Merge tag 'stable/for-linus-3.7-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / drivers / gpu / drm / gma500 / psb_intel_display.c
1 /*
2  * Copyright Â© 2006-2011 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * Authors:
18  *      Eric Anholt <eric@anholt.net>
19  */
20
21 #include <linux/i2c.h>
22 #include <linux/pm_runtime.h>
23
24 #include <drm/drmP.h>
25 #include "framebuffer.h"
26 #include "psb_drv.h"
27 #include "psb_intel_drv.h"
28 #include "psb_intel_reg.h"
29 #include "psb_intel_display.h"
30 #include "power.h"
31
32 struct psb_intel_clock_t {
33         /* given values */
34         int n;
35         int m1, m2;
36         int p1, p2;
37         /* derived values */
38         int dot;
39         int vco;
40         int m;
41         int p;
42 };
43
44 struct psb_intel_range_t {
45         int min, max;
46 };
47
48 struct psb_intel_p2_t {
49         int dot_limit;
50         int p2_slow, p2_fast;
51 };
52
53 #define INTEL_P2_NUM                  2
54
55 struct psb_intel_limit_t {
56         struct psb_intel_range_t dot, vco, n, m, m1, m2, p, p1;
57         struct psb_intel_p2_t p2;
58 };
59
60 #define I8XX_DOT_MIN              25000
61 #define I8XX_DOT_MAX             350000
62 #define I8XX_VCO_MIN             930000
63 #define I8XX_VCO_MAX            1400000
64 #define I8XX_N_MIN                    3
65 #define I8XX_N_MAX                   16
66 #define I8XX_M_MIN                   96
67 #define I8XX_M_MAX                  140
68 #define I8XX_M1_MIN                  18
69 #define I8XX_M1_MAX                  26
70 #define I8XX_M2_MIN                   6
71 #define I8XX_M2_MAX                  16
72 #define I8XX_P_MIN                    4
73 #define I8XX_P_MAX                  128
74 #define I8XX_P1_MIN                   2
75 #define I8XX_P1_MAX                  33
76 #define I8XX_P1_LVDS_MIN              1
77 #define I8XX_P1_LVDS_MAX              6
78 #define I8XX_P2_SLOW                  4
79 #define I8XX_P2_FAST                  2
80 #define I8XX_P2_LVDS_SLOW             14
81 #define I8XX_P2_LVDS_FAST             14        /* No fast option */
82 #define I8XX_P2_SLOW_LIMIT       165000
83
84 #define I9XX_DOT_MIN              20000
85 #define I9XX_DOT_MAX             400000
86 #define I9XX_VCO_MIN            1400000
87 #define I9XX_VCO_MAX            2800000
88 #define I9XX_N_MIN                    3
89 #define I9XX_N_MAX                    8
90 #define I9XX_M_MIN                   70
91 #define I9XX_M_MAX                  120
92 #define I9XX_M1_MIN                  10
93 #define I9XX_M1_MAX                  20
94 #define I9XX_M2_MIN                   5
95 #define I9XX_M2_MAX                   9
96 #define I9XX_P_SDVO_DAC_MIN           5
97 #define I9XX_P_SDVO_DAC_MAX          80
98 #define I9XX_P_LVDS_MIN               7
99 #define I9XX_P_LVDS_MAX              98
100 #define I9XX_P1_MIN                   1
101 #define I9XX_P1_MAX                   8
102 #define I9XX_P2_SDVO_DAC_SLOW                10
103 #define I9XX_P2_SDVO_DAC_FAST                 5
104 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
105 #define I9XX_P2_LVDS_SLOW                    14
106 #define I9XX_P2_LVDS_FAST                     7
107 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
108
109 #define INTEL_LIMIT_I8XX_DVO_DAC    0
110 #define INTEL_LIMIT_I8XX_LVDS       1
111 #define INTEL_LIMIT_I9XX_SDVO_DAC   2
112 #define INTEL_LIMIT_I9XX_LVDS       3
113
114 static const struct psb_intel_limit_t psb_intel_limits[] = {
115         {                       /* INTEL_LIMIT_I8XX_DVO_DAC */
116          .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX},
117          .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX},
118          .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX},
119          .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX},
120          .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX},
121          .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX},
122          .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX},
123          .p1 = {.min = I8XX_P1_MIN, .max = I8XX_P1_MAX},
124          .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT,
125                 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST},
126          },
127         {                       /* INTEL_LIMIT_I8XX_LVDS */
128          .dot = {.min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX},
129          .vco = {.min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX},
130          .n = {.min = I8XX_N_MIN, .max = I8XX_N_MAX},
131          .m = {.min = I8XX_M_MIN, .max = I8XX_M_MAX},
132          .m1 = {.min = I8XX_M1_MIN, .max = I8XX_M1_MAX},
133          .m2 = {.min = I8XX_M2_MIN, .max = I8XX_M2_MAX},
134          .p = {.min = I8XX_P_MIN, .max = I8XX_P_MAX},
135          .p1 = {.min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX},
136          .p2 = {.dot_limit = I8XX_P2_SLOW_LIMIT,
137                 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST},
138          },
139         {                       /* INTEL_LIMIT_I9XX_SDVO_DAC */
140          .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
141          .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX},
142          .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX},
143          .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX},
144          .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX},
145          .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX},
146          .p = {.min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX},
147          .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX},
148          .p2 = {.dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
149                 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast =
150                 I9XX_P2_SDVO_DAC_FAST},
151          },
152         {                       /* INTEL_LIMIT_I9XX_LVDS */
153          .dot = {.min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
154          .vco = {.min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX},
155          .n = {.min = I9XX_N_MIN, .max = I9XX_N_MAX},
156          .m = {.min = I9XX_M_MIN, .max = I9XX_M_MAX},
157          .m1 = {.min = I9XX_M1_MIN, .max = I9XX_M1_MAX},
158          .m2 = {.min = I9XX_M2_MIN, .max = I9XX_M2_MAX},
159          .p = {.min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX},
160          .p1 = {.min = I9XX_P1_MIN, .max = I9XX_P1_MAX},
161          /* The single-channel range is 25-112Mhz, and dual-channel
162           * is 80-224Mhz.  Prefer single channel as much as possible.
