drm/i915/guc: Add GuC css header parser
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53                        struct dentry *ent,
54                        const void *key)
55 {
56         struct drm_info_node *node;
57
58         node = kmalloc(sizeof(*node), GFP_KERNEL);
59         if (node == NULL) {
60                 debugfs_remove(ent);
61                 return -ENOMEM;
62         }
63
64         node->minor = minor;
65         node->dent = ent;
66         node->info_ent = (void *) key;
67
68         mutex_lock(&minor->debugfs_lock);
69         list_add(&node->list, &minor->debugfs_list);
70         mutex_unlock(&minor->debugfs_lock);
71
72         return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77         struct drm_info_node *node = m->private;
78         struct drm_device *dev = node->minor->dev;
79         const struct intel_device_info *info = INTEL_INFO(dev);
80
81         seq_printf(m, "gen: %d\n", info->gen);
82         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89         return 0;
90 }
91
92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94         if (obj->pin_display)
95                 return "p";
96         else
97                 return " ";
98 }
99
100 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102         switch (obj->tiling_mode) {
103         default:
104         case I915_TILING_NONE: return " ";
105         case I915_TILING_X: return "X";
106         case I915_TILING_Y: return "Y";
107         }
108 }
109
110 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
111 {
112         return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
113 }
114
115 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
116 {
117         u64 size = 0;
118         struct i915_vma *vma;
119
120         list_for_each_entry(vma, &obj->vma_list, vma_link) {
121                 if (i915_is_ggtt(vma->vm) &&
122                     drm_mm_node_allocated(&vma->node))
123                         size += vma->node.size;
124         }
125
126         return size;
127 }
128
129 static void
130 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
131 {
132         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
133         struct intel_engine_cs *ring;
134         struct i915_vma *vma;
135         int pin_count = 0;
136         int i;
137
138         seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
139                    &obj->base,
140                    obj->active ? "*" : " ",
141                    get_pin_flag(obj),
142                    get_tiling_flag(obj),
143                    get_global_flag(obj),
144                    obj->base.size / 1024,
145                    obj->base.read_domains,
146                    obj->base.write_domain);
147         for_each_ring(ring, dev_priv, i)
148                 seq_printf(m, "%x ",
149                                 i915_gem_request_get_seqno(obj->last_read_req[i]));
150         seq_printf(m, "] %x %x%s%s%s",
151                    i915_gem_request_get_seqno(obj->last_write_req),
152                    i915_gem_request_get_seqno(obj->last_fenced_req),
153                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
154                    obj->dirty ? " dirty" : "",
155                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
156         if (obj->base.name)
157                 seq_printf(m, " (name: %d)", obj->base.name);
158         list_for_each_entry(vma, &obj->vma_list, vma_link) {
159                 if (vma->pin_count > 0)
160                         pin_count++;
161         }
162         seq_printf(m, " (pinned x %d)", pin_count);
163         if (obj->pin_display)
164                 seq_printf(m, " (display)");
165         if (obj->fence_reg != I915_FENCE_REG_NONE)
166                 seq_printf(m, " (fence: %d)", obj->fence_reg);
167         list_for_each_entry(vma, &obj->vma_list, vma_link) {
168                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
169                            i915_is_ggtt(vma->vm) ? "g" : "pp",
170                            vma->node.start, vma->node.size);
171                 if (i915_is_ggtt(vma->vm))
172                         seq_printf(m, ", type: %u)", vma->ggtt_view.type);
173                 else
174                         seq_puts(m, ")");
175         }
176         if (obj->stolen)
177                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
178         if (obj->pin_display || obj->fault_mappable) {
179                 char s[3], *t = s;
180                 if (obj->pin_display)
181                         *t++ = 'p';
182                 if (obj->fault_mappable)
183                         *t++ = 'f';
184                 *t = '\0';
185                 seq_printf(m, " (%s mappable)", s);
186         }
187         if (obj->last_write_req != NULL)
188                 seq_printf(m, " (%s)",
189                            i915_gem_request_get_ring(obj->last_write_req)->name);
190         if (obj->frontbuffer_bits)
191                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
192 }
193
194 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
195 {
196         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
197         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
198         seq_putc(m, ' ');
199 }
200
201 static int i915_gem_object_list_info(struct seq_file *m, void *data)
202 {
203         struct drm_info_node *node = m->private;
204         uintptr_t list = (uintptr_t) node->info_ent->data;
205         struct list_head *head;
206         struct drm_device *dev = node->minor->dev;
207         struct drm_i915_private *dev_priv = dev->dev_private;
208         struct i915_address_space *vm = &dev_priv->gtt.base;
209         struct i915_vma *vma;
210         u64 total_obj_size, total_gtt_size;
211         int count, ret;
212
213         ret = mutex_lock_interruptible(&dev->struct_mutex);
214         if (ret)
215                 return ret;
216
217         /* FIXME: the user of this interface might want more than just GGTT */
218         switch (list) {
219         case ACTIVE_LIST:
220                 seq_puts(m, "Active:\n");
221                 head = &vm->active_list;
222                 break;
223         case INACTIVE_LIST:
224                 seq_puts(m, "Inactive:\n");
225                 head = &vm->inactive_list;
226                 break;
227         default:
228                 mutex_unlock(&dev->struct_mutex);
229                 return -EINVAL;
230         }
231
232         total_obj_size = total_gtt_size = count = 0;
233         list_for_each_entry(vma, head, mm_list) {
234                 seq_printf(m, "   ");
235                 describe_obj(m, vma->obj);
236                 seq_printf(m, "\n");
237                 total_obj_size += vma->obj->base.size;
238                 total_gtt_size += vma->node.size;
239                 count++;
240         }
241         mutex_unlock(&dev->struct_mutex);
242
243         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
244                    count, total_obj_size, total_gtt_size);
245         return 0;
246 }
247
248 static int obj_rank_by_stolen(void *priv,
249                               struct list_head *A, struct list_head *B)
250 {
251         struct drm_i915_gem_object *a =
252                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
253         struct drm_i915_gem_object *b =
254                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
255
256         if (a->stolen->start < b->stolen->start)
257                 return -1;
258         if (a->stolen->start > b->stolen->start)
259                 return 1;
260         return 0;
261 }
262
263 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
264 {
265         struct drm_info_node *node = m->private;
266         struct drm_device *dev = node->minor->dev;
267         struct drm_i915_private *dev_priv = dev->dev_private;
268         struct drm_i915_gem_object *obj;
269         u64 total_obj_size, total_gtt_size;
270         LIST_HEAD(stolen);
271         int count, ret;
272
273         ret = mutex_lock_interruptible(&dev->struct_mutex);
274         if (ret)
275                 return ret;
276
277         total_obj_size = total_gtt_size = count = 0;
278         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
279                 if (obj->stolen == NULL)
280                         continue;
281
282                 list_add(&obj->obj_exec_link, &stolen);
283
284                 total_obj_size += obj->base.size;
285                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
286                 count++;
287         }
288         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
289                 if (obj->stolen == NULL)
290                         continue;
291
292                 list_add(&obj->obj_exec_link, &stolen);
293
294                 total_obj_size += obj->base.size;
295                 count++;
296         }
297         list_sort(NULL, &stolen, obj_rank_by_stolen);
298         seq_puts(m, "Stolen:\n");
