powerpc/mm: Move register_process_table() out of ppc_md
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53                        struct dentry *ent,
54                        const void *key)
55 {
56         struct drm_info_node *node;
57
58         node = kmalloc(sizeof(*node), GFP_KERNEL);
59         if (node == NULL) {
60                 debugfs_remove(ent);
61                 return -ENOMEM;
62         }
63
64         node->minor = minor;
65         node->dent = ent;
66         node->info_ent = (void *) key;
67
68         mutex_lock(&minor->debugfs_lock);
69         list_add(&node->list, &minor->debugfs_list);
70         mutex_unlock(&minor->debugfs_lock);
71
72         return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77         struct drm_info_node *node = m->private;
78         struct drm_device *dev = node->minor->dev;
79         const struct intel_device_info *info = INTEL_INFO(dev);
80
81         seq_printf(m, "gen: %d\n", info->gen);
82         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89         return 0;
90 }
91
92 static const char get_active_flag(struct drm_i915_gem_object *obj)
93 {
94         return obj->active ? '*' : ' ';
95 }
96
97 static const char get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         return obj->pin_display ? 'p' : ' ';
100 }
101
102 static const char get_tiling_flag(struct drm_i915_gem_object *obj)
103 {
104         switch (obj->tiling_mode) {
105         default:
106         case I915_TILING_NONE: return ' ';
107         case I915_TILING_X: return 'X';
108         case I915_TILING_Y: return 'Y';
109         }
110 }
111
112 static inline const char get_global_flag(struct drm_i915_gem_object *obj)
113 {
114         return i915_gem_obj_to_ggtt(obj) ? 'g' : ' ';
115 }
116
117 static inline const char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
118 {
119         return obj->mapping ? 'M' : ' ';
120 }
121
122 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
123 {
124         u64 size = 0;
125         struct i915_vma *vma;
126
127         list_for_each_entry(vma, &obj->vma_list, obj_link) {
128                 if (vma->is_ggtt && drm_mm_node_allocated(&vma->node))
129                         size += vma->node.size;
130         }
131
132         return size;
133 }
134
135 static void
136 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
137 {
138         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
139         struct intel_engine_cs *engine;
140         struct i915_vma *vma;
141         int pin_count = 0;
142         enum intel_engine_id id;
143
144         lockdep_assert_held(&obj->base.dev->struct_mutex);
145
146         seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
147                    &obj->base,
148                    get_active_flag(obj),
149                    get_pin_flag(obj),
150                    get_tiling_flag(obj),
151                    get_global_flag(obj),
152                    get_pin_mapped_flag(obj),
153                    obj->base.size / 1024,
154                    obj->base.read_domains,
155                    obj->base.write_domain);
156         for_each_engine_id(engine, dev_priv, id)
157                 seq_printf(m, "%x ",
158                                 i915_gem_request_get_seqno(obj->last_read_req[id]));
159         seq_printf(m, "] %x %x%s%s%s",
160                    i915_gem_request_get_seqno(obj->last_write_req),
161                    i915_gem_request_get_seqno(obj->last_fenced_req),
162                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
163                    obj->dirty ? " dirty" : "",
164                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
165         if (obj->base.name)
166                 seq_printf(m, " (name: %d)", obj->base.name);
167         list_for_each_entry(vma, &obj->vma_list, obj_link) {
168                 if (vma->pin_count > 0)
169                         pin_count++;
170         }
171         seq_printf(m, " (pinned x %d)", pin_count);
172         if (obj->pin_display)
173                 seq_printf(m, " (display)");
174         if (obj->fence_reg != I915_FENCE_REG_NONE)
175                 seq_printf(m, " (fence: %d)", obj->fence_reg);
176         list_for_each_entry(vma, &obj->vma_list, obj_link) {
177                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
178                            vma->is_ggtt ? "g" : "pp",
179                            vma->node.start, vma->node.size);
180                 if (vma->is_ggtt)
181                         seq_printf(m, ", type: %u", vma->ggtt_view.type);
182                 seq_puts(m, ")");
183         }
184         if (obj->stolen)
185                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
186         if (obj->pin_display || obj->fault_mappable) {
187                 char s[3], *t = s;
188                 if (obj->pin_display)
189                         *t++ = 'p';
190                 if (obj->fault_mappable)
191                         *t++ = 'f';
192                 *t = '\0';
193                 seq_printf(m, " (%s mappable)", s);
194         }
195         if (obj->last_write_req != NULL)
196                 seq_printf(m, " (%s)",
197                            i915_gem_request_get_engine(obj->last_write_req)->name);
198         if (obj->frontbuffer_bits)
199                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
200 }
201
202 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
203 {
204         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
205         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
206         seq_putc(m, ' ');
207 }
208
209 static int i915_gem_object_list_info(struct seq_file *m, void *data)
210 {
211         struct drm_info_node *node = m->private;
212         uintptr_t list = (uintptr_t) node->info_ent->data;
213         struct list_head *head;
214         struct drm_device *dev = node->minor->dev;
215         struct drm_i915_private *dev_priv = to_i915(dev);
216         struct i915_ggtt *ggtt = &dev_priv->ggtt;
217         struct i915_vma *vma;
218         u64 total_obj_size, total_gtt_size;
219         int count, ret;
220
221         ret = mutex_lock_interruptible(&dev->struct_mutex);
222         if (ret)
223                 return ret;
224
225         /* FIXME: the user of this interface might want more than just GGTT */
226         switch (list) {
227         case ACTIVE_LIST:
228                 seq_puts(m, "Active:\n");
229                 head = &ggtt->base.active_list;
230                 break;
231         case INACTIVE_LIST:
232                 seq_puts(m, "Inactive:\n");
233                 head = &ggtt->base.inactive_list;
234                 break;
235         default:
236                 mutex_unlock(&dev->struct_mutex);
237                 return -EINVAL;
238         }
239
240         total_obj_size = total_gtt_size = count = 0;
241         list_for_each_entry(vma, head, vm_link) {
242                 seq_printf(m, "   ");
243                 describe_obj(m, vma->obj);
244                 seq_printf(m, "\n");
245                 total_obj_size += vma->obj->base.size;
246                 total_gtt_size += vma->node.size;
247                 count++;
248         }
249         mutex_unlock(&dev->struct_mutex);
250
251         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
252                    count, total_obj_size, total_gtt_size);
253         return 0;
254 }
255
256 static int obj_rank_by_stolen(void *priv,
257                               struct list_head *A, struct list_head *B)
258 {
259         struct drm_i915_gem_object *a =
260                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
261         struct drm_i915_gem_object *b =
262                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
263
264         if (a->stolen->start < b->stolen->start)
265                 return -1;
266         if (a->stolen->start > b->stolen->start)
267                 return 1;
268         return 0;
269 }
270
271 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
272 {
273         struct drm_info_node *node = m->private;
274         struct drm_device *dev = node->minor->dev;
275         struct drm_i915_private *dev_priv = dev->dev_private;
276         struct drm_i915_gem_object *obj;
277         u64 total_obj_size, total_gtt_size;
278         LIST_HEAD(stolen);
279         int count, ret;
280
281         ret = mutex_lock_interruptible(&dev->struct_mutex);
282         if (ret)
283                 return ret;
284
285         total_obj_size = total_gtt_size = count = 0;
286         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
287                 if (obj->stolen == NULL)
288                         continue;
289
290                 list_add(&obj->obj_exec_link, &stolen);
291
292                 total_obj_size += obj->base.size;
293                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
294                 count++;
295         }
296         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
297                 if (obj->stolen == NULL)
298                         continue;
299
300                 list_add(&obj->obj_exec_link, &stolen);
301
302                 total_obj_size += obj->base.size;
303                 count++;
304         }
305         list_sort(NULL, &stolen, obj_rank_by_stolen);
306         seq_puts(m, "Stolen:\n");
307         while (!list_empty(&stolen)) {
308                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
309                 seq_puts(m, "   ");
310                 describe_obj(m, obj);
311                 seq_putc(m, '\n');
312                 list_del_init(&obj->obj_exec_link);
313         }
314         mutex_unlock(&dev->struct_mutex);
315
316         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
317                    count, total_obj_size, total_gtt_size);
318         return 0;
319 }
320
321 #define count_objects(list, member) do { \
322         list_for_each_entry(obj, list, member) { \
323                 size += i915_gem_obj_total_ggtt_size(obj); \
324                 ++count; \
325                 if (obj->map_and_fenceable) { \
326                         mappable_size += i915_gem_obj_ggtt_size(obj); \
327                         ++mappable_count; \
328                 } \
329         } \
330 } while (0)
331
332 struct file_stats {
333         struct drm_i915_file_private *file_priv;
334         unsigned long count;
335         u64 total, unbound;
336         u64 global, shared;
337         u64 active, inactive;
338 };
339
340 static int per_file_stats(int id, void *ptr, void *data)
341 {
342         struct drm_i915_gem_object *obj = ptr;
343         struct file_stats *stats = data;
344         struct i915_vma *vma;
345
346         stats->count++;
347         stats->total += obj->base.size;
348
349         if (obj->base.name || obj->base.dma_buf)
350                 stats->shared += obj->base.size;
351
352         if (USES_FULL_PPGTT(obj->base.dev)) {
353                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
354                         struct i915_hw_ppgtt *ppgtt;
355
356                         if (!drm_mm_node_allocated(&vma->node))
357                                 continue;
358
359                         if (vma->is_ggtt) {
360                                 stats->global += obj->base.size;
361                                 continue;
362                         }
363
364                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
365                         if (ppgtt->file_priv != stats->file_priv)
366                                 continue;
367
368                         if (obj->active) /* XXX per-vma statistic */
369                                 stats->active += obj->base.size;
370                         else
371                                 stats->inactive += obj->base.size;
372
373                         return 0;
374                 }
375         } else {
376                 if (i915_gem_obj_ggtt_bound(obj)) {
377                         stats->global += obj->base.size;
378                         if (obj->active)
379                                 stats->active += obj->base.size;
380                         else
381                                 stats->inactive += obj->base.size;
382                         return 0;
383                 }
384         }
385
386         if (!list_empty(&obj->global_list))
387                 stats->unbound += obj->base.size;
388
389         return 0;
390 }
391
392 #define print_file_stats(m, name, stats) do { \
393         if (stats.count) \
394                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
395                            name, \
396                            stats.count, \
397                            stats.total, \
398                            stats.active, \
399                            stats.inactive, \
400                            stats.global, \
401                            stats.shared, \
402                            stats.unbound); \
403 } while (0)
404
405 static void print_batch_pool_stats(struct seq_file *m,
406                                    struct drm_i915_private *dev_priv)
407 {
408         struct drm_i915_gem_object *obj;
409         struct file_stats stats;
410         struct intel_engine_cs *engine;
411         int j;
412
413         memset(&stats, 0, sizeof(stats));
414
415         for_each_engine(engine, dev_priv) {
416                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
417                         list_for_each_entry(obj,
418                                             &engine->batch_pool.cache_list[j],
419                                             batch_pool_link)
420                                 per_file_stats(0, obj, &stats);
421                 }
422         }
423
424         print_file_stats(m, "[k]batch pool", stats);
425 }
426
427 #define count_vmas(list, member) do { \
428         list_for_each_entry(vma, list, member) { \
429                 size += i915_gem_obj_total_ggtt_size(vma->obj); \
430                 ++count; \
431                 if (vma->obj->map_and_fenceable) { \
432                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
433                         ++mappable_count; \
434                 } \
435         } \
436 } while (0)
437
438 static int i915_gem_object_info(struct seq_file *m, void* data)
439 {
440         struct drm_info_node *node = m->private;
441         struct drm_device *dev = node->minor->dev;
442         struct drm_i915_private *dev_priv = to_i915(dev);
443         struct i915_ggtt *ggtt = &dev_priv->ggtt;
444         u32 count, mappable_count, purgeable_count;
445         u64 size, mappable_size, purgeable_size;
446         unsigned long pin_mapped_count = 0, pin_mapped_purgeable_count = 0;
447         u64 pin_mapped_size = 0, pin_mapped_purgeable_size = 0;
448         struct drm_i915_gem_object *obj;
449         struct drm_file *file;
450         struct i915_vma *vma;
451         int ret;
452
453         ret = mutex_lock_interruptible(&dev->struct_mutex);
454         if (ret)
455                 return ret;
456
457         seq_printf(m, "%u objects, %zu bytes\n",
458                    dev_priv->mm.object_count,
459                    dev_priv->mm.object_memory);
460
461         size = count = mappable_size = mappable_count = 0;
462         count_objects(&dev_priv->mm.bound_list, global_list);
463         seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
464                    count, mappable_count, size, mappable_size);
465
466         size = count = mappable_size = mappable_count = 0;
467         count_vmas(&ggtt->base.active_list, vm_link);
468         seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
469                    count, mappable_count, size, mappable_size);
470
471         size = count = mappable_size = mappable_count = 0;
472         count_vmas(&ggtt->base.inactive_list, vm_link);
473         seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
474                    count, mappable_count, size, mappable_size);
475
476         size = count = purgeable_size = purgeable_count = 0;
477         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
478                 size += obj->base.size, ++count;
479                 if (obj->madv == I915_MADV_DONTNEED)
480                         purgeable_size += obj->base.size, ++purgeable_count;
481                 if (obj->mapping) {
482                         pin_mapped_count++;
483                         pin_mapped_size += obj->base.size;
484                         if (obj->pages_pin_count == 0) {
485                                 pin_mapped_purgeable_count++;
486                                 pin_mapped_purgeable_size += obj->base.size;
487                         }
488                 }
489         }
490         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
491
492         size = count = mappable_size = mappable_count = 0;
493         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
494                 if (obj->fault_mappable) {
495                         size += i915_gem_obj_ggtt_size(obj);
496                         ++count;
497                 }
498                 if (obj->pin_display) {
499                         mappable_size += i915_gem_obj_ggtt_size(obj);
500                         ++mappable_count;
501                 }
502                 if (obj->madv == I915_MADV_DONTNEED) {
503                         purgeable_size += obj->base.size;
504                         ++purgeable_count;
505                 }
506                 if (obj->mapping) {
507                         pin_mapped_count++;
508                         pin_mapped_size += obj->base.size;
509                         if (obj->pages_pin_count == 0) {
510                                 pin_mapped_purgeable_count++;
511                                 pin_mapped_purgeable_size += obj->base.size;
512                         }
513                 }
514         }
515         seq_printf(m, "%u purgeable objects, %llu bytes\n",
516                    purgeable_count, purgeable_size);
517         seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
518                    mappable_count, mappable_size);
519         seq_printf(m, "%u fault mappable objects, %llu bytes\n",
520                    count, size);
521         seq_printf(m,
522                    "%lu [%lu] pin mapped objects, %llu [%llu] bytes [purgeable]\n",
523                    pin_mapped_count, pin_mapped_purgeable_count,
524                    pin_mapped_size, pin_mapped_purgeable_size);
525
526         seq_printf(m, "%llu [%llu] gtt total\n",
527                    ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
528
529         seq_putc(m, '\n');
530         print_batch_pool_stats(m, dev_priv);
531
532         mutex_unlock(&dev->struct_mutex);
533
534         mutex_lock(&dev->filelist_mutex);
535         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
536                 struct file_stats stats;
537                 struct task_struct *task;
538
539                 memset(&stats, 0, sizeof(stats));
540                 stats.file_priv = file->driver_priv;
541                 spin_lock(&file->table_lock);
542                 idr_for_each(&file->object_idr, per_file_stats, &stats);
543                 spin_unlock(&file->table_lock);
544                 /*
545                  * Although we have a valid reference on file->pid, that does
546                  * not guarantee that the task_struct who called get_pid() is
547                  * still alive (e.g. get_pid(current) => fork() => exit()).
548                  * Therefore, we need to protect this ->comm access using RCU.
