4113 }
4114
4115 /**
4116  * Initial switch from ARB F0->F1
4117  *
4118  * @param    hwmgr  the address of the powerplay hardware manager.
4119  * @return   always 0
4120  * This function is to be called from the SetPowerState table.
4121  */
4122 int tonga_initial_switch_from_arb_f0_to_f1(struct pp_hwmgr *hwmgr)
4123 {
4124         return tonga_copy_and_switch_arb_sets(hwmgr, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
4125 }
4126
4127 /**
4128  * Initialize the ARB DRAM timing table's index field.
4129  *
4130  * @param    hwmgr  the address of the powerplay hardware manager.
4131  * @return   always 0
4132  */
4133 int tonga_init_arb_table_index(struct pp_hwmgr *hwmgr)
4134 {
4135         const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4136         uint32_t tmp;
4137         int result;
4138
4139         /*
4140         * This is a read-modify-write on the first byte of the ARB table.
4141         * The first byte in the SMU72_Discrete_MCArbDramTimingTable structure is the field 'current'.
4142         * This solution is ugly, but we never write the whole table only individual fields in it.
4143         * In reality this field should not be in that structure but in a soft register.
4144         */
4145         result = tonga_read_smc_sram_dword(hwmgr->smumgr,
4146                                 data->arb_table_start, &tmp, data->sram_end);
4147
4148         if (0 != result)
4149                 return result;
4150
4151         tmp &= 0x00FFFFFF;
4152         tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
4153
4154         return tonga_write_smc_sram_dword(hwmgr->smumgr,
4155                         data->arb_table_start,  tmp, data->sram_end);
4156 }
4157
4158 int tonga_populate_mc_reg_address(struct pp_hwmgr *hwmgr, SMU72_Discrete_MCRegisters *mc_reg_table)
4159 {
4160         const struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4161
4162         uint32_t i, j;
4163
4164         for (i = 0, j = 0; j < data->tonga_mc_reg_table.last; j++) {
4165                 if (data->tonga_mc_reg_table.validflag & 1<<j) {
4166                         PP_ASSERT_WITH_CODE(i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE,
4167                                 "Index of mc_reg_table->address[] array out of boundary", return -1);
4168                         mc_reg_table->address[i].s0 =
4169                                 PP_HOST_TO_SMC_US(data->tonga_mc_reg_table.mc_reg_address[j].s0);
4170                         mc_reg_table->address[i].s1 =
4171                                 PP_HOST_TO_SMC_US(data->tonga_mc_reg_table.mc_reg_address[j].s1);
4172                         i++;
4173                 }
4174         }
4175
4176         mc_reg_table->last = (uint8_t)i;
4177
4178         return 0;
4179 }
4180
4181 /*convert register values from driver to SMC format */
4182 void tonga_convert_mc_registers(
4183         const phw_tonga_mc_reg_entry * pEntry,
4184         SMU72_Discrete_MCRegisterSet *pData,
4185         uint32_t numEntries, uint32_t validflag)
4186 {
4187         uint32_t i, j;
4188
4189         for (i = 0, j = 0; j < numEntries; j++) {
4190                 if (validflag & 1<<j) {
4191                         pData->value[i] = PP_HOST_TO_SMC_UL(pEntry->mc_data[j]);
4192                         i++;
4193                 }
4194         }
4195 }
4196
4197 /* find the entry in the memory range table, then populate the value to SMC's tonga_mc_reg_table */
4198 int tonga_convert_mc_reg_table_entry_to_smc(
4199                 struct pp_hwmgr *hwmgr,
4200                 const uint32_t memory_clock,
4201                 SMU72_Discrete_MCRegisterSet *mc_reg_table_data
4202                 )
4203 {
4204         const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4205         uint32_t i = 0;
4206
4207         for (i = 0; i < data->tonga_mc_reg_table.num_entries; i++) {
4208                 if (memory_clock <=
4209                         data->tonga_mc_reg_table.mc_reg_table_entry[i].mclk_max) {
4210                         break;
4211                 }
4212         }
4213
4214         if ((i == data->tonga_mc_reg_table.num_entries) && (i > 0))
4215                 --i;
4216
4217         tonga_convert_mc_registers(&data->tonga_mc_reg_table.mc_reg_table_entry[i],
4218                 mc_reg_table_data, data->tonga_mc_reg_table.last, data->tonga_mc_reg_table.validflag);
4219
4220         return 0;
4221 }
4222
4223 int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
4224                 SMU72_Discrete_MCRegisters *mc_reg_table)
4225 {
4226         int result = 0;
4227         tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4228         int res;
4229         uint32_t i;
4230
4231         for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
4232                 res = tonga_convert_mc_reg_table_entry_to_smc(
4233                                 hwmgr,
4234                                 data->dpm_table.mclk_table.dpm_levels[i].value,
4235                                 &mc_reg_table->data[i]
4236                                 );
4237
4238                 if (0 != res)
4239                         result = res;
4240         }
4241
4242         return result;
4243 }
4244
4245 int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
4246 {
4247         int result;
4248         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4249
4250         memset(&data->mc_reg_table, 0x00, sizeof(SMU72_Discrete_MCRegisters));
4251         result = tonga_populate_mc_reg_address(hwmgr, &(data->mc_reg_table));
4252         PP_ASSERT_WITH_CODE(0 == result,
4253                 "Failed to initialize MCRegTable for the MC register addresses!", return result;);
4254
4255         result = tonga_convert_mc_reg_table_to_smc(hwmgr, &data->mc_reg_table);
4256         PP_ASSERT_WITH_CODE(0 == result,
4257                 "Failed to initialize MCRegTable for driver state!", return result;);
4258
4259         return tonga_copy_bytes_to_smc(hwmgr->smumgr, data->mc_reg_table_start,
4260                         (uint8_t *)&data->mc_reg_table, sizeof(SMU72_Discrete_MCRegisters), data->sram_end);
4261 }
4262
4263 /**
4264  * Programs static screed detection parameters
4265  *
4266  * @param   hwmgr  the address of the powerplay hardware manager.
4267  * @return   always 0
4268  */
4269 int tonga_program_static_screen_threshold_parameters(struct pp_hwmgr *hwmgr)
4270 {
4271         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
4272
4273         /* Set static screen threshold unit*/
4274         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
4275                 CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
4276                 data->static_screen_threshold_unit);
4277         /* Set static screen threshold*/
4278         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
4279                 CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
4280                 data->static_screen_threshold);
4281
4282         return 0;
4283 }
4284
4285 /**
4286  * Setup display gap for glitch free memory clock switching.
4287  *
4288  * @param    hwmgr  the address of the powerplay hardware manager.
4289  * @return   always 0
4290  */
4291 int tonga_enable_display_gap(struct pp_hwmgr *hwmgr)
4292 {
4293         uint32_t display_gap = cgs_read_ind_register(hwmgr->device,
4294                                                         CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
4295
4296         display_gap = PHM_SET_FIELD(display_gap,
4297                                         CG_DISPLAY_GAP_CNTL, DISP_GAP, DISPLAY_GAP_IGNORE);
4298
4299         display_gap = PHM_SET_FIELD(display_gap,
4300                                         CG_DISPLAY_GAP_CNTL, DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
4301
4302         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4303                 ixCG_DISPLAY_GAP_CNTL, display_gap);
4304
4305         return 0;
4306 }
4307
4308 /**
4309  * Programs activity state transition voting clients
4310  *
4311  * @param    hwmgr  the address of the powerplay hardware manager.
