Backmerge tag 'v4.7-rc2' into drm-next
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53                        struct dentry *ent,
54                        const void *key)
55 {
56         struct drm_info_node *node;
57
58         node = kmalloc(sizeof(*node), GFP_KERNEL);
59         if (node == NULL) {
60                 debugfs_remove(ent);
61                 return -ENOMEM;
62         }
63
64         node->minor = minor;
65         node->dent = ent;
66         node->info_ent = (void *) key;
67
68         mutex_lock(&minor->debugfs_lock);
69         list_add(&node->list, &minor->debugfs_list);
70         mutex_unlock(&minor->debugfs_lock);
71
72         return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77         struct drm_info_node *node = m->private;
78         struct drm_device *dev = node->minor->dev;
79         const struct intel_device_info *info = INTEL_INFO(dev);
80
81         seq_printf(m, "gen: %d\n", info->gen);
82         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89         return 0;
90 }
91
92 static char get_active_flag(struct drm_i915_gem_object *obj)
93 {
94         return obj->active ? '*' : ' ';
95 }
96
97 static char get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         return obj->pin_display ? 'p' : ' ';
100 }
101
102 static char get_tiling_flag(struct drm_i915_gem_object *obj)
103 {
104         switch (obj->tiling_mode) {
105         default:
106         case I915_TILING_NONE: return ' ';
107         case I915_TILING_X: return 'X';
108         case I915_TILING_Y: return 'Y';
109         }
110 }
111
112 static char get_global_flag(struct drm_i915_gem_object *obj)
113 {
114         return i915_gem_obj_to_ggtt(obj) ? 'g' : ' ';
115 }
116
117 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
118 {
119         return obj->mapping ? 'M' : ' ';
120 }
121
122 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
123 {
124         u64 size = 0;
125         struct i915_vma *vma;
126
127         list_for_each_entry(vma, &obj->vma_list, obj_link) {
128                 if (vma->is_ggtt && drm_mm_node_allocated(&vma->node))
129                         size += vma->node.size;
130         }
131
132         return size;
133 }
134
135 static void
136 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
137 {
138         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
139         struct intel_engine_cs *engine;
140         struct i915_vma *vma;
141         int pin_count = 0;
142         enum intel_engine_id id;
143
144         lockdep_assert_held(&obj->base.dev->struct_mutex);
145
146         seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
147                    &obj->base,
148                    get_active_flag(obj),
149                    get_pin_flag(obj),
150                    get_tiling_flag(obj),
151                    get_global_flag(obj),
152                    get_pin_mapped_flag(obj),
153                    obj->base.size / 1024,
154                    obj->base.read_domains,
155                    obj->base.write_domain);
156         for_each_engine_id(engine, dev_priv, id)
157                 seq_printf(m, "%x ",
158                                 i915_gem_request_get_seqno(obj->last_read_req[id]));
159         seq_printf(m, "] %x %x%s%s%s",
160                    i915_gem_request_get_seqno(obj->last_write_req),
161                    i915_gem_request_get_seqno(obj->last_fenced_req),
162                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
163                    obj->dirty ? " dirty" : "",
164                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
165         if (obj->base.name)
166                 seq_printf(m, " (name: %d)", obj->base.name);
167         list_for_each_entry(vma, &obj->vma_list, obj_link) {
168                 if (vma->pin_count > 0)
169                         pin_count++;
170         }
171         seq_printf(m, " (pinned x %d)", pin_count);
172         if (obj->pin_display)
173                 seq_printf(m, " (display)");
174         if (obj->fence_reg != I915_FENCE_REG_NONE)
175                 seq_printf(m, " (fence: %d)", obj->fence_reg);
176         list_for_each_entry(vma, &obj->vma_list, obj_link) {
177                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
178                            vma->is_ggtt ? "g" : "pp",
179                            vma->node.start, vma->node.size);
180                 if (vma->is_ggtt)
181                         seq_printf(m, ", type: %u", vma->ggtt_view.type);
182                 seq_puts(m, ")");
183         }
184         if (obj->stolen)
185                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
186         if (obj->pin_display || obj->fault_mappable) {
187                 char s[3], *t = s;
188                 if (obj->pin_display)
189                         *t++ = 'p';
190                 if (obj->fault_mappable)
191                         *t++ = 'f';
192                 *t = '\0';
193                 seq_printf(m, " (%s mappable)", s);
194         }
195         if (obj->last_write_req != NULL)
196                 seq_printf(m, " (%s)",
197                            i915_gem_request_get_engine(obj->last_write_req)->name);
198         if (obj->frontbuffer_bits)
199                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
200 }
201
202 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
203 {
204         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
205         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
206         seq_putc(m, ' ');
207 }
208
209 static int i915_gem_object_list_info(struct seq_file *m, void *data)
210 {
211         struct drm_info_node *node = m->private;
212         uintptr_t list = (uintptr_t) node->info_ent->data;
213         struct list_head *head;
214         struct drm_device *dev = node->minor->dev;
215         struct drm_i915_private *dev_priv = to_i915(dev);
216         struct i915_ggtt *ggtt = &dev_priv->ggtt;
217         struct i915_vma *vma;
218         u64 total_obj_size, total_gtt_size;
219         int count, ret;
220
221         ret = mutex_lock_interruptible(&dev->struct_mutex);
222         if (ret)
223                 return ret;
224
225         /* FIXME: the user of this interface might want more than just GGTT */
226         switch (list) {
227         case ACTIVE_LIST:
228                 seq_puts(m, "Active:\n");
229                 head = &ggtt->base.active_list;
230                 break;
231         case INACTIVE_LIST:
232                 seq_puts(m, "Inactive:\n");
233                 head = &ggtt->base.inactive_list;
234                 break;
235         default:
236                 mutex_unlock(&dev->struct_mutex);
237                 return -EINVAL;
238         }
239
240         total_obj_size = total_gtt_size = count = 0;
241         list_for_each_entry(vma, head, vm_link) {
242                 seq_printf(m, "   ");
243                 describe_obj(m, vma->obj);
244                 seq_printf(m, "\n");
245                 total_obj_size += vma->obj->base.size;
246                 total_gtt_size += vma->node.size;
247                 count++;
248         }
249         mutex_unlock(&dev->struct_mutex);
250
251         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
252                    count, total_obj_size, total_gtt_size);
253         return 0;
254 }
255
256 static int obj_rank_by_stolen(void *priv,
257                               struct list_head *A, struct list_head *B)
258 {
259         struct drm_i915_gem_object *a =
260                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
261         struct drm_i915_gem_object *b =
262                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
263
264         if (a->stolen->start < b->stolen->start)
265                 return -1;
266         if (a->stolen->start > b->stolen->start)
267                 return 1;
268         return 0;
269 }
270
271 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
272 {
273         struct drm_info_node *node = m->private;
274         struct drm_device *dev = node->minor->dev;
275         struct drm_i915_private *dev_priv = dev->dev_private;
276         struct drm_i915_gem_object *obj;
277         u64 total_obj_size, total_gtt_size;
278         LIST_HEAD(stolen);
279         int count, ret;
280
281         ret = mutex_lock_interruptible(&dev->struct_mutex);
282         if (ret)
283                 return ret;
284
285         total_obj_size = total_gtt_size = count = 0;
286         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
287                 if (obj->stolen == NULL)
288                         continue;
289
290                 list_add(&obj->obj_exec_link, &stolen);
291
292                 total_obj_size += obj->base.size;
293                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
294                 count++;
295         }
296         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
297                 if (obj->stolen == NULL)
298                         continue;
299
300                 list_add(&obj->obj_exec_link, &stolen);
301
302                 total_obj_size += obj->base.size;
303                 count++;
304         }
305         list_sort(NULL, &stolen, obj_rank_by_stolen);
306         seq_puts(m, "Stolen:\n");
307         while (!list_empty(&stolen)) {
308                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
309                 seq_puts(m, "   ");
310                 describe_obj(m, obj);
311                 seq_putc(m, '\n');
312                 list_del_init(&obj->obj_exec_link);
313         }
314         mutex_unlock(&dev->struct_mutex);
315
316         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
317                    count, total_obj_size, total_gtt_size);
318         return 0;
319 }
320
321 #define count_objects(list, member) do { \
322         list_for_each_entry(obj, list, member) { \
323                 size += i915_gem_obj_total_ggtt_size(obj); \
324                 ++count; \
325                 if (obj->map_and_fenceable) { \
326                         mappable_size += i915_gem_obj_ggtt_size(obj); \
327                         ++mappable_count; \
328                 } \
329         } \
330 } while (0)
331
332 struct file_stats {
333         struct drm_i915_file_private *file_priv;
334         unsigned long count;
335         u64 total, unbound;
336         u64 global, shared;
337         u64 active, inactive;
338 };
339
340 static int per_file_stats(int id, void *ptr, void *data)
341 {
342         struct drm_i915_gem_object *obj = ptr;
343         struct file_stats *stats = data;
344         struct i915_vma *vma;
345
346         stats->count++;
347         stats->total += obj->base.size;
348
349         if (obj->base.name || obj->base.dma_buf)
350                 stats->shared += obj->base.size;
351
352         if (USES_FULL_PPGTT(obj->base.dev)) {
353                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
354                         struct i915_hw_ppgtt *ppgtt;
355
356                         if (!drm_mm_node_allocated(&vma->node))
357                                 continue;
358
359                         if (vma->is_ggtt) {
360                                 stats->global += obj->base.size;
361                                 continue;
362                         }
363
364                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
365                         if (ppgtt->file_priv != stats->file_priv)
366                                 continue;
367
368                         if (obj->active) /* XXX per-vma statistic */
369                                 stats->active += obj->base.size;
370                         else
371                                 stats->inactive += obj->base.size;
372
373                         return 0;
374                 }
375         } else {
376                 if (i915_gem_obj_ggtt_bound(obj)) {
377                         stats->global += obj->base.size;
378                         if (obj->active)
379                                 stats->active += obj->base.size;
380                         else
381                                 stats->inactive += obj->base.size;
382                         return 0;
383                 }
384         }
385
386         if (!list_empty(&obj->global_list))
387                 stats->unbound += obj->base.size;
388
389         return 0;
390 }
391
392 #define print_file_stats(m, name, stats) do { \
393         if (stats.count) \
394                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
395                            name, \
396                            stats.count, \
397                            stats.total, \
398                            stats.active, \
399                            stats.inactive, \
400                            stats.global, \
401                            stats.shared, \
402                            stats.unbound); \
403 } while (0)
404
405 static void print_batch_pool_stats(struct seq_file *m,
406                                    struct drm_i915_private *dev_priv)
407 {
408         struct drm_i915_gem_object *obj;
409         struct file_stats stats;
410         struct intel_engine_cs *engine;
411         int j;
412
413         memset(&stats, 0, sizeof(stats));
414
415         for_each_engine(engine, dev_priv) {
416                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
417                         list_for_each_entry(obj,
418                                             &engine->batch_pool.cache_list[j],
419                                             batch_pool_link)
420                                 per_file_stats(0, obj, &stats);
421                 }
422         }
423
424         print_file_stats(m, "[k]batch pool", stats);
425 }
426
427 #define count_vmas(list, member) do { \
428         list_for_each_entry(vma, list, member) { \
429                 size += i915_gem_obj_total_ggtt_size(vma->obj); \
430                 ++count; \
431                 if (vma->obj->map_and_fenceable) { \
432                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
433                         ++mappable_count; \
434                 } \
435         } \
436 } while (0)
437
438 static int i915_gem_object_info(struct seq_file *m, void* data)
439 {
440         struct drm_info_node *node = m->private;
441         struct drm_device *dev = node->minor->dev;
442         struct drm_i915_private *dev_priv = to_i915(dev);
443         struct i915_ggtt *ggtt = &dev_priv->ggtt;
444         u32 count, mappable_count, purgeable_count;
445         u64 size, mappable_size, purgeable_size;
446         unsigned long pin_mapped_count = 0, pin_mapped_purgeable_count = 0;
447         u64 pin_mapped_size = 0, pin_mapped_purgeable_size = 0;
448         struct drm_i915_gem_object *obj;
449         struct drm_file *file;
450         struct i915_vma *vma;
451         int ret;
452
453         ret = mutex_lock_interruptible(&dev->struct_mutex);
454         if (ret)
455                 return ret;
456
457         seq_printf(m, "%u objects, %zu bytes\n",
458                    dev_priv->mm.object_count,
459                    dev_priv->mm.object_memory);
460
461         size = count = mappable_size = mappable_count = 0;
462         count_objects(&dev_priv->mm.bound_list, global_list);
463         seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
464                    count, mappable_count, size, mappable_size);
465
466         size = count = mappable_size = mappable_count = 0;
467         count_vmas(&ggtt->base.active_list, vm_link);
468         seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
469                    count, mappable_count, size, mappable_size);
470
471         size = count = mappable_size = mappable_count = 0;
472         count_vmas(&ggtt->base.inactive_list, vm_link);
473         seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
474                    count, mappable_count, size, mappable_size);
475
476         size = count = purgeable_size = purgeable_count = 0;
477         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
478                 size += obj->base.size, ++count;
479                 if (obj->madv == I915_MADV_DONTNEED)
480                         purgeable_size += obj->base.size, ++purgeable_count;
481                 if (obj->mapping) {
482                         pin_mapped_count++;
483                         pin_mapped_size += obj->base.size;
484                         if (obj->pages_pin_count == 0) {
485                                 pin_mapped_purgeable_count++;
486                                 pin_mapped_purgeable_size += obj->base.size;
487                         }
488                 }
489         }
490         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
491
492         size = count = mappable_size = mappable_count = 0;
493         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
494                 if (obj->fault_mappable) {
495                         size += i915_gem_obj_ggtt_size(obj);
496                         ++count;
497                 }
498                 if (obj->pin_display) {
499                         mappable_size += i915_gem_obj_ggtt_size(obj);
500                         ++mappable_count;
501                 }
502                 if (obj->madv == I915_MADV_DONTNEED) {
503                         purgeable_size += obj->base.size;
504                         ++purgeable_count;
505                 }
506                 if (obj->mapping) {
507                         pin_mapped_count++;
508                         pin_mapped_size += obj->base.size;
509                         if (obj->pages_pin_count == 0) {
510                                 pin_mapped_purgeable_count++;
511                                 pin_mapped_purgeable_size += obj->base.size;
512                         }
513                 }
514         }
515         seq_printf(m, "%u purgeable objects, %llu bytes\n",
516                    purgeable_count, purgeable_size);
517         seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
518                    mappable_count, mappable_size);
519         seq_printf(m, "%u fault mappable objects, %llu bytes\n",
520                    count, size);
521         seq_printf(m,
522                    "%lu [%lu] pin mapped objects, %llu [%llu] bytes [purgeable]\n",
523                    pin_mapped_count, pin_mapped_purgeable_count,
524                    pin_mapped_size, pin_mapped_purgeable_size);
525
526         seq_printf(m, "%llu [%llu] gtt total\n",
527                    ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
528
529         seq_putc(m, '\n');
530         print_batch_pool_stats(m, dev_priv);
531
532         mutex_unlock(&dev->struct_mutex);
533
534         mutex_lock(&dev->filelist_mutex);
535         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
536                 struct file_stats stats;
537                 struct task_struct *task;
538
539                 memset(&stats, 0, sizeof(stats));
540                 stats.file_priv = file->driver_priv;
541                 spin_lock(&file->table_lock);
542                 idr_for_each(&file->object_idr, per_file_stats, &stats);
543                 spin_unlock(&file->table_lock);
544                 /*
545                  * Although we have a valid reference on file->pid, that does
546                  * not guarantee that the task_struct who called get_pid() is
547                  * still alive (e.g. get_pid(current) => fork() => exit()).
548                  * Therefore, we need to protect this ->comm access using RCU.