163           */
164          .p2 = {.dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
165                 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST},
166          },
167 };
168
169 static const struct psb_intel_limit_t *psb_intel_limit(struct drm_crtc *crtc)
170 {
171         const struct psb_intel_limit_t *limit;
172
173         if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
174                 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
175         else
176                 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
177         return limit;
178 }
179
180 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
181
182 static void i8xx_clock(int refclk, struct psb_intel_clock_t *clock)
183 {
184         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
185         clock->p = clock->p1 * clock->p2;
186         clock->vco = refclk * clock->m / (clock->n + 2);
187         clock->dot = clock->vco / clock->p;
188 }
189
190 /** Derive the pixel clock for the given refclk and divisors for 9xx chips. */
191
192 static void i9xx_clock(int refclk, struct psb_intel_clock_t *clock)
193 {
194         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
195         clock->p = clock->p1 * clock->p2;
196         clock->vco = refclk * clock->m / (clock->n + 2);
197         clock->dot = clock->vco / clock->p;
198 }
199
200 static void psb_intel_clock(struct drm_device *dev, int refclk,
201                         struct psb_intel_clock_t *clock)
202 {
203         return i9xx_clock(refclk, clock);
204 }
205
206 /**
207  * Returns whether any output on the specified pipe is of the specified type
208  */
209 bool psb_intel_pipe_has_type(struct drm_crtc *crtc, int type)
210 {
211         struct drm_device *dev = crtc->dev;
212         struct drm_mode_config *mode_config = &dev->mode_config;
213         struct drm_connector *l_entry;
214
215         list_for_each_entry(l_entry, &mode_config->connector_list, head) {
216                 if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
217                         struct psb_intel_encoder *psb_intel_encoder =
218                                         psb_intel_attached_encoder(l_entry);
219                         if (psb_intel_encoder->type == type)
220                                 return true;
221                 }
222         }
223         return false;
224 }
225
226 #define INTELPllInvalid(s)   { /* ErrorF (s) */; return false; }
227 /**
228  * Returns whether the given set of divisors are valid for a given refclk with
229  * the given connectors.
230  */
231
232 static bool psb_intel_PLL_is_valid(struct drm_crtc *crtc,
233                                struct psb_intel_clock_t *clock)
234 {
235         const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
236
237         if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
238                 INTELPllInvalid("p1 out of range\n");
239         if (clock->p < limit->p.min || limit->p.max < clock->p)
240                 INTELPllInvalid("p out of range\n");
241         if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
242                 INTELPllInvalid("m2 out of range\n");
243         if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
244                 INTELPllInvalid("m1 out of range\n");
245         if (clock->m1 <= clock->m2)
246                 INTELPllInvalid("m1 <= m2\n");
247         if (clock->m < limit->m.min || limit->m.max < clock->m)
248                 INTELPllInvalid("m out of range\n");
249         if (clock->n < limit->n.min || limit->n.max < clock->n)
250                 INTELPllInvalid("n out of range\n");
251         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
252                 INTELPllInvalid("vco out of range\n");
253         /* XXX: We may need to be checking "Dot clock"
254          * depending on the multiplier, connector, etc.,
255          * rather than just a single range.
256          */
257         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
258                 INTELPllInvalid("dot out of range\n");
259
260         return true;
261 }
262
263 /**
264  * Returns a set of divisors for the desired target clock with the given
265  * refclk, or FALSE.  The returned values represent the clock equation:
266  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
267  */
268 static bool psb_intel_find_best_PLL(struct drm_crtc *crtc, int target,
269                                 int refclk,
270                                 struct psb_intel_clock_t *best_clock)
271 {
272         struct drm_device *dev = crtc->dev;
273         struct psb_intel_clock_t clock;
274         const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
275         int err = target;
276
277         if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
278             (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
279                 /*
280                  * For LVDS, if the panel is on, just rely on its current
281                  * settings for dual-channel.  We haven't figured out how to
282                  * reliably set up different single/dual channel state, if we
283                  * even can.
284                  */
285                 if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
286                     LVDS_CLKB_POWER_UP)
287                         clock.p2 = limit->p2.p2_fast;
288                 else
289                         clock.p2 = limit->p2.p2_slow;
290         } else {
291                 if (target < limit->p2.dot_limit)
292                         clock.p2 = limit->p2.p2_slow;
293                 else
294                         clock.p2 = limit->p2.p2_fast;
295         }
296
297         memset(best_clock, 0, sizeof(*best_clock));
298
299         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
300              clock.m1++) {
301                 for (clock.m2 = limit->m2.min;
302                      clock.m2 < clock.m1 && clock.m2 <= limit->m2.max;
303                      clock.m2++) {
304                         for (clock.n = limit->n.min;
305                              clock.n <= limit->n.max; clock.n++) {
306                                 for (clock.p1 = limit->p1.min;
307                                      clock.p1 <= limit->p1.max;
308                                      clock.p1++) {
309                                         int this_err;
310
311                                         psb_intel_clock(dev, refclk, &clock);
312
313                                         if (!psb_intel_PLL_is_valid
314                                             (crtc, &clock))
315                                                 continue;
316
317                                         this_err = abs(clock.dot - target);
318                                         if (this_err < err) {
319                                                 *best_clock = clock;
320                                                 err = this_err;
321                                         }
322                                 }
323                         }
324                 }
325         }
326
327         return err != target;
328 }
329
330 void psb_intel_wait_for_vblank(struct drm_device *dev)
331 {
332         /* Wait for 20ms, i.e. one cycle at 50hz. */
333         mdelay(20);
334 }
335
336 static int psb_intel_pipe_set_base(struct drm_crtc *crtc,
337                             int x, int y, struct drm_framebuffer *old_fb)
338 {
339         struct drm_device *dev = crtc->dev;
340         struct drm_psb_private *dev_priv = dev->dev_private;
341         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
342         struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
343         int pipe = psb_intel_crtc->pipe;
344         const struct psb_offset *map = &dev_priv->regmap[pipe];
345         unsigned long start, offset;
346         u32 dspcntr;
347         int ret = 0;
348
349         if (!gma_power_begin(dev, true))
350                 return 0;
351
352         /* no fb bound */
353         if (!crtc->fb) {
354                 dev_dbg(dev->dev, "No FB bound\n");
355                 goto psb_intel_pipe_cleaner;
356         }
357
358         /* We are displaying this buffer, make sure it is actually loaded
359            into the GTT */
360         ret = psb_gtt_pin(psbfb->gtt);
361         if (ret < 0)
362                 goto psb_intel_pipe_set_base_exit;
363         start = psbfb->gtt->offset;
364
365         offset = y * crtc->fb->pitches[0] + x * (crtc->fb->bits_per_pixel / 8);
366
367         REG_WRITE(map->stride, crtc->fb->pitches[0]);
368
369         dspcntr = REG_READ(map->cntr);
370         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
371
372         switch (crtc->fb->bits_per_pixel) {
373         case 8:
374                 dspcntr |= DISPPLANE_8BPP;
375                 break;
376         case 16:
377                 if (crtc->fb->depth == 15)
378                         dspcntr |= DISPPLANE_15_16BPP;
379                 else
380                         dspcntr |= DISPPLANE_16BPP;
381                 break;
382         case 24:
383         case 32:
384                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
385                 break;
386         default:
387                 dev_err(dev->dev, "Unknown color depth\n");
388                 ret = -EINVAL;
389                 psb_gtt_unpin(psbfb->gtt);
390                 goto psb_intel_pipe_set_base_exit;
391         }
392         REG_WRITE(map->cntr, dspcntr);
393
394         REG_WRITE(map->base, start + offset);
395         REG_READ(map->base);
396
397 psb_intel_pipe_cleaner:
398         /* If there was a previous display we can now unpin it */
399         if (old_fb)
400                 psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
401
402 psb_intel_pipe_set_base_exit:
403         gma_power_end(dev);
404         return ret;
405 }
406
407 /**
408  * Sets the power management mode of the pipe and plane.