4312  * @return   always 0
4313  */
4314 int tonga_program_voting_clients(struct pp_hwmgr *hwmgr)
4315 {
4316         tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
4317
4318         /* Clear reset for voting clients before enabling DPM */
4319         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4320                 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
4321         PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4322                 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
4323
4324         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4325                 ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
4326         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4327                 ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
4328         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4329                 ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
4330         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4331                 ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
4332         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4333                 ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
4334         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4335                 ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
4336         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4337                 ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
4338         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4339                 ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
4340
4341         return 0;
4342 }
4343
4344
4345 int tonga_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
4346 {
4347         int tmp_result, result = 0;
4348
4349         tmp_result = tonga_check_for_dpm_stopped(hwmgr);
4350
4351         if (cf_tonga_voltage_control(hwmgr)) {
4352                 tmp_result = tonga_enable_voltage_control(hwmgr);
4353                 PP_ASSERT_WITH_CODE((0 == tmp_result),
4354                         "Failed to enable voltage control!", result = tmp_result);
4355
4356                 tmp_result = tonga_construct_voltage_tables(hwmgr);
4357                 PP_ASSERT_WITH_CODE((0 == tmp_result),
4358                         "Failed to contruct voltage tables!", result = tmp_result);
4359         }
4360
4361         tmp_result = tonga_initialize_mc_reg_table(hwmgr);
4362         PP_ASSERT_WITH_CODE((0 == tmp_result),
4363                 "Failed to initialize MC reg table!", result = tmp_result);
4364
4365         tmp_result = tonga_program_static_screen_threshold_parameters(hwmgr);
4366         PP_ASSERT_WITH_CODE((0 == tmp_result),
4367                 "Failed to program static screen threshold parameters!", result = tmp_result);
4368
4369         tmp_result = tonga_enable_display_gap(hwmgr);
4370         PP_ASSERT_WITH_CODE((0 == tmp_result),
4371                 "Failed to enable display gap!", result = tmp_result);
4372
4373         tmp_result = tonga_program_voting_clients(hwmgr);
4374         PP_ASSERT_WITH_CODE((0 == tmp_result),
4375                 "Failed to program voting clients!", result = tmp_result);
4376
4377         tmp_result = tonga_process_firmware_header(hwmgr);
4378         PP_ASSERT_WITH_CODE((0 == tmp_result),
4379                 "Failed to process firmware header!", result = tmp_result);
4380
4381         tmp_result = tonga_initial_switch_from_arb_f0_to_f1(hwmgr);
4382         PP_ASSERT_WITH_CODE((0 == tmp_result),
4383                 "Failed to initialize switch from ArbF0 to F1!", result = tmp_result);
4384
4385         tmp_result = tonga_init_smc_table(hwmgr);
4386         PP_ASSERT_WITH_CODE((0 == tmp_result),
4387                 "Failed to initialize SMC table!", result = tmp_result);
4388
4389         tmp_result = tonga_init_arb_table_index(hwmgr);
4390         PP_ASSERT_WITH_CODE((0 == tmp_result),
4391                 "Failed to initialize ARB table index!", result = tmp_result);
4392
4393         tmp_result = tonga_populate_initial_mc_reg_table(hwmgr);
4394         PP_ASSERT_WITH_CODE((0 == tmp_result),
4395                 "Failed to populate initialize MC Reg table!", result = tmp_result);
4396
4397         tmp_result = tonga_notify_smc_display_change(hwmgr, false);
4398         PP_ASSERT_WITH_CODE((0 == tmp_result),
4399                 "Failed to notify no display!", result = tmp_result);
4400
4401         /* enable SCLK control */
4402         tmp_result = tonga_enable_sclk_control(hwmgr);
4403         PP_ASSERT_WITH_CODE((0 == tmp_result),
4404                 "Failed to enable SCLK control!", result = tmp_result);
4405
4406         /* enable DPM */
4407         tmp_result = tonga_start_dpm(hwmgr);
4408         PP_ASSERT_WITH_CODE((0 == tmp_result),
4409                 "Failed to start DPM!", result = tmp_result);
4410
4411         return result;
4412 }
4413
4414 int tonga_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
4415 {
4416         int tmp_result, result = 0;
4417
4418         tmp_result = tonga_check_for_dpm_running(hwmgr);
4419         PP_ASSERT_WITH_CODE((0 == tmp_result),
4420                 "SMC is still running!", return 0);
4421
4422         tmp_result = tonga_stop_dpm(hwmgr);
4423         PP_ASSERT_WITH_CODE((0 == tmp_result),
4424                 "Failed to stop DPM!", result = tmp_result);
4425
4426         tmp_result = tonga_reset_to_default(hwmgr);
4427         PP_ASSERT_WITH_CODE((0 == tmp_result),
4428                 "Failed to reset to default!", result = tmp_result);
4429
4430         return result;
4431 }
4432
4433 int tonga_reset_asic_tasks(struct pp_hwmgr *hwmgr)
4434 {
4435         int result;
4436
4437         result = tonga_set_boot_state(hwmgr);
4438         if (0 != result)
4439                 printk(KERN_ERR "[ powerplay ] Failed to reset asic via set boot state! \n");
4440
4441         return result;
4442 }
4443
4444 int tonga_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
4445 {
4446         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4447
4448         if (data->soft_pp_table) {
4449                 kfree(data->soft_pp_table);
4450                 data->soft_pp_table = NULL;
4451         }
4452
4453         return phm_hwmgr_backend_fini(hwmgr);
4454 }
4455
4456 /**
4457  * Initializes the Volcanic Islands Hardware Manager
4458  *
4459  * @param   hwmgr the address of the powerplay hardware manager.
4460  * @return   1 if success; otherwise appropriate error code.
4461  */
4462 int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
4463 {
4464         int result = 0;
4465         SMU72_Discrete_DpmTable  *table = NULL;
4466         tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4467         pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
4468         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
4469         phw_tonga_ulv_parm *ulv;
4470         struct cgs_system_info sys_info = {0};
4471
4472         PP_ASSERT_WITH_CODE((NULL != hwmgr),
4473                 "Invalid Parameter!", return -1;);
4474
4475         data->dll_defaule_on = 0;
4476         data->sram_end = SMC_RAM_END;
4477
4478         data->activity_target[0] = PPTONGA_TARGETACTIVITY_DFLT;
4479         data->activity_target[1] = PPTONGA_TARGETACTIVITY_DFLT;
4480         data->activity_target[2] = PPTONGA_TARGETACTIVITY_DFLT;
4481         data->activity_target[3] = PPTONGA_TARGETACTIVITY_DFLT;
4482         data->activity_target[4] = PPTONGA_TARGETACTIVITY_DFLT;
4483         data->activity_target[5] = PPTONGA_TARGETACTIVITY_DFLT;
4484         data->activity_target[6] = PPTONGA_TARGETACTIVITY_DFLT;
4485         data->activity_target[7] = PPTONGA_TARGETACTIVITY_DFLT;
4486
4487         data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
4488         data->vddc_vddgfx_delta = VDDC_VDDGFX_DELTA;
4489         data->mclk_activity_target = PPTONGA_MCLK_TARGETACTIVITY_DFLT;
4490
4491         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4492                 PHM_PlatformCaps_DisableVoltageIsland);
4493
4494         data->sclk_dpm_key_disabled = 0;
4495         data->mclk_dpm_key_disabled = 0;
4496         data->pcie_dpm_key_disabled = 0;
4497         data->pcc_monitor_enabled = 0;
4498
4499         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4500                 PHM_PlatformCaps_UnTabledHardwareInterface);
4501
4502         data->gpio_debug = 0;
4503         data->engine_clock_data = 0;
4504         data->memory_clock_data = 0;
4505         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4506                 PHM_PlatformCaps_DynamicPatchPowerState);
4507
4508         /* need to set voltage control types before EVV patching*/
4509         data->voltage_control = TONGA_VOLTAGE_CONTROL_NONE;
4510         data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_NONE;
4511         data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_NONE;
4512         data->mvdd_control = TONGA_VOLTAGE_CONTROL_NONE;
4513
4514         if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
4515                                 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
4516                 data->voltage_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
4517         }
4518
4519         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4520                         PHM_PlatformCaps_ControlVDDGFX)) {
4521                 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
4522                         VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
4523                         data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
4524                 }
4525         }
4526
4527         if (TONGA_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control) {
4528                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
4529                         PHM_PlatformCaps_ControlVDDGFX);
4530         }
4531
4532         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4533                         PHM_PlatformCaps_EnableMVDDControl)) {
4534                 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
4535                                         VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) {
4536                         data->mvdd_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
4537                 }
4538         }
4539
4540         if (TONGA_VOLTAGE_CONTROL_NONE == data->mvdd_control) {
4541                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
4542                         PHM_PlatformCaps_EnableMVDDControl);
4543         }
4544
4545         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4546                         PHM_PlatformCaps_ControlVDDCI)) {
4547                 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
4548                                         VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
4549                         data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
4550                 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
4551                                                 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
4552                         data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
4553         }
4554
4555         if (TONGA_VOLTAGE_CONTROL_NONE == data->vdd_ci_control)
4556                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
4557                 PHM_PlatformCaps_ControlVDDCI);
4558
4559         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4560                 PHM_PlatformCaps_TablelessHardwareInterface);
4561
4562         if (pptable_info->cac_dtp_table->usClockStretchAmount != 0)
4563                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4564                         PHM_PlatformCaps_ClockStretcher);
4565
4566         /* Initializes DPM default values*/
4567         tonga_initialize_dpm_defaults(hwmgr);
4568
4569         /* Get leakage voltage based on leakage ID.*/
4570         PP_ASSERT_WITH_CODE((0 == tonga_get_evv_voltage(hwmgr)),
4571                 "Get EVV Voltage Failed.  Abort Driver loading!", return -1);
4572
4573         tonga_complete_dependency_tables(hwmgr);
4574
4575         /* Parse pptable data read from VBIOS*/
4576         tonga_set_private_var_based_on_pptale(hwmgr);
4577
4578         /* ULV Support*/
4579         ulv = &(data->ulv);
4580         ulv->ulv_supported = 0;
4581
4582         /* Initalize Dynamic State Adjustment Rule Settings*/
4583         result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
4584         if (result)
4585                 printk(KERN_ERR "[ powerplay ] tonga_initializa_dynamic_state_adjustment_rule_settings failed!\n");
4586         data->uvd_enabled = 0;
4587
4588         table = &(data->smc_state_table);
4589
4590         /*
4591         * if ucGPIO_ID=VDDC_PCC_GPIO_PINID in GPIO_LUTable,
4592         * Peak Current Control feature is enabled and we should program PCC HW register
4593         */
4594         if (0 == atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
4595                 uint32_t temp_reg = cgs_read_ind_register(hwmgr->device,
4596                                                                                 CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
4597
4598                 switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
4599                 case 0:
4600                         temp_reg = PHM_SET_FIELD(temp_reg,
4601                                 CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
4602                         break;
4603                 case 1:
4604                         temp_reg = PHM_SET_FIELD(temp_reg,
4605                                 CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
4606                         break;
4607                 case 2:
4608                         temp_reg = PHM_SET_FIELD(temp_reg,
4609                                 CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
4610                         break;
4611                 case 3:
4612                         temp_reg = PHM_SET_FIELD(temp_reg,
4613                                 CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
4614                         break;
4615                 case 4:
4616                         temp_reg = PHM_SET_FIELD(temp_reg,
4617                                 CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
4618                         break;
4619                 default:
4620                         printk(KERN_ERR "[ powerplay ] Failed to setup PCC HW register! \
4621                                 Wrong GPIO assigned for VDDC_PCC_GPIO_PINID! \n");
4622                         break;
4623                 }