549                  */
550                 rcu_read_lock();
551                 task = pid_task(file->pid, PIDTYPE_PID);
552                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
553                 rcu_read_unlock();
554         }
555         mutex_unlock(&dev->filelist_mutex);
556
557         return 0;
558 }
559
560 static int i915_gem_gtt_info(struct seq_file *m, void *data)
561 {
562         struct drm_info_node *node = m->private;
563         struct drm_device *dev = node->minor->dev;
564         uintptr_t list = (uintptr_t) node->info_ent->data;
565         struct drm_i915_private *dev_priv = dev->dev_private;
566         struct drm_i915_gem_object *obj;
567         u64 total_obj_size, total_gtt_size;
568         int count, ret;
569
570         ret = mutex_lock_interruptible(&dev->struct_mutex);
571         if (ret)
572                 return ret;
573
574         total_obj_size = total_gtt_size = count = 0;
575         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
576                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
577                         continue;
578
579                 seq_puts(m, "   ");
580                 describe_obj(m, obj);
581                 seq_putc(m, '\n');
582                 total_obj_size += obj->base.size;
583                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
584                 count++;
585         }
586
587         mutex_unlock(&dev->struct_mutex);
588
589         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
590                    count, total_obj_size, total_gtt_size);
591
592         return 0;
593 }
594
595 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
596 {
597         struct drm_info_node *node = m->private;
598         struct drm_device *dev = node->minor->dev;
599         struct drm_i915_private *dev_priv = dev->dev_private;
600         struct intel_crtc *crtc;
601         int ret;
602
603         ret = mutex_lock_interruptible(&dev->struct_mutex);
604         if (ret)
605                 return ret;
606
607         for_each_intel_crtc(dev, crtc) {
608                 const char pipe = pipe_name(crtc->pipe);
609                 const char plane = plane_name(crtc->plane);
610                 struct intel_flip_work *work;
611
612                 spin_lock_irq(&dev->event_lock);
613                 work = crtc->flip_work;
614                 if (work == NULL) {
615                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
616                                    pipe, plane);
617                 } else {
618                         u32 pending;
619                         u32 addr;
620
621                         pending = atomic_read(&work->pending);
622                         if (pending) {
623                                 seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
624                                            pipe, plane);
625                         } else {
626                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
627                                            pipe, plane);
628                         }
629                         if (work->flip_queued_req) {
630                                 struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
631
632                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
633                                            engine->name,
634                                            i915_gem_request_get_seqno(work->flip_queued_req),
635                                            dev_priv->next_seqno,
636                                            engine->get_seqno(engine),
637                                            i915_gem_request_completed(work->flip_queued_req, true));
638                         } else
639                                 seq_printf(m, "Flip not associated with any ring\n");
640                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
641                                    work->flip_queued_vblank,
642                                    work->flip_ready_vblank,
643                                    intel_crtc_get_vblank_counter(crtc));
644                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
645
646                         if (INTEL_INFO(dev)->gen >= 4)
647                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
648                         else
649                                 addr = I915_READ(DSPADDR(crtc->plane));
650                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
651
652                         if (work->pending_flip_obj) {
653                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
654                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
655                         }
656                 }
657                 spin_unlock_irq(&dev->event_lock);
658         }
659
660         mutex_unlock(&dev->struct_mutex);
661
662         return 0;
663 }
664
665 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
666 {
667         struct drm_info_node *node = m->private;
668         struct drm_device *dev = node->minor->dev;
669         struct drm_i915_private *dev_priv = dev->dev_private;
670         struct drm_i915_gem_object *obj;
671         struct intel_engine_cs *engine;
672         int total = 0;
673         int ret, j;
674
675         ret = mutex_lock_interruptible(&dev->struct_mutex);
676         if (ret)
677                 return ret;
678
679         for_each_engine(engine, dev_priv) {
680                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
681                         int count;
682
683                         count = 0;
684                         list_for_each_entry(obj,
685                                             &engine->batch_pool.cache_list[j],
686                                             batch_pool_link)
687                                 count++;
688                         seq_printf(m, "%s cache[%d]: %d objects\n",
689                                    engine->name, j, count);
690
691                         list_for_each_entry(obj,
692                                             &engine->batch_pool.cache_list[j],
693                                             batch_pool_link) {
694                                 seq_puts(m, "   ");
695                                 describe_obj(m, obj);
696                                 seq_putc(m, '\n');
697                         }
698
699                         total += count;
700                 }
701         }
702
703         seq_printf(m, "total: %d\n", total);
704
705         mutex_unlock(&dev->struct_mutex);
706
707         return 0;
708 }
709
710 static int i915_gem_request_info(struct seq_file *m, void *data)
711 {
712         struct drm_info_node *node = m->private;
713         struct drm_device *dev = node->minor->dev;
714         struct drm_i915_private *dev_priv = dev->dev_private;
715         struct intel_engine_cs *engine;
716         struct drm_i915_gem_request *req;
717         int ret, any;
718
719         ret = mutex_lock_interruptible(&dev->struct_mutex);
720         if (ret)
721                 return ret;
722
723         any = 0;
724         for_each_engine(engine, dev_priv) {
725                 int count;
726
727                 count = 0;
728                 list_for_each_entry(req, &engine->request_list, list)
729                         count++;
730                 if (count == 0)
731                         continue;
732
733                 seq_printf(m, "%s requests: %d\n", engine->name, count);
734                 list_for_each_entry(req, &engine->request_list, list) {
735                         struct task_struct *task;
736
737                         rcu_read_lock();
738                         task = NULL;
739                         if (req->pid)
740                                 task = pid_task(req->pid, PIDTYPE_PID);
741                         seq_printf(m, "    %x @ %d: %s [%d]\n",
742                                    req->seqno,
743                                    (int) (jiffies - req->emitted_jiffies),
744                                    task ? task->comm : "<unknown>",
745                                    task ? task->pid : -1);
746                         rcu_read_unlock();
747                 }
748
749                 any++;
750         }
751         mutex_unlock(&dev->struct_mutex);
752
753         if (any == 0)
754                 seq_puts(m, "No requests\n");
755
756         return 0;
757 }
758
759 static void i915_ring_seqno_info(struct seq_file *m,
760                                  struct intel_engine_cs *engine)
761 {
762         seq_printf(m, "Current sequence (%s): %x\n",
763                    engine->name, engine->get_seqno(engine));
764         seq_printf(m, "Current user interrupts (%s): %x\n",
765                    engine->name, READ_ONCE(engine->user_interrupts));
766 }
767
768 static int i915_gem_seqno_info(struct seq_file *m, void *data)
769 {
770         struct drm_info_node *node = m->private;
771         struct drm_device *dev = node->minor->dev;
772         struct drm_i915_private *dev_priv = dev->dev_private;
773         struct intel_engine_cs *engine;
774         int ret;
775
776         ret = mutex_lock_interruptible(&dev->struct_mutex);
777         if (ret)
778                 return ret;
779         intel_runtime_pm_get(dev_priv);
780
781         for_each_engine(engine, dev_priv)
782                 i915_ring_seqno_info(m, engine);
783
784         intel_runtime_pm_put(dev_priv);
785         mutex_unlock(&dev->struct_mutex);
786
787         return 0;
788 }
789
790
791 static int i915_interrupt_info(struct seq_file *m, void *data)
792 {
793         struct drm_info_node *node = m->private;
794         struct drm_device *dev = node->minor->dev;
795         struct drm_i915_private *dev_priv = dev->dev_private;
796         struct intel_engine_cs *engine;
797         int ret, i, pipe;
798
799         ret = mutex_lock_interruptible(&dev->struct_mutex);
800         if (ret)
801                 return ret;
802         intel_runtime_pm_get(dev_priv);
803
804         if (IS_CHERRYVIEW(dev)) {
805                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
806                            I915_READ(GEN8_MASTER_IRQ));
807
808                 seq_printf(m, "Display IER:\t%08x\n",
809                            I915_READ(VLV_IER));
810                 seq_printf(m, "Display IIR:\t%08x\n",
811                            I915_READ(VLV_IIR));
812                 seq_printf(m, "Display IIR_RW:\t%08x\n",
813                            I915_READ(VLV_IIR_RW));
814                 seq_printf(m, "Display IMR:\t%08x\n",
815                            I915_READ(VLV_IMR));
816                 for_each_pipe(dev_priv, pipe)
817                         seq_printf(m, "Pipe %c stat:\t%08x\n",
818                                    pipe_name(pipe),
819                                    I915_READ(PIPESTAT(pipe)));
820
821                 seq_printf(m, "Port hotplug:\t%08x\n",
822                            I915_READ(PORT_HOTPLUG_EN));
823                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
824                            I915_READ(VLV_DPFLIPSTAT));
825                 seq_printf(m, "DPINVGTT:\t%08x\n",
826                            I915_READ(DPINVGTT));
827
828                 for (i = 0; i < 4; i++) {
829                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
830                                    i, I915_READ(GEN8_GT_IMR(i)));
831                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
832                                    i, I915_READ(GEN8_GT_IIR(i)));
833                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
834                                    i, I915_READ(GEN8_GT_IER(i)));
835                 }
836
837                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
838                            I915_READ(GEN8_PCU_IMR));
839                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
840                            I915_READ(GEN8_PCU_IIR));
841                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
842                            I915_READ(GEN8_PCU_IER));
843         } else if (INTEL_INFO(dev)->gen >= 8) {
844                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
845                            I915_READ(GEN8_MASTER_IRQ));
846
847                 for (i = 0; i < 4; i++) {
848                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
849                                    i, I915_READ(GEN8_GT_IMR(i)));
850                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
851                                    i, I915_READ(GEN8_GT_IIR(i)));
852                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
853                                    i, I915_READ(GEN8_GT_IER(i)));
854                 }
855
856                 for_each_pipe(dev_priv, pipe) {
857                         enum intel_display_power_domain power_domain;
858
859                         power_domain = POWER_DOMAIN_PIPE(pipe);
860                         if (!intel_display_power_get_if_enabled(dev_priv,
861                                                                 power_domain)) {
862                                 seq_printf(m, "Pipe %c power disabled\n",
863                                            pipe_name(pipe));
864                                 continue;
865                         }
866                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
867                                    pipe_name(pipe),
868                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
869                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
870                                    pipe_name(pipe),
871                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
872                         seq_printf(m, "Pipe %c IER:\t%08x\n",
873                                    pipe_name(pipe),
874                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
875
876                         intel_display_power_put(dev_priv, power_domain);
877                 }
878
879                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
880                            I915_READ(GEN8_DE_PORT_IMR));
881                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
882                            I915_READ(GEN8_DE_PORT_IIR));
883                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
884                            I915_READ(GEN8_DE_PORT_IER));
885
886                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
887                            I915_READ(GEN8_DE_MISC_IMR));
888                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
889                            I915_READ(GEN8_DE_MISC_IIR));
890                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
891                            I915_READ(GEN8_DE_MISC_IER));
892
893                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
894                            I915_READ(GEN8_PCU_IMR));
895                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
896                            I915_READ(GEN8_PCU_IIR));
897                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
898                            I915_READ(GEN8_PCU_IER));
899         } else if (IS_VALLEYVIEW(dev)) {
900                 seq_printf(m, "Display IER:\t%08x\n",
901                            I915_READ(VLV_IER));
902                 seq_printf(m, "Display IIR:\t%08x\n",
903                            I915_READ(VLV_IIR));
904                 seq_printf(m, "Display IIR_RW:\t%08x\n",
905                            I915_READ(VLV_IIR_RW));
906                 seq_printf(m, "Display IMR:\t%08x\n",
907                            I915_READ(VLV_IMR));
908                 for_each_pipe(dev_priv, pipe)
909                         seq_printf(m, "Pipe %c stat:\t%08x\n",
910                                    pipe_name(pipe),
911                                    I915_READ(PIPESTAT(pipe)));
912
913                 seq_printf(m, "Master IER:\t%08x\n",
914                            I915_READ(VLV_MASTER_IER));
915
916                 seq_printf(m, "Render IER:\t%08x\n",
917                            I915_READ(GTIER));
918                 seq_printf(m, "Render IIR:\t%08x\n",
919                            I915_READ(GTIIR));
920                 seq_printf(m, "Render IMR:\t%08x\n",
921                            I915_READ(GTIMR));
922
923                 seq_printf(m, "PM IER:\t\t%08x\n",
924                            I915_READ(GEN6_PMIER));
925                 seq_printf(m, "PM IIR:\t\t%08x\n",
926                            I915_READ(GEN6_PMIIR));
927                 seq_printf(m, "PM IMR:\t\t%08x\n",
928                            I915_READ(GEN6_PMIMR));
929
930                 seq_printf(m, "Port hotplug:\t%08x\n",
931                            I915_READ(PORT_HOTPLUG_EN));
932                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
933                            I915_READ(VLV_DPFLIPSTAT));
934                 seq_printf(m, "DPINVGTT:\t%08x\n",
935                            I915_READ(DPINVGTT));
936
937         } else if (!HAS_PCH_SPLIT(dev)) {
938                 seq_printf(m, "Interrupt enable:    %08x\n",
939                            I915_READ(IER));
940                 seq_printf(m, "Interrupt identity:  %08x\n",
941                            I915_READ(IIR));
942                 seq_printf(m, "Interrupt mask:      %08x\n",
943                            I915_READ(IMR));
944                 for_each_pipe(dev_priv, pipe)
945                         seq_printf(m, "Pipe %c stat:         %08x\n",
946                                    pipe_name(pipe),
947                                    I915_READ(PIPESTAT(pipe)));
948         } else {
949                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
950                            I915_READ(DEIER));
951                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
952                            I915_READ(DEIIR));
953                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
954                            I915_READ(DEIMR));
955                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
956                            I915_READ(SDEIER));
957                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
958                            I915_READ(SDEIIR));
959                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
960                            I915_READ(SDEIMR));
961                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
962                            I915_READ(GTIER));
963                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
964                            I915_READ(GTIIR));
965                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
966                            I915_READ(GTIMR));
967         }
968         for_each_engine(engine, dev_priv) {
969                 if (INTEL_INFO(dev)->gen >= 6) {
970                         seq_printf(m,
971                                    "Graphics Interrupt mask (%s):       %08x\n",
972                                    engine->name, I915_READ_IMR(engine));
973                 }
974                 i915_ring_seqno_info(m, engine);
975         }
976         intel_runtime_pm_put(dev_priv);
977         mutex_unlock(&dev->struct_mutex);
978
979         return 0;
980 }
981
982 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
983 {
984         struct drm_info_node *node = m->private;
985         struct drm_device *dev = node->minor->dev;
986         struct drm_i915_private *dev_priv = dev->dev_private;
987         int i, ret;
988
989         ret = mutex_lock_interruptible(&dev->struct_mutex);
990         if (ret)
991                 return ret;
992
993         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
994         for (i = 0; i < dev_priv->num_fence_regs; i++) {
995                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
996
997                 seq_printf(m, "Fence %d, pin count = %d, object = ",
998                            i, dev_priv->fence_regs[i].pin_count);
999                 if (obj == NULL)
1000                         seq_puts(m, "unused");
1001                 else
1002                         describe_obj(m, obj);
1003                 seq_putc(m, '\n');
1004         }
1005
1006         mutex_unlock(&dev->struct_mutex);
1007         return 0;
1008 }
1009
1010 static int i915_hws_info(struct seq_file *m, void *data)
1011 {
1012         struct drm_info_node *node = m->private;
1013         struct drm_device *dev = node->minor->dev;
1014         struct drm_i915_private *dev_priv = dev->dev_private;
1015         struct intel_engine_cs *engine;
1016         const u32 *hws;
1017         int i;
1018
1019         engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
1020         hws = engine->status_page.page_addr;
1021         if (hws == NULL)
1022                 return 0;
1023
1024         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
1025                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1026                            i * 4,
1027                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
1028         }
1029         return 0;
1030 }
1031
1032 static ssize_t
1033 i915_error_state_write(struct file *filp,
1034                        const char __user *ubuf,
1035                        size_t cnt,
1036                        loff_t *ppos)
1037 {
1038         struct i915_error_state_file_priv *error_priv = filp->private_data;
1039         struct drm_device *dev = error_priv->dev;
1040         int ret;
1041
1042         DRM_DEBUG_DRIVER("Resetting error state\n");
1043
1044         ret = mutex_lock_interruptible(&dev->struct_mutex);
1045         if (ret)
1046                 return ret;
1047
1048         i915_destroy_error_state(dev);
1049         mutex_unlock(&dev->struct_mutex);
1050
1051         return cnt;
1052 }
1053
1054 static int i915_error_state_open(struct inode *inode, struct file *file)
1055 {
1056         struct drm_device *dev = inode->i_private;
1057         struct i915_error_state_file_priv *error_priv;
1058
1059         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1060         if (!error_priv)
1061                 return -ENOMEM;
1062
1063         error_priv->dev = dev;
1064
1065         i915_error_state_get(dev, error_priv);
1066
1067         file->private_data = error_priv;
1068
1069         return 0;
1070 }
1071
1072 static int i915_error_state_release(struct inode *inode, struct file *file)
1073 {
1074         struct i915_error_state_file_priv *error_priv = file->private_data;
1075
1076         i915_error_state_put(error_priv);
1077         kfree(error_priv);
1078
1079         return 0;
1080 }
1081
1082 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1083                                      size_t count, loff_t *pos)
1084 {
1085         struct i915_error_state_file_priv *error_priv = file->private_data;
1086         struct drm_i915_error_state_buf error_str;
1087         loff_t tmp_pos = 0;
1088         ssize_t ret_count = 0;
1089         int ret;
1090
1091         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1092         if (ret)
1093                 return ret;
1094
1095         ret = i915_error_state_to_str(&error_str, error_priv);
1096         if (ret)
1097                 goto out;
1098
1099         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1100                                             error_str.buf,
1101                                             error_str.bytes);
1102
1103         if (ret_count < 0)
1104                 ret = ret_count;
1105         else
1106                 *pos = error_str.start + ret_count;
1107 out:
1108         i915_error_state_buf_release(&error_str);
1109         return ret ?: ret_count;
1110 }
1111
1112 static const struct file_operations i915_error_state_fops = {
1113         .owner = THIS_MODULE,
1114         .open = i915_error_state_open,
1115         .read = i915_error_state_read,
1116         .write = i915_error_state_write,
1117         .llseek = default_llseek,
1118         .release = i915_error_state_release,
1119 };
1120
1121 static int
1122 i915_next_seqno_get(void *data, u64 *val)
1123 {
1124         struct drm_device *dev = data;
1125         struct drm_i915_private *dev_priv = dev->dev_private;
1126         int ret;
1127
1128         ret = mutex_lock_interruptible(&dev->struct_mutex);
1129         if (ret)
1130                 return ret;
1131
1132         *val = dev_priv->next_seqno;
1133         mutex_unlock(&dev->struct_mutex);
1134
1135         return 0;
1136 }
1137
1138 static int
1139 i915_next_seqno_set(void *data, u64 val)
1140 {
1141         struct drm_device *dev = data;
1142         int ret;
1143
1144         ret = mutex_lock_interruptible(&dev->struct_mutex);
1145         if (ret)
1146                 return ret;
1147
1148         ret = i915_gem_set_seqno(dev, val);
1149         mutex_unlock(&dev->struct_mutex);
1150
1151         return ret;
1152 }
1153
1154 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1155                         i915_next_seqno_get, i915_next_seqno_set,
1156                         "0x%llx\n");
1157
1158 static int i915_frequency_info(struct seq_file *m, void *unused)
1159 {
1160         struct drm_info_node *node = m->private;
1161         struct drm_device *dev = node->minor->dev;
1162         struct drm_i915_private *dev_priv = dev->dev_private;
1163         int ret = 0;
1164
1165         intel_runtime_pm_get(dev_priv);
1166
1167         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1168
1169         if (IS_GEN5(dev)) {
1170                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1171                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1172
1173                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1174                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1175                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1176                            MEMSTAT_VID_SHIFT);
1177                 seq_printf(m, "Current P-state: %d\n",
1178                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1179         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1180                 u32 freq_sts;
1181
1182                 mutex_lock(&dev_priv->rps.hw_lock);
1183                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1184                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1185                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1186
1187                 seq_printf(m, "actual GPU freq: %d MHz\n",
1188                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1189
1190                 seq_printf(m, "current GPU freq: %d MHz\n",
1191                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1192
1193                 seq_printf(m, "max GPU freq: %d MHz\n",
1194                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1195
1196                 seq_printf(m, "min GPU freq: %d MHz\n",
1197                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1198
1199                 seq_printf(m, "idle GPU freq: %d MHz\n",
1200                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1201
1202                 seq_printf(m,
1203                            "efficient (RPe) frequency: %d MHz\n",
1204                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1205                 mutex_unlock(&dev_priv->rps.hw_lock);
1206         } else if (INTEL_INFO(dev)->gen >= 6) {
1207                 u32 rp_state_limits;
1208                 u32 gt_perf_status;
1209                 u32 rp_state_cap;
1210                 u32 rpmodectl, rpinclimit, rpdeclimit;
1211                 u32 rpstat, cagf, reqf;
1212                 u32 rpupei, rpcurup, rpprevup;
1213                 u32 rpdownei, rpcurdown, rpprevdown;
1214                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1215                 int max_freq;
1216
1217                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1218                 if (IS_BROXTON(dev)) {
1219                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1220                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1221                 } else {
1222                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1223                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1224                 }
1225
1226                 /* RPSTAT1 is in the GT power well */
1227                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1228                 if (ret)
1229                         goto out;
1230
1231                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1232
1233                 reqf = I915_READ(GEN6_RPNSWREQ);
1234                 if (IS_GEN9(dev))
1235                         reqf >>= 23;
1236                 else {
1237                         reqf &= ~GEN6_TURBO_DISABLE;
1238                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1239                                 reqf >>= 24;
1240                         else
1241                                 reqf >>= 25;
1242                 }
1243                 reqf = intel_gpu_freq(dev_priv, reqf);
1244
1245                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1246                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1247                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1248
1249                 rpstat = I915_READ(GEN6_RPSTAT1);
1250                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1251                 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1252                 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1253                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1254                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1255                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1256                 if (IS_GEN9(dev))
1257                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1258                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1259                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1260                 else
1261                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1262                 cagf = intel_gpu_freq(dev_priv, cagf);
1263
1264                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1265                 mutex_unlock(&dev->struct_mutex);
1266
1267                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1268                         pm_ier = I915_READ(GEN6_PMIER);
1269                         pm_imr = I915_READ(GEN6_PMIMR);
1270                         pm_isr = I915_READ(GEN6_PMISR);
1271                         pm_iir = I915_READ(GEN6_PMIIR);
1272                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1273                 } else {
1274                         pm_ier = I915_READ(GEN8_GT_IER(2));
1275                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1276                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1277                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1278                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1279                 }
