drm/i915: Store and use edram capabilities
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53                        struct dentry *ent,
54                        const void *key)
55 {
56         struct drm_info_node *node;
57
58         node = kmalloc(sizeof(*node), GFP_KERNEL);
59         if (node == NULL) {
60                 debugfs_remove(ent);
61                 return -ENOMEM;
62         }
63
64         node->minor = minor;
65         node->dent = ent;
66         node->info_ent = (void *) key;
67
68         mutex_lock(&minor->debugfs_lock);
69         list_add(&node->list, &minor->debugfs_list);
70         mutex_unlock(&minor->debugfs_lock);
71
72         return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77         struct drm_info_node *node = m->private;
78         struct drm_device *dev = node->minor->dev;
79         const struct intel_device_info *info = INTEL_INFO(dev);
80
81         seq_printf(m, "gen: %d\n", info->gen);
82         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89         return 0;
90 }
91
92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94         if (obj->pin_display)
95                 return "p";
96         else
97                 return " ";
98 }
99
100 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102         switch (obj->tiling_mode) {
103         default:
104         case I915_TILING_NONE: return " ";
105         case I915_TILING_X: return "X";
106         case I915_TILING_Y: return "Y";
107         }
108 }
109
110 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
111 {
112         return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
113 }
114
115 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
116 {
117         u64 size = 0;
118         struct i915_vma *vma;
119
120         list_for_each_entry(vma, &obj->vma_list, obj_link) {
121                 if (vma->is_ggtt && drm_mm_node_allocated(&vma->node))
122                         size += vma->node.size;
123         }
124
125         return size;
126 }
127
128 static void
129 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
130 {
131         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
132         struct intel_engine_cs *engine;
133         struct i915_vma *vma;
134         int pin_count = 0;
135         enum intel_engine_id id;
136
137         lockdep_assert_held(&obj->base.dev->struct_mutex);
138
139         seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
140                    &obj->base,
141                    obj->active ? "*" : " ",
142                    get_pin_flag(obj),
143                    get_tiling_flag(obj),
144                    get_global_flag(obj),
145                    obj->base.size / 1024,
146                    obj->base.read_domains,
147                    obj->base.write_domain);
148         for_each_engine_id(engine, dev_priv, id)
149                 seq_printf(m, "%x ",
150                                 i915_gem_request_get_seqno(obj->last_read_req[id]));
151         seq_printf(m, "] %x %x%s%s%s",
152                    i915_gem_request_get_seqno(obj->last_write_req),
153                    i915_gem_request_get_seqno(obj->last_fenced_req),
154                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
155                    obj->dirty ? " dirty" : "",
156                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
157         if (obj->base.name)
158                 seq_printf(m, " (name: %d)", obj->base.name);
159         list_for_each_entry(vma, &obj->vma_list, obj_link) {
160                 if (vma->pin_count > 0)
161                         pin_count++;
162         }
163         seq_printf(m, " (pinned x %d)", pin_count);
164         if (obj->pin_display)
165                 seq_printf(m, " (display)");
166         if (obj->fence_reg != I915_FENCE_REG_NONE)
167                 seq_printf(m, " (fence: %d)", obj->fence_reg);
168         list_for_each_entry(vma, &obj->vma_list, obj_link) {
169                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
170                            vma->is_ggtt ? "g" : "pp",
171                            vma->node.start, vma->node.size);
172                 if (vma->is_ggtt)
173                         seq_printf(m, ", type: %u", vma->ggtt_view.type);
174                 seq_puts(m, ")");
175         }
176         if (obj->stolen)
177                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
178         if (obj->pin_display || obj->fault_mappable) {
179                 char s[3], *t = s;
180                 if (obj->pin_display)
181                         *t++ = 'p';
182                 if (obj->fault_mappable)
183                         *t++ = 'f';
184                 *t = '\0';
185                 seq_printf(m, " (%s mappable)", s);
186         }
187         if (obj->last_write_req != NULL)
188                 seq_printf(m, " (%s)",
189                            i915_gem_request_get_engine(obj->last_write_req)->name);
190         if (obj->frontbuffer_bits)
191                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
192 }
193
194 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
195 {
196         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
197         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
198         seq_putc(m, ' ');
199 }
200
201 static int i915_gem_object_list_info(struct seq_file *m, void *data)
202 {
203         struct drm_info_node *node = m->private;
204         uintptr_t list = (uintptr_t) node->info_ent->data;
205         struct list_head *head;
206         struct drm_device *dev = node->minor->dev;
207         struct drm_i915_private *dev_priv = to_i915(dev);
208         struct i915_ggtt *ggtt = &dev_priv->ggtt;
209         struct i915_vma *vma;
210         u64 total_obj_size, total_gtt_size;
211         int count, ret;
212
213         ret = mutex_lock_interruptible(&dev->struct_mutex);
214         if (ret)
215                 return ret;
216
217         /* FIXME: the user of this interface might want more than just GGTT */
218         switch (list) {
219         case ACTIVE_LIST:
220                 seq_puts(m, "Active:\n");
221                 head = &ggtt->base.active_list;
222                 break;
223         case INACTIVE_LIST:
224                 seq_puts(m, "Inactive:\n");
225                 head = &ggtt->base.inactive_list;
226                 break;
227         default:
228                 mutex_unlock(&dev->struct_mutex);
229                 return -EINVAL;
230         }
231
232         total_obj_size = total_gtt_size = count = 0;
233         list_for_each_entry(vma, head, vm_link) {
234                 seq_printf(m, "   ");
235                 describe_obj(m, vma->obj);
236                 seq_printf(m, "\n");
237                 total_obj_size += vma->obj->base.size;
238                 total_gtt_size += vma->node.size;
239                 count++;
240         }
241         mutex_unlock(&dev->struct_mutex);
242
243         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
244                    count, total_obj_size, total_gtt_size);
245         return 0;
246 }
247
248 static int obj_rank_by_stolen(void *priv,
249                               struct list_head *A, struct list_head *B)
250 {
251         struct drm_i915_gem_object *a =
252                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
253         struct drm_i915_gem_object *b =
254                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
255
256         if (a->stolen->start < b->stolen->start)
257                 return -1;
258         if (a->stolen->start > b->stolen->start)
259                 return 1;
260         return 0;
261 }
262
263 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
264 {
265         struct drm_info_node *node = m->private;
266         struct drm_device *dev = node->minor->dev;
267         struct drm_i915_private *dev_priv = dev->dev_private;
268         struct drm_i915_gem_object *obj;
269         u64 total_obj_size, total_gtt_size;
270         LIST_HEAD(stolen);
271         int count, ret;
272
273         ret = mutex_lock_interruptible(&dev->struct_mutex);
274         if (ret)
275                 return ret;
276
277         total_obj_size = total_gtt_size = count = 0;
278         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
279                 if (obj->stolen == NULL)
280                         continue;
281
282                 list_add(&obj->obj_exec_link, &stolen);
283
284                 total_obj_size += obj->base.size;
285                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
286                 count++;
287         }
288         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
289                 if (obj->stolen == NULL)
290                         continue;
291
292                 list_add(&obj->obj_exec_link, &stolen);
293
294                 total_obj_size += obj->base.size;
295                 count++;
296         }
297         list_sort(NULL, &stolen, obj_rank_by_stolen);
298         seq_puts(m, "Stolen:\n");
299         while (!list_empty(&stolen)) {
300                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
301                 seq_puts(m, "   ");
302                 describe_obj(m, obj);
303                 seq_putc(m, '\n');
304                 list_del_init(&obj->obj_exec_link);
305         }
306         mutex_unlock(&dev->struct_mutex);
307
308         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
309                    count, total_obj_size, total_gtt_size);
310         return 0;
311 }
312
313 #define count_objects(list, member) do { \
314         list_for_each_entry(obj, list, member) { \
315                 size += i915_gem_obj_total_ggtt_size(obj); \
316                 ++count; \
317                 if (obj->map_and_fenceable) { \
318                         mappable_size += i915_gem_obj_ggtt_size(obj); \
319                         ++mappable_count; \
320                 } \
321         } \
322 } while (0)
323
324 struct file_stats {
325         struct drm_i915_file_private *file_priv;
326         unsigned long count;
327         u64 total, unbound;
328         u64 global, shared;
329         u64 active, inactive;
330 };
331
332 static int per_file_stats(int id, void *ptr, void *data)
333 {
334         struct drm_i915_gem_object *obj = ptr;
335         struct file_stats *stats = data;
336         struct i915_vma *vma;
337
338         stats->count++;
339         stats->total += obj->base.size;
340
341         if (obj->base.name || obj->base.dma_buf)
342                 stats->shared += obj->base.size;
343
344         if (USES_FULL_PPGTT(obj->base.dev)) {
345                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
346                         struct i915_hw_ppgtt *ppgtt;
347
348                         if (!drm_mm_node_allocated(&vma->node))
349                                 continue;
350
351                         if (vma->is_ggtt) {
352                                 stats->global += obj->base.size;
353                                 continue;
354                         }
355
356                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
357                         if (ppgtt->file_priv != stats->file_priv)
358                                 continue;
359
360                         if (obj->active) /* XXX per-vma statistic */
361                                 stats->active += obj->base.size;
362                         else
363                                 stats->inactive += obj->base.size;
364
365                         return 0;
366                 }
367         } else {
368                 if (i915_gem_obj_ggtt_bound(obj)) {
369                         stats->global += obj->base.size;
370                         if (obj->active)
371                                 stats->active += obj->base.size;
372                         else
373                                 stats->inactive += obj->base.size;
374                         return 0;
375                 }
376         }
377
378         if (!list_empty(&obj->global_list))
379                 stats->unbound += obj->base.size;
380
381         return 0;
382 }
383
384 #define print_file_stats(m, name, stats) do { \
385         if (stats.count) \
386                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
387                            name, \
388                            stats.count, \
389                            stats.total, \
390                            stats.active, \
391                            stats.inactive, \
392                            stats.global, \
393                            stats.shared, \
394                            stats.unbound); \
395 } while (0)
396
397 static void print_batch_pool_stats(struct seq_file *m,
398                                    struct drm_i915_private *dev_priv)
399 {
400         struct drm_i915_gem_object *obj;
401         struct file_stats stats;
402         struct intel_engine_cs *engine;
403         int j;
404
405         memset(&stats, 0, sizeof(stats));
406
407         for_each_engine(engine, dev_priv) {
408                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
409                         list_for_each_entry(obj,
410                                             &engine->batch_pool.cache_list[j],
411                                             batch_pool_link)
412                                 per_file_stats(0, obj, &stats);
413                 }
414         }
415
416         print_file_stats(m, "[k]batch pool", stats);
417 }
418
419 #define count_vmas(list, member) do { \
420         list_for_each_entry(vma, list, member) { \
421                 size += i915_gem_obj_total_ggtt_size(vma->obj); \
422                 ++count; \
423                 if (vma->obj->map_and_fenceable) { \
424                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
425                         ++mappable_count; \
426                 } \
427         } \
428 } while (0)
429
430 static int i915_gem_object_info(struct seq_file *m, void* data)
431 {
432         struct drm_info_node *node = m->private;
433         struct drm_device *dev = node->minor->dev;
434         struct drm_i915_private *dev_priv = to_i915(dev);
435         struct i915_ggtt *ggtt = &dev_priv->ggtt;
436         u32 count, mappable_count, purgeable_count;
437         u64 size, mappable_size, purgeable_size;
438         struct drm_i915_gem_object *obj;
439         struct drm_file *file;
440         struct i915_vma *vma;
441         int ret;
442
443         ret = mutex_lock_interruptible(&dev->struct_mutex);
444         if (ret)
445                 return ret;
446
447         seq_printf(m, "%u objects, %zu bytes\n",
448                    dev_priv->mm.object_count,
449                    dev_priv->mm.object_memory);
450
451         size = count = mappable_size = mappable_count = 0;
452         count_objects(&dev_priv->mm.bound_list, global_list);
453         seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
454                    count, mappable_count, size, mappable_size);
455
456         size = count = mappable_size = mappable_count = 0;
457         count_vmas(&ggtt->base.active_list, vm_link);
458         seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
459                    count, mappable_count, size, mappable_size);
460
461         size = count = mappable_size = mappable_count = 0;
462         count_vmas(&ggtt->base.inactive_list, vm_link);
463         seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
464                    count, mappable_count, size, mappable_size);
465
466         size = count = purgeable_size = purgeable_count = 0;
467         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
468                 size += obj->base.size, ++count;
469                 if (obj->madv == I915_MADV_DONTNEED)
470                         purgeable_size += obj->base.size, ++purgeable_count;
471         }
472         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
473
474         size = count = mappable_size = mappable_count = 0;
475         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
476                 if (obj->fault_mappable) {
477                         size += i915_gem_obj_ggtt_size(obj);
478                         ++count;
479                 }
480                 if (obj->pin_display) {
481                         mappable_size += i915_gem_obj_ggtt_size(obj);
482                         ++mappable_count;
483                 }
484                 if (obj->madv == I915_MADV_DONTNEED) {
485                         purgeable_size += obj->base.size;
486                         ++purgeable_count;
487                 }
488         }
489         seq_printf(m, "%u purgeable objects, %llu bytes\n",
490                    purgeable_count, purgeable_size);
491         seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
492                    mappable_count, mappable_size);
493         seq_printf(m, "%u fault mappable objects, %llu bytes\n",
494                    count, size);
495
496         seq_printf(m, "%llu [%llu] gtt total\n",
497                    ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
498
499         seq_putc(m, '\n');
500         print_batch_pool_stats(m, dev_priv);
501         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
502                 struct file_stats stats;
503                 struct task_struct *task;
504
505                 memset(&stats, 0, sizeof(stats));
506                 stats.file_priv = file->driver_priv;
507                 spin_lock(&file->table_lock);
508                 idr_for_each(&file->object_idr, per_file_stats, &stats);
509                 spin_unlock(&file->table_lock);
510                 /*
511                  * Although we have a valid reference on file->pid, that does
512                  * not guarantee that the task_struct who called get_pid() is
513                  * still alive (e.g. get_pid(current) => fork() => exit()).
514                  * Therefore, we need to protect this ->comm access using RCU.
515                  */
516                 rcu_read_lock();
517                 task = pid_task(file->pid, PIDTYPE_PID);
518                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
519                 rcu_read_unlock();
520         }
521
522         mutex_unlock(&dev->struct_mutex);
523
524         return 0;
525 }
526
527 static int i915_gem_gtt_info(struct seq_file *m, void *data)
528 {
529         struct drm_info_node *node = m->private;
530         struct drm_device *dev = node->minor->dev;
531         uintptr_t list = (uintptr_t) node->info_ent->data;
532         struct drm_i915_private *dev_priv = dev->dev_private;
533         struct drm_i915_gem_object *obj;
534         u64 total_obj_size, total_gtt_size;
535         int count, ret;
536
537         ret = mutex_lock_interruptible(&dev->struct_mutex);
538         if (ret)
539                 return ret;
540
541         total_obj_size = total_gtt_size = count = 0;
542         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
543                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
544                         continue;
545
546                 seq_puts(m, "   ");
547                 describe_obj(m, obj);
548                 seq_putc(m, '\n');
549                 total_obj_size += obj->base.size;
550                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
551                 count++;
552         }
553
554         mutex_unlock(&dev->struct_mutex);
555
556         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
557                    count, total_obj_size, total_gtt_size);
558
559         return 0;
560 }
561
562 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
563 {
564         struct drm_info_node *node = m->private;
565         struct drm_device *dev = node->minor->dev;
566         struct drm_i915_private *dev_priv = dev->dev_private;
567         struct intel_crtc *crtc;
568         int ret;
569
570         ret = mutex_lock_interruptible(&dev->struct_mutex);
571         if (ret)
572                 return ret;
573
574         for_each_intel_crtc(dev, crtc) {
575                 const char pipe = pipe_name(crtc->pipe);
576                 const char plane = plane_name(crtc->plane);
577                 struct intel_unpin_work *work;
578
579                 spin_lock_irq(&dev->event_lock);
580                 work = crtc->unpin_work;
581                 if (work == NULL) {
582                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
583                                    pipe, plane);
584                 } else {
585                         u32 addr;
586
587                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
588                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
589                                            pipe, plane);
590                         } else {
591                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
592                                            pipe, plane);
593                         }
594                         if (work->flip_queued_req) {
595                                 struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
596
597                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
598                                            engine->name,
599                                            i915_gem_request_get_seqno(work->flip_queued_req),
600                                            dev_priv->next_seqno,
601                                            engine->get_seqno(engine),
602                                            i915_gem_request_completed(work->flip_queued_req, true));
603                         } else
604                                 seq_printf(m, "Flip not associated with any ring\n");
605                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
606                                    work->flip_queued_vblank,
607                                    work->flip_ready_vblank,
608                                    drm_crtc_vblank_count(&crtc->base));
609                         if (work->enable_stall_check)
610                                 seq_puts(m, "Stall check enabled, ");
611                         else
612                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
613                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
614
615                         if (INTEL_INFO(dev)->gen >= 4)
616                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
617                         else
618                                 addr = I915_READ(DSPADDR(crtc->plane));
619                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
620
621                         if (work->pending_flip_obj) {
622                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
623                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
624                         }
625                 }
626                 spin_unlock_irq(&dev->event_lock);
627         }
628
629         mutex_unlock(&dev->struct_mutex);
630
631         return 0;
632 }
633
634 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
635 {
636         struct drm_info_node *node = m->private;
637         struct drm_device *dev = node->minor->dev;
638         struct drm_i915_private *dev_priv = dev->dev_private;
639         struct drm_i915_gem_object *obj;
640         struct intel_engine_cs *engine;
641         int total = 0;
642         int ret, j;
643
644         ret = mutex_lock_interruptible(&dev->struct_mutex);
645         if (ret)
646                 return ret;
647
648         for_each_engine(engine, dev_priv) {
649                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
650                         int count;
651
652                         count = 0;
653                         list_for_each_entry(obj,
654                                             &engine->batch_pool.cache_list[j],
655                                             batch_pool_link)
656                                 count++;
657                         seq_printf(m, "%s cache[%d]: %d objects\n",
658                                    engine->name, j, count);
659
660                         list_for_each_entry(obj,
661                                             &engine->batch_pool.cache_list[j],
662                                             batch_pool_link) {
663                                 seq_puts(m, "   ");
664                                 describe_obj(m, obj);
665                                 seq_putc(m, '\n');
666                         }
667
668                         total += count;
669                 }
670         }
671
672         seq_printf(m, "total: %d\n", total);
673
674         mutex_unlock(&dev->struct_mutex);
675
676         return 0;
677 }
678
679 static int i915_gem_request_info(struct seq_file *m, void *data)
680 {
681         struct drm_info_node *node = m->private;
682         struct drm_device *dev = node->minor->dev;
683         struct drm_i915_private *dev_priv = dev->dev_private;
684         struct intel_engine_cs *engine;
685         struct drm_i915_gem_request *req;
686         int ret, any;
687
688         ret = mutex_lock_interruptible(&dev->struct_mutex);
689         if (ret)
690                 return ret;
691
692         any = 0;
693         for_each_engine(engine, dev_priv) {
694                 int count;
695
696                 count = 0;
697                 list_for_each_entry(req, &engine->request_list, list)
698                         count++;
699                 if (count == 0)
700                         continue;
701
702                 seq_printf(m, "%s requests: %d\n", engine->name, count);
703                 list_for_each_entry(req, &engine->request_list, list) {
704                         struct task_struct *task;
705
706                         rcu_read_lock();
707                         task = NULL;
708                         if (req->pid)
709                                 task = pid_task(req->pid, PIDTYPE_PID);
710                         seq_printf(m, "    %x @ %d: %s [%d]\n",
711                                    req->seqno,
712                                    (int) (jiffies - req->emitted_jiffies),
713                                    task ? task->comm : "<unknown>",
714                                    task ? task->pid : -1);
715                         rcu_read_unlock();
716                 }
717
718                 any++;
719         }
720         mutex_unlock(&dev->struct_mutex);
721
722         if (any == 0)
723                 seq_puts(m, "No requests\n");
724
725         return 0;
726 }
727
728 static void i915_ring_seqno_info(struct seq_file *m,
729                                  struct intel_engine_cs *engine)
730 {
731         seq_printf(m, "Current sequence (%s): %x\n",
732                    engine->name, engine->get_seqno(engine));
733         seq_printf(m, "Current user interrupts (%s): %x\n",
734                    engine->name, READ_ONCE(engine->user_interrupts));
735 }
736
737 static int i915_gem_seqno_info(struct seq_file *m, void *data)
738 {
739         struct drm_info_node *node = m->private;
740         struct drm_device *dev = node->minor->dev;
741         struct drm_i915_private *dev_priv = dev->dev_private;
742         struct intel_engine_cs *engine;
743         int ret;
744
745         ret = mutex_lock_interruptible(&dev->struct_mutex);
746         if (ret)
747                 return ret;
748         intel_runtime_pm_get(dev_priv);
749
750         for_each_engine(engine, dev_priv)
751                 i915_ring_seqno_info(m, engine);
752
753         intel_runtime_pm_put(dev_priv);
754         mutex_unlock(&dev->struct_mutex);
755
756         return 0;
757 }
758
759
760 static int i915_interrupt_info(struct seq_file *m, void *data)
761 {
762         struct drm_info_node *node = m->private;
763         struct drm_device *dev = node->minor->dev;
764         struct drm_i915_private *dev_priv = dev->dev_private;
765         struct intel_engine_cs *engine;
766         int ret, i, pipe;
767
768         ret = mutex_lock_interruptible(&dev->struct_mutex);
769         if (ret)
770                 return ret;
771         intel_runtime_pm_get(dev_priv);
772
773         if (IS_CHERRYVIEW(dev)) {
774                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
775                            I915_READ(GEN8_MASTER_IRQ));
776
777                 seq_printf(m, "Display IER:\t%08x\n",
778                            I915_READ(VLV_IER));
779                 seq_printf(m, "Display IIR:\t%08x\n",
780                            I915_READ(VLV_IIR));
781                 seq_printf(m, "Display IIR_RW:\t%08x\n",
782                            I915_READ(VLV_IIR_RW));
783                 seq_printf(m, "Display IMR:\t%08x\n",
784                            I915_READ(VLV_IMR));
785                 for_each_pipe(dev_priv, pipe)