4624                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4625                         ixCNB_PWRMGT_CNTL, temp_reg);
4626         }
4627
4628         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4629                 PHM_PlatformCaps_EnableSMU7ThermalManagement);
4630         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4631                 PHM_PlatformCaps_SMU7);
4632
4633         data->vddc_phase_shed_control = 0;
4634
4635         phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
4636                       PHM_PlatformCaps_UVDPowerGating);
4637         phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
4638                       PHM_PlatformCaps_VCEPowerGating);
4639         sys_info.size = sizeof(struct cgs_system_info);
4640         sys_info.info_id = CGS_SYSTEM_INFO_PG_FLAGS;
4641         result = cgs_query_system_info(hwmgr->device, &sys_info);
4642         if (!result) {
4643                 if (sys_info.value & AMD_PG_SUPPORT_UVD)
4644                         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4645                                       PHM_PlatformCaps_UVDPowerGating);
4646                 if (sys_info.value & AMD_PG_SUPPORT_VCE)
4647                         phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4648                                       PHM_PlatformCaps_VCEPowerGating);
4649         }
4650
4651         if (0 == result) {
4652                 data->is_tlu_enabled = 0;
4653                 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
4654                         TONGA_MAX_HARDWARE_POWERLEVELS;
4655                 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
4656                 hwmgr->platform_descriptor.minimumClocksReductionPercentage  = 50;
4657
4658                 sys_info.size = sizeof(struct cgs_system_info);
4659                 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
4660                 result = cgs_query_system_info(hwmgr->device, &sys_info);
4661                 if (result)
4662                         data->pcie_gen_cap = 0x30007;
4663                 else
4664                         data->pcie_gen_cap = (uint32_t)sys_info.value;
4665                 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
4666                         data->pcie_spc_cap = 20;
4667                 sys_info.size = sizeof(struct cgs_system_info);
4668                 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
4669                 result = cgs_query_system_info(hwmgr->device, &sys_info);
4670                 if (result)
4671                         data->pcie_lane_cap = 0x2f0000;
4672                 else
4673                         data->pcie_lane_cap = (uint32_t)sys_info.value;
4674         } else {
4675                 /* Ignore return value in here, we are cleaning up a mess. */
4676                 tonga_hwmgr_backend_fini(hwmgr);
4677         }
4678
4679         return result;
4680 }
4681
4682 static int tonga_force_dpm_level(struct pp_hwmgr *hwmgr,
4683                 enum amd_dpm_forced_level level)
4684 {
4685         int ret = 0;
4686
4687         switch (level) {
4688         case AMD_DPM_FORCED_LEVEL_HIGH:
4689                 ret = tonga_force_dpm_highest(hwmgr);
4690                 if (ret)
4691                         return ret;
4692                 break;
4693         case AMD_DPM_FORCED_LEVEL_LOW:
4694                 ret = tonga_force_dpm_lowest(hwmgr);
4695                 if (ret)
4696                         return ret;
4697                 break;
4698         case AMD_DPM_FORCED_LEVEL_AUTO:
4699                 ret = tonga_unforce_dpm_levels(hwmgr);
4700                 if (ret)
4701                         return ret;
4702                 break;
4703         default:
4704                 break;
4705         }
4706
4707         hwmgr->dpm_level = level;
4708         return ret;
4709 }
4710
4711 static int tonga_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
4712                                 struct pp_power_state  *prequest_ps,
4713                         const struct pp_power_state *pcurrent_ps)
4714 {
4715         struct tonga_power_state *tonga_ps =
4716                                 cast_phw_tonga_power_state(&prequest_ps->hardware);
4717
4718         uint32_t sclk;
4719         uint32_t mclk;
4720         struct PP_Clocks minimum_clocks = {0};
4721         bool disable_mclk_switching;
4722         bool disable_mclk_switching_for_frame_lock;
4723         struct cgs_display_info info = {0};
4724         const struct phm_clock_and_voltage_limits *max_limits;
4725         uint32_t i;
4726         tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4727         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
4728
4729         int32_t count;
4730         int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
4731
4732         data->battery_state = (PP_StateUILabel_Battery == prequest_ps->classification.ui_label);
4733
4734         PP_ASSERT_WITH_CODE(tonga_ps->performance_level_count == 2,
4735                                  "VI should always have 2 performance levels",
4736                                  );
4737
4738         max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
4739                         &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
4740                         &(hwmgr->dyn_state.max_clock_voltage_on_dc);
4741
4742         if (PP_PowerSource_DC == hwmgr->power_source) {
4743                 for (i = 0; i < tonga_ps->performance_level_count; i++) {
4744                         if (tonga_ps->performance_levels[i].memory_clock > max_limits->mclk)
4745                                 tonga_ps->performance_levels[i].memory_clock = max_limits->mclk;
4746                         if (tonga_ps->performance_levels[i].engine_clock > max_limits->sclk)
4747                                 tonga_ps->performance_levels[i].engine_clock = max_limits->sclk;
4748                 }
4749         }
4750
4751         tonga_ps->vce_clocks.EVCLK = hwmgr->vce_arbiter.evclk;
4752         tonga_ps->vce_clocks.ECCLK = hwmgr->vce_arbiter.ecclk;
4753
4754         tonga_ps->acp_clk = hwmgr->acp_arbiter.acpclk;
4755
4756         cgs_get_active_displays_info(hwmgr->device, &info);
4757
4758         /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
4759
4760         /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
4761
4762         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
4763
4764                 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
4765                 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
4766
4767                 for (count = pptable_info->vdd_dep_on_sclk->count-1; count >= 0; count--) {
4768                         if (stable_pstate_sclk >= pptable_info->vdd_dep_on_sclk->entries[count].clk) {
4769                                 stable_pstate_sclk = pptable_info->vdd_dep_on_sclk->entries[count].clk;
4770                                 break;
4771                         }
4772                 }
4773
4774                 if (count < 0)
4775                         stable_pstate_sclk = pptable_info->vdd_dep_on_sclk->entries[0].clk;
4776
4777                 stable_pstate_mclk = max_limits->mclk;
4778
4779                 minimum_clocks.engineClock = stable_pstate_sclk;
4780                 minimum_clocks.memoryClock = stable_pstate_mclk;
4781         }
4782
4783         if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
4784                 minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
4785
4786         if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
4787                 minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
4788
4789         tonga_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
4790
4791         if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
4792                 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.engineClock),
4793                                         "Overdrive sclk exceeds limit",
4794                                         hwmgr->gfx_arbiter.sclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.engineClock);
4795
4796                 if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
4797                         tonga_ps->performance_levels[1].engine_clock = hwmgr->gfx_arbiter.sclk_over_drive;
4798         }
4799
4800         if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
4801                 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.memoryClock),
4802                         "Overdrive mclk exceeds limit",
4803                         hwmgr->gfx_arbiter.mclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.memoryClock);
4804
4805                 if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
4806                         tonga_ps->performance_levels[1].memory_clock = hwmgr->gfx_arbiter.mclk_over_drive;
4807         }
4808
4809         disable_mclk_switching_for_frame_lock = phm_cap_enabled(
4810                                     hwmgr->platform_descriptor.platformCaps,
4811                                     PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
4812
4813         disable_mclk_switching = (1 < info.display_count) ||
4814                                     disable_mclk_switching_for_frame_lock;
4815
4816         sclk  = tonga_ps->performance_levels[0].engine_clock;
4817         mclk  = tonga_ps->performance_levels[0].memory_clock;
4818
4819         if (disable_mclk_switching)
4820                 mclk  = tonga_ps->performance_levels[tonga_ps->performance_level_count - 1].memory_clock;
4821
4822         if (sclk < minimum_clocks.engineClock)
4823                 sclk = (minimum_clocks.engineClock > max_limits->sclk) ? max_limits->sclk : minimum_clocks.engineClock;
4824
4825         if (mclk < minimum_clocks.memoryClock)
4826                 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? max_limits->mclk : minimum_clocks.memoryClock;
4827
4828         tonga_ps->performance_levels[0].engine_clock = sclk;
4829         tonga_ps->performance_levels[0].memory_clock = mclk;
4830
4831         tonga_ps->performance_levels[1].engine_clock =
4832                 (tonga_ps->performance_levels[1].engine_clock >= tonga_ps->performance_levels[0].engine_clock) ?
4833                               tonga_ps->performance_levels[1].engine_clock :
4834                               tonga_ps->performance_levels[0].engine_clock;
4835
4836         if (disable_mclk_switching) {
4837                 if (mclk < tonga_ps->performance_levels[1].memory_clock)
4838                         mclk = tonga_ps->performance_levels[1].memory_clock;
4839
4840                 tonga_ps->performance_levels[0].memory_clock = mclk;
4841                 tonga_ps->performance_levels[1].memory_clock = mclk;
4842         } else {
4843                 if (tonga_ps->performance_levels[1].memory_clock < tonga_ps->performance_levels[0].memory_clock)
4844                         tonga_ps->performance_levels[1].memory_clock = tonga_ps->performance_levels[0].memory_clock;
4845         }
4846
4847         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
4848                 for (i=0; i < tonga_ps->performance_level_count; i++) {
4849                         tonga_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
4850                         tonga_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
4851                         tonga_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
4852                         tonga_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
4853                 }
4854         }
4855
4856         return 0;
4857 }
4858
4859 int tonga_get_power_state_size(struct pp_hwmgr *hwmgr)
4860 {
4861         return sizeof(struct tonga_power_state);
4862 }
4863
4864 static int tonga_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
4865 {
4866         struct pp_power_state  *ps;
4867         struct tonga_power_state  *tonga_ps;
4868
4869         if (hwmgr == NULL)
4870                 return -EINVAL;
4871
4872         ps = hwmgr->request_ps;
4873
4874         if (ps == NULL)
4875                 return -EINVAL;
4876
4877         tonga_ps = cast_phw_tonga_power_state(&ps->hardware);
4878
4879         if (low)
4880                 return tonga_ps->performance_levels[0].memory_clock;
4881         else
4882                 return tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
4883 }
4884
4885 static int tonga_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
4886 {
4887         struct pp_power_state  *ps;
4888         struct tonga_power_state  *tonga_ps;
4889
4890         if (hwmgr == NULL)
4891                 return -EINVAL;
4892
4893         ps = hwmgr->request_ps;
4894
4895         if (ps == NULL)
4896                 return -EINVAL;
4897
4898         tonga_ps = cast_phw_tonga_power_state(&ps->hardware);
4899
4900         if (low)
4901                 return tonga_ps->performance_levels[0].engine_clock;
4902         else
4903                 return tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
4904 }
4905
4906 static uint16_t tonga_get_current_pcie_speed(
4907                                                    struct pp_hwmgr *hwmgr)
4908 {
4909         uint32_t speed_cntl = 0;
4910
4911         speed_cntl = cgs_read_ind_register(hwmgr->device,
4912                                                    CGS_IND_REG__PCIE,
4913                                                    ixPCIE_LC_SPEED_CNTL);
4914         return((uint16_t)PHM_GET_FIELD(speed_cntl,
4915                         PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
4916 }
4917
4918 static int tonga_get_current_pcie_lane_number(
4919                                                    struct pp_hwmgr *hwmgr)
4920 {
4921         uint32_t link_width;
4922
4923         link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device,
4924                                                         CGS_IND_REG__PCIE,
4925                                                   PCIE_LC_LINK_WIDTH_CNTL,
4926                                                         LC_LINK_WIDTH_RD);
4927
4928         PP_ASSERT_WITH_CODE((7 >= link_width),
4929                         "Invalid PCIe lane width!", return 0);
4930
4931         return decode_pcie_lane_width(link_width);
4932 }
4933
4934 static int tonga_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
4935                                         struct pp_hw_power_state *hw_ps)
4936 {
4937         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4938         struct tonga_power_state *ps = (struct tonga_power_state *)hw_ps;
4939         ATOM_FIRMWARE_INFO_V2_2 *fw_info;
4940         uint16_t size;
4941         uint8_t frev, crev;
4942         int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
4943
4944         /* First retrieve the Boot clocks and VDDC from the firmware info table.