549                  */
550                 rcu_read_lock();
551                 task = pid_task(file->pid, PIDTYPE_PID);
552                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
553                 rcu_read_unlock();
554         }
555         mutex_unlock(&dev->filelist_mutex);
556
557         return 0;
558 }
559
560 static int i915_gem_gtt_info(struct seq_file *m, void *data)
561 {
562         struct drm_info_node *node = m->private;
563         struct drm_device *dev = node->minor->dev;
564         uintptr_t list = (uintptr_t) node->info_ent->data;
565         struct drm_i915_private *dev_priv = dev->dev_private;
566         struct drm_i915_gem_object *obj;
567         u64 total_obj_size, total_gtt_size;
568         int count, ret;
569
570         ret = mutex_lock_interruptible(&dev->struct_mutex);
571         if (ret)
572                 return ret;
573
574         total_obj_size = total_gtt_size = count = 0;
575         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
576                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
577                         continue;
578
579                 seq_puts(m, "   ");
580                 describe_obj(m, obj);
581                 seq_putc(m, '\n');
582                 total_obj_size += obj->base.size;
583                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
584                 count++;
585         }
586
587         mutex_unlock(&dev->struct_mutex);
588
589         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
590                    count, total_obj_size, total_gtt_size);
591
592         return 0;
593 }
594
595 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
596 {
597         struct drm_info_node *node = m->private;
598         struct drm_device *dev = node->minor->dev;
599         struct drm_i915_private *dev_priv = dev->dev_private;
600         struct intel_crtc *crtc;
601         int ret;
602
603         ret = mutex_lock_interruptible(&dev->struct_mutex);
604         if (ret)
605                 return ret;
606
607         for_each_intel_crtc(dev, crtc) {
608                 const char pipe = pipe_name(crtc->pipe);
609                 const char plane = plane_name(crtc->plane);
610                 struct intel_unpin_work *work;
611
612                 spin_lock_irq(&dev->event_lock);
613                 work = crtc->unpin_work;
614                 if (work == NULL) {
615                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
616                                    pipe, plane);
617                 } else {
618                         u32 addr;
619
620                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
621                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
622                                            pipe, plane);
623                         } else {
624                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
625                                            pipe, plane);
626                         }
627                         if (work->flip_queued_req) {
628                                 struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
629
630                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
631                                            engine->name,
632                                            i915_gem_request_get_seqno(work->flip_queued_req),
633                                            dev_priv->next_seqno,
634                                            engine->get_seqno(engine),
635                                            i915_gem_request_completed(work->flip_queued_req, true));
636                         } else
637                                 seq_printf(m, "Flip not associated with any ring\n");
638                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
639                                    work->flip_queued_vblank,
640                                    work->flip_ready_vblank,
641                                    drm_crtc_vblank_count(&crtc->base));
642                         if (work->enable_stall_check)
643                                 seq_puts(m, "Stall check enabled, ");
644                         else
645                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
646                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
647
648                         if (INTEL_INFO(dev)->gen >= 4)
649                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
650                         else
651                                 addr = I915_READ(DSPADDR(crtc->plane));
652                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
653
654                         if (work->pending_flip_obj) {
655                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
656                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
657                         }
658                 }
659                 spin_unlock_irq(&dev->event_lock);
660         }
661
662         mutex_unlock(&dev->struct_mutex);
663
664         return 0;
665 }
666
667 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
668 {
669         struct drm_info_node *node = m->private;
670         struct drm_device *dev = node->minor->dev;
671         struct drm_i915_private *dev_priv = dev->dev_private;
672         struct drm_i915_gem_object *obj;
673         struct intel_engine_cs *engine;
674         int total = 0;
675         int ret, j;
676
677         ret = mutex_lock_interruptible(&dev->struct_mutex);
678         if (ret)
679                 return ret;
680
681         for_each_engine(engine, dev_priv) {
682                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
683                         int count;
684
685                         count = 0;
686                         list_for_each_entry(obj,
687                                             &engine->batch_pool.cache_list[j],
688                                             batch_pool_link)
689                                 count++;
690                         seq_printf(m, "%s cache[%d]: %d objects\n",
691                                    engine->name, j, count);
692
693                         list_for_each_entry(obj,
694                                             &engine->batch_pool.cache_list[j],
695                                             batch_pool_link) {
696                                 seq_puts(m, "   ");
697                                 describe_obj(m, obj);
698                                 seq_putc(m, '\n');
699                         }
700
701                         total += count;
702                 }
703         }
704
705         seq_printf(m, "total: %d\n", total);
706
707         mutex_unlock(&dev->struct_mutex);
708
709         return 0;
710 }
711
712 static int i915_gem_request_info(struct seq_file *m, void *data)
713 {
714         struct drm_info_node *node = m->private;
715         struct drm_device *dev = node->minor->dev;
716         struct drm_i915_private *dev_priv = dev->dev_private;
717         struct intel_engine_cs *engine;
718         struct drm_i915_gem_request *req;
719         int ret, any;
720
721         ret = mutex_lock_interruptible(&dev->struct_mutex);
722         if (ret)
723                 return ret;
724
725         any = 0;
726         for_each_engine(engine, dev_priv) {
727                 int count;
728
729                 count = 0;
730                 list_for_each_entry(req, &engine->request_list, list)
731                         count++;
732                 if (count == 0)
733                         continue;
734
735                 seq_printf(m, "%s requests: %d\n", engine->name, count);
736                 list_for_each_entry(req, &engine->request_list, list) {
737                         struct task_struct *task;
738
739                         rcu_read_lock();
740                         task = NULL;
741                         if (req->pid)
742                                 task = pid_task(req->pid, PIDTYPE_PID);
743                         seq_printf(m, "    %x @ %d: %s [%d]\n",
744                                    req->seqno,
745                                    (int) (jiffies - req->emitted_jiffies),
746                                    task ? task->comm : "<unknown>",
747                                    task ? task->pid : -1);
748                         rcu_read_unlock();
749                 }
750
751                 any++;
752         }
753         mutex_unlock(&dev->struct_mutex);
754
755         if (any == 0)
756                 seq_puts(m, "No requests\n");
757
758         return 0;
759 }
760
761 static void i915_ring_seqno_info(struct seq_file *m,
762                                  struct intel_engine_cs *engine)
763 {
764         seq_printf(m, "Current sequence (%s): %x\n",
765                    engine->name, engine->get_seqno(engine));
766         seq_printf(m, "Current user interrupts (%s): %x\n",
767                    engine->name, READ_ONCE(engine->user_interrupts));
768 }
769
770 static int i915_gem_seqno_info(struct seq_file *m, void *data)
771 {
772         struct drm_info_node *node = m->private;
773         struct drm_device *dev = node->minor->dev;
774         struct drm_i915_private *dev_priv = dev->dev_private;
775         struct intel_engine_cs *engine;
776         int ret;
777
778         ret = mutex_lock_interruptible(&dev->struct_mutex);
779         if (ret)
780                 return ret;
781         intel_runtime_pm_get(dev_priv);
782
783         for_each_engine(engine, dev_priv)
784                 i915_ring_seqno_info(m, engine);
785
786         intel_runtime_pm_put(dev_priv);
787         mutex_unlock(&dev->struct_mutex);
788
789         return 0;
790 }
791
792
793 static int i915_interrupt_info(struct seq_file *m, void *data)
794 {
795         struct drm_info_node *node = m->private;
796         struct drm_device *dev = node->minor->dev;
797         struct drm_i915_private *dev_priv = dev->dev_private;
798         struct intel_engine_cs *engine;
799         int ret, i, pipe;
800
801         ret = mutex_lock_interruptible(&dev->struct_mutex);
802         if (ret)
803                 return ret;
804         intel_runtime_pm_get(dev_priv);
805
806         if (IS_CHERRYVIEW(dev)) {
807                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
808                            I915_READ(GEN8_MASTER_IRQ));
809
810                 seq_printf(m, "Display IER:\t%08x\n",
811                            I915_READ(VLV_IER));
812                 seq_printf(m, "Display IIR:\t%08x\n",
813                            I915_READ(VLV_IIR));
814                 seq_printf(m, "Display IIR_RW:\t%08x\n",
815                            I915_READ(VLV_IIR_RW));
816                 seq_printf(m, "Display IMR:\t%08x\n",
817                            I915_READ(VLV_IMR));
818                 for_each_pipe(dev_priv, pipe)
819                         seq_printf(m, "Pipe %c stat:\t%08x\n",
820                                    pipe_name(pipe),
821                                    I915_READ(PIPESTAT(pipe)));
822
823                 seq_printf(m, "Port hotplug:\t%08x\n",
824                            I915_READ(PORT_HOTPLUG_EN));
825                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
826                            I915_READ(VLV_DPFLIPSTAT));
827                 seq_printf(m, "DPINVGTT:\t%08x\n",
828                            I915_READ(DPINVGTT));
829
830                 for (i = 0; i < 4; i++) {
831                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
832                                    i, I915_READ(GEN8_GT_IMR(i)));
833                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
834                                    i, I915_READ(GEN8_GT_IIR(i)));
835                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
836                                    i, I915_READ(GEN8_GT_IER(i)));
837                 }
838
839                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
840                            I915_READ(GEN8_PCU_IMR));
841                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
842                            I915_READ(GEN8_PCU_IIR));
843                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
844                            I915_READ(GEN8_PCU_IER));
845         } else if (INTEL_INFO(dev)->gen >= 8) {
846                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
847                            I915_READ(GEN8_MASTER_IRQ));
848
849                 for (i = 0; i < 4; i++) {
850                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
851                                    i, I915_READ(GEN8_GT_IMR(i)));
852                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
853                                    i, I915_READ(GEN8_GT_IIR(i)));
854                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
855                                    i, I915_READ(GEN8_GT_IER(i)));
856                 }
857
858                 for_each_pipe(dev_priv, pipe) {
859                         enum intel_display_power_domain power_domain;
860
861                         power_domain = POWER_DOMAIN_PIPE(pipe);
862                         if (!intel_display_power_get_if_enabled(dev_priv,
863                                                                 power_domain)) {
864                                 seq_printf(m, "Pipe %c power disabled\n",
865                                            pipe_name(pipe));
866                                 continue;
867                         }
868                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
869                                    pipe_name(pipe),
870                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
871                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
872                                    pipe_name(pipe),
873                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
874                         seq_printf(m, "Pipe %c IER:\t%08x\n",
875                                    pipe_name(pipe),
876                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
877
878                         intel_display_power_put(dev_priv, power_domain);
879                 }
880
881                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
882                            I915_READ(GEN8_DE_PORT_IMR));
883                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
884                            I915_READ(GEN8_DE_PORT_IIR));
885                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
886                            I915_READ(GEN8_DE_PORT_IER));
887
888                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
889                            I915_READ(GEN8_DE_MISC_IMR));
890                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
891                            I915_READ(GEN8_DE_MISC_IIR));
892                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
893                            I915_READ(GEN8_DE_MISC_IER));
894
895                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
896                            I915_READ(GEN8_PCU_IMR));
897                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
898                            I915_READ(GEN8_PCU_IIR));
899                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
900                            I915_READ(GEN8_PCU_IER));
901         } else if (IS_VALLEYVIEW(dev)) {
902                 seq_printf(m, "Display IER:\t%08x\n",
903                            I915_READ(VLV_IER));
904                 seq_printf(m, "Display IIR:\t%08x\n",
905                            I915_READ(VLV_IIR));
906                 seq_printf(m, "Display IIR_RW:\t%08x\n",
907                            I915_READ(VLV_IIR_RW));
908                 seq_printf(m, "Display IMR:\t%08x\n",
909                            I915_READ(VLV_IMR));
910                 for_each_pipe(dev_priv, pipe)
911                         seq_printf(m, "Pipe %c stat:\t%08x\n",
912                                    pipe_name(pipe),
913                                    I915_READ(PIPESTAT(pipe)));
914
915                 seq_printf(m, "Master IER:\t%08x\n",
916                            I915_READ(VLV_MASTER_IER));
917
918                 seq_printf(m, "Render IER:\t%08x\n",
919                            I915_READ(GTIER));
920                 seq_printf(m, "Render IIR:\t%08x\n",
921                            I915_READ(GTIIR));
922                 seq_printf(m, "Render IMR:\t%08x\n",
923                            I915_READ(GTIMR));
924
925                 seq_printf(m, "PM IER:\t\t%08x\n",
926                            I915_READ(GEN6_PMIER));
927                 seq_printf(m, "PM IIR:\t\t%08x\n",
928                            I915_READ(GEN6_PMIIR));
929                 seq_printf(m, "PM IMR:\t\t%08x\n",
930                            I915_READ(GEN6_PMIMR));
931
932                 seq_printf(m, "Port hotplug:\t%08x\n",
933                            I915_READ(PORT_HOTPLUG_EN));
934                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
935                            I915_READ(VLV_DPFLIPSTAT));
936                 seq_printf(m, "DPINVGTT:\t%08x\n",
937                            I915_READ(DPINVGTT));
938
939         } else if (!HAS_PCH_SPLIT(dev)) {
940                 seq_printf(m, "Interrupt enable:    %08x\n",
941                            I915_READ(IER));
942                 seq_printf(m, "Interrupt identity:  %08x\n",
943                            I915_READ(IIR));
944                 seq_printf(m, "Interrupt mask:      %08x\n",
945                            I915_READ(IMR));
946                 for_each_pipe(dev_priv, pipe)
947                         seq_printf(m, "Pipe %c stat:         %08x\n",
948                                    pipe_name(pipe),
949                                    I915_READ(PIPESTAT(pipe)));
950         } else {
951                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
952                            I915_READ(DEIER));
953                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
954                            I915_READ(DEIIR));
955                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
956                            I915_READ(DEIMR));
957                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
958                            I915_READ(SDEIER));
959                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
960                            I915_READ(SDEIIR));
961                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
962                            I915_READ(SDEIMR));
963                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
964                            I915_READ(GTIER));
965                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
966                            I915_READ(GTIIR));
967                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
968                            I915_READ(GTIMR));
969         }
970         for_each_engine(engine, dev_priv) {
971                 if (INTEL_INFO(dev)->gen >= 6) {
972                         seq_printf(m,
973                                    "Graphics Interrupt mask (%s):       %08x\n",
974                                    engine->name, I915_READ_IMR(engine));
975                 }
976                 i915_ring_seqno_info(m, engine);
977         }
978         intel_runtime_pm_put(dev_priv);
979         mutex_unlock(&dev->struct_mutex);
980
981         return 0;
982 }
983
984 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
985 {
986         struct drm_info_node *node = m->private;
987         struct drm_device *dev = node->minor->dev;
988         struct drm_i915_private *dev_priv = dev->dev_private;
989         int i, ret;
990
991         ret = mutex_lock_interruptible(&dev->struct_mutex);
992         if (ret)
993                 return ret;
994
995         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
996         for (i = 0; i < dev_priv->num_fence_regs; i++) {
997                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
998
999                 seq_printf(m, "Fence %d, pin count = %d, object = ",
1000                            i, dev_priv->fence_regs[i].pin_count);
1001                 if (obj == NULL)
1002                         seq_puts(m, "unused");
1003                 else
1004                         describe_obj(m, obj);
1005                 seq_putc(m, '\n');
1006         }
1007
1008         mutex_unlock(&dev->struct_mutex);
1009         return 0;
1010 }
1011
1012 static int i915_hws_info(struct seq_file *m, void *data)
1013 {
1014         struct drm_info_node *node = m->private;
1015         struct drm_device *dev = node->minor->dev;
1016         struct drm_i915_private *dev_priv = dev->dev_private;
1017         struct intel_engine_cs *engine;
1018         const u32 *hws;
1019         int i;
1020
1021         engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
1022         hws = engine->status_page.page_addr;
1023         if (hws == NULL)
1024                 return 0;
1025
1026         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
1027                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1028                            i * 4,
1029                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
1030         }
1031         return 0;
1032 }
1033
1034 static ssize_t
1035 i915_error_state_write(struct file *filp,
1036                        const char __user *ubuf,
1037                        size_t cnt,
1038                        loff_t *ppos)
1039 {
1040         struct i915_error_state_file_priv *error_priv = filp->private_data;
1041         struct drm_device *dev = error_priv->dev;
1042         int ret;
1043
1044         DRM_DEBUG_DRIVER("Resetting error state\n");
1045
1046         ret = mutex_lock_interruptible(&dev->struct_mutex);
1047         if (ret)
1048                 return ret;
1049
1050         i915_destroy_error_state(dev);
1051         mutex_unlock(&dev->struct_mutex);
1052
1053         return cnt;
1054 }
1055
1056 static int i915_error_state_open(struct inode *inode, struct file *file)
1057 {
1058         struct drm_device *dev = inode->i_private;
1059         struct i915_error_state_file_priv *error_priv;
1060
1061         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1062         if (!error_priv)
1063                 return -ENOMEM;
1064
1065         error_priv->dev = dev;
1066
1067         i915_error_state_get(dev, error_priv);
1068
1069         file->private_data = error_priv;
1070
1071         return 0;
1072 }
1073
1074 static int i915_error_state_release(struct inode *inode, struct file *file)
1075 {
1076         struct i915_error_state_file_priv *error_priv = file->private_data;
1077
1078         i915_error_state_put(error_priv);
1079         kfree(error_priv);
1080
1081         return 0;
1082 }
1083
1084 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1085                                      size_t count, loff_t *pos)
1086 {
1087         struct i915_error_state_file_priv *error_priv = file->private_data;
1088         struct drm_i915_error_state_buf error_str;
1089         loff_t tmp_pos = 0;
1090         ssize_t ret_count = 0;
1091         int ret;
1092
1093         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1094         if (ret)
1095                 return ret;
1096
1097         ret = i915_error_state_to_str(&error_str, error_priv);
1098         if (ret)
1099                 goto out;
1100
1101         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1102                                             error_str.buf,
1103                                             error_str.bytes);
1104
1105         if (ret_count < 0)
1106                 ret = ret_count;
1107         else
1108                 *pos = error_str.start + ret_count;
1109 out:
1110         i915_error_state_buf_release(&error_str);
1111         return ret ?: ret_count;
1112 }
1113
1114 static const struct file_operations i915_error_state_fops = {
1115         .owner = THIS_MODULE,
1116         .open = i915_error_state_open,
1117         .read = i915_error_state_read,
1118         .write = i915_error_state_write,
1119         .llseek = default_llseek,
1120         .release = i915_error_state_release,
1121 };
1122
1123 static int
1124 i915_next_seqno_get(void *data, u64 *val)
1125 {
1126         struct drm_device *dev = data;
1127         struct drm_i915_private *dev_priv = dev->dev_private;
1128         int ret;
1129
1130         ret = mutex_lock_interruptible(&dev->struct_mutex);
1131         if (ret)
1132                 return ret;
1133
1134         *val = dev_priv->next_seqno;
1135         mutex_unlock(&dev->struct_mutex);
1136
1137         return 0;
1138 }
1139
1140 static int
1141 i915_next_seqno_set(void *data, u64 val)
1142 {
1143         struct drm_device *dev = data;
1144         int ret;
1145
1146         ret = mutex_lock_interruptible(&dev->struct_mutex);
1147         if (ret)
1148                 return ret;
1149
1150         ret = i915_gem_set_seqno(dev, val);
1151         mutex_unlock(&dev->struct_mutex);
1152
1153         return ret;
1154 }
1155
1156 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1157                         i915_next_seqno_get, i915_next_seqno_set,
1158                         "0x%llx\n");
1159
1160 static int i915_frequency_info(struct seq_file *m, void *unused)
1161 {
1162         struct drm_info_node *node = m->private;
1163         struct drm_device *dev = node->minor->dev;
1164         struct drm_i915_private *dev_priv = dev->dev_private;
1165         int ret = 0;
1166
1167         intel_runtime_pm_get(dev_priv);
1168
1169         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1170
1171         if (IS_GEN5(dev)) {
1172                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1173                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1174
1175                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1176                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1177                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1178                            MEMSTAT_VID_SHIFT);
1179                 seq_printf(m, "Current P-state: %d\n",
1180                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1181         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1182                 u32 freq_sts;
1183
1184                 mutex_lock(&dev_priv->rps.hw_lock);
1185                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1186                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1187                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1188
1189                 seq_printf(m, "actual GPU freq: %d MHz\n",
1190                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1191
1192                 seq_printf(m, "current GPU freq: %d MHz\n",
1193                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1194
1195                 seq_printf(m, "max GPU freq: %d MHz\n",
1196                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1197
1198                 seq_printf(m, "min GPU freq: %d MHz\n",
1199                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1200
1201                 seq_printf(m, "idle GPU freq: %d MHz\n",
1202                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1203
1204                 seq_printf(m,
1205                            "efficient (RPe) frequency: %d MHz\n",
1206                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1207                 mutex_unlock(&dev_priv->rps.hw_lock);
1208         } else if (INTEL_INFO(dev)->gen >= 6) {
1209                 u32 rp_state_limits;
1210                 u32 gt_perf_status;
1211                 u32 rp_state_cap;
1212                 u32 rpmodectl, rpinclimit, rpdeclimit;
1213                 u32 rpstat, cagf, reqf;
1214                 u32 rpupei, rpcurup, rpprevup;
1215                 u32 rpdownei, rpcurdown, rpprevdown;
1216                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1217                 int max_freq;
1218
1219                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1220                 if (IS_BROXTON(dev)) {
1221                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1222                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1223                 } else {
1224                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1225                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1226                 }
1227
1228                 /* RPSTAT1 is in the GT power well */
1229                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1230                 if (ret)
1231                         goto out;
1232
1233                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1234
1235                 reqf = I915_READ(GEN6_RPNSWREQ);
1236                 if (IS_GEN9(dev))
1237                         reqf >>= 23;
1238                 else {
1239                         reqf &= ~GEN6_TURBO_DISABLE;
1240                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1241                                 reqf >>= 24;
1242                         else
1243                                 reqf >>= 25;
1244                 }
1245                 reqf = intel_gpu_freq(dev_priv, reqf);
1246
1247                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1248                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1249                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1250
1251                 rpstat = I915_READ(GEN6_RPSTAT1);
1252                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1253                 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1254                 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1255                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1256                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1257                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1258                 if (IS_GEN9(dev))
1259                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1260                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1261                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1262                 else
1263                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1264                 cagf = intel_gpu_freq(dev_priv, cagf);
1265
1266                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1267                 mutex_unlock(&dev->struct_mutex);
1268
1269                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1270                         pm_ier = I915_READ(GEN6_PMIER);
1271                         pm_imr = I915_READ(GEN6_PMIMR);
1272                         pm_isr = I915_READ(GEN6_PMISR);
1273                         pm_iir = I915_READ(GEN6_PMIIR);
1274                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1275                 } else {
1276                         pm_ier = I915_READ(GEN8_GT_IER(2));
1277                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1278                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1279                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1280                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1281                 }