786                         seq_printf(m, "Pipe %c stat:\t%08x\n",
787                                    pipe_name(pipe),
788                                    I915_READ(PIPESTAT(pipe)));
789
790                 seq_printf(m, "Port hotplug:\t%08x\n",
791                            I915_READ(PORT_HOTPLUG_EN));
792                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
793                            I915_READ(VLV_DPFLIPSTAT));
794                 seq_printf(m, "DPINVGTT:\t%08x\n",
795                            I915_READ(DPINVGTT));
796
797                 for (i = 0; i < 4; i++) {
798                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
799                                    i, I915_READ(GEN8_GT_IMR(i)));
800                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
801                                    i, I915_READ(GEN8_GT_IIR(i)));
802                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
803                                    i, I915_READ(GEN8_GT_IER(i)));
804                 }
805
806                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
807                            I915_READ(GEN8_PCU_IMR));
808                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
809                            I915_READ(GEN8_PCU_IIR));
810                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
811                            I915_READ(GEN8_PCU_IER));
812         } else if (INTEL_INFO(dev)->gen >= 8) {
813                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
814                            I915_READ(GEN8_MASTER_IRQ));
815
816                 for (i = 0; i < 4; i++) {
817                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
818                                    i, I915_READ(GEN8_GT_IMR(i)));
819                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
820                                    i, I915_READ(GEN8_GT_IIR(i)));
821                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
822                                    i, I915_READ(GEN8_GT_IER(i)));
823                 }
824
825                 for_each_pipe(dev_priv, pipe) {
826                         enum intel_display_power_domain power_domain;
827
828                         power_domain = POWER_DOMAIN_PIPE(pipe);
829                         if (!intel_display_power_get_if_enabled(dev_priv,
830                                                                 power_domain)) {
831                                 seq_printf(m, "Pipe %c power disabled\n",
832                                            pipe_name(pipe));
833                                 continue;
834                         }
835                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
836                                    pipe_name(pipe),
837                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
838                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
839                                    pipe_name(pipe),
840                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
841                         seq_printf(m, "Pipe %c IER:\t%08x\n",
842                                    pipe_name(pipe),
843                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
844
845                         intel_display_power_put(dev_priv, power_domain);
846                 }
847
848                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
849                            I915_READ(GEN8_DE_PORT_IMR));
850                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
851                            I915_READ(GEN8_DE_PORT_IIR));
852                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
853                            I915_READ(GEN8_DE_PORT_IER));
854
855                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
856                            I915_READ(GEN8_DE_MISC_IMR));
857                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
858                            I915_READ(GEN8_DE_MISC_IIR));
859                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
860                            I915_READ(GEN8_DE_MISC_IER));
861
862                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
863                            I915_READ(GEN8_PCU_IMR));
864                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
865                            I915_READ(GEN8_PCU_IIR));
866                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
867                            I915_READ(GEN8_PCU_IER));
868         } else if (IS_VALLEYVIEW(dev)) {
869                 seq_printf(m, "Display IER:\t%08x\n",
870                            I915_READ(VLV_IER));
871                 seq_printf(m, "Display IIR:\t%08x\n",
872                            I915_READ(VLV_IIR));
873                 seq_printf(m, "Display IIR_RW:\t%08x\n",
874                            I915_READ(VLV_IIR_RW));
875                 seq_printf(m, "Display IMR:\t%08x\n",
876                            I915_READ(VLV_IMR));
877                 for_each_pipe(dev_priv, pipe)
878                         seq_printf(m, "Pipe %c stat:\t%08x\n",
879                                    pipe_name(pipe),
880                                    I915_READ(PIPESTAT(pipe)));
881
882                 seq_printf(m, "Master IER:\t%08x\n",
883                            I915_READ(VLV_MASTER_IER));
884
885                 seq_printf(m, "Render IER:\t%08x\n",
886                            I915_READ(GTIER));
887                 seq_printf(m, "Render IIR:\t%08x\n",
888                            I915_READ(GTIIR));
889                 seq_printf(m, "Render IMR:\t%08x\n",
890                            I915_READ(GTIMR));
891
892                 seq_printf(m, "PM IER:\t\t%08x\n",
893                            I915_READ(GEN6_PMIER));
894                 seq_printf(m, "PM IIR:\t\t%08x\n",
895                            I915_READ(GEN6_PMIIR));
896                 seq_printf(m, "PM IMR:\t\t%08x\n",
897                            I915_READ(GEN6_PMIMR));
898
899                 seq_printf(m, "Port hotplug:\t%08x\n",
900                            I915_READ(PORT_HOTPLUG_EN));
901                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
902                            I915_READ(VLV_DPFLIPSTAT));
903                 seq_printf(m, "DPINVGTT:\t%08x\n",
904                            I915_READ(DPINVGTT));
905
906         } else if (!HAS_PCH_SPLIT(dev)) {
907                 seq_printf(m, "Interrupt enable:    %08x\n",
908                            I915_READ(IER));
909                 seq_printf(m, "Interrupt identity:  %08x\n",
910                            I915_READ(IIR));
911                 seq_printf(m, "Interrupt mask:      %08x\n",
912                            I915_READ(IMR));
913                 for_each_pipe(dev_priv, pipe)
914                         seq_printf(m, "Pipe %c stat:         %08x\n",
915                                    pipe_name(pipe),
916                                    I915_READ(PIPESTAT(pipe)));
917         } else {
918                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
919                            I915_READ(DEIER));
920                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
921                            I915_READ(DEIIR));
922                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
923                            I915_READ(DEIMR));
924                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
925                            I915_READ(SDEIER));
926                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
927                            I915_READ(SDEIIR));
928                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
929                            I915_READ(SDEIMR));
930                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
931                            I915_READ(GTIER));
932                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
933                            I915_READ(GTIIR));
934                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
935                            I915_READ(GTIMR));
936         }
937         for_each_engine(engine, dev_priv) {
938                 if (INTEL_INFO(dev)->gen >= 6) {
939                         seq_printf(m,
940                                    "Graphics Interrupt mask (%s):       %08x\n",
941                                    engine->name, I915_READ_IMR(engine));
942                 }
943                 i915_ring_seqno_info(m, engine);
944         }
945         intel_runtime_pm_put(dev_priv);
946         mutex_unlock(&dev->struct_mutex);
947
948         return 0;
949 }
950
951 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
952 {
953         struct drm_info_node *node = m->private;
954         struct drm_device *dev = node->minor->dev;
955         struct drm_i915_private *dev_priv = dev->dev_private;
956         int i, ret;
957
958         ret = mutex_lock_interruptible(&dev->struct_mutex);
959         if (ret)
960                 return ret;
961
962         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
963         for (i = 0; i < dev_priv->num_fence_regs; i++) {
964                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
965
966                 seq_printf(m, "Fence %d, pin count = %d, object = ",
967                            i, dev_priv->fence_regs[i].pin_count);
968                 if (obj == NULL)
969                         seq_puts(m, "unused");
970                 else
971                         describe_obj(m, obj);
972                 seq_putc(m, '\n');
973         }
974
975         mutex_unlock(&dev->struct_mutex);
976         return 0;
977 }
978
979 static int i915_hws_info(struct seq_file *m, void *data)
980 {
981         struct drm_info_node *node = m->private;
982         struct drm_device *dev = node->minor->dev;
983         struct drm_i915_private *dev_priv = dev->dev_private;
984         struct intel_engine_cs *engine;
985         const u32 *hws;
986         int i;
987
988         engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
989         hws = engine->status_page.page_addr;
990         if (hws == NULL)
991                 return 0;
992
993         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
994                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
995                            i * 4,
996                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
997         }
998         return 0;
999 }
1000
1001 static ssize_t
1002 i915_error_state_write(struct file *filp,
1003                        const char __user *ubuf,
1004                        size_t cnt,
1005                        loff_t *ppos)
1006 {
1007         struct i915_error_state_file_priv *error_priv = filp->private_data;
1008         struct drm_device *dev = error_priv->dev;
1009         int ret;
1010
1011         DRM_DEBUG_DRIVER("Resetting error state\n");
1012
1013         ret = mutex_lock_interruptible(&dev->struct_mutex);
1014         if (ret)
1015                 return ret;
1016
1017         i915_destroy_error_state(dev);
1018         mutex_unlock(&dev->struct_mutex);
1019
1020         return cnt;
1021 }
1022
1023 static int i915_error_state_open(struct inode *inode, struct file *file)
1024 {
1025         struct drm_device *dev = inode->i_private;
1026         struct i915_error_state_file_priv *error_priv;
1027
1028         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1029         if (!error_priv)
1030                 return -ENOMEM;
1031
1032         error_priv->dev = dev;
1033
1034         i915_error_state_get(dev, error_priv);
1035
1036         file->private_data = error_priv;
1037
1038         return 0;
1039 }
1040
1041 static int i915_error_state_release(struct inode *inode, struct file *file)
1042 {
1043         struct i915_error_state_file_priv *error_priv = file->private_data;
1044
1045         i915_error_state_put(error_priv);
1046         kfree(error_priv);
1047
1048         return 0;
1049 }
1050
1051 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1052                                      size_t count, loff_t *pos)
1053 {
1054         struct i915_error_state_file_priv *error_priv = file->private_data;
1055         struct drm_i915_error_state_buf error_str;
1056         loff_t tmp_pos = 0;
1057         ssize_t ret_count = 0;
1058         int ret;
1059
1060         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1061         if (ret)
1062                 return ret;
1063
1064         ret = i915_error_state_to_str(&error_str, error_priv);
1065         if (ret)
1066                 goto out;
1067
1068         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1069                                             error_str.buf,
1070                                             error_str.bytes);
1071
1072         if (ret_count < 0)
1073                 ret = ret_count;
1074         else
1075                 *pos = error_str.start + ret_count;
1076 out:
1077         i915_error_state_buf_release(&error_str);
1078         return ret ?: ret_count;
1079 }
1080
1081 static const struct file_operations i915_error_state_fops = {
1082         .owner = THIS_MODULE,
1083         .open = i915_error_state_open,
1084         .read = i915_error_state_read,
1085         .write = i915_error_state_write,
1086         .llseek = default_llseek,
1087         .release = i915_error_state_release,
1088 };
1089
1090 static int
1091 i915_next_seqno_get(void *data, u64 *val)
1092 {
1093         struct drm_device *dev = data;
1094         struct drm_i915_private *dev_priv = dev->dev_private;
1095         int ret;
1096
1097         ret = mutex_lock_interruptible(&dev->struct_mutex);
1098         if (ret)
1099                 return ret;
1100
1101         *val = dev_priv->next_seqno;
1102         mutex_unlock(&dev->struct_mutex);
1103
1104         return 0;
1105 }
1106
1107 static int
1108 i915_next_seqno_set(void *data, u64 val)
1109 {
1110         struct drm_device *dev = data;
1111         int ret;
1112
1113         ret = mutex_lock_interruptible(&dev->struct_mutex);
1114         if (ret)
1115                 return ret;
1116
1117         ret = i915_gem_set_seqno(dev, val);
1118         mutex_unlock(&dev->struct_mutex);
1119
1120         return ret;
1121 }
1122
1123 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1124                         i915_next_seqno_get, i915_next_seqno_set,
1125                         "0x%llx\n");
1126
1127 static int i915_frequency_info(struct seq_file *m, void *unused)
1128 {
1129         struct drm_info_node *node = m->private;
1130         struct drm_device *dev = node->minor->dev;
1131         struct drm_i915_private *dev_priv = dev->dev_private;
1132         int ret = 0;
1133
1134         intel_runtime_pm_get(dev_priv);
1135
1136         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1137
1138         if (IS_GEN5(dev)) {
1139                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1140                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1141
1142                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1143                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1144                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1145                            MEMSTAT_VID_SHIFT);
1146                 seq_printf(m, "Current P-state: %d\n",
1147                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1148         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1149                 u32 freq_sts;
1150
1151                 mutex_lock(&dev_priv->rps.hw_lock);
1152                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1153                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1154                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1155
1156                 seq_printf(m, "actual GPU freq: %d MHz\n",
1157                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1158
1159                 seq_printf(m, "current GPU freq: %d MHz\n",
1160                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1161
1162                 seq_printf(m, "max GPU freq: %d MHz\n",
1163                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1164
1165                 seq_printf(m, "min GPU freq: %d MHz\n",
1166                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1167
1168                 seq_printf(m, "idle GPU freq: %d MHz\n",
1169                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1170
1171                 seq_printf(m,
1172                            "efficient (RPe) frequency: %d MHz\n",
1173                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1174                 mutex_unlock(&dev_priv->rps.hw_lock);
1175         } else if (INTEL_INFO(dev)->gen >= 6) {
1176                 u32 rp_state_limits;
1177                 u32 gt_perf_status;
1178                 u32 rp_state_cap;
1179                 u32 rpmodectl, rpinclimit, rpdeclimit;
1180                 u32 rpstat, cagf, reqf;
1181                 u32 rpupei, rpcurup, rpprevup;
1182                 u32 rpdownei, rpcurdown, rpprevdown;
1183                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1184                 int max_freq;
1185
1186                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1187                 if (IS_BROXTON(dev)) {
1188                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1189                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1190                 } else {
1191                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1192                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1193                 }
1194
1195                 /* RPSTAT1 is in the GT power well */
1196                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1197                 if (ret)
1198                         goto out;
1199
1200                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1201
1202                 reqf = I915_READ(GEN6_RPNSWREQ);
1203                 if (IS_GEN9(dev))
1204                         reqf >>= 23;
1205                 else {
1206                         reqf &= ~GEN6_TURBO_DISABLE;
1207                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1208                                 reqf >>= 24;
1209                         else
1210                                 reqf >>= 25;
1211                 }
1212                 reqf = intel_gpu_freq(dev_priv, reqf);
1213
1214                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1215                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1216                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1217
1218                 rpstat = I915_READ(GEN6_RPSTAT1);
1219                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1220                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1221                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1222                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1223                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1224                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1225                 if (IS_GEN9(dev))
1226                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1227                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1228                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1229                 else
1230                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1231                 cagf = intel_gpu_freq(dev_priv, cagf);
1232
1233                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1234                 mutex_unlock(&dev->struct_mutex);
1235
1236                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1237                         pm_ier = I915_READ(GEN6_PMIER);
1238                         pm_imr = I915_READ(GEN6_PMIMR);
1239                         pm_isr = I915_READ(GEN6_PMISR);
1240                         pm_iir = I915_READ(GEN6_PMIIR);
1241                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1242                 } else {
1243                         pm_ier = I915_READ(GEN8_GT_IER(2));
1244                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1245                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1246                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1247                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1248                 }
1249                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1250                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1251                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1252                 seq_printf(m, "Render p-state ratio: %d\n",
1253                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1254                 seq_printf(m, "Render p-state VID: %d\n",
1255                            gt_perf_status & 0xff);
1256                 seq_printf(m, "Render p-state limit: %d\n",
1257                            rp_state_limits & 0xff);
1258                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1259                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1260                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1261                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1262                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1263                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1264                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1265                            GEN6_CURICONT_MASK);
1266                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1267                            GEN6_CURBSYTAVG_MASK);
1268                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1269                            GEN6_CURBSYTAVG_MASK);
1270                 seq_printf(m, "Up threshold: %d%%\n",
1271                            dev_priv->rps.up_threshold);
1272
1273                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1274                            GEN6_CURIAVG_MASK);
1275                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1276                            GEN6_CURBSYTAVG_MASK);
1277                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1278                            GEN6_CURBSYTAVG_MASK);
1279                 seq_printf(m, "Down threshold: %d%%\n",
1280                            dev_priv->rps.down_threshold);
1281
1282                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1283                             rp_state_cap >> 16) & 0xff;
1284                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1285                              GEN9_FREQ_SCALER : 1);
1286                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1287                            intel_gpu_freq(dev_priv, max_freq));
1288
1289                 max_freq = (rp_state_cap & 0xff00) >> 8;
1290                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1291                              GEN9_FREQ_SCALER : 1);
1292                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1293                            intel_gpu_freq(dev_priv, max_freq));
1294
1295                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1296                             rp_state_cap >> 0) & 0xff;
1297                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1298                              GEN9_FREQ_SCALER : 1);
1299                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1300                            intel_gpu_freq(dev_priv, max_freq));
1301                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1302                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1303
1304                 seq_printf(m, "Current freq: %d MHz\n",
1305                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1306                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1307                 seq_printf(m, "Idle freq: %d MHz\n",
1308                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1309                 seq_printf(m, "Min freq: %d MHz\n",
1310                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1311                 seq_printf(m, "Max freq: %d MHz\n",
1312                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1313                 seq_printf(m,
1314                            "efficient (RPe) frequency: %d MHz\n",
1315                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1316         } else {
1317                 seq_puts(m, "no P-state info available\n");
1318         }
1319
1320         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1321         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1322         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1323
1324 out:
1325         intel_runtime_pm_put(dev_priv);
1326         return ret;
1327 }
1328
1329 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1330 {
1331         struct drm_info_node *node = m->private;
1332         struct drm_device *dev = node->minor->dev;
1333         struct drm_i915_private *dev_priv = dev->dev_private;
1334         struct intel_engine_cs *engine;
1335         u64 acthd[I915_NUM_ENGINES];
1336         u32 seqno[I915_NUM_ENGINES];
1337         u32 instdone[I915_NUM_INSTDONE_REG];
1338         enum intel_engine_id id;
1339         int j;
1340
1341         if (!i915.enable_hangcheck) {
1342                 seq_printf(m, "Hangcheck disabled\n");
1343                 return 0;
1344         }
1345
1346         intel_runtime_pm_get(dev_priv);
1347
1348         for_each_engine_id(engine, dev_priv, id) {
1349                 acthd[id] = intel_ring_get_active_head(engine);
1350                 seqno[id] = engine->get_seqno(engine);
1351         }
1352
1353         i915_get_extra_instdone(dev, instdone);
1354
1355         intel_runtime_pm_put(dev_priv);
1356
1357         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1358                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1359                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1360                                             jiffies));
1361         } else
1362                 seq_printf(m, "Hangcheck inactive\n");
1363
1364         for_each_engine_id(engine, dev_priv, id) {
1365                 seq_printf(m, "%s:\n", engine->name);
1366                 seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1367                            engine->hangcheck.seqno,
1368                            seqno[id],
1369                            engine->last_submitted_seqno);
1370                 seq_printf(m, "\tuser interrupts = %x [current %x]\n",
1371                            engine->hangcheck.user_interrupts,
1372                            READ_ONCE(engine->user_interrupts));
1373                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1374                            (long long)engine->hangcheck.acthd,
1375                            (long long)acthd[id]);
1376                 seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1377                 seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1378
1379                 if (engine->id == RCS) {
1380                         seq_puts(m, "\tinstdone read =");
1381
1382                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1383                                 seq_printf(m, " 0x%08x", instdone[j]);
1384
1385                         seq_puts(m, "\n\tinstdone accu =");
1386
1387                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1388                                 seq_printf(m, " 0x%08x",
1389                                            engine->hangcheck.instdone[j]);
1390
1391                         seq_puts(m, "\n");
1392                 }
1393         }
1394
1395         return 0;
1396 }
1397
1398 static int ironlake_drpc_info(struct seq_file *m)
1399 {
1400         struct drm_info_node *node = m->private;
1401         struct drm_device *dev = node->minor->dev;
1402         struct drm_i915_private *dev_priv = dev->dev_private;
1403         u32 rgvmodectl, rstdbyctl;
1404         u16 crstandvid;
1405         int ret;
1406
1407         ret = mutex_lock_interruptible(&dev->struct_mutex);
1408         if (ret)
1409                 return ret;
1410         intel_runtime_pm_get(dev_priv);
1411
1412         rgvmodectl = I915_READ(MEMMODECTL);
1413         rstdbyctl = I915_READ(RSTDBYCTL);
1414         crstandvid = I915_READ16(CRSTANDVID);
1415
1416         intel_runtime_pm_put(dev_priv);