4945          * We assume here that fw_info is unchanged if this call fails.
4946          */
4947         fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
4948                         hwmgr->device, index,
4949                         &size, &frev, &crev);
4950         if (!fw_info)
4951                 /* During a test, there is no firmware info table. */
4952                 return 0;
4953
4954         /* Patch the state. */
4955         data->vbios_boot_state.sclk_bootup_value  = le32_to_cpu(fw_info->ulDefaultEngineClock);
4956         data->vbios_boot_state.mclk_bootup_value  = le32_to_cpu(fw_info->ulDefaultMemoryClock);
4957         data->vbios_boot_state.mvdd_bootup_value  = le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
4958         data->vbios_boot_state.vddc_bootup_value  = le16_to_cpu(fw_info->usBootUpVDDCVoltage);
4959         data->vbios_boot_state.vddci_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
4960         data->vbios_boot_state.pcie_gen_bootup_value = tonga_get_current_pcie_speed(hwmgr);
4961         data->vbios_boot_state.pcie_lane_bootup_value =
4962                         (uint16_t)tonga_get_current_pcie_lane_number(hwmgr);
4963
4964         /* set boot power state */
4965         ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
4966         ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
4967         ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
4968         ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
4969
4970         return 0;
4971 }
4972
4973 static int tonga_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
4974                 void *state, struct pp_power_state *power_state,
4975                 void *pp_table, uint32_t classification_flag)
4976 {
4977         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4978
4979         struct tonga_power_state  *tonga_ps =
4980                         (struct tonga_power_state *)(&(power_state->hardware));
4981
4982         struct tonga_performance_level *performance_level;
4983
4984         ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
4985
4986         ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
4987                         (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
4988
4989         ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
4990                         (ATOM_Tonga_SCLK_Dependency_Table *)
4991                         (((unsigned long)powerplay_table) +
4992                         le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
4993
4994         ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
4995                         (ATOM_Tonga_MCLK_Dependency_Table *)
4996                         (((unsigned long)powerplay_table) +
4997                         le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
4998
4999         /* The following fields are not initialized here: id orderedList allStatesList */
5000         power_state->classification.ui_label =
5001                         (le16_to_cpu(state_entry->usClassification) &
5002                         ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
5003                         ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
5004         power_state->classification.flags = classification_flag;
5005         /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
5006
5007         power_state->classification.temporary_state = false;
5008         power_state->classification.to_be_deleted = false;
5009
5010         power_state->validation.disallowOnDC =
5011                         (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_DISALLOW_ON_DC));
5012
5013         power_state->pcie.lanes = 0;
5014
5015         power_state->display.disableFrameModulation = false;
5016         power_state->display.limitRefreshrate = false;
5017         power_state->display.enableVariBright =
5018                         (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_ENABLE_VARIBRIGHT));
5019
5020         power_state->validation.supportedPowerLevels = 0;
5021         power_state->uvd_clocks.VCLK = 0;
5022         power_state->uvd_clocks.DCLK = 0;
5023         power_state->temperatures.min = 0;
5024         power_state->temperatures.max = 0;
5025
5026         performance_level = &(tonga_ps->performance_levels
5027                         [tonga_ps->performance_level_count++]);
5028
5029         PP_ASSERT_WITH_CODE(
5030                         (tonga_ps->performance_level_count < SMU72_MAX_LEVELS_GRAPHICS),
5031                         "Performance levels exceeds SMC limit!",
5032                         return -1);
5033
5034         PP_ASSERT_WITH_CODE(
5035                         (tonga_ps->performance_level_count <=
5036                                         hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
5037                         "Performance levels exceeds Driver limit!",
5038                         return -1);
5039
5040         /* Performance levels are arranged from low to high. */
5041         performance_level->memory_clock =
5042                                 le32_to_cpu(mclk_dep_table->entries[state_entry->ucMemoryClockIndexLow].ulMclk);
5043
5044         performance_level->engine_clock =
5045                                 le32_to_cpu(sclk_dep_table->entries[state_entry->ucEngineClockIndexLow].ulSclk);
5046
5047         performance_level->pcie_gen = get_pcie_gen_support(
5048                                                         data->pcie_gen_cap,
5049                                              state_entry->ucPCIEGenLow);
5050
5051         performance_level->pcie_lane = get_pcie_lane_support(
5052                                                     data->pcie_lane_cap,
5053                                            state_entry->ucPCIELaneHigh);
5054
5055         performance_level =
5056                         &(tonga_ps->performance_levels[tonga_ps->performance_level_count++]);
5057
5058         performance_level->memory_clock =
5059                                 le32_to_cpu(mclk_dep_table->entries[state_entry->ucMemoryClockIndexHigh].ulMclk);
5060
5061         performance_level->engine_clock =
5062                                 le32_to_cpu(sclk_dep_table->entries[state_entry->ucEngineClockIndexHigh].ulSclk);
5063
5064         performance_level->pcie_gen = get_pcie_gen_support(
5065                                                         data->pcie_gen_cap,
5066                                             state_entry->ucPCIEGenHigh);
5067
5068         performance_level->pcie_lane = get_pcie_lane_support(
5069                                                     data->pcie_lane_cap,
5070                                            state_entry->ucPCIELaneHigh);
5071
5072         return 0;
5073 }
5074
5075 static int tonga_get_pp_table_entry(struct pp_hwmgr *hwmgr,
5076                     unsigned long entry_index, struct pp_power_state *ps)
5077 {
5078         int result;
5079         struct tonga_power_state *tonga_ps;
5080         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5081
5082         struct phm_ppt_v1_information *table_info =
5083                         (struct phm_ppt_v1_information *)(hwmgr->pptable);
5084
5085         struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
5086                                            table_info->vdd_dep_on_mclk;
5087
5088         ps->hardware.magic = PhwTonga_Magic;
5089
5090         tonga_ps = cast_phw_tonga_power_state(&(ps->hardware));
5091
5092         result = tonga_get_powerplay_table_entry(hwmgr, entry_index, ps,
5093                         tonga_get_pp_table_entry_callback_func);
5094
5095         /* This is the earliest time we have all the dependency table and the VBIOS boot state
5096          * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
5097          * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
5098          */
5099         if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
5100                 if (dep_mclk_table->entries[0].clk !=
5101                                 data->vbios_boot_state.mclk_bootup_value)
5102                         printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
5103                                         "does not match VBIOS boot MCLK level");
5104                 if (dep_mclk_table->entries[0].vddci !=
5105                                 data->vbios_boot_state.vddci_bootup_value)
5106                         printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
5107                                         "does not match VBIOS boot VDDCI level");
5108         }
5109
5110         /* set DC compatible flag if this state supports DC */
5111         if (!ps->validation.disallowOnDC)
5112                 tonga_ps->dc_compatible = true;
5113
5114         if (ps->classification.flags & PP_StateClassificationFlag_ACPI)
5115                 data->acpi_pcie_gen = tonga_ps->performance_levels[0].pcie_gen;
5116         else if (ps->classification.flags & PP_StateClassificationFlag_Boot) {
5117                 if (data->bacos.best_match == 0xffff) {
5118                         /* For V.I. use boot state as base BACO state */
5119                         data->bacos.best_match = PP_StateClassificationFlag_Boot;
5120                         data->bacos.performance_level = tonga_ps->performance_levels[0];
5121                 }
5122         }
5123
5124         tonga_ps->uvd_clocks.VCLK = ps->uvd_clocks.VCLK;
5125         tonga_ps->uvd_clocks.DCLK = ps->uvd_clocks.DCLK;
5126
5127         if (!result) {
5128                 uint32_t i;
5129
5130                 switch (ps->classification.ui_label) {
5131                 case PP_StateUILabel_Performance:
5132                         data->use_pcie_performance_levels = true;
5133
5134                         for (i = 0; i < tonga_ps->performance_level_count; i++) {
5135                                 if (data->pcie_gen_performance.max <
5136                                                 tonga_ps->performance_levels[i].pcie_gen)
5137                                         data->pcie_gen_performance.max =
5138                                                         tonga_ps->performance_levels[i].pcie_gen;
5139
5140                                 if (data->pcie_gen_performance.min >
5141                                                 tonga_ps->performance_levels[i].pcie_gen)
5142                                         data->pcie_gen_performance.min =
5143                                                         tonga_ps->performance_levels[i].pcie_gen;
5144
5145                                 if (data->pcie_lane_performance.max <
5146                                                 tonga_ps->performance_levels[i].pcie_lane)
5147                                         data->pcie_lane_performance.max =
5148                                                         tonga_ps->performance_levels[i].pcie_lane;
5149
5150                                 if (data->pcie_lane_performance.min >
5151                                                 tonga_ps->performance_levels[i].pcie_lane)
5152                                         data->pcie_lane_performance.min =
5153                                                         tonga_ps->performance_levels[i].pcie_lane;
5154                         }
5155                         break;
5156                 case PP_StateUILabel_Battery:
5157                         data->use_pcie_power_saving_levels = true;
5158
5159                         for (i = 0; i < tonga_ps->performance_level_count; i++) {
5160                                 if (data->pcie_gen_power_saving.max <
5161                                                 tonga_ps->performance_levels[i].pcie_gen)
5162                                         data->pcie_gen_power_saving.max =
5163                                                         tonga_ps->performance_levels[i].pcie_gen;
5164
5165                                 if (data->pcie_gen_power_saving.min >
5166                                                 tonga_ps->performance_levels[i].pcie_gen)
5167                                         data->pcie_gen_power_saving.min =
5168                                                         tonga_ps->performance_levels[i].pcie_gen;
5169
5170                                 if (data->pcie_lane_power_saving.max <
5171                                                 tonga_ps->performance_levels[i].pcie_lane)
5172                                         data->pcie_lane_power_saving.max =
5173                                                         tonga_ps->performance_levels[i].pcie_lane;
5174
5175                                 if (data->pcie_lane_power_saving.min >
5176                                                 tonga_ps->performance_levels[i].pcie_lane)
5177                                         data->pcie_lane_power_saving.min =
5178                                                         tonga_ps->performance_levels[i].pcie_lane;
5179                         }
5180                         break;
5181                 default:
5182                         break;
5183                 }
5184         }
5185         return 0;
5186 }
5187
5188 static void
5189 tonga_print_current_perforce_level(struct pp_hwmgr *hwmgr, struct seq_file *m)
5190 {
5191         uint32_t sclk, mclk, activity_percent;
5192         uint32_t offset;
5193         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5194
5195         smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetSclkFrequency));
5196
5197         sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5198
5199         smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetMclkFrequency));
5200
5201         mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5202         seq_printf(m, "\n [  mclk  ]: %u MHz\n\n [  sclk  ]: %u MHz\n", mclk/100, sclk/100);
5203
5204         offset = data->soft_regs_start + offsetof(SMU72_SoftRegisters, AverageGraphicsActivity);
5205         activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
5206         activity_percent += 0x80;
5207         activity_percent >>= 8;
5208
5209         seq_printf(m, "\n [GPU load]: %u%%\n\n", activity_percent > 100 ? 100 : activity_percent);
5210