409  *
410  * This code should probably grow support for turning the cursor off and back
411  * on appropriately at the same time as we're turning the pipe off/on.
412  */
413 static void psb_intel_crtc_dpms(struct drm_crtc *crtc, int mode)
414 {
415         struct drm_device *dev = crtc->dev;
416         struct drm_psb_private *dev_priv = dev->dev_private;
417         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
418         int pipe = psb_intel_crtc->pipe;
419         const struct psb_offset *map = &dev_priv->regmap[pipe];
420         u32 temp;
421
422         /* XXX: When our outputs are all unaware of DPMS modes other than off
423          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
424          */
425         switch (mode) {
426         case DRM_MODE_DPMS_ON:
427         case DRM_MODE_DPMS_STANDBY:
428         case DRM_MODE_DPMS_SUSPEND:
429                 /* Enable the DPLL */
430                 temp = REG_READ(map->dpll);
431                 if ((temp & DPLL_VCO_ENABLE) == 0) {
432                         REG_WRITE(map->dpll, temp);
433                         REG_READ(map->dpll);
434                         /* Wait for the clocks to stabilize. */
435                         udelay(150);
436                         REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
437                         REG_READ(map->dpll);
438                         /* Wait for the clocks to stabilize. */
439                         udelay(150);
440                         REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
441                         REG_READ(map->dpll);
442                         /* Wait for the clocks to stabilize. */
443                         udelay(150);
444                 }
445
446                 /* Enable the pipe */
447                 temp = REG_READ(map->conf);
448                 if ((temp & PIPEACONF_ENABLE) == 0)
449                         REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);
450
451                 /* Enable the plane */
452                 temp = REG_READ(map->cntr);
453                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
454                         REG_WRITE(map->cntr,
455                                   temp | DISPLAY_PLANE_ENABLE);
456                         /* Flush the plane changes */
457                         REG_WRITE(map->base, REG_READ(map->base));
458                 }
459
460                 psb_intel_crtc_load_lut(crtc);
461
462                 /* Give the overlay scaler a chance to enable
463                  * if it's on this pipe */
464                 /* psb_intel_crtc_dpms_video(crtc, true); TODO */
465                 break;
466         case DRM_MODE_DPMS_OFF:
467                 /* Give the overlay scaler a chance to disable
468                  * if it's on this pipe */
469                 /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
470
471                 /* Disable the VGA plane that we never use */
472                 REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
473
474                 /* Disable display plane */
475                 temp = REG_READ(map->cntr);
476                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
477                         REG_WRITE(map->cntr,
478                                   temp & ~DISPLAY_PLANE_ENABLE);
479                         /* Flush the plane changes */
480                         REG_WRITE(map->base, REG_READ(map->base));
481                         REG_READ(map->base);
482                 }
483
484                 /* Next, disable display pipes */
485                 temp = REG_READ(map->conf);
486                 if ((temp & PIPEACONF_ENABLE) != 0) {
487                         REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
488                         REG_READ(map->conf);
489                 }
490
491                 /* Wait for vblank for the disable to take effect. */
492                 psb_intel_wait_for_vblank(dev);
493
494                 temp = REG_READ(map->dpll);
495                 if ((temp & DPLL_VCO_ENABLE) != 0) {
496                         REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
497                         REG_READ(map->dpll);
498                 }
499
500                 /* Wait for the clocks to turn off. */
501                 udelay(150);
502                 break;
503         }
504
505         /*Set FIFO Watermarks*/
506         REG_WRITE(DSPARB, 0x3F3E);
507 }
508
509 static void psb_intel_crtc_prepare(struct drm_crtc *crtc)
510 {
511         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
512         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
513 }
514
515 static void psb_intel_crtc_commit(struct drm_crtc *crtc)
516 {
517         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
518         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
519 }
520
521 void psb_intel_encoder_prepare(struct drm_encoder *encoder)
522 {
523         struct drm_encoder_helper_funcs *encoder_funcs =
524             encoder->helper_private;
525         /* lvds has its own version of prepare see psb_intel_lvds_prepare */
526         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
527 }
528
529 void psb_intel_encoder_commit(struct drm_encoder *encoder)
530 {
531         struct drm_encoder_helper_funcs *encoder_funcs =
532             encoder->helper_private;
533         /* lvds has its own version of commit see psb_intel_lvds_commit */
534         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
535 }
536
537 void psb_intel_encoder_destroy(struct drm_encoder *encoder)
538 {
539         struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
540
541         drm_encoder_cleanup(encoder);
542         kfree(intel_encoder);
543 }
544
545 static bool psb_intel_crtc_mode_fixup(struct drm_crtc *crtc,
546                                   const struct drm_display_mode *mode,
547                                   struct drm_display_mode *adjusted_mode)
548 {
549         return true;
550 }
551
552
553 /**
554  * Return the pipe currently connected to the panel fitter,
555  * or -1 if the panel fitter is not present or not in use
556  */
557 static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
558 {
559         u32 pfit_control;
560
561         pfit_control = REG_READ(PFIT_CONTROL);
562
563         /* See if the panel fitter is in use */
564         if ((pfit_control & PFIT_ENABLE) == 0)
565                 return -1;
566         /* Must be on PIPE 1 for PSB */
567         return 1;
568 }
569
570 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
571                                struct drm_display_mode *mode,
572                                struct drm_display_mode *adjusted_mode,
573                                int x, int y,
574                                struct drm_framebuffer *old_fb)
575 {
576         struct drm_device *dev = crtc->dev;