299         while (!list_empty(&stolen)) {
300                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
301                 seq_puts(m, "   ");
302                 describe_obj(m, obj);
303                 seq_putc(m, '\n');
304                 list_del_init(&obj->obj_exec_link);
305         }
306         mutex_unlock(&dev->struct_mutex);
307
308         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
309                    count, total_obj_size, total_gtt_size);
310         return 0;
311 }
312
313 #define count_objects(list, member) do { \
314         list_for_each_entry(obj, list, member) { \
315                 size += i915_gem_obj_total_ggtt_size(obj); \
316                 ++count; \
317                 if (obj->map_and_fenceable) { \
318                         mappable_size += i915_gem_obj_ggtt_size(obj); \
319                         ++mappable_count; \
320                 } \
321         } \
322 } while (0)
323
324 struct file_stats {
325         struct drm_i915_file_private *file_priv;
326         unsigned long count;
327         u64 total, unbound;
328         u64 global, shared;
329         u64 active, inactive;
330 };
331
332 static int per_file_stats(int id, void *ptr, void *data)
333 {
334         struct drm_i915_gem_object *obj = ptr;
335         struct file_stats *stats = data;
336         struct i915_vma *vma;
337
338         stats->count++;
339         stats->total += obj->base.size;
340
341         if (obj->base.name || obj->base.dma_buf)
342                 stats->shared += obj->base.size;
343
344         if (USES_FULL_PPGTT(obj->base.dev)) {
345                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
346                         struct i915_hw_ppgtt *ppgtt;
347
348                         if (!drm_mm_node_allocated(&vma->node))
349                                 continue;
350
351                         if (i915_is_ggtt(vma->vm)) {
352                                 stats->global += obj->base.size;
353                                 continue;
354                         }
355
356                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
357                         if (ppgtt->file_priv != stats->file_priv)
358                                 continue;
359
360                         if (obj->active) /* XXX per-vma statistic */
361                                 stats->active += obj->base.size;
362                         else
363                                 stats->inactive += obj->base.size;
364
365                         return 0;
366                 }
367         } else {
368                 if (i915_gem_obj_ggtt_bound(obj)) {
369                         stats->global += obj->base.size;
370                         if (obj->active)
371                                 stats->active += obj->base.size;
372                         else
373                                 stats->inactive += obj->base.size;
374                         return 0;
375                 }
376         }
377
378         if (!list_empty(&obj->global_list))
379                 stats->unbound += obj->base.size;
380
381         return 0;
382 }
383
384 #define print_file_stats(m, name, stats) do { \
385         if (stats.count) \
386                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
387                            name, \
388                            stats.count, \
389                            stats.total, \
390                            stats.active, \
391                            stats.inactive, \
392                            stats.global, \
393                            stats.shared, \
394                            stats.unbound); \
395 } while (0)
396
397 static void print_batch_pool_stats(struct seq_file *m,
398                                    struct drm_i915_private *dev_priv)
399 {
400         struct drm_i915_gem_object *obj;
401         struct file_stats stats;
402         struct intel_engine_cs *ring;
403         int i, j;
404
405         memset(&stats, 0, sizeof(stats));
406
407         for_each_ring(ring, dev_priv, i) {
408                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
409                         list_for_each_entry(obj,
410                                             &ring->batch_pool.cache_list[j],
411                                             batch_pool_link)
412                                 per_file_stats(0, obj, &stats);
413                 }
414         }
415
416         print_file_stats(m, "[k]batch pool", stats);
417 }
418
419 #define count_vmas(list, member) do { \
420         list_for_each_entry(vma, list, member) { \
421                 size += i915_gem_obj_total_ggtt_size(vma->obj); \
422                 ++count; \
423                 if (vma->obj->map_and_fenceable) { \
424                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
425                         ++mappable_count; \
426                 } \
427         } \
428 } while (0)
429
430 static int i915_gem_object_info(struct seq_file *m, void* data)
431 {
432         struct drm_info_node *node = m->private;
433         struct drm_device *dev = node->minor->dev;
434         struct drm_i915_private *dev_priv = dev->dev_private;
435         u32 count, mappable_count, purgeable_count;
436         u64 size, mappable_size, purgeable_size;
437         struct drm_i915_gem_object *obj;
438         struct i915_address_space *vm = &dev_priv->gtt.base;
439         struct drm_file *file;
440         struct i915_vma *vma;
441         int ret;
442
443         ret = mutex_lock_interruptible(&dev->struct_mutex);
444         if (ret)
445                 return ret;
446
447         seq_printf(m, "%u objects, %zu bytes\n",
448                    dev_priv->mm.object_count,
449                    dev_priv->mm.object_memory);
450
451         size = count = mappable_size = mappable_count = 0;
452         count_objects(&dev_priv->mm.bound_list, global_list);
453         seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
454                    count, mappable_count, size, mappable_size);
455
456         size = count = mappable_size = mappable_count = 0;
457         count_vmas(&vm->active_list, mm_list);
458         seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
459                    count, mappable_count, size, mappable_size);
460
461         size = count = mappable_size = mappable_count = 0;
462         count_vmas(&vm->inactive_list, mm_list);
463         seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
464                    count, mappable_count, size, mappable_size);
465
466         size = count = purgeable_size = purgeable_count = 0;
467         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
468                 size += obj->base.size, ++count;
469                 if (obj->madv == I915_MADV_DONTNEED)
470                         purgeable_size += obj->base.size, ++purgeable_count;
471         }
472         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
473
474         size = count = mappable_size = mappable_count = 0;
475         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
476                 if (obj->fault_mappable) {
477                         size += i915_gem_obj_ggtt_size(obj);
478                         ++count;
479                 }
480                 if (obj->pin_display) {
481                         mappable_size += i915_gem_obj_ggtt_size(obj);
482                         ++mappable_count;
483                 }
484                 if (obj->madv == I915_MADV_DONTNEED) {
485                         purgeable_size += obj->base.size;
486                         ++purgeable_count;
487                 }
488         }
489         seq_printf(m, "%u purgeable objects, %llu bytes\n",
490                    purgeable_count, purgeable_size);
491         seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
492                    mappable_count, mappable_size);
493         seq_printf(m, "%u fault mappable objects, %llu bytes\n",
494                    count, size);
495
496         seq_printf(m, "%llu [%llu] gtt total\n",
497                    dev_priv->gtt.base.total,
498                    (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
499
500         seq_putc(m, '\n');
501         print_batch_pool_stats(m, dev_priv);
502         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
503                 struct file_stats stats;
504                 struct task_struct *task;
505
506                 memset(&stats, 0, sizeof(stats));
507                 stats.file_priv = file->driver_priv;
508                 spin_lock(&file->table_lock);
509                 idr_for_each(&file->object_idr, per_file_stats, &stats);
510                 spin_unlock(&file->table_lock);
511                 /*
512                  * Although we have a valid reference on file->pid, that does
513                  * not guarantee that the task_struct who called get_pid() is
514                  * still alive (e.g. get_pid(current) => fork() => exit()).
515                  * Therefore, we need to protect this ->comm access using RCU.