1417         mutex_unlock(&dev->struct_mutex);
1418
1419         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1420         seq_printf(m, "Boost freq: %d\n",
1421                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1422                    MEMMODE_BOOST_FREQ_SHIFT);
1423         seq_printf(m, "HW control enabled: %s\n",
1424                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1425         seq_printf(m, "SW control enabled: %s\n",
1426                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1427         seq_printf(m, "Gated voltage change: %s\n",
1428                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1429         seq_printf(m, "Starting frequency: P%d\n",
1430                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1431         seq_printf(m, "Max P-state: P%d\n",
1432                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1433         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1434         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1435         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1436         seq_printf(m, "Render standby enabled: %s\n",
1437                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1438         seq_puts(m, "Current RS state: ");
1439         switch (rstdbyctl & RSX_STATUS_MASK) {
1440         case RSX_STATUS_ON:
1441                 seq_puts(m, "on\n");
1442                 break;
1443         case RSX_STATUS_RC1:
1444                 seq_puts(m, "RC1\n");
1445                 break;
1446         case RSX_STATUS_RC1E:
1447                 seq_puts(m, "RC1E\n");
1448                 break;
1449         case RSX_STATUS_RS1:
1450                 seq_puts(m, "RS1\n");
1451                 break;
1452         case RSX_STATUS_RS2:
1453                 seq_puts(m, "RS2 (RC6)\n");
1454                 break;
1455         case RSX_STATUS_RS3:
1456                 seq_puts(m, "RC3 (RC6+)\n");
1457                 break;
1458         default:
1459                 seq_puts(m, "unknown\n");
1460                 break;
1461         }
1462
1463         return 0;
1464 }
1465
1466 static int i915_forcewake_domains(struct seq_file *m, void *data)
1467 {
1468         struct drm_info_node *node = m->private;
1469         struct drm_device *dev = node->minor->dev;
1470         struct drm_i915_private *dev_priv = dev->dev_private;
1471         struct intel_uncore_forcewake_domain *fw_domain;
1472
1473         spin_lock_irq(&dev_priv->uncore.lock);
1474         for_each_fw_domain(fw_domain, dev_priv) {
1475                 seq_printf(m, "%s.wake_count = %u\n",
1476                            intel_uncore_forcewake_domain_to_str(fw_domain->id),
1477                            fw_domain->wake_count);
1478         }
1479         spin_unlock_irq(&dev_priv->uncore.lock);
1480
1481         return 0;
1482 }
1483
1484 static int vlv_drpc_info(struct seq_file *m)
1485 {
1486         struct drm_info_node *node = m->private;
1487         struct drm_device *dev = node->minor->dev;
1488         struct drm_i915_private *dev_priv = dev->dev_private;
1489         u32 rpmodectl1, rcctl1, pw_status;
1490
1491         intel_runtime_pm_get(dev_priv);
1492
1493         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1494         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1495         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1496
1497         intel_runtime_pm_put(dev_priv);
1498
1499         seq_printf(m, "Video Turbo Mode: %s\n",
1500                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1501         seq_printf(m, "Turbo enabled: %s\n",
1502                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1503         seq_printf(m, "HW control enabled: %s\n",
1504                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1505         seq_printf(m, "SW control enabled: %s\n",
1506                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1507                           GEN6_RP_MEDIA_SW_MODE));
1508         seq_printf(m, "RC6 Enabled: %s\n",
1509                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1510                                         GEN6_RC_CTL_EI_MODE(1))));
1511         seq_printf(m, "Render Power Well: %s\n",
1512                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1513         seq_printf(m, "Media Power Well: %s\n",
1514                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1515
1516         seq_printf(m, "Render RC6 residency since boot: %u\n",
1517                    I915_READ(VLV_GT_RENDER_RC6));
1518         seq_printf(m, "Media RC6 residency since boot: %u\n",
1519                    I915_READ(VLV_GT_MEDIA_RC6));
1520
1521         return i915_forcewake_domains(m, NULL);
1522 }
1523
1524 static int gen6_drpc_info(struct seq_file *m)
1525 {
1526         struct drm_info_node *node = m->private;
1527         struct drm_device *dev = node->minor->dev;
1528         struct drm_i915_private *dev_priv = dev->dev_private;
1529         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1530         unsigned forcewake_count;
1531         int count = 0, ret;
1532
1533         ret = mutex_lock_interruptible(&dev->struct_mutex);
1534         if (ret)
1535                 return ret;
1536         intel_runtime_pm_get(dev_priv);
1537
1538         spin_lock_irq(&dev_priv->uncore.lock);
1539         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1540         spin_unlock_irq(&dev_priv->uncore.lock);
1541
1542         if (forcewake_count) {
1543                 seq_puts(m, "RC information inaccurate because somebody "
1544                             "holds a forcewake reference \n");
1545         } else {
1546                 /* NB: we cannot use forcewake, else we read the wrong values */
1547                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1548                         udelay(10);
1549                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1550         }
1551
1552         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1553         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1554
1555         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1556         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1557         mutex_unlock(&dev->struct_mutex);
1558         mutex_lock(&dev_priv->rps.hw_lock);
1559         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1560         mutex_unlock(&dev_priv->rps.hw_lock);
1561
1562         intel_runtime_pm_put(dev_priv);
1563
1564         seq_printf(m, "Video Turbo Mode: %s\n",
1565                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1566         seq_printf(m, "HW control enabled: %s\n",
1567                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1568         seq_printf(m, "SW control enabled: %s\n",
1569                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1570                           GEN6_RP_MEDIA_SW_MODE));
1571         seq_printf(m, "RC1e Enabled: %s\n",
1572                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1573         seq_printf(m, "RC6 Enabled: %s\n",
1574                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1575         seq_printf(m, "Deep RC6 Enabled: %s\n",
1576                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1577         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1578                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1579         seq_puts(m, "Current RC state: ");
1580         switch (gt_core_status & GEN6_RCn_MASK) {
1581         case GEN6_RC0:
1582                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1583                         seq_puts(m, "Core Power Down\n");
1584                 else
1585                         seq_puts(m, "on\n");
1586                 break;
1587         case GEN6_RC3:
1588                 seq_puts(m, "RC3\n");
1589                 break;
1590         case GEN6_RC6:
1591                 seq_puts(m, "RC6\n");
1592                 break;
1593         case GEN6_RC7:
1594                 seq_puts(m, "RC7\n");
1595                 break;
1596         default:
1597                 seq_puts(m, "Unknown\n");
1598                 break;
1599         }
1600
1601         seq_printf(m, "Core Power Down: %s\n",
1602                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1603
1604         /* Not exactly sure what this is */
1605         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1606                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1607         seq_printf(m, "RC6 residency since boot: %u\n",
1608                    I915_READ(GEN6_GT_GFX_RC6));
1609         seq_printf(m, "RC6+ residency since boot: %u\n",
1610                    I915_READ(GEN6_GT_GFX_RC6p));
1611         seq_printf(m, "RC6++ residency since boot: %u\n",
1612                    I915_READ(GEN6_GT_GFX_RC6pp));
1613
1614         seq_printf(m, "RC6   voltage: %dmV\n",
1615                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1616         seq_printf(m, "RC6+  voltage: %dmV\n",
1617                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1618         seq_printf(m, "RC6++ voltage: %dmV\n",
1619                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1620         return 0;
1621 }
1622
1623 static int i915_drpc_info(struct seq_file *m, void *unused)
1624 {
1625         struct drm_info_node *node = m->private;
1626         struct drm_device *dev = node->minor->dev;
1627
1628         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1629                 return vlv_drpc_info(m);
1630         else if (INTEL_INFO(dev)->gen >= 6)
1631                 return gen6_drpc_info(m);
1632         else
1633                 return ironlake_drpc_info(m);
1634 }
1635
1636 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1637 {
1638         struct drm_info_node *node = m->private;
1639         struct drm_device *dev = node->minor->dev;
1640         struct drm_i915_private *dev_priv = dev->dev_private;
1641
1642         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1643                    dev_priv->fb_tracking.busy_bits);
1644
1645         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1646                    dev_priv->fb_tracking.flip_bits);
1647
1648         return 0;
1649 }
1650
1651 static int i915_fbc_status(struct seq_file *m, void *unused)
1652 {
1653         struct drm_info_node *node = m->private;
1654         struct drm_device *dev = node->minor->dev;
1655         struct drm_i915_private *dev_priv = dev->dev_private;
1656
1657         if (!HAS_FBC(dev)) {
1658                 seq_puts(m, "FBC unsupported on this chipset\n");
1659                 return 0;
1660         }
1661
1662         intel_runtime_pm_get(dev_priv);
1663         mutex_lock(&dev_priv->fbc.lock);
1664
1665         if (intel_fbc_is_active(dev_priv))
1666                 seq_puts(m, "FBC enabled\n");
1667         else
1668                 seq_printf(m, "FBC disabled: %s\n",
1669                            dev_priv->fbc.no_fbc_reason);
1670
1671         if (INTEL_INFO(dev_priv)->gen >= 7)
1672                 seq_printf(m, "Compressing: %s\n",
1673                            yesno(I915_READ(FBC_STATUS2) &
1674                                  FBC_COMPRESSION_MASK));
1675
1676         mutex_unlock(&dev_priv->fbc.lock);
1677         intel_runtime_pm_put(dev_priv);
1678
1679         return 0;
1680 }
1681
1682 static int i915_fbc_fc_get(void *data, u64 *val)
1683 {
1684         struct drm_device *dev = data;
1685         struct drm_i915_private *dev_priv = dev->dev_private;
1686
1687         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1688                 return -ENODEV;
1689
1690         *val = dev_priv->fbc.false_color;
1691
1692         return 0;
1693 }
1694
1695 static int i915_fbc_fc_set(void *data, u64 val)
1696 {
1697         struct drm_device *dev = data;
1698         struct drm_i915_private *dev_priv = dev->dev_private;
1699         u32 reg;
1700
1701         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1702                 return -ENODEV;
1703
1704         mutex_lock(&dev_priv->fbc.lock);
1705
1706         reg = I915_READ(ILK_DPFC_CONTROL);
1707         dev_priv->fbc.false_color = val;
1708
1709         I915_WRITE(ILK_DPFC_CONTROL, val ?
1710                    (reg | FBC_CTL_FALSE_COLOR) :
1711                    (reg & ~FBC_CTL_FALSE_COLOR));
1712
1713         mutex_unlock(&dev_priv->fbc.lock);
1714         return 0;
1715 }
1716
1717 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1718                         i915_fbc_fc_get, i915_fbc_fc_set,
1719                         "%llu\n");
1720
1721 static int i915_ips_status(struct seq_file *m, void *unused)
1722 {
1723         struct drm_info_node *node = m->private;
1724         struct drm_device *dev = node->minor->dev;
1725         struct drm_i915_private *dev_priv = dev->dev_private;
1726
1727         if (!HAS_IPS(dev)) {
1728                 seq_puts(m, "not supported\n");
1729                 return 0;
1730         }
1731
1732         intel_runtime_pm_get(dev_priv);
1733
1734         seq_printf(m, "Enabled by kernel parameter: %s\n",
1735                    yesno(i915.enable_ips));
1736
1737         if (INTEL_INFO(dev)->gen >= 8) {
1738                 seq_puts(m, "Currently: unknown\n");
1739         } else {
1740                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1741                         seq_puts(m, "Currently: enabled\n");
1742                 else
1743                         seq_puts(m, "Currently: disabled\n");
1744         }
1745
1746         intel_runtime_pm_put(dev_priv);
1747
1748         return 0;
1749 }
1750
1751 static int i915_sr_status(struct seq_file *m, void *unused)
1752 {
1753         struct drm_info_node *node = m->private;
1754         struct drm_device *dev = node->minor->dev;
1755         struct drm_i915_private *dev_priv = dev->dev_private;
1756         bool sr_enabled = false;
1757
1758         intel_runtime_pm_get(dev_priv);
1759
1760         if (HAS_PCH_SPLIT(dev))
1761                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1762         else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1763                  IS_I945G(dev) || IS_I945GM(dev))
1764                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1765         else if (IS_I915GM(dev))
1766                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1767         else if (IS_PINEVIEW(dev))
1768                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1769         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1770                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1771
1772         intel_runtime_pm_put(dev_priv);
1773
1774         seq_printf(m, "self-refresh: %s\n",
1775                    sr_enabled ? "enabled" : "disabled");
1776
1777         return 0;
1778 }
1779
1780 static int i915_emon_status(struct seq_file *m, void *unused)
1781 {
1782         struct drm_info_node *node = m->private;
1783         struct drm_device *dev = node->minor->dev;
1784         struct drm_i915_private *dev_priv = dev->dev_private;
1785         unsigned long temp, chipset, gfx;
1786         int ret;
1787
1788         if (!IS_GEN5(dev))
1789                 return -ENODEV;
1790
1791         ret = mutex_lock_interruptible(&dev->struct_mutex);
1792         if (ret)
1793                 return ret;
1794
1795         temp = i915_mch_val(dev_priv);
1796         chipset = i915_chipset_val(dev_priv);
1797         gfx = i915_gfx_val(dev_priv);
1798         mutex_unlock(&dev->struct_mutex);
1799
1800         seq_printf(m, "GMCH temp: %ld\n", temp);
1801         seq_printf(m, "Chipset power: %ld\n", chipset);
1802         seq_printf(m, "GFX power: %ld\n", gfx);
1803         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1804
1805         return 0;
1806 }
1807
1808 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1809 {
1810         struct drm_info_node *node = m->private;
1811         struct drm_device *dev = node->minor->dev;
1812         struct drm_i915_private *dev_priv = dev->dev_private;
1813         int ret = 0;
1814         int gpu_freq, ia_freq;
1815         unsigned int max_gpu_freq, min_gpu_freq;
1816
1817         if (!HAS_CORE_RING_FREQ(dev)) {
1818                 seq_puts(m, "unsupported on this chipset\n");
1819                 return 0;
1820         }
1821
1822         intel_runtime_pm_get(dev_priv);
1823
1824         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1825
1826         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1827         if (ret)
1828                 goto out;
1829
1830         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1831                 /* Convert GT frequency to 50 HZ units */
1832                 min_gpu_freq =
1833                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1834                 max_gpu_freq =
1835                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1836         } else {
1837                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1838                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1839         }
1840
1841         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1842
1843         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1844                 ia_freq = gpu_freq;
1845                 sandybridge_pcode_read(dev_priv,
1846                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1847                                        &ia_freq);
1848                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1849                            intel_gpu_freq(dev_priv, (gpu_freq *
1850                                 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1851                                  GEN9_FREQ_SCALER : 1))),
1852                            ((ia_freq >> 0) & 0xff) * 100,
1853                            ((ia_freq >> 8) & 0xff) * 100);
1854         }
1855
1856         mutex_unlock(&dev_priv->rps.hw_lock);
1857
1858 out:
1859         intel_runtime_pm_put(dev_priv);
1860         return ret;
1861 }
1862
1863 static int i915_opregion(struct seq_file *m, void *unused)
1864 {
1865         struct drm_info_node *node = m->private;
1866         struct drm_device *dev = node->minor->dev;
1867         struct drm_i915_private *dev_priv = dev->dev_private;
1868         struct intel_opregion *opregion = &dev_priv->opregion;
1869         int ret;
1870
1871         ret = mutex_lock_interruptible(&dev->struct_mutex);
1872         if (ret)
1873                 goto out;
1874
1875         if (opregion->header)
1876                 seq_write(m, opregion->header, OPREGION_SIZE);
1877
1878         mutex_unlock(&dev->struct_mutex);
1879
1880 out:
1881         return 0;
1882 }
1883
1884 static int i915_vbt(struct seq_file *m, void *unused)
1885 {
1886         struct drm_info_node *node = m->private;
1887         struct drm_device *dev = node->minor->dev;
1888         struct drm_i915_private *dev_priv = dev->dev_private;
1889         struct intel_opregion *opregion = &dev_priv->opregion;
1890
1891         if (opregion->vbt)
1892                 seq_write(m, opregion->vbt, opregion->vbt_size);
1893
1894         return 0;
1895 }
1896
1897 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1898 {
1899         struct drm_info_node *node = m->private;
1900         struct drm_device *dev = node->minor->dev;
1901         struct intel_framebuffer *fbdev_fb = NULL;
1902         struct drm_framebuffer *drm_fb;
1903         int ret;
1904
1905         ret = mutex_lock_interruptible(&dev->struct_mutex);
1906         if (ret)
1907                 return ret;
1908
1909 #ifdef CONFIG_DRM_FBDEV_EMULATION
1910        if (to_i915(dev)->fbdev) {
1911                fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1912
1913                seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1914                          fbdev_fb->base.width,
1915                          fbdev_fb->base.height,
1916                          fbdev_fb->base.depth,
1917                          fbdev_fb->base.bits_per_pixel,
1918                          fbdev_fb->base.modifier[0],
1919                          atomic_read(&fbdev_fb->base.refcount.refcount));
1920                describe_obj(m, fbdev_fb->obj);
1921                seq_putc(m, '\n');
1922        }
1923 #endif
1924
1925         mutex_lock(&dev->mode_config.fb_lock);
1926         drm_for_each_fb(drm_fb, dev) {
1927                 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1928                 if (fb == fbdev_fb)
1929                         continue;
1930
1931                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1932                            fb->base.width,
1933                            fb->base.height,
1934                            fb->base.depth,
1935                            fb->base.bits_per_pixel,
1936                            fb->base.modifier[0],
1937                            atomic_read(&fb->base.refcount.refcount));
1938                 describe_obj(m, fb->obj);
1939                 seq_putc(m, '\n');
1940         }
1941         mutex_unlock(&dev->mode_config.fb_lock);
1942         mutex_unlock(&dev->struct_mutex);
1943
1944         return 0;
1945 }
1946
1947 static void describe_ctx_ringbuf(struct seq_file *m,
1948                                  struct intel_ringbuffer *ringbuf)
1949 {
1950         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1951                    ringbuf->space, ringbuf->head, ringbuf->tail,
1952                    ringbuf->last_retired_head);
1953 }
1954
1955 static int i915_context_status(struct seq_file *m, void *unused)
1956 {
1957         struct drm_info_node *node = m->private;
1958         struct drm_device *dev = node->minor->dev;
1959         struct drm_i915_private *dev_priv = dev->dev_private;
1960         struct intel_engine_cs *engine;
1961         struct intel_context *ctx;
1962         enum intel_engine_id id;
1963         int ret;
1964
1965         ret = mutex_lock_interruptible(&dev->struct_mutex);
1966         if (ret)
1967                 return ret;
1968
1969         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1970                 if (!i915.enable_execlists &&
1971                     ctx->legacy_hw_ctx.rcs_state == NULL)
1972                         continue;
1973
1974                 seq_puts(m, "HW context ");
1975                 describe_ctx(m, ctx);
1976                 if (ctx == dev_priv->kernel_context)
1977                         seq_printf(m, "(kernel context) ");
1978
1979                 if (i915.enable_execlists) {
1980                         seq_putc(m, '\n');
1981                         for_each_engine_id(engine, dev_priv, id) {
1982                                 struct drm_i915_gem_object *ctx_obj =
1983                                         ctx->engine[id].state;
1984                                 struct intel_ringbuffer *ringbuf =
1985                                         ctx->engine[id].ringbuf;
1986
1987                                 seq_printf(m, "%s: ", engine->name);
1988                                 if (ctx_obj)
1989                                         describe_obj(m, ctx_obj);
1990                                 if (ringbuf)
1991                                         describe_ctx_ringbuf(m, ringbuf);
1992                                 seq_putc(m, '\n');
1993                         }
1994                 } else {
1995                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1996                 }
1997
1998                 seq_putc(m, '\n');
1999         }
2000
2001         mutex_unlock(&dev->struct_mutex);
2002
2003         return 0;
2004 }
2005
2006 static void i915_dump_lrc_obj(struct seq_file *m,
2007                               struct intel_context *ctx,
2008                               struct intel_engine_cs *engine)
2009 {
2010         struct page *page;
2011         uint32_t *reg_state;
2012         int j;
2013         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
2014         unsigned long ggtt_offset = 0;
2015
2016         if (ctx_obj == NULL) {
2017                 seq_printf(m, "Context on %s with no gem object\n",
2018                            engine->name);
2019                 return;
2020         }
2021
2022         seq_printf(m, "CONTEXT: %s %u\n", engine->name,
2023                    intel_execlists_ctx_id(ctx, engine));
2024
2025         if (!i915_gem_obj_ggtt_bound(ctx_obj))
2026                 seq_puts(m, "\tNot bound in GGTT\n");
2027         else
2028                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2029
2030         if (i915_gem_object_get_pages(ctx_obj)) {
2031                 seq_puts(m, "\tFailed to get pages for context object\n");
2032                 return;
2033         }
2034
2035         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2036         if (!WARN_ON(page == NULL)) {
2037                 reg_state = kmap_atomic(page);
2038
2039                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2040                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2041                                    ggtt_offset + 4096 + (j * 4),
2042                                    reg_state[j], reg_state[j + 1],
2043                                    reg_state[j + 2], reg_state[j + 3]);
2044                 }
2045                 kunmap_atomic(reg_state);
2046         }
2047
2048         seq_putc(m, '\n');
2049 }
2050
2051 static int i915_dump_lrc(struct seq_file *m, void *unused)
2052 {
2053         struct drm_info_node *node = (struct drm_info_node *) m->private;
2054         struct drm_device *dev = node->minor->dev;
2055         struct drm_i915_private *dev_priv = dev->dev_private;
2056         struct intel_engine_cs *engine;
2057         struct intel_context *ctx;
2058         int ret;
2059
2060         if (!i915.enable_execlists) {
2061                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2062                 return 0;
2063         }
2064
2065         ret = mutex_lock_interruptible(&dev->struct_mutex);
2066         if (ret)
2067                 return ret;
2068
2069         list_for_each_entry(ctx, &dev_priv->context_list, link)
2070                 if (ctx != dev_priv->kernel_context)
2071                         for_each_engine(engine, dev_priv)
2072                                 i915_dump_lrc_obj(m, ctx, engine);
2073
2074         mutex_unlock(&dev->struct_mutex);
2075
2076         return 0;
2077 }
2078
2079 static int i915_execlists(struct seq_file *m, void *data)
2080 {
2081         struct drm_info_node *node = (struct drm_info_node *)m->private;
2082         struct drm_device *dev = node->minor->dev;
2083         struct drm_i915_private *dev_priv = dev->dev_private;
2084         struct intel_engine_cs *engine;
2085         u32 status_pointer;
2086         u8 read_pointer;
2087         u8 write_pointer;
2088         u32 status;
2089         u32 ctx_id;
2090         struct list_head *cursor;
2091         int i, ret;
2092
2093         if (!i915.enable_execlists) {
2094                 seq_puts(m, "Logical Ring Contexts are disabled\n");
2095                 return 0;
2096         }
2097
2098         ret = mutex_lock_interruptible(&dev->struct_mutex);
2099         if (ret)
2100                 return ret;
2101
2102         intel_runtime_pm_get(dev_priv);
2103
2104         for_each_engine(engine, dev_priv) {
2105                 struct drm_i915_gem_request *head_req = NULL;
2106                 int count = 0;
2107
2108                 seq_printf(m, "%s\n", engine->name);
2109
2110                 status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
2111                 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
2112                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2113                            status, ctx_id);
2114
2115                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
2116                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2117
2118                 read_pointer = engine->next_context_status_buffer;
2119                 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2120                 if (read_pointer > write_pointer)
2121                         write_pointer += GEN8_CSB_ENTRIES;
2122                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2123                            read_pointer, write_pointer);
2124
2125                 for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2126                         status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
2127                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
2128
2129                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2130                                    i, status, ctx_id);
2131                 }
2132