577         struct drm_psb_private *dev_priv = dev->dev_private;
578         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
579         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
580         int pipe = psb_intel_crtc->pipe;
581         const struct psb_offset *map = &dev_priv->regmap[pipe];
582         int refclk;
583         struct psb_intel_clock_t clock;
584         u32 dpll = 0, fp = 0, dspcntr, pipeconf;
585         bool ok, is_sdvo = false;
586         bool is_lvds = false, is_tv = false;
587         struct drm_mode_config *mode_config = &dev->mode_config;
588         struct drm_connector *connector;
589
590         /* No scan out no play */
591         if (crtc->fb == NULL) {
592                 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
593                 return 0;
594         }
595
596         list_for_each_entry(connector, &mode_config->connector_list, head) {
597                 struct psb_intel_encoder *psb_intel_encoder =
598                                         psb_intel_attached_encoder(connector);
599
600                 if (!connector->encoder
601                     || connector->encoder->crtc != crtc)
602                         continue;
603
604                 switch (psb_intel_encoder->type) {
605                 case INTEL_OUTPUT_LVDS:
606                         is_lvds = true;
607                         break;
608                 case INTEL_OUTPUT_SDVO:
609                         is_sdvo = true;
610                         break;
611                 case INTEL_OUTPUT_TVOUT:
612                         is_tv = true;
613                         break;
614                 }
615         }
616
617         refclk = 96000;
618
619         ok = psb_intel_find_best_PLL(crtc, adjusted_mode->clock, refclk,
620                                  &clock);
621         if (!ok) {
622                 dev_err(dev->dev, "Couldn't find PLL settings for mode!\n");
623                 return 0;
624         }
625
626         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
627
628         dpll = DPLL_VGA_MODE_DIS;
629         if (is_lvds) {
630                 dpll |= DPLLB_MODE_LVDS;
631                 dpll |= DPLL_DVO_HIGH_SPEED;
632         } else
633                 dpll |= DPLLB_MODE_DAC_SERIAL;
634         if (is_sdvo) {
635                 int sdvo_pixel_multiply =
636                             adjusted_mode->clock / mode->clock;
637                 dpll |= DPLL_DVO_HIGH_SPEED;
638                 dpll |=
639                     (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
640         }
641
642         /* compute bitmask from p1 value */
643         dpll |= (1 << (clock.p1 - 1)) << 16;
644         switch (clock.p2) {
645         case 5:
646                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
647                 break;
648         case 7:
649                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
650                 break;
651         case 10:
652                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
653                 break;
654         case 14:
655                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
656                 break;
657         }
658
659         if (is_tv) {
660                 /* XXX: just matching BIOS for now */
661 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
662                 dpll |= 3;
663         }
664         dpll |= PLL_REF_INPUT_DREFCLK;
665
666         /* setup pipeconf */
667         pipeconf = REG_READ(map->conf);
668
669         /* Set up the display plane register */
670         dspcntr = DISPPLANE_GAMMA_ENABLE;
671
672         if (pipe == 0)
673                 dspcntr |= DISPPLANE_SEL_PIPE_A;
674         else
675                 dspcntr |= DISPPLANE_SEL_PIPE_B;
676
677         dspcntr |= DISPLAY_PLANE_ENABLE;
678         pipeconf |= PIPEACONF_ENABLE;
679         dpll |= DPLL_VCO_ENABLE;
680
681
682         /* Disable the panel fitter if it was on our pipe */
683         if (psb_intel_panel_fitter_pipe(dev) == pipe)
684                 REG_WRITE(PFIT_CONTROL, 0);
685
686         drm_mode_debug_printmodeline(mode);
687
688         if (dpll & DPLL_VCO_ENABLE) {
689                 REG_WRITE(map->fp0, fp);
690                 REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
691                 REG_READ(map->dpll);
692                 udelay(150);
693         }
694
695         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
696          * This is an exception to the general rule that mode_set doesn't turn
697          * things on.
698          */
699         if (is_lvds) {
700                 u32 lvds = REG_READ(LVDS);
701
702                 lvds &= ~LVDS_PIPEB_SELECT;
703                 if (pipe == 1)
704                         lvds |= LVDS_PIPEB_SELECT;
705
706                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
707                 /* Set the B0-B3 data pairs corresponding to
708                  * whether we're going to
709                  * set the DPLLs for dual-channel mode or not.
710                  */
711                 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
712                 if (clock.p2 == 7)
713                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
714
715                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
716                  * appropriately here, but we need to look more
717                  * thoroughly into how panels behave in the two modes.
718                  */
719
720                 REG_WRITE(LVDS, lvds);
721                 REG_READ(LVDS);
722         }
723
724         REG_WRITE(map->fp0, fp);
725         REG_WRITE(map->dpll, dpll);
726         REG_READ(map->dpll);
727         /* Wait for the clocks to stabilize. */
728         udelay(150);
729
730         /* write it again -- the BIOS does, after all */
731         REG_WRITE(map->dpll, dpll);
732
733         REG_READ(map->dpll);
734         /* Wait for the clocks to stabilize. */
735         udelay(150);
736
737         REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
738                   ((adjusted_mode->crtc_htotal - 1) << 16));
739         REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
740                   ((adjusted_mode->crtc_hblank_end - 1) << 16));
741         REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
742                   ((adjusted_mode->crtc_hsync_end - 1) << 16));
743         REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
744                   ((adjusted_mode->crtc_vtotal - 1) << 16));
745         REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
746                   ((adjusted_mode->crtc_vblank_end - 1) << 16));
747         REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
748                   ((adjusted_mode->crtc_vsync_end - 1) << 16));
749         /* pipesrc and dspsize control the size that is scaled from,
750          * which should always be the user's requested size.