516                  */
517                 rcu_read_lock();
518                 task = pid_task(file->pid, PIDTYPE_PID);
519                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
520                 rcu_read_unlock();
521         }
522
523         mutex_unlock(&dev->struct_mutex);
524
525         return 0;
526 }
527
528 static int i915_gem_gtt_info(struct seq_file *m, void *data)
529 {
530         struct drm_info_node *node = m->private;
531         struct drm_device *dev = node->minor->dev;
532         uintptr_t list = (uintptr_t) node->info_ent->data;
533         struct drm_i915_private *dev_priv = dev->dev_private;
534         struct drm_i915_gem_object *obj;
535         u64 total_obj_size, total_gtt_size;
536         int count, ret;
537
538         ret = mutex_lock_interruptible(&dev->struct_mutex);
539         if (ret)
540                 return ret;
541
542         total_obj_size = total_gtt_size = count = 0;
543         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
544                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
545                         continue;
546
547                 seq_puts(m, "   ");
548                 describe_obj(m, obj);
549                 seq_putc(m, '\n');
550                 total_obj_size += obj->base.size;
551                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
552                 count++;
553         }
554
555         mutex_unlock(&dev->struct_mutex);
556
557         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
558                    count, total_obj_size, total_gtt_size);
559
560         return 0;
561 }
562
563 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
564 {
565         struct drm_info_node *node = m->private;
566         struct drm_device *dev = node->minor->dev;
567         struct drm_i915_private *dev_priv = dev->dev_private;
568         struct intel_crtc *crtc;
569         int ret;
570
571         ret = mutex_lock_interruptible(&dev->struct_mutex);
572         if (ret)
573                 return ret;
574
575         for_each_intel_crtc(dev, crtc) {
576                 const char pipe = pipe_name(crtc->pipe);
577                 const char plane = plane_name(crtc->plane);
578                 struct intel_unpin_work *work;
579
580                 spin_lock_irq(&dev->event_lock);
581                 work = crtc->unpin_work;
582                 if (work == NULL) {
583                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
584                                    pipe, plane);
585                 } else {
586                         u32 addr;
587
588                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
589                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
590                                            pipe, plane);
591                         } else {
592                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
593                                            pipe, plane);
594                         }
595                         if (work->flip_queued_req) {
596                                 struct intel_engine_cs *ring =
597                                         i915_gem_request_get_ring(work->flip_queued_req);
598
599                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
600                                            ring->name,
601                                            i915_gem_request_get_seqno(work->flip_queued_req),
602                                            dev_priv->next_seqno,
603                                            ring->get_seqno(ring, true),
604                                            i915_gem_request_completed(work->flip_queued_req, true));
605                         } else
606                                 seq_printf(m, "Flip not associated with any ring\n");
607                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
608                                    work->flip_queued_vblank,
609                                    work->flip_ready_vblank,
610                                    drm_crtc_vblank_count(&crtc->base));
611                         if (work->enable_stall_check)
612                                 seq_puts(m, "Stall check enabled, ");
613                         else
614                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
615                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
616
617                         if (INTEL_INFO(dev)->gen >= 4)
618                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
619                         else
620                                 addr = I915_READ(DSPADDR(crtc->plane));
621                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
622
623                         if (work->pending_flip_obj) {
624                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
625                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
626                         }
627                 }
628                 spin_unlock_irq(&dev->event_lock);
629         }
630
631         mutex_unlock(&dev->struct_mutex);
632
633         return 0;
634 }
635
636 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
637 {
638         struct drm_info_node *node = m->private;
639         struct drm_device *dev = node->minor->dev;
640         struct drm_i915_private *dev_priv = dev->dev_private;
641         struct drm_i915_gem_object *obj;
642         struct intel_engine_cs *ring;
643         int total = 0;
644         int ret, i, j;
645
646         ret = mutex_lock_interruptible(&dev->struct_mutex);
647         if (ret)
648                 return ret;
649
650         for_each_ring(ring, dev_priv, i) {
651                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
652                         int count;
653
654                         count = 0;
655                         list_for_each_entry(obj,
656                                             &ring->batch_pool.cache_list[j],
657                                             batch_pool_link)
658                                 count++;
659                         seq_printf(m, "%s cache[%d]: %d objects\n",
660                                    ring->name, j, count);
661
662                         list_for_each_entry(obj,
663                                             &ring->batch_pool.cache_list[j],
664                                             batch_pool_link) {
665                                 seq_puts(m, "   ");
666                                 describe_obj(m, obj);
667                                 seq_putc(m, '\n');
668                         }
669
670                         total += count;
671                 }
672         }
673
674         seq_printf(m, "total: %d\n", total);
675
676         mutex_unlock(&dev->struct_mutex);
677
678         return 0;
679 }
680
681 static int i915_gem_request_info(struct seq_file *m, void *data)
682 {
683         struct drm_info_node *node = m->private;
684         struct drm_device *dev = node->minor->dev;
685         struct drm_i915_private *dev_priv = dev->dev_private;
686         struct intel_engine_cs *ring;
687         struct drm_i915_gem_request *req;
688         int ret, any, i;
689
690         ret = mutex_lock_interruptible(&dev->struct_mutex);
691         if (ret)
692                 return ret;
693
694         any = 0;
695         for_each_ring(ring, dev_priv, i) {
696                 int count;
697
698                 count = 0;
699                 list_for_each_entry(req, &ring->request_list, list)
700                         count++;
701                 if (count == 0)
702                         continue;
703
704                 seq_printf(m, "%s requests: %d\n", ring->name, count);
705                 list_for_each_entry(req, &ring->request_list, list) {
706                         struct task_struct *task;
707
708                         rcu_read_lock();
709                         task = NULL;
710                         if (req->pid)
711                                 task = pid_task(req->pid, PIDTYPE_PID);
712                         seq_printf(m, "    %x @ %d: %s [%d]\n",
713                                    req->seqno,
714                                    (int) (jiffies - req->emitted_jiffies),
715                                    task ? task->comm : "<unknown>",
716                                    task ? task->pid : -1);
717                         rcu_read_unlock();
718                 }
719
720                 any++;
721         }
722         mutex_unlock(&dev->struct_mutex);
723
724         if (any == 0)
725                 seq_puts(m, "No requests\n");
726
727         return 0;
728 }
729
730 static void i915_ring_seqno_info(struct seq_file *m,
731                                  struct intel_engine_cs *ring)
732 {
733         if (ring->get_seqno) {
734                 seq_printf(m, "Current sequence (%s): %x\n",
735                            ring->name, ring->get_seqno(ring, false));
736         }
737 }
738
739 static int i915_gem_seqno_info(struct seq_file *m, void *data)
740 {
741         struct drm_info_node *node = m->private;
742         struct drm_device *dev = node->minor->dev;
743         struct drm_i915_private *dev_priv = dev->dev_private;
744         struct intel_engine_cs *ring;
745         int ret, i;
746
747         ret = mutex_lock_interruptible(&dev->struct_mutex);
748         if (ret)
749                 return ret;
750         intel_runtime_pm_get(dev_priv);
751
752         for_each_ring(ring, dev_priv, i)
753                 i915_ring_seqno_info(m, ring);
754
755         intel_runtime_pm_put(dev_priv);
756         mutex_unlock(&dev->struct_mutex);
757
758         return 0;
759 }
760
761
762 static int i915_interrupt_info(struct seq_file *m, void *data)
763 {
764         struct drm_info_node *node = m->private;
765         struct drm_device *dev = node->minor->dev;
766         struct drm_i915_private *dev_priv = dev->dev_private;
767         struct intel_engine_cs *ring;
768         int ret, i, pipe;
769
770         ret = mutex_lock_interruptible(&dev->struct_mutex);
771         if (ret)
772                 return ret;
773         intel_runtime_pm_get(dev_priv);
774
775         if (IS_CHERRYVIEW(dev)) {
776                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
777                            I915_READ(GEN8_MASTER_IRQ));
778
779                 seq_printf(m, "Display IER:\t%08x\n",
780                            I915_READ(VLV_IER));
781                 seq_printf(m, "Display IIR:\t%08x\n",
782                            I915_READ(VLV_IIR));
783                 seq_printf(m, "Display IIR_RW:\t%08x\n",
784                            I915_READ(VLV_IIR_RW));