1280                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1281                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1282                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1283                 seq_printf(m, "Render p-state ratio: %d\n",
1284                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1285                 seq_printf(m, "Render p-state VID: %d\n",
1286                            gt_perf_status & 0xff);
1287                 seq_printf(m, "Render p-state limit: %d\n",
1288                            rp_state_limits & 0xff);
1289                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1290                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1291                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1292                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1293                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1294                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1295                 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1296                            rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1297                 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1298                            rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1299                 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1300                            rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1301                 seq_printf(m, "Up threshold: %d%%\n",
1302                            dev_priv->rps.up_threshold);
1303
1304                 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1305                            rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1306                 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1307                            rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1308                 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1309                            rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1310                 seq_printf(m, "Down threshold: %d%%\n",
1311                            dev_priv->rps.down_threshold);
1312
1313                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1314                             rp_state_cap >> 16) & 0xff;
1315                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1316                              GEN9_FREQ_SCALER : 1);
1317                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1318                            intel_gpu_freq(dev_priv, max_freq));
1319
1320                 max_freq = (rp_state_cap & 0xff00) >> 8;
1321                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1322                              GEN9_FREQ_SCALER : 1);
1323                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1324                            intel_gpu_freq(dev_priv, max_freq));
1325
1326                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1327                             rp_state_cap >> 0) & 0xff;
1328                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1329                              GEN9_FREQ_SCALER : 1);
1330                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1331                            intel_gpu_freq(dev_priv, max_freq));
1332                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1333                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1334
1335                 seq_printf(m, "Current freq: %d MHz\n",
1336                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1337                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1338                 seq_printf(m, "Idle freq: %d MHz\n",
1339                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1340                 seq_printf(m, "Min freq: %d MHz\n",
1341                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1342                 seq_printf(m, "Max freq: %d MHz\n",
1343                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1344                 seq_printf(m,
1345                            "efficient (RPe) frequency: %d MHz\n",
1346                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1347         } else {
1348                 seq_puts(m, "no P-state info available\n");
1349         }
1350
1351         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1352         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1353         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1354
1355 out:
1356         intel_runtime_pm_put(dev_priv);
1357         return ret;
1358 }
1359
1360 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1361 {
1362         struct drm_info_node *node = m->private;
1363         struct drm_device *dev = node->minor->dev;
1364         struct drm_i915_private *dev_priv = dev->dev_private;
1365         struct intel_engine_cs *engine;
1366         u64 acthd[I915_NUM_ENGINES];
1367         u32 seqno[I915_NUM_ENGINES];
1368         u32 instdone[I915_NUM_INSTDONE_REG];
1369         enum intel_engine_id id;
1370         int j;
1371
1372         if (!i915.enable_hangcheck) {
1373                 seq_printf(m, "Hangcheck disabled\n");
1374                 return 0;
1375         }
1376
1377         intel_runtime_pm_get(dev_priv);
1378
1379         for_each_engine_id(engine, dev_priv, id) {
1380                 acthd[id] = intel_ring_get_active_head(engine);
1381                 seqno[id] = engine->get_seqno(engine);
1382         }
1383
1384         i915_get_extra_instdone(dev_priv, instdone);
1385
1386         intel_runtime_pm_put(dev_priv);
1387
1388         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1389                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1390                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1391                                             jiffies));
1392         } else
1393                 seq_printf(m, "Hangcheck inactive\n");
1394
1395         for_each_engine_id(engine, dev_priv, id) {
1396                 seq_printf(m, "%s:\n", engine->name);
1397                 seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1398                            engine->hangcheck.seqno,
1399                            seqno[id],
1400                            engine->last_submitted_seqno);
1401                 seq_printf(m, "\tuser interrupts = %x [current %x]\n",
1402                            engine->hangcheck.user_interrupts,
1403                            READ_ONCE(engine->user_interrupts));
1404                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1405                            (long long)engine->hangcheck.acthd,
1406                            (long long)acthd[id]);
1407                 seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1408                 seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1409
1410                 if (engine->id == RCS) {
1411                         seq_puts(m, "\tinstdone read =");
1412
1413                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1414                                 seq_printf(m, " 0x%08x", instdone[j]);
1415
1416                         seq_puts(m, "\n\tinstdone accu =");
1417
1418                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1419                                 seq_printf(m, " 0x%08x",
1420                                            engine->hangcheck.instdone[j]);
1421
1422                         seq_puts(m, "\n");
1423                 }
1424         }
1425
1426         return 0;
1427 }
1428
1429 static int ironlake_drpc_info(struct seq_file *m)
1430 {
1431         struct drm_info_node *node = m->private;
1432         struct drm_device *dev = node->minor->dev;
1433         struct drm_i915_private *dev_priv = dev->dev_private;
1434         u32 rgvmodectl, rstdbyctl;
1435         u16 crstandvid;
1436         int ret;
1437
1438         ret = mutex_lock_interruptible(&dev->struct_mutex);
1439         if (ret)
1440                 return ret;
1441         intel_runtime_pm_get(dev_priv);
1442
1443         rgvmodectl = I915_READ(MEMMODECTL);
1444         rstdbyctl = I915_READ(RSTDBYCTL);
1445         crstandvid = I915_READ16(CRSTANDVID);
1446
1447         intel_runtime_pm_put(dev_priv);
1448         mutex_unlock(&dev->struct_mutex);
1449
1450         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1451         seq_printf(m, "Boost freq: %d\n",
1452                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1453                    MEMMODE_BOOST_FREQ_SHIFT);
1454         seq_printf(m, "HW control enabled: %s\n",
1455                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1456         seq_printf(m, "SW control enabled: %s\n",
1457                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1458         seq_printf(m, "Gated voltage change: %s\n",
1459                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1460         seq_printf(m, "Starting frequency: P%d\n",
1461                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1462         seq_printf(m, "Max P-state: P%d\n",
1463                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1464         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1465         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1466         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1467         seq_printf(m, "Render standby enabled: %s\n",
1468                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1469         seq_puts(m, "Current RS state: ");
1470         switch (rstdbyctl & RSX_STATUS_MASK) {
1471         case RSX_STATUS_ON:
1472                 seq_puts(m, "on\n");
1473                 break;
1474         case RSX_STATUS_RC1:
1475                 seq_puts(m, "RC1\n");
1476                 break;
1477         case RSX_STATUS_RC1E:
1478                 seq_puts(m, "RC1E\n");
1479                 break;
1480         case RSX_STATUS_RS1:
1481                 seq_puts(m, "RS1\n");
1482                 break;
1483         case RSX_STATUS_RS2:
1484                 seq_puts(m, "RS2 (RC6)\n");
1485                 break;
1486         case RSX_STATUS_RS3:
1487                 seq_puts(m, "RC3 (RC6+)\n");
1488                 break;
1489         default:
1490                 seq_puts(m, "unknown\n");
1491                 break;
1492         }
1493
1494         return 0;
1495 }
1496
1497 static int i915_forcewake_domains(struct seq_file *m, void *data)
1498 {
1499         struct drm_info_node *node = m->private;
1500         struct drm_device *dev = node->minor->dev;
1501         struct drm_i915_private *dev_priv = dev->dev_private;
1502         struct intel_uncore_forcewake_domain *fw_domain;
1503
1504         spin_lock_irq(&dev_priv->uncore.lock);
1505         for_each_fw_domain(fw_domain, dev_priv) {
1506                 seq_printf(m, "%s.wake_count = %u\n",
1507                            intel_uncore_forcewake_domain_to_str(fw_domain->id),
1508                            fw_domain->wake_count);
1509         }
1510         spin_unlock_irq(&dev_priv->uncore.lock);
1511
1512         return 0;
1513 }
1514
1515 static int vlv_drpc_info(struct seq_file *m)
1516 {
1517         struct drm_info_node *node = m->private;
1518         struct drm_device *dev = node->minor->dev;
1519         struct drm_i915_private *dev_priv = dev->dev_private;
1520         u32 rpmodectl1, rcctl1, pw_status;
1521
1522         intel_runtime_pm_get(dev_priv);
1523
1524         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1525         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1526         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1527
1528         intel_runtime_pm_put(dev_priv);
1529
1530         seq_printf(m, "Video Turbo Mode: %s\n",
1531                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1532         seq_printf(m, "Turbo enabled: %s\n",
1533                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1534         seq_printf(m, "HW control enabled: %s\n",
1535                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1536         seq_printf(m, "SW control enabled: %s\n",
1537                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1538                           GEN6_RP_MEDIA_SW_MODE));
1539         seq_printf(m, "RC6 Enabled: %s\n",
1540                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1541                                         GEN6_RC_CTL_EI_MODE(1))));
1542         seq_printf(m, "Render Power Well: %s\n",
1543                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1544         seq_printf(m, "Media Power Well: %s\n",
1545                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1546
1547         seq_printf(m, "Render RC6 residency since boot: %u\n",
1548                    I915_READ(VLV_GT_RENDER_RC6));
1549         seq_printf(m, "Media RC6 residency since boot: %u\n",
1550                    I915_READ(VLV_GT_MEDIA_RC6));
1551
1552         return i915_forcewake_domains(m, NULL);
1553 }
1554
1555 static int gen6_drpc_info(struct seq_file *m)
1556 {
1557         struct drm_info_node *node = m->private;
1558         struct drm_device *dev = node->minor->dev;
1559         struct drm_i915_private *dev_priv = dev->dev_private;
1560         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1561         unsigned forcewake_count;
1562         int count = 0, ret;
1563
1564         ret = mutex_lock_interruptible(&dev->struct_mutex);
1565         if (ret)
1566                 return ret;
1567         intel_runtime_pm_get(dev_priv);
1568
1569         spin_lock_irq(&dev_priv->uncore.lock);
1570         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1571         spin_unlock_irq(&dev_priv->uncore.lock);
1572
1573         if (forcewake_count) {
1574                 seq_puts(m, "RC information inaccurate because somebody "
1575                             "holds a forcewake reference \n");
1576         } else {
1577                 /* NB: we cannot use forcewake, else we read the wrong values */
1578                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1579                         udelay(10);
1580                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1581         }
1582
1583         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1584         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1585
1586         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1587         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1588         mutex_unlock(&dev->struct_mutex);
1589         mutex_lock(&dev_priv->rps.hw_lock);
1590         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1591         mutex_unlock(&dev_priv->rps.hw_lock);
1592
1593         intel_runtime_pm_put(dev_priv);
1594
1595         seq_printf(m, "Video Turbo Mode: %s\n",
1596                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1597         seq_printf(m, "HW control enabled: %s\n",
1598                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1599         seq_printf(m, "SW control enabled: %s\n",
1600                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1601                           GEN6_RP_MEDIA_SW_MODE));
1602         seq_printf(m, "RC1e Enabled: %s\n",
1603                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1604         seq_printf(m, "RC6 Enabled: %s\n",
1605                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1606         seq_printf(m, "Deep RC6 Enabled: %s\n",
1607                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1608         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1609                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1610         seq_puts(m, "Current RC state: ");
1611         switch (gt_core_status & GEN6_RCn_MASK) {
1612         case GEN6_RC0:
1613                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1614                         seq_puts(m, "Core Power Down\n");
1615                 else
1616                         seq_puts(m, "on\n");
1617                 break;
1618         case GEN6_RC3:
1619                 seq_puts(m, "RC3\n");
1620                 break;
1621         case GEN6_RC6:
1622                 seq_puts(m, "RC6\n");
1623                 break;
1624         case GEN6_RC7:
1625                 seq_puts(m, "RC7\n");
1626                 break;
1627         default:
1628                 seq_puts(m, "Unknown\n");
1629                 break;
1630         }
1631
1632         seq_printf(m, "Core Power Down: %s\n",
1633                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1634
1635         /* Not exactly sure what this is */
1636         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1637                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1638         seq_printf(m, "RC6 residency since boot: %u\n",
1639                    I915_READ(GEN6_GT_GFX_RC6));
1640         seq_printf(m, "RC6+ residency since boot: %u\n",
1641                    I915_READ(GEN6_GT_GFX_RC6p));
1642         seq_printf(m, "RC6++ residency since boot: %u\n",
1643                    I915_READ(GEN6_GT_GFX_RC6pp));
1644
1645         seq_printf(m, "RC6   voltage: %dmV\n",
1646                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1647         seq_printf(m, "RC6+  voltage: %dmV\n",
1648                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1649         seq_printf(m, "RC6++ voltage: %dmV\n",
1650                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1651         return 0;
1652 }
1653
1654 static int i915_drpc_info(struct seq_file *m, void *unused)
1655 {
1656         struct drm_info_node *node = m->private;
1657         struct drm_device *dev = node->minor->dev;
1658
1659         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1660                 return vlv_drpc_info(m);
1661         else if (INTEL_INFO(dev)->gen >= 6)
1662                 return gen6_drpc_info(m);
1663         else
1664                 return ironlake_drpc_info(m);
1665 }
1666
1667 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1668 {
1669         struct drm_info_node *node = m->private;
1670         struct drm_device *dev = node->minor->dev;
1671         struct drm_i915_private *dev_priv = dev->dev_private;
1672
1673         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1674                    dev_priv->fb_tracking.busy_bits);
1675
1676         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1677                    dev_priv->fb_tracking.flip_bits);
1678
1679         return 0;
1680 }
1681
1682 static int i915_fbc_status(struct seq_file *m, void *unused)
1683 {
1684         struct drm_info_node *node = m->private;
1685         struct drm_device *dev = node->minor->dev;
1686         struct drm_i915_private *dev_priv = dev->dev_private;
1687
1688         if (!HAS_FBC(dev)) {
1689                 seq_puts(m, "FBC unsupported on this chipset\n");
1690                 return 0;
1691         }
1692
1693         intel_runtime_pm_get(dev_priv);
1694         mutex_lock(&dev_priv->fbc.lock);
1695
1696         if (intel_fbc_is_active(dev_priv))
1697                 seq_puts(m, "FBC enabled\n");
1698         else
1699                 seq_printf(m, "FBC disabled: %s\n",
1700                            dev_priv->fbc.no_fbc_reason);
1701
1702         if (INTEL_INFO(dev_priv)->gen >= 7)
1703                 seq_printf(m, "Compressing: %s\n",
1704                            yesno(I915_READ(FBC_STATUS2) &
1705                                  FBC_COMPRESSION_MASK));
1706
1707         mutex_unlock(&dev_priv->fbc.lock);
1708         intel_runtime_pm_put(dev_priv);
1709
1710         return 0;
1711 }
1712
1713 static int i915_fbc_fc_get(void *data, u64 *val)
1714 {
1715         struct drm_device *dev = data;
1716         struct drm_i915_private *dev_priv = dev->dev_private;
1717
1718         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1719                 return -ENODEV;
1720
1721         *val = dev_priv->fbc.false_color;
1722
1723         return 0;
1724 }
1725
1726 static int i915_fbc_fc_set(void *data, u64 val)
1727 {
1728         struct drm_device *dev = data;
1729         struct drm_i915_private *dev_priv = dev->dev_private;
1730         u32 reg;
1731
1732         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1733                 return -ENODEV;
1734
1735         mutex_lock(&dev_priv->fbc.lock);
1736
1737         reg = I915_READ(ILK_DPFC_CONTROL);
1738         dev_priv->fbc.false_color = val;
1739
1740         I915_WRITE(ILK_DPFC_CONTROL, val ?
1741                    (reg | FBC_CTL_FALSE_COLOR) :
1742                    (reg & ~FBC_CTL_FALSE_COLOR));
1743
1744         mutex_unlock(&dev_priv->fbc.lock);
1745         return 0;
1746 }
1747
1748 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1749                         i915_fbc_fc_get, i915_fbc_fc_set,
1750                         "%llu\n");
1751
1752 static int i915_ips_status(struct seq_file *m, void *unused)
1753 {
1754         struct drm_info_node *node = m->private;
1755         struct drm_device *dev = node->minor->dev;
1756         struct drm_i915_private *dev_priv = dev->dev_private;
1757
1758         if (!HAS_IPS(dev)) {
1759                 seq_puts(m, "not supported\n");
1760                 return 0;
1761         }
1762
1763         intel_runtime_pm_get(dev_priv);
1764
1765         seq_printf(m, "Enabled by kernel parameter: %s\n",
1766                    yesno(i915.enable_ips));
1767
1768         if (INTEL_INFO(dev)->gen >= 8) {
1769                 seq_puts(m, "Currently: unknown\n");
1770         } else {
1771                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1772                         seq_puts(m, "Currently: enabled\n");
1773                 else
1774                         seq_puts(m, "Currently: disabled\n");
1775         }
1776
1777         intel_runtime_pm_put(dev_priv);
1778
1779         return 0;
1780 }
1781
1782 static int i915_sr_status(struct seq_file *m, void *unused)
1783 {
1784         struct drm_info_node *node = m->private;
1785         struct drm_device *dev = node->minor->dev;
1786         struct drm_i915_private *dev_priv = dev->dev_private;
1787         bool sr_enabled = false;
1788
1789         intel_runtime_pm_get(dev_priv);
1790
1791         if (HAS_PCH_SPLIT(dev))
1792                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1793         else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1794                  IS_I945G(dev) || IS_I945GM(dev))
1795                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1796         else if (IS_I915GM(dev))
1797                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1798         else if (IS_PINEVIEW(dev))
1799                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1800         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1801                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1802
1803         intel_runtime_pm_put(dev_priv);
1804
1805         seq_printf(m, "self-refresh: %s\n",
1806                    sr_enabled ? "enabled" : "disabled");
1807
1808         return 0;
1809 }
1810
1811 static int i915_emon_status(struct seq_file *m, void *unused)
1812 {
1813         struct drm_info_node *node = m->private;
1814         struct drm_device *dev = node->minor->dev;
1815         struct drm_i915_private *dev_priv = dev->dev_private;
1816         unsigned long temp, chipset, gfx;
1817         int ret;
1818
1819         if (!IS_GEN5(dev))
1820                 return -ENODEV;
1821
1822         ret = mutex_lock_interruptible(&dev->struct_mutex);
1823         if (ret)
1824                 return ret;
1825
1826         temp = i915_mch_val(dev_priv);
1827         chipset = i915_chipset_val(dev_priv);
1828         gfx = i915_gfx_val(dev_priv);
1829         mutex_unlock(&dev->struct_mutex);
1830
1831         seq_printf(m, "GMCH temp: %ld\n", temp);
1832         seq_printf(m, "Chipset power: %ld\n", chipset);
1833         seq_printf(m, "GFX power: %ld\n", gfx);
1834         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1835
1836         return 0;
1837 }
1838
1839 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1840 {
1841         struct drm_info_node *node = m->private;
1842         struct drm_device *dev = node->minor->dev;
1843         struct drm_i915_private *dev_priv = dev->dev_private;
1844         int ret = 0;
1845         int gpu_freq, ia_freq;
1846         unsigned int max_gpu_freq, min_gpu_freq;
1847
1848         if (!HAS_CORE_RING_FREQ(dev)) {
1849                 seq_puts(m, "unsupported on this chipset\n");
1850                 return 0;
1851         }
1852
1853         intel_runtime_pm_get(dev_priv);
1854
1855         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1856
1857         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1858         if (ret)
1859                 goto out;
1860
1861         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1862                 /* Convert GT frequency to 50 HZ units */
1863                 min_gpu_freq =
1864                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1865                 max_gpu_freq =
1866                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1867         } else {
1868                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1869                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1870         }
1871
1872         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1873
1874         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1875                 ia_freq = gpu_freq;
1876                 sandybridge_pcode_read(dev_priv,
1877                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1878                                        &ia_freq);
1879                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1880                            intel_gpu_freq(dev_priv, (gpu_freq *
1881                                 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1882                                  GEN9_FREQ_SCALER : 1))),
1883                            ((ia_freq >> 0) & 0xff) * 100,
1884                            ((ia_freq >> 8) & 0xff) * 100);
1885         }
1886
1887         mutex_unlock(&dev_priv->rps.hw_lock);
1888
1889 out:
1890         intel_runtime_pm_put(dev_priv);
1891         return ret;
1892 }
1893
1894 static int i915_opregion(struct seq_file *m, void *unused)
1895 {
1896         struct drm_info_node *node = m->private;
1897         struct drm_device *dev = node->minor->dev;
1898         struct drm_i915_private *dev_priv = dev->dev_private;
1899         struct intel_opregion *opregion = &dev_priv->opregion;
1900         int ret;
1901
1902         ret = mutex_lock_interruptible(&dev->struct_mutex);
1903         if (ret)
1904                 goto out;
1905
1906         if (opregion->header)
1907                 seq_write(m, opregion->header, OPREGION_SIZE);
1908
1909         mutex_unlock(&dev->struct_mutex);
1910
1911 out:
1912         return 0;
1913 }
1914
1915 static int i915_vbt(struct seq_file *m, void *unused)
1916 {
1917         struct drm_info_node *node = m->private;
1918         struct drm_device *dev = node->minor->dev;
1919         struct drm_i915_private *dev_priv = dev->dev_private;
1920         struct intel_opregion *opregion = &dev_priv->opregion;
1921
1922         if (opregion->vbt)
1923                 seq_write(m, opregion->vbt, opregion->vbt_size);
1924
1925         return 0;
1926 }
1927
1928 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1929 {
1930         struct drm_info_node *node = m->private;
1931         struct drm_device *dev = node->minor->dev;
1932         struct intel_framebuffer *fbdev_fb = NULL;
1933         struct drm_framebuffer *drm_fb;
1934         int ret;
1935
1936         ret = mutex_lock_interruptible(&dev->struct_mutex);
1937         if (ret)
1938                 return ret;
1939
1940 #ifdef CONFIG_DRM_FBDEV_EMULATION
1941        if (to_i915(dev)->fbdev) {
1942                fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1943
1944                seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1945                          fbdev_fb->base.width,
1946                          fbdev_fb->base.height,
1947                          fbdev_fb->base.depth,
1948                          fbdev_fb->base.bits_per_pixel,
1949                          fbdev_fb->base.modifier[0],
1950                          drm_framebuffer_read_refcount(&fbdev_fb->base));
1951                describe_obj(m, fbdev_fb->obj);
1952                seq_putc(m, '\n');
1953        }
1954 #endif
1955
1956         mutex_lock(&dev->mode_config.fb_lock);
1957         drm_for_each_fb(drm_fb, dev) {
1958                 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1959                 if (fb == fbdev_fb)
1960                         continue;
1961
1962                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1963                            fb->base.width,
1964                            fb->base.height,
1965                            fb->base.depth,
1966                            fb->base.bits_per_pixel,
1967                            fb->base.modifier[0],
1968                            drm_framebuffer_read_refcount(&fb->base));
1969                 describe_obj(m, fb->obj);
1970                 seq_putc(m, '\n');
1971         }
1972         mutex_unlock(&dev->mode_config.fb_lock);
1973         mutex_unlock(&dev->struct_mutex);
1974
1975         return 0;
1976 }
1977
1978 static void describe_ctx_ringbuf(struct seq_file *m,
1979                                  struct intel_ringbuffer *ringbuf)
1980 {
1981         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1982                    ringbuf->space, ringbuf->head, ringbuf->tail,
1983                    ringbuf->last_retired_head);
1984 }
1985
1986 static int i915_context_status(struct seq_file *m, void *unused)
1987 {
1988         struct drm_info_node *node = m->private;
1989         struct drm_device *dev = node->minor->dev;
1990         struct drm_i915_private *dev_priv = dev->dev_private;
1991         struct intel_engine_cs *engine;
1992         struct intel_context *ctx;
1993         enum intel_engine_id id;
1994         int ret;
1995
1996         ret = mutex_lock_interruptible(&dev->struct_mutex);
1997         if (ret)
1998                 return ret;
1999
2000         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2001                 if (!i915.enable_execlists &&
2002                     ctx->legacy_hw_ctx.rcs_state == NULL)
2003                         continue;
2004
2005                 seq_printf(m, "HW context %u ", ctx->hw_id);
2006                 describe_ctx(m, ctx);
2007                 if (ctx == dev_priv->kernel_context)
2008                         seq_printf(m, "(kernel context) ");
2009
2010                 if (i915.enable_execlists) {
2011                         seq_putc(m, '\n');
2012                         for_each_engine_id(engine, dev_priv, id) {
2013                                 struct drm_i915_gem_object *ctx_obj =
2014                                         ctx->engine[id].state;
2015                                 struct intel_ringbuffer *ringbuf =
2016                                         ctx->engine[id].ringbuf;