1282                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1283                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1284                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1285                 seq_printf(m, "Render p-state ratio: %d\n",
1286                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1287                 seq_printf(m, "Render p-state VID: %d\n",
1288                            gt_perf_status & 0xff);
1289                 seq_printf(m, "Render p-state limit: %d\n",
1290                            rp_state_limits & 0xff);
1291                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1292                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1293                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1294                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1295                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1296                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1297                 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1298                            rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1299                 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1300                            rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1301                 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1302                            rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1303                 seq_printf(m, "Up threshold: %d%%\n",
1304                            dev_priv->rps.up_threshold);
1305
1306                 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1307                            rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1308                 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1309                            rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1310                 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1311                            rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1312                 seq_printf(m, "Down threshold: %d%%\n",
1313                            dev_priv->rps.down_threshold);
1314
1315                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1316                             rp_state_cap >> 16) & 0xff;
1317                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1318                              GEN9_FREQ_SCALER : 1);
1319                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1320                            intel_gpu_freq(dev_priv, max_freq));
1321
1322                 max_freq = (rp_state_cap & 0xff00) >> 8;
1323                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1324                              GEN9_FREQ_SCALER : 1);
1325                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1326                            intel_gpu_freq(dev_priv, max_freq));
1327
1328                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1329                             rp_state_cap >> 0) & 0xff;
1330                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1331                              GEN9_FREQ_SCALER : 1);
1332                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1333                            intel_gpu_freq(dev_priv, max_freq));
1334                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1335                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1336
1337                 seq_printf(m, "Current freq: %d MHz\n",
1338                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1339                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1340                 seq_printf(m, "Idle freq: %d MHz\n",
1341                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1342                 seq_printf(m, "Min freq: %d MHz\n",
1343                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1344                 seq_printf(m, "Max freq: %d MHz\n",
1345                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1346                 seq_printf(m,
1347                            "efficient (RPe) frequency: %d MHz\n",
1348                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1349         } else {
1350                 seq_puts(m, "no P-state info available\n");
1351         }
1352
1353         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1354         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1355         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1356
1357 out:
1358         intel_runtime_pm_put(dev_priv);
1359         return ret;
1360 }
1361
1362 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1363 {
1364         struct drm_info_node *node = m->private;
1365         struct drm_device *dev = node->minor->dev;
1366         struct drm_i915_private *dev_priv = dev->dev_private;
1367         struct intel_engine_cs *engine;
1368         u64 acthd[I915_NUM_ENGINES];
1369         u32 seqno[I915_NUM_ENGINES];
1370         u32 instdone[I915_NUM_INSTDONE_REG];
1371         enum intel_engine_id id;
1372         int j;
1373
1374         if (!i915.enable_hangcheck) {
1375                 seq_printf(m, "Hangcheck disabled\n");
1376                 return 0;
1377         }
1378
1379         intel_runtime_pm_get(dev_priv);
1380
1381         for_each_engine_id(engine, dev_priv, id) {
1382                 acthd[id] = intel_ring_get_active_head(engine);
1383                 seqno[id] = engine->get_seqno(engine);
1384         }
1385
1386         i915_get_extra_instdone(dev, instdone);
1387
1388         intel_runtime_pm_put(dev_priv);
1389
1390         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1391                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1392                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1393                                             jiffies));
1394         } else
1395                 seq_printf(m, "Hangcheck inactive\n");
1396
1397         for_each_engine_id(engine, dev_priv, id) {
1398                 seq_printf(m, "%s:\n", engine->name);
1399                 seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1400                            engine->hangcheck.seqno,
1401                            seqno[id],
1402                            engine->last_submitted_seqno);
1403                 seq_printf(m, "\tuser interrupts = %x [current %x]\n",
1404                            engine->hangcheck.user_interrupts,
1405                            READ_ONCE(engine->user_interrupts));
1406                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1407                            (long long)engine->hangcheck.acthd,
1408                            (long long)acthd[id]);
1409                 seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1410                 seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1411
1412                 if (engine->id == RCS) {
1413                         seq_puts(m, "\tinstdone read =");
1414
1415                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1416                                 seq_printf(m, " 0x%08x", instdone[j]);
1417
1418                         seq_puts(m, "\n\tinstdone accu =");
1419
1420                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1421                                 seq_printf(m, " 0x%08x",
1422                                            engine->hangcheck.instdone[j]);
1423
1424                         seq_puts(m, "\n");
1425                 }
1426         }
1427
1428         return 0;
1429 }
1430
1431 static int ironlake_drpc_info(struct seq_file *m)
1432 {
1433         struct drm_info_node *node = m->private;
1434         struct drm_device *dev = node->minor->dev;
1435         struct drm_i915_private *dev_priv = dev->dev_private;
1436         u32 rgvmodectl, rstdbyctl;
1437         u16 crstandvid;
1438         int ret;
1439
1440         ret = mutex_lock_interruptible(&dev->struct_mutex);
1441         if (ret)
1442                 return ret;
1443         intel_runtime_pm_get(dev_priv);
1444
1445         rgvmodectl = I915_READ(MEMMODECTL);
1446         rstdbyctl = I915_READ(RSTDBYCTL);
1447         crstandvid = I915_READ16(CRSTANDVID);
1448
1449         intel_runtime_pm_put(dev_priv);
1450         mutex_unlock(&dev->struct_mutex);
1451
1452         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1453         seq_printf(m, "Boost freq: %d\n",
1454                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1455                    MEMMODE_BOOST_FREQ_SHIFT);
1456         seq_printf(m, "HW control enabled: %s\n",
1457                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1458         seq_printf(m, "SW control enabled: %s\n",
1459                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1460         seq_printf(m, "Gated voltage change: %s\n",
1461                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1462         seq_printf(m, "Starting frequency: P%d\n",
1463                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1464         seq_printf(m, "Max P-state: P%d\n",
1465                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1466         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1467         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1468         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1469         seq_printf(m, "Render standby enabled: %s\n",
1470                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1471         seq_puts(m, "Current RS state: ");
1472         switch (rstdbyctl & RSX_STATUS_MASK) {
1473         case RSX_STATUS_ON:
1474                 seq_puts(m, "on\n");
1475                 break;
1476         case RSX_STATUS_RC1:
1477                 seq_puts(m, "RC1\n");
1478                 break;
1479         case RSX_STATUS_RC1E:
1480                 seq_puts(m, "RC1E\n");
1481                 break;
1482         case RSX_STATUS_RS1:
1483                 seq_puts(m, "RS1\n");
1484                 break;
1485         case RSX_STATUS_RS2:
1486                 seq_puts(m, "RS2 (RC6)\n");
1487                 break;
1488         case RSX_STATUS_RS3:
1489                 seq_puts(m, "RC3 (RC6+)\n");
1490                 break;
1491         default:
1492                 seq_puts(m, "unknown\n");
1493                 break;
1494         }
1495
1496         return 0;
1497 }
1498
1499 static int i915_forcewake_domains(struct seq_file *m, void *data)
1500 {
1501         struct drm_info_node *node = m->private;
1502         struct drm_device *dev = node->minor->dev;
1503         struct drm_i915_private *dev_priv = dev->dev_private;
1504         struct intel_uncore_forcewake_domain *fw_domain;
1505
1506         spin_lock_irq(&dev_priv->uncore.lock);
1507         for_each_fw_domain(fw_domain, dev_priv) {
1508                 seq_printf(m, "%s.wake_count = %u\n",
1509                            intel_uncore_forcewake_domain_to_str(fw_domain->id),
1510                            fw_domain->wake_count);
1511         }
1512         spin_unlock_irq(&dev_priv->uncore.lock);
1513
1514         return 0;
1515 }
1516
1517 static int vlv_drpc_info(struct seq_file *m)
1518 {
1519         struct drm_info_node *node = m->private;
1520         struct drm_device *dev = node->minor->dev;
1521         struct drm_i915_private *dev_priv = dev->dev_private;
1522         u32 rpmodectl1, rcctl1, pw_status;
1523
1524         intel_runtime_pm_get(dev_priv);
1525
1526         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1527         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1528         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1529
1530         intel_runtime_pm_put(dev_priv);
1531
1532         seq_printf(m, "Video Turbo Mode: %s\n",
1533                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1534         seq_printf(m, "Turbo enabled: %s\n",
1535                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1536         seq_printf(m, "HW control enabled: %s\n",
1537                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1538         seq_printf(m, "SW control enabled: %s\n",
1539                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1540                           GEN6_RP_MEDIA_SW_MODE));
1541         seq_printf(m, "RC6 Enabled: %s\n",
1542                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1543                                         GEN6_RC_CTL_EI_MODE(1))));
1544         seq_printf(m, "Render Power Well: %s\n",
1545                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1546         seq_printf(m, "Media Power Well: %s\n",
1547                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1548
1549         seq_printf(m, "Render RC6 residency since boot: %u\n",
1550                    I915_READ(VLV_GT_RENDER_RC6));
1551         seq_printf(m, "Media RC6 residency since boot: %u\n",
1552                    I915_READ(VLV_GT_MEDIA_RC6));
1553
1554         return i915_forcewake_domains(m, NULL);
1555 }
1556
1557 static int gen6_drpc_info(struct seq_file *m)
1558 {
1559         struct drm_info_node *node = m->private;
1560         struct drm_device *dev = node->minor->dev;
1561         struct drm_i915_private *dev_priv = dev->dev_private;
1562         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1563         unsigned forcewake_count;
1564         int count = 0, ret;
1565
1566         ret = mutex_lock_interruptible(&dev->struct_mutex);
1567         if (ret)
1568                 return ret;
1569         intel_runtime_pm_get(dev_priv);
1570
1571         spin_lock_irq(&dev_priv->uncore.lock);
1572         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1573         spin_unlock_irq(&dev_priv->uncore.lock);
1574
1575         if (forcewake_count) {
1576                 seq_puts(m, "RC information inaccurate because somebody "
1577                             "holds a forcewake reference \n");
1578         } else {
1579                 /* NB: we cannot use forcewake, else we read the wrong values */
1580                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1581                         udelay(10);
1582                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1583         }
1584
1585         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1586         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1587
1588         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1589         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1590         mutex_unlock(&dev->struct_mutex);
1591         mutex_lock(&dev_priv->rps.hw_lock);
1592         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1593         mutex_unlock(&dev_priv->rps.hw_lock);
1594
1595         intel_runtime_pm_put(dev_priv);
1596
1597         seq_printf(m, "Video Turbo Mode: %s\n",
1598                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1599         seq_printf(m, "HW control enabled: %s\n",
1600                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1601         seq_printf(m, "SW control enabled: %s\n",
1602                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1603                           GEN6_RP_MEDIA_SW_MODE));
1604         seq_printf(m, "RC1e Enabled: %s\n",
1605                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1606         seq_printf(m, "RC6 Enabled: %s\n",
1607                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1608         seq_printf(m, "Deep RC6 Enabled: %s\n",
1609                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1610         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1611                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1612         seq_puts(m, "Current RC state: ");
1613         switch (gt_core_status & GEN6_RCn_MASK) {
1614         case GEN6_RC0:
1615                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1616                         seq_puts(m, "Core Power Down\n");
1617                 else
1618                         seq_puts(m, "on\n");
1619                 break;
1620         case GEN6_RC3:
1621                 seq_puts(m, "RC3\n");
1622                 break;
1623         case GEN6_RC6:
1624                 seq_puts(m, "RC6\n");
1625                 break;
1626         case GEN6_RC7:
1627                 seq_puts(m, "RC7\n");
1628                 break;
1629         default:
1630                 seq_puts(m, "Unknown\n");
1631                 break;
1632         }
1633
1634         seq_printf(m, "Core Power Down: %s\n",
1635                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1636
1637         /* Not exactly sure what this is */
1638         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1639                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1640         seq_printf(m, "RC6 residency since boot: %u\n",
1641                    I915_READ(GEN6_GT_GFX_RC6));
1642         seq_printf(m, "RC6+ residency since boot: %u\n",
1643                    I915_READ(GEN6_GT_GFX_RC6p));
1644         seq_printf(m, "RC6++ residency since boot: %u\n",
1645                    I915_READ(GEN6_GT_GFX_RC6pp));
1646
1647         seq_printf(m, "RC6   voltage: %dmV\n",
1648                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1649         seq_printf(m, "RC6+  voltage: %dmV\n",
1650                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1651         seq_printf(m, "RC6++ voltage: %dmV\n",
1652                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1653         return 0;
1654 }
1655
1656 static int i915_drpc_info(struct seq_file *m, void *unused)
1657 {
1658         struct drm_info_node *node = m->private;
1659         struct drm_device *dev = node->minor->dev;
1660
1661         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1662                 return vlv_drpc_info(m);
1663         else if (INTEL_INFO(dev)->gen >= 6)
1664                 return gen6_drpc_info(m);
1665         else
1666                 return ironlake_drpc_info(m);
1667 }
1668
1669 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1670 {
1671         struct drm_info_node *node = m->private;
1672         struct drm_device *dev = node->minor->dev;
1673         struct drm_i915_private *dev_priv = dev->dev_private;
1674
1675         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1676                    dev_priv->fb_tracking.busy_bits);
1677
1678         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1679                    dev_priv->fb_tracking.flip_bits);
1680
1681         return 0;
1682 }
1683
1684 static int i915_fbc_status(struct seq_file *m, void *unused)
1685 {
1686         struct drm_info_node *node = m->private;
1687         struct drm_device *dev = node->minor->dev;
1688         struct drm_i915_private *dev_priv = dev->dev_private;
1689
1690         if (!HAS_FBC(dev)) {
1691                 seq_puts(m, "FBC unsupported on this chipset\n");
1692                 return 0;
1693         }
1694
1695         intel_runtime_pm_get(dev_priv);
1696         mutex_lock(&dev_priv->fbc.lock);
1697
1698         if (intel_fbc_is_active(dev_priv))
1699                 seq_puts(m, "FBC enabled\n");
1700         else
1701                 seq_printf(m, "FBC disabled: %s\n",
1702                            dev_priv->fbc.no_fbc_reason);
1703
1704         if (INTEL_INFO(dev_priv)->gen >= 7)
1705                 seq_printf(m, "Compressing: %s\n",
1706                            yesno(I915_READ(FBC_STATUS2) &
1707                                  FBC_COMPRESSION_MASK));
1708
1709         mutex_unlock(&dev_priv->fbc.lock);
1710         intel_runtime_pm_put(dev_priv);
1711
1712         return 0;
1713 }
1714
1715 static int i915_fbc_fc_get(void *data, u64 *val)
1716 {
1717         struct drm_device *dev = data;
1718         struct drm_i915_private *dev_priv = dev->dev_private;
1719
1720         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1721                 return -ENODEV;
1722
1723         *val = dev_priv->fbc.false_color;
1724
1725         return 0;
1726 }
1727
1728 static int i915_fbc_fc_set(void *data, u64 val)
1729 {
1730         struct drm_device *dev = data;
1731         struct drm_i915_private *dev_priv = dev->dev_private;
1732         u32 reg;
1733
1734         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1735                 return -ENODEV;
1736
1737         mutex_lock(&dev_priv->fbc.lock);
1738
1739         reg = I915_READ(ILK_DPFC_CONTROL);
1740         dev_priv->fbc.false_color = val;
1741
1742         I915_WRITE(ILK_DPFC_CONTROL, val ?
1743                    (reg | FBC_CTL_FALSE_COLOR) :
1744                    (reg & ~FBC_CTL_FALSE_COLOR));
1745
1746         mutex_unlock(&dev_priv->fbc.lock);
1747         return 0;
1748 }
1749
1750 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1751                         i915_fbc_fc_get, i915_fbc_fc_set,
1752                         "%llu\n");
1753
1754 static int i915_ips_status(struct seq_file *m, void *unused)
1755 {
1756         struct drm_info_node *node = m->private;
1757         struct drm_device *dev = node->minor->dev;
1758         struct drm_i915_private *dev_priv = dev->dev_private;
1759
1760         if (!HAS_IPS(dev)) {
1761                 seq_puts(m, "not supported\n");
1762                 return 0;
1763         }
1764
1765         intel_runtime_pm_get(dev_priv);
1766
1767         seq_printf(m, "Enabled by kernel parameter: %s\n",
1768                    yesno(i915.enable_ips));
1769
1770         if (INTEL_INFO(dev)->gen >= 8) {
1771                 seq_puts(m, "Currently: unknown\n");
1772         } else {
1773                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1774                         seq_puts(m, "Currently: enabled\n");
1775                 else
1776                         seq_puts(m, "Currently: disabled\n");
1777         }
1778
1779         intel_runtime_pm_put(dev_priv);
1780
1781         return 0;
1782 }
1783
1784 static int i915_sr_status(struct seq_file *m, void *unused)
1785 {
1786         struct drm_info_node *node = m->private;
1787         struct drm_device *dev = node->minor->dev;
1788         struct drm_i915_private *dev_priv = dev->dev_private;
1789         bool sr_enabled = false;
1790
1791         intel_runtime_pm_get(dev_priv);
1792
1793         if (HAS_PCH_SPLIT(dev))
1794                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1795         else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1796                  IS_I945G(dev) || IS_I945GM(dev))
1797                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1798         else if (IS_I915GM(dev))
1799                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1800         else if (IS_PINEVIEW(dev))
1801                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1802         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1803                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1804
1805         intel_runtime_pm_put(dev_priv);
1806
1807         seq_printf(m, "self-refresh: %s\n",
1808                    sr_enabled ? "enabled" : "disabled");
1809
1810         return 0;
1811 }
1812
1813 static int i915_emon_status(struct seq_file *m, void *unused)
1814 {
1815         struct drm_info_node *node = m->private;
1816         struct drm_device *dev = node->minor->dev;
1817         struct drm_i915_private *dev_priv = dev->dev_private;
1818         unsigned long temp, chipset, gfx;
1819         int ret;
1820
1821         if (!IS_GEN5(dev))
1822                 return -ENODEV;
1823
1824         ret = mutex_lock_interruptible(&dev->struct_mutex);
1825         if (ret)
1826                 return ret;
1827
1828         temp = i915_mch_val(dev_priv);
1829         chipset = i915_chipset_val(dev_priv);
1830         gfx = i915_gfx_val(dev_priv);
1831         mutex_unlock(&dev->struct_mutex);
1832
1833         seq_printf(m, "GMCH temp: %ld\n", temp);
1834         seq_printf(m, "Chipset power: %ld\n", chipset);
1835         seq_printf(m, "GFX power: %ld\n", gfx);
1836         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1837
1838         return 0;
1839 }
1840
1841 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1842 {
1843         struct drm_info_node *node = m->private;
1844         struct drm_device *dev = node->minor->dev;
1845         struct drm_i915_private *dev_priv = dev->dev_private;
1846         int ret = 0;
1847         int gpu_freq, ia_freq;
1848         unsigned int max_gpu_freq, min_gpu_freq;
1849
1850         if (!HAS_CORE_RING_FREQ(dev)) {
1851                 seq_puts(m, "unsupported on this chipset\n");
1852                 return 0;
1853         }
1854
1855         intel_runtime_pm_get(dev_priv);
1856
1857         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1858
1859         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1860         if (ret)
1861                 goto out;
1862
1863         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1864                 /* Convert GT frequency to 50 HZ units */
1865                 min_gpu_freq =
1866                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1867                 max_gpu_freq =
1868                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1869         } else {
1870                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1871                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1872         }
1873
1874         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1875
1876         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1877                 ia_freq = gpu_freq;
1878                 sandybridge_pcode_read(dev_priv,
1879                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1880                                        &ia_freq);
1881                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1882                            intel_gpu_freq(dev_priv, (gpu_freq *
1883                                 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1884                                  GEN9_FREQ_SCALER : 1))),
1885                            ((ia_freq >> 0) & 0xff) * 100,
1886                            ((ia_freq >> 8) & 0xff) * 100);
1887         }
1888
1889         mutex_unlock(&dev_priv->rps.hw_lock);
1890
1891 out:
1892         intel_runtime_pm_put(dev_priv);
1893         return ret;
1894 }
1895
1896 static int i915_opregion(struct seq_file *m, void *unused)
1897 {
1898         struct drm_info_node *node = m->private;
1899         struct drm_device *dev = node->minor->dev;
1900         struct drm_i915_private *dev_priv = dev->dev_private;
1901         struct intel_opregion *opregion = &dev_priv->opregion;
1902         int ret;
1903
1904         ret = mutex_lock_interruptible(&dev->struct_mutex);
1905         if (ret)
1906                 goto out;
1907
1908         if (opregion->header)
1909                 seq_write(m, opregion->header, OPREGION_SIZE);
1910
1911         mutex_unlock(&dev->struct_mutex);
1912
1913 out:
1914         return 0;
1915 }
1916
1917 static int i915_vbt(struct seq_file *m, void *unused)
1918 {
1919         struct drm_info_node *node = m->private;
1920         struct drm_device *dev = node->minor->dev;
1921         struct drm_i915_private *dev_priv = dev->dev_private;
1922         struct intel_opregion *opregion = &dev_priv->opregion;
1923
1924         if (opregion->vbt)
1925                 seq_write(m, opregion->vbt, opregion->vbt_size);
1926
1927         return 0;
1928 }
1929
1930 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1931 {
1932         struct drm_info_node *node = m->private;
1933         struct drm_device *dev = node->minor->dev;
1934         struct intel_framebuffer *fbdev_fb = NULL;
1935         struct drm_framebuffer *drm_fb;
1936         int ret;
1937
1938         ret = mutex_lock_interruptible(&dev->struct_mutex);
1939         if (ret)
1940                 return ret;
1941
1942 #ifdef CONFIG_DRM_FBDEV_EMULATION
1943        if (to_i915(dev)->fbdev) {
1944                fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1945
1946                seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1947                          fbdev_fb->base.width,
1948                          fbdev_fb->base.height,
1949                          fbdev_fb->base.depth,
1950                          fbdev_fb->base.bits_per_pixel,
1951                          fbdev_fb->base.modifier[0],
1952                          drm_framebuffer_read_refcount(&fbdev_fb->base));
1953                describe_obj(m, fbdev_fb->obj);
1954                seq_putc(m, '\n');
1955        }
1956 #endif
1957
1958         mutex_lock(&dev->mode_config.fb_lock);
1959         drm_for_each_fb(drm_fb, dev) {
1960                 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1961                 if (fb == fbdev_fb)
1962                         continue;
1963
1964                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1965                            fb->base.width,
1966                            fb->base.height,
1967                            fb->base.depth,
1968                            fb->base.bits_per_pixel,
1969                            fb->base.modifier[0],
1970                            drm_framebuffer_read_refcount(&fb->base));
1971                 describe_obj(m, fb->obj);
1972                 seq_putc(m, '\n');
1973         }
1974         mutex_unlock(&dev->mode_config.fb_lock);
1975         mutex_unlock(&dev->struct_mutex);
1976
1977         return 0;
1978 }
1979
1980 static void describe_ctx_ringbuf(struct seq_file *m,
1981                                  struct intel_ringbuffer *ringbuf)
1982 {
1983         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1984                    ringbuf->space, ringbuf->head, ringbuf->tail,
1985                    ringbuf->last_retired_head);
1986 }
1987
1988 static int i915_context_status(struct seq_file *m, void *unused)
1989 {
1990         struct drm_info_node *node = m->private;
1991         struct drm_device *dev = node->minor->dev;
1992         struct drm_i915_private *dev_priv = dev->dev_private;
1993         struct intel_engine_cs *engine;
1994         struct intel_context *ctx;
1995         enum intel_engine_id id;
1996         int ret;
1997
1998         ret = mutex_lock_interruptible(&dev->struct_mutex);
1999         if (ret)
2000                 return ret;
2001
2002         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2003                 if (!i915.enable_execlists &&
2004                     ctx->legacy_hw_ctx.rcs_state == NULL)
2005                         continue;
2006
2007                 seq_puts(m, "HW context ");
2008                 describe_ctx(m, ctx);
2009                 if (ctx == dev_priv->kernel_context)
2010                         seq_printf(m, "(kernel context) ");
2011
2012                 if (i915.enable_execlists) {
2013                         seq_putc(m, '\n');
2014                         for_each_engine_id(engine, dev_priv, id) {
2015                                 struct drm_i915_gem_object *ctx_obj =
2016                                         ctx->engine[id].state;
2017                                 struct intel_ringbuffer *ringbuf =
2018                                         ctx->engine[id].ringbuf;
2019
2020                                 seq_printf(m, "%s: ", engine->name);