785                 seq_printf(m, "Display IMR:\t%08x\n",
786                            I915_READ(VLV_IMR));
787                 for_each_pipe(dev_priv, pipe)
788                         seq_printf(m, "Pipe %c stat:\t%08x\n",
789                                    pipe_name(pipe),
790                                    I915_READ(PIPESTAT(pipe)));
791
792                 seq_printf(m, "Port hotplug:\t%08x\n",
793                            I915_READ(PORT_HOTPLUG_EN));
794                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
795                            I915_READ(VLV_DPFLIPSTAT));
796                 seq_printf(m, "DPINVGTT:\t%08x\n",
797                            I915_READ(DPINVGTT));
798
799                 for (i = 0; i < 4; i++) {
800                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
801                                    i, I915_READ(GEN8_GT_IMR(i)));
802                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
803                                    i, I915_READ(GEN8_GT_IIR(i)));
804                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
805                                    i, I915_READ(GEN8_GT_IER(i)));
806                 }
807
808                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
809                            I915_READ(GEN8_PCU_IMR));
810                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
811                            I915_READ(GEN8_PCU_IIR));
812                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
813                            I915_READ(GEN8_PCU_IER));
814         } else if (INTEL_INFO(dev)->gen >= 8) {
815                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
816                            I915_READ(GEN8_MASTER_IRQ));
817
818                 for (i = 0; i < 4; i++) {
819                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
820                                    i, I915_READ(GEN8_GT_IMR(i)));
821                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
822                                    i, I915_READ(GEN8_GT_IIR(i)));
823                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
824                                    i, I915_READ(GEN8_GT_IER(i)));
825                 }
826
827                 for_each_pipe(dev_priv, pipe) {
828                         if (!intel_display_power_is_enabled(dev_priv,
829                                                 POWER_DOMAIN_PIPE(pipe))) {
830                                 seq_printf(m, "Pipe %c power disabled\n",
831                                            pipe_name(pipe));
832                                 continue;
833                         }
834                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
835                                    pipe_name(pipe),
836                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
837                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
838                                    pipe_name(pipe),
839                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
840                         seq_printf(m, "Pipe %c IER:\t%08x\n",
841                                    pipe_name(pipe),
842                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
843                 }
844
845                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
846                            I915_READ(GEN8_DE_PORT_IMR));
847                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
848                            I915_READ(GEN8_DE_PORT_IIR));
849                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
850                            I915_READ(GEN8_DE_PORT_IER));
851
852                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
853                            I915_READ(GEN8_DE_MISC_IMR));
854                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
855                            I915_READ(GEN8_DE_MISC_IIR));
856                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
857                            I915_READ(GEN8_DE_MISC_IER));
858
859                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
860                            I915_READ(GEN8_PCU_IMR));
861                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
862                            I915_READ(GEN8_PCU_IIR));
863                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
864                            I915_READ(GEN8_PCU_IER));
865         } else if (IS_VALLEYVIEW(dev)) {
866                 seq_printf(m, "Display IER:\t%08x\n",
867                            I915_READ(VLV_IER));
868                 seq_printf(m, "Display IIR:\t%08x\n",
869                            I915_READ(VLV_IIR));
870                 seq_printf(m, "Display IIR_RW:\t%08x\n",
871                            I915_READ(VLV_IIR_RW));
872                 seq_printf(m, "Display IMR:\t%08x\n",
873                            I915_READ(VLV_IMR));
874                 for_each_pipe(dev_priv, pipe)
875                         seq_printf(m, "Pipe %c stat:\t%08x\n",
876                                    pipe_name(pipe),
877                                    I915_READ(PIPESTAT(pipe)));
878
879                 seq_printf(m, "Master IER:\t%08x\n",
880                            I915_READ(VLV_MASTER_IER));
881
882                 seq_printf(m, "Render IER:\t%08x\n",
883                            I915_READ(GTIER));
884                 seq_printf(m, "Render IIR:\t%08x\n",
885                            I915_READ(GTIIR));
886                 seq_printf(m, "Render IMR:\t%08x\n",
887                            I915_READ(GTIMR));
888
889                 seq_printf(m, "PM IER:\t\t%08x\n",
890                            I915_READ(GEN6_PMIER));
891                 seq_printf(m, "PM IIR:\t\t%08x\n",
892                            I915_READ(GEN6_PMIIR));
893                 seq_printf(m, "PM IMR:\t\t%08x\n",
894                            I915_READ(GEN6_PMIMR));
895
896                 seq_printf(m, "Port hotplug:\t%08x\n",
897                            I915_READ(PORT_HOTPLUG_EN));
898                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
899                            I915_READ(VLV_DPFLIPSTAT));
900                 seq_printf(m, "DPINVGTT:\t%08x\n",
901                            I915_READ(DPINVGTT));
902
903         } else if (!HAS_PCH_SPLIT(dev)) {
904                 seq_printf(m, "Interrupt enable:    %08x\n",
905                            I915_READ(IER));
906                 seq_printf(m, "Interrupt identity:  %08x\n",
907                            I915_READ(IIR));
908                 seq_printf(m, "Interrupt mask:      %08x\n",
909                            I915_READ(IMR));
910                 for_each_pipe(dev_priv, pipe)
911                         seq_printf(m, "Pipe %c stat:         %08x\n",
912                                    pipe_name(pipe),
913                                    I915_READ(PIPESTAT(pipe)));
914         } else {
915                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
916                            I915_READ(DEIER));
917                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
918                            I915_READ(DEIIR));
919                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
920                            I915_READ(DEIMR));
921                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
922                            I915_READ(SDEIER));
923                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
924                            I915_READ(SDEIIR));
925                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
926                            I915_READ(SDEIMR));
927                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
928                            I915_READ(GTIER));
929                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
930                            I915_READ(GTIIR));
931                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
932                            I915_READ(GTIMR));
933         }
934         for_each_ring(ring, dev_priv, i) {
935                 if (INTEL_INFO(dev)->gen >= 6) {
936                         seq_printf(m,
937                                    "Graphics Interrupt mask (%s):       %08x\n",
938                                    ring->name, I915_READ_IMR(ring));
939                 }
940                 i915_ring_seqno_info(m, ring);
941         }
942         intel_runtime_pm_put(dev_priv);
943         mutex_unlock(&dev->struct_mutex);
944
945         return 0;
946 }
947
948 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
949 {
950         struct drm_info_node *node = m->private;
951         struct drm_device *dev = node->minor->dev;
952         struct drm_i915_private *dev_priv = dev->dev_private;
953         int i, ret;
954
955         ret = mutex_lock_interruptible(&dev->struct_mutex);
956         if (ret)
957                 return ret;
958
959         seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
960         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
961         for (i = 0; i < dev_priv->num_fence_regs; i++) {
962                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
963
964                 seq_printf(m, "Fence %d, pin count = %d, object = ",
965                            i, dev_priv->fence_regs[i].pin_count);
966                 if (obj == NULL)
967                         seq_puts(m, "unused");
968                 else
969                         describe_obj(m, obj);
970                 seq_putc(m, '\n');
971         }
972
973         mutex_unlock(&dev->struct_mutex);
974         return 0;
975 }
976
977 static int i915_hws_info(struct seq_file *m, void *data)
978 {
979         struct drm_info_node *node = m->private;
980         struct drm_device *dev = node->minor->dev;
981         struct drm_i915_private *dev_priv = dev->dev_private;
982         struct intel_engine_cs *ring;
983         const u32 *hws;
984         int i;
985
986         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
987         hws = ring->status_page.page_addr;
988         if (hws == NULL)
989                 return 0;
990
991         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
992                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
993                            i * 4,
994                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
995         }
996         return 0;
997 }
998
999 static ssize_t
1000 i915_error_state_write(struct file *filp,
1001                        const char __user *ubuf,
1002                        size_t cnt,