2133                 spin_lock_bh(&engine->execlist_lock);
2134                 list_for_each(cursor, &engine->execlist_queue)
2135                         count++;
2136                 head_req = list_first_entry_or_null(&engine->execlist_queue,
2137                                                     struct drm_i915_gem_request,
2138                                                     execlist_link);
2139                 spin_unlock_bh(&engine->execlist_lock);
2140
2141                 seq_printf(m, "\t%d requests in queue\n", count);
2142                 if (head_req) {
2143                         seq_printf(m, "\tHead request id: %u\n",
2144                                    intel_execlists_ctx_id(head_req->ctx, engine));
2145                         seq_printf(m, "\tHead request tail: %u\n",
2146                                    head_req->tail);
2147                 }
2148
2149                 seq_putc(m, '\n');
2150         }
2151
2152         intel_runtime_pm_put(dev_priv);
2153         mutex_unlock(&dev->struct_mutex);
2154
2155         return 0;
2156 }
2157
2158 static const char *swizzle_string(unsigned swizzle)
2159 {
2160         switch (swizzle) {
2161         case I915_BIT_6_SWIZZLE_NONE:
2162                 return "none";
2163         case I915_BIT_6_SWIZZLE_9:
2164                 return "bit9";
2165         case I915_BIT_6_SWIZZLE_9_10:
2166                 return "bit9/bit10";
2167         case I915_BIT_6_SWIZZLE_9_11:
2168                 return "bit9/bit11";
2169         case I915_BIT_6_SWIZZLE_9_10_11:
2170                 return "bit9/bit10/bit11";
2171         case I915_BIT_6_SWIZZLE_9_17:
2172                 return "bit9/bit17";
2173         case I915_BIT_6_SWIZZLE_9_10_17:
2174                 return "bit9/bit10/bit17";
2175         case I915_BIT_6_SWIZZLE_UNKNOWN:
2176                 return "unknown";
2177         }
2178
2179         return "bug";
2180 }
2181
2182 static int i915_swizzle_info(struct seq_file *m, void *data)
2183 {
2184         struct drm_info_node *node = m->private;
2185         struct drm_device *dev = node->minor->dev;
2186         struct drm_i915_private *dev_priv = dev->dev_private;
2187         int ret;
2188
2189         ret = mutex_lock_interruptible(&dev->struct_mutex);
2190         if (ret)
2191                 return ret;
2192         intel_runtime_pm_get(dev_priv);
2193
2194         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2195                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2196         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2197                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2198
2199         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2200                 seq_printf(m, "DDC = 0x%08x\n",
2201                            I915_READ(DCC));
2202                 seq_printf(m, "DDC2 = 0x%08x\n",
2203                            I915_READ(DCC2));
2204                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2205                            I915_READ16(C0DRB3));
2206                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2207                            I915_READ16(C1DRB3));
2208         } else if (INTEL_INFO(dev)->gen >= 6) {
2209                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2210                            I915_READ(MAD_DIMM_C0));
2211                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2212                            I915_READ(MAD_DIMM_C1));
2213                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2214                            I915_READ(MAD_DIMM_C2));
2215                 seq_printf(m, "TILECTL = 0x%08x\n",
2216                            I915_READ(TILECTL));
2217                 if (INTEL_INFO(dev)->gen >= 8)
2218                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2219                                    I915_READ(GAMTARBMODE));
2220                 else
2221                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2222                                    I915_READ(ARB_MODE));
2223                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2224                            I915_READ(DISP_ARB_CTL));
2225         }
2226
2227         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2228                 seq_puts(m, "L-shaped memory detected\n");
2229
2230         intel_runtime_pm_put(dev_priv);
2231         mutex_unlock(&dev->struct_mutex);
2232
2233         return 0;
2234 }
2235
2236 static int per_file_ctx(int id, void *ptr, void *data)
2237 {
2238         struct intel_context *ctx = ptr;
2239         struct seq_file *m = data;
2240         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2241
2242         if (!ppgtt) {
2243                 seq_printf(m, "  no ppgtt for context %d\n",
2244                            ctx->user_handle);
2245                 return 0;
2246         }
2247
2248         if (i915_gem_context_is_default(ctx))
2249                 seq_puts(m, "  default context:\n");
2250         else
2251                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2252         ppgtt->debug_dump(ppgtt, m);
2253
2254         return 0;
2255 }
2256
2257 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2258 {
2259         struct drm_i915_private *dev_priv = dev->dev_private;
2260         struct intel_engine_cs *engine;
2261         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2262         int i;
2263
2264         if (!ppgtt)
2265                 return;
2266
2267         for_each_engine(engine, dev_priv) {
2268                 seq_printf(m, "%s\n", engine->name);
2269                 for (i = 0; i < 4; i++) {
2270                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2271                         pdp <<= 32;
2272                         pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2273                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2274                 }
2275         }
2276 }
2277
2278 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2279 {
2280         struct drm_i915_private *dev_priv = dev->dev_private;
2281         struct intel_engine_cs *engine;
2282
2283         if (INTEL_INFO(dev)->gen == 6)
2284                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2285
2286         for_each_engine(engine, dev_priv) {
2287                 seq_printf(m, "%s\n", engine->name);
2288                 if (INTEL_INFO(dev)->gen == 7)
2289                         seq_printf(m, "GFX_MODE: 0x%08x\n",
2290                                    I915_READ(RING_MODE_GEN7(engine)));
2291                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2292                            I915_READ(RING_PP_DIR_BASE(engine)));
2293                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2294                            I915_READ(RING_PP_DIR_BASE_READ(engine)));
2295                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2296                            I915_READ(RING_PP_DIR_DCLV(engine)));
2297         }
2298         if (dev_priv->mm.aliasing_ppgtt) {
2299                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2300
2301                 seq_puts(m, "aliasing PPGTT:\n");
2302                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2303
2304                 ppgtt->debug_dump(ppgtt, m);
2305         }
2306
2307         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2308 }
2309
2310 static int i915_ppgtt_info(struct seq_file *m, void *data)
2311 {
2312         struct drm_info_node *node = m->private;
2313         struct drm_device *dev = node->minor->dev;
2314         struct drm_i915_private *dev_priv = dev->dev_private;
2315         struct drm_file *file;
2316
2317         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2318         if (ret)
2319                 return ret;
2320         intel_runtime_pm_get(dev_priv);
2321
2322         if (INTEL_INFO(dev)->gen >= 8)
2323                 gen8_ppgtt_info(m, dev);
2324         else if (INTEL_INFO(dev)->gen >= 6)
2325                 gen6_ppgtt_info(m, dev);
2326
2327         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2328                 struct drm_i915_file_private *file_priv = file->driver_priv;
2329                 struct task_struct *task;
2330
2331                 task = get_pid_task(file->pid, PIDTYPE_PID);
2332                 if (!task) {
2333                         ret = -ESRCH;
2334                         goto out_put;
2335                 }
2336                 seq_printf(m, "\nproc: %s\n", task->comm);
2337                 put_task_struct(task);
2338                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2339                              (void *)(unsigned long)m);
2340         }
2341
2342 out_put:
2343         intel_runtime_pm_put(dev_priv);
2344         mutex_unlock(&dev->struct_mutex);
2345
2346         return ret;
2347 }
2348
2349 static int count_irq_waiters(struct drm_i915_private *i915)
2350 {
2351         struct intel_engine_cs *engine;
2352         int count = 0;
2353
2354         for_each_engine(engine, i915)
2355                 count += engine->irq_refcount;
2356
2357         return count;
2358 }
2359
2360 static int i915_rps_boost_info(struct seq_file *m, void *data)
2361 {
2362         struct drm_info_node *node = m->private;
2363         struct drm_device *dev = node->minor->dev;
2364         struct drm_i915_private *dev_priv = dev->dev_private;
2365         struct drm_file *file;
2366
2367         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2368         seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2369         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2370         seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2371                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2372                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2373                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2374                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2375                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2376         spin_lock(&dev_priv->rps.client_lock);
2377         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2378                 struct drm_i915_file_private *file_priv = file->driver_priv;
2379                 struct task_struct *task;
2380
2381                 rcu_read_lock();
2382                 task = pid_task(file->pid, PIDTYPE_PID);
2383                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2384                            task ? task->comm : "<unknown>",
2385                            task ? task->pid : -1,
2386                            file_priv->rps.boosts,
2387                            list_empty(&file_priv->rps.link) ? "" : ", active");
2388                 rcu_read_unlock();
2389         }
2390         seq_printf(m, "Semaphore boosts: %d%s\n",
2391                    dev_priv->rps.semaphores.boosts,
2392                    list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2393         seq_printf(m, "MMIO flip boosts: %d%s\n",
2394                    dev_priv->rps.mmioflips.boosts,
2395                    list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2396         seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2397         spin_unlock(&dev_priv->rps.client_lock);
2398
2399         return 0;
2400 }
2401
2402 static int i915_llc(struct seq_file *m, void *data)
2403 {
2404         struct drm_info_node *node = m->private;
2405         struct drm_device *dev = node->minor->dev;
2406         struct drm_i915_private *dev_priv = dev->dev_private;
2407         const bool edram = INTEL_GEN(dev_priv) > 8;
2408
2409         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2410         seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2411                    intel_uncore_edram_size(dev_priv)/1024/1024);
2412
2413         return 0;
2414 }
2415
2416 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2417 {
2418         struct drm_info_node *node = m->private;
2419         struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2420         struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2421         u32 tmp, i;
2422
2423         if (!HAS_GUC_UCODE(dev_priv))
2424                 return 0;
2425
2426         seq_printf(m, "GuC firmware status:\n");
2427         seq_printf(m, "\tpath: %s\n",
2428                 guc_fw->guc_fw_path);
2429         seq_printf(m, "\tfetch: %s\n",
2430                 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2431         seq_printf(m, "\tload: %s\n",
2432                 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2433         seq_printf(m, "\tversion wanted: %d.%d\n",
2434                 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2435         seq_printf(m, "\tversion found: %d.%d\n",
2436                 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2437         seq_printf(m, "\theader: offset is %d; size = %d\n",
2438                 guc_fw->header_offset, guc_fw->header_size);
2439         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2440                 guc_fw->ucode_offset, guc_fw->ucode_size);
2441         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2442                 guc_fw->rsa_offset, guc_fw->rsa_size);
2443
2444         tmp = I915_READ(GUC_STATUS);
2445
2446         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2447         seq_printf(m, "\tBootrom status = 0x%x\n",
2448                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2449         seq_printf(m, "\tuKernel status = 0x%x\n",
2450                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2451         seq_printf(m, "\tMIA Core status = 0x%x\n",
2452                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2453         seq_puts(m, "\nScratch registers:\n");
2454         for (i = 0; i < 16; i++)
2455                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2456
2457         return 0;
2458 }
2459
2460 static void i915_guc_client_info(struct seq_file *m,
2461                                  struct drm_i915_private *dev_priv,
2462                                  struct i915_guc_client *client)
2463 {
2464         struct intel_engine_cs *engine;
2465         uint64_t tot = 0;
2466
2467         seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2468                 client->priority, client->ctx_index, client->proc_desc_offset);
2469         seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2470                 client->doorbell_id, client->doorbell_offset, client->cookie);
2471         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2472                 client->wq_size, client->wq_offset, client->wq_tail);
2473
2474         seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2475         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2476         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2477
2478         for_each_engine(engine, dev_priv) {
2479                 seq_printf(m, "\tSubmissions: %llu %s\n",
2480                                 client->submissions[engine->guc_id],
2481                                 engine->name);
2482                 tot += client->submissions[engine->guc_id];
2483         }
2484         seq_printf(m, "\tTotal: %llu\n", tot);
2485 }
2486
2487 static int i915_guc_info(struct seq_file *m, void *data)
2488 {
2489         struct drm_info_node *node = m->private;
2490         struct drm_device *dev = node->minor->dev;
2491         struct drm_i915_private *dev_priv = dev->dev_private;
2492         struct intel_guc guc;
2493         struct i915_guc_client client = {};
2494         struct intel_engine_cs *engine;
2495         u64 total = 0;
2496
2497         if (!HAS_GUC_SCHED(dev_priv))
2498                 return 0;
2499
2500         if (mutex_lock_interruptible(&dev->struct_mutex))
2501                 return 0;
2502
2503         /* Take a local copy of the GuC data, so we can dump it at leisure */
2504         guc = dev_priv->guc;
2505         if (guc.execbuf_client)
2506                 client = *guc.execbuf_client;
2507
2508         mutex_unlock(&dev->struct_mutex);
2509
2510         seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2511         seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2512         seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2513         seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2514         seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2515
2516         seq_printf(m, "\nGuC submissions:\n");
2517         for_each_engine(engine, dev_priv) {
2518                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2519                         engine->name, guc.submissions[engine->guc_id],
2520                         guc.last_seqno[engine->guc_id]);
2521                 total += guc.submissions[engine->guc_id];
2522         }
2523         seq_printf(m, "\t%s: %llu\n", "Total", total);
2524
2525         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2526         i915_guc_client_info(m, dev_priv, &client);
2527
2528         /* Add more as required ... */
2529
2530         return 0;
2531 }
2532
2533 static int i915_guc_log_dump(struct seq_file *m, void *data)
2534 {
2535         struct drm_info_node *node = m->private;
2536         struct drm_device *dev = node->minor->dev;
2537         struct drm_i915_private *dev_priv = dev->dev_private;
2538         struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2539         u32 *log;
2540         int i = 0, pg;
2541
2542         if (!log_obj)
2543                 return 0;
2544
2545         for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2546                 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2547
2548                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2549                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2550                                    *(log + i), *(log + i + 1),
2551                                    *(log + i + 2), *(log + i + 3));
2552
2553                 kunmap_atomic(log);
2554         }
2555
2556         seq_putc(m, '\n');
2557
2558         return 0;
2559 }
2560
2561 static int i915_edp_psr_status(struct seq_file *m, void *data)
2562 {
2563         struct drm_info_node *node = m->private;
2564         struct drm_device *dev = node->minor->dev;
2565         struct drm_i915_private *dev_priv = dev->dev_private;
2566         u32 psrperf = 0;
2567         u32 stat[3];
2568         enum pipe pipe;
2569         bool enabled = false;
2570
2571         if (!HAS_PSR(dev)) {
2572                 seq_puts(m, "PSR not supported\n");
2573                 return 0;
2574         }
2575
2576         intel_runtime_pm_get(dev_priv);
2577
2578         mutex_lock(&dev_priv->psr.lock);
2579         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2580         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2581         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2582         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2583         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2584                    dev_priv->psr.busy_frontbuffer_bits);
2585         seq_printf(m, "Re-enable work scheduled: %s\n",
2586                    yesno(work_busy(&dev_priv->psr.work.work)));
2587
2588         if (HAS_DDI(dev))
2589                 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2590         else {
2591                 for_each_pipe(dev_priv, pipe) {
2592                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2593                                 VLV_EDP_PSR_CURR_STATE_MASK;
2594                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2595                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2596                                 enabled = true;
2597                 }
2598         }
2599
2600         seq_printf(m, "Main link in standby mode: %s\n",
2601                    yesno(dev_priv->psr.link_standby));
2602
2603         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2604
2605         if (!HAS_DDI(dev))
2606                 for_each_pipe(dev_priv, pipe) {
2607                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2608                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2609                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2610                 }
2611         seq_puts(m, "\n");
2612
2613         /*
2614          * VLV/CHV PSR has no kind of performance counter
2615          * SKL+ Perf counter is reset to 0 everytime DC state is entered
2616          */
2617         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2618                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2619                         EDP_PSR_PERF_CNT_MASK;
2620
2621                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2622         }
2623         mutex_unlock(&dev_priv->psr.lock);
2624
2625         intel_runtime_pm_put(dev_priv);
2626         return 0;
2627 }
2628
2629 static int i915_sink_crc(struct seq_file *m, void *data)
2630 {
2631         struct drm_info_node *node = m->private;
2632         struct drm_device *dev = node->minor->dev;
2633         struct intel_encoder *encoder;
2634         struct intel_connector *connector;
2635         struct intel_dp *intel_dp = NULL;
2636         int ret;
2637         u8 crc[6];
2638
2639         drm_modeset_lock_all(dev);
2640         for_each_intel_connector(dev, connector) {
2641
2642                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2643                         continue;
2644
2645                 if (!connector->base.encoder)
2646                         continue;
2647
2648                 encoder = to_intel_encoder(connector->base.encoder);
2649                 if (encoder->type != INTEL_OUTPUT_EDP)
2650                         continue;
2651
2652                 intel_dp = enc_to_intel_dp(&encoder->base);
2653
2654                 ret = intel_dp_sink_crc(intel_dp, crc);
2655                 if (ret)
2656                         goto out;
2657
2658                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2659                            crc[0], crc[1], crc[2],
2660                            crc[3], crc[4], crc[5]);
2661                 goto out;
2662         }
2663         ret = -ENODEV;
2664 out:
2665         drm_modeset_unlock_all(dev);
2666         return ret;
2667 }
2668
2669 static int i915_energy_uJ(struct seq_file *m, void *data)
2670 {
2671         struct drm_info_node *node = m->private;
2672         struct drm_device *dev = node->minor->dev;
2673         struct drm_i915_private *dev_priv = dev->dev_private;
2674         u64 power;
2675         u32 units;
2676
2677         if (INTEL_INFO(dev)->gen < 6)
2678                 return -ENODEV;
2679
2680         intel_runtime_pm_get(dev_priv);
2681
2682         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2683         power = (power & 0x1f00) >> 8;
2684         units = 1000000 / (1 << power); /* convert to uJ */
2685         power = I915_READ(MCH_SECP_NRG_STTS);
2686         power *= units;
2687
2688         intel_runtime_pm_put(dev_priv);
2689
2690         seq_printf(m, "%llu", (long long unsigned)power);
2691
2692         return 0;
2693 }
2694
2695 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2696 {
2697         struct drm_info_node *node = m->private;
2698         struct drm_device *dev = node->minor->dev;
2699         struct drm_i915_private *dev_priv = dev->dev_private;
2700
2701         if (!HAS_RUNTIME_PM(dev_priv))
2702                 seq_puts(m, "Runtime power management not supported\n");
2703
2704         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2705         seq_printf(m, "IRQs disabled: %s\n",
2706                    yesno(!intel_irqs_enabled(dev_priv)));
2707 #ifdef CONFIG_PM
2708         seq_printf(m, "Usage count: %d\n",
2709                    atomic_read(&dev->dev->power.usage_count));
2710 #else
2711         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2712 #endif
2713         seq_printf(m, "PCI device power state: %s [%d]\n",
2714                    pci_power_name(dev_priv->dev->pdev->current_state),
2715                    dev_priv->dev->pdev->current_state);
2716
2717         return 0;
2718 }
2719
2720 static int i915_power_domain_info(struct seq_file *m, void *unused)
2721 {
2722         struct drm_info_node *node = m->private;
2723         struct drm_device *dev = node->minor->dev;
2724         struct drm_i915_private *dev_priv = dev->dev_private;
2725         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2726         int i;
2727
2728         mutex_lock(&power_domains->lock);
2729
2730         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2731         for (i = 0; i < power_domains->power_well_count; i++) {
2732                 struct i915_power_well *power_well;
2733                 enum intel_display_power_domain power_domain;
2734
2735                 power_well = &power_domains->power_wells[i];
2736                 seq_printf(m, "%-25s %d\n", power_well->name,
2737                            power_well->count);
2738
2739                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2740                      power_domain++) {
2741                         if (!(BIT(power_domain) & power_well->domains))
2742                                 continue;
2743
2744                         seq_printf(m, "  %-23s %d\n",
2745                                  intel_display_power_domain_str(power_domain),
2746                                  power_domains->domain_use_count[power_domain]);
2747                 }
2748         }
2749
2750         mutex_unlock(&power_domains->lock);
2751
2752         return 0;
2753 }
2754
2755 static int i915_dmc_info(struct seq_file *m, void *unused)
2756 {
2757         struct drm_info_node *node = m->private;
2758         struct drm_device *dev = node->minor->dev;
2759         struct drm_i915_private *dev_priv = dev->dev_private;
2760         struct intel_csr *csr;
2761
2762         if (!HAS_CSR(dev)) {
2763                 seq_puts(m, "not supported\n");
2764                 return 0;
2765         }
2766
2767         csr = &dev_priv->csr;
2768
2769         intel_runtime_pm_get(dev_priv);
2770
2771         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2772         seq_printf(m, "path: %s\n", csr->fw_path);
2773
2774         if (!csr->dmc_payload)
2775                 goto out;
2776
2777         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2778                    CSR_VERSION_MINOR(csr->version));
2779
2780         if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2781                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2782                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2783                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2784                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2785         } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2786                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2787                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2788         }
2789
2790 out:
2791         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2792         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2793         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2794
2795         intel_runtime_pm_put(dev_priv);
2796
2797         return 0;
2798 }
2799
2800 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2801                                  struct drm_display_mode *mode)
2802 {
2803         int i;
2804
2805         for (i = 0; i < tabs; i++)
2806                 seq_putc(m, '\t');
2807
2808         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2809                    mode->base.id, mode->name,
2810                    mode->vrefresh, mode->clock,
2811                    mode->hdisplay, mode->hsync_start,
2812                    mode->hsync_end, mode->htotal,
2813                    mode->vdisplay, mode->vsync_start,
2814                    mode->vsync_end, mode->vtotal,
2815                    mode->type, mode->flags);
2816 }
2817
2818 static void intel_encoder_info(struct seq_file *m,
2819                                struct intel_crtc *intel_crtc,
2820                                struct intel_encoder *intel_encoder)
2821 {
2822         struct drm_info_node *node = m->private;
2823         struct drm_device *dev = node->minor->dev;
2824         struct drm_crtc *crtc = &intel_crtc->base;
2825         struct intel_connector *intel_connector;
2826         struct drm_encoder *encoder;
2827
2828         encoder = &intel_encoder->base;
2829         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2830                    encoder->base.id, encoder->name);
2831         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2832                 struct drm_connector *connector = &intel_connector->base;