751          */
752         REG_WRITE(map->size,
753                   ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
754         REG_WRITE(map->pos, 0);
755         REG_WRITE(map->src,
756                   ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
757         REG_WRITE(map->conf, pipeconf);
758         REG_READ(map->conf);
759
760         psb_intel_wait_for_vblank(dev);
761
762         REG_WRITE(map->cntr, dspcntr);
763
764         /* Flush the plane changes */
765         crtc_funcs->mode_set_base(crtc, x, y, old_fb);
766
767         psb_intel_wait_for_vblank(dev);
768
769         return 0;
770 }
771
772 /** Loads the palette/gamma unit for the CRTC with the prepared values */
773 void psb_intel_crtc_load_lut(struct drm_crtc *crtc)
774 {
775         struct drm_device *dev = crtc->dev;
776         struct drm_psb_private *dev_priv = dev->dev_private;
777         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
778         const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
779         int palreg = map->palette;
780         int i;
781
782         /* The clocks have to be on to load the palette. */
783         if (!crtc->enabled)
784                 return;
785
786         switch (psb_intel_crtc->pipe) {
787         case 0:
788         case 1:
789                 break;
790         default:
791                 dev_err(dev->dev, "Illegal Pipe Number.\n");
792                 return;
793         }
794
795         if (gma_power_begin(dev, false)) {
796                 for (i = 0; i < 256; i++) {
797                         REG_WRITE(palreg + 4 * i,
798                                   ((psb_intel_crtc->lut_r[i] +
799                                   psb_intel_crtc->lut_adj[i]) << 16) |
800                                   ((psb_intel_crtc->lut_g[i] +
801                                   psb_intel_crtc->lut_adj[i]) << 8) |
802                                   (psb_intel_crtc->lut_b[i] +
803                                   psb_intel_crtc->lut_adj[i]));
804                 }
805                 gma_power_end(dev);
806         } else {
807                 for (i = 0; i < 256; i++) {
808                         dev_priv->regs.pipe[0].palette[i] =
809                                   ((psb_intel_crtc->lut_r[i] +
810                                   psb_intel_crtc->lut_adj[i]) << 16) |
811                                   ((psb_intel_crtc->lut_g[i] +
812                                   psb_intel_crtc->lut_adj[i]) << 8) |
813                                   (psb_intel_crtc->lut_b[i] +
814                                   psb_intel_crtc->lut_adj[i]);
815                 }
816
817         }
818 }
819
820 /**
821  * Save HW states of giving crtc
822  */
823 static void psb_intel_crtc_save(struct drm_crtc *crtc)
824 {
825         struct drm_device *dev = crtc->dev;
826         struct drm_psb_private *dev_priv = dev->dev_private;
827         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
828         struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
829         const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
830         uint32_t paletteReg;
831         int i;
832
833         if (!crtc_state) {
834                 dev_err(dev->dev, "No CRTC state found\n");
835                 return;
836         }
837
838         crtc_state->saveDSPCNTR = REG_READ(map->cntr);
839         crtc_state->savePIPECONF = REG_READ(map->conf);
840         crtc_state->savePIPESRC = REG_READ(map->src);
841         crtc_state->saveFP0 = REG_READ(map->fp0);
842         crtc_state->saveFP1 = REG_READ(map->fp1);
843         crtc_state->saveDPLL = REG_READ(map->dpll);
844         crtc_state->saveHTOTAL = REG_READ(map->htotal);
845         crtc_state->saveHBLANK = REG_READ(map->hblank);
846         crtc_state->saveHSYNC = REG_READ(map->hsync);
847         crtc_state->saveVTOTAL = REG_READ(map->vtotal);
848         crtc_state->saveVBLANK = REG_READ(map->vblank);
849         crtc_state->saveVSYNC = REG_READ(map->vsync);
850         crtc_state->saveDSPSTRIDE = REG_READ(map->stride);
851
852         /*NOTE: DSPSIZE DSPPOS only for psb*/
853         crtc_state->saveDSPSIZE = REG_READ(map->size);
854         crtc_state->saveDSPPOS = REG_READ(map->pos);
855
856         crtc_state->saveDSPBASE = REG_READ(map->base);
857
858         paletteReg = map->palette;
859         for (i = 0; i < 256; ++i)
860                 crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2));
861 }
862
863 /**
864  * Restore HW states of giving crtc
865  */
866 static void psb_intel_crtc_restore(struct drm_crtc *crtc)
867 {
868         struct drm_device *dev = crtc->dev;
869         struct drm_psb_private *dev_priv = dev->dev_private;
870         struct psb_intel_crtc *psb_intel_crtc =  to_psb_intel_crtc(crtc);
871         struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
872         const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
873         uint32_t paletteReg;
874         int i;
875
876         if (!crtc_state) {
877                 dev_err(dev->dev, "No crtc state\n");
878                 return;
879         }
880
881         if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
882                 REG_WRITE(map->dpll,
883                         crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
884                 REG_READ(map->dpll);
885                 udelay(150);
886         }
887
888         REG_WRITE(map->fp0, crtc_state->saveFP0);
889         REG_READ(map->fp0);
890
891         REG_WRITE(map->fp1, crtc_state->saveFP1);
892         REG_READ(map->fp1);
893
894         REG_WRITE(map->dpll, crtc_state->saveDPLL);
895         REG_READ(map->dpll);
896         udelay(150);
897
898         REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
899         REG_WRITE(map->hblank, crtc_state->saveHBLANK);
900         REG_WRITE(map->hsync, crtc_state->saveHSYNC);
901         REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
902         REG_WRITE(map->vblank, crtc_state->saveVBLANK);
903         REG_WRITE(map->vsync, crtc_state->saveVSYNC);
904         REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);
905
906         REG_WRITE(map->size, crtc_state->saveDSPSIZE);
907         REG_WRITE(map->pos, crtc_state->saveDSPPOS);
908
909         REG_WRITE(map->src, crtc_state->savePIPESRC);
910         REG_WRITE(map->base, crtc_state->saveDSPBASE);
911         REG_WRITE(map->conf, crtc_state->savePIPECONF);
912
913         psb_intel_wait_for_vblank(dev);
914
915         REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
916         REG_WRITE(map->base, crtc_state->saveDSPBASE);
917
918         psb_intel_wait_for_vblank(dev);
919
920         paletteReg = map->palette;
921         for (i = 0; i < 256; ++i)
922                 REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]);
923 }
924
925 static int psb_intel_crtc_cursor_set(struct drm_crtc *crtc,
926                                  struct drm_file *file_priv,
927                                  uint32_t handle,
928                                  uint32_t width, uint32_t height)
929 {