2017
2018                                 seq_printf(m, "%s: ", engine->name);
2019                                 if (ctx_obj)
2020                                         describe_obj(m, ctx_obj);
2021                                 if (ringbuf)
2022                                         describe_ctx_ringbuf(m, ringbuf);
2023                                 seq_putc(m, '\n');
2024                         }
2025                 } else {
2026                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
2027                 }
2028
2029                 seq_putc(m, '\n');
2030         }
2031
2032         mutex_unlock(&dev->struct_mutex);
2033
2034         return 0;
2035 }
2036
2037 static void i915_dump_lrc_obj(struct seq_file *m,
2038                               struct intel_context *ctx,
2039                               struct intel_engine_cs *engine)
2040 {
2041         struct page *page;
2042         uint32_t *reg_state;
2043         int j;
2044         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
2045         unsigned long ggtt_offset = 0;
2046
2047         seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
2048
2049         if (ctx_obj == NULL) {
2050                 seq_puts(m, "\tNot allocated\n");
2051                 return;
2052         }
2053
2054         if (!i915_gem_obj_ggtt_bound(ctx_obj))
2055                 seq_puts(m, "\tNot bound in GGTT\n");
2056         else
2057                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2058
2059         if (i915_gem_object_get_pages(ctx_obj)) {
2060                 seq_puts(m, "\tFailed to get pages for context object\n");
2061                 return;
2062         }
2063
2064         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2065         if (!WARN_ON(page == NULL)) {
2066                 reg_state = kmap_atomic(page);
2067
2068                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2069                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2070                                    ggtt_offset + 4096 + (j * 4),
2071                                    reg_state[j], reg_state[j + 1],
2072                                    reg_state[j + 2], reg_state[j + 3]);
2073                 }
2074                 kunmap_atomic(reg_state);
2075         }
2076
2077         seq_putc(m, '\n');
2078 }
2079
2080 static int i915_dump_lrc(struct seq_file *m, void *unused)
2081 {
2082         struct drm_info_node *node = (struct drm_info_node *) m->private;
2083         struct drm_device *dev = node->minor->dev;
2084         struct drm_i915_private *dev_priv = dev->dev_private;
2085         struct intel_engine_cs *engine;
2086         struct intel_context *ctx;
2087         int ret;
2088
2089         if (!i915.enable_execlists) {
2090                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2091                 return 0;
2092         }
2093
2094         ret = mutex_lock_interruptible(&dev->struct_mutex);
2095         if (ret)
2096                 return ret;
2097
2098         list_for_each_entry(ctx, &dev_priv->context_list, link)
2099                 for_each_engine(engine, dev_priv)
2100                         i915_dump_lrc_obj(m, ctx, engine);
2101
2102         mutex_unlock(&dev->struct_mutex);
2103
2104         return 0;
2105 }
2106
2107 static int i915_execlists(struct seq_file *m, void *data)
2108 {
2109         struct drm_info_node *node = (struct drm_info_node *)m->private;
2110         struct drm_device *dev = node->minor->dev;
2111         struct drm_i915_private *dev_priv = dev->dev_private;
2112         struct intel_engine_cs *engine;
2113         u32 status_pointer;
2114         u8 read_pointer;
2115         u8 write_pointer;
2116         u32 status;
2117         u32 ctx_id;
2118         struct list_head *cursor;
2119         int i, ret;
2120
2121         if (!i915.enable_execlists) {
2122                 seq_puts(m, "Logical Ring Contexts are disabled\n");
2123                 return 0;
2124         }
2125
2126         ret = mutex_lock_interruptible(&dev->struct_mutex);
2127         if (ret)
2128                 return ret;
2129
2130         intel_runtime_pm_get(dev_priv);
2131
2132         for_each_engine(engine, dev_priv) {
2133                 struct drm_i915_gem_request *head_req = NULL;
2134                 int count = 0;
2135
2136                 seq_printf(m, "%s\n", engine->name);
2137
2138                 status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
2139                 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
2140                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2141                            status, ctx_id);
2142
2143                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
2144                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2145
2146                 read_pointer = engine->next_context_status_buffer;
2147                 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2148                 if (read_pointer > write_pointer)
2149                         write_pointer += GEN8_CSB_ENTRIES;
2150                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2151                            read_pointer, write_pointer);
2152
2153                 for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2154                         status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
2155                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
2156
2157                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2158                                    i, status, ctx_id);
2159                 }
2160
2161                 spin_lock_bh(&engine->execlist_lock);
2162                 list_for_each(cursor, &engine->execlist_queue)
2163                         count++;
2164                 head_req = list_first_entry_or_null(&engine->execlist_queue,
2165                                                     struct drm_i915_gem_request,
2166                                                     execlist_link);
2167                 spin_unlock_bh(&engine->execlist_lock);
2168
2169                 seq_printf(m, "\t%d requests in queue\n", count);
2170                 if (head_req) {
2171                         seq_printf(m, "\tHead request context: %u\n",
2172                                    head_req->ctx->hw_id);
2173                         seq_printf(m, "\tHead request tail: %u\n",
2174                                    head_req->tail);
2175                 }
2176
2177                 seq_putc(m, '\n');
2178         }
2179
2180         intel_runtime_pm_put(dev_priv);
2181         mutex_unlock(&dev->struct_mutex);
2182
2183         return 0;
2184 }
2185
2186 static const char *swizzle_string(unsigned swizzle)
2187 {
2188         switch (swizzle) {
2189         case I915_BIT_6_SWIZZLE_NONE:
2190                 return "none";
2191         case I915_BIT_6_SWIZZLE_9:
2192                 return "bit9";
2193         case I915_BIT_6_SWIZZLE_9_10:
2194                 return "bit9/bit10";
2195         case I915_BIT_6_SWIZZLE_9_11:
2196                 return "bit9/bit11";
2197         case I915_BIT_6_SWIZZLE_9_10_11:
2198                 return "bit9/bit10/bit11";
2199         case I915_BIT_6_SWIZZLE_9_17:
2200                 return "bit9/bit17";
2201         case I915_BIT_6_SWIZZLE_9_10_17:
2202                 return "bit9/bit10/bit17";
2203         case I915_BIT_6_SWIZZLE_UNKNOWN:
2204                 return "unknown";
2205         }
2206
2207         return "bug";
2208 }
2209
2210 static int i915_swizzle_info(struct seq_file *m, void *data)
2211 {
2212         struct drm_info_node *node = m->private;
2213         struct drm_device *dev = node->minor->dev;
2214         struct drm_i915_private *dev_priv = dev->dev_private;
2215         int ret;
2216
2217         ret = mutex_lock_interruptible(&dev->struct_mutex);
2218         if (ret)
2219                 return ret;
2220         intel_runtime_pm_get(dev_priv);
2221
2222         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2223                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2224         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2225                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2226
2227         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2228                 seq_printf(m, "DDC = 0x%08x\n",
2229                            I915_READ(DCC));
2230                 seq_printf(m, "DDC2 = 0x%08x\n",
2231                            I915_READ(DCC2));
2232                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2233                            I915_READ16(C0DRB3));
2234                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2235                            I915_READ16(C1DRB3));
2236         } else if (INTEL_INFO(dev)->gen >= 6) {
2237                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2238                            I915_READ(MAD_DIMM_C0));
2239                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2240                            I915_READ(MAD_DIMM_C1));
2241                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2242                            I915_READ(MAD_DIMM_C2));
2243                 seq_printf(m, "TILECTL = 0x%08x\n",
2244                            I915_READ(TILECTL));
2245                 if (INTEL_INFO(dev)->gen >= 8)
2246                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2247                                    I915_READ(GAMTARBMODE));
2248                 else
2249                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2250                                    I915_READ(ARB_MODE));
2251                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2252                            I915_READ(DISP_ARB_CTL));
2253         }
2254
2255         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2256                 seq_puts(m, "L-shaped memory detected\n");
2257
2258         intel_runtime_pm_put(dev_priv);
2259         mutex_unlock(&dev->struct_mutex);
2260
2261         return 0;
2262 }
2263
2264 static int per_file_ctx(int id, void *ptr, void *data)
2265 {
2266         struct intel_context *ctx = ptr;
2267         struct seq_file *m = data;
2268         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2269
2270         if (!ppgtt) {
2271                 seq_printf(m, "  no ppgtt for context %d\n",
2272                            ctx->user_handle);
2273                 return 0;
2274         }
2275
2276         if (i915_gem_context_is_default(ctx))
2277                 seq_puts(m, "  default context:\n");
2278         else
2279                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2280         ppgtt->debug_dump(ppgtt, m);
2281
2282         return 0;
2283 }
2284
2285 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2286 {
2287         struct drm_i915_private *dev_priv = dev->dev_private;
2288         struct intel_engine_cs *engine;
2289         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2290         int i;
2291
2292         if (!ppgtt)
2293                 return;
2294
2295         for_each_engine(engine, dev_priv) {
2296                 seq_printf(m, "%s\n", engine->name);
2297                 for (i = 0; i < 4; i++) {
2298                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2299                         pdp <<= 32;
2300                         pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2301                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2302                 }
2303         }
2304 }
2305
2306 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2307 {
2308         struct drm_i915_private *dev_priv = dev->dev_private;
2309         struct intel_engine_cs *engine;
2310
2311         if (IS_GEN6(dev_priv))
2312                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2313
2314         for_each_engine(engine, dev_priv) {
2315                 seq_printf(m, "%s\n", engine->name);
2316                 if (IS_GEN7(dev_priv))
2317                         seq_printf(m, "GFX_MODE: 0x%08x\n",
2318                                    I915_READ(RING_MODE_GEN7(engine)));
2319                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2320                            I915_READ(RING_PP_DIR_BASE(engine)));
2321                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2322                            I915_READ(RING_PP_DIR_BASE_READ(engine)));
2323                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2324                            I915_READ(RING_PP_DIR_DCLV(engine)));
2325         }
2326         if (dev_priv->mm.aliasing_ppgtt) {
2327                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2328
2329                 seq_puts(m, "aliasing PPGTT:\n");
2330                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2331
2332                 ppgtt->debug_dump(ppgtt, m);
2333         }
2334
2335         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2336 }
2337
2338 static int i915_ppgtt_info(struct seq_file *m, void *data)
2339 {
2340         struct drm_info_node *node = m->private;
2341         struct drm_device *dev = node->minor->dev;
2342         struct drm_i915_private *dev_priv = dev->dev_private;
2343         struct drm_file *file;
2344
2345         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2346         if (ret)
2347                 return ret;
2348         intel_runtime_pm_get(dev_priv);
2349
2350         if (INTEL_INFO(dev)->gen >= 8)
2351                 gen8_ppgtt_info(m, dev);
2352         else if (INTEL_INFO(dev)->gen >= 6)
2353                 gen6_ppgtt_info(m, dev);
2354
2355         mutex_lock(&dev->filelist_mutex);
2356         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2357                 struct drm_i915_file_private *file_priv = file->driver_priv;
2358                 struct task_struct *task;
2359
2360                 task = get_pid_task(file->pid, PIDTYPE_PID);
2361                 if (!task) {
2362                         ret = -ESRCH;
2363                         goto out_put;
2364                 }
2365                 seq_printf(m, "\nproc: %s\n", task->comm);
2366                 put_task_struct(task);
2367                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2368                              (void *)(unsigned long)m);
2369         }
2370         mutex_unlock(&dev->filelist_mutex);
2371
2372 out_put:
2373         intel_runtime_pm_put(dev_priv);
2374         mutex_unlock(&dev->struct_mutex);
2375
2376         return ret;
2377 }
2378
2379 static int count_irq_waiters(struct drm_i915_private *i915)
2380 {
2381         struct intel_engine_cs *engine;
2382         int count = 0;
2383
2384         for_each_engine(engine, i915)
2385                 count += engine->irq_refcount;
2386
2387         return count;
2388 }
2389
2390 static int i915_rps_boost_info(struct seq_file *m, void *data)
2391 {
2392         struct drm_info_node *node = m->private;
2393         struct drm_device *dev = node->minor->dev;
2394         struct drm_i915_private *dev_priv = dev->dev_private;
2395         struct drm_file *file;
2396
2397         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2398         seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2399         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2400         seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2401                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2402                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2403                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2404                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2405                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2406
2407         mutex_lock(&dev->filelist_mutex);
2408         spin_lock(&dev_priv->rps.client_lock);
2409         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2410                 struct drm_i915_file_private *file_priv = file->driver_priv;
2411                 struct task_struct *task;
2412
2413                 rcu_read_lock();
2414                 task = pid_task(file->pid, PIDTYPE_PID);
2415                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2416                            task ? task->comm : "<unknown>",
2417                            task ? task->pid : -1,
2418                            file_priv->rps.boosts,
2419                            list_empty(&file_priv->rps.link) ? "" : ", active");
2420                 rcu_read_unlock();
2421         }
2422         seq_printf(m, "Semaphore boosts: %d%s\n",
2423                    dev_priv->rps.semaphores.boosts,
2424                    list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2425         seq_printf(m, "MMIO flip boosts: %d%s\n",
2426                    dev_priv->rps.mmioflips.boosts,
2427                    list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2428         seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2429         spin_unlock(&dev_priv->rps.client_lock);
2430         mutex_unlock(&dev->filelist_mutex);
2431
2432         return 0;
2433 }
2434
2435 static int i915_llc(struct seq_file *m, void *data)
2436 {
2437         struct drm_info_node *node = m->private;
2438         struct drm_device *dev = node->minor->dev;
2439         struct drm_i915_private *dev_priv = dev->dev_private;
2440         const bool edram = INTEL_GEN(dev_priv) > 8;
2441
2442         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2443         seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2444                    intel_uncore_edram_size(dev_priv)/1024/1024);
2445
2446         return 0;
2447 }
2448
2449 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2450 {
2451         struct drm_info_node *node = m->private;
2452         struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2453         struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2454         u32 tmp, i;
2455
2456         if (!HAS_GUC_UCODE(dev_priv))
2457                 return 0;
2458
2459         seq_printf(m, "GuC firmware status:\n");
2460         seq_printf(m, "\tpath: %s\n",
2461                 guc_fw->guc_fw_path);
2462         seq_printf(m, "\tfetch: %s\n",
2463                 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2464         seq_printf(m, "\tload: %s\n",
2465                 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2466         seq_printf(m, "\tversion wanted: %d.%d\n",
2467                 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2468         seq_printf(m, "\tversion found: %d.%d\n",
2469                 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2470         seq_printf(m, "\theader: offset is %d; size = %d\n",
2471                 guc_fw->header_offset, guc_fw->header_size);
2472         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2473                 guc_fw->ucode_offset, guc_fw->ucode_size);
2474         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2475                 guc_fw->rsa_offset, guc_fw->rsa_size);
2476
2477         tmp = I915_READ(GUC_STATUS);
2478
2479         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2480         seq_printf(m, "\tBootrom status = 0x%x\n",
2481                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2482         seq_printf(m, "\tuKernel status = 0x%x\n",
2483                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2484         seq_printf(m, "\tMIA Core status = 0x%x\n",
2485                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2486         seq_puts(m, "\nScratch registers:\n");
2487         for (i = 0; i < 16; i++)
2488                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2489
2490         return 0;
2491 }
2492
2493 static void i915_guc_client_info(struct seq_file *m,
2494                                  struct drm_i915_private *dev_priv,
2495                                  struct i915_guc_client *client)
2496 {
2497         struct intel_engine_cs *engine;
2498         uint64_t tot = 0;
2499
2500         seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2501                 client->priority, client->ctx_index, client->proc_desc_offset);
2502         seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2503                 client->doorbell_id, client->doorbell_offset, client->cookie);
2504         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2505                 client->wq_size, client->wq_offset, client->wq_tail);
2506
2507         seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2508         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2509         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2510
2511         for_each_engine(engine, dev_priv) {
2512                 seq_printf(m, "\tSubmissions: %llu %s\n",
2513                                 client->submissions[engine->guc_id],
2514                                 engine->name);
2515                 tot += client->submissions[engine->guc_id];
2516         }
2517         seq_printf(m, "\tTotal: %llu\n", tot);
2518 }
2519
2520 static int i915_guc_info(struct seq_file *m, void *data)
2521 {
2522         struct drm_info_node *node = m->private;
2523         struct drm_device *dev = node->minor->dev;
2524         struct drm_i915_private *dev_priv = dev->dev_private;
2525         struct intel_guc guc;
2526         struct i915_guc_client client = {};
2527         struct intel_engine_cs *engine;
2528         u64 total = 0;
2529
2530         if (!HAS_GUC_SCHED(dev_priv))
2531                 return 0;
2532
2533         if (mutex_lock_interruptible(&dev->struct_mutex))
2534                 return 0;
2535
2536         /* Take a local copy of the GuC data, so we can dump it at leisure */
2537         guc = dev_priv->guc;
2538         if (guc.execbuf_client)
2539                 client = *guc.execbuf_client;
2540
2541         mutex_unlock(&dev->struct_mutex);
2542
2543         seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2544         seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2545         seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2546         seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2547         seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2548
2549         seq_printf(m, "\nGuC submissions:\n");
2550         for_each_engine(engine, dev_priv) {
2551                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2552                         engine->name, guc.submissions[engine->guc_id],
2553                         guc.last_seqno[engine->guc_id]);
2554                 total += guc.submissions[engine->guc_id];
2555         }
2556         seq_printf(m, "\t%s: %llu\n", "Total", total);
2557
2558         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2559         i915_guc_client_info(m, dev_priv, &client);
2560
2561         /* Add more as required ... */
2562
2563         return 0;
2564 }
2565
2566 static int i915_guc_log_dump(struct seq_file *m, void *data)
2567 {
2568         struct drm_info_node *node = m->private;
2569         struct drm_device *dev = node->minor->dev;
2570         struct drm_i915_private *dev_priv = dev->dev_private;
2571         struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2572         u32 *log;
2573         int i = 0, pg;
2574
2575         if (!log_obj)
2576                 return 0;
2577
2578         for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2579                 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2580
2581                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2582                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2583                                    *(log + i), *(log + i + 1),
2584                                    *(log + i + 2), *(log + i + 3));
2585
2586                 kunmap_atomic(log);
2587         }
2588
2589         seq_putc(m, '\n');
2590
2591         return 0;
2592 }
2593
2594 static int i915_edp_psr_status(struct seq_file *m, void *data)
2595 {
2596         struct drm_info_node *node = m->private;
2597         struct drm_device *dev = node->minor->dev;
2598         struct drm_i915_private *dev_priv = dev->dev_private;
2599         u32 psrperf = 0;
2600         u32 stat[3];
2601         enum pipe pipe;
2602         bool enabled = false;
2603
2604         if (!HAS_PSR(dev)) {
2605                 seq_puts(m, "PSR not supported\n");
2606                 return 0;
2607         }
2608
2609         intel_runtime_pm_get(dev_priv);
2610
2611         mutex_lock(&dev_priv->psr.lock);
2612         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2613         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2614         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2615         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2616         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2617                    dev_priv->psr.busy_frontbuffer_bits);
2618         seq_printf(m, "Re-enable work scheduled: %s\n",
2619                    yesno(work_busy(&dev_priv->psr.work.work)));
2620
2621         if (HAS_DDI(dev))
2622                 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2623         else {
2624                 for_each_pipe(dev_priv, pipe) {
2625                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2626                                 VLV_EDP_PSR_CURR_STATE_MASK;
2627                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2628                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2629                                 enabled = true;
2630                 }
2631         }
2632
2633         seq_printf(m, "Main link in standby mode: %s\n",
2634                    yesno(dev_priv->psr.link_standby));
2635
2636         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2637
2638         if (!HAS_DDI(dev))
2639                 for_each_pipe(dev_priv, pipe) {
2640                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2641                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2642                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2643                 }
2644         seq_puts(m, "\n");
2645
2646         /*
2647          * VLV/CHV PSR has no kind of performance counter
2648          * SKL+ Perf counter is reset to 0 everytime DC state is entered
2649          */
2650         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2651                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2652                         EDP_PSR_PERF_CNT_MASK;
2653
2654                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2655         }
2656         mutex_unlock(&dev_priv->psr.lock);
2657
2658         intel_runtime_pm_put(dev_priv);
2659         return 0;
2660 }
2661
2662 static int i915_sink_crc(struct seq_file *m, void *data)
2663 {
2664         struct drm_info_node *node = m->private;
2665         struct drm_device *dev = node->minor->dev;
2666         struct intel_encoder *encoder;
2667         struct intel_connector *connector;
2668         struct intel_dp *intel_dp = NULL;
2669         int ret;
2670         u8 crc[6];
2671
2672         drm_modeset_lock_all(dev);
2673         for_each_intel_connector(dev, connector) {
2674
2675                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2676                         continue;
2677
2678                 if (!connector->base.encoder)
2679                         continue;
2680
2681                 encoder = to_intel_encoder(connector->base.encoder);
2682                 if (encoder->type != INTEL_OUTPUT_EDP)
2683                         continue;
2684
2685                 intel_dp = enc_to_intel_dp(&encoder->base);
2686
2687                 ret = intel_dp_sink_crc(intel_dp, crc);
2688                 if (ret)
2689                         goto out;
2690
2691                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2692                            crc[0], crc[1], crc[2],
2693                            crc[3], crc[4], crc[5]);
2694                 goto out;
2695         }
2696         ret = -ENODEV;
2697 out:
2698         drm_modeset_unlock_all(dev);
2699         return ret;
2700 }
2701
2702 static int i915_energy_uJ(struct seq_file *m, void *data)
2703 {
2704         struct drm_info_node *node = m->private;
2705         struct drm_device *dev = node->minor->dev;
2706         struct drm_i915_private *dev_priv = dev->dev_private;
2707         u64 power;
2708         u32 units;
2709
2710         if (INTEL_INFO(dev)->gen < 6)
2711                 return -ENODEV;
2712
2713         intel_runtime_pm_get(dev_priv);
2714
2715         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2716         power = (power & 0x1f00) >> 8;
2717         units = 1000000 / (1 << power); /* convert to uJ */
2718         power = I915_READ(MCH_SECP_NRG_STTS);
2719         power *= units;
2720
2721         intel_runtime_pm_put(dev_priv);
2722
2723         seq_printf(m, "%llu", (long long unsigned)power);
2724
2725         return 0;
2726 }
2727
2728 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2729 {
2730         struct drm_info_node *node = m->private;
2731         struct drm_device *dev = node->minor->dev;
2732         struct drm_i915_private *dev_priv = dev->dev_private;
2733
2734         if (!HAS_RUNTIME_PM(dev_priv))
2735                 seq_puts(m, "Runtime power management not supported\n");
2736
2737         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2738         seq_printf(m, "IRQs disabled: %s\n",
2739                    yesno(!intel_irqs_enabled(dev_priv)));
2740 #ifdef CONFIG_PM
2741         seq_printf(m, "Usage count: %d\n",
2742                    atomic_read(&dev->dev->power.usage_count));
2743 #else
2744         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2745 #endif
2746         seq_printf(m, "PCI device power state: %s [%d]\n",
2747                    pci_power_name(dev_priv->dev->pdev->current_state),
2748                    dev_priv->dev->pdev->current_state);
2749
2750         return 0;
2751 }
2752
2753 static int i915_power_domain_info(struct seq_file *m, void *unused)
2754 {
2755         struct drm_info_node *node = m->private;
2756         struct drm_device *dev = node->minor->dev;
2757         struct drm_i915_private *dev_priv = dev->dev_private;
2758         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2759         int i;
2760
2761         mutex_lock(&power_domains->lock);
2762
2763         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2764         for (i = 0; i < power_domains->power_well_count; i++) {
2765                 struct i915_power_well *power_well;
2766                 enum intel_display_power_domain power_domain;
2767
2768                 power_well = &power_domains->power_wells[i];
2769                 seq_printf(m, "%-25s %d\n", power_well->name,
2770                            power_well->count);
2771
2772                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2773                      power_domain++) {
2774                         if (!(BIT(power_domain) & power_well->domains))
2775                                 continue;
2776
2777                         seq_printf(m, "  %-23s %d\n",
2778                                  intel_display_power_domain_str(power_domain),
2779                                  power_domains->domain_use_count[power_domain]);