2021                                 if (ctx_obj)
2022                                         describe_obj(m, ctx_obj);
2023                                 if (ringbuf)
2024                                         describe_ctx_ringbuf(m, ringbuf);
2025                                 seq_putc(m, '\n');
2026                         }
2027                 } else {
2028                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
2029                 }
2030
2031                 seq_putc(m, '\n');
2032         }
2033
2034         mutex_unlock(&dev->struct_mutex);
2035
2036         return 0;
2037 }
2038
2039 static void i915_dump_lrc_obj(struct seq_file *m,
2040                               struct intel_context *ctx,
2041                               struct intel_engine_cs *engine)
2042 {
2043         struct page *page;
2044         uint32_t *reg_state;
2045         int j;
2046         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
2047         unsigned long ggtt_offset = 0;
2048
2049         if (ctx_obj == NULL) {
2050                 seq_printf(m, "Context on %s with no gem object\n",
2051                            engine->name);
2052                 return;
2053         }
2054
2055         seq_printf(m, "CONTEXT: %s %u\n", engine->name,
2056                    intel_execlists_ctx_id(ctx, engine));
2057
2058         if (!i915_gem_obj_ggtt_bound(ctx_obj))
2059                 seq_puts(m, "\tNot bound in GGTT\n");
2060         else
2061                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2062
2063         if (i915_gem_object_get_pages(ctx_obj)) {
2064                 seq_puts(m, "\tFailed to get pages for context object\n");
2065                 return;
2066         }
2067
2068         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2069         if (!WARN_ON(page == NULL)) {
2070                 reg_state = kmap_atomic(page);
2071
2072                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2073                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2074                                    ggtt_offset + 4096 + (j * 4),
2075                                    reg_state[j], reg_state[j + 1],
2076                                    reg_state[j + 2], reg_state[j + 3]);
2077                 }
2078                 kunmap_atomic(reg_state);
2079         }
2080
2081         seq_putc(m, '\n');
2082 }
2083
2084 static int i915_dump_lrc(struct seq_file *m, void *unused)
2085 {
2086         struct drm_info_node *node = (struct drm_info_node *) m->private;
2087         struct drm_device *dev = node->minor->dev;
2088         struct drm_i915_private *dev_priv = dev->dev_private;
2089         struct intel_engine_cs *engine;
2090         struct intel_context *ctx;
2091         int ret;
2092
2093         if (!i915.enable_execlists) {
2094                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2095                 return 0;
2096         }
2097
2098         ret = mutex_lock_interruptible(&dev->struct_mutex);
2099         if (ret)
2100                 return ret;
2101
2102         list_for_each_entry(ctx, &dev_priv->context_list, link)
2103                 if (ctx != dev_priv->kernel_context) {
2104                         for_each_engine(engine, dev_priv)
2105                                 i915_dump_lrc_obj(m, ctx, engine);
2106                 }
2107
2108         mutex_unlock(&dev->struct_mutex);
2109
2110         return 0;
2111 }
2112
2113 static int i915_execlists(struct seq_file *m, void *data)
2114 {
2115         struct drm_info_node *node = (struct drm_info_node *)m->private;
2116         struct drm_device *dev = node->minor->dev;
2117         struct drm_i915_private *dev_priv = dev->dev_private;
2118         struct intel_engine_cs *engine;
2119         u32 status_pointer;
2120         u8 read_pointer;
2121         u8 write_pointer;
2122         u32 status;
2123         u32 ctx_id;
2124         struct list_head *cursor;
2125         int i, ret;
2126
2127         if (!i915.enable_execlists) {
2128                 seq_puts(m, "Logical Ring Contexts are disabled\n");
2129                 return 0;
2130         }
2131
2132         ret = mutex_lock_interruptible(&dev->struct_mutex);
2133         if (ret)
2134                 return ret;
2135
2136         intel_runtime_pm_get(dev_priv);
2137
2138         for_each_engine(engine, dev_priv) {
2139                 struct drm_i915_gem_request *head_req = NULL;
2140                 int count = 0;
2141
2142                 seq_printf(m, "%s\n", engine->name);
2143
2144                 status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
2145                 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
2146                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2147                            status, ctx_id);
2148
2149                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
2150                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2151
2152                 read_pointer = engine->next_context_status_buffer;
2153                 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2154                 if (read_pointer > write_pointer)
2155                         write_pointer += GEN8_CSB_ENTRIES;
2156                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2157                            read_pointer, write_pointer);
2158
2159                 for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2160                         status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
2161                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
2162
2163                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2164                                    i, status, ctx_id);
2165                 }
2166
2167                 spin_lock_bh(&engine->execlist_lock);
2168                 list_for_each(cursor, &engine->execlist_queue)
2169                         count++;
2170                 head_req = list_first_entry_or_null(&engine->execlist_queue,
2171                                                     struct drm_i915_gem_request,
2172                                                     execlist_link);
2173                 spin_unlock_bh(&engine->execlist_lock);
2174
2175                 seq_printf(m, "\t%d requests in queue\n", count);
2176                 if (head_req) {
2177                         seq_printf(m, "\tHead request id: %u\n",
2178                                    intel_execlists_ctx_id(head_req->ctx, engine));
2179                         seq_printf(m, "\tHead request tail: %u\n",
2180                                    head_req->tail);
2181                 }
2182
2183                 seq_putc(m, '\n');
2184         }
2185
2186         intel_runtime_pm_put(dev_priv);
2187         mutex_unlock(&dev->struct_mutex);
2188
2189         return 0;
2190 }
2191
2192 static const char *swizzle_string(unsigned swizzle)
2193 {
2194         switch (swizzle) {
2195         case I915_BIT_6_SWIZZLE_NONE:
2196                 return "none";
2197         case I915_BIT_6_SWIZZLE_9:
2198                 return "bit9";
2199         case I915_BIT_6_SWIZZLE_9_10:
2200                 return "bit9/bit10";
2201         case I915_BIT_6_SWIZZLE_9_11:
2202                 return "bit9/bit11";
2203         case I915_BIT_6_SWIZZLE_9_10_11:
2204                 return "bit9/bit10/bit11";
2205         case I915_BIT_6_SWIZZLE_9_17:
2206                 return "bit9/bit17";
2207         case I915_BIT_6_SWIZZLE_9_10_17:
2208                 return "bit9/bit10/bit17";
2209         case I915_BIT_6_SWIZZLE_UNKNOWN:
2210                 return "unknown";
2211         }
2212
2213         return "bug";
2214 }
2215
2216 static int i915_swizzle_info(struct seq_file *m, void *data)
2217 {
2218         struct drm_info_node *node = m->private;
2219         struct drm_device *dev = node->minor->dev;
2220         struct drm_i915_private *dev_priv = dev->dev_private;
2221         int ret;
2222
2223         ret = mutex_lock_interruptible(&dev->struct_mutex);
2224         if (ret)
2225                 return ret;
2226         intel_runtime_pm_get(dev_priv);
2227
2228         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2229                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2230         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2231                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2232
2233         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2234                 seq_printf(m, "DDC = 0x%08x\n",
2235                            I915_READ(DCC));
2236                 seq_printf(m, "DDC2 = 0x%08x\n",
2237                            I915_READ(DCC2));
2238                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2239                            I915_READ16(C0DRB3));
2240                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2241                            I915_READ16(C1DRB3));
2242         } else if (INTEL_INFO(dev)->gen >= 6) {
2243                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2244                            I915_READ(MAD_DIMM_C0));
2245                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2246                            I915_READ(MAD_DIMM_C1));
2247                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2248                            I915_READ(MAD_DIMM_C2));
2249                 seq_printf(m, "TILECTL = 0x%08x\n",
2250                            I915_READ(TILECTL));
2251                 if (INTEL_INFO(dev)->gen >= 8)
2252                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2253                                    I915_READ(GAMTARBMODE));
2254                 else
2255                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2256                                    I915_READ(ARB_MODE));
2257                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2258                            I915_READ(DISP_ARB_CTL));
2259         }
2260
2261         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2262                 seq_puts(m, "L-shaped memory detected\n");
2263
2264         intel_runtime_pm_put(dev_priv);
2265         mutex_unlock(&dev->struct_mutex);
2266
2267         return 0;
2268 }
2269
2270 static int per_file_ctx(int id, void *ptr, void *data)
2271 {
2272         struct intel_context *ctx = ptr;
2273         struct seq_file *m = data;
2274         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2275
2276         if (!ppgtt) {
2277                 seq_printf(m, "  no ppgtt for context %d\n",
2278                            ctx->user_handle);
2279                 return 0;
2280         }
2281
2282         if (i915_gem_context_is_default(ctx))
2283                 seq_puts(m, "  default context:\n");
2284         else
2285                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2286         ppgtt->debug_dump(ppgtt, m);
2287
2288         return 0;
2289 }
2290
2291 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2292 {
2293         struct drm_i915_private *dev_priv = dev->dev_private;
2294         struct intel_engine_cs *engine;
2295         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2296         int i;
2297
2298         if (!ppgtt)
2299                 return;
2300
2301         for_each_engine(engine, dev_priv) {
2302                 seq_printf(m, "%s\n", engine->name);
2303                 for (i = 0; i < 4; i++) {
2304                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2305                         pdp <<= 32;
2306                         pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2307                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2308                 }
2309         }
2310 }
2311
2312 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2313 {
2314         struct drm_i915_private *dev_priv = dev->dev_private;
2315         struct intel_engine_cs *engine;
2316
2317         if (INTEL_INFO(dev)->gen == 6)
2318                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2319
2320         for_each_engine(engine, dev_priv) {
2321                 seq_printf(m, "%s\n", engine->name);
2322                 if (INTEL_INFO(dev)->gen == 7)
2323                         seq_printf(m, "GFX_MODE: 0x%08x\n",
2324                                    I915_READ(RING_MODE_GEN7(engine)));
2325                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2326                            I915_READ(RING_PP_DIR_BASE(engine)));
2327                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2328                            I915_READ(RING_PP_DIR_BASE_READ(engine)));
2329                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2330                            I915_READ(RING_PP_DIR_DCLV(engine)));
2331         }
2332         if (dev_priv->mm.aliasing_ppgtt) {
2333                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2334
2335                 seq_puts(m, "aliasing PPGTT:\n");
2336                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2337
2338                 ppgtt->debug_dump(ppgtt, m);
2339         }
2340
2341         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2342 }
2343
2344 static int i915_ppgtt_info(struct seq_file *m, void *data)
2345 {
2346         struct drm_info_node *node = m->private;
2347         struct drm_device *dev = node->minor->dev;
2348         struct drm_i915_private *dev_priv = dev->dev_private;
2349         struct drm_file *file;
2350
2351         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2352         if (ret)
2353                 return ret;
2354         intel_runtime_pm_get(dev_priv);
2355
2356         if (INTEL_INFO(dev)->gen >= 8)
2357                 gen8_ppgtt_info(m, dev);
2358         else if (INTEL_INFO(dev)->gen >= 6)
2359                 gen6_ppgtt_info(m, dev);
2360
2361         mutex_lock(&dev->filelist_mutex);
2362         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2363                 struct drm_i915_file_private *file_priv = file->driver_priv;
2364                 struct task_struct *task;
2365
2366                 task = get_pid_task(file->pid, PIDTYPE_PID);
2367                 if (!task) {
2368                         ret = -ESRCH;
2369                         goto out_unlock;
2370                 }
2371                 seq_printf(m, "\nproc: %s\n", task->comm);
2372                 put_task_struct(task);
2373                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2374                              (void *)(unsigned long)m);
2375         }
2376 out_unlock:
2377         mutex_unlock(&dev->filelist_mutex);
2378
2379         intel_runtime_pm_put(dev_priv);
2380         mutex_unlock(&dev->struct_mutex);
2381
2382         return ret;
2383 }
2384
2385 static int count_irq_waiters(struct drm_i915_private *i915)
2386 {
2387         struct intel_engine_cs *engine;
2388         int count = 0;
2389
2390         for_each_engine(engine, i915)
2391                 count += engine->irq_refcount;
2392
2393         return count;
2394 }
2395
2396 static int i915_rps_boost_info(struct seq_file *m, void *data)
2397 {
2398         struct drm_info_node *node = m->private;
2399         struct drm_device *dev = node->minor->dev;
2400         struct drm_i915_private *dev_priv = dev->dev_private;
2401         struct drm_file *file;
2402
2403         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2404         seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2405         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2406         seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2407                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2408                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2409                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2410                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2411                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2412
2413         mutex_lock(&dev->filelist_mutex);
2414         spin_lock(&dev_priv->rps.client_lock);
2415         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2416                 struct drm_i915_file_private *file_priv = file->driver_priv;
2417                 struct task_struct *task;
2418
2419                 rcu_read_lock();
2420                 task = pid_task(file->pid, PIDTYPE_PID);
2421                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2422                            task ? task->comm : "<unknown>",
2423                            task ? task->pid : -1,
2424                            file_priv->rps.boosts,
2425                            list_empty(&file_priv->rps.link) ? "" : ", active");
2426                 rcu_read_unlock();
2427         }
2428         seq_printf(m, "Semaphore boosts: %d%s\n",
2429                    dev_priv->rps.semaphores.boosts,
2430                    list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2431         seq_printf(m, "MMIO flip boosts: %d%s\n",
2432                    dev_priv->rps.mmioflips.boosts,
2433                    list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2434         seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2435         spin_unlock(&dev_priv->rps.client_lock);
2436         mutex_unlock(&dev->filelist_mutex);
2437
2438         return 0;
2439 }
2440
2441 static int i915_llc(struct seq_file *m, void *data)
2442 {
2443         struct drm_info_node *node = m->private;
2444         struct drm_device *dev = node->minor->dev;
2445         struct drm_i915_private *dev_priv = dev->dev_private;
2446         const bool edram = INTEL_GEN(dev_priv) > 8;
2447
2448         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2449         seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2450                    intel_uncore_edram_size(dev_priv)/1024/1024);
2451
2452         return 0;
2453 }
2454
2455 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2456 {
2457         struct drm_info_node *node = m->private;
2458         struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2459         struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2460         u32 tmp, i;
2461
2462         if (!HAS_GUC_UCODE(dev_priv))
2463                 return 0;
2464
2465         seq_printf(m, "GuC firmware status:\n");
2466         seq_printf(m, "\tpath: %s\n",
2467                 guc_fw->guc_fw_path);
2468         seq_printf(m, "\tfetch: %s\n",
2469                 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2470         seq_printf(m, "\tload: %s\n",
2471                 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2472         seq_printf(m, "\tversion wanted: %d.%d\n",
2473                 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2474         seq_printf(m, "\tversion found: %d.%d\n",
2475                 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2476         seq_printf(m, "\theader: offset is %d; size = %d\n",
2477                 guc_fw->header_offset, guc_fw->header_size);
2478         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2479                 guc_fw->ucode_offset, guc_fw->ucode_size);
2480         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2481                 guc_fw->rsa_offset, guc_fw->rsa_size);
2482
2483         tmp = I915_READ(GUC_STATUS);
2484
2485         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2486         seq_printf(m, "\tBootrom status = 0x%x\n",
2487                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2488         seq_printf(m, "\tuKernel status = 0x%x\n",
2489                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2490         seq_printf(m, "\tMIA Core status = 0x%x\n",
2491                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2492         seq_puts(m, "\nScratch registers:\n");
2493         for (i = 0; i < 16; i++)
2494                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2495
2496         return 0;
2497 }
2498
2499 static void i915_guc_client_info(struct seq_file *m,
2500                                  struct drm_i915_private *dev_priv,
2501                                  struct i915_guc_client *client)
2502 {
2503         struct intel_engine_cs *engine;
2504         uint64_t tot = 0;
2505
2506         seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2507                 client->priority, client->ctx_index, client->proc_desc_offset);
2508         seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2509                 client->doorbell_id, client->doorbell_offset, client->cookie);
2510         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2511                 client->wq_size, client->wq_offset, client->wq_tail);
2512
2513         seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2514         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2515         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2516
2517         for_each_engine(engine, dev_priv) {
2518                 seq_printf(m, "\tSubmissions: %llu %s\n",
2519                                 client->submissions[engine->guc_id],
2520                                 engine->name);
2521                 tot += client->submissions[engine->guc_id];
2522         }
2523         seq_printf(m, "\tTotal: %llu\n", tot);
2524 }
2525
2526 static int i915_guc_info(struct seq_file *m, void *data)
2527 {
2528         struct drm_info_node *node = m->private;
2529         struct drm_device *dev = node->minor->dev;
2530         struct drm_i915_private *dev_priv = dev->dev_private;
2531         struct intel_guc guc;
2532         struct i915_guc_client client = {};
2533         struct intel_engine_cs *engine;
2534         u64 total = 0;
2535
2536         if (!HAS_GUC_SCHED(dev_priv))
2537                 return 0;
2538
2539         if (mutex_lock_interruptible(&dev->struct_mutex))
2540                 return 0;
2541
2542         /* Take a local copy of the GuC data, so we can dump it at leisure */
2543         guc = dev_priv->guc;
2544         if (guc.execbuf_client)
2545                 client = *guc.execbuf_client;
2546
2547         mutex_unlock(&dev->struct_mutex);
2548
2549         seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2550         seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2551         seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2552         seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2553         seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2554
2555         seq_printf(m, "\nGuC submissions:\n");
2556         for_each_engine(engine, dev_priv) {
2557                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2558                         engine->name, guc.submissions[engine->guc_id],
2559                         guc.last_seqno[engine->guc_id]);
2560                 total += guc.submissions[engine->guc_id];
2561         }
2562         seq_printf(m, "\t%s: %llu\n", "Total", total);
2563
2564         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2565         i915_guc_client_info(m, dev_priv, &client);
2566
2567         /* Add more as required ... */
2568
2569         return 0;
2570 }
2571
2572 static int i915_guc_log_dump(struct seq_file *m, void *data)
2573 {
2574         struct drm_info_node *node = m->private;
2575         struct drm_device *dev = node->minor->dev;
2576         struct drm_i915_private *dev_priv = dev->dev_private;
2577         struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2578         u32 *log;
2579         int i = 0, pg;
2580
2581         if (!log_obj)
2582                 return 0;
2583
2584         for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2585                 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2586
2587                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2588                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2589                                    *(log + i), *(log + i + 1),
2590                                    *(log + i + 2), *(log + i + 3));
2591
2592                 kunmap_atomic(log);
2593         }
2594
2595         seq_putc(m, '\n');
2596
2597         return 0;
2598 }
2599
2600 static int i915_edp_psr_status(struct seq_file *m, void *data)
2601 {
2602         struct drm_info_node *node = m->private;
2603         struct drm_device *dev = node->minor->dev;
2604         struct drm_i915_private *dev_priv = dev->dev_private;
2605         u32 psrperf = 0;
2606         u32 stat[3];
2607         enum pipe pipe;
2608         bool enabled = false;
2609
2610         if (!HAS_PSR(dev)) {
2611                 seq_puts(m, "PSR not supported\n");
2612                 return 0;
2613         }
2614
2615         intel_runtime_pm_get(dev_priv);
2616
2617         mutex_lock(&dev_priv->psr.lock);
2618         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2619         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2620         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2621         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2622         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2623                    dev_priv->psr.busy_frontbuffer_bits);
2624         seq_printf(m, "Re-enable work scheduled: %s\n",
2625                    yesno(work_busy(&dev_priv->psr.work.work)));
2626
2627         if (HAS_DDI(dev))
2628                 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2629         else {
2630                 for_each_pipe(dev_priv, pipe) {
2631                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2632                                 VLV_EDP_PSR_CURR_STATE_MASK;
2633                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2634                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2635                                 enabled = true;
2636                 }
2637         }
2638
2639         seq_printf(m, "Main link in standby mode: %s\n",
2640                    yesno(dev_priv->psr.link_standby));
2641
2642         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2643
2644         if (!HAS_DDI(dev))
2645                 for_each_pipe(dev_priv, pipe) {
2646                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2647                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2648                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2649                 }
2650         seq_puts(m, "\n");
2651
2652         /*
2653          * VLV/CHV PSR has no kind of performance counter
2654          * SKL+ Perf counter is reset to 0 everytime DC state is entered
2655          */
2656         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2657                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2658                         EDP_PSR_PERF_CNT_MASK;
2659
2660                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2661         }
2662         mutex_unlock(&dev_priv->psr.lock);
2663
2664         intel_runtime_pm_put(dev_priv);
2665         return 0;
2666 }
2667
2668 static int i915_sink_crc(struct seq_file *m, void *data)
2669 {
2670         struct drm_info_node *node = m->private;
2671         struct drm_device *dev = node->minor->dev;
2672         struct intel_encoder *encoder;
2673         struct intel_connector *connector;
2674         struct intel_dp *intel_dp = NULL;
2675         int ret;
2676         u8 crc[6];
2677
2678         drm_modeset_lock_all(dev);
2679         for_each_intel_connector(dev, connector) {
2680
2681                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2682                         continue;
2683
2684                 if (!connector->base.encoder)
2685                         continue;
2686
2687                 encoder = to_intel_encoder(connector->base.encoder);
2688                 if (encoder->type != INTEL_OUTPUT_EDP)
2689                         continue;
2690
2691                 intel_dp = enc_to_intel_dp(&encoder->base);
2692
2693                 ret = intel_dp_sink_crc(intel_dp, crc);
2694                 if (ret)
2695                         goto out;
2696
2697                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2698                            crc[0], crc[1], crc[2],
2699                            crc[3], crc[4], crc[5]);
2700                 goto out;
2701         }
2702         ret = -ENODEV;
2703 out:
2704         drm_modeset_unlock_all(dev);
2705         return ret;
2706 }
2707
2708 static int i915_energy_uJ(struct seq_file *m, void *data)
2709 {
2710         struct drm_info_node *node = m->private;
2711         struct drm_device *dev = node->minor->dev;
2712         struct drm_i915_private *dev_priv = dev->dev_private;
2713         u64 power;
2714         u32 units;
2715
2716         if (INTEL_INFO(dev)->gen < 6)
2717                 return -ENODEV;
2718
2719         intel_runtime_pm_get(dev_priv);
2720
2721         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2722         power = (power & 0x1f00) >> 8;
2723         units = 1000000 / (1 << power); /* convert to uJ */
2724         power = I915_READ(MCH_SECP_NRG_STTS);
2725         power *= units;
2726
2727         intel_runtime_pm_put(dev_priv);
2728
2729         seq_printf(m, "%llu", (long long unsigned)power);
2730
2731         return 0;
2732 }
2733
2734 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2735 {
2736         struct drm_info_node *node = m->private;
2737         struct drm_device *dev = node->minor->dev;
2738         struct drm_i915_private *dev_priv = dev->dev_private;
2739
2740         if (!HAS_RUNTIME_PM(dev_priv))
2741                 seq_puts(m, "Runtime power management not supported\n");
2742
2743         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2744         seq_printf(m, "IRQs disabled: %s\n",
2745                    yesno(!intel_irqs_enabled(dev_priv)));
2746 #ifdef CONFIG_PM
2747         seq_printf(m, "Usage count: %d\n",
2748                    atomic_read(&dev->dev->power.usage_count));
2749 #else
2750         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2751 #endif
2752         seq_printf(m, "PCI device power state: %s [%d]\n",
2753                    pci_power_name(dev_priv->dev->pdev->current_state),
2754                    dev_priv->dev->pdev->current_state);
2755
2756         return 0;
2757 }
2758
2759 static int i915_power_domain_info(struct seq_file *m, void *unused)
2760 {
2761         struct drm_info_node *node = m->private;
2762         struct drm_device *dev = node->minor->dev;
2763         struct drm_i915_private *dev_priv = dev->dev_private;
2764         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2765         int i;
2766
2767         mutex_lock(&power_domains->lock);
2768
2769         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2770         for (i = 0; i < power_domains->power_well_count; i++) {
2771                 struct i915_power_well *power_well;
2772                 enum intel_display_power_domain power_domain;
2773
2774                 power_well = &power_domains->power_wells[i];
2775                 seq_printf(m, "%-25s %d\n", power_well->name,
2776                            power_well->count);
2777
2778                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2779                      power_domain++) {
2780                         if (!(BIT(power_domain) & power_well->domains))
2781                                 continue;
2782
2783                         seq_printf(m, "  %-23s %d\n",
2784                                  intel_display_power_domain_str(power_domain),