1003                        loff_t *ppos)
1004 {
1005         struct i915_error_state_file_priv *error_priv = filp->private_data;
1006         struct drm_device *dev = error_priv->dev;
1007         int ret;
1008
1009         DRM_DEBUG_DRIVER("Resetting error state\n");
1010
1011         ret = mutex_lock_interruptible(&dev->struct_mutex);
1012         if (ret)
1013                 return ret;
1014
1015         i915_destroy_error_state(dev);
1016         mutex_unlock(&dev->struct_mutex);
1017
1018         return cnt;
1019 }
1020
1021 static int i915_error_state_open(struct inode *inode, struct file *file)
1022 {
1023         struct drm_device *dev = inode->i_private;
1024         struct i915_error_state_file_priv *error_priv;
1025
1026         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1027         if (!error_priv)
1028                 return -ENOMEM;
1029
1030         error_priv->dev = dev;
1031
1032         i915_error_state_get(dev, error_priv);
1033
1034         file->private_data = error_priv;
1035
1036         return 0;
1037 }
1038
1039 static int i915_error_state_release(struct inode *inode, struct file *file)
1040 {
1041         struct i915_error_state_file_priv *error_priv = file->private_data;
1042
1043         i915_error_state_put(error_priv);
1044         kfree(error_priv);
1045
1046         return 0;
1047 }
1048
1049 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1050                                      size_t count, loff_t *pos)
1051 {
1052         struct i915_error_state_file_priv *error_priv = file->private_data;
1053         struct drm_i915_error_state_buf error_str;
1054         loff_t tmp_pos = 0;
1055         ssize_t ret_count = 0;
1056         int ret;
1057
1058         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1059         if (ret)
1060                 return ret;
1061
1062         ret = i915_error_state_to_str(&error_str, error_priv);
1063         if (ret)
1064                 goto out;
1065
1066         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1067                                             error_str.buf,
1068                                             error_str.bytes);
1069
1070         if (ret_count < 0)
1071                 ret = ret_count;
1072         else
1073                 *pos = error_str.start + ret_count;
1074 out:
1075         i915_error_state_buf_release(&error_str);
1076         return ret ?: ret_count;
1077 }
1078
1079 static const struct file_operations i915_error_state_fops = {
1080         .owner = THIS_MODULE,
1081         .open = i915_error_state_open,
1082         .read = i915_error_state_read,
1083         .write = i915_error_state_write,
1084         .llseek = default_llseek,
1085         .release = i915_error_state_release,
1086 };
1087
1088 static int
1089 i915_next_seqno_get(void *data, u64 *val)
1090 {
1091         struct drm_device *dev = data;
1092         struct drm_i915_private *dev_priv = dev->dev_private;
1093         int ret;
1094
1095         ret = mutex_lock_interruptible(&dev->struct_mutex);
1096         if (ret)
1097                 return ret;
1098
1099         *val = dev_priv->next_seqno;
1100         mutex_unlock(&dev->struct_mutex);
1101
1102         return 0;
1103 }
1104
1105 static int
1106 i915_next_seqno_set(void *data, u64 val)
1107 {
1108         struct drm_device *dev = data;
1109         int ret;
1110
1111         ret = mutex_lock_interruptible(&dev->struct_mutex);
1112         if (ret)
1113                 return ret;
1114
1115         ret = i915_gem_set_seqno(dev, val);
1116         mutex_unlock(&dev->struct_mutex);
1117
1118         return ret;
1119 }
1120
1121 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1122                         i915_next_seqno_get, i915_next_seqno_set,
1123                         "0x%llx\n");
1124
1125 static int i915_frequency_info(struct seq_file *m, void *unused)
1126 {
1127         struct drm_info_node *node = m->private;
1128         struct drm_device *dev = node->minor->dev;
1129         struct drm_i915_private *dev_priv = dev->dev_private;
1130         int ret = 0;
1131
1132         intel_runtime_pm_get(dev_priv);
1133
1134         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1135
1136         if (IS_GEN5(dev)) {
1137                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1138                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1139
1140                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1141                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1142                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1143                            MEMSTAT_VID_SHIFT);
1144                 seq_printf(m, "Current P-state: %d\n",
1145                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1146         } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1147                    IS_BROADWELL(dev) || IS_GEN9(dev)) {
1148                 u32 rp_state_limits;
1149                 u32 gt_perf_status;
1150                 u32 rp_state_cap;
1151                 u32 rpmodectl, rpinclimit, rpdeclimit;
1152                 u32 rpstat, cagf, reqf;
1153                 u32 rpupei, rpcurup, rpprevup;
1154                 u32 rpdownei, rpcurdown, rpprevdown;
1155                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1156                 int max_freq;
1157
1158                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1159                 if (IS_BROXTON(dev)) {
1160                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1161                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1162                 } else {
1163                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1164                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1165                 }
1166
1167                 /* RPSTAT1 is in the GT power well */
1168                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1169                 if (ret)
1170                         goto out;
1171
1172                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1173
1174                 reqf = I915_READ(GEN6_RPNSWREQ);
1175                 if (IS_GEN9(dev))
1176                         reqf >>= 23;
1177                 else {
1178                         reqf &= ~GEN6_TURBO_DISABLE;
1179                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1180                                 reqf >>= 24;
1181                         else
1182                                 reqf >>= 25;
1183                 }
1184                 reqf = intel_gpu_freq(dev_priv, reqf);
1185
1186                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1187                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1188                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1189
1190                 rpstat = I915_READ(GEN6_RPSTAT1);
1191                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1192                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1193                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1194                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1195                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1196                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1197                 if (IS_GEN9(dev))
1198                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1199                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1200                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1201                 else
1202                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1203                 cagf = intel_gpu_freq(dev_priv, cagf);
1204
1205                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1206                 mutex_unlock(&dev->struct_mutex);
1207
1208                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1209                         pm_ier = I915_READ(GEN6_PMIER);
1210                         pm_imr = I915_READ(GEN6_PMIMR);
1211                         pm_isr = I915_READ(GEN6_PMISR);
1212                         pm_iir = I915_READ(GEN6_PMIIR);
1213                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1214                 } else {
1215                         pm_ier = I915_READ(GEN8_GT_IER(2));
1216                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1217                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1218                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1219                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1220                 }
1221                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1222                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1223                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1224                 seq_printf(m, "Render p-state ratio: %d\n",
1225                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1226                 seq_printf(m, "Render p-state VID: %d\n",
1227                            gt_perf_status & 0xff);
1228                 seq_printf(m, "Render p-state limit: %d\n",
1229                            rp_state_limits & 0xff);
1230                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1231                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1232                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1233                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1234                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1235                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1236                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1237                            GEN6_CURICONT_MASK);
1238                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1239                            GEN6_CURBSYTAVG_MASK);
1240                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1241                            GEN6_CURBSYTAVG_MASK);
1242                 seq_printf(m, "Up threshold: %d%%\n",
1243                            dev_priv->rps.up_threshold);
1244
1245                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1246                            GEN6_CURIAVG_MASK);
1247                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1248                            GEN6_CURBSYTAVG_MASK);
1249                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1250                            GEN6_CURBSYTAVG_MASK);
1251                 seq_printf(m, "Down threshold: %d%%\n",
1252                            dev_priv->rps.down_threshold);
1253