2780                 }
2781         }
2782
2783         mutex_unlock(&power_domains->lock);
2784
2785         return 0;
2786 }
2787
2788 static int i915_dmc_info(struct seq_file *m, void *unused)
2789 {
2790         struct drm_info_node *node = m->private;
2791         struct drm_device *dev = node->minor->dev;
2792         struct drm_i915_private *dev_priv = dev->dev_private;
2793         struct intel_csr *csr;
2794
2795         if (!HAS_CSR(dev)) {
2796                 seq_puts(m, "not supported\n");
2797                 return 0;
2798         }
2799
2800         csr = &dev_priv->csr;
2801
2802         intel_runtime_pm_get(dev_priv);
2803
2804         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2805         seq_printf(m, "path: %s\n", csr->fw_path);
2806
2807         if (!csr->dmc_payload)
2808                 goto out;
2809
2810         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2811                    CSR_VERSION_MINOR(csr->version));
2812
2813         if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2814                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2815                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2816                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2817                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2818         } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2819                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2820                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2821         }
2822
2823 out:
2824         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2825         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2826         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2827
2828         intel_runtime_pm_put(dev_priv);
2829
2830         return 0;
2831 }
2832
2833 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2834                                  struct drm_display_mode *mode)
2835 {
2836         int i;
2837
2838         for (i = 0; i < tabs; i++)
2839                 seq_putc(m, '\t');
2840
2841         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2842                    mode->base.id, mode->name,
2843                    mode->vrefresh, mode->clock,
2844                    mode->hdisplay, mode->hsync_start,
2845                    mode->hsync_end, mode->htotal,
2846                    mode->vdisplay, mode->vsync_start,
2847                    mode->vsync_end, mode->vtotal,
2848                    mode->type, mode->flags);
2849 }
2850
2851 static void intel_encoder_info(struct seq_file *m,
2852                                struct intel_crtc *intel_crtc,
2853                                struct intel_encoder *intel_encoder)
2854 {
2855         struct drm_info_node *node = m->private;
2856         struct drm_device *dev = node->minor->dev;
2857         struct drm_crtc *crtc = &intel_crtc->base;
2858         struct intel_connector *intel_connector;
2859         struct drm_encoder *encoder;
2860
2861         encoder = &intel_encoder->base;
2862         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2863                    encoder->base.id, encoder->name);
2864         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2865                 struct drm_connector *connector = &intel_connector->base;
2866                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2867                            connector->base.id,
2868                            connector->name,
2869                            drm_get_connector_status_name(connector->status));
2870                 if (connector->status == connector_status_connected) {
2871                         struct drm_display_mode *mode = &crtc->mode;
2872                         seq_printf(m, ", mode:\n");
2873                         intel_seq_print_mode(m, 2, mode);
2874                 } else {
2875                         seq_putc(m, '\n');
2876                 }
2877         }
2878 }
2879
2880 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2881 {
2882         struct drm_info_node *node = m->private;
2883         struct drm_device *dev = node->minor->dev;
2884         struct drm_crtc *crtc = &intel_crtc->base;
2885         struct intel_encoder *intel_encoder;
2886         struct drm_plane_state *plane_state = crtc->primary->state;
2887         struct drm_framebuffer *fb = plane_state->fb;
2888
2889         if (fb)
2890                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2891                            fb->base.id, plane_state->src_x >> 16,
2892                            plane_state->src_y >> 16, fb->width, fb->height);
2893         else
2894                 seq_puts(m, "\tprimary plane disabled\n");
2895         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2896                 intel_encoder_info(m, intel_crtc, intel_encoder);
2897 }
2898
2899 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2900 {
2901         struct drm_display_mode *mode = panel->fixed_mode;
2902
2903         seq_printf(m, "\tfixed mode:\n");
2904         intel_seq_print_mode(m, 2, mode);
2905 }
2906
2907 static void intel_dp_info(struct seq_file *m,
2908                           struct intel_connector *intel_connector)
2909 {
2910         struct intel_encoder *intel_encoder = intel_connector->encoder;
2911         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2912
2913         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2914         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2915         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2916                 intel_panel_info(m, &intel_connector->panel);
2917 }
2918
2919 static void intel_hdmi_info(struct seq_file *m,
2920                             struct intel_connector *intel_connector)
2921 {
2922         struct intel_encoder *intel_encoder = intel_connector->encoder;
2923         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2924
2925         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2926 }
2927
2928 static void intel_lvds_info(struct seq_file *m,
2929                             struct intel_connector *intel_connector)
2930 {
2931         intel_panel_info(m, &intel_connector->panel);
2932 }
2933
2934 static void intel_connector_info(struct seq_file *m,
2935                                  struct drm_connector *connector)
2936 {
2937         struct intel_connector *intel_connector = to_intel_connector(connector);
2938         struct intel_encoder *intel_encoder = intel_connector->encoder;
2939         struct drm_display_mode *mode;
2940
2941         seq_printf(m, "connector %d: type %s, status: %s\n",
2942                    connector->base.id, connector->name,
2943                    drm_get_connector_status_name(connector->status));
2944         if (connector->status == connector_status_connected) {
2945                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2946                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2947                            connector->display_info.width_mm,
2948                            connector->display_info.height_mm);
2949                 seq_printf(m, "\tsubpixel order: %s\n",
2950                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2951                 seq_printf(m, "\tCEA rev: %d\n",
2952                            connector->display_info.cea_rev);
2953         }
2954         if (intel_encoder) {
2955                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2956                     intel_encoder->type == INTEL_OUTPUT_EDP)
2957                         intel_dp_info(m, intel_connector);
2958                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2959                         intel_hdmi_info(m, intel_connector);
2960                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2961                         intel_lvds_info(m, intel_connector);
2962         }
2963
2964         seq_printf(m, "\tmodes:\n");
2965         list_for_each_entry(mode, &connector->modes, head)
2966                 intel_seq_print_mode(m, 2, mode);
2967 }
2968
2969 static bool cursor_active(struct drm_device *dev, int pipe)
2970 {
2971         struct drm_i915_private *dev_priv = dev->dev_private;
2972         u32 state;
2973
2974         if (IS_845G(dev) || IS_I865G(dev))
2975                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2976         else
2977                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2978
2979         return state;
2980 }
2981
2982 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2983 {
2984         struct drm_i915_private *dev_priv = dev->dev_private;
2985         u32 pos;
2986
2987         pos = I915_READ(CURPOS(pipe));
2988
2989         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2990         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2991                 *x = -*x;
2992
2993         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2994         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2995                 *y = -*y;
2996
2997         return cursor_active(dev, pipe);
2998 }
2999
3000 static const char *plane_type(enum drm_plane_type type)
3001 {
3002         switch (type) {
3003         case DRM_PLANE_TYPE_OVERLAY:
3004                 return "OVL";
3005         case DRM_PLANE_TYPE_PRIMARY:
3006                 return "PRI";
3007         case DRM_PLANE_TYPE_CURSOR:
3008                 return "CUR";
3009         /*
3010          * Deliberately omitting default: to generate compiler warnings
3011          * when a new drm_plane_type gets added.
3012          */
3013         }
3014
3015         return "unknown";
3016 }
3017
3018 static const char *plane_rotation(unsigned int rotation)
3019 {
3020         static char buf[48];
3021         /*
3022          * According to doc only one DRM_ROTATE_ is allowed but this
3023          * will print them all to visualize if the values are misused
3024          */
3025         snprintf(buf, sizeof(buf),
3026                  "%s%s%s%s%s%s(0x%08x)",
3027                  (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
3028                  (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
3029                  (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
3030                  (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
3031                  (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
3032                  (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
3033                  rotation);
3034
3035         return buf;
3036 }
3037
3038 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3039 {
3040         struct drm_info_node *node = m->private;
3041         struct drm_device *dev = node->minor->dev;
3042         struct intel_plane *intel_plane;
3043
3044         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3045                 struct drm_plane_state *state;
3046                 struct drm_plane *plane = &intel_plane->base;
3047
3048                 if (!plane->state) {
3049                         seq_puts(m, "plane->state is NULL!\n");
3050                         continue;
3051                 }
3052
3053                 state = plane->state;
3054
3055                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3056                            plane->base.id,
3057                            plane_type(intel_plane->base.type),
3058                            state->crtc_x, state->crtc_y,
3059                            state->crtc_w, state->crtc_h,
3060                            (state->src_x >> 16),
3061                            ((state->src_x & 0xffff) * 15625) >> 10,
3062                            (state->src_y >> 16),
3063                            ((state->src_y & 0xffff) * 15625) >> 10,
3064                            (state->src_w >> 16),
3065                            ((state->src_w & 0xffff) * 15625) >> 10,
3066                            (state->src_h >> 16),
3067                            ((state->src_h & 0xffff) * 15625) >> 10,
3068                            state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3069                            plane_rotation(state->rotation));
3070         }
3071 }
3072
3073 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3074 {
3075         struct intel_crtc_state *pipe_config;
3076         int num_scalers = intel_crtc->num_scalers;
3077         int i;
3078
3079         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3080
3081         /* Not all platformas have a scaler */
3082         if (num_scalers) {
3083                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3084                            num_scalers,
3085                            pipe_config->scaler_state.scaler_users,
3086                            pipe_config->scaler_state.scaler_id);
3087
3088                 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3089                         struct intel_scaler *sc =
3090                                         &pipe_config->scaler_state.scalers[i];
3091
3092                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3093                                    i, yesno(sc->in_use), sc->mode);
3094                 }
3095                 seq_puts(m, "\n");
3096         } else {
3097                 seq_puts(m, "\tNo scalers available on this platform\n");
3098         }
3099 }
3100
3101 static int i915_display_info(struct seq_file *m, void *unused)
3102 {
3103         struct drm_info_node *node = m->private;
3104         struct drm_device *dev = node->minor->dev;
3105         struct drm_i915_private *dev_priv = dev->dev_private;
3106         struct intel_crtc *crtc;
3107         struct drm_connector *connector;
3108
3109         intel_runtime_pm_get(dev_priv);
3110         drm_modeset_lock_all(dev);
3111         seq_printf(m, "CRTC info\n");
3112         seq_printf(m, "---------\n");
3113         for_each_intel_crtc(dev, crtc) {
3114                 bool active;
3115                 struct intel_crtc_state *pipe_config;
3116                 int x, y;
3117
3118                 pipe_config = to_intel_crtc_state(crtc->base.state);
3119
3120                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3121                            crtc->base.base.id, pipe_name(crtc->pipe),
3122                            yesno(pipe_config->base.active),
3123                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3124                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3125
3126                 if (pipe_config->base.active) {
3127                         intel_crtc_info(m, crtc);
3128
3129                         active = cursor_position(dev, crtc->pipe, &x, &y);
3130                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3131                                    yesno(crtc->cursor_base),
3132                                    x, y, crtc->base.cursor->state->crtc_w,
3133                                    crtc->base.cursor->state->crtc_h,
3134                                    crtc->cursor_addr, yesno(active));
3135                         intel_scaler_info(m, crtc);
3136                         intel_plane_info(m, crtc);
3137                 }
3138
3139                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3140                            yesno(!crtc->cpu_fifo_underrun_disabled),
3141                            yesno(!crtc->pch_fifo_underrun_disabled));
3142         }
3143
3144         seq_printf(m, "\n");
3145         seq_printf(m, "Connector info\n");
3146         seq_printf(m, "--------------\n");
3147         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3148                 intel_connector_info(m, connector);
3149         }
3150         drm_modeset_unlock_all(dev);
3151         intel_runtime_pm_put(dev_priv);
3152
3153         return 0;
3154 }
3155
3156 static int i915_semaphore_status(struct seq_file *m, void *unused)
3157 {
3158         struct drm_info_node *node = (struct drm_info_node *) m->private;
3159         struct drm_device *dev = node->minor->dev;
3160         struct drm_i915_private *dev_priv = dev->dev_private;
3161         struct intel_engine_cs *engine;
3162         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3163         enum intel_engine_id id;
3164         int j, ret;
3165
3166         if (!i915_semaphore_is_enabled(dev_priv)) {
3167                 seq_puts(m, "Semaphores are disabled\n");
3168                 return 0;
3169         }
3170
3171         ret = mutex_lock_interruptible(&dev->struct_mutex);
3172         if (ret)
3173                 return ret;
3174         intel_runtime_pm_get(dev_priv);
3175
3176         if (IS_BROADWELL(dev)) {
3177                 struct page *page;
3178                 uint64_t *seqno;
3179
3180                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3181
3182                 seqno = (uint64_t *)kmap_atomic(page);
3183                 for_each_engine_id(engine, dev_priv, id) {
3184                         uint64_t offset;
3185
3186                         seq_printf(m, "%s\n", engine->name);
3187
3188                         seq_puts(m, "  Last signal:");
3189                         for (j = 0; j < num_rings; j++) {
3190                                 offset = id * I915_NUM_ENGINES + j;
3191                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3192                                            seqno[offset], offset * 8);
3193                         }
3194                         seq_putc(m, '\n');
3195
3196                         seq_puts(m, "  Last wait:  ");
3197                         for (j = 0; j < num_rings; j++) {
3198                                 offset = id + (j * I915_NUM_ENGINES);
3199                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3200                                            seqno[offset], offset * 8);
3201                         }
3202                         seq_putc(m, '\n');
3203
3204                 }
3205                 kunmap_atomic(seqno);
3206         } else {
3207                 seq_puts(m, "  Last signal:");
3208                 for_each_engine(engine, dev_priv)
3209                         for (j = 0; j < num_rings; j++)
3210                                 seq_printf(m, "0x%08x\n",
3211                                            I915_READ(engine->semaphore.mbox.signal[j]));
3212                 seq_putc(m, '\n');
3213         }
3214
3215         seq_puts(m, "\nSync seqno:\n");
3216         for_each_engine(engine, dev_priv) {
3217                 for (j = 0; j < num_rings; j++)
3218                         seq_printf(m, "  0x%08x ",
3219                                    engine->semaphore.sync_seqno[j]);
3220                 seq_putc(m, '\n');
3221         }
3222         seq_putc(m, '\n');
3223
3224         intel_runtime_pm_put(dev_priv);
3225         mutex_unlock(&dev->struct_mutex);
3226         return 0;
3227 }
3228
3229 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3230 {
3231         struct drm_info_node *node = (struct drm_info_node *) m->private;
3232         struct drm_device *dev = node->minor->dev;
3233         struct drm_i915_private *dev_priv = dev->dev_private;
3234         int i;
3235
3236         drm_modeset_lock_all(dev);
3237         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3238                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3239
3240                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3241                 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3242                            pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3243                 seq_printf(m, " tracked hardware state:\n");
3244                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3245                 seq_printf(m, " dpll_md: 0x%08x\n",
3246                            pll->config.hw_state.dpll_md);
3247                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3248                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3249                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3250         }
3251         drm_modeset_unlock_all(dev);
3252
3253         return 0;
3254 }
3255
3256 static int i915_wa_registers(struct seq_file *m, void *unused)
3257 {
3258         int i;
3259         int ret;
3260         struct intel_engine_cs *engine;
3261         struct drm_info_node *node = (struct drm_info_node *) m->private;
3262         struct drm_device *dev = node->minor->dev;
3263         struct drm_i915_private *dev_priv = dev->dev_private;
3264         struct i915_workarounds *workarounds = &dev_priv->workarounds;
3265         enum intel_engine_id id;
3266
3267         ret = mutex_lock_interruptible(&dev->struct_mutex);
3268         if (ret)
3269                 return ret;
3270
3271         intel_runtime_pm_get(dev_priv);
3272
3273         seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3274         for_each_engine_id(engine, dev_priv, id)
3275                 seq_printf(m, "HW whitelist count for %s: %d\n",
3276                            engine->name, workarounds->hw_whitelist_count[id]);
3277         for (i = 0; i < workarounds->count; ++i) {
3278                 i915_reg_t addr;
3279                 u32 mask, value, read;
3280                 bool ok;
3281
3282                 addr = workarounds->reg[i].addr;
3283                 mask = workarounds->reg[i].mask;
3284                 value = workarounds->reg[i].value;
3285                 read = I915_READ(addr);
3286                 ok = (value & mask) == (read & mask);
3287                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3288                            i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3289         }
3290
3291         intel_runtime_pm_put(dev_priv);
3292         mutex_unlock(&dev->struct_mutex);
3293
3294         return 0;
3295 }
3296
3297 static int i915_ddb_info(struct seq_file *m, void *unused)
3298 {
3299         struct drm_info_node *node = m->private;
3300         struct drm_device *dev = node->minor->dev;
3301         struct drm_i915_private *dev_priv = dev->dev_private;
3302         struct skl_ddb_allocation *ddb;
3303         struct skl_ddb_entry *entry;
3304         enum pipe pipe;
3305         int plane;
3306
3307         if (INTEL_INFO(dev)->gen < 9)
3308                 return 0;
3309
3310         drm_modeset_lock_all(dev);
3311
3312         ddb = &dev_priv->wm.skl_hw.ddb;
3313
3314         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3315
3316         for_each_pipe(dev_priv, pipe) {
3317                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3318
3319                 for_each_plane(dev_priv, pipe, plane) {
3320                         entry = &ddb->plane[pipe][plane];
3321                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3322                                    entry->start, entry->end,
3323                                    skl_ddb_entry_size(entry));
3324                 }
3325
3326                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3327                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3328                            entry->end, skl_ddb_entry_size(entry));
3329         }
3330
3331         drm_modeset_unlock_all(dev);
3332
3333         return 0;
3334 }
3335
3336 static void drrs_status_per_crtc(struct seq_file *m,
3337                 struct drm_device *dev, struct intel_crtc *intel_crtc)
3338 {
3339         struct intel_encoder *intel_encoder;
3340         struct drm_i915_private *dev_priv = dev->dev_private;
3341         struct i915_drrs *drrs = &dev_priv->drrs;
3342         int vrefresh = 0;
3343
3344         for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3345                 /* Encoder connected on this CRTC */
3346                 switch (intel_encoder->type) {
3347                 case INTEL_OUTPUT_EDP:
3348                         seq_puts(m, "eDP:\n");
3349                         break;
3350                 case INTEL_OUTPUT_DSI:
3351                         seq_puts(m, "DSI:\n");
3352                         break;
3353                 case INTEL_OUTPUT_HDMI:
3354                         seq_puts(m, "HDMI:\n");
3355                         break;
3356                 case INTEL_OUTPUT_DISPLAYPORT:
3357                         seq_puts(m, "DP:\n");
3358                         break;
3359                 default:
3360                         seq_printf(m, "Other encoder (id=%d).\n",
3361                                                 intel_encoder->type);
3362                         return;
3363                 }
3364         }
3365
3366         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3367                 seq_puts(m, "\tVBT: DRRS_type: Static");
3368         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3369                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3370         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3371                 seq_puts(m, "\tVBT: DRRS_type: None");
3372         else
3373                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3374
3375         seq_puts(m, "\n\n");
3376
3377         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3378                 struct intel_panel *panel;
3379
3380                 mutex_lock(&drrs->mutex);
3381                 /* DRRS Supported */
3382                 seq_puts(m, "\tDRRS Supported: Yes\n");
3383
3384                 /* disable_drrs() will make drrs->dp NULL */
3385                 if (!drrs->dp) {
3386                         seq_puts(m, "Idleness DRRS: Disabled");
3387                         mutex_unlock(&drrs->mutex);
3388                         return;
3389                 }
3390
3391                 panel = &drrs->dp->attached_connector->panel;
3392                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3393                                         drrs->busy_frontbuffer_bits);
3394
3395                 seq_puts(m, "\n\t\t");
3396                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3397                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3398                         vrefresh = panel->fixed_mode->vrefresh;
3399                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3400                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3401                         vrefresh = panel->downclock_mode->vrefresh;
3402                 } else {
3403                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3404                                                 drrs->refresh_rate_type);
3405                         mutex_unlock(&drrs->mutex);
3406                         return;
3407                 }
3408                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3409
3410                 seq_puts(m, "\n\t\t");
3411                 mutex_unlock(&drrs->mutex);
3412         } else {
3413                 /* DRRS not supported. Print the VBT parameter*/
3414                 seq_puts(m, "\tDRRS Supported : No");
3415         }
3416         seq_puts(m, "\n");
3417 }
3418
3419 static int i915_drrs_status(struct seq_file *m, void *unused)
3420 {
3421         struct drm_info_node *node = m->private;
3422         struct drm_device *dev = node->minor->dev;
3423         struct intel_crtc *intel_crtc;
3424         int active_crtc_cnt = 0;
3425
3426         for_each_intel_crtc(dev, intel_crtc) {
3427                 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3428
3429                 if (intel_crtc->base.state->active) {
3430                         active_crtc_cnt++;
3431                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3432
3433                         drrs_status_per_crtc(m, dev, intel_crtc);
3434                 }
3435
3436                 drm_modeset_unlock(&intel_crtc->base.mutex);
3437         }
3438
3439         if (!active_crtc_cnt)
3440                 seq_puts(m, "No active crtc found\n");
3441
3442         return 0;
3443 }
3444
3445 struct pipe_crc_info {
3446         const char *name;
3447         struct drm_device *dev;
3448         enum pipe pipe;
3449 };
3450
3451 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3452 {
3453         struct drm_info_node *node = (struct drm_info_node *) m->private;
3454         struct drm_device *dev = node->minor->dev;
3455         struct drm_encoder *encoder;
3456         struct intel_encoder *intel_encoder;
3457         struct intel_digital_port *intel_dig_port;
3458         drm_modeset_lock_all(dev);
3459         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3460                 intel_encoder = to_intel_encoder(encoder);
3461                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3462                         continue;
3463                 intel_dig_port = enc_to_dig_port(encoder);
3464                 if (!intel_dig_port->dp.can_mst)
3465                         continue;
3466                 seq_printf(m, "MST Source Port %c\n",
3467                            port_name(intel_dig_port->port));
3468                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3469         }
3470         drm_modeset_unlock_all(dev);
3471         return 0;
3472 }
3473
3474 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3475 {
3476         struct pipe_crc_info *info = inode->i_private;
3477         struct drm_i915_private *dev_priv = info->dev->dev_private;
3478         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3479
3480         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3481                 return -ENODEV;
3482
3483         spin_lock_irq(&pipe_crc->lock);
3484
3485         if (pipe_crc->opened) {
3486                 spin_unlock_irq(&pipe_crc->lock);
3487                 return -EBUSY; /* already open */
3488         }
3489
3490         pipe_crc->opened = true;
3491         filep->private_data = inode->i_private;
3492
3493         spin_unlock_irq(&pipe_crc->lock);
3494
3495         return 0;
3496 }
3497
3498 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3499 {
3500         struct pipe_crc_info *info = inode->i_private;
3501         struct drm_i915_private *dev_priv = info->dev->dev_private;
3502         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3503
3504         spin_lock_irq(&pipe_crc->lock);
3505         pipe_crc->opened = false;
3506         spin_unlock_irq(&pipe_crc->lock);
3507
3508         return 0;
3509 }
3510
3511 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3512 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3513 /* account for \'0' */
3514 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3515
3516 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3517 {
3518         assert_spin_locked(&pipe_crc->lock);
3519         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3520                         INTEL_PIPE_CRC_ENTRIES_NR);
3521 }
3522
3523 static ssize_t
3524 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3525                    loff_t *pos)
3526 {
3527         struct pipe_crc_info *info = filep->private_data;
3528         struct drm_device *dev = info->dev;
3529         struct drm_i915_private *dev_priv = dev->dev_private;
3530         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3531         char buf[PIPE_CRC_BUFFER_LEN];
3532         int n_entries;
3533         ssize_t bytes_read;
3534
3535         /*
3536          * Don't allow user space to provide buffers not big enough to hold
3537          * a line of data.