2785                                  power_domains->domain_use_count[power_domain]);
2786                 }
2787         }
2788
2789         mutex_unlock(&power_domains->lock);
2790
2791         return 0;
2792 }
2793
2794 static int i915_dmc_info(struct seq_file *m, void *unused)
2795 {
2796         struct drm_info_node *node = m->private;
2797         struct drm_device *dev = node->minor->dev;
2798         struct drm_i915_private *dev_priv = dev->dev_private;
2799         struct intel_csr *csr;
2800
2801         if (!HAS_CSR(dev)) {
2802                 seq_puts(m, "not supported\n");
2803                 return 0;
2804         }
2805
2806         csr = &dev_priv->csr;
2807
2808         intel_runtime_pm_get(dev_priv);
2809
2810         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2811         seq_printf(m, "path: %s\n", csr->fw_path);
2812
2813         if (!csr->dmc_payload)
2814                 goto out;
2815
2816         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2817                    CSR_VERSION_MINOR(csr->version));
2818
2819         if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2820                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2821                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2822                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2823                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2824         } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2825                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2826                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2827         }
2828
2829 out:
2830         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2831         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2832         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2833
2834         intel_runtime_pm_put(dev_priv);
2835
2836         return 0;
2837 }
2838
2839 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2840                                  struct drm_display_mode *mode)
2841 {
2842         int i;
2843
2844         for (i = 0; i < tabs; i++)
2845                 seq_putc(m, '\t');
2846
2847         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2848                    mode->base.id, mode->name,
2849                    mode->vrefresh, mode->clock,
2850                    mode->hdisplay, mode->hsync_start,
2851                    mode->hsync_end, mode->htotal,
2852                    mode->vdisplay, mode->vsync_start,
2853                    mode->vsync_end, mode->vtotal,
2854                    mode->type, mode->flags);
2855 }
2856
2857 static void intel_encoder_info(struct seq_file *m,
2858                                struct intel_crtc *intel_crtc,
2859                                struct intel_encoder *intel_encoder)
2860 {
2861         struct drm_info_node *node = m->private;
2862         struct drm_device *dev = node->minor->dev;
2863         struct drm_crtc *crtc = &intel_crtc->base;
2864         struct intel_connector *intel_connector;
2865         struct drm_encoder *encoder;
2866
2867         encoder = &intel_encoder->base;
2868         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2869                    encoder->base.id, encoder->name);
2870         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2871                 struct drm_connector *connector = &intel_connector->base;
2872                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2873                            connector->base.id,
2874                            connector->name,
2875                            drm_get_connector_status_name(connector->status));
2876                 if (connector->status == connector_status_connected) {
2877                         struct drm_display_mode *mode = &crtc->mode;
2878                         seq_printf(m, ", mode:\n");
2879                         intel_seq_print_mode(m, 2, mode);
2880                 } else {
2881                         seq_putc(m, '\n');
2882                 }
2883         }
2884 }
2885
2886 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2887 {
2888         struct drm_info_node *node = m->private;
2889         struct drm_device *dev = node->minor->dev;
2890         struct drm_crtc *crtc = &intel_crtc->base;
2891         struct intel_encoder *intel_encoder;
2892         struct drm_plane_state *plane_state = crtc->primary->state;
2893         struct drm_framebuffer *fb = plane_state->fb;
2894
2895         if (fb)
2896                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2897                            fb->base.id, plane_state->src_x >> 16,
2898                            plane_state->src_y >> 16, fb->width, fb->height);
2899         else
2900                 seq_puts(m, "\tprimary plane disabled\n");
2901         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2902                 intel_encoder_info(m, intel_crtc, intel_encoder);
2903 }
2904
2905 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2906 {
2907         struct drm_display_mode *mode = panel->fixed_mode;
2908
2909         seq_printf(m, "\tfixed mode:\n");
2910         intel_seq_print_mode(m, 2, mode);
2911 }
2912
2913 static void intel_dp_info(struct seq_file *m,
2914                           struct intel_connector *intel_connector)
2915 {
2916         struct intel_encoder *intel_encoder = intel_connector->encoder;
2917         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2918
2919         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2920         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2921         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2922                 intel_panel_info(m, &intel_connector->panel);
2923 }
2924
2925 static void intel_hdmi_info(struct seq_file *m,
2926                             struct intel_connector *intel_connector)
2927 {
2928         struct intel_encoder *intel_encoder = intel_connector->encoder;
2929         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2930
2931         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2932 }
2933
2934 static void intel_lvds_info(struct seq_file *m,
2935                             struct intel_connector *intel_connector)
2936 {
2937         intel_panel_info(m, &intel_connector->panel);
2938 }
2939
2940 static void intel_connector_info(struct seq_file *m,
2941                                  struct drm_connector *connector)
2942 {
2943         struct intel_connector *intel_connector = to_intel_connector(connector);
2944         struct intel_encoder *intel_encoder = intel_connector->encoder;
2945         struct drm_display_mode *mode;
2946
2947         seq_printf(m, "connector %d: type %s, status: %s\n",
2948                    connector->base.id, connector->name,
2949                    drm_get_connector_status_name(connector->status));
2950         if (connector->status == connector_status_connected) {
2951                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2952                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2953                            connector->display_info.width_mm,
2954                            connector->display_info.height_mm);
2955                 seq_printf(m, "\tsubpixel order: %s\n",
2956                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2957                 seq_printf(m, "\tCEA rev: %d\n",
2958                            connector->display_info.cea_rev);
2959         }
2960         if (intel_encoder) {
2961                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2962                     intel_encoder->type == INTEL_OUTPUT_EDP)
2963                         intel_dp_info(m, intel_connector);
2964                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2965                         intel_hdmi_info(m, intel_connector);
2966                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2967                         intel_lvds_info(m, intel_connector);
2968         }
2969
2970         seq_printf(m, "\tmodes:\n");
2971         list_for_each_entry(mode, &connector->modes, head)
2972                 intel_seq_print_mode(m, 2, mode);
2973 }
2974
2975 static bool cursor_active(struct drm_device *dev, int pipe)
2976 {
2977         struct drm_i915_private *dev_priv = dev->dev_private;
2978         u32 state;
2979
2980         if (IS_845G(dev) || IS_I865G(dev))
2981                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2982         else
2983                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2984
2985         return state;
2986 }
2987
2988 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2989 {
2990         struct drm_i915_private *dev_priv = dev->dev_private;
2991         u32 pos;
2992
2993         pos = I915_READ(CURPOS(pipe));
2994
2995         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2996         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2997                 *x = -*x;
2998
2999         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
3000         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
3001                 *y = -*y;
3002
3003         return cursor_active(dev, pipe);
3004 }
3005
3006 static const char *plane_type(enum drm_plane_type type)
3007 {
3008         switch (type) {
3009         case DRM_PLANE_TYPE_OVERLAY:
3010                 return "OVL";
3011         case DRM_PLANE_TYPE_PRIMARY:
3012                 return "PRI";
3013         case DRM_PLANE_TYPE_CURSOR:
3014                 return "CUR";
3015         /*
3016          * Deliberately omitting default: to generate compiler warnings
3017          * when a new drm_plane_type gets added.
3018          */
3019         }
3020
3021         return "unknown";
3022 }
3023
3024 static const char *plane_rotation(unsigned int rotation)
3025 {
3026         static char buf[48];
3027         /*
3028          * According to doc only one DRM_ROTATE_ is allowed but this
3029          * will print them all to visualize if the values are misused
3030          */
3031         snprintf(buf, sizeof(buf),
3032                  "%s%s%s%s%s%s(0x%08x)",
3033                  (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
3034                  (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
3035                  (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
3036                  (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
3037                  (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
3038                  (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
3039                  rotation);
3040
3041         return buf;
3042 }
3043
3044 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3045 {
3046         struct drm_info_node *node = m->private;
3047         struct drm_device *dev = node->minor->dev;
3048         struct intel_plane *intel_plane;
3049
3050         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3051                 struct drm_plane_state *state;
3052                 struct drm_plane *plane = &intel_plane->base;
3053
3054                 if (!plane->state) {
3055                         seq_puts(m, "plane->state is NULL!\n");
3056                         continue;
3057                 }
3058
3059                 state = plane->state;
3060
3061                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3062                            plane->base.id,
3063                            plane_type(intel_plane->base.type),
3064                            state->crtc_x, state->crtc_y,
3065                            state->crtc_w, state->crtc_h,
3066                            (state->src_x >> 16),
3067                            ((state->src_x & 0xffff) * 15625) >> 10,
3068                            (state->src_y >> 16),
3069                            ((state->src_y & 0xffff) * 15625) >> 10,
3070                            (state->src_w >> 16),
3071                            ((state->src_w & 0xffff) * 15625) >> 10,
3072                            (state->src_h >> 16),
3073                            ((state->src_h & 0xffff) * 15625) >> 10,
3074                            state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3075                            plane_rotation(state->rotation));
3076         }
3077 }
3078
3079 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3080 {
3081         struct intel_crtc_state *pipe_config;
3082         int num_scalers = intel_crtc->num_scalers;
3083         int i;
3084
3085         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3086
3087         /* Not all platformas have a scaler */
3088         if (num_scalers) {
3089                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3090                            num_scalers,
3091                            pipe_config->scaler_state.scaler_users,
3092                            pipe_config->scaler_state.scaler_id);
3093
3094                 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3095                         struct intel_scaler *sc =
3096                                         &pipe_config->scaler_state.scalers[i];
3097
3098                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3099                                    i, yesno(sc->in_use), sc->mode);
3100                 }
3101                 seq_puts(m, "\n");
3102         } else {
3103                 seq_puts(m, "\tNo scalers available on this platform\n");
3104         }
3105 }
3106
3107 static int i915_display_info(struct seq_file *m, void *unused)
3108 {
3109         struct drm_info_node *node = m->private;
3110         struct drm_device *dev = node->minor->dev;
3111         struct drm_i915_private *dev_priv = dev->dev_private;
3112         struct intel_crtc *crtc;
3113         struct drm_connector *connector;
3114
3115         intel_runtime_pm_get(dev_priv);
3116         drm_modeset_lock_all(dev);
3117         seq_printf(m, "CRTC info\n");
3118         seq_printf(m, "---------\n");
3119         for_each_intel_crtc(dev, crtc) {
3120                 bool active;
3121                 struct intel_crtc_state *pipe_config;
3122                 int x, y;
3123
3124                 pipe_config = to_intel_crtc_state(crtc->base.state);
3125
3126                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3127                            crtc->base.base.id, pipe_name(crtc->pipe),
3128                            yesno(pipe_config->base.active),
3129                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3130                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3131
3132                 if (pipe_config->base.active) {
3133                         intel_crtc_info(m, crtc);
3134
3135                         active = cursor_position(dev, crtc->pipe, &x, &y);
3136                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3137                                    yesno(crtc->cursor_base),
3138                                    x, y, crtc->base.cursor->state->crtc_w,
3139                                    crtc->base.cursor->state->crtc_h,
3140                                    crtc->cursor_addr, yesno(active));
3141                         intel_scaler_info(m, crtc);
3142                         intel_plane_info(m, crtc);
3143                 }
3144
3145                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3146                            yesno(!crtc->cpu_fifo_underrun_disabled),
3147                            yesno(!crtc->pch_fifo_underrun_disabled));
3148         }
3149
3150         seq_printf(m, "\n");
3151         seq_printf(m, "Connector info\n");
3152         seq_printf(m, "--------------\n");
3153         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3154                 intel_connector_info(m, connector);
3155         }
3156         drm_modeset_unlock_all(dev);
3157         intel_runtime_pm_put(dev_priv);
3158
3159         return 0;
3160 }
3161
3162 static int i915_semaphore_status(struct seq_file *m, void *unused)
3163 {
3164         struct drm_info_node *node = (struct drm_info_node *) m->private;
3165         struct drm_device *dev = node->minor->dev;
3166         struct drm_i915_private *dev_priv = dev->dev_private;
3167         struct intel_engine_cs *engine;
3168         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3169         enum intel_engine_id id;
3170         int j, ret;
3171
3172         if (!i915_semaphore_is_enabled(dev)) {
3173                 seq_puts(m, "Semaphores are disabled\n");
3174                 return 0;
3175         }
3176
3177         ret = mutex_lock_interruptible(&dev->struct_mutex);
3178         if (ret)
3179                 return ret;
3180         intel_runtime_pm_get(dev_priv);
3181
3182         if (IS_BROADWELL(dev)) {
3183                 struct page *page;
3184                 uint64_t *seqno;
3185
3186                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3187
3188                 seqno = (uint64_t *)kmap_atomic(page);
3189                 for_each_engine_id(engine, dev_priv, id) {
3190                         uint64_t offset;
3191
3192                         seq_printf(m, "%s\n", engine->name);
3193
3194                         seq_puts(m, "  Last signal:");
3195                         for (j = 0; j < num_rings; j++) {
3196                                 offset = id * I915_NUM_ENGINES + j;
3197                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3198                                            seqno[offset], offset * 8);
3199                         }
3200                         seq_putc(m, '\n');
3201
3202                         seq_puts(m, "  Last wait:  ");
3203                         for (j = 0; j < num_rings; j++) {
3204                                 offset = id + (j * I915_NUM_ENGINES);
3205                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3206                                            seqno[offset], offset * 8);
3207                         }
3208                         seq_putc(m, '\n');
3209
3210                 }
3211                 kunmap_atomic(seqno);
3212         } else {
3213                 seq_puts(m, "  Last signal:");
3214                 for_each_engine(engine, dev_priv)
3215                         for (j = 0; j < num_rings; j++)
3216                                 seq_printf(m, "0x%08x\n",
3217                                            I915_READ(engine->semaphore.mbox.signal[j]));
3218                 seq_putc(m, '\n');
3219         }
3220
3221         seq_puts(m, "\nSync seqno:\n");
3222         for_each_engine(engine, dev_priv) {
3223                 for (j = 0; j < num_rings; j++)
3224                         seq_printf(m, "  0x%08x ",
3225                                    engine->semaphore.sync_seqno[j]);
3226                 seq_putc(m, '\n');
3227         }
3228         seq_putc(m, '\n');
3229
3230         intel_runtime_pm_put(dev_priv);
3231         mutex_unlock(&dev->struct_mutex);
3232         return 0;
3233 }
3234
3235 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3236 {
3237         struct drm_info_node *node = (struct drm_info_node *) m->private;
3238         struct drm_device *dev = node->minor->dev;
3239         struct drm_i915_private *dev_priv = dev->dev_private;
3240         int i;
3241
3242         drm_modeset_lock_all(dev);
3243         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3244                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3245
3246                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3247                 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3248                            pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3249                 seq_printf(m, " tracked hardware state:\n");
3250                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3251                 seq_printf(m, " dpll_md: 0x%08x\n",
3252                            pll->config.hw_state.dpll_md);
3253                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3254                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3255                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3256         }
3257         drm_modeset_unlock_all(dev);
3258
3259         return 0;
3260 }
3261
3262 static int i915_wa_registers(struct seq_file *m, void *unused)
3263 {
3264         int i;
3265         int ret;
3266         struct intel_engine_cs *engine;
3267         struct drm_info_node *node = (struct drm_info_node *) m->private;
3268         struct drm_device *dev = node->minor->dev;
3269         struct drm_i915_private *dev_priv = dev->dev_private;
3270         struct i915_workarounds *workarounds = &dev_priv->workarounds;
3271         enum intel_engine_id id;
3272
3273         ret = mutex_lock_interruptible(&dev->struct_mutex);
3274         if (ret)
3275                 return ret;
3276
3277         intel_runtime_pm_get(dev_priv);
3278
3279         seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3280         for_each_engine_id(engine, dev_priv, id)
3281                 seq_printf(m, "HW whitelist count for %s: %d\n",
3282                            engine->name, workarounds->hw_whitelist_count[id]);
3283         for (i = 0; i < workarounds->count; ++i) {
3284                 i915_reg_t addr;
3285                 u32 mask, value, read;
3286                 bool ok;
3287
3288                 addr = workarounds->reg[i].addr;
3289                 mask = workarounds->reg[i].mask;
3290                 value = workarounds->reg[i].value;
3291                 read = I915_READ(addr);
3292                 ok = (value & mask) == (read & mask);
3293                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3294                            i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3295         }
3296
3297         intel_runtime_pm_put(dev_priv);
3298         mutex_unlock(&dev->struct_mutex);
3299
3300         return 0;
3301 }
3302
3303 static int i915_ddb_info(struct seq_file *m, void *unused)
3304 {
3305         struct drm_info_node *node = m->private;
3306         struct drm_device *dev = node->minor->dev;
3307         struct drm_i915_private *dev_priv = dev->dev_private;
3308         struct skl_ddb_allocation *ddb;
3309         struct skl_ddb_entry *entry;
3310         enum pipe pipe;
3311         int plane;
3312
3313         if (INTEL_INFO(dev)->gen < 9)
3314                 return 0;
3315
3316         drm_modeset_lock_all(dev);
3317
3318         ddb = &dev_priv->wm.skl_hw.ddb;
3319
3320         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3321
3322         for_each_pipe(dev_priv, pipe) {
3323                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3324
3325                 for_each_plane(dev_priv, pipe, plane) {
3326                         entry = &ddb->plane[pipe][plane];
3327                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3328                                    entry->start, entry->end,
3329                                    skl_ddb_entry_size(entry));
3330                 }
3331
3332                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3333                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3334                            entry->end, skl_ddb_entry_size(entry));
3335         }
3336
3337         drm_modeset_unlock_all(dev);
3338
3339         return 0;
3340 }
3341
3342 static void drrs_status_per_crtc(struct seq_file *m,
3343                 struct drm_device *dev, struct intel_crtc *intel_crtc)
3344 {
3345         struct intel_encoder *intel_encoder;
3346         struct drm_i915_private *dev_priv = dev->dev_private;
3347         struct i915_drrs *drrs = &dev_priv->drrs;
3348         int vrefresh = 0;
3349
3350         for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3351                 /* Encoder connected on this CRTC */
3352                 switch (intel_encoder->type) {
3353                 case INTEL_OUTPUT_EDP:
3354                         seq_puts(m, "eDP:\n");
3355                         break;
3356                 case INTEL_OUTPUT_DSI:
3357                         seq_puts(m, "DSI:\n");
3358                         break;
3359                 case INTEL_OUTPUT_HDMI:
3360                         seq_puts(m, "HDMI:\n");
3361                         break;
3362                 case INTEL_OUTPUT_DISPLAYPORT:
3363                         seq_puts(m, "DP:\n");
3364                         break;
3365                 default:
3366                         seq_printf(m, "Other encoder (id=%d).\n",
3367                                                 intel_encoder->type);
3368                         return;
3369                 }
3370         }
3371
3372         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3373                 seq_puts(m, "\tVBT: DRRS_type: Static");
3374         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3375                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3376         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3377                 seq_puts(m, "\tVBT: DRRS_type: None");
3378         else
3379                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3380
3381         seq_puts(m, "\n\n");
3382
3383         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3384                 struct intel_panel *panel;
3385
3386                 mutex_lock(&drrs->mutex);
3387                 /* DRRS Supported */
3388                 seq_puts(m, "\tDRRS Supported: Yes\n");
3389
3390                 /* disable_drrs() will make drrs->dp NULL */
3391                 if (!drrs->dp) {
3392                         seq_puts(m, "Idleness DRRS: Disabled");
3393                         mutex_unlock(&drrs->mutex);
3394                         return;
3395                 }
3396
3397                 panel = &drrs->dp->attached_connector->panel;
3398                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3399                                         drrs->busy_frontbuffer_bits);
3400
3401                 seq_puts(m, "\n\t\t");
3402                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3403                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3404                         vrefresh = panel->fixed_mode->vrefresh;
3405                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3406                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3407                         vrefresh = panel->downclock_mode->vrefresh;
3408                 } else {
3409                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3410                                                 drrs->refresh_rate_type);
3411                         mutex_unlock(&drrs->mutex);
3412                         return;
3413                 }
3414                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3415
3416                 seq_puts(m, "\n\t\t");
3417                 mutex_unlock(&drrs->mutex);
3418         } else {
3419                 /* DRRS not supported. Print the VBT parameter*/
3420                 seq_puts(m, "\tDRRS Supported : No");
3421         }
3422         seq_puts(m, "\n");
3423 }
3424
3425 static int i915_drrs_status(struct seq_file *m, void *unused)
3426 {
3427         struct drm_info_node *node = m->private;
3428         struct drm_device *dev = node->minor->dev;
3429         struct intel_crtc *intel_crtc;
3430         int active_crtc_cnt = 0;
3431
3432         for_each_intel_crtc(dev, intel_crtc) {
3433                 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3434
3435                 if (intel_crtc->base.state->active) {
3436                         active_crtc_cnt++;
3437                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3438
3439                         drrs_status_per_crtc(m, dev, intel_crtc);
3440                 }
3441
3442                 drm_modeset_unlock(&intel_crtc->base.mutex);
3443         }
3444
3445         if (!active_crtc_cnt)
3446                 seq_puts(m, "No active crtc found\n");
3447
3448         return 0;
3449 }
3450
3451 struct pipe_crc_info {
3452         const char *name;
3453         struct drm_device *dev;
3454         enum pipe pipe;
3455 };
3456
3457 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3458 {
3459         struct drm_info_node *node = (struct drm_info_node *) m->private;
3460         struct drm_device *dev = node->minor->dev;
3461         struct drm_encoder *encoder;
3462         struct intel_encoder *intel_encoder;
3463         struct intel_digital_port *intel_dig_port;
3464         drm_modeset_lock_all(dev);
3465         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3466                 intel_encoder = to_intel_encoder(encoder);
3467                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3468                         continue;
3469                 intel_dig_port = enc_to_dig_port(encoder);
3470                 if (!intel_dig_port->dp.can_mst)
3471                         continue;
3472                 seq_printf(m, "MST Source Port %c\n",
3473                            port_name(intel_dig_port->port));
3474                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3475         }
3476         drm_modeset_unlock_all(dev);
3477         return 0;
3478 }
3479
3480 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3481 {
3482         struct pipe_crc_info *info = inode->i_private;
3483         struct drm_i915_private *dev_priv = info->dev->dev_private;
3484         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3485
3486         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3487                 return -ENODEV;
3488
3489         spin_lock_irq(&pipe_crc->lock);
3490
3491         if (pipe_crc->opened) {
3492                 spin_unlock_irq(&pipe_crc->lock);
3493                 return -EBUSY; /* already open */
3494         }
3495
3496         pipe_crc->opened = true;
3497         filep->private_data = inode->i_private;
3498
3499         spin_unlock_irq(&pipe_crc->lock);
3500
3501         return 0;
3502 }
3503
3504 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3505 {
3506         struct pipe_crc_info *info = inode->i_private;
3507         struct drm_i915_private *dev_priv = info->dev->dev_private;
3508         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3509
3510         spin_lock_irq(&pipe_crc->lock);
3511         pipe_crc->opened = false;
3512         spin_unlock_irq(&pipe_crc->lock);
3513
3514         return 0;
3515 }
3516
3517 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3518 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3519 /* account for \'0' */
3520 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3521
3522 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3523 {
3524         assert_spin_locked(&pipe_crc->lock);
3525         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3526                         INTEL_PIPE_CRC_ENTRIES_NR);
3527 }
3528
3529 static ssize_t
3530 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3531                    loff_t *pos)
3532 {
3533         struct pipe_crc_info *info = filep->private_data;
3534         struct drm_device *dev = info->dev;
3535         struct drm_i915_private *dev_priv = dev->dev_private;
3536         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3537         char buf[PIPE_CRC_BUFFER_LEN];
3538         int n_entries;
3539         ssize_t bytes_read;
3540
3541         /*
3542          * Don't allow user space to provide buffers not big enough to hold
3543          * a line of data.