930         struct drm_device *dev = crtc->dev;
931         struct drm_psb_private *dev_priv = dev->dev_private;
932         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
933         int pipe = psb_intel_crtc->pipe;
934         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
935         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
936         uint32_t temp;
937         size_t addr = 0;
938         struct gtt_range *gt;
939         struct gtt_range *cursor_gt = psb_intel_crtc->cursor_gt;
940         struct drm_gem_object *obj;
941         void *tmp_dst, *tmp_src;
942         int ret, i, cursor_pages;
943
944         /* if we want to turn of the cursor ignore width and height */
945         if (!handle) {
946                 /* turn off the cursor */
947                 temp = CURSOR_MODE_DISABLE;
948
949                 if (gma_power_begin(dev, false)) {
950                         REG_WRITE(control, temp);
951                         REG_WRITE(base, 0);
952                         gma_power_end(dev);
953                 }
954
955                 /* Unpin the old GEM object */
956                 if (psb_intel_crtc->cursor_obj) {
957                         gt = container_of(psb_intel_crtc->cursor_obj,
958                                                         struct gtt_range, gem);
959                         psb_gtt_unpin(gt);
960                         drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
961                         psb_intel_crtc->cursor_obj = NULL;
962                 }
963
964                 return 0;
965         }
966
967         /* Currently we only support 64x64 cursors */
968         if (width != 64 || height != 64) {
969                 dev_dbg(dev->dev, "we currently only support 64x64 cursors\n");
970                 return -EINVAL;
971         }
972
973         obj = drm_gem_object_lookup(dev, file_priv, handle);
974         if (!obj)
975                 return -ENOENT;
976
977         if (obj->size < width * height * 4) {
978                 dev_dbg(dev->dev, "buffer is to small\n");
979                 return -ENOMEM;
980         }
981
982         gt = container_of(obj, struct gtt_range, gem);
983
984         /* Pin the memory into the GTT */
985         ret = psb_gtt_pin(gt);
986         if (ret) {
987                 dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
988                 return ret;
989         }
990
991         if (dev_priv->ops->cursor_needs_phys) {
992                 if (cursor_gt == NULL) {
993                         dev_err(dev->dev, "No hardware cursor mem available");
994                         return -ENOMEM;
995                 }
996
997                 /* Prevent overflow */
998                 if (gt->npage > 4)
999                         cursor_pages = 4;
1000                 else
1001                         cursor_pages = gt->npage;
1002
1003                 /* Copy the cursor to cursor mem */
1004                 tmp_dst = dev_priv->vram_addr + cursor_gt->offset;
1005                 for (i = 0; i < cursor_pages; i++) {
1006                         tmp_src = kmap(gt->pages[i]);
1007                         memcpy(tmp_dst, tmp_src, PAGE_SIZE);
1008                         kunmap(gt->pages[i]);
1009                         tmp_dst += PAGE_SIZE;
1010                 }
1011
1012                 addr = psb_intel_crtc->cursor_addr;
1013         } else {
1014                 addr = gt->offset;      /* Or resource.start ??? */
1015                 psb_intel_crtc->cursor_addr = addr;
1016         }
1017
1018         temp = 0;
1019         /* set the pipe for the cursor */
1020         temp |= (pipe << 28);
1021         temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1022
1023         if (gma_power_begin(dev, false)) {
1024                 REG_WRITE(control, temp);
1025                 REG_WRITE(base, addr);
1026                 gma_power_end(dev);
1027         }
1028
1029         /* unpin the old bo */
1030         if (psb_intel_crtc->cursor_obj) {
1031                 gt = container_of(psb_intel_crtc->cursor_obj,
1032                                                         struct gtt_range, gem);
1033                 psb_gtt_unpin(gt);
1034                 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1035                 psb_intel_crtc->cursor_obj = obj;
1036         }
1037         return 0;
1038 }
1039
1040 static int psb_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1041 {
1042         struct drm_device *dev = crtc->dev;
1043         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1044         int pipe = psb_intel_crtc->pipe;
1045         uint32_t temp = 0;
1046         uint32_t addr;
1047
1048
1049         if (x < 0) {
1050                 temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1051                 x = -x;
1052         }
1053         if (y < 0) {
1054                 temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1055                 y = -y;
1056         }
1057
1058         temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1059         temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1060
1061         addr = psb_intel_crtc->cursor_addr;
1062
1063         if (gma_power_begin(dev, false)) {
1064                 REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1065                 REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr);
1066                 gma_power_end(dev);
1067         }
1068         return 0;
1069 }
1070
1071 void psb_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red,
1072                          u16 *green, u16 *blue, uint32_t type, uint32_t size)
1073 {
1074         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1075         int i;
1076
1077         if (size != 256)
1078                 return;
1079
1080         for (i = 0; i < 256; i++) {
1081                 psb_intel_crtc->lut_r[i] = red[i] >> 8;
1082                 psb_intel_crtc->lut_g[i] = green[i] >> 8;
1083                 psb_intel_crtc->lut_b[i] = blue[i] >> 8;
1084         }
1085
1086         psb_intel_crtc_load_lut(crtc);
1087 }
1088
1089 static int psb_crtc_set_config(struct drm_mode_set *set)
1090 {
1091         int ret;
1092         struct drm_device *dev = set->crtc->dev;
1093         struct drm_psb_private *dev_priv = dev->dev_private;
1094
1095         if (!dev_priv->rpm_enabled)
1096                 return drm_crtc_helper_set_config(set);
1097
1098         pm_runtime_forbid(&dev->pdev->dev);
1099         ret = drm_crtc_helper_set_config(set);
1100         pm_runtime_allow(&dev->pdev->dev);
1101         return ret;
1102 }
1103
1104 /* Returns the clock of the currently programmed mode of the given pipe. */
1105 static int psb_intel_crtc_clock_get(struct drm_device *dev,
1106                                 struct drm_crtc *crtc)
1107 {
1108         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1109         struct drm_psb_private *dev_priv = dev->dev_private;
1110         int pipe = psb_intel_crtc->pipe;
1111         const struct psb_offset *map = &dev_priv->regmap[pipe];
1112         u32 dpll;
1113         u32 fp;