3538          */
3539         if (count < PIPE_CRC_LINE_LEN)
3540                 return -EINVAL;
3541
3542         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3543                 return 0;
3544
3545         /* nothing to read */
3546         spin_lock_irq(&pipe_crc->lock);
3547         while (pipe_crc_data_count(pipe_crc) == 0) {
3548                 int ret;
3549
3550                 if (filep->f_flags & O_NONBLOCK) {
3551                         spin_unlock_irq(&pipe_crc->lock);
3552                         return -EAGAIN;
3553                 }
3554
3555                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3556                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3557                 if (ret) {
3558                         spin_unlock_irq(&pipe_crc->lock);
3559                         return ret;
3560                 }
3561         }
3562
3563         /* We now have one or more entries to read */
3564         n_entries = count / PIPE_CRC_LINE_LEN;
3565
3566         bytes_read = 0;
3567         while (n_entries > 0) {
3568                 struct intel_pipe_crc_entry *entry =
3569                         &pipe_crc->entries[pipe_crc->tail];
3570                 int ret;
3571
3572                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3573                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3574                         break;
3575
3576                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3577                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3578
3579                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3580                                        "%8u %8x %8x %8x %8x %8x\n",
3581                                        entry->frame, entry->crc[0],
3582                                        entry->crc[1], entry->crc[2],
3583                                        entry->crc[3], entry->crc[4]);
3584
3585                 spin_unlock_irq(&pipe_crc->lock);
3586
3587                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3588                 if (ret == PIPE_CRC_LINE_LEN)
3589                         return -EFAULT;
3590
3591                 user_buf += PIPE_CRC_LINE_LEN;
3592                 n_entries--;
3593
3594                 spin_lock_irq(&pipe_crc->lock);
3595         }
3596
3597         spin_unlock_irq(&pipe_crc->lock);
3598
3599         return bytes_read;
3600 }
3601
3602 static const struct file_operations i915_pipe_crc_fops = {
3603         .owner = THIS_MODULE,
3604         .open = i915_pipe_crc_open,
3605         .read = i915_pipe_crc_read,
3606         .release = i915_pipe_crc_release,
3607 };
3608
3609 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3610         {
3611                 .name = "i915_pipe_A_crc",
3612                 .pipe = PIPE_A,
3613         },
3614         {
3615                 .name = "i915_pipe_B_crc",
3616                 .pipe = PIPE_B,
3617         },
3618         {
3619                 .name = "i915_pipe_C_crc",
3620                 .pipe = PIPE_C,
3621         },
3622 };
3623
3624 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3625                                 enum pipe pipe)
3626 {
3627         struct drm_device *dev = minor->dev;
3628         struct dentry *ent;
3629         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3630
3631         info->dev = dev;
3632         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3633                                   &i915_pipe_crc_fops);
3634         if (!ent)
3635                 return -ENOMEM;
3636
3637         return drm_add_fake_info_node(minor, ent, info);
3638 }
3639
3640 static const char * const pipe_crc_sources[] = {
3641         "none",
3642         "plane1",
3643         "plane2",
3644         "pf",
3645         "pipe",
3646         "TV",
3647         "DP-B",
3648         "DP-C",
3649         "DP-D",
3650         "auto",
3651 };
3652
3653 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3654 {
3655         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3656         return pipe_crc_sources[source];
3657 }
3658
3659 static int display_crc_ctl_show(struct seq_file *m, void *data)
3660 {
3661         struct drm_device *dev = m->private;
3662         struct drm_i915_private *dev_priv = dev->dev_private;
3663         int i;
3664
3665         for (i = 0; i < I915_MAX_PIPES; i++)
3666                 seq_printf(m, "%c %s\n", pipe_name(i),
3667                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3668
3669         return 0;
3670 }
3671
3672 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3673 {
3674         struct drm_device *dev = inode->i_private;
3675
3676         return single_open(file, display_crc_ctl_show, dev);
3677 }
3678
3679 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3680                                  uint32_t *val)
3681 {
3682         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3683                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3684
3685         switch (*source) {
3686         case INTEL_PIPE_CRC_SOURCE_PIPE:
3687                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3688                 break;
3689         case INTEL_PIPE_CRC_SOURCE_NONE:
3690                 *val = 0;
3691                 break;
3692         default:
3693                 return -EINVAL;
3694         }
3695
3696         return 0;
3697 }
3698
3699 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3700                                      enum intel_pipe_crc_source *source)
3701 {
3702         struct intel_encoder *encoder;
3703         struct intel_crtc *crtc;
3704         struct intel_digital_port *dig_port;
3705         int ret = 0;
3706
3707         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3708
3709         drm_modeset_lock_all(dev);
3710         for_each_intel_encoder(dev, encoder) {
3711                 if (!encoder->base.crtc)
3712                         continue;
3713
3714                 crtc = to_intel_crtc(encoder->base.crtc);
3715
3716                 if (crtc->pipe != pipe)
3717                         continue;
3718
3719                 switch (encoder->type) {
3720                 case INTEL_OUTPUT_TVOUT:
3721                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3722                         break;
3723                 case INTEL_OUTPUT_DISPLAYPORT:
3724                 case INTEL_OUTPUT_EDP:
3725                         dig_port = enc_to_dig_port(&encoder->base);
3726                         switch (dig_port->port) {
3727                         case PORT_B:
3728                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3729                                 break;
3730                         case PORT_C:
3731                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3732                                 break;
3733                         case PORT_D:
3734                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3735                                 break;
3736                         default:
3737                                 WARN(1, "nonexisting DP port %c\n",
3738                                      port_name(dig_port->port));
3739                                 break;
3740                         }
3741                         break;
3742                 default:
3743                         break;
3744                 }
3745         }
3746         drm_modeset_unlock_all(dev);
3747
3748         return ret;
3749 }
3750
3751 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3752                                 enum pipe pipe,
3753                                 enum intel_pipe_crc_source *source,
3754                                 uint32_t *val)
3755 {
3756         struct drm_i915_private *dev_priv = dev->dev_private;
3757         bool need_stable_symbols = false;
3758
3759         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3760                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3761                 if (ret)
3762                         return ret;
3763         }
3764
3765         switch (*source) {
3766         case INTEL_PIPE_CRC_SOURCE_PIPE:
3767                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3768                 break;
3769         case INTEL_PIPE_CRC_SOURCE_DP_B:
3770                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3771                 need_stable_symbols = true;
3772                 break;
3773         case INTEL_PIPE_CRC_SOURCE_DP_C:
3774                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3775                 need_stable_symbols = true;
3776                 break;
3777         case INTEL_PIPE_CRC_SOURCE_DP_D:
3778                 if (!IS_CHERRYVIEW(dev))
3779                         return -EINVAL;
3780                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3781                 need_stable_symbols = true;
3782                 break;
3783         case INTEL_PIPE_CRC_SOURCE_NONE:
3784                 *val = 0;
3785                 break;
3786         default:
3787                 return -EINVAL;
3788         }
3789
3790         /*
3791          * When the pipe CRC tap point is after the transcoders we need
3792          * to tweak symbol-level features to produce a deterministic series of
3793          * symbols for a given frame. We need to reset those features only once
3794          * a frame (instead of every nth symbol):
3795          *   - DC-balance: used to ensure a better clock recovery from the data
3796          *     link (SDVO)
3797          *   - DisplayPort scrambling: used for EMI reduction
3798          */
3799         if (need_stable_symbols) {
3800                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3801
3802                 tmp |= DC_BALANCE_RESET_VLV;
3803                 switch (pipe) {
3804                 case PIPE_A:
3805                         tmp |= PIPE_A_SCRAMBLE_RESET;
3806                         break;
3807                 case PIPE_B:
3808                         tmp |= PIPE_B_SCRAMBLE_RESET;
3809                         break;
3810                 case PIPE_C:
3811                         tmp |= PIPE_C_SCRAMBLE_RESET;
3812                         break;
3813                 default:
3814                         return -EINVAL;
3815                 }
3816                 I915_WRITE(PORT_DFT2_G4X, tmp);
3817         }
3818
3819         return 0;
3820 }
3821
3822 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3823                                  enum pipe pipe,
3824                                  enum intel_pipe_crc_source *source,
3825                                  uint32_t *val)
3826 {
3827         struct drm_i915_private *dev_priv = dev->dev_private;
3828         bool need_stable_symbols = false;
3829
3830         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3831                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3832                 if (ret)
3833                         return ret;
3834         }
3835
3836         switch (*source) {
3837         case INTEL_PIPE_CRC_SOURCE_PIPE:
3838                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3839                 break;
3840         case INTEL_PIPE_CRC_SOURCE_TV:
3841                 if (!SUPPORTS_TV(dev))
3842                         return -EINVAL;
3843                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3844                 break;
3845         case INTEL_PIPE_CRC_SOURCE_DP_B:
3846                 if (!IS_G4X(dev))
3847                         return -EINVAL;
3848                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3849                 need_stable_symbols = true;
3850                 break;
3851         case INTEL_PIPE_CRC_SOURCE_DP_C:
3852                 if (!IS_G4X(dev))
3853                         return -EINVAL;
3854                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3855                 need_stable_symbols = true;
3856                 break;
3857         case INTEL_PIPE_CRC_SOURCE_DP_D:
3858                 if (!IS_G4X(dev))
3859                         return -EINVAL;
3860                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3861                 need_stable_symbols = true;
3862                 break;
3863         case INTEL_PIPE_CRC_SOURCE_NONE:
3864                 *val = 0;
3865                 break;
3866         default:
3867                 return -EINVAL;
3868         }
3869
3870         /*
3871          * When the pipe CRC tap point is after the transcoders we need
3872          * to tweak symbol-level features to produce a deterministic series of
3873          * symbols for a given frame. We need to reset those features only once
3874          * a frame (instead of every nth symbol):
3875          *   - DC-balance: used to ensure a better clock recovery from the data
3876          *     link (SDVO)
3877          *   - DisplayPort scrambling: used for EMI reduction
3878          */
3879         if (need_stable_symbols) {
3880                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3881
3882                 WARN_ON(!IS_G4X(dev));
3883
3884                 I915_WRITE(PORT_DFT_I9XX,
3885                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3886
3887                 if (pipe == PIPE_A)
3888                         tmp |= PIPE_A_SCRAMBLE_RESET;
3889                 else
3890                         tmp |= PIPE_B_SCRAMBLE_RESET;
3891
3892                 I915_WRITE(PORT_DFT2_G4X, tmp);
3893         }
3894
3895         return 0;
3896 }
3897
3898 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3899                                          enum pipe pipe)
3900 {
3901         struct drm_i915_private *dev_priv = dev->dev_private;
3902         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3903
3904         switch (pipe) {
3905         case PIPE_A:
3906                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3907                 break;
3908         case PIPE_B:
3909                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3910                 break;
3911         case PIPE_C:
3912                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3913                 break;
3914         default:
3915                 return;
3916         }
3917         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3918                 tmp &= ~DC_BALANCE_RESET_VLV;
3919         I915_WRITE(PORT_DFT2_G4X, tmp);
3920
3921 }
3922
3923 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3924                                          enum pipe pipe)
3925 {
3926         struct drm_i915_private *dev_priv = dev->dev_private;
3927         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3928
3929         if (pipe == PIPE_A)
3930                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3931         else
3932                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3933         I915_WRITE(PORT_DFT2_G4X, tmp);
3934
3935         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3936                 I915_WRITE(PORT_DFT_I9XX,
3937                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3938         }
3939 }
3940
3941 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3942                                 uint32_t *val)
3943 {
3944         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3945                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3946
3947         switch (*source) {
3948         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3949                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3950                 break;
3951         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3952                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3953                 break;
3954         case INTEL_PIPE_CRC_SOURCE_PIPE:
3955                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3956                 break;
3957         case INTEL_PIPE_CRC_SOURCE_NONE:
3958                 *val = 0;
3959                 break;
3960         default:
3961                 return -EINVAL;
3962         }
3963
3964         return 0;
3965 }
3966
3967 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3968 {
3969         struct drm_i915_private *dev_priv = dev->dev_private;
3970         struct intel_crtc *crtc =
3971                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3972         struct intel_crtc_state *pipe_config;
3973         struct drm_atomic_state *state;
3974         int ret = 0;
3975
3976         drm_modeset_lock_all(dev);
3977         state = drm_atomic_state_alloc(dev);
3978         if (!state) {
3979                 ret = -ENOMEM;
3980                 goto out;
3981         }
3982
3983         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3984         pipe_config = intel_atomic_get_crtc_state(state, crtc);
3985         if (IS_ERR(pipe_config)) {
3986                 ret = PTR_ERR(pipe_config);
3987                 goto out;
3988         }
3989
3990         pipe_config->pch_pfit.force_thru = enable;
3991         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3992             pipe_config->pch_pfit.enabled != enable)
3993                 pipe_config->base.connectors_changed = true;
3994
3995         ret = drm_atomic_commit(state);
3996 out:
3997         drm_modeset_unlock_all(dev);
3998         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3999         if (ret)
4000                 drm_atomic_state_free(state);
4001 }
4002
4003 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
4004                                 enum pipe pipe,
4005                                 enum intel_pipe_crc_source *source,
4006                                 uint32_t *val)
4007 {
4008         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4009                 *source = INTEL_PIPE_CRC_SOURCE_PF;
4010
4011         switch (*source) {
4012         case INTEL_PIPE_CRC_SOURCE_PLANE1:
4013                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
4014                 break;
4015         case INTEL_PIPE_CRC_SOURCE_PLANE2:
4016                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
4017                 break;
4018         case INTEL_PIPE_CRC_SOURCE_PF:
4019                 if (IS_HASWELL(dev) && pipe == PIPE_A)
4020                         hsw_trans_edp_pipe_A_crc_wa(dev, true);
4021
4022                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4023                 break;
4024         case INTEL_PIPE_CRC_SOURCE_NONE:
4025                 *val = 0;
4026                 break;
4027         default:
4028                 return -EINVAL;
4029         }
4030
4031         return 0;
4032 }
4033
4034 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
4035                                enum intel_pipe_crc_source source)
4036 {
4037         struct drm_i915_private *dev_priv = dev->dev_private;
4038         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4039         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
4040                                                                         pipe));
4041         enum intel_display_power_domain power_domain;
4042         u32 val = 0; /* shut up gcc */
4043         int ret;
4044
4045         if (pipe_crc->source == source)
4046                 return 0;
4047
4048         /* forbid changing the source without going back to 'none' */
4049         if (pipe_crc->source && source)
4050                 return -EINVAL;
4051
4052         power_domain = POWER_DOMAIN_PIPE(pipe);
4053         if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4054                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4055                 return -EIO;
4056         }
4057
4058         if (IS_GEN2(dev))
4059                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4060         else if (INTEL_INFO(dev)->gen < 5)
4061                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4062         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4063                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4064         else if (IS_GEN5(dev) || IS_GEN6(dev))
4065                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4066         else
4067                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4068
4069         if (ret != 0)
4070                 goto out;
4071
4072         /* none -> real source transition */
4073         if (source) {
4074                 struct intel_pipe_crc_entry *entries;
4075
4076                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4077                                  pipe_name(pipe), pipe_crc_source_name(source));
4078
4079                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4080                                   sizeof(pipe_crc->entries[0]),
4081                                   GFP_KERNEL);
4082                 if (!entries) {
4083                         ret = -ENOMEM;
4084                         goto out;
4085                 }
4086
4087                 /*
4088                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4089                  * enabled and disabled dynamically based on package C states,
4090                  * user space can't make reliable use of the CRCs, so let's just
4091                  * completely disable it.