3544          */
3545         if (count < PIPE_CRC_LINE_LEN)
3546                 return -EINVAL;
3547
3548         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3549                 return 0;
3550
3551         /* nothing to read */
3552         spin_lock_irq(&pipe_crc->lock);
3553         while (pipe_crc_data_count(pipe_crc) == 0) {
3554                 int ret;
3555
3556                 if (filep->f_flags & O_NONBLOCK) {
3557                         spin_unlock_irq(&pipe_crc->lock);
3558                         return -EAGAIN;
3559                 }
3560
3561                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3562                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3563                 if (ret) {
3564                         spin_unlock_irq(&pipe_crc->lock);
3565                         return ret;
3566                 }
3567         }
3568
3569         /* We now have one or more entries to read */
3570         n_entries = count / PIPE_CRC_LINE_LEN;
3571
3572         bytes_read = 0;
3573         while (n_entries > 0) {
3574                 struct intel_pipe_crc_entry *entry =
3575                         &pipe_crc->entries[pipe_crc->tail];
3576                 int ret;
3577
3578                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3579                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3580                         break;
3581
3582                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3583                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3584
3585                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3586                                        "%8u %8x %8x %8x %8x %8x\n",
3587                                        entry->frame, entry->crc[0],
3588                                        entry->crc[1], entry->crc[2],
3589                                        entry->crc[3], entry->crc[4]);
3590
3591                 spin_unlock_irq(&pipe_crc->lock);
3592
3593                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3594                 if (ret == PIPE_CRC_LINE_LEN)
3595                         return -EFAULT;
3596
3597                 user_buf += PIPE_CRC_LINE_LEN;
3598                 n_entries--;
3599
3600                 spin_lock_irq(&pipe_crc->lock);
3601         }
3602
3603         spin_unlock_irq(&pipe_crc->lock);
3604
3605         return bytes_read;
3606 }
3607
3608 static const struct file_operations i915_pipe_crc_fops = {
3609         .owner = THIS_MODULE,
3610         .open = i915_pipe_crc_open,
3611         .read = i915_pipe_crc_read,
3612         .release = i915_pipe_crc_release,
3613 };
3614
3615 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3616         {
3617                 .name = "i915_pipe_A_crc",
3618                 .pipe = PIPE_A,
3619         },
3620         {
3621                 .name = "i915_pipe_B_crc",
3622                 .pipe = PIPE_B,
3623         },
3624         {
3625                 .name = "i915_pipe_C_crc",
3626                 .pipe = PIPE_C,
3627         },
3628 };
3629
3630 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3631                                 enum pipe pipe)
3632 {
3633         struct drm_device *dev = minor->dev;
3634         struct dentry *ent;
3635         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3636
3637         info->dev = dev;
3638         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3639                                   &i915_pipe_crc_fops);
3640         if (!ent)
3641                 return -ENOMEM;
3642
3643         return drm_add_fake_info_node(minor, ent, info);
3644 }
3645
3646 static const char * const pipe_crc_sources[] = {
3647         "none",
3648         "plane1",
3649         "plane2",
3650         "pf",
3651         "pipe",
3652         "TV",
3653         "DP-B",
3654         "DP-C",
3655         "DP-D",
3656         "auto",
3657 };
3658
3659 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3660 {
3661         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3662         return pipe_crc_sources[source];
3663 }
3664
3665 static int display_crc_ctl_show(struct seq_file *m, void *data)
3666 {
3667         struct drm_device *dev = m->private;
3668         struct drm_i915_private *dev_priv = dev->dev_private;
3669         int i;
3670
3671         for (i = 0; i < I915_MAX_PIPES; i++)
3672                 seq_printf(m, "%c %s\n", pipe_name(i),
3673                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3674
3675         return 0;
3676 }
3677
3678 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3679 {
3680         struct drm_device *dev = inode->i_private;
3681
3682         return single_open(file, display_crc_ctl_show, dev);
3683 }
3684
3685 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3686                                  uint32_t *val)
3687 {
3688         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3689                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3690
3691         switch (*source) {
3692         case INTEL_PIPE_CRC_SOURCE_PIPE:
3693                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3694                 break;
3695         case INTEL_PIPE_CRC_SOURCE_NONE:
3696                 *val = 0;
3697                 break;
3698         default:
3699                 return -EINVAL;
3700         }
3701
3702         return 0;
3703 }
3704
3705 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3706                                      enum intel_pipe_crc_source *source)
3707 {
3708         struct intel_encoder *encoder;
3709         struct intel_crtc *crtc;
3710         struct intel_digital_port *dig_port;
3711         int ret = 0;
3712
3713         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3714
3715         drm_modeset_lock_all(dev);
3716         for_each_intel_encoder(dev, encoder) {
3717                 if (!encoder->base.crtc)
3718                         continue;
3719
3720                 crtc = to_intel_crtc(encoder->base.crtc);
3721
3722                 if (crtc->pipe != pipe)
3723                         continue;
3724
3725                 switch (encoder->type) {
3726                 case INTEL_OUTPUT_TVOUT:
3727                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3728                         break;
3729                 case INTEL_OUTPUT_DISPLAYPORT:
3730                 case INTEL_OUTPUT_EDP:
3731                         dig_port = enc_to_dig_port(&encoder->base);
3732                         switch (dig_port->port) {
3733                         case PORT_B:
3734                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3735                                 break;
3736                         case PORT_C:
3737                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3738                                 break;
3739                         case PORT_D:
3740                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3741                                 break;
3742                         default:
3743                                 WARN(1, "nonexisting DP port %c\n",
3744                                      port_name(dig_port->port));
3745                                 break;
3746                         }
3747                         break;
3748                 default:
3749                         break;
3750                 }
3751         }
3752         drm_modeset_unlock_all(dev);
3753
3754         return ret;
3755 }
3756
3757 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3758                                 enum pipe pipe,
3759                                 enum intel_pipe_crc_source *source,
3760                                 uint32_t *val)
3761 {
3762         struct drm_i915_private *dev_priv = dev->dev_private;
3763         bool need_stable_symbols = false;
3764
3765         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3766                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3767                 if (ret)
3768                         return ret;
3769         }
3770
3771         switch (*source) {
3772         case INTEL_PIPE_CRC_SOURCE_PIPE:
3773                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3774                 break;
3775         case INTEL_PIPE_CRC_SOURCE_DP_B:
3776                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3777                 need_stable_symbols = true;
3778                 break;
3779         case INTEL_PIPE_CRC_SOURCE_DP_C:
3780                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3781                 need_stable_symbols = true;
3782                 break;
3783         case INTEL_PIPE_CRC_SOURCE_DP_D:
3784                 if (!IS_CHERRYVIEW(dev))
3785                         return -EINVAL;
3786                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3787                 need_stable_symbols = true;
3788                 break;
3789         case INTEL_PIPE_CRC_SOURCE_NONE:
3790                 *val = 0;
3791                 break;
3792         default:
3793                 return -EINVAL;
3794         }
3795
3796         /*
3797          * When the pipe CRC tap point is after the transcoders we need
3798          * to tweak symbol-level features to produce a deterministic series of
3799          * symbols for a given frame. We need to reset those features only once
3800          * a frame (instead of every nth symbol):
3801          *   - DC-balance: used to ensure a better clock recovery from the data
3802          *     link (SDVO)
3803          *   - DisplayPort scrambling: used for EMI reduction
3804          */
3805         if (need_stable_symbols) {
3806                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3807
3808                 tmp |= DC_BALANCE_RESET_VLV;
3809                 switch (pipe) {
3810                 case PIPE_A:
3811                         tmp |= PIPE_A_SCRAMBLE_RESET;
3812                         break;
3813                 case PIPE_B:
3814                         tmp |= PIPE_B_SCRAMBLE_RESET;
3815                         break;
3816                 case PIPE_C:
3817                         tmp |= PIPE_C_SCRAMBLE_RESET;
3818                         break;
3819                 default:
3820                         return -EINVAL;
3821                 }
3822                 I915_WRITE(PORT_DFT2_G4X, tmp);
3823         }
3824
3825         return 0;
3826 }
3827
3828 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3829                                  enum pipe pipe,
3830                                  enum intel_pipe_crc_source *source,
3831                                  uint32_t *val)
3832 {
3833         struct drm_i915_private *dev_priv = dev->dev_private;
3834         bool need_stable_symbols = false;
3835
3836         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3837                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3838                 if (ret)
3839                         return ret;
3840         }
3841
3842         switch (*source) {
3843         case INTEL_PIPE_CRC_SOURCE_PIPE:
3844                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3845                 break;
3846         case INTEL_PIPE_CRC_SOURCE_TV:
3847                 if (!SUPPORTS_TV(dev))
3848                         return -EINVAL;
3849                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3850                 break;
3851         case INTEL_PIPE_CRC_SOURCE_DP_B:
3852                 if (!IS_G4X(dev))
3853                         return -EINVAL;
3854                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3855                 need_stable_symbols = true;
3856                 break;
3857         case INTEL_PIPE_CRC_SOURCE_DP_C:
3858                 if (!IS_G4X(dev))
3859                         return -EINVAL;
3860                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3861                 need_stable_symbols = true;
3862                 break;
3863         case INTEL_PIPE_CRC_SOURCE_DP_D:
3864                 if (!IS_G4X(dev))
3865                         return -EINVAL;
3866                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3867                 need_stable_symbols = true;
3868                 break;
3869         case INTEL_PIPE_CRC_SOURCE_NONE:
3870                 *val = 0;
3871                 break;
3872         default:
3873                 return -EINVAL;
3874         }
3875
3876         /*
3877          * When the pipe CRC tap point is after the transcoders we need
3878          * to tweak symbol-level features to produce a deterministic series of
3879          * symbols for a given frame. We need to reset those features only once
3880          * a frame (instead of every nth symbol):
3881          *   - DC-balance: used to ensure a better clock recovery from the data
3882          *     link (SDVO)
3883          *   - DisplayPort scrambling: used for EMI reduction
3884          */
3885         if (need_stable_symbols) {
3886                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3887
3888                 WARN_ON(!IS_G4X(dev));
3889
3890                 I915_WRITE(PORT_DFT_I9XX,
3891                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3892
3893                 if (pipe == PIPE_A)
3894                         tmp |= PIPE_A_SCRAMBLE_RESET;
3895                 else
3896                         tmp |= PIPE_B_SCRAMBLE_RESET;
3897
3898                 I915_WRITE(PORT_DFT2_G4X, tmp);
3899         }
3900
3901         return 0;
3902 }
3903
3904 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3905                                          enum pipe pipe)
3906 {
3907         struct drm_i915_private *dev_priv = dev->dev_private;
3908         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3909
3910         switch (pipe) {
3911         case PIPE_A:
3912                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3913                 break;
3914         case PIPE_B:
3915                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3916                 break;
3917         case PIPE_C:
3918                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3919                 break;
3920         default:
3921                 return;
3922         }
3923         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3924                 tmp &= ~DC_BALANCE_RESET_VLV;
3925         I915_WRITE(PORT_DFT2_G4X, tmp);
3926
3927 }
3928
3929 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3930                                          enum pipe pipe)
3931 {
3932         struct drm_i915_private *dev_priv = dev->dev_private;
3933         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3934
3935         if (pipe == PIPE_A)
3936                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3937         else
3938                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3939         I915_WRITE(PORT_DFT2_G4X, tmp);
3940
3941         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3942                 I915_WRITE(PORT_DFT_I9XX,
3943                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3944         }
3945 }
3946
3947 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3948                                 uint32_t *val)
3949 {
3950         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3951                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3952
3953         switch (*source) {
3954         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3955                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3956                 break;
3957         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3958                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3959                 break;
3960         case INTEL_PIPE_CRC_SOURCE_PIPE:
3961                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3962                 break;
3963         case INTEL_PIPE_CRC_SOURCE_NONE:
3964                 *val = 0;
3965                 break;
3966         default:
3967                 return -EINVAL;
3968         }
3969
3970         return 0;
3971 }
3972
3973 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3974 {
3975         struct drm_i915_private *dev_priv = dev->dev_private;
3976         struct intel_crtc *crtc =
3977                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3978         struct intel_crtc_state *pipe_config;
3979         struct drm_atomic_state *state;
3980         int ret = 0;
3981
3982         drm_modeset_lock_all(dev);
3983         state = drm_atomic_state_alloc(dev);
3984         if (!state) {
3985                 ret = -ENOMEM;
3986                 goto out;
3987         }
3988
3989         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3990         pipe_config = intel_atomic_get_crtc_state(state, crtc);
3991         if (IS_ERR(pipe_config)) {
3992                 ret = PTR_ERR(pipe_config);
3993                 goto out;
3994         }
3995
3996         pipe_config->pch_pfit.force_thru = enable;
3997         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3998             pipe_config->pch_pfit.enabled != enable)
3999                 pipe_config->base.connectors_changed = true;
4000
4001         ret = drm_atomic_commit(state);
4002 out:
4003         drm_modeset_unlock_all(dev);
4004         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
4005         if (ret)
4006                 drm_atomic_state_free(state);
4007 }
4008
4009 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
4010                                 enum pipe pipe,
4011                                 enum intel_pipe_crc_source *source,
4012                                 uint32_t *val)
4013 {
4014         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4015                 *source = INTEL_PIPE_CRC_SOURCE_PF;
4016
4017         switch (*source) {
4018         case INTEL_PIPE_CRC_SOURCE_PLANE1:
4019                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
4020                 break;
4021         case INTEL_PIPE_CRC_SOURCE_PLANE2:
4022                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
4023                 break;
4024         case INTEL_PIPE_CRC_SOURCE_PF:
4025                 if (IS_HASWELL(dev) && pipe == PIPE_A)
4026                         hsw_trans_edp_pipe_A_crc_wa(dev, true);
4027
4028                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4029                 break;
4030         case INTEL_PIPE_CRC_SOURCE_NONE:
4031                 *val = 0;
4032                 break;
4033         default:
4034                 return -EINVAL;
4035         }
4036
4037         return 0;
4038 }
4039
4040 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
4041                                enum intel_pipe_crc_source source)
4042 {
4043         struct drm_i915_private *dev_priv = dev->dev_private;
4044         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4045         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
4046                                                                         pipe));
4047         enum intel_display_power_domain power_domain;
4048         u32 val = 0; /* shut up gcc */
4049         int ret;
4050
4051         if (pipe_crc->source == source)
4052                 return 0;
4053
4054         /* forbid changing the source without going back to 'none' */
4055         if (pipe_crc->source && source)
4056                 return -EINVAL;
4057
4058         power_domain = POWER_DOMAIN_PIPE(pipe);
4059         if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4060                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4061                 return -EIO;
4062         }
4063
4064         if (IS_GEN2(dev))
4065                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4066         else if (INTEL_INFO(dev)->gen < 5)
4067                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4068         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4069                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4070         else if (IS_GEN5(dev) || IS_GEN6(dev))
4071                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4072         else
4073                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4074
4075         if (ret != 0)
4076                 goto out;
4077
4078         /* none -> real source transition */
4079         if (source) {
4080                 struct intel_pipe_crc_entry *entries;
4081
4082                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4083                                  pipe_name(pipe), pipe_crc_source_name(source));
4084
4085                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4086                                   sizeof(pipe_crc->entries[0]),
4087                                   GFP_KERNEL);
4088                 if (!entries) {
4089                         ret = -ENOMEM;
4090                         goto out;
4091                 }
4092
4093                 /*
4094                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4095                  * enabled and disabled dynamically based on package C states,
4096                  * user space can't make reliable use of the CRCs, so let's just
4097                  * completely disable it.