5211         seq_printf(m, "uvd    %sabled\n", data->uvd_power_gated ? "dis" : "en");
5212
5213         seq_printf(m, "vce    %sabled\n", data->vce_power_gated ? "dis" : "en");
5214 }
5215
5216 static int tonga_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
5217 {
5218         const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5219         const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
5220         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5221         struct tonga_single_dpm_table *psclk_table = &(data->dpm_table.sclk_table);
5222         uint32_t sclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
5223         struct tonga_single_dpm_table *pmclk_table = &(data->dpm_table.mclk_table);
5224         uint32_t mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
5225         struct PP_Clocks min_clocks = {0};
5226         uint32_t i;
5227         struct cgs_display_info info = {0};
5228
5229         data->need_update_smu7_dpm_table = 0;
5230
5231         for (i = 0; i < psclk_table->count; i++) {
5232                 if (sclk == psclk_table->dpm_levels[i].value)
5233                         break;
5234         }
5235
5236         if (i >= psclk_table->count)
5237                 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
5238         else {
5239         /* TODO: Check SCLK in DAL's minimum clocks in case DeepSleep divider update is required.*/
5240                 if(data->display_timing.min_clock_insr != min_clocks.engineClockInSR)
5241                         data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
5242         }
5243
5244         for (i=0; i < pmclk_table->count; i++) {
5245                 if (mclk == pmclk_table->dpm_levels[i].value)
5246                         break;
5247         }
5248
5249         if (i >= pmclk_table->count)
5250                 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
5251
5252         cgs_get_active_displays_info(hwmgr->device, &info);
5253
5254         if (data->display_timing.num_existing_displays != info.display_count)
5255                 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
5256
5257         return 0;
5258 }
5259
5260 static uint16_t tonga_get_maximum_link_speed(struct pp_hwmgr *hwmgr, const struct tonga_power_state *hw_ps)
5261 {
5262         uint32_t i;
5263         uint32_t sclk, max_sclk = 0;
5264         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5265         struct tonga_dpm_table *pdpm_table = &data->dpm_table;
5266
5267         for (i = 0; i < hw_ps->performance_level_count; i++) {
5268                 sclk = hw_ps->performance_levels[i].engine_clock;
5269                 if (max_sclk < sclk)
5270                         max_sclk = sclk;
5271         }
5272
5273         for (i = 0; i < pdpm_table->sclk_table.count; i++) {
5274                 if (pdpm_table->sclk_table.dpm_levels[i].value == max_sclk)
5275                         return (uint16_t) ((i >= pdpm_table->pcie_speed_table.count) ?
5276                                         pdpm_table->pcie_speed_table.dpm_levels[pdpm_table->pcie_speed_table.count-1].value :
5277                                         pdpm_table->pcie_speed_table.dpm_levels[i].value);
5278         }
5279
5280         return 0;
5281 }
5282
5283 static int tonga_request_link_speed_change_before_state_change(struct pp_hwmgr *hwmgr, const void *input)
5284 {
5285         const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5286         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5287         const struct tonga_power_state *tonga_nps = cast_const_phw_tonga_power_state(states->pnew_state);
5288         const struct tonga_power_state *tonga_cps = cast_const_phw_tonga_power_state(states->pcurrent_state);
5289
5290         uint16_t target_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_nps);
5291         uint16_t current_link_speed;
5292
5293         if (data->force_pcie_gen == PP_PCIEGenInvalid)
5294                 current_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_cps);
5295         else
5296                 current_link_speed = data->force_pcie_gen;
5297
5298         data->force_pcie_gen = PP_PCIEGenInvalid;
5299         data->pspp_notify_required = false;
5300         if (target_link_speed > current_link_speed) {
5301                 switch(target_link_speed) {
5302                 case PP_PCIEGen3:
5303                         if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
5304                                 break;
5305                         data->force_pcie_gen = PP_PCIEGen2;
5306                         if (current_link_speed == PP_PCIEGen2)
5307                                 break;
5308                 case PP_PCIEGen2:
5309                         if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
5310                                 break;
5311                 default:
5312                         data->force_pcie_gen = tonga_get_current_pcie_speed(hwmgr);
5313                         break;
5314                 }
5315         } else {
5316                 if (target_link_speed < current_link_speed)
5317                         data->pspp_notify_required = true;
5318         }
5319
5320         return 0;
5321 }
5322
5323 static int tonga_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
5324 {
5325         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5326
5327         if (0 == data->need_update_smu7_dpm_table)
5328                 return 0;
5329
5330         if ((0 == data->sclk_dpm_key_disabled) &&
5331                 (data->need_update_smu7_dpm_table &
5332                 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
5333                 PP_ASSERT_WITH_CODE(
5334                         0 == tonga_is_dpm_running(hwmgr),
5335                         "Trying to freeze SCLK DPM when DPM is disabled",
5336                         );
5337                 PP_ASSERT_WITH_CODE(
5338                         0 == smum_send_msg_to_smc(hwmgr->smumgr,
5339                                           PPSMC_MSG_SCLKDPM_FreezeLevel),
5340                         "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
5341                         return -1);
5342         }
5343
5344         if ((0 == data->mclk_dpm_key_disabled) &&
5345                 (data->need_update_smu7_dpm_table &
5346                  DPMTABLE_OD_UPDATE_MCLK)) {
5347                 PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
5348                         "Trying to freeze MCLK DPM when DPM is disabled",
5349                         );
5350                 PP_ASSERT_WITH_CODE(
5351                         0 == smum_send_msg_to_smc(hwmgr->smumgr,
5352                                                         PPSMC_MSG_MCLKDPM_FreezeLevel),
5353                         "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
5354                         return -1);
5355         }
5356
5357         return 0;
5358 }
5359
5360 static int tonga_populate_and_upload_sclk_mclk_dpm_levels(struct pp_hwmgr *hwmgr, const void *input)
5361 {
5362         int result = 0;
5363
5364         const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5365         const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
5366         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5367         uint32_t sclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
5368         uint32_t mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
5369         struct tonga_dpm_table *pdpm_table = &data->dpm_table;
5370
5371         struct tonga_dpm_table *pgolden_dpm_table = &data->golden_dpm_table;
5372         uint32_t dpm_count, clock_percent;
5373         uint32_t i;
5374
5375         if (0 == data->need_update_smu7_dpm_table)
5376                 return 0;
5377
5378         if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
5379                 pdpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value = sclk;
5380
5381                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
5382                     phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
5383                 /* Need to do calculation based on the golden DPM table
5384                  * as the Heatmap GPU Clock axis is also based on the default values
5385                  */
5386                         PP_ASSERT_WITH_CODE(
5387                                 (pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value != 0),
5388                                 "Divide by 0!",
5389                                 return -1);
5390                         dpm_count = pdpm_table->sclk_table.count < 2 ? 0 : pdpm_table->sclk_table.count-2;
5391                         for (i = dpm_count; i > 1; i--) {
5392                                 if (sclk > pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value) {
5393                                         clock_percent = ((sclk - pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value)*100) /
5394                                                         pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value;
5395
5396                                         pdpm_table->sclk_table.dpm_levels[i].value =
5397                                                         pgolden_dpm_table->sclk_table.dpm_levels[i].value +
5398                                                         (pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100;
5399
5400                                 } else if (pgolden_dpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value > sclk) {
5401                                         clock_percent = ((pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value - sclk)*100) /
5402                                                                 pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value;
5403
5404                                         pdpm_table->sclk_table.dpm_levels[i].value =
5405                                                         pgolden_dpm_table->sclk_table.dpm_levels[i].value -
5406                                                         (pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100;
5407                                 } else
5408                                         pdpm_table->sclk_table.dpm_levels[i].value =
5409                                                         pgolden_dpm_table->sclk_table.dpm_levels[i].value;
5410                         }
5411                 }
5412         }
5413
5414         if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
5415                 pdpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value = mclk;
5416
5417                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
5418                         phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
5419
5420                         PP_ASSERT_WITH_CODE(
5421                                         (pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value != 0),
5422                                         "Divide by 0!",
5423                                         return -1);
5424                         dpm_count = pdpm_table->mclk_table.count < 2? 0 : pdpm_table->mclk_table.count-2;
5425                         for (i = dpm_count; i > 1; i--) {
5426                                 if (mclk > pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value) {
5427                                                 clock_percent = ((mclk - pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value)*100) /
5428                                                                     pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value;
5429
5430                                                 pdpm_table->mclk_table.dpm_levels[i].value =
5431                                                                                 pgolden_dpm_table->mclk_table.dpm_levels[i].value +
5432                                                                                 (pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100;
5433
5434                                 } else if (pgolden_dpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value > mclk) {
5435                                                 clock_percent = ((pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value - mclk)*100) /
5436                                                                     pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value;
5437
5438                                                 pdpm_table->mclk_table.dpm_levels[i].value =
5439                                                                         pgolden_dpm_table->mclk_table.dpm_levels[i].value -
5440                                                                         (pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100;
5441                                 } else
5442                                         pdpm_table->mclk_table.dpm_levels[i].value = pgolden_dpm_table->mclk_table.dpm_levels[i].value;
5443                         }
5444                 }
5445         }
5446
5447         if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
5448                 result = tonga_populate_all_graphic_levels(hwmgr);
5449                 PP_ASSERT_WITH_CODE((0 == result),
5450                         "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
5451                         return result);
5452         }
5453
5454         if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
5455                 /*populate MCLK dpm table to SMU7 */
5456                 result = tonga_populate_all_memory_levels(hwmgr);
5457                 PP_ASSERT_WITH_CODE((0 == result),
5458                                 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
5459                                 return result);
5460         }
5461
5462         return result;
5463 }
5464
5465 static  int tonga_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
5466                           struct tonga_single_dpm_table * pdpm_table,
5467                              uint32_t low_limit, uint32_t high_limit)
5468 {
5469         uint32_t i;
5470
5471         for (i = 0; i < pdpm_table->count; i++) {
5472                 if ((pdpm_table->dpm_levels[i].value < low_limit) ||