4092                  */
4093                 hsw_disable_ips(crtc);
4094
4095                 spin_lock_irq(&pipe_crc->lock);
4096                 kfree(pipe_crc->entries);
4097                 pipe_crc->entries = entries;
4098                 pipe_crc->head = 0;
4099                 pipe_crc->tail = 0;
4100                 spin_unlock_irq(&pipe_crc->lock);
4101         }
4102
4103         pipe_crc->source = source;
4104
4105         I915_WRITE(PIPE_CRC_CTL(pipe), val);
4106         POSTING_READ(PIPE_CRC_CTL(pipe));
4107
4108         /* real source -> none transition */
4109         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4110                 struct intel_pipe_crc_entry *entries;
4111                 struct intel_crtc *crtc =
4112                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4113
4114                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4115                                  pipe_name(pipe));
4116
4117                 drm_modeset_lock(&crtc->base.mutex, NULL);
4118                 if (crtc->base.state->active)
4119                         intel_wait_for_vblank(dev, pipe);
4120                 drm_modeset_unlock(&crtc->base.mutex);
4121
4122                 spin_lock_irq(&pipe_crc->lock);
4123                 entries = pipe_crc->entries;
4124                 pipe_crc->entries = NULL;
4125                 pipe_crc->head = 0;
4126                 pipe_crc->tail = 0;
4127                 spin_unlock_irq(&pipe_crc->lock);
4128
4129                 kfree(entries);
4130
4131                 if (IS_G4X(dev))
4132                         g4x_undo_pipe_scramble_reset(dev, pipe);
4133                 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4134                         vlv_undo_pipe_scramble_reset(dev, pipe);
4135                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4136                         hsw_trans_edp_pipe_A_crc_wa(dev, false);
4137
4138                 hsw_enable_ips(crtc);
4139         }
4140
4141         ret = 0;
4142
4143 out:
4144         intel_display_power_put(dev_priv, power_domain);
4145
4146         return ret;
4147 }
4148
4149 /*
4150  * Parse pipe CRC command strings:
4151  *   command: wsp* object wsp+ name wsp+ source wsp*
4152  *   object: 'pipe'
4153  *   name: (A | B | C)
4154  *   source: (none | plane1 | plane2 | pf)
4155  *   wsp: (#0x20 | #0x9 | #0xA)+
4156  *
4157  * eg.:
4158  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4159  *  "pipe A none"    ->  Stop CRC
4160  */
4161 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4162 {
4163         int n_words = 0;
4164
4165         while (*buf) {
4166                 char *end;
4167
4168                 /* skip leading white space */
4169                 buf = skip_spaces(buf);
4170                 if (!*buf)
4171                         break;  /* end of buffer */
4172
4173                 /* find end of word */
4174                 for (end = buf; *end && !isspace(*end); end++)
4175                         ;
4176
4177                 if (n_words == max_words) {
4178                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4179                                          max_words);
4180                         return -EINVAL; /* ran out of words[] before bytes */
4181                 }
4182
4183                 if (*end)
4184                         *end++ = '\0';
4185                 words[n_words++] = buf;
4186                 buf = end;
4187         }
4188
4189         return n_words;
4190 }
4191
4192 enum intel_pipe_crc_object {
4193         PIPE_CRC_OBJECT_PIPE,
4194 };
4195
4196 static const char * const pipe_crc_objects[] = {
4197         "pipe",
4198 };
4199
4200 static int
4201 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4202 {
4203         int i;
4204
4205         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4206                 if (!strcmp(buf, pipe_crc_objects[i])) {
4207                         *o = i;
4208                         return 0;
4209                     }
4210
4211         return -EINVAL;
4212 }
4213
4214 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4215 {
4216         const char name = buf[0];
4217
4218         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4219                 return -EINVAL;
4220
4221         *pipe = name - 'A';
4222
4223         return 0;
4224 }
4225
4226 static int
4227 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4228 {
4229         int i;
4230
4231         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4232                 if (!strcmp(buf, pipe_crc_sources[i])) {
4233                         *s = i;
4234                         return 0;
4235                     }
4236
4237         return -EINVAL;
4238 }
4239
4240 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4241 {
4242 #define N_WORDS 3
4243         int n_words;
4244         char *words[N_WORDS];
4245         enum pipe pipe;
4246         enum intel_pipe_crc_object object;
4247         enum intel_pipe_crc_source source;
4248
4249         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4250         if (n_words != N_WORDS) {
4251                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4252                                  N_WORDS);
4253                 return -EINVAL;
4254         }
4255
4256         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4257                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4258                 return -EINVAL;
4259         }
4260
4261         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4262                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4263                 return -EINVAL;
4264         }
4265
4266         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4267                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4268                 return -EINVAL;
4269         }
4270
4271         return pipe_crc_set_source(dev, pipe, source);
4272 }
4273
4274 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4275                                      size_t len, loff_t *offp)
4276 {
4277         struct seq_file *m = file->private_data;
4278         struct drm_device *dev = m->private;
4279         char *tmpbuf;
4280         int ret;
4281
4282         if (len == 0)
4283                 return 0;
4284
4285         if (len > PAGE_SIZE - 1) {
4286                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4287                                  PAGE_SIZE);
4288                 return -E2BIG;
4289         }
4290
4291         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4292         if (!tmpbuf)
4293                 return -ENOMEM;
4294
4295         if (copy_from_user(tmpbuf, ubuf, len)) {
4296                 ret = -EFAULT;
4297                 goto out;
4298         }
4299         tmpbuf[len] = '\0';
4300
4301         ret = display_crc_ctl_parse(dev, tmpbuf, len);
4302
4303 out:
4304         kfree(tmpbuf);
4305         if (ret < 0)
4306                 return ret;
4307
4308         *offp += len;
4309         return len;
4310 }
4311
4312 static const struct file_operations i915_display_crc_ctl_fops = {
4313         .owner = THIS_MODULE,
4314         .open = display_crc_ctl_open,
4315         .read = seq_read,
4316         .llseek = seq_lseek,
4317         .release = single_release,
4318         .write = display_crc_ctl_write
4319 };
4320
4321 static ssize_t i915_displayport_test_active_write(struct file *file,
4322                                             const char __user *ubuf,
4323                                             size_t len, loff_t *offp)
4324 {
4325         char *input_buffer;
4326         int status = 0;
4327         struct drm_device *dev;
4328         struct drm_connector *connector;
4329         struct list_head *connector_list;
4330         struct intel_dp *intel_dp;
4331         int val = 0;
4332
4333         dev = ((struct seq_file *)file->private_data)->private;
4334
4335         connector_list = &dev->mode_config.connector_list;
4336
4337         if (len == 0)
4338                 return 0;
4339
4340         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4341         if (!input_buffer)
4342                 return -ENOMEM;
4343
4344         if (copy_from_user(input_buffer, ubuf, len)) {
4345                 status = -EFAULT;
4346                 goto out;
4347         }
4348
4349         input_buffer[len] = '\0';
4350         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4351
4352         list_for_each_entry(connector, connector_list, head) {
4353
4354                 if (connector->connector_type !=
4355                     DRM_MODE_CONNECTOR_DisplayPort)
4356                         continue;
4357
4358                 if (connector->status == connector_status_connected &&
4359                     connector->encoder != NULL) {
4360                         intel_dp = enc_to_intel_dp(connector->encoder);
4361                         status = kstrtoint(input_buffer, 10, &val);
4362                         if (status < 0)
4363                                 goto out;
4364                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4365                         /* To prevent erroneous activation of the compliance
4366                          * testing code, only accept an actual value of 1 here
4367                          */
4368                         if (val == 1)
4369                                 intel_dp->compliance_test_active = 1;
4370                         else
4371                                 intel_dp->compliance_test_active = 0;
4372                 }
4373         }
4374 out:
4375         kfree(input_buffer);
4376         if (status < 0)
4377                 return status;
4378
4379         *offp += len;
4380         return len;
4381 }
4382
4383 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4384 {
4385         struct drm_device *dev = m->private;
4386         struct drm_connector *connector;
4387         struct list_head *connector_list = &dev->mode_config.connector_list;
4388         struct intel_dp *intel_dp;
4389
4390         list_for_each_entry(connector, connector_list, head) {
4391
4392                 if (connector->connector_type !=
4393                     DRM_MODE_CONNECTOR_DisplayPort)
4394                         continue;
4395
4396                 if (connector->status == connector_status_connected &&
4397                     connector->encoder != NULL) {
4398                         intel_dp = enc_to_intel_dp(connector->encoder);
4399                         if (intel_dp->compliance_test_active)
4400                                 seq_puts(m, "1");
4401                         else
4402                                 seq_puts(m, "0");
4403                 } else
4404                         seq_puts(m, "0");
4405         }
4406
4407         return 0;
4408 }
4409
4410 static int i915_displayport_test_active_open(struct inode *inode,
4411                                        struct file *file)
4412 {
4413         struct drm_device *dev = inode->i_private;
4414
4415         return single_open(file, i915_displayport_test_active_show, dev);
4416 }
4417
4418 static const struct file_operations i915_displayport_test_active_fops = {
4419         .owner = THIS_MODULE,
4420         .open = i915_displayport_test_active_open,
4421         .read = seq_read,
4422         .llseek = seq_lseek,
4423         .release = single_release,
4424         .write = i915_displayport_test_active_write
4425 };
4426
4427 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4428 {
4429         struct drm_device *dev = m->private;
4430         struct drm_connector *connector;
4431         struct list_head *connector_list = &dev->mode_config.connector_list;
4432         struct intel_dp *intel_dp;
4433
4434         list_for_each_entry(connector, connector_list, head) {
4435
4436                 if (connector->connector_type !=
4437                     DRM_MODE_CONNECTOR_DisplayPort)
4438                         continue;
4439
4440                 if (connector->status == connector_status_connected &&
4441                     connector->encoder != NULL) {
4442                         intel_dp = enc_to_intel_dp(connector->encoder);
4443                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4444                 } else
4445                         seq_puts(m, "0");
4446         }
4447
4448         return 0;
4449 }
4450 static int i915_displayport_test_data_open(struct inode *inode,
4451                                        struct file *file)
4452 {
4453         struct drm_device *dev = inode->i_private;
4454
4455         return single_open(file, i915_displayport_test_data_show, dev);
4456 }
4457
4458 static const struct file_operations i915_displayport_test_data_fops = {
4459         .owner = THIS_MODULE,
4460         .open = i915_displayport_test_data_open,
4461         .read = seq_read,
4462         .llseek = seq_lseek,
4463         .release = single_release
4464 };
4465
4466 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4467 {
4468         struct drm_device *dev = m->private;
4469         struct drm_connector *connector;
4470         struct list_head *connector_list = &dev->mode_config.connector_list;
4471         struct intel_dp *intel_dp;
4472
4473         list_for_each_entry(connector, connector_list, head) {
4474
4475                 if (connector->connector_type !=
4476                     DRM_MODE_CONNECTOR_DisplayPort)
4477                         continue;
4478
4479                 if (connector->status == connector_status_connected &&
4480                     connector->encoder != NULL) {
4481                         intel_dp = enc_to_intel_dp(connector->encoder);
4482                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4483                 } else
4484                         seq_puts(m, "0");
4485         }
4486
4487         return 0;
4488 }
4489
4490 static int i915_displayport_test_type_open(struct inode *inode,
4491                                        struct file *file)
4492 {
4493         struct drm_device *dev = inode->i_private;
4494
4495         return single_open(file, i915_displayport_test_type_show, dev);
4496 }
4497
4498 static const struct file_operations i915_displayport_test_type_fops = {
4499         .owner = THIS_MODULE,
4500         .open = i915_displayport_test_type_open,
4501         .read = seq_read,
4502         .llseek = seq_lseek,
4503         .release = single_release
4504 };
4505
4506 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4507 {
4508         struct drm_device *dev = m->private;
4509         int level;
4510         int num_levels;
4511
4512         if (IS_CHERRYVIEW(dev))
4513                 num_levels = 3;
4514         else if (IS_VALLEYVIEW(dev))
4515                 num_levels = 1;
4516         else
4517                 num_levels = ilk_wm_max_level(dev) + 1;
4518
4519         drm_modeset_lock_all(dev);
4520
4521         for (level = 0; level < num_levels; level++) {
4522                 unsigned int latency = wm[level];
4523
4524                 /*
4525                  * - WM1+ latency values in 0.5us units
4526                  * - latencies are in us on gen9/vlv/chv
4527                  */
4528                 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4529                     IS_CHERRYVIEW(dev))
4530                         latency *= 10;
4531                 else if (level > 0)
4532                         latency *= 5;
4533
4534                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4535                            level, wm[level], latency / 10, latency % 10);
4536         }
4537
4538         drm_modeset_unlock_all(dev);
4539 }
4540
4541 static int pri_wm_latency_show(struct seq_file *m, void *data)
4542 {
4543         struct drm_device *dev = m->private;
4544         struct drm_i915_private *dev_priv = dev->dev_private;
4545         const uint16_t *latencies;
4546
4547         if (INTEL_INFO(dev)->gen >= 9)
4548                 latencies = dev_priv->wm.skl_latency;
4549         else
4550                 latencies = to_i915(dev)->wm.pri_latency;
4551
4552         wm_latency_show(m, latencies);
4553
4554         return 0;
4555 }
4556
4557 static int spr_wm_latency_show(struct seq_file *m, void *data)
4558 {
4559         struct drm_device *dev = m->private;
4560         struct drm_i915_private *dev_priv = dev->dev_private;
4561         const uint16_t *latencies;
4562
4563         if (INTEL_INFO(dev)->gen >= 9)
4564                 latencies = dev_priv->wm.skl_latency;
4565         else
4566                 latencies = to_i915(dev)->wm.spr_latency;
4567
4568         wm_latency_show(m, latencies);
4569
4570         return 0;
4571 }
4572
4573 static int cur_wm_latency_show(struct seq_file *m, void *data)
4574 {
4575         struct drm_device *dev = m->private;
4576         struct drm_i915_private *dev_priv = dev->dev_private;
4577         const uint16_t *latencies;
4578
4579         if (INTEL_INFO(dev)->gen >= 9)
4580                 latencies = dev_priv->wm.skl_latency;
4581         else
4582                 latencies = to_i915(dev)->wm.cur_latency;
4583
4584         wm_latency_show(m, latencies);
4585
4586         return 0;
4587 }
4588
4589 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4590 {
4591         struct drm_device *dev = inode->i_private;
4592
4593         if (INTEL_INFO(dev)->gen < 5)
4594                 return -ENODEV;
4595
4596         return single_open(file, pri_wm_latency_show, dev);
4597 }
4598
4599 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4600 {
4601         struct drm_device *dev = inode->i_private;
4602
4603         if (HAS_GMCH_DISPLAY(dev))
4604                 return -ENODEV;
4605
4606         return single_open(file, spr_wm_latency_show, dev);
4607 }
4608
4609 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4610 {
4611         struct drm_device *dev = inode->i_private;
4612
4613         if (HAS_GMCH_DISPLAY(dev))
4614                 return -ENODEV;
4615
4616         return single_open(file, cur_wm_latency_show, dev);
4617 }
4618
4619 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4620                                 size_t len, loff_t *offp, uint16_t wm[8])
4621 {
4622         struct seq_file *m = file->private_data;
4623         struct drm_device *dev = m->private;
4624         uint16_t new[8] = { 0 };
4625         int num_levels;
4626         int level;
4627         int ret;
4628         char tmp[32];
4629
4630         if (IS_CHERRYVIEW(dev))
4631                 num_levels = 3;
4632         else if (IS_VALLEYVIEW(dev))
4633                 num_levels = 1;
4634         else
4635                 num_levels = ilk_wm_max_level(dev) + 1;
4636
4637         if (len >= sizeof(tmp))
4638                 return -EINVAL;
4639
4640         if (copy_from_user(tmp, ubuf, len))
4641                 return -EFAULT;
4642
4643         tmp[len] = '\0';
4644
4645         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4646                      &new[0], &new[1], &new[2], &new[3],
4647                      &new[4], &new[5], &new[6], &new[7]);
4648         if (ret != num_levels)
4649                 return -EINVAL;
4650
4651         drm_modeset_lock_all(dev);
4652
4653         for (level = 0; level < num_levels; level++)
4654                 wm[level] = new[level];
4655
4656         drm_modeset_unlock_all(dev);
4657
4658         return len;
4659 }
4660
4661
4662 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4663                                     size_t len, loff_t *offp)
4664 {
4665         struct seq_file *m = file->private_data;
4666         struct drm_device *dev = m->private;
4667         struct drm_i915_private *dev_priv = dev->dev_private;
4668         uint16_t *latencies;
4669
4670         if (INTEL_INFO(dev)->gen >= 9)
4671                 latencies = dev_priv->wm.skl_latency;
4672         else
4673                 latencies = to_i915(dev)->wm.pri_latency;
4674
4675         return wm_latency_write(file, ubuf, len, offp, latencies);
4676 }
4677
4678 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4679                                     size_t len, loff_t *offp)
4680 {
4681         struct seq_file *m = file->private_data;
4682         struct drm_device *dev = m->private;
4683         struct drm_i915_private *dev_priv = dev->dev_private;
4684         uint16_t *latencies;
4685
4686         if (INTEL_INFO(dev)->gen >= 9)
4687                 latencies = dev_priv->wm.skl_latency;
4688         else
4689                 latencies = to_i915(dev)->wm.spr_latency;
4690
4691         return wm_latency_write(file, ubuf, len, offp, latencies);
4692 }
4693
4694 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4695                                     size_t len, loff_t *offp)
4696 {
4697         struct seq_file *m = file->private_data;
4698         struct drm_device *dev = m->private;
4699         struct drm_i915_private *dev_priv = dev->dev_private;
4700         uint16_t *latencies;
4701
4702         if (INTEL_INFO(dev)->gen >= 9)
4703                 latencies = dev_priv->wm.skl_latency;
4704         else
4705                 latencies = to_i915(dev)->wm.cur_latency;
4706
4707         return wm_latency_write(file, ubuf, len, offp, latencies);
4708 }
4709
4710 static const struct file_operations i915_pri_wm_latency_fops = {
4711         .owner = THIS_MODULE,
4712         .open = pri_wm_latency_open,
4713         .read = seq_read,
4714         .llseek = seq_lseek,
4715         .release = single_release,
4716         .write = pri_wm_latency_write
4717 };
4718
4719 static const struct file_operations i915_spr_wm_latency_fops = {
4720         .owner = THIS_MODULE,
4721         .open = spr_wm_latency_open,
4722         .read = seq_read,
4723         .llseek = seq_lseek,
4724         .release = single_release,
4725         .write = spr_wm_latency_write
4726 };
4727
4728 static const struct file_operations i915_cur_wm_latency_fops = {
4729         .owner = THIS_MODULE,
4730         .open = cur_wm_latency_open,
4731         .read = seq_read,
4732         .llseek = seq_lseek,
4733         .release = single_release,
4734         .write = cur_wm_latency_write
4735 };
4736
4737 static int
4738 i915_wedged_get(void *data, u64 *val)
4739 {
4740         struct drm_device *dev = data;
4741         struct drm_i915_private *dev_priv = dev->dev_private;
4742
4743         *val = i915_terminally_wedged(&dev_priv->gpu_error);
4744
4745         return 0;
4746 }
4747
4748 static int
4749 i915_wedged_set(void *data, u64 val)
4750 {
4751         struct drm_device *dev = data;
4752         struct drm_i915_private *dev_priv = dev->dev_private;
4753
4754         /*
4755          * There is no safeguard against this debugfs entry colliding
4756          * with the hangcheck calling same i915_handle_error() in
4757          * parallel, causing an explosion. For now we assume that the
4758          * test harness is responsible enough not to inject gpu hangs
4759          * while it is writing to 'i915_wedged'
4760          */
4761
4762         if (i915_reset_in_progress(&dev_priv->gpu_error))
4763                 return -EAGAIN;
4764
4765         intel_runtime_pm_get(dev_priv);
4766
4767         i915_handle_error(dev_priv, val,
4768                           "Manually setting wedged to %llu", val);
4769
4770         intel_runtime_pm_put(dev_priv);
4771
4772         return 0;
4773 }
4774
4775 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4776                         i915_wedged_get, i915_wedged_set,
4777                         "%llu\n");
4778
4779 static int
4780 i915_ring_stop_get(void *data, u64 *val)
4781 {
4782         struct drm_device *dev = data;
4783         struct drm_i915_private *dev_priv = dev->dev_private;
4784
4785         *val = dev_priv->gpu_error.stop_rings;
4786
4787         return 0;
4788 }
4789
4790 static int
4791 i915_ring_stop_set(void *data, u64 val)
4792 {
4793         struct drm_device *dev = data;
4794         struct drm_i915_private *dev_priv = dev->dev_private;
4795         int ret;
4796
4797         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4798
4799         ret = mutex_lock_interruptible(&dev->struct_mutex);
4800         if (ret)
4801                 return ret;
4802
4803         dev_priv->gpu_error.stop_rings = val;
4804         mutex_unlock(&dev->struct_mutex);
4805
4806         return 0;
4807 }
4808
4809 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4810                         i915_ring_stop_get, i915_ring_stop_set,
4811                         "0x%08llx\n");
4812
4813 static int
4814 i915_ring_missed_irq_get(void *data, u64 *val)
4815 {
4816         struct drm_device *dev = data;
4817         struct drm_i915_private *dev_priv = dev->dev_private;
4818
4819         *val = dev_priv->gpu_error.missed_irq_rings;
4820         return 0;
4821 }
4822
4823 static int
4824 i915_ring_missed_irq_set(void *data, u64 val)
4825 {
4826         struct drm_device *dev = data;
4827         struct drm_i915_private *dev_priv = dev->dev_private;
4828         int ret;
4829
4830         /* Lock against concurrent debugfs callers */
4831         ret = mutex_lock_interruptible(&dev->struct_mutex);
4832         if (ret)
4833                 return ret;
4834         dev_priv->gpu_error.missed_irq_rings = val;
4835         mutex_unlock(&dev->struct_mutex);
4836
4837         return 0;
4838 }
4839
4840 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4841                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4842                         "0x%08llx\n");
4843
4844 static int
4845 i915_ring_test_irq_get(void *data, u64 *val)
4846 {
4847         struct drm_device *dev = data;
4848         struct drm_i915_private *dev_priv = dev->dev_private;
4849
4850         *val = dev_priv->gpu_error.test_irq_rings;
4851
4852         return 0;
4853 }
4854
4855 static int
4856 i915_ring_test_irq_set(void *data, u64 val)
4857 {
4858         struct drm_device *dev = data;
4859         struct drm_i915_private *dev_priv = dev->dev_private;
4860         int ret;
4861
4862         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4863
4864         /* Lock against concurrent debugfs callers */
4865         ret = mutex_lock_interruptible(&dev->struct_mutex);
4866         if (ret)
4867                 return ret;
4868
4869         dev_priv->gpu_error.test_irq_rings = val;
4870         mutex_unlock(&dev->struct_mutex);
4871
4872         return 0;
4873 }
4874
4875 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4876                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4877                         "0x%08llx\n");
4878
4879 #define DROP_UNBOUND 0x1
4880 #define DROP_BOUND 0x2
4881 #define DROP_RETIRE 0x4
4882 #define DROP_ACTIVE 0x8
4883 #define DROP_ALL (DROP_UNBOUND | \
4884                   DROP_BOUND | \
4885                   DROP_RETIRE | \
4886                   DROP_ACTIVE)
4887 static int
4888 i915_drop_caches_get(void *data, u64 *val)
4889 {
4890         *val = DROP_ALL;
4891
4892         return 0;
4893 }
4894
4895 static int
4896 i915_drop_caches_set(void *data, u64 val)
4897 {
4898         struct drm_device *dev = data;
4899         struct drm_i915_private *dev_priv = dev->dev_private;
4900         int ret;
4901
4902         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4903
4904         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4905          * on ioctls on -EAGAIN. */
4906         ret = mutex_lock_interruptible(&dev->struct_mutex);
4907         if (ret)
4908                 return ret;
4909
4910         if (val & DROP_ACTIVE) {
4911                 ret = i915_gpu_idle(dev);
4912                 if (ret)
4913                         goto unlock;
4914         }
4915
4916         if (val & (DROP_RETIRE | DROP_ACTIVE))
4917                 i915_gem_retire_requests(dev_priv);
4918
4919         if (val & DROP_BOUND)
4920                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4921
4922         if (val & DROP_UNBOUND)
4923                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4924
4925 unlock:
4926         mutex_unlock(&dev->struct_mutex);
4927
4928         return ret;
4929 }
4930
4931 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4932                         i915_drop_caches_get, i915_drop_caches_set,
4933                         "0x%08llx\n");
4934
4935 static int
4936 i915_max_freq_get(void *data, u64 *val)
4937 {
4938         struct drm_device *dev = data;
4939         struct drm_i915_private *dev_priv = dev->dev_private;
4940         int ret;
4941
4942         if (INTEL_INFO(dev)->gen < 6)
4943                 return -ENODEV;
4944
4945         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4946
4947         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4948         if (ret)
4949                 return ret;
4950
4951         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4952         mutex_unlock(&dev_priv->rps.hw_lock);
4953
4954         return 0;
4955 }
4956
4957 static int
4958 i915_max_freq_set(void *data, u64 val)
4959 {
4960         struct drm_device *dev = data;
4961         struct drm_i915_private *dev_priv = dev->dev_private;
4962         u32 hw_max, hw_min;
4963         int ret;
4964
4965         if (INTEL_INFO(dev)->gen < 6)
4966                 return -ENODEV;
4967
4968         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4969
4970         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4971
4972         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4973         if (ret)
4974                 return ret;
4975
4976         /*
4977          * Turbo will still be enabled, but won't go above the set value.