4098                  */
4099                 hsw_disable_ips(crtc);
4100
4101                 spin_lock_irq(&pipe_crc->lock);
4102                 kfree(pipe_crc->entries);
4103                 pipe_crc->entries = entries;
4104                 pipe_crc->head = 0;
4105                 pipe_crc->tail = 0;
4106                 spin_unlock_irq(&pipe_crc->lock);
4107         }
4108
4109         pipe_crc->source = source;
4110
4111         I915_WRITE(PIPE_CRC_CTL(pipe), val);
4112         POSTING_READ(PIPE_CRC_CTL(pipe));
4113
4114         /* real source -> none transition */
4115         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4116                 struct intel_pipe_crc_entry *entries;
4117                 struct intel_crtc *crtc =
4118                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4119
4120                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4121                                  pipe_name(pipe));
4122
4123                 drm_modeset_lock(&crtc->base.mutex, NULL);
4124                 if (crtc->base.state->active)
4125                         intel_wait_for_vblank(dev, pipe);
4126                 drm_modeset_unlock(&crtc->base.mutex);
4127
4128                 spin_lock_irq(&pipe_crc->lock);
4129                 entries = pipe_crc->entries;
4130                 pipe_crc->entries = NULL;
4131                 pipe_crc->head = 0;
4132                 pipe_crc->tail = 0;
4133                 spin_unlock_irq(&pipe_crc->lock);
4134
4135                 kfree(entries);
4136
4137                 if (IS_G4X(dev))
4138                         g4x_undo_pipe_scramble_reset(dev, pipe);
4139                 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4140                         vlv_undo_pipe_scramble_reset(dev, pipe);
4141                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4142                         hsw_trans_edp_pipe_A_crc_wa(dev, false);
4143
4144                 hsw_enable_ips(crtc);
4145         }
4146
4147         ret = 0;
4148
4149 out:
4150         intel_display_power_put(dev_priv, power_domain);
4151
4152         return ret;
4153 }
4154
4155 /*
4156  * Parse pipe CRC command strings:
4157  *   command: wsp* object wsp+ name wsp+ source wsp*
4158  *   object: 'pipe'
4159  *   name: (A | B | C)
4160  *   source: (none | plane1 | plane2 | pf)
4161  *   wsp: (#0x20 | #0x9 | #0xA)+
4162  *
4163  * eg.:
4164  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4165  *  "pipe A none"    ->  Stop CRC
4166  */
4167 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4168 {
4169         int n_words = 0;
4170
4171         while (*buf) {
4172                 char *end;
4173
4174                 /* skip leading white space */
4175                 buf = skip_spaces(buf);
4176                 if (!*buf)
4177                         break;  /* end of buffer */
4178
4179                 /* find end of word */
4180                 for (end = buf; *end && !isspace(*end); end++)
4181                         ;
4182
4183                 if (n_words == max_words) {
4184                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4185                                          max_words);
4186                         return -EINVAL; /* ran out of words[] before bytes */
4187                 }
4188
4189                 if (*end)
4190                         *end++ = '\0';
4191                 words[n_words++] = buf;
4192                 buf = end;
4193         }
4194
4195         return n_words;
4196 }
4197
4198 enum intel_pipe_crc_object {
4199         PIPE_CRC_OBJECT_PIPE,
4200 };
4201
4202 static const char * const pipe_crc_objects[] = {
4203         "pipe",
4204 };
4205
4206 static int
4207 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4208 {
4209         int i;
4210
4211         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4212                 if (!strcmp(buf, pipe_crc_objects[i])) {
4213                         *o = i;
4214                         return 0;
4215                     }
4216
4217         return -EINVAL;
4218 }
4219
4220 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4221 {
4222         const char name = buf[0];
4223
4224         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4225                 return -EINVAL;
4226
4227         *pipe = name - 'A';
4228
4229         return 0;
4230 }
4231
4232 static int
4233 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4234 {
4235         int i;
4236
4237         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4238                 if (!strcmp(buf, pipe_crc_sources[i])) {
4239                         *s = i;
4240                         return 0;
4241                     }
4242
4243         return -EINVAL;
4244 }
4245
4246 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4247 {
4248 #define N_WORDS 3
4249         int n_words;
4250         char *words[N_WORDS];
4251         enum pipe pipe;
4252         enum intel_pipe_crc_object object;
4253         enum intel_pipe_crc_source source;
4254
4255         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4256         if (n_words != N_WORDS) {
4257                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4258                                  N_WORDS);
4259                 return -EINVAL;
4260         }
4261
4262         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4263                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4264                 return -EINVAL;
4265         }
4266
4267         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4268                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4269                 return -EINVAL;
4270         }
4271
4272         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4273                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4274                 return -EINVAL;
4275         }
4276
4277         return pipe_crc_set_source(dev, pipe, source);
4278 }
4279
4280 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4281                                      size_t len, loff_t *offp)
4282 {
4283         struct seq_file *m = file->private_data;
4284         struct drm_device *dev = m->private;
4285         char *tmpbuf;
4286         int ret;
4287
4288         if (len == 0)
4289                 return 0;
4290
4291         if (len > PAGE_SIZE - 1) {
4292                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4293                                  PAGE_SIZE);
4294                 return -E2BIG;
4295         }
4296
4297         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4298         if (!tmpbuf)
4299                 return -ENOMEM;
4300
4301         if (copy_from_user(tmpbuf, ubuf, len)) {
4302                 ret = -EFAULT;
4303                 goto out;
4304         }
4305         tmpbuf[len] = '\0';
4306
4307         ret = display_crc_ctl_parse(dev, tmpbuf, len);
4308
4309 out:
4310         kfree(tmpbuf);
4311         if (ret < 0)
4312                 return ret;
4313
4314         *offp += len;
4315         return len;
4316 }
4317
4318 static const struct file_operations i915_display_crc_ctl_fops = {
4319         .owner = THIS_MODULE,
4320         .open = display_crc_ctl_open,
4321         .read = seq_read,
4322         .llseek = seq_lseek,
4323         .release = single_release,
4324         .write = display_crc_ctl_write
4325 };
4326
4327 static ssize_t i915_displayport_test_active_write(struct file *file,
4328                                             const char __user *ubuf,
4329                                             size_t len, loff_t *offp)
4330 {
4331         char *input_buffer;
4332         int status = 0;
4333         struct drm_device *dev;
4334         struct drm_connector *connector;
4335         struct list_head *connector_list;
4336         struct intel_dp *intel_dp;
4337         int val = 0;
4338
4339         dev = ((struct seq_file *)file->private_data)->private;
4340
4341         connector_list = &dev->mode_config.connector_list;
4342
4343         if (len == 0)
4344                 return 0;
4345
4346         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4347         if (!input_buffer)
4348                 return -ENOMEM;
4349
4350         if (copy_from_user(input_buffer, ubuf, len)) {
4351                 status = -EFAULT;
4352                 goto out;
4353         }
4354
4355         input_buffer[len] = '\0';
4356         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4357
4358         list_for_each_entry(connector, connector_list, head) {
4359
4360                 if (connector->connector_type !=
4361                     DRM_MODE_CONNECTOR_DisplayPort)
4362                         continue;
4363
4364                 if (connector->status == connector_status_connected &&
4365                     connector->encoder != NULL) {
4366                         intel_dp = enc_to_intel_dp(connector->encoder);
4367                         status = kstrtoint(input_buffer, 10, &val);
4368                         if (status < 0)
4369                                 goto out;
4370                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4371                         /* To prevent erroneous activation of the compliance
4372                          * testing code, only accept an actual value of 1 here
4373                          */
4374                         if (val == 1)
4375                                 intel_dp->compliance_test_active = 1;
4376                         else
4377                                 intel_dp->compliance_test_active = 0;
4378                 }
4379         }
4380 out:
4381         kfree(input_buffer);
4382         if (status < 0)
4383                 return status;
4384
4385         *offp += len;
4386         return len;
4387 }
4388
4389 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4390 {
4391         struct drm_device *dev = m->private;
4392         struct drm_connector *connector;
4393         struct list_head *connector_list = &dev->mode_config.connector_list;
4394         struct intel_dp *intel_dp;
4395
4396         list_for_each_entry(connector, connector_list, head) {
4397
4398                 if (connector->connector_type !=
4399                     DRM_MODE_CONNECTOR_DisplayPort)
4400                         continue;
4401
4402                 if (connector->status == connector_status_connected &&
4403                     connector->encoder != NULL) {
4404                         intel_dp = enc_to_intel_dp(connector->encoder);
4405                         if (intel_dp->compliance_test_active)
4406                                 seq_puts(m, "1");
4407                         else
4408                                 seq_puts(m, "0");
4409                 } else
4410                         seq_puts(m, "0");
4411         }
4412
4413         return 0;
4414 }
4415
4416 static int i915_displayport_test_active_open(struct inode *inode,
4417                                        struct file *file)
4418 {
4419         struct drm_device *dev = inode->i_private;
4420
4421         return single_open(file, i915_displayport_test_active_show, dev);
4422 }
4423
4424 static const struct file_operations i915_displayport_test_active_fops = {
4425         .owner = THIS_MODULE,
4426         .open = i915_displayport_test_active_open,
4427         .read = seq_read,
4428         .llseek = seq_lseek,
4429         .release = single_release,
4430         .write = i915_displayport_test_active_write
4431 };
4432
4433 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4434 {
4435         struct drm_device *dev = m->private;
4436         struct drm_connector *connector;
4437         struct list_head *connector_list = &dev->mode_config.connector_list;
4438         struct intel_dp *intel_dp;
4439
4440         list_for_each_entry(connector, connector_list, head) {
4441
4442                 if (connector->connector_type !=
4443                     DRM_MODE_CONNECTOR_DisplayPort)
4444                         continue;
4445
4446                 if (connector->status == connector_status_connected &&
4447                     connector->encoder != NULL) {
4448                         intel_dp = enc_to_intel_dp(connector->encoder);
4449                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4450                 } else
4451                         seq_puts(m, "0");
4452         }
4453
4454         return 0;
4455 }
4456 static int i915_displayport_test_data_open(struct inode *inode,
4457                                        struct file *file)
4458 {
4459         struct drm_device *dev = inode->i_private;
4460
4461         return single_open(file, i915_displayport_test_data_show, dev);
4462 }
4463
4464 static const struct file_operations i915_displayport_test_data_fops = {
4465         .owner = THIS_MODULE,
4466         .open = i915_displayport_test_data_open,
4467         .read = seq_read,
4468         .llseek = seq_lseek,
4469         .release = single_release
4470 };
4471
4472 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4473 {
4474         struct drm_device *dev = m->private;
4475         struct drm_connector *connector;
4476         struct list_head *connector_list = &dev->mode_config.connector_list;
4477         struct intel_dp *intel_dp;
4478
4479         list_for_each_entry(connector, connector_list, head) {
4480
4481                 if (connector->connector_type !=
4482                     DRM_MODE_CONNECTOR_DisplayPort)
4483                         continue;
4484
4485                 if (connector->status == connector_status_connected &&
4486                     connector->encoder != NULL) {
4487                         intel_dp = enc_to_intel_dp(connector->encoder);
4488                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4489                 } else
4490                         seq_puts(m, "0");
4491         }
4492
4493         return 0;
4494 }
4495
4496 static int i915_displayport_test_type_open(struct inode *inode,
4497                                        struct file *file)
4498 {
4499         struct drm_device *dev = inode->i_private;
4500
4501         return single_open(file, i915_displayport_test_type_show, dev);
4502 }
4503
4504 static const struct file_operations i915_displayport_test_type_fops = {
4505         .owner = THIS_MODULE,
4506         .open = i915_displayport_test_type_open,
4507         .read = seq_read,
4508         .llseek = seq_lseek,
4509         .release = single_release
4510 };
4511
4512 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4513 {
4514         struct drm_device *dev = m->private;
4515         int level;
4516         int num_levels;
4517
4518         if (IS_CHERRYVIEW(dev))
4519                 num_levels = 3;
4520         else if (IS_VALLEYVIEW(dev))
4521                 num_levels = 1;
4522         else
4523                 num_levels = ilk_wm_max_level(dev) + 1;
4524
4525         drm_modeset_lock_all(dev);
4526
4527         for (level = 0; level < num_levels; level++) {
4528                 unsigned int latency = wm[level];
4529
4530                 /*
4531                  * - WM1+ latency values in 0.5us units
4532                  * - latencies are in us on gen9/vlv/chv
4533                  */
4534                 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4535                     IS_CHERRYVIEW(dev))
4536                         latency *= 10;
4537                 else if (level > 0)
4538                         latency *= 5;
4539
4540                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4541                            level, wm[level], latency / 10, latency % 10);
4542         }
4543
4544         drm_modeset_unlock_all(dev);
4545 }
4546
4547 static int pri_wm_latency_show(struct seq_file *m, void *data)
4548 {
4549         struct drm_device *dev = m->private;
4550         struct drm_i915_private *dev_priv = dev->dev_private;
4551         const uint16_t *latencies;
4552
4553         if (INTEL_INFO(dev)->gen >= 9)
4554                 latencies = dev_priv->wm.skl_latency;
4555         else
4556                 latencies = to_i915(dev)->wm.pri_latency;
4557
4558         wm_latency_show(m, latencies);
4559
4560         return 0;
4561 }
4562
4563 static int spr_wm_latency_show(struct seq_file *m, void *data)
4564 {
4565         struct drm_device *dev = m->private;
4566         struct drm_i915_private *dev_priv = dev->dev_private;
4567         const uint16_t *latencies;
4568
4569         if (INTEL_INFO(dev)->gen >= 9)
4570                 latencies = dev_priv->wm.skl_latency;
4571         else
4572                 latencies = to_i915(dev)->wm.spr_latency;
4573
4574         wm_latency_show(m, latencies);
4575
4576         return 0;
4577 }
4578
4579 static int cur_wm_latency_show(struct seq_file *m, void *data)
4580 {
4581         struct drm_device *dev = m->private;
4582         struct drm_i915_private *dev_priv = dev->dev_private;
4583         const uint16_t *latencies;
4584
4585         if (INTEL_INFO(dev)->gen >= 9)
4586                 latencies = dev_priv->wm.skl_latency;
4587         else
4588                 latencies = to_i915(dev)->wm.cur_latency;
4589
4590         wm_latency_show(m, latencies);
4591
4592         return 0;
4593 }
4594
4595 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4596 {
4597         struct drm_device *dev = inode->i_private;
4598
4599         if (INTEL_INFO(dev)->gen < 5)
4600                 return -ENODEV;
4601
4602         return single_open(file, pri_wm_latency_show, dev);
4603 }
4604
4605 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4606 {
4607         struct drm_device *dev = inode->i_private;
4608
4609         if (HAS_GMCH_DISPLAY(dev))
4610                 return -ENODEV;
4611
4612         return single_open(file, spr_wm_latency_show, dev);
4613 }
4614
4615 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4616 {
4617         struct drm_device *dev = inode->i_private;
4618
4619         if (HAS_GMCH_DISPLAY(dev))
4620                 return -ENODEV;
4621
4622         return single_open(file, cur_wm_latency_show, dev);
4623 }
4624
4625 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4626                                 size_t len, loff_t *offp, uint16_t wm[8])
4627 {
4628         struct seq_file *m = file->private_data;
4629         struct drm_device *dev = m->private;
4630         uint16_t new[8] = { 0 };
4631         int num_levels;
4632         int level;
4633         int ret;
4634         char tmp[32];
4635
4636         if (IS_CHERRYVIEW(dev))
4637                 num_levels = 3;
4638         else if (IS_VALLEYVIEW(dev))
4639                 num_levels = 1;
4640         else
4641                 num_levels = ilk_wm_max_level(dev) + 1;
4642
4643         if (len >= sizeof(tmp))
4644                 return -EINVAL;
4645
4646         if (copy_from_user(tmp, ubuf, len))
4647                 return -EFAULT;
4648
4649         tmp[len] = '\0';
4650
4651         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4652                      &new[0], &new[1], &new[2], &new[3],
4653                      &new[4], &new[5], &new[6], &new[7]);
4654         if (ret != num_levels)
4655                 return -EINVAL;
4656
4657         drm_modeset_lock_all(dev);
4658
4659         for (level = 0; level < num_levels; level++)
4660                 wm[level] = new[level];
4661
4662         drm_modeset_unlock_all(dev);
4663
4664         return len;
4665 }
4666
4667
4668 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4669                                     size_t len, loff_t *offp)
4670 {
4671         struct seq_file *m = file->private_data;
4672         struct drm_device *dev = m->private;
4673         struct drm_i915_private *dev_priv = dev->dev_private;
4674         uint16_t *latencies;
4675
4676         if (INTEL_INFO(dev)->gen >= 9)
4677                 latencies = dev_priv->wm.skl_latency;
4678         else
4679                 latencies = to_i915(dev)->wm.pri_latency;
4680
4681         return wm_latency_write(file, ubuf, len, offp, latencies);
4682 }
4683
4684 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4685                                     size_t len, loff_t *offp)
4686 {
4687         struct seq_file *m = file->private_data;
4688         struct drm_device *dev = m->private;
4689         struct drm_i915_private *dev_priv = dev->dev_private;
4690         uint16_t *latencies;
4691
4692         if (INTEL_INFO(dev)->gen >= 9)
4693                 latencies = dev_priv->wm.skl_latency;
4694         else
4695                 latencies = to_i915(dev)->wm.spr_latency;
4696
4697         return wm_latency_write(file, ubuf, len, offp, latencies);
4698 }
4699
4700 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4701                                     size_t len, loff_t *offp)
4702 {
4703         struct seq_file *m = file->private_data;
4704         struct drm_device *dev = m->private;
4705         struct drm_i915_private *dev_priv = dev->dev_private;
4706         uint16_t *latencies;
4707
4708         if (INTEL_INFO(dev)->gen >= 9)
4709                 latencies = dev_priv->wm.skl_latency;
4710         else
4711                 latencies = to_i915(dev)->wm.cur_latency;
4712
4713         return wm_latency_write(file, ubuf, len, offp, latencies);
4714 }
4715
4716 static const struct file_operations i915_pri_wm_latency_fops = {
4717         .owner = THIS_MODULE,
4718         .open = pri_wm_latency_open,
4719         .read = seq_read,
4720         .llseek = seq_lseek,
4721         .release = single_release,
4722         .write = pri_wm_latency_write
4723 };
4724
4725 static const struct file_operations i915_spr_wm_latency_fops = {
4726         .owner = THIS_MODULE,
4727         .open = spr_wm_latency_open,
4728         .read = seq_read,
4729         .llseek = seq_lseek,
4730         .release = single_release,
4731         .write = spr_wm_latency_write
4732 };
4733
4734 static const struct file_operations i915_cur_wm_latency_fops = {
4735         .owner = THIS_MODULE,
4736         .open = cur_wm_latency_open,
4737         .read = seq_read,
4738         .llseek = seq_lseek,
4739         .release = single_release,
4740         .write = cur_wm_latency_write
4741 };
4742
4743 static int
4744 i915_wedged_get(void *data, u64 *val)
4745 {
4746         struct drm_device *dev = data;
4747         struct drm_i915_private *dev_priv = dev->dev_private;
4748
4749         *val = i915_terminally_wedged(&dev_priv->gpu_error);
4750
4751         return 0;
4752 }
4753
4754 static int
4755 i915_wedged_set(void *data, u64 val)
4756 {
4757         struct drm_device *dev = data;
4758         struct drm_i915_private *dev_priv = dev->dev_private;
4759
4760         /*
4761          * There is no safeguard against this debugfs entry colliding
4762          * with the hangcheck calling same i915_handle_error() in
4763          * parallel, causing an explosion. For now we assume that the
4764          * test harness is responsible enough not to inject gpu hangs
4765          * while it is writing to 'i915_wedged'
4766          */
4767
4768         if (i915_reset_in_progress(&dev_priv->gpu_error))
4769                 return -EAGAIN;
4770
4771         intel_runtime_pm_get(dev_priv);
4772
4773         i915_handle_error(dev, val,
4774                           "Manually setting wedged to %llu", val);
4775
4776         intel_runtime_pm_put(dev_priv);
4777
4778         return 0;
4779 }
4780
4781 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4782                         i915_wedged_get, i915_wedged_set,
4783                         "%llu\n");
4784
4785 static int
4786 i915_ring_stop_get(void *data, u64 *val)
4787 {
4788         struct drm_device *dev = data;
4789         struct drm_i915_private *dev_priv = dev->dev_private;
4790
4791         *val = dev_priv->gpu_error.stop_rings;
4792
4793         return 0;
4794 }
4795
4796 static int
4797 i915_ring_stop_set(void *data, u64 val)
4798 {
4799         struct drm_device *dev = data;
4800         struct drm_i915_private *dev_priv = dev->dev_private;
4801         int ret;
4802
4803         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4804
4805         ret = mutex_lock_interruptible(&dev->struct_mutex);
4806         if (ret)
4807                 return ret;
4808
4809         dev_priv->gpu_error.stop_rings = val;
4810         mutex_unlock(&dev->struct_mutex);
4811
4812         return 0;
4813 }
4814
4815 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4816                         i915_ring_stop_get, i915_ring_stop_set,
4817                         "0x%08llx\n");
4818
4819 static int
4820 i915_ring_missed_irq_get(void *data, u64 *val)
4821 {
4822         struct drm_device *dev = data;
4823         struct drm_i915_private *dev_priv = dev->dev_private;
4824
4825         *val = dev_priv->gpu_error.missed_irq_rings;
4826         return 0;
4827 }
4828
4829 static int
4830 i915_ring_missed_irq_set(void *data, u64 val)
4831 {
4832         struct drm_device *dev = data;
4833         struct drm_i915_private *dev_priv = dev->dev_private;
4834         int ret;
4835
4836         /* Lock against concurrent debugfs callers */
4837         ret = mutex_lock_interruptible(&dev->struct_mutex);
4838         if (ret)
4839                 return ret;
4840         dev_priv->gpu_error.missed_irq_rings = val;
4841         mutex_unlock(&dev->struct_mutex);
4842
4843         return 0;
4844 }
4845
4846 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4847                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4848                         "0x%08llx\n");
4849
4850 static int
4851 i915_ring_test_irq_get(void *data, u64 *val)
4852 {
4853         struct drm_device *dev = data;
4854         struct drm_i915_private *dev_priv = dev->dev_private;
4855
4856         *val = dev_priv->gpu_error.test_irq_rings;
4857
4858         return 0;
4859 }
4860
4861 static int
4862 i915_ring_test_irq_set(void *data, u64 val)
4863 {
4864         struct drm_device *dev = data;
4865         struct drm_i915_private *dev_priv = dev->dev_private;
4866         int ret;
4867
4868         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4869
4870         /* Lock against concurrent debugfs callers */
4871         ret = mutex_lock_interruptible(&dev->struct_mutex);
4872         if (ret)
4873                 return ret;
4874
4875         dev_priv->gpu_error.test_irq_rings = val;
4876         mutex_unlock(&dev->struct_mutex);
4877
4878         return 0;
4879 }
4880
4881 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4882                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4883                         "0x%08llx\n");
4884
4885 #define DROP_UNBOUND 0x1
4886 #define DROP_BOUND 0x2
4887 #define DROP_RETIRE 0x4
4888 #define DROP_ACTIVE 0x8
4889 #define DROP_ALL (DROP_UNBOUND | \
4890                   DROP_BOUND | \
4891                   DROP_RETIRE | \
4892                   DROP_ACTIVE)
4893 static int
4894 i915_drop_caches_get(void *data, u64 *val)
4895 {
4896         *val = DROP_ALL;
4897
4898         return 0;
4899 }
4900
4901 static int
4902 i915_drop_caches_set(void *data, u64 val)
4903 {
4904         struct drm_device *dev = data;
4905         struct drm_i915_private *dev_priv = dev->dev_private;
4906         int ret;
4907
4908         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4909
4910         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4911          * on ioctls on -EAGAIN. */
4912         ret = mutex_lock_interruptible(&dev->struct_mutex);
4913         if (ret)
4914                 return ret;
4915
4916         if (val & DROP_ACTIVE) {
4917                 ret = i915_gpu_idle(dev);
4918                 if (ret)
4919                         goto unlock;
4920         }
4921
4922         if (val & (DROP_RETIRE | DROP_ACTIVE))
4923                 i915_gem_retire_requests(dev);
4924
4925         if (val & DROP_BOUND)
4926                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4927
4928         if (val & DROP_UNBOUND)
4929                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4930
4931 unlock:
4932         mutex_unlock(&dev->struct_mutex);
4933
4934         return ret;
4935 }
4936
4937 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4938                         i915_drop_caches_get, i915_drop_caches_set,
4939                         "0x%08llx\n");
4940
4941 static int
4942 i915_max_freq_get(void *data, u64 *val)
4943 {
4944         struct drm_device *dev = data;
4945         struct drm_i915_private *dev_priv = dev->dev_private;
4946         int ret;
4947
4948         if (INTEL_INFO(dev)->gen < 6)
4949                 return -ENODEV;
4950
4951         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4952
4953         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4954         if (ret)
4955                 return ret;
4956
4957         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4958         mutex_unlock(&dev_priv->rps.hw_lock);
4959
4960         return 0;
4961 }
4962
4963 static int
4964 i915_max_freq_set(void *data, u64 val)
4965 {
4966         struct drm_device *dev = data;
4967         struct drm_i915_private *dev_priv = dev->dev_private;
4968         u32 hw_max, hw_min;
4969         int ret;
4970
4971         if (INTEL_INFO(dev)->gen < 6)
4972                 return -ENODEV;
4973
4974         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4975
4976         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4977
4978         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4979         if (ret)
4980                 return ret;
4981
4982         /*
4983          * Turbo will still be enabled, but won't go above the set value.