2833                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2834                            connector->base.id,
2835                            connector->name,
2836                            drm_get_connector_status_name(connector->status));
2837                 if (connector->status == connector_status_connected) {
2838                         struct drm_display_mode *mode = &crtc->mode;
2839                         seq_printf(m, ", mode:\n");
2840                         intel_seq_print_mode(m, 2, mode);
2841                 } else {
2842                         seq_putc(m, '\n');
2843                 }
2844         }
2845 }
2846
2847 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2848 {
2849         struct drm_info_node *node = m->private;
2850         struct drm_device *dev = node->minor->dev;
2851         struct drm_crtc *crtc = &intel_crtc->base;
2852         struct intel_encoder *intel_encoder;
2853         struct drm_plane_state *plane_state = crtc->primary->state;
2854         struct drm_framebuffer *fb = plane_state->fb;
2855
2856         if (fb)
2857                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2858                            fb->base.id, plane_state->src_x >> 16,
2859                            plane_state->src_y >> 16, fb->width, fb->height);
2860         else
2861                 seq_puts(m, "\tprimary plane disabled\n");
2862         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2863                 intel_encoder_info(m, intel_crtc, intel_encoder);
2864 }
2865
2866 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2867 {
2868         struct drm_display_mode *mode = panel->fixed_mode;
2869
2870         seq_printf(m, "\tfixed mode:\n");
2871         intel_seq_print_mode(m, 2, mode);
2872 }
2873
2874 static void intel_dp_info(struct seq_file *m,
2875                           struct intel_connector *intel_connector)
2876 {
2877         struct intel_encoder *intel_encoder = intel_connector->encoder;
2878         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2879
2880         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2881         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2882         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2883                 intel_panel_info(m, &intel_connector->panel);
2884 }
2885
2886 static void intel_dp_mst_info(struct seq_file *m,
2887                           struct intel_connector *intel_connector)
2888 {
2889         struct intel_encoder *intel_encoder = intel_connector->encoder;
2890         struct intel_dp_mst_encoder *intel_mst =
2891                 enc_to_mst(&intel_encoder->base);
2892         struct intel_digital_port *intel_dig_port = intel_mst->primary;
2893         struct intel_dp *intel_dp = &intel_dig_port->dp;
2894         bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2895                                         intel_connector->port);
2896
2897         seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2898 }
2899
2900 static void intel_hdmi_info(struct seq_file *m,
2901                             struct intel_connector *intel_connector)
2902 {
2903         struct intel_encoder *intel_encoder = intel_connector->encoder;
2904         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2905
2906         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2907 }
2908
2909 static void intel_lvds_info(struct seq_file *m,
2910                             struct intel_connector *intel_connector)
2911 {
2912         intel_panel_info(m, &intel_connector->panel);
2913 }
2914
2915 static void intel_connector_info(struct seq_file *m,
2916                                  struct drm_connector *connector)
2917 {
2918         struct intel_connector *intel_connector = to_intel_connector(connector);
2919         struct intel_encoder *intel_encoder = intel_connector->encoder;
2920         struct drm_display_mode *mode;
2921
2922         seq_printf(m, "connector %d: type %s, status: %s\n",
2923                    connector->base.id, connector->name,
2924                    drm_get_connector_status_name(connector->status));
2925         if (connector->status == connector_status_connected) {
2926                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2927                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2928                            connector->display_info.width_mm,
2929                            connector->display_info.height_mm);
2930                 seq_printf(m, "\tsubpixel order: %s\n",
2931                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2932                 seq_printf(m, "\tCEA rev: %d\n",
2933                            connector->display_info.cea_rev);
2934         }
2935         if (intel_encoder) {
2936                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2937                     intel_encoder->type == INTEL_OUTPUT_EDP)
2938                         intel_dp_info(m, intel_connector);
2939                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2940                         intel_hdmi_info(m, intel_connector);
2941                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2942                         intel_lvds_info(m, intel_connector);
2943                 else if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
2944                         intel_dp_mst_info(m, intel_connector);
2945         }
2946
2947         seq_printf(m, "\tmodes:\n");
2948         list_for_each_entry(mode, &connector->modes, head)
2949                 intel_seq_print_mode(m, 2, mode);
2950 }
2951
2952 static bool cursor_active(struct drm_device *dev, int pipe)
2953 {
2954         struct drm_i915_private *dev_priv = dev->dev_private;
2955         u32 state;
2956
2957         if (IS_845G(dev) || IS_I865G(dev))
2958                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2959         else
2960                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2961
2962         return state;
2963 }
2964
2965 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2966 {
2967         struct drm_i915_private *dev_priv = dev->dev_private;
2968         u32 pos;
2969
2970         pos = I915_READ(CURPOS(pipe));
2971
2972         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2973         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2974                 *x = -*x;
2975
2976         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2977         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2978                 *y = -*y;
2979
2980         return cursor_active(dev, pipe);
2981 }
2982
2983 static const char *plane_type(enum drm_plane_type type)
2984 {
2985         switch (type) {
2986         case DRM_PLANE_TYPE_OVERLAY:
2987                 return "OVL";
2988         case DRM_PLANE_TYPE_PRIMARY:
2989                 return "PRI";
2990         case DRM_PLANE_TYPE_CURSOR:
2991                 return "CUR";
2992         /*
2993          * Deliberately omitting default: to generate compiler warnings
2994          * when a new drm_plane_type gets added.
2995          */
2996         }
2997
2998         return "unknown";
2999 }
3000
3001 static const char *plane_rotation(unsigned int rotation)
3002 {
3003         static char buf[48];
3004         /*
3005          * According to doc only one DRM_ROTATE_ is allowed but this
3006          * will print them all to visualize if the values are misused
3007          */
3008         snprintf(buf, sizeof(buf),
3009                  "%s%s%s%s%s%s(0x%08x)",
3010                  (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
3011                  (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
3012                  (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
3013                  (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
3014                  (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
3015                  (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
3016                  rotation);
3017
3018         return buf;
3019 }
3020
3021 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3022 {
3023         struct drm_info_node *node = m->private;
3024         struct drm_device *dev = node->minor->dev;
3025         struct intel_plane *intel_plane;
3026
3027         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3028                 struct drm_plane_state *state;
3029                 struct drm_plane *plane = &intel_plane->base;
3030
3031                 if (!plane->state) {
3032                         seq_puts(m, "plane->state is NULL!\n");
3033                         continue;
3034                 }
3035
3036                 state = plane->state;
3037
3038                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3039                            plane->base.id,
3040                            plane_type(intel_plane->base.type),
3041                            state->crtc_x, state->crtc_y,
3042                            state->crtc_w, state->crtc_h,
3043                            (state->src_x >> 16),
3044                            ((state->src_x & 0xffff) * 15625) >> 10,
3045                            (state->src_y >> 16),
3046                            ((state->src_y & 0xffff) * 15625) >> 10,
3047                            (state->src_w >> 16),
3048                            ((state->src_w & 0xffff) * 15625) >> 10,
3049                            (state->src_h >> 16),
3050                            ((state->src_h & 0xffff) * 15625) >> 10,
3051                            state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3052                            plane_rotation(state->rotation));
3053         }
3054 }
3055
3056 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3057 {
3058         struct intel_crtc_state *pipe_config;
3059         int num_scalers = intel_crtc->num_scalers;
3060         int i;
3061
3062         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3063
3064         /* Not all platformas have a scaler */
3065         if (num_scalers) {
3066                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3067                            num_scalers,
3068                            pipe_config->scaler_state.scaler_users,
3069                            pipe_config->scaler_state.scaler_id);
3070
3071                 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3072                         struct intel_scaler *sc =
3073                                         &pipe_config->scaler_state.scalers[i];
3074
3075                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3076                                    i, yesno(sc->in_use), sc->mode);
3077                 }
3078                 seq_puts(m, "\n");
3079         } else {
3080                 seq_puts(m, "\tNo scalers available on this platform\n");
3081         }
3082 }
3083
3084 static int i915_display_info(struct seq_file *m, void *unused)
3085 {
3086         struct drm_info_node *node = m->private;
3087         struct drm_device *dev = node->minor->dev;
3088         struct drm_i915_private *dev_priv = dev->dev_private;
3089         struct intel_crtc *crtc;
3090         struct drm_connector *connector;
3091
3092         intel_runtime_pm_get(dev_priv);
3093         drm_modeset_lock_all(dev);
3094         seq_printf(m, "CRTC info\n");
3095         seq_printf(m, "---------\n");
3096         for_each_intel_crtc(dev, crtc) {
3097                 bool active;
3098                 struct intel_crtc_state *pipe_config;
3099                 int x, y;
3100
3101                 pipe_config = to_intel_crtc_state(crtc->base.state);
3102
3103                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3104                            crtc->base.base.id, pipe_name(crtc->pipe),
3105                            yesno(pipe_config->base.active),
3106                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3107                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3108
3109                 if (pipe_config->base.active) {
3110                         intel_crtc_info(m, crtc);
3111
3112                         active = cursor_position(dev, crtc->pipe, &x, &y);
3113                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3114                                    yesno(crtc->cursor_base),
3115                                    x, y, crtc->base.cursor->state->crtc_w,
3116                                    crtc->base.cursor->state->crtc_h,
3117                                    crtc->cursor_addr, yesno(active));
3118                         intel_scaler_info(m, crtc);
3119                         intel_plane_info(m, crtc);
3120                 }
3121
3122                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3123                            yesno(!crtc->cpu_fifo_underrun_disabled),
3124                            yesno(!crtc->pch_fifo_underrun_disabled));
3125         }
3126
3127         seq_printf(m, "\n");
3128         seq_printf(m, "Connector info\n");
3129         seq_printf(m, "--------------\n");
3130         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3131                 intel_connector_info(m, connector);
3132         }
3133         drm_modeset_unlock_all(dev);
3134         intel_runtime_pm_put(dev_priv);
3135
3136         return 0;
3137 }
3138
3139 static int i915_semaphore_status(struct seq_file *m, void *unused)
3140 {
3141         struct drm_info_node *node = (struct drm_info_node *) m->private;
3142         struct drm_device *dev = node->minor->dev;
3143         struct drm_i915_private *dev_priv = dev->dev_private;
3144         struct intel_engine_cs *engine;
3145         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3146         enum intel_engine_id id;
3147         int j, ret;
3148
3149         if (!i915_semaphore_is_enabled(dev)) {
3150                 seq_puts(m, "Semaphores are disabled\n");
3151                 return 0;
3152         }
3153
3154         ret = mutex_lock_interruptible(&dev->struct_mutex);
3155         if (ret)
3156                 return ret;
3157         intel_runtime_pm_get(dev_priv);
3158
3159         if (IS_BROADWELL(dev)) {
3160                 struct page *page;
3161                 uint64_t *seqno;
3162
3163                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3164
3165                 seqno = (uint64_t *)kmap_atomic(page);
3166                 for_each_engine_id(engine, dev_priv, id) {
3167                         uint64_t offset;
3168
3169                         seq_printf(m, "%s\n", engine->name);
3170
3171                         seq_puts(m, "  Last signal:");
3172                         for (j = 0; j < num_rings; j++) {
3173                                 offset = id * I915_NUM_ENGINES + j;
3174                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3175                                            seqno[offset], offset * 8);
3176                         }
3177                         seq_putc(m, '\n');
3178
3179                         seq_puts(m, "  Last wait:  ");
3180                         for (j = 0; j < num_rings; j++) {
3181                                 offset = id + (j * I915_NUM_ENGINES);
3182                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3183                                            seqno[offset], offset * 8);
3184                         }
3185                         seq_putc(m, '\n');
3186
3187                 }
3188                 kunmap_atomic(seqno);
3189         } else {
3190                 seq_puts(m, "  Last signal:");
3191                 for_each_engine(engine, dev_priv)
3192                         for (j = 0; j < num_rings; j++)
3193                                 seq_printf(m, "0x%08x\n",
3194                                            I915_READ(engine->semaphore.mbox.signal[j]));
3195                 seq_putc(m, '\n');
3196         }
3197
3198         seq_puts(m, "\nSync seqno:\n");
3199         for_each_engine(engine, dev_priv) {
3200                 for (j = 0; j < num_rings; j++)
3201                         seq_printf(m, "  0x%08x ",
3202                                    engine->semaphore.sync_seqno[j]);
3203                 seq_putc(m, '\n');
3204         }
3205         seq_putc(m, '\n');
3206
3207         intel_runtime_pm_put(dev_priv);
3208         mutex_unlock(&dev->struct_mutex);
3209         return 0;
3210 }
3211
3212 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3213 {
3214         struct drm_info_node *node = (struct drm_info_node *) m->private;
3215         struct drm_device *dev = node->minor->dev;
3216         struct drm_i915_private *dev_priv = dev->dev_private;
3217         int i;
3218
3219         drm_modeset_lock_all(dev);
3220         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3221                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3222
3223                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3224                 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3225                            pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3226                 seq_printf(m, " tracked hardware state:\n");
3227                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3228                 seq_printf(m, " dpll_md: 0x%08x\n",
3229                            pll->config.hw_state.dpll_md);
3230                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3231                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3232                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3233         }
3234         drm_modeset_unlock_all(dev);
3235
3236         return 0;
3237 }
3238
3239 static int i915_wa_registers(struct seq_file *m, void *unused)
3240 {
3241         int i;
3242         int ret;
3243         struct intel_engine_cs *engine;
3244         struct drm_info_node *node = (struct drm_info_node *) m->private;
3245         struct drm_device *dev = node->minor->dev;
3246         struct drm_i915_private *dev_priv = dev->dev_private;
3247         struct i915_workarounds *workarounds = &dev_priv->workarounds;
3248         enum intel_engine_id id;
3249
3250         ret = mutex_lock_interruptible(&dev->struct_mutex);
3251         if (ret)
3252                 return ret;
3253
3254         intel_runtime_pm_get(dev_priv);
3255
3256         seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3257         for_each_engine_id(engine, dev_priv, id)
3258                 seq_printf(m, "HW whitelist count for %s: %d\n",
3259                            engine->name, workarounds->hw_whitelist_count[id]);
3260         for (i = 0; i < workarounds->count; ++i) {
3261                 i915_reg_t addr;
3262                 u32 mask, value, read;
3263                 bool ok;
3264
3265                 addr = workarounds->reg[i].addr;
3266                 mask = workarounds->reg[i].mask;
3267                 value = workarounds->reg[i].value;
3268                 read = I915_READ(addr);
3269                 ok = (value & mask) == (read & mask);
3270                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3271                            i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3272         }
3273
3274         intel_runtime_pm_put(dev_priv);
3275         mutex_unlock(&dev->struct_mutex);
3276
3277         return 0;
3278 }
3279
3280 static int i915_ddb_info(struct seq_file *m, void *unused)
3281 {
3282         struct drm_info_node *node = m->private;
3283         struct drm_device *dev = node->minor->dev;
3284         struct drm_i915_private *dev_priv = dev->dev_private;
3285         struct skl_ddb_allocation *ddb;
3286         struct skl_ddb_entry *entry;
3287         enum pipe pipe;
3288         int plane;
3289
3290         if (INTEL_INFO(dev)->gen < 9)
3291                 return 0;
3292
3293         drm_modeset_lock_all(dev);
3294
3295         ddb = &dev_priv->wm.skl_hw.ddb;
3296
3297         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3298
3299         for_each_pipe(dev_priv, pipe) {
3300                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3301
3302                 for_each_plane(dev_priv, pipe, plane) {
3303                         entry = &ddb->plane[pipe][plane];
3304                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3305                                    entry->start, entry->end,
3306                                    skl_ddb_entry_size(entry));
3307                 }
3308
3309                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3310                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3311                            entry->end, skl_ddb_entry_size(entry));
3312         }
3313
3314         drm_modeset_unlock_all(dev);
3315
3316         return 0;
3317 }
3318
3319 static void drrs_status_per_crtc(struct seq_file *m,
3320                 struct drm_device *dev, struct intel_crtc *intel_crtc)
3321 {
3322         struct intel_encoder *intel_encoder;
3323         struct drm_i915_private *dev_priv = dev->dev_private;
3324         struct i915_drrs *drrs = &dev_priv->drrs;
3325         int vrefresh = 0;
3326
3327         for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3328                 /* Encoder connected on this CRTC */
3329                 switch (intel_encoder->type) {
3330                 case INTEL_OUTPUT_EDP:
3331                         seq_puts(m, "eDP:\n");
3332                         break;
3333                 case INTEL_OUTPUT_DSI:
3334                         seq_puts(m, "DSI:\n");
3335                         break;
3336                 case INTEL_OUTPUT_HDMI:
3337                         seq_puts(m, "HDMI:\n");
3338                         break;
3339                 case INTEL_OUTPUT_DISPLAYPORT:
3340                         seq_puts(m, "DP:\n");
3341                         break;
3342                 default:
3343                         seq_printf(m, "Other encoder (id=%d).\n",
3344                                                 intel_encoder->type);
3345                         return;
3346                 }
3347         }
3348
3349         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3350                 seq_puts(m, "\tVBT: DRRS_type: Static");
3351         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3352                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3353         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3354                 seq_puts(m, "\tVBT: DRRS_type: None");
3355         else
3356                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3357
3358         seq_puts(m, "\n\n");
3359
3360         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3361                 struct intel_panel *panel;
3362
3363                 mutex_lock(&drrs->mutex);
3364                 /* DRRS Supported */
3365                 seq_puts(m, "\tDRRS Supported: Yes\n");
3366
3367                 /* disable_drrs() will make drrs->dp NULL */
3368                 if (!drrs->dp) {
3369                         seq_puts(m, "Idleness DRRS: Disabled");
3370                         mutex_unlock(&drrs->mutex);
3371                         return;
3372                 }
3373
3374                 panel = &drrs->dp->attached_connector->panel;
3375                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3376                                         drrs->busy_frontbuffer_bits);
3377
3378                 seq_puts(m, "\n\t\t");
3379                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3380                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3381                         vrefresh = panel->fixed_mode->vrefresh;
3382                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3383                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3384                         vrefresh = panel->downclock_mode->vrefresh;
3385                 } else {
3386                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3387                                                 drrs->refresh_rate_type);
3388                         mutex_unlock(&drrs->mutex);
3389                         return;
3390                 }
3391                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3392
3393                 seq_puts(m, "\n\t\t");
3394                 mutex_unlock(&drrs->mutex);
3395         } else {
3396                 /* DRRS not supported. Print the VBT parameter*/
3397                 seq_puts(m, "\tDRRS Supported : No");
3398         }
3399         seq_puts(m, "\n");
3400 }
3401
3402 static int i915_drrs_status(struct seq_file *m, void *unused)
3403 {
3404         struct drm_info_node *node = m->private;
3405         struct drm_device *dev = node->minor->dev;
3406         struct intel_crtc *intel_crtc;
3407         int active_crtc_cnt = 0;
3408
3409         for_each_intel_crtc(dev, intel_crtc) {
3410                 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3411
3412                 if (intel_crtc->base.state->active) {
3413                         active_crtc_cnt++;
3414                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3415
3416                         drrs_status_per_crtc(m, dev, intel_crtc);
3417                 }
3418
3419                 drm_modeset_unlock(&intel_crtc->base.mutex);
3420         }
3421
3422         if (!active_crtc_cnt)
3423                 seq_puts(m, "No active crtc found\n");
3424
3425         return 0;
3426 }
3427
3428 struct pipe_crc_info {
3429         const char *name;
3430         struct drm_device *dev;
3431         enum pipe pipe;
3432 };
3433
3434 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3435 {
3436         struct drm_info_node *node = (struct drm_info_node *) m->private;
3437         struct drm_device *dev = node->minor->dev;
3438         struct drm_encoder *encoder;
3439         struct intel_encoder *intel_encoder;
3440         struct intel_digital_port *intel_dig_port;
3441         drm_modeset_lock_all(dev);
3442         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3443                 intel_encoder = to_intel_encoder(encoder);
3444                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3445                         continue;
3446                 intel_dig_port = enc_to_dig_port(encoder);
3447                 if (!intel_dig_port->dp.can_mst)
3448                         continue;
3449
3450                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3451         }
3452         drm_modeset_unlock_all(dev);
3453         return 0;
3454 }
3455
3456 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3457 {
3458         struct pipe_crc_info *info = inode->i_private;
3459         struct drm_i915_private *dev_priv = info->dev->dev_private;
3460         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3461
3462         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3463                 return -ENODEV;
3464
3465         spin_lock_irq(&pipe_crc->lock);
3466
3467         if (pipe_crc->opened) {
3468                 spin_unlock_irq(&pipe_crc->lock);
3469                 return -EBUSY; /* already open */
3470         }
3471
3472         pipe_crc->opened = true;
3473         filep->private_data = inode->i_private;
3474
3475         spin_unlock_irq(&pipe_crc->lock);
3476
3477         return 0;
3478 }
3479
3480 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3481 {
3482         struct pipe_crc_info *info = inode->i_private;
3483         struct drm_i915_private *dev_priv = info->dev->dev_private;
3484         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3485
3486         spin_lock_irq(&pipe_crc->lock);
3487         pipe_crc->opened = false;
3488         spin_unlock_irq(&pipe_crc->lock);
3489
3490         return 0;
3491 }
3492
3493 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3494 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3495 /* account for \'0' */
3496 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3497
3498 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3499 {
3500         assert_spin_locked(&pipe_crc->lock);
3501         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3502                         INTEL_PIPE_CRC_ENTRIES_NR);
3503 }
3504
3505 static ssize_t
3506 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3507                    loff_t *pos)
3508 {
3509         struct pipe_crc_info *info = filep->private_data;
3510         struct drm_device *dev = info->dev;
3511         struct drm_i915_private *dev_priv = dev->dev_private;
3512         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3513         char buf[PIPE_CRC_BUFFER_LEN];
3514         int n_entries;
3515         ssize_t bytes_read;
3516
3517         /*
3518          * Don't allow user space to provide buffers not big enough to hold
3519          * a line of data.