1114         struct psb_intel_clock_t clock;
1115         bool is_lvds;
1116         struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1117
1118         if (gma_power_begin(dev, false)) {
1119                 dpll = REG_READ(map->dpll);
1120                 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1121                         fp = REG_READ(map->fp0);
1122                 else
1123                         fp = REG_READ(map->fp1);
1124                 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
1125                 gma_power_end(dev);
1126         } else {
1127                 dpll = p->dpll;
1128
1129                 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1130                         fp = p->fp0;
1131                 else
1132                         fp = p->fp1;
1133
1134                 is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
1135                                                                 LVDS_PORT_EN);
1136         }
1137
1138         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1139         clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1140         clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1141
1142         if (is_lvds) {
1143                 clock.p1 =
1144                     ffs((dpll &
1145                          DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1146                         DPLL_FPA01_P1_POST_DIV_SHIFT);
1147                 clock.p2 = 14;
1148
1149                 if ((dpll & PLL_REF_INPUT_MASK) ==
1150                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1151                         /* XXX: might not be 66MHz */
1152                         i8xx_clock(66000, &clock);
1153                 } else
1154                         i8xx_clock(48000, &clock);
1155         } else {
1156                 if (dpll & PLL_P1_DIVIDE_BY_TWO)
1157                         clock.p1 = 2;
1158                 else {
1159                         clock.p1 =
1160                             ((dpll &
1161                               DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1162                              DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1163                 }
1164                 if (dpll & PLL_P2_DIVIDE_BY_4)
1165                         clock.p2 = 4;
1166                 else
1167                         clock.p2 = 2;
1168
1169                 i8xx_clock(48000, &clock);
1170         }
1171
1172         /* XXX: It would be nice to validate the clocks, but we can't reuse
1173          * i830PllIsValid() because it relies on the xf86_config connector
1174          * configuration being accurate, which it isn't necessarily.
1175          */
1176
1177         return clock.dot;
1178 }
1179
1180 /** Returns the currently programmed mode of the given pipe. */
1181 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
1182                                              struct drm_crtc *crtc)
1183 {
1184         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1185         int pipe = psb_intel_crtc->pipe;
1186         struct drm_display_mode *mode;
1187         int htot;
1188         int hsync;
1189         int vtot;
1190         int vsync;
1191         struct drm_psb_private *dev_priv = dev->dev_private;
1192         struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1193         const struct psb_offset *map = &dev_priv->regmap[pipe];
1194
1195         if (gma_power_begin(dev, false)) {
1196                 htot = REG_READ(map->htotal);
1197                 hsync = REG_READ(map->hsync);
1198                 vtot = REG_READ(map->vtotal);
1199                 vsync = REG_READ(map->vsync);
1200                 gma_power_end(dev);
1201         } else {
1202                 htot = p->htotal;
1203                 hsync = p->hsync;
1204                 vtot = p->vtotal;
1205                 vsync = p->vsync;
1206         }
1207
1208         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1209         if (!mode)
1210                 return NULL;
1211
1212         mode->clock = psb_intel_crtc_clock_get(dev, crtc);
1213         mode->hdisplay = (htot & 0xffff) + 1;
1214         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1215         mode->hsync_start = (hsync & 0xffff) + 1;
1216         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1217         mode->vdisplay = (vtot & 0xffff) + 1;
1218         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1219         mode->vsync_start = (vsync & 0xffff) + 1;
1220         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1221
1222         drm_mode_set_name(mode);
1223         drm_mode_set_crtcinfo(mode, 0);
1224
1225         return mode;
1226 }
1227
1228 void psb_intel_crtc_destroy(struct drm_crtc *crtc)
1229 {
1230         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1231         struct gtt_range *gt;
1232
1233         /* Unpin the old GEM object */
1234         if (psb_intel_crtc->cursor_obj) {
1235                 gt = container_of(psb_intel_crtc->cursor_obj,
1236                                                 struct gtt_range, gem);
1237                 psb_gtt_unpin(gt);
1238                 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1239                 psb_intel_crtc->cursor_obj = NULL;
1240         }
1241
1242         if (psb_intel_crtc->cursor_gt != NULL)
1243                 psb_gtt_free_range(crtc->dev, psb_intel_crtc->cursor_gt);
1244         kfree(psb_intel_crtc->crtc_state);
1245         drm_crtc_cleanup(crtc);
1246         kfree(psb_intel_crtc);
1247 }
1248
1249 const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
1250         .dpms = psb_intel_crtc_dpms,
1251         .mode_fixup = psb_intel_crtc_mode_fixup,
1252         .mode_set = psb_intel_crtc_mode_set,
1253         .mode_set_base = psb_intel_pipe_set_base,
1254         .prepare = psb_intel_crtc_prepare,
1255         .commit = psb_intel_crtc_commit,
1256 };
1257
1258 const struct drm_crtc_funcs psb_intel_crtc_funcs = {
1259         .save = psb_intel_crtc_save,
1260         .restore = psb_intel_crtc_restore,
1261         .cursor_set = psb_intel_crtc_cursor_set,
1262         .cursor_move = psb_intel_crtc_cursor_move,
1263         .gamma_set = psb_intel_crtc_gamma_set,
1264         .set_config = psb_crtc_set_config,
1265         .destroy = psb_intel_crtc_destroy,
1266 };
1267
1268 /*
1269  * Set the default value of cursor control and base register
1270  * to zero. This is a workaround for h/w defect on Oaktrail
1271  */
1272 static void psb_intel_cursor_init(struct drm_device *dev,
1273                                   struct psb_intel_crtc *psb_intel_crtc)
1274 {
1275         struct drm_psb_private *dev_priv = dev->dev_private;
1276         u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
1277         u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
1278         struct gtt_range *cursor_gt;
1279
1280         if (dev_priv->ops->cursor_needs_phys) {
1281                 /* Allocate 4 pages of stolen mem for a hardware cursor. That
1282                  * is enough for the 64 x 64 ARGB cursors we support.