4984          */
4985         val = intel_freq_opcode(dev_priv, val);
4986
4987         hw_max = dev_priv->rps.max_freq;
4988         hw_min = dev_priv->rps.min_freq;
4989
4990         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4991                 mutex_unlock(&dev_priv->rps.hw_lock);
4992                 return -EINVAL;
4993         }
4994
4995         dev_priv->rps.max_freq_softlimit = val;
4996
4997         intel_set_rps(dev, val);
4998
4999         mutex_unlock(&dev_priv->rps.hw_lock);
5000
5001         return 0;
5002 }
5003
5004 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
5005                         i915_max_freq_get, i915_max_freq_set,
5006                         "%llu\n");
5007
5008 static int
5009 i915_min_freq_get(void *data, u64 *val)
5010 {
5011         struct drm_device *dev = data;
5012         struct drm_i915_private *dev_priv = dev->dev_private;
5013         int ret;
5014
5015         if (INTEL_INFO(dev)->gen < 6)
5016                 return -ENODEV;
5017
5018         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5019
5020         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5021         if (ret)
5022                 return ret;
5023
5024         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
5025         mutex_unlock(&dev_priv->rps.hw_lock);
5026
5027         return 0;
5028 }
5029
5030 static int
5031 i915_min_freq_set(void *data, u64 val)
5032 {
5033         struct drm_device *dev = data;
5034         struct drm_i915_private *dev_priv = dev->dev_private;
5035         u32 hw_max, hw_min;
5036         int ret;
5037
5038         if (INTEL_INFO(dev)->gen < 6)
5039                 return -ENODEV;
5040
5041         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5042
5043         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5044
5045         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5046         if (ret)
5047                 return ret;
5048
5049         /*
5050          * Turbo will still be enabled, but won't go below the set value.
5051          */
5052         val = intel_freq_opcode(dev_priv, val);
5053
5054         hw_max = dev_priv->rps.max_freq;
5055         hw_min = dev_priv->rps.min_freq;
5056
5057         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5058                 mutex_unlock(&dev_priv->rps.hw_lock);
5059                 return -EINVAL;
5060         }
5061
5062         dev_priv->rps.min_freq_softlimit = val;
5063
5064         intel_set_rps(dev, val);
5065
5066         mutex_unlock(&dev_priv->rps.hw_lock);
5067
5068         return 0;
5069 }
5070
5071 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5072                         i915_min_freq_get, i915_min_freq_set,
5073                         "%llu\n");
5074
5075 static int
5076 i915_cache_sharing_get(void *data, u64 *val)
5077 {
5078         struct drm_device *dev = data;
5079         struct drm_i915_private *dev_priv = dev->dev_private;
5080         u32 snpcr;
5081         int ret;
5082
5083         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5084                 return -ENODEV;
5085
5086         ret = mutex_lock_interruptible(&dev->struct_mutex);
5087         if (ret)
5088                 return ret;
5089         intel_runtime_pm_get(dev_priv);
5090
5091         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5092
5093         intel_runtime_pm_put(dev_priv);
5094         mutex_unlock(&dev_priv->dev->struct_mutex);
5095
5096         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5097
5098         return 0;
5099 }
5100
5101 static int
5102 i915_cache_sharing_set(void *data, u64 val)
5103 {
5104         struct drm_device *dev = data;
5105         struct drm_i915_private *dev_priv = dev->dev_private;
5106         u32 snpcr;
5107
5108         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5109                 return -ENODEV;
5110
5111         if (val > 3)
5112                 return -EINVAL;
5113
5114         intel_runtime_pm_get(dev_priv);
5115         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5116
5117         /* Update the cache sharing policy here as well */
5118         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5119         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5120         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5121         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5122
5123         intel_runtime_pm_put(dev_priv);
5124         return 0;
5125 }
5126
5127 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5128                         i915_cache_sharing_get, i915_cache_sharing_set,
5129                         "%llu\n");
5130
5131 struct sseu_dev_status {
5132         unsigned int slice_total;
5133         unsigned int subslice_total;
5134         unsigned int subslice_per_slice;
5135         unsigned int eu_total;
5136         unsigned int eu_per_subslice;
5137 };
5138
5139 static void cherryview_sseu_device_status(struct drm_device *dev,
5140                                           struct sseu_dev_status *stat)
5141 {
5142         struct drm_i915_private *dev_priv = dev->dev_private;
5143         int ss_max = 2;
5144         int ss;
5145         u32 sig1[ss_max], sig2[ss_max];
5146
5147         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5148         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5149         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5150         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5151
5152         for (ss = 0; ss < ss_max; ss++) {
5153                 unsigned int eu_cnt;
5154
5155                 if (sig1[ss] & CHV_SS_PG_ENABLE)
5156                         /* skip disabled subslice */
5157                         continue;
5158
5159                 stat->slice_total = 1;
5160                 stat->subslice_per_slice++;
5161                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5162                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5163                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5164                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5165                 stat->eu_total += eu_cnt;
5166                 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5167         }
5168         stat->subslice_total = stat->subslice_per_slice;
5169 }
5170
5171 static void gen9_sseu_device_status(struct drm_device *dev,
5172                                     struct sseu_dev_status *stat)
5173 {
5174         struct drm_i915_private *dev_priv = dev->dev_private;
5175         int s_max = 3, ss_max = 4;
5176         int s, ss;
5177         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5178
5179         /* BXT has a single slice and at most 3 subslices. */
5180         if (IS_BROXTON(dev)) {
5181                 s_max = 1;
5182                 ss_max = 3;
5183         }
5184
5185         for (s = 0; s < s_max; s++) {
5186                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5187                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5188                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5189         }
5190
5191         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5192                      GEN9_PGCTL_SSA_EU19_ACK |
5193                      GEN9_PGCTL_SSA_EU210_ACK |
5194                      GEN9_PGCTL_SSA_EU311_ACK;
5195         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5196                      GEN9_PGCTL_SSB_EU19_ACK |
5197                      GEN9_PGCTL_SSB_EU210_ACK |
5198                      GEN9_PGCTL_SSB_EU311_ACK;
5199
5200         for (s = 0; s < s_max; s++) {
5201                 unsigned int ss_cnt = 0;
5202
5203                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5204                         /* skip disabled slice */
5205                         continue;
5206
5207                 stat->slice_total++;
5208
5209                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5210                         ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5211
5212                 for (ss = 0; ss < ss_max; ss++) {
5213                         unsigned int eu_cnt;
5214
5215                         if (IS_BROXTON(dev) &&
5216                             !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5217                                 /* skip disabled subslice */
5218                                 continue;
5219
5220                         if (IS_BROXTON(dev))
5221                                 ss_cnt++;
5222
5223                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5224                                                eu_mask[ss%2]);
5225                         stat->eu_total += eu_cnt;
5226                         stat->eu_per_subslice = max(stat->eu_per_subslice,
5227                                                     eu_cnt);
5228                 }
5229
5230                 stat->subslice_total += ss_cnt;
5231                 stat->subslice_per_slice = max(stat->subslice_per_slice,
5232                                                ss_cnt);
5233         }
5234 }
5235
5236 static void broadwell_sseu_device_status(struct drm_device *dev,
5237                                          struct sseu_dev_status *stat)
5238 {
5239         struct drm_i915_private *dev_priv = dev->dev_private;
5240         int s;
5241         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5242
5243         stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5244
5245         if (stat->slice_total) {
5246                 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5247                 stat->subslice_total = stat->slice_total *
5248                                        stat->subslice_per_slice;
5249                 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5250                 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5251
5252                 /* subtract fused off EU(s) from enabled slice(s) */
5253                 for (s = 0; s < stat->slice_total; s++) {
5254                         u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5255
5256                         stat->eu_total -= hweight8(subslice_7eu);
5257                 }
5258         }
5259 }
5260
5261 static int i915_sseu_status(struct seq_file *m, void *unused)
5262 {
5263         struct drm_info_node *node = (struct drm_info_node *) m->private;
5264         struct drm_device *dev = node->minor->dev;
5265         struct sseu_dev_status stat;
5266
5267         if (INTEL_INFO(dev)->gen < 8)
5268                 return -ENODEV;
5269
5270         seq_puts(m, "SSEU Device Info\n");
5271         seq_printf(m, "  Available Slice Total: %u\n",
5272                    INTEL_INFO(dev)->slice_total);
5273         seq_printf(m, "  Available Subslice Total: %u\n",
5274                    INTEL_INFO(dev)->subslice_total);
5275         seq_printf(m, "  Available Subslice Per Slice: %u\n",
5276                    INTEL_INFO(dev)->subslice_per_slice);
5277         seq_printf(m, "  Available EU Total: %u\n",
5278                    INTEL_INFO(dev)->eu_total);
5279         seq_printf(m, "  Available EU Per Subslice: %u\n",
5280                    INTEL_INFO(dev)->eu_per_subslice);
5281         seq_printf(m, "  Has Slice Power Gating: %s\n",
5282                    yesno(INTEL_INFO(dev)->has_slice_pg));
5283         seq_printf(m, "  Has Subslice Power Gating: %s\n",
5284                    yesno(INTEL_INFO(dev)->has_subslice_pg));
5285         seq_printf(m, "  Has EU Power Gating: %s\n",
5286                    yesno(INTEL_INFO(dev)->has_eu_pg));
5287
5288         seq_puts(m, "SSEU Device Status\n");
5289         memset(&stat, 0, sizeof(stat));
5290         if (IS_CHERRYVIEW(dev)) {
5291                 cherryview_sseu_device_status(dev, &stat);
5292         } else if (IS_BROADWELL(dev)) {
5293                 broadwell_sseu_device_status(dev, &stat);
5294         } else if (INTEL_INFO(dev)->gen >= 9) {
5295                 gen9_sseu_device_status(dev, &stat);
5296         }
5297         seq_printf(m, "  Enabled Slice Total: %u\n",
5298                    stat.slice_total);
5299         seq_printf(m, "  Enabled Subslice Total: %u\n",
5300                    stat.subslice_total);
5301         seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5302                    stat.subslice_per_slice);
5303         seq_printf(m, "  Enabled EU Total: %u\n",
5304                    stat.eu_total);
5305         seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5306                    stat.eu_per_subslice);
5307
5308         return 0;
5309 }
5310
5311 static int i915_forcewake_open(struct inode *inode, struct file *file)
5312 {
5313         struct drm_device *dev = inode->i_private;
5314         struct drm_i915_private *dev_priv = dev->dev_private;
5315
5316         if (INTEL_INFO(dev)->gen < 6)
5317                 return 0;
5318
5319         intel_runtime_pm_get(dev_priv);
5320         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5321
5322         return 0;
5323 }
5324
5325 static int i915_forcewake_release(struct inode *inode, struct file *file)
5326 {
5327         struct drm_device *dev = inode->i_private;
5328         struct drm_i915_private *dev_priv = dev->dev_private;
5329
5330         if (INTEL_INFO(dev)->gen < 6)
5331                 return 0;
5332
5333         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5334         intel_runtime_pm_put(dev_priv);
5335
5336         return 0;
5337 }
5338
5339 static const struct file_operations i915_forcewake_fops = {
5340         .owner = THIS_MODULE,
5341         .open = i915_forcewake_open,
5342         .release = i915_forcewake_release,
5343 };
5344
5345 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5346 {
5347         struct drm_device *dev = minor->dev;
5348         struct dentry *ent;
5349
5350         ent = debugfs_create_file("i915_forcewake_user",
5351                                   S_IRUSR,
5352                                   root, dev,
5353                                   &i915_forcewake_fops);
5354         if (!ent)
5355                 return -ENOMEM;
5356
5357         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5358 }
5359
5360 static int i915_debugfs_create(struct dentry *root,
5361                                struct drm_minor *minor,
5362                                const char *name,
5363                                const struct file_operations *fops)
5364 {
5365         struct drm_device *dev = minor->dev;
5366         struct dentry *ent;
5367
5368         ent = debugfs_create_file(name,
5369                                   S_IRUGO | S_IWUSR,
5370                                   root, dev,
5371                                   fops);
5372         if (!ent)
5373                 return -ENOMEM;
5374
5375         return drm_add_fake_info_node(minor, ent, fops);
5376 }
5377
5378 static const struct drm_info_list i915_debugfs_list[] = {
5379         {"i915_capabilities", i915_capabilities, 0},
5380         {"i915_gem_objects", i915_gem_object_info, 0},
5381         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5382         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5383         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5384         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5385         {"i915_gem_stolen", i915_gem_stolen_list_info },
5386         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5387         {"i915_gem_request", i915_gem_request_info, 0},
5388         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5389         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5390         {"i915_gem_interrupt", i915_interrupt_info, 0},
5391         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5392         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5393         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5394         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5395         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5396         {"i915_guc_info", i915_guc_info, 0},
5397         {"i915_guc_load_status", i915_guc_load_status_info, 0},
5398         {"i915_guc_log_dump", i915_guc_log_dump, 0},
5399         {"i915_frequency_info", i915_frequency_info, 0},
5400         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5401         {"i915_drpc_info", i915_drpc_info, 0},
5402         {"i915_emon_status", i915_emon_status, 0},
5403         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5404         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5405         {"i915_fbc_status", i915_fbc_status, 0},
5406         {"i915_ips_status", i915_ips_status, 0},
5407         {"i915_sr_status", i915_sr_status, 0},
5408         {"i915_opregion", i915_opregion, 0},
5409         {"i915_vbt", i915_vbt, 0},
5410         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5411         {"i915_context_status", i915_context_status, 0},
5412         {"i915_dump_lrc", i915_dump_lrc, 0},
5413         {"i915_execlists", i915_execlists, 0},
5414         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5415         {"i915_swizzle_info", i915_swizzle_info, 0},
5416         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5417         {"i915_llc", i915_llc, 0},
5418         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5419         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5420         {"i915_energy_uJ", i915_energy_uJ, 0},
5421         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5422         {"i915_power_domain_info", i915_power_domain_info, 0},
5423         {"i915_dmc_info", i915_dmc_info, 0},
5424         {"i915_display_info", i915_display_info, 0},
5425         {"i915_semaphore_status", i915_semaphore_status, 0},
5426         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5427         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5428         {"i915_wa_registers", i915_wa_registers, 0},
5429         {"i915_ddb_info", i915_ddb_info, 0},
5430         {"i915_sseu_status", i915_sseu_status, 0},
5431         {"i915_drrs_status", i915_drrs_status, 0},
5432         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5433 };
5434 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5435
5436 static const struct i915_debugfs_files {
5437         const char *name;
5438         const struct file_operations *fops;
5439 } i915_debugfs_files[] = {
5440         {"i915_wedged", &i915_wedged_fops},
5441         {"i915_max_freq", &i915_max_freq_fops},
5442         {"i915_min_freq", &i915_min_freq_fops},
5443         {"i915_cache_sharing", &i915_cache_sharing_fops},
5444         {"i915_ring_stop", &i915_ring_stop_fops},
5445         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5446         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5447         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5448         {"i915_error_state", &i915_error_state_fops},
5449         {"i915_next_seqno", &i915_next_seqno_fops},
5450         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5451         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5452         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5453         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5454         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5455         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5456         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5457         {"i915_dp_test_active", &i915_displayport_test_active_fops}
5458 };
5459
5460 void intel_display_crc_init(struct drm_device *dev)
5461 {
5462         struct drm_i915_private *dev_priv = dev->dev_private;
5463         enum pipe pipe;
5464
5465         for_each_pipe(dev_priv, pipe) {
5466                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5467
5468                 pipe_crc->opened = false;
5469                 spin_lock_init(&pipe_crc->lock);
5470                 init_waitqueue_head(&pipe_crc->wq);
5471         }
5472 }
5473
5474 int i915_debugfs_init(struct drm_minor *minor)
5475 {
5476         int ret, i;
5477
5478         ret = i915_forcewake_create(minor->debugfs_root, minor);
5479         if (ret)
5480                 return ret;
5481
5482         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5483                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5484                 if (ret)
5485                         return ret;
5486         }
5487
5488         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5489                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5490                                           i915_debugfs_files[i].name,
5491                                           i915_debugfs_files[i].fops);
5492                 if (ret)
5493                         return ret;
5494         }
5495
5496         return drm_debugfs_create_files(i915_debugfs_list,
5497                                         I915_DEBUGFS_ENTRIES,
5498                                         minor->debugfs_root, minor);
5499 }
5500
5501 void i915_debugfs_cleanup(struct drm_minor *minor)
5502 {
5503         int i;
5504
5505         drm_debugfs_remove_files(i915_debugfs_list,
5506                                  I915_DEBUGFS_ENTRIES, minor);
5507
5508         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5509                                  1, minor);
5510
5511         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5512                 struct drm_info_list *info_list =
5513                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5514
5515                 drm_debugfs_remove_files(info_list, 1, minor);
5516         }
5517
5518         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5519                 struct drm_info_list *info_list =
5520                         (struct drm_info_list *) i915_debugfs_files[i].fops;
5521
5522                 drm_debugfs_remove_files(info_list, 1, minor);
5523         }
5524 }
5525
5526 struct dpcd_block {
5527         /* DPCD dump start address. */
5528         unsigned int offset;
5529         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5530         unsigned int end;
5531         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5532         size_t size;
5533         /* Only valid for eDP. */
5534         bool edp;
5535 };
5536
5537 static const struct dpcd_block i915_dpcd_debug[] = {
5538         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5539         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5540         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5541         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5542         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5543         { .offset = DP_SET_POWER },
5544         { .offset = DP_EDP_DPCD_REV },
5545         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5546         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5547         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5548 };
5549
5550 static int i915_dpcd_show(struct seq_file *m, void *data)
5551 {
5552         struct drm_connector *connector = m->private;
5553         struct intel_dp *intel_dp =
5554                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5555         uint8_t buf[16];
5556         ssize_t err;
5557         int i;
5558
5559         if (connector->status != connector_status_connected)
5560                 return -ENODEV;
5561
5562         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5563                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5564                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5565
5566                 if (b->edp &&
5567                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5568                         continue;
5569
5570                 /* low tech for now */
5571                 if (WARN_ON(size > sizeof(buf)))
5572                         continue;
5573
5574                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5575                 if (err <= 0) {
5576                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5577                                   size, b->offset, err);
5578                         continue;
5579                 }
5580
5581                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5582         }
5583
5584         return 0;
5585 }
5586
5587 static int i915_dpcd_open(struct inode *inode, struct file *file)
5588 {
5589         return single_open(file, i915_dpcd_show, inode->i_private);
5590 }
5591
5592 static const struct file_operations i915_dpcd_fops = {
5593         .owner = THIS_MODULE,
5594         .open = i915_dpcd_open,
5595         .read = seq_read,
5596         .llseek = seq_lseek,
5597         .release = single_release,
5598 };
5599
5600 /**
5601  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5602  * @connector: pointer to a registered drm_connector
5603  *
5604  * Cleanup will be done by drm_connector_unregister() through a call to
5605  * drm_debugfs_connector_remove().
5606  *
5607  * Returns 0 on success, negative error codes on error.
5608  */
5609 int i915_debugfs_connector_add(struct drm_connector *connector)
5610 {
5611         struct dentry *root = connector->debugfs_entry;
5612
5613         /* The connector must have been registered beforehands. */
5614         if (!root)
5615                 return -ENODEV;
5616
5617         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5618             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5619                 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5620                                     &i915_dpcd_fops);
5621
5622         return 0;
5623 }