4978          */
4979         val = intel_freq_opcode(dev_priv, val);
4980
4981         hw_max = dev_priv->rps.max_freq;
4982         hw_min = dev_priv->rps.min_freq;
4983
4984         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4985                 mutex_unlock(&dev_priv->rps.hw_lock);
4986                 return -EINVAL;
4987         }
4988
4989         dev_priv->rps.max_freq_softlimit = val;
4990
4991         intel_set_rps(dev_priv, val);
4992
4993         mutex_unlock(&dev_priv->rps.hw_lock);
4994
4995         return 0;
4996 }
4997
4998 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4999                         i915_max_freq_get, i915_max_freq_set,
5000                         "%llu\n");
5001
5002 static int
5003 i915_min_freq_get(void *data, u64 *val)
5004 {
5005         struct drm_device *dev = data;
5006         struct drm_i915_private *dev_priv = dev->dev_private;
5007         int ret;
5008
5009         if (INTEL_INFO(dev)->gen < 6)
5010                 return -ENODEV;
5011
5012         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5013
5014         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5015         if (ret)
5016                 return ret;
5017
5018         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
5019         mutex_unlock(&dev_priv->rps.hw_lock);
5020
5021         return 0;
5022 }
5023
5024 static int
5025 i915_min_freq_set(void *data, u64 val)
5026 {
5027         struct drm_device *dev = data;
5028         struct drm_i915_private *dev_priv = dev->dev_private;
5029         u32 hw_max, hw_min;
5030         int ret;
5031
5032         if (INTEL_INFO(dev)->gen < 6)
5033                 return -ENODEV;
5034
5035         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5036
5037         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5038
5039         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5040         if (ret)
5041                 return ret;
5042
5043         /*
5044          * Turbo will still be enabled, but won't go below the set value.
5045          */
5046         val = intel_freq_opcode(dev_priv, val);
5047
5048         hw_max = dev_priv->rps.max_freq;
5049         hw_min = dev_priv->rps.min_freq;
5050
5051         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5052                 mutex_unlock(&dev_priv->rps.hw_lock);
5053                 return -EINVAL;
5054         }
5055
5056         dev_priv->rps.min_freq_softlimit = val;
5057
5058         intel_set_rps(dev_priv, val);
5059
5060         mutex_unlock(&dev_priv->rps.hw_lock);
5061
5062         return 0;
5063 }
5064
5065 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5066                         i915_min_freq_get, i915_min_freq_set,
5067                         "%llu\n");
5068
5069 static int
5070 i915_cache_sharing_get(void *data, u64 *val)
5071 {
5072         struct drm_device *dev = data;
5073         struct drm_i915_private *dev_priv = dev->dev_private;
5074         u32 snpcr;
5075         int ret;
5076
5077         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5078                 return -ENODEV;
5079
5080         ret = mutex_lock_interruptible(&dev->struct_mutex);
5081         if (ret)
5082                 return ret;
5083         intel_runtime_pm_get(dev_priv);
5084
5085         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5086
5087         intel_runtime_pm_put(dev_priv);
5088         mutex_unlock(&dev_priv->dev->struct_mutex);
5089
5090         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5091
5092         return 0;
5093 }
5094
5095 static int
5096 i915_cache_sharing_set(void *data, u64 val)
5097 {
5098         struct drm_device *dev = data;
5099         struct drm_i915_private *dev_priv = dev->dev_private;
5100         u32 snpcr;
5101
5102         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5103                 return -ENODEV;
5104
5105         if (val > 3)
5106                 return -EINVAL;
5107
5108         intel_runtime_pm_get(dev_priv);
5109         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5110
5111         /* Update the cache sharing policy here as well */
5112         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5113         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5114         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5115         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5116
5117         intel_runtime_pm_put(dev_priv);
5118         return 0;
5119 }
5120
5121 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5122                         i915_cache_sharing_get, i915_cache_sharing_set,
5123                         "%llu\n");
5124
5125 struct sseu_dev_status {
5126         unsigned int slice_total;
5127         unsigned int subslice_total;
5128         unsigned int subslice_per_slice;
5129         unsigned int eu_total;
5130         unsigned int eu_per_subslice;
5131 };
5132
5133 static void cherryview_sseu_device_status(struct drm_device *dev,
5134                                           struct sseu_dev_status *stat)
5135 {
5136         struct drm_i915_private *dev_priv = dev->dev_private;
5137         int ss_max = 2;
5138         int ss;
5139         u32 sig1[ss_max], sig2[ss_max];
5140
5141         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5142         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5143         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5144         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5145
5146         for (ss = 0; ss < ss_max; ss++) {
5147                 unsigned int eu_cnt;
5148
5149                 if (sig1[ss] & CHV_SS_PG_ENABLE)
5150                         /* skip disabled subslice */
5151                         continue;
5152
5153                 stat->slice_total = 1;
5154                 stat->subslice_per_slice++;
5155                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5156                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5157                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5158                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5159                 stat->eu_total += eu_cnt;
5160                 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5161         }
5162         stat->subslice_total = stat->subslice_per_slice;
5163 }
5164
5165 static void gen9_sseu_device_status(struct drm_device *dev,
5166                                     struct sseu_dev_status *stat)
5167 {
5168         struct drm_i915_private *dev_priv = dev->dev_private;
5169         int s_max = 3, ss_max = 4;
5170         int s, ss;
5171         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5172
5173         /* BXT has a single slice and at most 3 subslices. */
5174         if (IS_BROXTON(dev)) {
5175                 s_max = 1;
5176                 ss_max = 3;
5177         }
5178
5179         for (s = 0; s < s_max; s++) {
5180                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5181                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5182                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5183         }
5184
5185         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5186                      GEN9_PGCTL_SSA_EU19_ACK |
5187                      GEN9_PGCTL_SSA_EU210_ACK |
5188                      GEN9_PGCTL_SSA_EU311_ACK;
5189         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5190                      GEN9_PGCTL_SSB_EU19_ACK |
5191                      GEN9_PGCTL_SSB_EU210_ACK |
5192                      GEN9_PGCTL_SSB_EU311_ACK;
5193
5194         for (s = 0; s < s_max; s++) {
5195                 unsigned int ss_cnt = 0;
5196
5197                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5198                         /* skip disabled slice */
5199                         continue;
5200
5201                 stat->slice_total++;
5202
5203                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5204                         ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5205
5206                 for (ss = 0; ss < ss_max; ss++) {
5207                         unsigned int eu_cnt;
5208
5209                         if (IS_BROXTON(dev) &&
5210                             !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5211                                 /* skip disabled subslice */
5212                                 continue;
5213
5214                         if (IS_BROXTON(dev))
5215                                 ss_cnt++;
5216
5217                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5218                                                eu_mask[ss%2]);
5219                         stat->eu_total += eu_cnt;
5220                         stat->eu_per_subslice = max(stat->eu_per_subslice,
5221                                                     eu_cnt);
5222                 }
5223
5224                 stat->subslice_total += ss_cnt;
5225                 stat->subslice_per_slice = max(stat->subslice_per_slice,
5226                                                ss_cnt);
5227         }
5228 }
5229
5230 static void broadwell_sseu_device_status(struct drm_device *dev,
5231                                          struct sseu_dev_status *stat)
5232 {
5233         struct drm_i915_private *dev_priv = dev->dev_private;
5234         int s;
5235         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5236
5237         stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5238
5239         if (stat->slice_total) {
5240                 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5241                 stat->subslice_total = stat->slice_total *
5242                                        stat->subslice_per_slice;
5243                 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5244                 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5245
5246                 /* subtract fused off EU(s) from enabled slice(s) */
5247                 for (s = 0; s < stat->slice_total; s++) {
5248                         u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5249
5250                         stat->eu_total -= hweight8(subslice_7eu);
5251                 }
5252         }
5253 }
5254
5255 static int i915_sseu_status(struct seq_file *m, void *unused)
5256 {
5257         struct drm_info_node *node = (struct drm_info_node *) m->private;
5258         struct drm_device *dev = node->minor->dev;
5259         struct sseu_dev_status stat;
5260
5261         if (INTEL_INFO(dev)->gen < 8)
5262                 return -ENODEV;
5263
5264         seq_puts(m, "SSEU Device Info\n");
5265         seq_printf(m, "  Available Slice Total: %u\n",
5266                    INTEL_INFO(dev)->slice_total);
5267         seq_printf(m, "  Available Subslice Total: %u\n",
5268                    INTEL_INFO(dev)->subslice_total);
5269         seq_printf(m, "  Available Subslice Per Slice: %u\n",
5270                    INTEL_INFO(dev)->subslice_per_slice);
5271         seq_printf(m, "  Available EU Total: %u\n",
5272                    INTEL_INFO(dev)->eu_total);
5273         seq_printf(m, "  Available EU Per Subslice: %u\n",
5274                    INTEL_INFO(dev)->eu_per_subslice);
5275         seq_printf(m, "  Has Slice Power Gating: %s\n",
5276                    yesno(INTEL_INFO(dev)->has_slice_pg));
5277         seq_printf(m, "  Has Subslice Power Gating: %s\n",
5278                    yesno(INTEL_INFO(dev)->has_subslice_pg));
5279         seq_printf(m, "  Has EU Power Gating: %s\n",
5280                    yesno(INTEL_INFO(dev)->has_eu_pg));
5281
5282         seq_puts(m, "SSEU Device Status\n");
5283         memset(&stat, 0, sizeof(stat));
5284         if (IS_CHERRYVIEW(dev)) {
5285                 cherryview_sseu_device_status(dev, &stat);
5286         } else if (IS_BROADWELL(dev)) {
5287                 broadwell_sseu_device_status(dev, &stat);
5288         } else if (INTEL_INFO(dev)->gen >= 9) {
5289                 gen9_sseu_device_status(dev, &stat);
5290         }
5291         seq_printf(m, "  Enabled Slice Total: %u\n",
5292                    stat.slice_total);
5293         seq_printf(m, "  Enabled Subslice Total: %u\n",
5294                    stat.subslice_total);
5295         seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5296                    stat.subslice_per_slice);
5297         seq_printf(m, "  Enabled EU Total: %u\n",
5298                    stat.eu_total);
5299         seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5300                    stat.eu_per_subslice);
5301
5302         return 0;
5303 }
5304
5305 static int i915_forcewake_open(struct inode *inode, struct file *file)
5306 {
5307         struct drm_device *dev = inode->i_private;
5308         struct drm_i915_private *dev_priv = dev->dev_private;
5309
5310         if (INTEL_INFO(dev)->gen < 6)
5311                 return 0;
5312
5313         intel_runtime_pm_get(dev_priv);
5314         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5315
5316         return 0;
5317 }
5318
5319 static int i915_forcewake_release(struct inode *inode, struct file *file)
5320 {
5321         struct drm_device *dev = inode->i_private;
5322         struct drm_i915_private *dev_priv = dev->dev_private;
5323
5324         if (INTEL_INFO(dev)->gen < 6)
5325                 return 0;
5326
5327         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5328         intel_runtime_pm_put(dev_priv);
5329
5330         return 0;
5331 }
5332
5333 static const struct file_operations i915_forcewake_fops = {
5334         .owner = THIS_MODULE,
5335         .open = i915_forcewake_open,
5336         .release = i915_forcewake_release,
5337 };
5338
5339 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5340 {
5341         struct drm_device *dev = minor->dev;
5342         struct dentry *ent;
5343
5344         ent = debugfs_create_file("i915_forcewake_user",
5345                                   S_IRUSR,
5346                                   root, dev,
5347                                   &i915_forcewake_fops);
5348         if (!ent)
5349                 return -ENOMEM;
5350
5351         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5352 }
5353
5354 static int i915_debugfs_create(struct dentry *root,
5355                                struct drm_minor *minor,
5356                                const char *name,
5357                                const struct file_operations *fops)
5358 {
5359         struct drm_device *dev = minor->dev;
5360         struct dentry *ent;
5361
5362         ent = debugfs_create_file(name,
5363                                   S_IRUGO | S_IWUSR,
5364                                   root, dev,
5365                                   fops);
5366         if (!ent)
5367                 return -ENOMEM;
5368
5369         return drm_add_fake_info_node(minor, ent, fops);
5370 }
5371
5372 static const struct drm_info_list i915_debugfs_list[] = {
5373         {"i915_capabilities", i915_capabilities, 0},
5374         {"i915_gem_objects", i915_gem_object_info, 0},
5375         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5376         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5377         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5378         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5379         {"i915_gem_stolen", i915_gem_stolen_list_info },
5380         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5381         {"i915_gem_request", i915_gem_request_info, 0},
5382         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5383         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5384         {"i915_gem_interrupt", i915_interrupt_info, 0},
5385         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5386         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5387         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5388         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5389         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5390         {"i915_guc_info", i915_guc_info, 0},
5391         {"i915_guc_load_status", i915_guc_load_status_info, 0},
5392         {"i915_guc_log_dump", i915_guc_log_dump, 0},
5393         {"i915_frequency_info", i915_frequency_info, 0},
5394         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5395         {"i915_drpc_info", i915_drpc_info, 0},
5396         {"i915_emon_status", i915_emon_status, 0},
5397         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5398         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5399         {"i915_fbc_status", i915_fbc_status, 0},
5400         {"i915_ips_status", i915_ips_status, 0},
5401         {"i915_sr_status", i915_sr_status, 0},
5402         {"i915_opregion", i915_opregion, 0},
5403         {"i915_vbt", i915_vbt, 0},
5404         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5405         {"i915_context_status", i915_context_status, 0},
5406         {"i915_dump_lrc", i915_dump_lrc, 0},
5407         {"i915_execlists", i915_execlists, 0},
5408         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5409         {"i915_swizzle_info", i915_swizzle_info, 0},
5410         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5411         {"i915_llc", i915_llc, 0},
5412         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5413         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5414         {"i915_energy_uJ", i915_energy_uJ, 0},
5415         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5416         {"i915_power_domain_info", i915_power_domain_info, 0},
5417         {"i915_dmc_info", i915_dmc_info, 0},
5418         {"i915_display_info", i915_display_info, 0},
5419         {"i915_semaphore_status", i915_semaphore_status, 0},
5420         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5421         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5422         {"i915_wa_registers", i915_wa_registers, 0},
5423         {"i915_ddb_info", i915_ddb_info, 0},
5424         {"i915_sseu_status", i915_sseu_status, 0},
5425         {"i915_drrs_status", i915_drrs_status, 0},
5426         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5427 };
5428 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5429
5430 static const struct i915_debugfs_files {
5431         const char *name;
5432         const struct file_operations *fops;
5433 } i915_debugfs_files[] = {
5434         {"i915_wedged", &i915_wedged_fops},
5435         {"i915_max_freq", &i915_max_freq_fops},
5436         {"i915_min_freq", &i915_min_freq_fops},
5437         {"i915_cache_sharing", &i915_cache_sharing_fops},
5438         {"i915_ring_stop", &i915_ring_stop_fops},
5439         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5440         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5441         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5442         {"i915_error_state", &i915_error_state_fops},
5443         {"i915_next_seqno", &i915_next_seqno_fops},
5444         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5445         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5446         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5447         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5448         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5449         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5450         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5451         {"i915_dp_test_active", &i915_displayport_test_active_fops}
5452 };
5453
5454 void intel_display_crc_init(struct drm_device *dev)
5455 {
5456         struct drm_i915_private *dev_priv = dev->dev_private;
5457         enum pipe pipe;
5458
5459         for_each_pipe(dev_priv, pipe) {
5460                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5461
5462                 pipe_crc->opened = false;
5463                 spin_lock_init(&pipe_crc->lock);
5464                 init_waitqueue_head(&pipe_crc->wq);
5465         }
5466 }
5467
5468 int i915_debugfs_init(struct drm_minor *minor)
5469 {
5470         int ret, i;
5471
5472         ret = i915_forcewake_create(minor->debugfs_root, minor);
5473         if (ret)
5474                 return ret;
5475
5476         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5477                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5478                 if (ret)
5479                         return ret;
5480         }
5481
5482         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5483                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5484                                           i915_debugfs_files[i].name,
5485                                           i915_debugfs_files[i].fops);
5486                 if (ret)
5487                         return ret;
5488         }
5489
5490         return drm_debugfs_create_files(i915_debugfs_list,
5491                                         I915_DEBUGFS_ENTRIES,
5492                                         minor->debugfs_root, minor);
5493 }
5494
5495 void i915_debugfs_cleanup(struct drm_minor *minor)
5496 {
5497         int i;
5498
5499         drm_debugfs_remove_files(i915_debugfs_list,
5500                                  I915_DEBUGFS_ENTRIES, minor);
5501
5502         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5503                                  1, minor);
5504
5505         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5506                 struct drm_info_list *info_list =
5507                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5508
5509                 drm_debugfs_remove_files(info_list, 1, minor);
5510         }
5511
5512         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5513                 struct drm_info_list *info_list =
5514                         (struct drm_info_list *) i915_debugfs_files[i].fops;
5515
5516                 drm_debugfs_remove_files(info_list, 1, minor);
5517         }
5518 }
5519
5520 struct dpcd_block {
5521         /* DPCD dump start address. */
5522         unsigned int offset;
5523         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5524         unsigned int end;
5525         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5526         size_t size;
5527         /* Only valid for eDP. */
5528         bool edp;
5529 };
5530
5531 static const struct dpcd_block i915_dpcd_debug[] = {
5532         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5533         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5534         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5535         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5536         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5537         { .offset = DP_SET_POWER },
5538         { .offset = DP_EDP_DPCD_REV },
5539         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5540         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5541         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5542 };
5543
5544 static int i915_dpcd_show(struct seq_file *m, void *data)
5545 {
5546         struct drm_connector *connector = m->private;
5547         struct intel_dp *intel_dp =
5548                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5549         uint8_t buf[16];
5550         ssize_t err;
5551         int i;
5552
5553         if (connector->status != connector_status_connected)
5554                 return -ENODEV;
5555
5556         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5557                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5558                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5559
5560                 if (b->edp &&
5561                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5562                         continue;
5563
5564                 /* low tech for now */
5565                 if (WARN_ON(size > sizeof(buf)))
5566                         continue;
5567
5568                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5569                 if (err <= 0) {
5570                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5571                                   size, b->offset, err);
5572                         continue;
5573                 }
5574
5575                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5576         }
5577
5578         return 0;
5579 }
5580
5581 static int i915_dpcd_open(struct inode *inode, struct file *file)
5582 {
5583         return single_open(file, i915_dpcd_show, inode->i_private);
5584 }
5585
5586 static const struct file_operations i915_dpcd_fops = {
5587         .owner = THIS_MODULE,
5588         .open = i915_dpcd_open,
5589         .read = seq_read,
5590         .llseek = seq_lseek,
5591         .release = single_release,
5592 };
5593
5594 /**
5595  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5596  * @connector: pointer to a registered drm_connector
5597  *
5598  * Cleanup will be done by drm_connector_unregister() through a call to
5599  * drm_debugfs_connector_remove().
5600  *
5601  * Returns 0 on success, negative error codes on error.
5602  */
5603 int i915_debugfs_connector_add(struct drm_connector *connector)
5604 {
5605         struct dentry *root = connector->debugfs_entry;
5606
5607         /* The connector must have been registered beforehands. */
5608         if (!root)
5609                 return -ENODEV;
5610
5611         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5612             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5613                 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5614                                     &i915_dpcd_fops);
5615
5616         return 0;
5617 }