3520          */
3521         if (count < PIPE_CRC_LINE_LEN)
3522                 return -EINVAL;
3523
3524         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3525                 return 0;
3526
3527         /* nothing to read */
3528         spin_lock_irq(&pipe_crc->lock);
3529         while (pipe_crc_data_count(pipe_crc) == 0) {
3530                 int ret;
3531
3532                 if (filep->f_flags & O_NONBLOCK) {
3533                         spin_unlock_irq(&pipe_crc->lock);
3534                         return -EAGAIN;
3535                 }
3536
3537                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3538                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3539                 if (ret) {
3540                         spin_unlock_irq(&pipe_crc->lock);
3541                         return ret;
3542                 }
3543         }
3544
3545         /* We now have one or more entries to read */
3546         n_entries = count / PIPE_CRC_LINE_LEN;
3547
3548         bytes_read = 0;
3549         while (n_entries > 0) {
3550                 struct intel_pipe_crc_entry *entry =
3551                         &pipe_crc->entries[pipe_crc->tail];
3552                 int ret;
3553
3554                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3555                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3556                         break;
3557
3558                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3559                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3560
3561                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3562                                        "%8u %8x %8x %8x %8x %8x\n",
3563                                        entry->frame, entry->crc[0],
3564                                        entry->crc[1], entry->crc[2],
3565                                        entry->crc[3], entry->crc[4]);
3566
3567                 spin_unlock_irq(&pipe_crc->lock);
3568
3569                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3570                 if (ret == PIPE_CRC_LINE_LEN)
3571                         return -EFAULT;
3572
3573                 user_buf += PIPE_CRC_LINE_LEN;
3574                 n_entries--;
3575
3576                 spin_lock_irq(&pipe_crc->lock);
3577         }
3578
3579         spin_unlock_irq(&pipe_crc->lock);
3580
3581         return bytes_read;
3582 }
3583
3584 static const struct file_operations i915_pipe_crc_fops = {
3585         .owner = THIS_MODULE,
3586         .open = i915_pipe_crc_open,
3587         .read = i915_pipe_crc_read,
3588         .release = i915_pipe_crc_release,
3589 };
3590
3591 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3592         {
3593                 .name = "i915_pipe_A_crc",
3594                 .pipe = PIPE_A,
3595         },
3596         {
3597                 .name = "i915_pipe_B_crc",
3598                 .pipe = PIPE_B,
3599         },
3600         {
3601                 .name = "i915_pipe_C_crc",
3602                 .pipe = PIPE_C,
3603         },
3604 };
3605
3606 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3607                                 enum pipe pipe)
3608 {
3609         struct drm_device *dev = minor->dev;
3610         struct dentry *ent;
3611         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3612
3613         info->dev = dev;
3614         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3615                                   &i915_pipe_crc_fops);
3616         if (!ent)
3617                 return -ENOMEM;
3618
3619         return drm_add_fake_info_node(minor, ent, info);
3620 }
3621
3622 static const char * const pipe_crc_sources[] = {
3623         "none",
3624         "plane1",
3625         "plane2",
3626         "pf",
3627         "pipe",
3628         "TV",
3629         "DP-B",
3630         "DP-C",
3631         "DP-D",
3632         "auto",
3633 };
3634
3635 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3636 {
3637         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3638         return pipe_crc_sources[source];
3639 }
3640
3641 static int display_crc_ctl_show(struct seq_file *m, void *data)
3642 {
3643         struct drm_device *dev = m->private;
3644         struct drm_i915_private *dev_priv = dev->dev_private;
3645         int i;
3646
3647         for (i = 0; i < I915_MAX_PIPES; i++)
3648                 seq_printf(m, "%c %s\n", pipe_name(i),
3649                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3650
3651         return 0;
3652 }
3653
3654 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3655 {
3656         struct drm_device *dev = inode->i_private;
3657
3658         return single_open(file, display_crc_ctl_show, dev);
3659 }
3660
3661 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3662                                  uint32_t *val)
3663 {
3664         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3665                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3666
3667         switch (*source) {
3668         case INTEL_PIPE_CRC_SOURCE_PIPE:
3669                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3670                 break;
3671         case INTEL_PIPE_CRC_SOURCE_NONE:
3672                 *val = 0;
3673                 break;
3674         default:
3675                 return -EINVAL;
3676         }
3677
3678         return 0;
3679 }
3680
3681 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3682                                      enum intel_pipe_crc_source *source)
3683 {
3684         struct intel_encoder *encoder;
3685         struct intel_crtc *crtc;
3686         struct intel_digital_port *dig_port;
3687         int ret = 0;
3688
3689         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3690
3691         drm_modeset_lock_all(dev);
3692         for_each_intel_encoder(dev, encoder) {
3693                 if (!encoder->base.crtc)
3694                         continue;
3695
3696                 crtc = to_intel_crtc(encoder->base.crtc);
3697
3698                 if (crtc->pipe != pipe)
3699                         continue;
3700
3701                 switch (encoder->type) {
3702                 case INTEL_OUTPUT_TVOUT:
3703                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3704                         break;
3705                 case INTEL_OUTPUT_DISPLAYPORT:
3706                 case INTEL_OUTPUT_EDP:
3707                         dig_port = enc_to_dig_port(&encoder->base);
3708                         switch (dig_port->port) {
3709                         case PORT_B:
3710                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3711                                 break;
3712                         case PORT_C:
3713                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3714                                 break;
3715                         case PORT_D:
3716                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3717                                 break;
3718                         default:
3719                                 WARN(1, "nonexisting DP port %c\n",
3720                                      port_name(dig_port->port));
3721                                 break;
3722                         }
3723                         break;
3724                 default:
3725                         break;
3726                 }
3727         }
3728         drm_modeset_unlock_all(dev);
3729
3730         return ret;
3731 }
3732
3733 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3734                                 enum pipe pipe,
3735                                 enum intel_pipe_crc_source *source,
3736                                 uint32_t *val)
3737 {
3738         struct drm_i915_private *dev_priv = dev->dev_private;
3739         bool need_stable_symbols = false;
3740
3741         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3742                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3743                 if (ret)
3744                         return ret;
3745         }
3746
3747         switch (*source) {
3748         case INTEL_PIPE_CRC_SOURCE_PIPE:
3749                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3750                 break;
3751         case INTEL_PIPE_CRC_SOURCE_DP_B:
3752                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3753                 need_stable_symbols = true;
3754                 break;
3755         case INTEL_PIPE_CRC_SOURCE_DP_C:
3756                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3757                 need_stable_symbols = true;
3758                 break;
3759         case INTEL_PIPE_CRC_SOURCE_DP_D:
3760                 if (!IS_CHERRYVIEW(dev))
3761                         return -EINVAL;
3762                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3763                 need_stable_symbols = true;
3764                 break;
3765         case INTEL_PIPE_CRC_SOURCE_NONE:
3766                 *val = 0;
3767                 break;
3768         default:
3769                 return -EINVAL;
3770         }
3771
3772         /*
3773          * When the pipe CRC tap point is after the transcoders we need
3774          * to tweak symbol-level features to produce a deterministic series of
3775          * symbols for a given frame. We need to reset those features only once
3776          * a frame (instead of every nth symbol):
3777          *   - DC-balance: used to ensure a better clock recovery from the data
3778          *     link (SDVO)
3779          *   - DisplayPort scrambling: used for EMI reduction
3780          */
3781         if (need_stable_symbols) {
3782                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3783
3784                 tmp |= DC_BALANCE_RESET_VLV;
3785                 switch (pipe) {
3786                 case PIPE_A:
3787                         tmp |= PIPE_A_SCRAMBLE_RESET;
3788                         break;
3789                 case PIPE_B:
3790                         tmp |= PIPE_B_SCRAMBLE_RESET;
3791                         break;
3792                 case PIPE_C:
3793                         tmp |= PIPE_C_SCRAMBLE_RESET;
3794                         break;
3795                 default:
3796                         return -EINVAL;
3797                 }
3798                 I915_WRITE(PORT_DFT2_G4X, tmp);
3799         }
3800
3801         return 0;
3802 }
3803
3804 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3805                                  enum pipe pipe,
3806                                  enum intel_pipe_crc_source *source,
3807                                  uint32_t *val)
3808 {
3809         struct drm_i915_private *dev_priv = dev->dev_private;
3810         bool need_stable_symbols = false;
3811
3812         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3813                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3814                 if (ret)
3815                         return ret;
3816         }
3817
3818         switch (*source) {
3819         case INTEL_PIPE_CRC_SOURCE_PIPE:
3820                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3821                 break;
3822         case INTEL_PIPE_CRC_SOURCE_TV:
3823                 if (!SUPPORTS_TV(dev))
3824                         return -EINVAL;
3825                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3826                 break;
3827         case INTEL_PIPE_CRC_SOURCE_DP_B:
3828                 if (!IS_G4X(dev))
3829                         return -EINVAL;
3830                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3831                 need_stable_symbols = true;
3832                 break;
3833         case INTEL_PIPE_CRC_SOURCE_DP_C:
3834                 if (!IS_G4X(dev))
3835                         return -EINVAL;
3836                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3837                 need_stable_symbols = true;
3838                 break;
3839         case INTEL_PIPE_CRC_SOURCE_DP_D:
3840                 if (!IS_G4X(dev))
3841                         return -EINVAL;
3842                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3843                 need_stable_symbols = true;
3844                 break;
3845         case INTEL_PIPE_CRC_SOURCE_NONE:
3846                 *val = 0;
3847                 break;
3848         default:
3849                 return -EINVAL;
3850         }
3851
3852         /*
3853          * When the pipe CRC tap point is after the transcoders we need
3854          * to tweak symbol-level features to produce a deterministic series of
3855          * symbols for a given frame. We need to reset those features only once
3856          * a frame (instead of every nth symbol):
3857          *   - DC-balance: used to ensure a better clock recovery from the data
3858          *     link (SDVO)
3859          *   - DisplayPort scrambling: used for EMI reduction
3860          */
3861         if (need_stable_symbols) {
3862                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3863
3864                 WARN_ON(!IS_G4X(dev));
3865
3866                 I915_WRITE(PORT_DFT_I9XX,
3867                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3868
3869                 if (pipe == PIPE_A)
3870                         tmp |= PIPE_A_SCRAMBLE_RESET;
3871                 else
3872                         tmp |= PIPE_B_SCRAMBLE_RESET;
3873
3874                 I915_WRITE(PORT_DFT2_G4X, tmp);
3875         }
3876
3877         return 0;
3878 }
3879
3880 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3881                                          enum pipe pipe)
3882 {
3883         struct drm_i915_private *dev_priv = dev->dev_private;
3884         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3885
3886         switch (pipe) {
3887         case PIPE_A:
3888                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3889                 break;
3890         case PIPE_B:
3891                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3892                 break;
3893         case PIPE_C:
3894                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3895                 break;
3896         default:
3897                 return;
3898         }
3899         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3900                 tmp &= ~DC_BALANCE_RESET_VLV;
3901         I915_WRITE(PORT_DFT2_G4X, tmp);
3902
3903 }
3904
3905 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3906                                          enum pipe pipe)
3907 {
3908         struct drm_i915_private *dev_priv = dev->dev_private;
3909         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3910
3911         if (pipe == PIPE_A)
3912                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3913         else
3914                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3915         I915_WRITE(PORT_DFT2_G4X, tmp);
3916
3917         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3918                 I915_WRITE(PORT_DFT_I9XX,
3919                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3920         }
3921 }
3922
3923 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3924                                 uint32_t *val)
3925 {
3926         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3927                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3928
3929         switch (*source) {
3930         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3931                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3932                 break;
3933         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3934                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3935                 break;
3936         case INTEL_PIPE_CRC_SOURCE_PIPE:
3937                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3938                 break;
3939         case INTEL_PIPE_CRC_SOURCE_NONE:
3940                 *val = 0;
3941                 break;
3942         default:
3943                 return -EINVAL;
3944         }
3945
3946         return 0;
3947 }
3948
3949 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3950 {
3951         struct drm_i915_private *dev_priv = dev->dev_private;
3952         struct intel_crtc *crtc =
3953                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3954         struct intel_crtc_state *pipe_config;
3955         struct drm_atomic_state *state;
3956         int ret = 0;
3957
3958         drm_modeset_lock_all(dev);
3959         state = drm_atomic_state_alloc(dev);
3960         if (!state) {
3961                 ret = -ENOMEM;
3962                 goto out;
3963         }
3964
3965         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3966         pipe_config = intel_atomic_get_crtc_state(state, crtc);
3967         if (IS_ERR(pipe_config)) {
3968                 ret = PTR_ERR(pipe_config);
3969                 goto out;
3970         }
3971
3972         pipe_config->pch_pfit.force_thru = enable;
3973         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3974             pipe_config->pch_pfit.enabled != enable)
3975                 pipe_config->base.connectors_changed = true;
3976
3977         ret = drm_atomic_commit(state);
3978 out:
3979         drm_modeset_unlock_all(dev);
3980         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3981         if (ret)
3982                 drm_atomic_state_free(state);
3983 }
3984
3985 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3986                                 enum pipe pipe,
3987                                 enum intel_pipe_crc_source *source,
3988                                 uint32_t *val)
3989 {
3990         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3991                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3992
3993         switch (*source) {
3994         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3995                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3996                 break;
3997         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3998                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3999                 break;
4000         case INTEL_PIPE_CRC_SOURCE_PF:
4001                 if (IS_HASWELL(dev) && pipe == PIPE_A)
4002                         hsw_trans_edp_pipe_A_crc_wa(dev, true);
4003
4004                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4005                 break;
4006         case INTEL_PIPE_CRC_SOURCE_NONE:
4007                 *val = 0;
4008                 break;
4009         default:
4010                 return -EINVAL;
4011         }
4012
4013         return 0;
4014 }
4015
4016 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
4017                                enum intel_pipe_crc_source source)
4018 {
4019         struct drm_i915_private *dev_priv = dev->dev_private;
4020         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4021         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
4022                                                                         pipe));
4023         enum intel_display_power_domain power_domain;
4024         u32 val = 0; /* shut up gcc */
4025         int ret;
4026
4027         if (pipe_crc->source == source)
4028                 return 0;
4029
4030         /* forbid changing the source without going back to 'none' */
4031         if (pipe_crc->source && source)
4032                 return -EINVAL;
4033
4034         power_domain = POWER_DOMAIN_PIPE(pipe);
4035         if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4036                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4037                 return -EIO;
4038         }
4039
4040         if (IS_GEN2(dev))
4041                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4042         else if (INTEL_INFO(dev)->gen < 5)
4043                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4044         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4045                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4046         else if (IS_GEN5(dev) || IS_GEN6(dev))
4047                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4048         else
4049                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4050
4051         if (ret != 0)
4052                 goto out;
4053
4054         /* none -> real source transition */
4055         if (source) {
4056                 struct intel_pipe_crc_entry *entries;
4057
4058                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4059                                  pipe_name(pipe), pipe_crc_source_name(source));
4060
4061                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4062                                   sizeof(pipe_crc->entries[0]),
4063                                   GFP_KERNEL);
4064                 if (!entries) {
4065                         ret = -ENOMEM;
4066                         goto out;
4067                 }
4068
4069                 /*
4070                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4071                  * enabled and disabled dynamically based on package C states,
4072                  * user space can't make reliable use of the CRCs, so let's just
4073                  * completely disable it.