1254                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1255                             rp_state_cap >> 16) & 0xff;
1256                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1257                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1258                            intel_gpu_freq(dev_priv, max_freq));
1259
1260                 max_freq = (rp_state_cap & 0xff00) >> 8;
1261                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1262                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1263                            intel_gpu_freq(dev_priv, max_freq));
1264
1265                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1266                             rp_state_cap >> 0) & 0xff;
1267                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1268                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1269                            intel_gpu_freq(dev_priv, max_freq));
1270                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1271                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1272
1273                 seq_printf(m, "Current freq: %d MHz\n",
1274                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1275                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1276                 seq_printf(m, "Idle freq: %d MHz\n",
1277                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1278                 seq_printf(m, "Min freq: %d MHz\n",
1279                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1280                 seq_printf(m, "Max freq: %d MHz\n",
1281                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1282                 seq_printf(m,
1283                            "efficient (RPe) frequency: %d MHz\n",
1284                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1285         } else if (IS_VALLEYVIEW(dev)) {
1286                 u32 freq_sts;
1287
1288                 mutex_lock(&dev_priv->rps.hw_lock);
1289                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1290                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1291                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1292
1293                 seq_printf(m, "actual GPU freq: %d MHz\n",
1294                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1295
1296                 seq_printf(m, "current GPU freq: %d MHz\n",
1297                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1298
1299                 seq_printf(m, "max GPU freq: %d MHz\n",
1300                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1301
1302                 seq_printf(m, "min GPU freq: %d MHz\n",
1303                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1304
1305                 seq_printf(m, "idle GPU freq: %d MHz\n",
1306                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1307
1308                 seq_printf(m,
1309                            "efficient (RPe) frequency: %d MHz\n",
1310                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1311                 mutex_unlock(&dev_priv->rps.hw_lock);
1312         } else {
1313                 seq_puts(m, "no P-state info available\n");
1314         }
1315
1316         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1317         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1318         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1319
1320 out:
1321         intel_runtime_pm_put(dev_priv);
1322         return ret;
1323 }
1324
1325 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1326 {
1327         struct drm_info_node *node = m->private;
1328         struct drm_device *dev = node->minor->dev;
1329         struct drm_i915_private *dev_priv = dev->dev_private;
1330         struct intel_engine_cs *ring;
1331         u64 acthd[I915_NUM_RINGS];
1332         u32 seqno[I915_NUM_RINGS];
1333         int i;
1334
1335         if (!i915.enable_hangcheck) {
1336                 seq_printf(m, "Hangcheck disabled\n");
1337                 return 0;
1338         }
1339
1340         intel_runtime_pm_get(dev_priv);
1341
1342         for_each_ring(ring, dev_priv, i) {
1343                 seqno[i] = ring->get_seqno(ring, false);
1344                 acthd[i] = intel_ring_get_active_head(ring);
1345         }
1346
1347         intel_runtime_pm_put(dev_priv);
1348
1349         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1350                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1351                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1352                                             jiffies));
1353         } else
1354                 seq_printf(m, "Hangcheck inactive\n");
1355
1356         for_each_ring(ring, dev_priv, i) {
1357                 seq_printf(m, "%s:\n", ring->name);
1358                 seq_printf(m, "\tseqno = %x [current %x]\n",
1359                            ring->hangcheck.seqno, seqno[i]);
1360                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1361                            (long long)ring->hangcheck.acthd,
1362                            (long long)acthd[i]);
1363                 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1364                            (long long)ring->hangcheck.max_acthd);
1365                 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1366                 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1367         }
1368
1369         return 0;
1370 }
1371
1372 static int ironlake_drpc_info(struct seq_file *m)
1373 {
1374         struct drm_info_node *node = m->private;
1375         struct drm_device *dev = node->minor->dev;
1376         struct drm_i915_private *dev_priv = dev->dev_private;
1377         u32 rgvmodectl, rstdbyctl;
1378         u16 crstandvid;
1379         int ret;
1380
1381         ret = mutex_lock_interruptible(&dev->struct_mutex);
1382         if (ret)
1383                 return ret;
1384         intel_runtime_pm_get(dev_priv);
1385
1386         rgvmodectl = I915_READ(MEMMODECTL);
1387         rstdbyctl = I915_READ(RSTDBYCTL);
1388         crstandvid = I915_READ16(CRSTANDVID);
1389
1390         intel_runtime_pm_put(dev_priv);
1391         mutex_unlock(&dev->struct_mutex);
1392
1393         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1394         seq_printf(m, "Boost freq: %d\n",
1395                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1396                    MEMMODE_BOOST_FREQ_SHIFT);
1397         seq_printf(m, "HW control enabled: %s\n",
1398                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1399         seq_printf(m, "SW control enabled: %s\n",
1400                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1401         seq_printf(m, "Gated voltage change: %s\n",
1402                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1403         seq_printf(m, "Starting frequency: P%d\n",
1404                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1405         seq_printf(m, "Max P-state: P%d\n",
1406                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1407         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1408         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1409         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1410         seq_printf(m, "Render standby enabled: %s\n",
1411                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1412         seq_puts(m, "Current RS state: ");
1413         switch (rstdbyctl & RSX_STATUS_MASK) {
1414         case RSX_STATUS_ON:
1415                 seq_puts(m, "on\n");
1416                 break;
1417         case RSX_STATUS_RC1:
1418                 seq_puts(m, "RC1\n");
1419                 break;
1420         case RSX_STATUS_RC1E:
1421                 seq_puts(m, "RC1E\n");
1422                 break;
1423         case RSX_STATUS_RS1:
1424                 seq_puts(m, "RS1\n");
1425                 break;
1426         case RSX_STATUS_RS2:
1427                 seq_puts(m, "RS2 (RC6)\n");
1428                 break;
1429         case RSX_STATUS_RS3:
1430                 seq_puts(m, "RC3 (RC6+)\n");
1431                 break;
1432         default:
1433                 seq_puts(m, "unknown\n");
1434                 break;
1435         }
1436
1437         return 0;
1438 }
1439
1440 static int i915_forcewake_domains(struct seq_file *m, void *data)
1441 {
1442         struct drm_info_node *node = m->private;
1443         struct drm_device *dev = node->minor->dev;
1444         struct drm_i915_private *dev_priv = dev->dev_private;
1445         struct intel_uncore_forcewake_domain *fw_domain;
1446         int i;
1447
1448         spin_lock_irq(&dev_priv->uncore.lock);
1449         for_each_fw_domain(fw_domain, dev_priv, i) {
1450                 seq_printf(m, "%s.wake_count = %u\n",
1451                            intel_uncore_forcewake_domain_to_str(i),
1452                            fw_domain->wake_count);
1453         }
1454         spin_unlock_irq(&dev_priv->uncore.lock);
1455
1456         return 0;
1457 }
1458
1459 static int vlv_drpc_info(struct seq_file *m)
1460 {
1461         struct drm_info_node *node = m->private;
1462         struct drm_device *dev = node->minor->dev;
1463         struct drm_i915_private *dev_priv = dev->dev_private;
1464         u32 rpmodectl1, rcctl1, pw_status;
1465
1466         intel_runtime_pm_get(dev_priv);
1467
1468         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1469         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1470         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1471
1472         intel_runtime_pm_put(dev_priv);
1473
1474         seq_printf(m, "Video Turbo Mode: %s\n",
1475                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1476         seq_printf(m, "Turbo enabled: %s\n",
1477                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1478         seq_printf(m, "HW control enabled: %s\n",
1479                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1480         seq_printf(m, "SW control enabled: %s\n",
1481                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1482                           GEN6_RP_MEDIA_SW_MODE));
1483         seq_printf(m, "RC6 Enabled: %s\n",
1484                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1485                                         GEN6_RC_CTL_EI_MODE(1))));
1486         seq_printf(m, "Render Power Well: %s\n",
1487                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1488         seq_printf(m, "Media Power Well: %s\n",
1489                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1490