5473                     (pdpm_table->dpm_levels[i].value > high_limit))
5474                         pdpm_table->dpm_levels[i].enabled = false;
5475                 else
5476                         pdpm_table->dpm_levels[i].enabled = true;
5477         }
5478         return 0;
5479 }
5480
5481 static int tonga_trim_dpm_states(struct pp_hwmgr *hwmgr, const struct tonga_power_state *hw_state)
5482 {
5483         int result = 0;
5484         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5485         uint32_t high_limit_count;
5486
5487         PP_ASSERT_WITH_CODE((hw_state->performance_level_count >= 1),
5488                                 "power state did not have any performance level",
5489                                  return -1);
5490
5491         high_limit_count = (1 == hw_state->performance_level_count) ? 0: 1;
5492
5493         tonga_trim_single_dpm_states(hwmgr,
5494                                         &(data->dpm_table.sclk_table),
5495                                         hw_state->performance_levels[0].engine_clock,
5496                                         hw_state->performance_levels[high_limit_count].engine_clock);
5497
5498         tonga_trim_single_dpm_states(hwmgr,
5499                                                 &(data->dpm_table.mclk_table),
5500                                                 hw_state->performance_levels[0].memory_clock,
5501                                                 hw_state->performance_levels[high_limit_count].memory_clock);
5502
5503         return result;
5504 }
5505
5506 static int tonga_generate_dpm_level_enable_mask(struct pp_hwmgr *hwmgr, const void *input)
5507 {
5508         int result;
5509         const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5510         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5511         const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
5512
5513         result = tonga_trim_dpm_states(hwmgr, tonga_ps);
5514         if (0 != result)
5515                 return result;
5516
5517         data->dpm_level_enable_mask.sclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
5518         data->dpm_level_enable_mask.mclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
5519         data->last_mclk_dpm_enable_mask = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
5520         if (data->uvd_enabled)
5521                 data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
5522
5523         data->dpm_level_enable_mask.pcie_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
5524
5525         return 0;
5526 }
5527
5528 int tonga_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
5529 {
5530         return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
5531                                   (PPSMC_Msg)PPSMC_MSG_VCEDPM_Enable :
5532                                   (PPSMC_Msg)PPSMC_MSG_VCEDPM_Disable);
5533 }
5534
5535 int tonga_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
5536 {
5537         return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
5538                                   (PPSMC_Msg)PPSMC_MSG_UVDDPM_Enable :
5539                                   (PPSMC_Msg)PPSMC_MSG_UVDDPM_Disable);
5540 }
5541
5542 int tonga_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
5543 {
5544         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5545         uint32_t mm_boot_level_offset, mm_boot_level_value;
5546         struct phm_ppt_v1_information *ptable_information = (struct phm_ppt_v1_information *)(hwmgr->pptable);
5547
5548         if (!bgate) {
5549                 data->smc_state_table.UvdBootLevel = (uint8_t) (ptable_information->mm_dep_table->count - 1);
5550                 mm_boot_level_offset = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
5551                 mm_boot_level_offset /= 4;
5552                 mm_boot_level_offset *= 4;
5553                 mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset);
5554                 mm_boot_level_value &= 0x00FFFFFF;
5555                 mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24;
5556                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
5557
5558                 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDPM) ||
5559                     phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
5560                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5561                                                 PPSMC_MSG_UVDDPM_SetEnabledMask,
5562                                                 (uint32_t)(1 << data->smc_state_table.UvdBootLevel));
5563         }
5564
5565         return tonga_enable_disable_uvd_dpm(hwmgr, !bgate);
5566 }
5567
5568 int tonga_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
5569 {
5570         const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5571         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5572         const struct tonga_power_state *tonga_nps = cast_const_phw_tonga_power_state(states->pnew_state);
5573         const struct tonga_power_state *tonga_cps = cast_const_phw_tonga_power_state(states->pcurrent_state);
5574
5575         uint32_t mm_boot_level_offset, mm_boot_level_value;
5576         struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
5577
5578         if (tonga_nps->vce_clocks.EVCLK > 0 && (tonga_cps == NULL || tonga_cps->vce_clocks.EVCLK == 0)) {
5579                 data->smc_state_table.VceBootLevel = (uint8_t) (pptable_info->mm_dep_table->count - 1);
5580
5581                 mm_boot_level_offset = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
5582                 mm_boot_level_offset /= 4;
5583                 mm_boot_level_offset *= 4;
5584                 mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset);
5585                 mm_boot_level_value &= 0xFF00FFFF;
5586                 mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
5587                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
5588
5589                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
5590                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5591                                         PPSMC_MSG_VCEDPM_SetEnabledMask,
5592                                 (uint32_t)(1 << data->smc_state_table.VceBootLevel));
5593
5594                 tonga_enable_disable_vce_dpm(hwmgr, true);
5595         } else if (tonga_nps->vce_clocks.EVCLK == 0 && tonga_cps != NULL && tonga_cps->vce_clocks.EVCLK > 0)
5596                 tonga_enable_disable_vce_dpm(hwmgr, false);
5597
5598         return 0;
5599 }
5600
5601 static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
5602 {
5603         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5604
5605         uint32_t address;
5606         int32_t result;
5607
5608         if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
5609                 return 0;
5610
5611
5612         memset(&data->mc_reg_table, 0, sizeof(SMU72_Discrete_MCRegisters));
5613
5614         result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(data->mc_reg_table));
5615
5616         if(result != 0)
5617                 return result;
5618
5619
5620         address = data->mc_reg_table_start + (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]);
5621
5622         return  tonga_copy_bytes_to_smc(hwmgr->smumgr, address,
5623                                  (uint8_t *)&data->mc_reg_table.data[0],
5624                                 sizeof(SMU72_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
5625                                 data->sram_end);
5626 }
5627
5628 static int tonga_program_memory_timing_parameters_conditionally(struct pp_hwmgr *hwmgr)
5629 {
5630         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5631
5632         if (data->need_update_smu7_dpm_table &
5633                 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
5634                 return tonga_program_memory_timing_parameters(hwmgr);
5635
5636         return 0;
5637 }
5638
5639 static int tonga_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
5640 {
5641         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5642
5643         if (0 == data->need_update_smu7_dpm_table)
5644                 return 0;
5645
5646         if ((0 == data->sclk_dpm_key_disabled) &&
5647                 (data->need_update_smu7_dpm_table &
5648                 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
5649
5650                 PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
5651                         "Trying to Unfreeze SCLK DPM when DPM is disabled",
5652                         );
5653                 PP_ASSERT_WITH_CODE(
5654                          0 == smum_send_msg_to_smc(hwmgr->smumgr,
5655                                          PPSMC_MSG_SCLKDPM_UnfreezeLevel),
5656                         "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
5657                         return -1);
5658         }
5659
5660         if ((0 == data->mclk_dpm_key_disabled) &&
5661                 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
5662
5663                 PP_ASSERT_WITH_CODE(
5664                                 0 == tonga_is_dpm_running(hwmgr),
5665                                 "Trying to Unfreeze MCLK DPM when DPM is disabled",
5666                                 );
5667                 PP_ASSERT_WITH_CODE(
5668                          0 == smum_send_msg_to_smc(hwmgr->smumgr,
5669                                          PPSMC_MSG_SCLKDPM_UnfreezeLevel),
5670                     "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
5671                     return -1);
5672         }
5673
5674         data->need_update_smu7_dpm_table = 0;
5675
5676         return 0;
5677 }
5678
5679 static int tonga_notify_link_speed_change_after_state_change(struct pp_hwmgr *hwmgr, const void *input)
5680 {
5681         const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5682         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5683         const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
5684         uint16_t target_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_ps);
5685         uint8_t  request;
5686
5687         if (data->pspp_notify_required  ||
5688             data->pcie_performance_request) {
5689                 if (target_link_speed == PP_PCIEGen3)
5690                         request = PCIE_PERF_REQ_GEN3;
5691                 else if (target_link_speed == PP_PCIEGen2)
5692                         request = PCIE_PERF_REQ_GEN2;
5693                 else
5694                         request = PCIE_PERF_REQ_GEN1;
5695
5696                 if(request == PCIE_PERF_REQ_GEN1 && tonga_get_current_pcie_speed(hwmgr) > 0) {
5697                         data->pcie_performance_request = false;
5698                         return 0;
5699                 }
5700
5701                 if (0 != acpi_pcie_perf_request(hwmgr->device, request, false)) {
5702                         if (PP_PCIEGen2 == target_link_speed)
5703                                 printk("PSPP request to switch to Gen2 from Gen3 Failed!");
5704                         else
5705                                 printk("PSPP request to switch to Gen1 from Gen2 Failed!");
5706                 }
5707         }
5708
5709         data->pcie_performance_request = false;
5710         return 0;
5711 }
5712
5713 static int tonga_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
5714 {
5715         int tmp_result, result = 0;
5716
5717         tmp_result = tonga_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
5718         PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to find DPM states clocks in DPM table!", result = tmp_result);
5719
5720         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) {
5721                 tmp_result = tonga_request_link_speed_change_before_state_change(hwmgr, input);
5722                 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to request link speed change before state change!", result = tmp_result);
5723         }
5724
5725         tmp_result = tonga_freeze_sclk_mclk_dpm(hwmgr);
5726         PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
5727
5728         tmp_result = tonga_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
5729         PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to populate and upload SCLK MCLK DPM levels!", result = tmp_result);
5730
5731         tmp_result = tonga_generate_dpm_level_enable_mask(hwmgr, input);
5732         PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to generate DPM level enabled mask!", result = tmp_result);
5733
5734         tmp_result = tonga_update_vce_dpm(hwmgr, input);
5735         PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update VCE DPM!", result = tmp_result);
5736
5737         tmp_result = tonga_update_sclk_threshold(hwmgr);
5738         PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update SCLK threshold!", result = tmp_result);
5739
5740         tmp_result = tonga_update_and_upload_mc_reg_table(hwmgr);
5741         PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload MC reg table!", result = tmp_result);
5742
5743         tmp_result = tonga_program_memory_timing_parameters_conditionally(hwmgr);
5744         PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to program memory timing parameters!", result = tmp_result);
5745
5746         tmp_result = tonga_unfreeze_sclk_mclk_dpm(hwmgr);
5747         PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to unfreeze SCLK MCLK DPM!", result = tmp_result);
5748
5749         tmp_result = tonga_upload_dpm_level_enable_mask(hwmgr);
5750         PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload DPM level enabled mask!", result = tmp_result);
5751
5752         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) {
5753                 tmp_result = tonga_notify_link_speed_change_after_state_change(hwmgr, input);
5754                 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to notify link speed change after state change!", result = tmp_result);
5755         }
5756
5757         return result;
5758 }
5759
5760 /**
5761 *  Set maximum target operating fan output PWM
5762 *
5763 * @param    pHwMgr:  the address of the powerplay hardware manager.