4074                  */
4075                 hsw_disable_ips(crtc);
4076
4077                 spin_lock_irq(&pipe_crc->lock);
4078                 kfree(pipe_crc->entries);
4079                 pipe_crc->entries = entries;
4080                 pipe_crc->head = 0;
4081                 pipe_crc->tail = 0;
4082                 spin_unlock_irq(&pipe_crc->lock);
4083         }
4084
4085         pipe_crc->source = source;
4086
4087         I915_WRITE(PIPE_CRC_CTL(pipe), val);
4088         POSTING_READ(PIPE_CRC_CTL(pipe));
4089
4090         /* real source -> none transition */
4091         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4092                 struct intel_pipe_crc_entry *entries;
4093                 struct intel_crtc *crtc =
4094                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4095
4096                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4097                                  pipe_name(pipe));
4098
4099                 drm_modeset_lock(&crtc->base.mutex, NULL);
4100                 if (crtc->base.state->active)
4101                         intel_wait_for_vblank(dev, pipe);
4102                 drm_modeset_unlock(&crtc->base.mutex);
4103
4104                 spin_lock_irq(&pipe_crc->lock);
4105                 entries = pipe_crc->entries;
4106                 pipe_crc->entries = NULL;
4107                 pipe_crc->head = 0;
4108                 pipe_crc->tail = 0;
4109                 spin_unlock_irq(&pipe_crc->lock);
4110
4111                 kfree(entries);
4112
4113                 if (IS_G4X(dev))
4114                         g4x_undo_pipe_scramble_reset(dev, pipe);
4115                 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4116                         vlv_undo_pipe_scramble_reset(dev, pipe);
4117                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4118                         hsw_trans_edp_pipe_A_crc_wa(dev, false);
4119
4120                 hsw_enable_ips(crtc);
4121         }
4122
4123         ret = 0;
4124
4125 out:
4126         intel_display_power_put(dev_priv, power_domain);
4127
4128         return ret;
4129 }
4130
4131 /*
4132  * Parse pipe CRC command strings:
4133  *   command: wsp* object wsp+ name wsp+ source wsp*
4134  *   object: 'pipe'
4135  *   name: (A | B | C)
4136  *   source: (none | plane1 | plane2 | pf)
4137  *   wsp: (#0x20 | #0x9 | #0xA)+
4138  *
4139  * eg.:
4140  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4141  *  "pipe A none"    ->  Stop CRC
4142  */
4143 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4144 {
4145         int n_words = 0;
4146
4147         while (*buf) {
4148                 char *end;
4149
4150                 /* skip leading white space */
4151                 buf = skip_spaces(buf);
4152                 if (!*buf)
4153                         break;  /* end of buffer */
4154
4155                 /* find end of word */
4156                 for (end = buf; *end && !isspace(*end); end++)
4157                         ;
4158
4159                 if (n_words == max_words) {
4160                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4161                                          max_words);
4162                         return -EINVAL; /* ran out of words[] before bytes */
4163                 }
4164
4165                 if (*end)
4166                         *end++ = '\0';
4167                 words[n_words++] = buf;
4168                 buf = end;
4169         }
4170
4171         return n_words;
4172 }
4173
4174 enum intel_pipe_crc_object {
4175         PIPE_CRC_OBJECT_PIPE,
4176 };
4177
4178 static const char * const pipe_crc_objects[] = {
4179         "pipe",
4180 };
4181
4182 static int
4183 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4184 {
4185         int i;
4186
4187         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4188                 if (!strcmp(buf, pipe_crc_objects[i])) {
4189                         *o = i;
4190                         return 0;
4191                     }
4192
4193         return -EINVAL;
4194 }
4195
4196 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4197 {
4198         const char name = buf[0];
4199
4200         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4201                 return -EINVAL;
4202
4203         *pipe = name - 'A';
4204
4205         return 0;
4206 }
4207
4208 static int
4209 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4210 {
4211         int i;
4212
4213         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4214                 if (!strcmp(buf, pipe_crc_sources[i])) {
4215                         *s = i;
4216                         return 0;
4217                     }
4218
4219         return -EINVAL;
4220 }
4221
4222 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4223 {
4224 #define N_WORDS 3
4225         int n_words;
4226         char *words[N_WORDS];
4227         enum pipe pipe;
4228         enum intel_pipe_crc_object object;
4229         enum intel_pipe_crc_source source;
4230
4231         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4232         if (n_words != N_WORDS) {
4233                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4234                                  N_WORDS);
4235                 return -EINVAL;
4236         }
4237
4238         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4239                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4240                 return -EINVAL;
4241         }
4242
4243         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4244                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4245                 return -EINVAL;
4246         }
4247
4248         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4249                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4250                 return -EINVAL;
4251         }
4252
4253         return pipe_crc_set_source(dev, pipe, source);
4254 }
4255
4256 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4257                                      size_t len, loff_t *offp)
4258 {
4259         struct seq_file *m = file->private_data;
4260         struct drm_device *dev = m->private;
4261         char *tmpbuf;
4262         int ret;
4263
4264         if (len == 0)
4265                 return 0;
4266
4267         if (len > PAGE_SIZE - 1) {
4268                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4269                                  PAGE_SIZE);
4270                 return -E2BIG;
4271         }
4272
4273         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4274         if (!tmpbuf)
4275                 return -ENOMEM;
4276
4277         if (copy_from_user(tmpbuf, ubuf, len)) {
4278                 ret = -EFAULT;
4279                 goto out;
4280         }
4281         tmpbuf[len] = '\0';
4282
4283         ret = display_crc_ctl_parse(dev, tmpbuf, len);
4284
4285 out:
4286         kfree(tmpbuf);
4287         if (ret < 0)
4288                 return ret;
4289
4290         *offp += len;
4291         return len;
4292 }
4293
4294 static const struct file_operations i915_display_crc_ctl_fops = {
4295         .owner = THIS_MODULE,
4296         .open = display_crc_ctl_open,
4297         .read = seq_read,
4298         .llseek = seq_lseek,
4299         .release = single_release,
4300         .write = display_crc_ctl_write
4301 };
4302
4303 static ssize_t i915_displayport_test_active_write(struct file *file,
4304                                             const char __user *ubuf,
4305                                             size_t len, loff_t *offp)
4306 {
4307         char *input_buffer;
4308         int status = 0;
4309         struct drm_device *dev;
4310         struct drm_connector *connector;
4311         struct list_head *connector_list;
4312         struct intel_dp *intel_dp;
4313         int val = 0;
4314
4315         dev = ((struct seq_file *)file->private_data)->private;
4316
4317         connector_list = &dev->mode_config.connector_list;
4318
4319         if (len == 0)
4320                 return 0;
4321
4322         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4323         if (!input_buffer)
4324                 return -ENOMEM;
4325
4326         if (copy_from_user(input_buffer, ubuf, len)) {
4327                 status = -EFAULT;
4328                 goto out;
4329         }
4330
4331         input_buffer[len] = '\0';
4332         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4333
4334         list_for_each_entry(connector, connector_list, head) {
4335
4336                 if (connector->connector_type !=
4337                     DRM_MODE_CONNECTOR_DisplayPort)
4338                         continue;
4339
4340                 if (connector->status == connector_status_connected &&
4341                     connector->encoder != NULL) {
4342                         intel_dp = enc_to_intel_dp(connector->encoder);
4343                         status = kstrtoint(input_buffer, 10, &val);
4344                         if (status < 0)
4345                                 goto out;
4346                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4347                         /* To prevent erroneous activation of the compliance
4348                          * testing code, only accept an actual value of 1 here
4349                          */
4350                         if (val == 1)
4351                                 intel_dp->compliance_test_active = 1;
4352                         else
4353                                 intel_dp->compliance_test_active = 0;
4354                 }
4355         }
4356 out:
4357         kfree(input_buffer);
4358         if (status < 0)
4359                 return status;
4360
4361         *offp += len;
4362         return len;
4363 }
4364
4365 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4366 {
4367         struct drm_device *dev = m->private;
4368         struct drm_connector *connector;
4369         struct list_head *connector_list = &dev->mode_config.connector_list;
4370         struct intel_dp *intel_dp;
4371
4372         list_for_each_entry(connector, connector_list, head) {
4373
4374                 if (connector->connector_type !=
4375                     DRM_MODE_CONNECTOR_DisplayPort)
4376                         continue;
4377
4378                 if (connector->status == connector_status_connected &&
4379                     connector->encoder != NULL) {
4380                         intel_dp = enc_to_intel_dp(connector->encoder);
4381                         if (intel_dp->compliance_test_active)
4382                                 seq_puts(m, "1");
4383                         else
4384                                 seq_puts(m, "0");
4385                 } else
4386                         seq_puts(m, "0");
4387         }
4388
4389         return 0;
4390 }
4391
4392 static int i915_displayport_test_active_open(struct inode *inode,
4393                                        struct file *file)
4394 {
4395         struct drm_device *dev = inode->i_private;
4396
4397         return single_open(file, i915_displayport_test_active_show, dev);
4398 }
4399
4400 static const struct file_operations i915_displayport_test_active_fops = {
4401         .owner = THIS_MODULE,
4402         .open = i915_displayport_test_active_open,
4403         .read = seq_read,
4404         .llseek = seq_lseek,
4405         .release = single_release,
4406         .write = i915_displayport_test_active_write
4407 };
4408
4409 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4410 {
4411         struct drm_device *dev = m->private;
4412         struct drm_connector *connector;
4413         struct list_head *connector_list = &dev->mode_config.connector_list;
4414         struct intel_dp *intel_dp;
4415
4416         list_for_each_entry(connector, connector_list, head) {
4417
4418                 if (connector->connector_type !=
4419                     DRM_MODE_CONNECTOR_DisplayPort)
4420                         continue;
4421
4422                 if (connector->status == connector_status_connected &&
4423                     connector->encoder != NULL) {
4424                         intel_dp = enc_to_intel_dp(connector->encoder);
4425                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4426                 } else
4427                         seq_puts(m, "0");
4428         }
4429
4430         return 0;
4431 }
4432 static int i915_displayport_test_data_open(struct inode *inode,
4433                                        struct file *file)
4434 {
4435         struct drm_device *dev = inode->i_private;
4436
4437         return single_open(file, i915_displayport_test_data_show, dev);
4438 }
4439
4440 static const struct file_operations i915_displayport_test_data_fops = {
4441         .owner = THIS_MODULE,
4442         .open = i915_displayport_test_data_open,
4443         .read = seq_read,
4444         .llseek = seq_lseek,
4445         .release = single_release
4446 };
4447
4448 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4449 {
4450         struct drm_device *dev = m->private;
4451         struct drm_connector *connector;
4452         struct list_head *connector_list = &dev->mode_config.connector_list;
4453         struct intel_dp *intel_dp;
4454
4455         list_for_each_entry(connector, connector_list, head) {
4456
4457                 if (connector->connector_type !=
4458                     DRM_MODE_CONNECTOR_DisplayPort)
4459                         continue;
4460
4461                 if (connector->status == connector_status_connected &&
4462                     connector->encoder != NULL) {
4463                         intel_dp = enc_to_intel_dp(connector->encoder);
4464                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4465                 } else
4466                         seq_puts(m, "0");
4467         }
4468
4469         return 0;
4470 }
4471
4472 static int i915_displayport_test_type_open(struct inode *inode,
4473                                        struct file *file)
4474 {
4475         struct drm_device *dev = inode->i_private;
4476
4477         return single_open(file, i915_displayport_test_type_show, dev);
4478 }
4479
4480 static const struct file_operations i915_displayport_test_type_fops = {
4481         .owner = THIS_MODULE,
4482         .open = i915_displayport_test_type_open,
4483         .read = seq_read,
4484         .llseek = seq_lseek,
4485         .release = single_release
4486 };
4487
4488 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4489 {
4490         struct drm_device *dev = m->private;
4491         int level;
4492         int num_levels;
4493
4494         if (IS_CHERRYVIEW(dev))
4495                 num_levels = 3;
4496         else if (IS_VALLEYVIEW(dev))
4497                 num_levels = 1;
4498         else
4499                 num_levels = ilk_wm_max_level(dev) + 1;
4500
4501         drm_modeset_lock_all(dev);
4502
4503         for (level = 0; level < num_levels; level++) {
4504                 unsigned int latency = wm[level];
4505
4506                 /*
4507                  * - WM1+ latency values in 0.5us units
4508                  * - latencies are in us on gen9/vlv/chv
4509                  */
4510                 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4511                     IS_CHERRYVIEW(dev))
4512                         latency *= 10;
4513                 else if (level > 0)
4514                         latency *= 5;
4515
4516                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4517                            level, wm[level], latency / 10, latency % 10);
4518         }
4519
4520         drm_modeset_unlock_all(dev);
4521 }
4522
4523 static int pri_wm_latency_show(struct seq_file *m, void *data)
4524 {
4525         struct drm_device *dev = m->private;
4526         struct drm_i915_private *dev_priv = dev->dev_private;
4527         const uint16_t *latencies;
4528
4529         if (INTEL_INFO(dev)->gen >= 9)
4530                 latencies = dev_priv->wm.skl_latency;
4531         else
4532                 latencies = to_i915(dev)->wm.pri_latency;
4533
4534         wm_latency_show(m, latencies);
4535
4536         return 0;
4537 }
4538
4539 static int spr_wm_latency_show(struct seq_file *m, void *data)
4540 {
4541         struct drm_device *dev = m->private;
4542         struct drm_i915_private *dev_priv = dev->dev_private;
4543         const uint16_t *latencies;
4544
4545         if (INTEL_INFO(dev)->gen >= 9)
4546                 latencies = dev_priv->wm.skl_latency;
4547         else
4548                 latencies = to_i915(dev)->wm.spr_latency;
4549
4550         wm_latency_show(m, latencies);
4551
4552         return 0;
4553 }
4554
4555 static int cur_wm_latency_show(struct seq_file *m, void *data)
4556 {
4557         struct drm_device *dev = m->private;
4558         struct drm_i915_private *dev_priv = dev->dev_private;
4559         const uint16_t *latencies;
4560
4561         if (INTEL_INFO(dev)->gen >= 9)
4562                 latencies = dev_priv->wm.skl_latency;
4563         else
4564                 latencies = to_i915(dev)->wm.cur_latency;
4565
4566         wm_latency_show(m, latencies);
4567
4568         return 0;
4569 }
4570
4571 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4572 {
4573         struct drm_device *dev = inode->i_private;
4574
4575         if (INTEL_INFO(dev)->gen < 5)
4576                 return -ENODEV;
4577
4578         return single_open(file, pri_wm_latency_show, dev);
4579 }
4580
4581 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4582 {
4583         struct drm_device *dev = inode->i_private;
4584
4585         if (HAS_GMCH_DISPLAY(dev))
4586                 return -ENODEV;
4587
4588         return single_open(file, spr_wm_latency_show, dev);
4589 }
4590
4591 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4592 {
4593         struct drm_device *dev = inode->i_private;
4594
4595         if (HAS_GMCH_DISPLAY(dev))
4596                 return -ENODEV;
4597
4598         return single_open(file, cur_wm_latency_show, dev);
4599 }
4600
4601 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4602                                 size_t len, loff_t *offp, uint16_t wm[8])
4603 {
4604         struct seq_file *m = file->private_data;
4605         struct drm_device *dev = m->private;
4606         uint16_t new[8] = { 0 };
4607         int num_levels;
4608         int level;
4609         int ret;
4610         char tmp[32];
4611
4612         if (IS_CHERRYVIEW(dev))
4613                 num_levels = 3;
4614         else if (IS_VALLEYVIEW(dev))
4615                 num_levels = 1;
4616         else
4617                 num_levels = ilk_wm_max_level(dev) + 1;
4618
4619         if (len >= sizeof(tmp))
4620                 return -EINVAL;
4621
4622         if (copy_from_user(tmp, ubuf, len))
4623                 return -EFAULT;
4624
4625         tmp[len] = '\0';
4626
4627         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4628                      &new[0], &new[1], &new[2], &new[3],
4629                      &new[4], &new[5], &new[6], &new[7]);
4630         if (ret != num_levels)
4631                 return -EINVAL;
4632
4633         drm_modeset_lock_all(dev);
4634
4635         for (level = 0; level < num_levels; level++)
4636                 wm[level] = new[level];
4637
4638         drm_modeset_unlock_all(dev);
4639
4640         return len;
4641 }
4642
4643
4644 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4645                                     size_t len, loff_t *offp)
4646 {
4647         struct seq_file *m = file->private_data;
4648         struct drm_device *dev = m->private;
4649         struct drm_i915_private *dev_priv = dev->dev_private;
4650         uint16_t *latencies;
4651
4652         if (INTEL_INFO(dev)->gen >= 9)
4653                 latencies = dev_priv->wm.skl_latency;
4654         else
4655                 latencies = to_i915(dev)->wm.pri_latency;
4656
4657         return wm_latency_write(file, ubuf, len, offp, latencies);
4658 }
4659
4660 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4661                                     size_t len, loff_t *offp)
4662 {
4663         struct seq_file *m = file->private_data;
4664         struct drm_device *dev = m->private;
4665         struct drm_i915_private *dev_priv = dev->dev_private;
4666         uint16_t *latencies;
4667
4668         if (INTEL_INFO(dev)->gen >= 9)
4669                 latencies = dev_priv->wm.skl_latency;
4670         else
4671                 latencies = to_i915(dev)->wm.spr_latency;
4672
4673         return wm_latency_write(file, ubuf, len, offp, latencies);
4674 }
4675
4676 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4677                                     size_t len, loff_t *offp)
4678 {
4679         struct seq_file *m = file->private_data;
4680         struct drm_device *dev = m->private;
4681         struct drm_i915_private *dev_priv = dev->dev_private;
4682         uint16_t *latencies;
4683
4684         if (INTEL_INFO(dev)->gen >= 9)
4685                 latencies = dev_priv->wm.skl_latency;
4686         else
4687                 latencies = to_i915(dev)->wm.cur_latency;
4688
4689         return wm_latency_write(file, ubuf, len, offp, latencies);
4690 }
4691
4692 static const struct file_operations i915_pri_wm_latency_fops = {
4693         .owner = THIS_MODULE,
4694         .open = pri_wm_latency_open,
4695         .read = seq_read,
4696         .llseek = seq_lseek,
4697         .release = single_release,
4698         .write = pri_wm_latency_write
4699 };
4700
4701 static const struct file_operations i915_spr_wm_latency_fops = {
4702         .owner = THIS_MODULE,
4703         .open = spr_wm_latency_open,
4704         .read = seq_read,
4705         .llseek = seq_lseek,
4706         .release = single_release,
4707         .write = spr_wm_latency_write
4708 };
4709
4710 static const struct file_operations i915_cur_wm_latency_fops = {
4711         .owner = THIS_MODULE,
4712         .open = cur_wm_latency_open,
4713         .read = seq_read,
4714         .llseek = seq_lseek,
4715         .release = single_release,
4716         .write = cur_wm_latency_write
4717 };
4718
4719 static int
4720 i915_wedged_get(void *data, u64 *val)
4721 {
4722         struct drm_device *dev = data;
4723         struct drm_i915_private *dev_priv = dev->dev_private;
4724
4725         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4726
4727         return 0;
4728 }
4729
4730 static int
4731 i915_wedged_set(void *data, u64 val)
4732 {
4733         struct drm_device *dev = data;
4734         struct drm_i915_private *dev_priv = dev->dev_private;
4735
4736         /*
4737          * There is no safeguard against this debugfs entry colliding
4738          * with the hangcheck calling same i915_handle_error() in
4739          * parallel, causing an explosion. For now we assume that the
4740          * test harness is responsible enough not to inject gpu hangs
4741          * while it is writing to 'i915_wedged'
4742          */
4743
4744         if (i915_reset_in_progress(&dev_priv->gpu_error))
4745                 return -EAGAIN;
4746
4747         intel_runtime_pm_get(dev_priv);
4748
4749         i915_handle_error(dev, val,
4750                           "Manually setting wedged to %llu", val);
4751
4752         intel_runtime_pm_put(dev_priv);
4753
4754         return 0;
4755 }
4756
4757 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4758                         i915_wedged_get, i915_wedged_set,
4759                         "%llu\n");
4760
4761 static int
4762 i915_ring_stop_get(void *data, u64 *val)
4763 {
4764         struct drm_device *dev = data;
4765         struct drm_i915_private *dev_priv = dev->dev_private;
4766
4767         *val = dev_priv->gpu_error.stop_rings;
4768
4769         return 0;
4770 }
4771
4772 static int
4773 i915_ring_stop_set(void *data, u64 val)
4774 {
4775         struct drm_device *dev = data;
4776         struct drm_i915_private *dev_priv = dev->dev_private;
4777         int ret;
4778
4779         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4780
4781         ret = mutex_lock_interruptible(&dev->struct_mutex);
4782         if (ret)
4783                 return ret;
4784
4785         dev_priv->gpu_error.stop_rings = val;
4786         mutex_unlock(&dev->struct_mutex);
4787
4788         return 0;
4789 }
4790
4791 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4792                         i915_ring_stop_get, i915_ring_stop_set,
4793                         "0x%08llx\n");
4794
4795 static int
4796 i915_ring_missed_irq_get(void *data, u64 *val)
4797 {
4798         struct drm_device *dev = data;
4799         struct drm_i915_private *dev_priv = dev->dev_private;
4800
4801         *val = dev_priv->gpu_error.missed_irq_rings;
4802         return 0;
4803 }
4804
4805 static int
4806 i915_ring_missed_irq_set(void *data, u64 val)
4807 {
4808         struct drm_device *dev = data;
4809         struct drm_i915_private *dev_priv = dev->dev_private;
4810         int ret;
4811
4812         /* Lock against concurrent debugfs callers */
4813         ret = mutex_lock_interruptible(&dev->struct_mutex);
4814         if (ret)
4815                 return ret;
4816         dev_priv->gpu_error.missed_irq_rings = val;
4817         mutex_unlock(&dev->struct_mutex);
4818
4819         return 0;
4820 }
4821
4822 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4823                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4824                         "0x%08llx\n");
4825
4826 static int
4827 i915_ring_test_irq_get(void *data, u64 *val)
4828 {
4829         struct drm_device *dev = data;
4830         struct drm_i915_private *dev_priv = dev->dev_private;
4831
4832         *val = dev_priv->gpu_error.test_irq_rings;
4833
4834         return 0;
4835 }
4836
4837 static int
4838 i915_ring_test_irq_set(void *data, u64 val)
4839 {
4840         struct drm_device *dev = data;
4841         struct drm_i915_private *dev_priv = dev->dev_private;
4842         int ret;
4843
4844         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4845
4846         /* Lock against concurrent debugfs callers */
4847         ret = mutex_lock_interruptible(&dev->struct_mutex);
4848         if (ret)
4849                 return ret;
4850
4851         dev_priv->gpu_error.test_irq_rings = val;
4852         mutex_unlock(&dev->struct_mutex);
4853
4854         return 0;
4855 }
4856
4857 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4858                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4859                         "0x%08llx\n");
4860
4861 #define DROP_UNBOUND 0x1
4862 #define DROP_BOUND 0x2
4863 #define DROP_RETIRE 0x4
4864 #define DROP_ACTIVE 0x8
4865 #define DROP_ALL (DROP_UNBOUND | \
4866                   DROP_BOUND | \
4867                   DROP_RETIRE | \
4868                   DROP_ACTIVE)
4869 static int
4870 i915_drop_caches_get(void *data, u64 *val)
4871 {
4872         *val = DROP_ALL;
4873
4874         return 0;
4875 }
4876
4877 static int
4878 i915_drop_caches_set(void *data, u64 val)
4879 {
4880         struct drm_device *dev = data;
4881         struct drm_i915_private *dev_priv = dev->dev_private;
4882         int ret;
4883
4884         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4885
4886         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4887          * on ioctls on -EAGAIN. */
4888         ret = mutex_lock_interruptible(&dev->struct_mutex);
4889         if (ret)
4890                 return ret;
4891
4892         if (val & DROP_ACTIVE) {
4893                 ret = i915_gpu_idle(dev);
4894                 if (ret)
4895                         goto unlock;
4896         }
4897
4898         if (val & (DROP_RETIRE | DROP_ACTIVE))
4899                 i915_gem_retire_requests(dev);
4900
4901         if (val & DROP_BOUND)
4902                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4903
4904         if (val & DROP_UNBOUND)
4905                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4906
4907 unlock:
4908         mutex_unlock(&dev->struct_mutex);
4909
4910         return ret;
4911 }
4912
4913 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4914                         i915_drop_caches_get, i915_drop_caches_set,
4915                         "0x%08llx\n");
4916
4917 static int
4918 i915_max_freq_get(void *data, u64 *val)
4919 {
4920         struct drm_device *dev = data;
4921         struct drm_i915_private *dev_priv = dev->dev_private;
4922         int ret;
4923
4924         if (INTEL_INFO(dev)->gen < 6)
4925                 return -ENODEV;
4926
4927         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4928
4929         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4930         if (ret)
4931                 return ret;
4932
4933         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4934         mutex_unlock(&dev_priv->rps.hw_lock);
4935
4936         return 0;
4937 }
4938
4939 static int
4940 i915_max_freq_set(void *data, u64 val)
4941 {
4942         struct drm_device *dev = data;
4943         struct drm_i915_private *dev_priv = dev->dev_private;
4944         u32 hw_max, hw_min;
4945         int ret;
4946
4947         if (INTEL_INFO(dev)->gen < 6)
4948                 return -ENODEV;
4949
4950         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4951
4952         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4953
4954         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4955         if (ret)
4956                 return ret;
4957
4958         /*
4959          * Turbo will still be enabled, but won't go above the set value.