1491         seq_printf(m, "Render RC6 residency since boot: %u\n",
1492                    I915_READ(VLV_GT_RENDER_RC6));
1493         seq_printf(m, "Media RC6 residency since boot: %u\n",
1494                    I915_READ(VLV_GT_MEDIA_RC6));
1495
1496         return i915_forcewake_domains(m, NULL);
1497 }
1498
1499 static int gen6_drpc_info(struct seq_file *m)
1500 {
1501         struct drm_info_node *node = m->private;
1502         struct drm_device *dev = node->minor->dev;
1503         struct drm_i915_private *dev_priv = dev->dev_private;
1504         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1505         unsigned forcewake_count;
1506         int count = 0, ret;
1507
1508         ret = mutex_lock_interruptible(&dev->struct_mutex);
1509         if (ret)
1510                 return ret;
1511         intel_runtime_pm_get(dev_priv);
1512
1513         spin_lock_irq(&dev_priv->uncore.lock);
1514         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1515         spin_unlock_irq(&dev_priv->uncore.lock);
1516
1517         if (forcewake_count) {
1518                 seq_puts(m, "RC information inaccurate because somebody "
1519                             "holds a forcewake reference \n");
1520         } else {
1521                 /* NB: we cannot use forcewake, else we read the wrong values */
1522                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1523                         udelay(10);
1524                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1525         }
1526
1527         gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1528         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1529
1530         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1531         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1532         mutex_unlock(&dev->struct_mutex);
1533         mutex_lock(&dev_priv->rps.hw_lock);
1534         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1535         mutex_unlock(&dev_priv->rps.hw_lock);
1536
1537         intel_runtime_pm_put(dev_priv);
1538
1539         seq_printf(m, "Video Turbo Mode: %s\n",
1540                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1541         seq_printf(m, "HW control enabled: %s\n",
1542                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1543         seq_printf(m, "SW control enabled: %s\n",
1544                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1545                           GEN6_RP_MEDIA_SW_MODE));
1546         seq_printf(m, "RC1e Enabled: %s\n",
1547                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1548         seq_printf(m, "RC6 Enabled: %s\n",
1549                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1550         seq_printf(m, "Deep RC6 Enabled: %s\n",
1551                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1552         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1553                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1554         seq_puts(m, "Current RC state: ");
1555         switch (gt_core_status & GEN6_RCn_MASK) {
1556         case GEN6_RC0:
1557                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1558                         seq_puts(m, "Core Power Down\n");
1559                 else
1560                         seq_puts(m, "on\n");
1561                 break;
1562         case GEN6_RC3:
1563                 seq_puts(m, "RC3\n");
1564                 break;
1565         case GEN6_RC6:
1566                 seq_puts(m, "RC6\n");
1567                 break;
1568         case GEN6_RC7:
1569                 seq_puts(m, "RC7\n");
1570                 break;
1571         default:
1572                 seq_puts(m, "Unknown\n");
1573                 break;
1574         }
1575
1576         seq_printf(m, "Core Power Down: %s\n",
1577                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1578
1579         /* Not exactly sure what this is */
1580         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1581                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1582         seq_printf(m, "RC6 residency since boot: %u\n",
1583                    I915_READ(GEN6_GT_GFX_RC6));
1584         seq_printf(m, "RC6+ residency since boot: %u\n",
1585                    I915_READ(GEN6_GT_GFX_RC6p));
1586         seq_printf(m, "RC6++ residency since boot: %u\n",
1587                    I915_READ(GEN6_GT_GFX_RC6pp));
1588
1589         seq_printf(m, "RC6   voltage: %dmV\n",
1590                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1591         seq_printf(m, "RC6+  voltage: %dmV\n",
1592                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1593         seq_printf(m, "RC6++ voltage: %dmV\n",
1594                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1595         return 0;
1596 }
1597
1598 static int i915_drpc_info(struct seq_file *m, void *unused)
1599 {
1600         struct drm_info_node *node = m->private;
1601         struct drm_device *dev = node->minor->dev;
1602
1603         if (IS_VALLEYVIEW(dev))
1604                 return vlv_drpc_info(m);
1605         else if (INTEL_INFO(dev)->gen >= 6)
1606                 return gen6_drpc_info(m);
1607         else
1608                 return ironlake_drpc_info(m);
1609 }
1610
1611 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1612 {
1613         struct drm_info_node *node = m->private;
1614         struct drm_device *dev = node->minor->dev;
1615         struct drm_i915_private *dev_priv = dev->dev_private;
1616
1617         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1618                    dev_priv->fb_tracking.busy_bits);
1619
1620         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1621                    dev_priv->fb_tracking.flip_bits);
1622
1623         return 0;
1624 }
1625
1626 static int i915_fbc_status(struct seq_file *m, void *unused)
1627 {
1628         struct drm_info_node *node = m->private;
1629         struct drm_device *dev = node->minor->dev;
1630         struct drm_i915_private *dev_priv = dev->dev_private;
1631
1632         if (!HAS_FBC(dev)) {
1633                 seq_puts(m, "FBC unsupported on this chipset\n");
1634                 return 0;
1635         }
1636
1637         intel_runtime_pm_get(dev_priv);
1638         mutex_lock(&dev_priv->fbc.lock);
1639
1640         if (intel_fbc_enabled(dev_priv))
1641                 seq_puts(m, "FBC enabled\n");
1642         else
1643                 seq_printf(m, "FBC disabled: %s\n",
1644                           intel_no_fbc_reason_str(dev_priv->fbc.no_fbc_reason));
1645
1646         if (INTEL_INFO(dev_priv)->gen >= 7)
1647                 seq_printf(m, "Compressing: %s\n",
1648                            yesno(I915_READ(FBC_STATUS2) &
1649                                  FBC_COMPRESSION_MASK));
1650
1651         mutex_unlock(&dev_priv->fbc.lock);
1652         intel_runtime_pm_put(dev_priv);
1653
1654         return 0;
1655 }
1656
1657 static int i915_fbc_fc_get(void *data, u64 *val)
1658 {
1659         struct drm_device *dev = data;
1660         struct drm_i915_private *dev_priv = dev->dev_private;
1661
1662         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1663                 return -ENODEV;
1664
1665         *val = dev_priv->fbc.false_color;
1666
1667         return 0;
1668 }
1669
1670 static int i915_fbc_fc_set(void *data, u64 val)
1671 {
1672         struct drm_device *dev = data;
1673         struct drm_i915_private *dev_priv = dev->dev_private;
1674         u32 reg;
1675
1676         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1677                 return -ENODEV;
1678
1679         mutex_lock(&dev_priv->fbc.lock);
1680
1681         reg = I915_READ(ILK_DPFC_CONTROL);
1682         dev_priv->fbc.false_color = val;
1683
1684         I915_WRITE(ILK_DPFC_CONTROL, val ?
1685                    (reg | FBC_CTL_FALSE_COLOR) :
1686                    (reg & ~FBC_CTL_FALSE_COLOR));
1687
1688         mutex_unlock(&dev_priv->fbc.lock);
1689         return 0;
1690 }
1691
1692 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1693                         i915_fbc_fc_get, i915_fbc_fc_set,
1694                         "%llu\n");
1695
1696 static int i915_ips_status(struct seq_file *m, void *unused)
1697 {
1698         struct drm_info_node *node = m->private;
1699         struct drm_device *dev = node->minor->dev;
1700         struct drm_i915_private *dev_priv = dev->dev_private;
1701
1702         if (!HAS_IPS(dev)) {
1703                 seq_puts(m, "not supported\n");
1704                 return 0;
1705         }
1706
1707         intel_runtime_pm_get(dev_priv);
1708
1709         seq_printf(m, "Enabled by kernel parameter: %s\n",
1710                    yesno(i915.enable_ips));
1711
1712         if (INTEL_INFO(dev)->gen >= 8) {
1713                 seq_puts(m, "Currently: unknown\n");
1714         } else {
1715                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1716                         seq_puts(m, "Currently: enabled\n");
1717                 else
1718                         seq_puts(m, "Currently: disabled\n");
1719         }
1720
1721         intel_runtime_pm_put(dev_priv);
1722
1723         return 0;
1724 }
1725
1726 static int i915_sr_status(struct seq_file *m, void *unused)
1727 {
1728         struct drm_info_node *node = m->private;
1729         struct drm_device *dev = node->minor->dev;
1730         struct drm_i915_private *dev_priv = dev->dev_private;
1731         bool sr_enabled = false;
1732
1733         intel_runtime_pm_get(dev_priv);
1734
1735         if (HAS_PCH_SPLIT(dev))
1736                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1737         else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1738                  IS_I945G(dev) || IS_I945GM(dev))
1739                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1740         else if (IS_I915GM(dev))
1741                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1742         else if (IS_PINEVIEW(dev))
1743                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1744         else if (IS_VALLEYVIEW(dev))
1745                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1746
1747         intel_runtime_pm_put(dev_priv);
1748
1749         seq_printf(m, "self-refresh: %s\n",
1750                    sr_enabled ? "enabled" : "disabled");
1751
1752         return 0;
1753 }
1754
1755 static int i915_emon_status(struct seq_file *m, void *unused)
1756 {
1757         struct drm_info_node *node = m->private;
1758         struct drm_device *dev = node->minor->dev;
1759         struct drm_i915_private *dev_priv = dev->dev_private;