5764 * @param    usMaxFanPwm:  max operating fan PWM in percents
5765 * @return   The response that came from the SMC.
5766 */
5767 static int tonga_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
5768 {
5769         hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
5770
5771         if (phm_is_hw_access_blocked(hwmgr))
5772                 return 0;
5773
5774         return (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm) ? 0 : -1);
5775 }
5776
5777 int tonga_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
5778 {
5779         uint32_t num_active_displays = 0;
5780         struct cgs_display_info info = {0};
5781         info.mode_info = NULL;
5782
5783         cgs_get_active_displays_info(hwmgr->device, &info);
5784
5785         num_active_displays = info.display_count;
5786
5787         if (num_active_displays > 1)  /* to do && (pHwMgr->pPECI->displayConfiguration.bMultiMonitorInSync != TRUE)) */
5788                 tonga_notify_smc_display_change(hwmgr, false);
5789         else
5790                 tonga_notify_smc_display_change(hwmgr, true);
5791
5792         return 0;
5793 }
5794
5795 /**
5796 * Programs the display gap
5797 *
5798 * @param    hwmgr  the address of the powerplay hardware manager.
5799 * @return   always OK
5800 */
5801 int tonga_program_display_gap(struct pp_hwmgr *hwmgr)
5802 {
5803         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5804         uint32_t num_active_displays = 0;
5805         uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
5806         uint32_t display_gap2;
5807         uint32_t pre_vbi_time_in_us;
5808         uint32_t frame_time_in_us;
5809         uint32_t ref_clock;
5810         uint32_t refresh_rate = 0;
5811         struct cgs_display_info info = {0};
5812         struct cgs_mode_info mode_info;
5813
5814         info.mode_info = &mode_info;
5815
5816         cgs_get_active_displays_info(hwmgr->device, &info);
5817         num_active_displays = info.display_count;
5818
5819         display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (num_active_displays > 0)? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
5820         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);
5821
5822         ref_clock = mode_info.ref_clock;
5823         refresh_rate = mode_info.refresh_rate;
5824
5825         if(0 == refresh_rate)
5826                 refresh_rate = 60;
5827
5828         frame_time_in_us = 1000000 / refresh_rate;
5829
5830         pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
5831         display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
5832
5833         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);
5834
5835         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU72_SoftRegisters, PreVBlankGap), 0x64);
5836
5837         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU72_SoftRegisters, VBlankTimeout), (frame_time_in_us - pre_vbi_time_in_us));
5838
5839         if (num_active_displays == 1)
5840                 tonga_notify_smc_display_change(hwmgr, true);
5841
5842         return 0;
5843 }
5844
5845 int tonga_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
5846 {
5847
5848         tonga_program_display_gap(hwmgr);
5849
5850         /* to do PhwTonga_CacUpdateDisplayConfiguration(pHwMgr); */
5851         return 0;
5852 }
5853
5854 /**
5855 *  Set maximum target operating fan output RPM
5856 *
5857 * @param    pHwMgr:  the address of the powerplay hardware manager.
5858 * @param    usMaxFanRpm:  max operating fan RPM value.
5859 * @return   The response that came from the SMC.
5860 */
5861 static int tonga_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
5862 {
5863         hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM = us_max_fan_pwm;
5864
5865         if (phm_is_hw_access_blocked(hwmgr))
5866                 return 0;
5867
5868         return (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanRpmMax, us_max_fan_pwm) ? 0 : -1);
5869 }
5870
5871 uint32_t tonga_get_xclk(struct pp_hwmgr *hwmgr)
5872 {
5873         uint32_t reference_clock;
5874         uint32_t tc;
5875         uint32_t divide;
5876
5877         ATOM_FIRMWARE_INFO *fw_info;
5878         uint16_t size;
5879         uint8_t frev, crev;
5880         int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
5881
5882         tc = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL_2, MUX_TCLK_TO_XCLK);
5883
5884         if (tc)
5885                 return TCLK;
5886
5887         fw_info = (ATOM_FIRMWARE_INFO *)cgs_atom_get_data_table(hwmgr->device, index,
5888                                                   &size, &frev, &crev);
5889
5890         if (!fw_info)
5891                 return 0;
5892
5893         reference_clock = le16_to_cpu(fw_info->usReferenceClock);
5894
5895         divide = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL, XTALIN_DIVIDE);
5896
5897         if (0 != divide)
5898                 return reference_clock / 4;
5899
5900         return reference_clock;
5901 }
5902
5903 int tonga_dpm_set_interrupt_state(void *private_data,
5904                                          unsigned src_id, unsigned type,
5905                                          int enabled)
5906 {
5907         uint32_t cg_thermal_int;
5908         struct pp_hwmgr *hwmgr = ((struct pp_eventmgr *)private_data)->hwmgr;
5909
5910         if (hwmgr == NULL)
5911                 return -EINVAL;
5912
5913         switch (type) {
5914         case AMD_THERMAL_IRQ_LOW_TO_HIGH:
5915                 if (enabled) {
5916                         cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5917                         cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
5918                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5919                 } else {
5920                         cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5921                         cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
5922                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5923                 }
5924                 break;
5925
5926         case AMD_THERMAL_IRQ_HIGH_TO_LOW:
5927                 if (enabled) {
5928                         cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5929                         cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5930                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5931                 } else {
5932                         cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5933                         cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5934                         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5935                 }
5936                 break;
5937         default:
5938                 break;
5939         }
5940         return 0;
5941 }
5942
5943 int tonga_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
5944                                         const void *thermal_interrupt_info)
5945 {
5946         int result;
5947         const struct pp_interrupt_registration_info *info =
5948                         (const struct pp_interrupt_registration_info *)thermal_interrupt_info;
5949
5950         if (info == NULL)
5951                 return -EINVAL;
5952
5953         result = cgs_add_irq_source(hwmgr->device, 230, AMD_THERMAL_IRQ_LAST,
5954                                 tonga_dpm_set_interrupt_state,
5955                                 info->call_back, info->context);
5956
5957         if (result)
5958                 return -EINVAL;
5959
5960         result = cgs_add_irq_source(hwmgr->device, 231, AMD_THERMAL_IRQ_LAST,
5961                                 tonga_dpm_set_interrupt_state,
5962                                 info->call_back, info->context);
5963
5964         if (result)
5965                 return -EINVAL;
5966
5967         return 0;
5968 }
5969
5970 bool tonga_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
5971 {
5972         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5973         bool is_update_required = false;
5974         struct cgs_display_info info = {0,0,NULL};
5975
5976         cgs_get_active_displays_info(hwmgr->device, &info);
5977
5978         if (data->display_timing.num_existing_displays != info.display_count)
5979                 is_update_required = true;
5980 /* TO DO NEED TO GET DEEP SLEEP CLOCK FROM DAL
5981         if (phm_cap_enabled(hwmgr->hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
5982                 cgs_get_min_clock_settings(hwmgr->device, &min_clocks);
5983                 if(min_clocks.engineClockInSR != data->display_timing.minClockInSR)
5984                         is_update_required = true;
5985 */
5986         return is_update_required;
5987 }
5988
5989 static inline bool tonga_are_power_levels_equal(const struct tonga_performance_level *pl1,
5990                                                            const struct tonga_performance_level *pl2)
5991 {
5992         return ((pl1->memory_clock == pl2->memory_clock) &&
5993                   (pl1->engine_clock == pl2->engine_clock) &&
5994                   (pl1->pcie_gen == pl2->pcie_gen) &&
5995                   (pl1->pcie_lane == pl2->pcie_lane));
5996 }
5997
5998 int tonga_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal)
5999 {
6000         const struct tonga_power_state *psa = cast_const_phw_tonga_power_state(pstate1);
6001         const struct tonga_power_state *psb = cast_const_phw_tonga_power_state(pstate2);
6002         int i;
6003
6004         if (equal == NULL || psa == NULL || psb == NULL)
6005                 return -EINVAL;
6006
6007         /* If the two states don't even have the same number of performance levels they cannot be the same state. */
6008         if (psa->performance_level_count != psb->performance_level_count) {
6009                 *equal = false;
6010                 return 0;
6011         }
6012
6013         for (i = 0; i < psa->performance_level_count; i++) {
6014                 if (!tonga_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
6015                         /* If we have found even one performance level pair that is different the states are different. */
6016                         *equal = false;
6017                         return 0;
6018                 }
6019         }
6020
6021         /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
6022         *equal = ((psa->uvd_clocks.VCLK == psb->uvd_clocks.VCLK) && (psa->uvd_clocks.DCLK == psb->uvd_clocks.DCLK));
6023         *equal &= ((psa->vce_clocks.EVCLK == psb->vce_clocks.EVCLK) && (psa->vce_clocks.ECCLK == psb->vce_clocks.ECCLK));
6024         *equal &= (psa->sclk_threshold == psb->sclk_threshold);