4960          */
4961         val = intel_freq_opcode(dev_priv, val);
4962
4963         hw_max = dev_priv->rps.max_freq;
4964         hw_min = dev_priv->rps.min_freq;
4965
4966         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4967                 mutex_unlock(&dev_priv->rps.hw_lock);
4968                 return -EINVAL;
4969         }
4970
4971         dev_priv->rps.max_freq_softlimit = val;
4972
4973         intel_set_rps(dev, val);
4974
4975         mutex_unlock(&dev_priv->rps.hw_lock);
4976
4977         return 0;
4978 }
4979
4980 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4981                         i915_max_freq_get, i915_max_freq_set,
4982                         "%llu\n");
4983
4984 static int
4985 i915_min_freq_get(void *data, u64 *val)
4986 {
4987         struct drm_device *dev = data;
4988         struct drm_i915_private *dev_priv = dev->dev_private;
4989         int ret;
4990
4991         if (INTEL_INFO(dev)->gen < 6)
4992                 return -ENODEV;
4993
4994         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4995
4996         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4997         if (ret)
4998                 return ret;
4999
5000         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
5001         mutex_unlock(&dev_priv->rps.hw_lock);
5002
5003         return 0;
5004 }
5005
5006 static int
5007 i915_min_freq_set(void *data, u64 val)
5008 {
5009         struct drm_device *dev = data;
5010         struct drm_i915_private *dev_priv = dev->dev_private;
5011         u32 hw_max, hw_min;
5012         int ret;
5013
5014         if (INTEL_INFO(dev)->gen < 6)
5015                 return -ENODEV;
5016
5017         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5018
5019         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5020
5021         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5022         if (ret)
5023                 return ret;
5024
5025         /*
5026          * Turbo will still be enabled, but won't go below the set value.
5027          */
5028         val = intel_freq_opcode(dev_priv, val);
5029
5030         hw_max = dev_priv->rps.max_freq;
5031         hw_min = dev_priv->rps.min_freq;
5032
5033         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5034                 mutex_unlock(&dev_priv->rps.hw_lock);
5035                 return -EINVAL;
5036         }
5037
5038         dev_priv->rps.min_freq_softlimit = val;
5039
5040         intel_set_rps(dev, val);
5041
5042         mutex_unlock(&dev_priv->rps.hw_lock);
5043
5044         return 0;
5045 }
5046
5047 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5048                         i915_min_freq_get, i915_min_freq_set,
5049                         "%llu\n");
5050
5051 static int
5052 i915_cache_sharing_get(void *data, u64 *val)
5053 {
5054         struct drm_device *dev = data;
5055         struct drm_i915_private *dev_priv = dev->dev_private;
5056         u32 snpcr;
5057         int ret;
5058
5059         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5060                 return -ENODEV;
5061
5062         ret = mutex_lock_interruptible(&dev->struct_mutex);
5063         if (ret)
5064                 return ret;
5065         intel_runtime_pm_get(dev_priv);
5066
5067         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5068
5069         intel_runtime_pm_put(dev_priv);
5070         mutex_unlock(&dev_priv->dev->struct_mutex);
5071
5072         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5073
5074         return 0;
5075 }
5076
5077 static int
5078 i915_cache_sharing_set(void *data, u64 val)
5079 {
5080         struct drm_device *dev = data;
5081         struct drm_i915_private *dev_priv = dev->dev_private;
5082         u32 snpcr;
5083
5084         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5085                 return -ENODEV;
5086
5087         if (val > 3)
5088                 return -EINVAL;
5089
5090         intel_runtime_pm_get(dev_priv);
5091         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5092
5093         /* Update the cache sharing policy here as well */
5094         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5095         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5096         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5097         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5098
5099         intel_runtime_pm_put(dev_priv);
5100         return 0;
5101 }
5102
5103 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5104                         i915_cache_sharing_get, i915_cache_sharing_set,
5105                         "%llu\n");
5106
5107 struct sseu_dev_status {
5108         unsigned int slice_total;
5109         unsigned int subslice_total;
5110         unsigned int subslice_per_slice;
5111         unsigned int eu_total;
5112         unsigned int eu_per_subslice;
5113 };
5114
5115 static void cherryview_sseu_device_status(struct drm_device *dev,
5116                                           struct sseu_dev_status *stat)
5117 {
5118         struct drm_i915_private *dev_priv = dev->dev_private;
5119         int ss_max = 2;
5120         int ss;
5121         u32 sig1[ss_max], sig2[ss_max];
5122
5123         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5124         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5125         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5126         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5127
5128         for (ss = 0; ss < ss_max; ss++) {
5129                 unsigned int eu_cnt;
5130
5131                 if (sig1[ss] & CHV_SS_PG_ENABLE)
5132                         /* skip disabled subslice */
5133                         continue;
5134
5135                 stat->slice_total = 1;
5136                 stat->subslice_per_slice++;
5137                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5138                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5139                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5140                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5141                 stat->eu_total += eu_cnt;
5142                 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5143         }
5144         stat->subslice_total = stat->subslice_per_slice;
5145 }
5146
5147 static void gen9_sseu_device_status(struct drm_device *dev,
5148                                     struct sseu_dev_status *stat)
5149 {
5150         struct drm_i915_private *dev_priv = dev->dev_private;
5151         int s_max = 3, ss_max = 4;
5152         int s, ss;
5153         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5154
5155         /* BXT has a single slice and at most 3 subslices. */
5156         if (IS_BROXTON(dev)) {
5157                 s_max = 1;
5158                 ss_max = 3;
5159         }
5160
5161         for (s = 0; s < s_max; s++) {
5162                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5163                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5164                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5165         }
5166
5167         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5168                      GEN9_PGCTL_SSA_EU19_ACK |
5169                      GEN9_PGCTL_SSA_EU210_ACK |
5170                      GEN9_PGCTL_SSA_EU311_ACK;
5171         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5172                      GEN9_PGCTL_SSB_EU19_ACK |
5173                      GEN9_PGCTL_SSB_EU210_ACK |
5174                      GEN9_PGCTL_SSB_EU311_ACK;
5175
5176         for (s = 0; s < s_max; s++) {
5177                 unsigned int ss_cnt = 0;
5178
5179                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5180                         /* skip disabled slice */
5181                         continue;
5182
5183                 stat->slice_total++;
5184
5185                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5186                         ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5187
5188                 for (ss = 0; ss < ss_max; ss++) {
5189                         unsigned int eu_cnt;
5190
5191                         if (IS_BROXTON(dev) &&
5192                             !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5193                                 /* skip disabled subslice */
5194                                 continue;
5195
5196                         if (IS_BROXTON(dev))
5197                                 ss_cnt++;
5198
5199                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5200                                                eu_mask[ss%2]);
5201                         stat->eu_total += eu_cnt;
5202                         stat->eu_per_subslice = max(stat->eu_per_subslice,
5203                                                     eu_cnt);
5204                 }
5205
5206                 stat->subslice_total += ss_cnt;
5207                 stat->subslice_per_slice = max(stat->subslice_per_slice,
5208                                                ss_cnt);
5209         }
5210 }
5211
5212 static void broadwell_sseu_device_status(struct drm_device *dev,
5213                                          struct sseu_dev_status *stat)
5214 {
5215         struct drm_i915_private *dev_priv = dev->dev_private;
5216         int s;
5217         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5218
5219         stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5220
5221         if (stat->slice_total) {
5222                 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5223                 stat->subslice_total = stat->slice_total *
5224                                        stat->subslice_per_slice;
5225                 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5226                 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5227
5228                 /* subtract fused off EU(s) from enabled slice(s) */
5229                 for (s = 0; s < stat->slice_total; s++) {
5230                         u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5231
5232                         stat->eu_total -= hweight8(subslice_7eu);
5233                 }
5234         }
5235 }
5236
5237 static int i915_sseu_status(struct seq_file *m, void *unused)
5238 {
5239         struct drm_info_node *node = (struct drm_info_node *) m->private;
5240         struct drm_device *dev = node->minor->dev;
5241         struct sseu_dev_status stat;
5242
5243         if (INTEL_INFO(dev)->gen < 8)
5244                 return -ENODEV;
5245
5246         seq_puts(m, "SSEU Device Info\n");
5247         seq_printf(m, "  Available Slice Total: %u\n",
5248                    INTEL_INFO(dev)->slice_total);
5249         seq_printf(m, "  Available Subslice Total: %u\n",
5250                    INTEL_INFO(dev)->subslice_total);
5251         seq_printf(m, "  Available Subslice Per Slice: %u\n",
5252                    INTEL_INFO(dev)->subslice_per_slice);
5253         seq_printf(m, "  Available EU Total: %u\n",
5254                    INTEL_INFO(dev)->eu_total);
5255         seq_printf(m, "  Available EU Per Subslice: %u\n",
5256                    INTEL_INFO(dev)->eu_per_subslice);
5257         seq_printf(m, "  Has Slice Power Gating: %s\n",
5258                    yesno(INTEL_INFO(dev)->has_slice_pg));
5259         seq_printf(m, "  Has Subslice Power Gating: %s\n",
5260                    yesno(INTEL_INFO(dev)->has_subslice_pg));
5261         seq_printf(m, "  Has EU Power Gating: %s\n",
5262                    yesno(INTEL_INFO(dev)->has_eu_pg));
5263
5264         seq_puts(m, "SSEU Device Status\n");
5265         memset(&stat, 0, sizeof(stat));
5266         if (IS_CHERRYVIEW(dev)) {
5267                 cherryview_sseu_device_status(dev, &stat);
5268         } else if (IS_BROADWELL(dev)) {
5269                 broadwell_sseu_device_status(dev, &stat);
5270         } else if (INTEL_INFO(dev)->gen >= 9) {
5271                 gen9_sseu_device_status(dev, &stat);
5272         }
5273         seq_printf(m, "  Enabled Slice Total: %u\n",
5274                    stat.slice_total);
5275         seq_printf(m, "  Enabled Subslice Total: %u\n",
5276                    stat.subslice_total);
5277         seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5278                    stat.subslice_per_slice);
5279         seq_printf(m, "  Enabled EU Total: %u\n",
5280                    stat.eu_total);
5281         seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5282                    stat.eu_per_subslice);
5283
5284         return 0;
5285 }
5286
5287 static int i915_forcewake_open(struct inode *inode, struct file *file)
5288 {
5289         struct drm_device *dev = inode->i_private;
5290         struct drm_i915_private *dev_priv = dev->dev_private;
5291
5292         if (INTEL_INFO(dev)->gen < 6)
5293                 return 0;
5294
5295         intel_runtime_pm_get(dev_priv);
5296         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5297
5298         return 0;
5299 }
5300
5301 static int i915_forcewake_release(struct inode *inode, struct file *file)
5302 {
5303         struct drm_device *dev = inode->i_private;
5304         struct drm_i915_private *dev_priv = dev->dev_private;
5305
5306         if (INTEL_INFO(dev)->gen < 6)
5307                 return 0;
5308
5309         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5310         intel_runtime_pm_put(dev_priv);
5311
5312         return 0;
5313 }
5314
5315 static const struct file_operations i915_forcewake_fops = {
5316         .owner = THIS_MODULE,
5317         .open = i915_forcewake_open,
5318         .release = i915_forcewake_release,
5319 };
5320
5321 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5322 {
5323         struct drm_device *dev = minor->dev;
5324         struct dentry *ent;
5325
5326         ent = debugfs_create_file("i915_forcewake_user",
5327                                   S_IRUSR,
5328                                   root, dev,
5329                                   &i915_forcewake_fops);
5330         if (!ent)
5331                 return -ENOMEM;
5332
5333         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5334 }
5335
5336 static int i915_debugfs_create(struct dentry *root,
5337                                struct drm_minor *minor,
5338                                const char *name,
5339                                const struct file_operations *fops)
5340 {
5341         struct drm_device *dev = minor->dev;
5342         struct dentry *ent;
5343
5344         ent = debugfs_create_file(name,
5345                                   S_IRUGO | S_IWUSR,
5346                                   root, dev,
5347                                   fops);
5348         if (!ent)
5349                 return -ENOMEM;
5350
5351         return drm_add_fake_info_node(minor, ent, fops);
5352 }
5353
5354 static const struct drm_info_list i915_debugfs_list[] = {
5355         {"i915_capabilities", i915_capabilities, 0},
5356         {"i915_gem_objects", i915_gem_object_info, 0},
5357         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5358         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5359         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5360         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5361         {"i915_gem_stolen", i915_gem_stolen_list_info },
5362         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5363         {"i915_gem_request", i915_gem_request_info, 0},
5364         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5365         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5366         {"i915_gem_interrupt", i915_interrupt_info, 0},
5367         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5368         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5369         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5370         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5371         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5372         {"i915_guc_info", i915_guc_info, 0},
5373         {"i915_guc_load_status", i915_guc_load_status_info, 0},
5374         {"i915_guc_log_dump", i915_guc_log_dump, 0},
5375         {"i915_frequency_info", i915_frequency_info, 0},
5376         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5377         {"i915_drpc_info", i915_drpc_info, 0},
5378         {"i915_emon_status", i915_emon_status, 0},
5379         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5380         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5381         {"i915_fbc_status", i915_fbc_status, 0},
5382         {"i915_ips_status", i915_ips_status, 0},
5383         {"i915_sr_status", i915_sr_status, 0},
5384         {"i915_opregion", i915_opregion, 0},
5385         {"i915_vbt", i915_vbt, 0},
5386         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5387         {"i915_context_status", i915_context_status, 0},
5388         {"i915_dump_lrc", i915_dump_lrc, 0},
5389         {"i915_execlists", i915_execlists, 0},
5390         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5391         {"i915_swizzle_info", i915_swizzle_info, 0},
5392         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5393         {"i915_llc", i915_llc, 0},
5394         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5395         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5396         {"i915_energy_uJ", i915_energy_uJ, 0},
5397         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5398         {"i915_power_domain_info", i915_power_domain_info, 0},
5399         {"i915_dmc_info", i915_dmc_info, 0},
5400         {"i915_display_info", i915_display_info, 0},
5401         {"i915_semaphore_status", i915_semaphore_status, 0},
5402         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5403         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5404         {"i915_wa_registers", i915_wa_registers, 0},
5405         {"i915_ddb_info", i915_ddb_info, 0},
5406         {"i915_sseu_status", i915_sseu_status, 0},
5407         {"i915_drrs_status", i915_drrs_status, 0},
5408         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5409 };
5410 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5411
5412 static const struct i915_debugfs_files {
5413         const char *name;
5414         const struct file_operations *fops;
5415 } i915_debugfs_files[] = {
5416         {"i915_wedged", &i915_wedged_fops},
5417         {"i915_max_freq", &i915_max_freq_fops},
5418         {"i915_min_freq", &i915_min_freq_fops},
5419         {"i915_cache_sharing", &i915_cache_sharing_fops},
5420         {"i915_ring_stop", &i915_ring_stop_fops},
5421         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5422         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5423         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5424         {"i915_error_state", &i915_error_state_fops},
5425         {"i915_next_seqno", &i915_next_seqno_fops},
5426         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5427         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5428         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5429         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5430         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5431         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5432         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5433         {"i915_dp_test_active", &i915_displayport_test_active_fops}
5434 };
5435
5436 void intel_display_crc_init(struct drm_device *dev)
5437 {
5438         struct drm_i915_private *dev_priv = dev->dev_private;
5439         enum pipe pipe;
5440
5441         for_each_pipe(dev_priv, pipe) {
5442                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5443
5444                 pipe_crc->opened = false;
5445                 spin_lock_init(&pipe_crc->lock);
5446                 init_waitqueue_head(&pipe_crc->wq);
5447         }
5448 }
5449
5450 int i915_debugfs_init(struct drm_minor *minor)
5451 {
5452         int ret, i;
5453
5454         ret = i915_forcewake_create(minor->debugfs_root, minor);
5455         if (ret)
5456                 return ret;
5457
5458         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5459                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5460                 if (ret)
5461                         return ret;
5462         }
5463
5464         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5465                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5466                                           i915_debugfs_files[i].name,
5467                                           i915_debugfs_files[i].fops);
5468                 if (ret)
5469                         return ret;
5470         }
5471
5472         return drm_debugfs_create_files(i915_debugfs_list,
5473                                         I915_DEBUGFS_ENTRIES,
5474                                         minor->debugfs_root, minor);
5475 }
5476
5477 void i915_debugfs_cleanup(struct drm_minor *minor)
5478 {
5479         int i;
5480
5481         drm_debugfs_remove_files(i915_debugfs_list,
5482                                  I915_DEBUGFS_ENTRIES, minor);
5483
5484         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5485                                  1, minor);
5486
5487         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5488                 struct drm_info_list *info_list =
5489                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5490
5491                 drm_debugfs_remove_files(info_list, 1, minor);
5492         }
5493
5494         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5495                 struct drm_info_list *info_list =
5496                         (struct drm_info_list *) i915_debugfs_files[i].fops;
5497
5498                 drm_debugfs_remove_files(info_list, 1, minor);
5499         }
5500 }
5501
5502 struct dpcd_block {
5503         /* DPCD dump start address. */
5504         unsigned int offset;
5505         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5506         unsigned int end;
5507         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5508         size_t size;
5509         /* Only valid for eDP. */
5510         bool edp;
5511 };
5512
5513 static const struct dpcd_block i915_dpcd_debug[] = {
5514         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5515         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5516         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5517         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5518         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5519         { .offset = DP_SET_POWER },
5520         { .offset = DP_EDP_DPCD_REV },
5521         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5522         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5523         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5524 };
5525
5526 static int i915_dpcd_show(struct seq_file *m, void *data)
5527 {
5528         struct drm_connector *connector = m->private;
5529         struct intel_dp *intel_dp =
5530                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5531         uint8_t buf[16];
5532         ssize_t err;
5533         int i;
5534
5535         if (connector->status != connector_status_connected)
5536                 return -ENODEV;
5537
5538         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5539                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5540                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5541
5542                 if (b->edp &&
5543                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5544                         continue;
5545
5546                 /* low tech for now */
5547                 if (WARN_ON(size > sizeof(buf)))
5548                         continue;
5549
5550                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5551                 if (err <= 0) {
5552                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5553                                   size, b->offset, err);
5554                         continue;
5555                 }
5556
5557                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5558         }
5559
5560         return 0;
5561 }
5562
5563 static int i915_dpcd_open(struct inode *inode, struct file *file)
5564 {
5565         return single_open(file, i915_dpcd_show, inode->i_private);
5566 }
5567
5568 static const struct file_operations i915_dpcd_fops = {
5569         .owner = THIS_MODULE,
5570         .open = i915_dpcd_open,
5571         .read = seq_read,
5572         .llseek = seq_lseek,
5573         .release = single_release,
5574 };
5575
5576 /**
5577  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5578  * @connector: pointer to a registered drm_connector
5579  *
5580  * Cleanup will be done by drm_connector_unregister() through a call to
5581  * drm_debugfs_connector_remove().
5582  *
5583  * Returns 0 on success, negative error codes on error.
5584  */
5585 int i915_debugfs_connector_add(struct drm_connector *connector)
5586 {
5587         struct dentry *root = connector->debugfs_entry;
5588
5589         /* The connector must have been registered beforehands. */
5590         if (!root)
5591                 return -ENODEV;
5592
5593         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5594             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5595                 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5596                                     &i915_dpcd_fops);
5597
5598         return 0;
5599 }