1283                  */
1284                 cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1);
1285                 if (!cursor_gt) {
1286                         psb_intel_crtc->cursor_gt = NULL;
1287                         goto out;
1288                 }
1289                 psb_intel_crtc->cursor_gt = cursor_gt;
1290                 psb_intel_crtc->cursor_addr = dev_priv->stolen_base +
1291                                                         cursor_gt->offset;
1292         } else {
1293                 psb_intel_crtc->cursor_gt = NULL;
1294         }
1295
1296 out:
1297         REG_WRITE(control[psb_intel_crtc->pipe], 0);
1298         REG_WRITE(base[psb_intel_crtc->pipe], 0);
1299 }
1300
1301 void psb_intel_crtc_init(struct drm_device *dev, int pipe,
1302                      struct psb_intel_mode_device *mode_dev)
1303 {
1304         struct drm_psb_private *dev_priv = dev->dev_private;
1305         struct psb_intel_crtc *psb_intel_crtc;
1306         int i;
1307         uint16_t *r_base, *g_base, *b_base;
1308
1309         /* We allocate a extra array of drm_connector pointers
1310          * for fbdev after the crtc */
1311         psb_intel_crtc =
1312             kzalloc(sizeof(struct psb_intel_crtc) +
1313                     (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
1314                     GFP_KERNEL);
1315         if (psb_intel_crtc == NULL)
1316                 return;
1317
1318         psb_intel_crtc->crtc_state =
1319                 kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
1320         if (!psb_intel_crtc->crtc_state) {
1321                 dev_err(dev->dev, "Crtc state error: No memory\n");
1322                 kfree(psb_intel_crtc);
1323                 return;
1324         }
1325
1326         /* Set the CRTC operations from the chip specific data */
1327         drm_crtc_init(dev, &psb_intel_crtc->base, dev_priv->ops->crtc_funcs);
1328
1329         drm_mode_crtc_set_gamma_size(&psb_intel_crtc->base, 256);
1330         psb_intel_crtc->pipe = pipe;
1331         psb_intel_crtc->plane = pipe;
1332
1333         r_base = psb_intel_crtc->base.gamma_store;
1334         g_base = r_base + 256;
1335         b_base = g_base + 256;
1336         for (i = 0; i < 256; i++) {
1337                 psb_intel_crtc->lut_r[i] = i;
1338                 psb_intel_crtc->lut_g[i] = i;
1339                 psb_intel_crtc->lut_b[i] = i;
1340                 r_base[i] = i << 8;
1341                 g_base[i] = i << 8;
1342                 b_base[i] = i << 8;
1343
1344                 psb_intel_crtc->lut_adj[i] = 0;
1345         }
1346
1347         psb_intel_crtc->mode_dev = mode_dev;
1348         psb_intel_crtc->cursor_addr = 0;
1349
1350         drm_crtc_helper_add(&psb_intel_crtc->base,
1351                                                 dev_priv->ops->crtc_helper);
1352
1353         /* Setup the array of drm_connector pointer array */
1354         psb_intel_crtc->mode_set.crtc = &psb_intel_crtc->base;
1355         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
1356                dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] != NULL);
1357         dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] =
1358                                                         &psb_intel_crtc->base;
1359         dev_priv->pipe_to_crtc_mapping[psb_intel_crtc->pipe] =
1360                                                         &psb_intel_crtc->base;
1361         psb_intel_crtc->mode_set.connectors =
1362             (struct drm_connector **) (psb_intel_crtc + 1);
1363         psb_intel_crtc->mode_set.num_connectors = 0;
1364         psb_intel_cursor_init(dev, psb_intel_crtc);
1365
1366         /* Set to true so that the pipe is forced off on initial config. */
1367         psb_intel_crtc->active = true;
1368 }
1369
1370 int psb_intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
1371                                 struct drm_file *file_priv)
1372 {
1373         struct drm_psb_private *dev_priv = dev->dev_private;
1374         struct drm_psb_get_pipe_from_crtc_id_arg *pipe_from_crtc_id = data;
1375         struct drm_mode_object *drmmode_obj;
1376         struct psb_intel_crtc *crtc;
1377
1378         if (!dev_priv) {
1379                 dev_err(dev->dev, "called with no initialization\n");
1380                 return -EINVAL;
1381         }
1382
1383         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
1384                         DRM_MODE_OBJECT_CRTC);
1385
1386         if (!drmmode_obj) {
1387                 dev_err(dev->dev, "no such CRTC id\n");
1388                 return -EINVAL;
1389         }
1390
1391         crtc = to_psb_intel_crtc(obj_to_crtc(drmmode_obj));
1392         pipe_from_crtc_id->pipe = crtc->pipe;
1393
1394         return 0;
1395 }
1396
1397 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
1398 {
1399         struct drm_crtc *crtc = NULL;
1400
1401         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1402                 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1403                 if (psb_intel_crtc->pipe == pipe)
1404                         break;
1405         }
1406         return crtc;
1407 }
1408
1409 int psb_intel_connector_clones(struct drm_device *dev, int type_mask)
1410 {
1411         int index_mask = 0;
1412         struct drm_connector *connector;
1413         int entry = 0;
1414
1415         list_for_each_entry(connector, &dev->mode_config.connector_list,
1416                             head) {
1417                 struct psb_intel_encoder *psb_intel_encoder =
1418                                         psb_intel_attached_encoder(connector);
1419                 if (type_mask & (1 << psb_intel_encoder->type))
1420                         index_mask |= (1 << entry);
1421                 entry++;
1422         }
1423         return index_mask;
1424 }
1425
1426 /* current intel driver doesn't take advantage of encoders
1427    always give back the encoder for the connector
1428 */
1429 struct drm_encoder *psb_intel_best_encoder(struct drm_connector *connector)
1430 {
1431         struct psb_intel_encoder *psb_intel_encoder =
1432                                         psb_intel_attached_encoder(connector);
1433
1434         return &psb_intel_encoder->base;
1435 }
1436
1437 void psb_intel_connector_attach_encoder(struct psb_intel_connector *connector,
1438                                         struct psb_intel_encoder *encoder)
1439 {
1440         connector->encoder = encoder;
1441         drm_mode_connector_attach_encoder(&connector->base,
1442                                           &encoder->base);
1443 }