6025         *equal &= (psa->acp_clk == psb->acp_clk);
6026
6027         return 0;
6028 }
6029
6030 static int tonga_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
6031 {
6032         if (mode) {
6033                 /* stop auto-manage */
6034                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
6035                                 PHM_PlatformCaps_MicrocodeFanControl))
6036                         tonga_fan_ctrl_stop_smc_fan_control(hwmgr);
6037                 tonga_fan_ctrl_set_static_mode(hwmgr, mode);
6038         } else
6039                 /* restart auto-manage */
6040                 tonga_fan_ctrl_reset_fan_speed_to_default(hwmgr);
6041
6042         return 0;
6043 }
6044
6045 static int tonga_get_fan_control_mode(struct pp_hwmgr *hwmgr)
6046 {
6047         if (hwmgr->fan_ctrl_is_in_default_mode)
6048                 return hwmgr->fan_ctrl_default_mode;
6049         else
6050                 return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
6051                                 CG_FDO_CTRL2, FDO_PWM_MODE);
6052 }
6053
6054 static int tonga_get_pp_table(struct pp_hwmgr *hwmgr, char **table)
6055 {
6056         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
6057
6058         if (!data->soft_pp_table) {
6059                 data->soft_pp_table = kmemdup(hwmgr->soft_pp_table,
6060                                               hwmgr->soft_pp_table_size,
6061                                               GFP_KERNEL);
6062                 if (!data->soft_pp_table)
6063                         return -ENOMEM;
6064         }
6065
6066         *table = (char *)&data->soft_pp_table;
6067
6068         return hwmgr->soft_pp_table_size;
6069 }
6070
6071 static int tonga_set_pp_table(struct pp_hwmgr *hwmgr, const char *buf, size_t size)
6072 {
6073         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
6074
6075         if (!data->soft_pp_table) {
6076                 data->soft_pp_table = kzalloc(hwmgr->soft_pp_table_size, GFP_KERNEL);
6077                 if (!data->soft_pp_table)
6078                         return -ENOMEM;
6079         }
6080
6081         memcpy(data->soft_pp_table, buf, size);
6082
6083         hwmgr->soft_pp_table = data->soft_pp_table;
6084
6085         /* TODO: re-init powerplay to implement modified pptable */
6086
6087         return 0;
6088 }
6089
6090 static int tonga_force_clock_level(struct pp_hwmgr *hwmgr,
6091                 enum pp_clock_type type, uint32_t mask)
6092 {
6093         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
6094
6095         if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
6096                 return -EINVAL;
6097
6098         switch (type) {
6099         case PP_SCLK:
6100                 if (!data->sclk_dpm_key_disabled)
6101                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
6102                                         PPSMC_MSG_SCLKDPM_SetEnabledMask,
6103                                         data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask);
6104                 break;
6105         case PP_MCLK:
6106                 if (!data->mclk_dpm_key_disabled)
6107                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
6108                                         PPSMC_MSG_MCLKDPM_SetEnabledMask,
6109                                         data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask);
6110                 break;
6111         case PP_PCIE:
6112         {
6113                 uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
6114                 uint32_t level = 0;
6115
6116                 while (tmp >>= 1)
6117                         level++;
6118
6119                 if (!data->pcie_dpm_key_disabled)
6120                         smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
6121                                         PPSMC_MSG_PCIeDPM_ForceLevel,
6122                                         level);
6123                 break;
6124         }
6125         default:
6126                 break;
6127         }
6128
6129         return 0;
6130 }
6131
6132 static int tonga_print_clock_levels(struct pp_hwmgr *hwmgr,
6133                 enum pp_clock_type type, char *buf)
6134 {
6135         struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
6136         struct tonga_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
6137         struct tonga_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
6138         struct tonga_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
6139         int i, now, size = 0;
6140         uint32_t clock, pcie_speed;
6141
6142         switch (type) {
6143         case PP_SCLK:
6144                 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
6145                 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
6146
6147                 for (i = 0; i < sclk_table->count; i++) {
6148                         if (clock > sclk_table->dpm_levels[i].value)
6149                                 continue;
6150                         break;
6151                 }
6152                 now = i;
6153
6154                 for (i = 0; i < sclk_table->count; i++)
6155                         size += sprintf(buf + size, "%d: %uMhz %s\n",
6156                                         i, sclk_table->dpm_levels[i].value / 100,
6157                                         (i == now) ? "*" : "");
6158                 break;
6159         case PP_MCLK:
6160                 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
6161                 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
6162
6163                 for (i = 0; i < mclk_table->count; i++) {
6164                         if (clock > mclk_table->dpm_levels[i].value)
6165                                 continue;
6166                         break;
6167                 }
6168                 now = i;
6169
6170                 for (i = 0; i < mclk_table->count; i++)
6171                         size += sprintf(buf + size, "%d: %uMhz %s\n",
6172                                         i, mclk_table->dpm_levels[i].value / 100,
6173                                         (i == now) ? "*" : "");
6174                 break;
6175         case PP_PCIE:
6176                 pcie_speed = tonga_get_current_pcie_speed(hwmgr);
6177                 for (i = 0; i < pcie_table->count; i++) {
6178                         if (pcie_speed != pcie_table->dpm_levels[i].value)
6179                                 continue;
6180                         break;
6181                 }
6182                 now = i;
6183
6184                 for (i = 0; i < pcie_table->count; i++)
6185                         size += sprintf(buf + size, "%d: %s %s\n", i,
6186                                         (pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x8" :
6187                                         (pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" :
6188                                         (pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "",
6189                                         (i == now) ? "*" : "");
6190                 break;
6191         default:
6192                 break;
6193         }
6194         return size;
6195 }
6196
6197 static const struct pp_hwmgr_func tonga_hwmgr_funcs = {
6198         .backend_init = &tonga_hwmgr_backend_init,
6199         .backend_fini = &tonga_hwmgr_backend_fini,
6200         .asic_setup = &tonga_setup_asic_task,
6201         .dynamic_state_management_enable = &tonga_enable_dpm_tasks,
6202         .apply_state_adjust_rules = tonga_apply_state_adjust_rules,
6203         .force_dpm_level = &tonga_force_dpm_level,
6204         .power_state_set = tonga_set_power_state_tasks,
6205         .get_power_state_size = tonga_get_power_state_size,
6206         .get_mclk = tonga_dpm_get_mclk,
6207         .get_sclk = tonga_dpm_get_sclk,
6208         .patch_boot_state = tonga_dpm_patch_boot_state,
6209         .get_pp_table_entry = tonga_get_pp_table_entry,
6210         .get_num_of_pp_table_entries = tonga_get_number_of_powerplay_table_entries,
6211         .print_current_perforce_level = tonga_print_current_perforce_level,
6212         .powerdown_uvd = tonga_phm_powerdown_uvd,
6213         .powergate_uvd = tonga_phm_powergate_uvd,
6214         .powergate_vce = tonga_phm_powergate_vce,
6215         .disable_clock_power_gating = tonga_phm_disable_clock_power_gating,
6216         .update_clock_gatings = tonga_phm_update_clock_gatings,
6217         .notify_smc_display_config_after_ps_adjustment = tonga_notify_smc_display_config_after_ps_adjustment,
6218         .display_config_changed = tonga_display_configuration_changed_task,
6219         .set_max_fan_pwm_output = tonga_set_max_fan_pwm_output,
6220         .set_max_fan_rpm_output = tonga_set_max_fan_rpm_output,
6221         .get_temperature = tonga_thermal_get_temperature,
6222         .stop_thermal_controller = tonga_thermal_stop_thermal_controller,
6223         .get_fan_speed_info = tonga_fan_ctrl_get_fan_speed_info,
6224         .get_fan_speed_percent = tonga_fan_ctrl_get_fan_speed_percent,
6225         .set_fan_speed_percent = tonga_fan_ctrl_set_fan_speed_percent,
6226         .reset_fan_speed_to_default = tonga_fan_ctrl_reset_fan_speed_to_default,
6227         .get_fan_speed_rpm = tonga_fan_ctrl_get_fan_speed_rpm,
6228         .set_fan_speed_rpm = tonga_fan_ctrl_set_fan_speed_rpm,
6229         .uninitialize_thermal_controller = tonga_thermal_ctrl_uninitialize_thermal_controller,
6230         .register_internal_thermal_interrupt = tonga_register_internal_thermal_interrupt,
6231         .check_smc_update_required_for_display_configuration = tonga_check_smc_update_required_for_display_configuration,
6232         .check_states_equal = tonga_check_states_equal,
6233         .set_fan_control_mode = tonga_set_fan_control_mode,
6234         .get_fan_control_mode = tonga_get_fan_control_mode,
6235         .get_pp_table = tonga_get_pp_table,
6236         .set_pp_table = tonga_set_pp_table,
6237         .force_clock_level = tonga_force_clock_level,
6238         .print_clock_levels = tonga_print_clock_levels,
6239 };
6240
6241 int tonga_hwmgr_init(struct pp_hwmgr *hwmgr)
6242 {
6243         tonga_hwmgr  *data;
6244
6245         data = kzalloc (sizeof(tonga_hwmgr), GFP_KERNEL);
6246         if (data == NULL)
6247                 return -ENOMEM;
6248         memset(data, 0x00, sizeof(tonga_hwmgr));
6249
6250         hwmgr->backend = data;
6251         hwmgr->hwmgr_func = &tonga_hwmgr_funcs;
6252         hwmgr->pptable_func = &tonga_pptable_funcs;
6253         pp_tonga_thermal_initialize(hwmgr);
6254         return 0;
6255 }
6256