1760         unsigned long temp, chipset, gfx;
1761         int ret;
1762
1763         if (!IS_GEN5(dev))
1764                 return -ENODEV;
1765
1766         ret = mutex_lock_interruptible(&dev->struct_mutex);
1767         if (ret)
1768                 return ret;
1769
1770         temp = i915_mch_val(dev_priv);
1771         chipset = i915_chipset_val(dev_priv);
1772         gfx = i915_gfx_val(dev_priv);
1773         mutex_unlock(&dev->struct_mutex);
1774
1775         seq_printf(m, "GMCH temp: %ld\n", temp);
1776         seq_printf(m, "Chipset power: %ld\n", chipset);
1777         seq_printf(m, "GFX power: %ld\n", gfx);
1778         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1779
1780         return 0;
1781 }
1782
1783 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1784 {
1785         struct drm_info_node *node = m->private;
1786         struct drm_device *dev = node->minor->dev;
1787         struct drm_i915_private *dev_priv = dev->dev_private;
1788         int ret = 0;
1789         int gpu_freq, ia_freq;
1790         unsigned int max_gpu_freq, min_gpu_freq;
1791
1792         if (!HAS_CORE_RING_FREQ(dev)) {
1793                 seq_puts(m, "unsupported on this chipset\n");
1794                 return 0;
1795         }
1796
1797         intel_runtime_pm_get(dev_priv);
1798
1799         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1800
1801         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1802         if (ret)
1803                 goto out;
1804
1805         if (IS_SKYLAKE(dev)) {
1806                 /* Convert GT frequency to 50 HZ units */
1807                 min_gpu_freq =
1808                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1809                 max_gpu_freq =
1810                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1811         } else {
1812                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1813                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1814         }
1815
1816         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1817
1818         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1819                 ia_freq = gpu_freq;
1820                 sandybridge_pcode_read(dev_priv,
1821                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1822                                        &ia_freq);
1823                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1824                            intel_gpu_freq(dev_priv, (gpu_freq *
1825                                 (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1))),
1826                            ((ia_freq >> 0) & 0xff) * 100,
1827                            ((ia_freq >> 8) & 0xff) * 100);
1828         }
1829
1830         mutex_unlock(&dev_priv->rps.hw_lock);
1831
1832 out:
1833         intel_runtime_pm_put(dev_priv);
1834         return ret;
1835 }
1836
1837 static int i915_opregion(struct seq_file *m, void *unused)
1838 {
1839         struct drm_info_node *node = m->private;
1840         struct drm_device *dev = node->minor->dev;
1841         struct drm_i915_private *dev_priv = dev->dev_private;
1842         struct intel_opregion *opregion = &dev_priv->opregion;
1843         void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1844         int ret;
1845
1846         if (data == NULL)
1847                 return -ENOMEM;
1848
1849         ret = mutex_lock_interruptible(&dev->struct_mutex);
1850         if (ret)
1851                 goto out;
1852
1853         if (opregion->header) {
1854                 memcpy(data, opregion->header, OPREGION_SIZE);
1855                 seq_write(m, data, OPREGION_SIZE);
1856         }
1857
1858         mutex_unlock(&dev->struct_mutex);
1859
1860 out:
1861         kfree(data);
1862         return 0;
1863 }
1864
1865 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1866 {
1867         struct drm_info_node *node = m->private;
1868         struct drm_device *dev = node->minor->dev;
1869         struct intel_fbdev *ifbdev = NULL;
1870         struct intel_framebuffer *fb;
1871         struct drm_framebuffer *drm_fb;
1872
1873 #ifdef CONFIG_DRM_FBDEV_EMULATION
1874         struct drm_i915_private *dev_priv = dev->dev_private;
1875
1876         ifbdev = dev_priv->fbdev;
1877         fb = to_intel_framebuffer(ifbdev->helper.fb);
1878
1879         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1880                    fb->base.width,
1881                    fb->base.height,
1882                    fb->base.depth,
1883                    fb->base.bits_per_pixel,
1884                    fb->base.modifier[0],
1885                    atomic_read(&fb->base.refcount.refcount));
1886         describe_obj(m, fb->obj);
1887         seq_putc(m, '\n');
1888 #endif
1889
1890         mutex_lock(&dev->mode_config.fb_lock);
1891         drm_for_each_fb(drm_fb, dev) {
1892                 fb = to_intel_framebuffer(drm_fb);
1893                 if (ifbdev && &fb->base == ifbdev->helper.fb)
1894                         continue;
1895
1896                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1897                            fb->base.width,
1898                            fb->base.height,
1899                            fb->base.depth,
1900                            fb->base.bits_per_pixel,
1901                            fb->base.modifier[0],
1902                            atomic_read(&fb->base.refcount.refcount));
1903                 describe_obj(m, fb->obj);
1904                 seq_putc(m, '\n');
1905         }
1906         mutex_unlock(&dev->mode_config.fb_lock);
1907
1908         return 0;
1909 }
1910
1911 static void describe_ctx_ringbuf(struct seq_file *m,
1912                                  struct intel_ringbuffer *ringbuf)
1913 {
1914         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1915                    ringbuf->space, ringbuf->head, ringbuf->tail,
1916                    ringbuf->last_retired_head);
1917 }
1918
1919 static int i915_context_status(struct seq_file *m, void *unused)
1920 {
1921         struct drm_info_node *node = m->private;
1922         struct drm_device *dev = node->minor->dev;
1923         struct drm_i915_private *dev_priv = dev->dev_private;
1924         struct intel_engine_cs *ring;
1925         struct intel_context *ctx;
1926         int ret, i;
1927
1928         ret = mutex_lock_interruptible(&dev->struct_mutex);
1929         if (ret)
1930                 return ret;
1931
1932         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1933                 if (!i915.enable_execlists &&
1934                     ctx->legacy_hw_ctx.rcs_state == NULL)
1935                         continue;
1936
1937                 seq_puts(m, "HW context ");
1938                 describe_ctx(m, ctx);
1939                 for_each_ring(ring, dev_priv, i) {
1940                         if (ring->default_context == ctx)
1941                                 seq_printf(m, "(default context %s) ",
1942                                            ring->name);
1943                 }
1944
1945                 if (i915.enable_execlists) {
1946                         seq_putc(m, '\n');
1947                         for_each_ring(ring, dev_priv, i) {
1948                                 struct drm_i915_gem_object *ctx_obj =
1949                                         ctx->engine[i].state;
1950                                 struct intel_ringbuffer *ringbuf =
1951                                         ctx->engine[i].ringbuf;
1952
1953                                 seq_printf(m, "%s: ", ring->name);
1954                                 if (ctx_obj)
1955                                         describe_obj(m, ctx_obj);
1956                                 if (ringbuf)
1957                                         describe_ctx_ringbuf(m, ringbuf);
1958                                 seq_putc(m, '\n');
1959                         }
1960                 } else {
1961                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1962                 }
1963
1964                 seq_putc(m, '\n');
1965         }
1966
1967         mutex_unlock(&dev->struct_mutex);
1968
1969         return 0;
1970 }
1971
1972 static void i915_dump_lrc_obj(struct seq_file *m,
1973                               struct intel_engine_cs *ring,
1974                               struct drm_i915_gem_object *ctx_obj)
1975 {
1976         struct page *page;
1977         uint32_t *reg_state;
1978         int j;
1979         unsigned long ggtt_offset = 0;
1980
1981         if (ctx_obj == NULL) {
1982                 seq_printf(m, "Context on %s with no gem object\n",
1983                            ring->name);
1984                 return;
1985         }
1986
1987         seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1988                    intel_execlists_ctx_id(ctx_obj));
1989
1990         if (!i915_gem_obj_ggtt_bound(ctx_obj))
1991                 seq_puts(m, "\tNot bound in GGTT\n");
1992         else
1993                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1994
1995         if (i915_gem_object_get_pages(ctx_obj)) {
1996                 seq_puts(m, "\tFailed to get pages for context object\n");
1997                 return;
1998         }
1999
2000         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2001         if (!WARN_ON(page == NULL)) {
2002                 reg_state = kmap_atomic(page);
2003
2004                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2005                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2006                                    ggtt_offset + 4096 + (j * 4),
2007                                    reg_state[j], reg_state[j + 1],
2008                                    reg_state[j + 2], reg_state[j + 3]);
2009                 }
2010                 kunmap_atomic(reg_state);
2011         }
2012
2013         seq_putc(m, '\n');
2014 }
2015
2016 static int i915_dump_lrc(struct seq_file *m, void *unused)
2017 {
2018         struct drm_info_node *node = (struct drm_info_node *) m->private;
2019         struct drm_device *dev = node->minor->dev;
2020         struct drm_i915_private *dev_priv = dev->dev_private;
2021         struct intel_engine_cs *ring;
2022         struct intel_context *ctx;
2023         int ret, i;
2024
2025         if (!i915.enable_execlists) {
2026                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2027                 return 0;
2028         }
2029
2030         ret = mutex_lock_interruptible(&dev->struct_mutex);
2031         if (ret)
2032                 return ret;
2033
2034         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2035                 for_each_ring(ring, dev_priv, i) {
2036                         if (ring->default_context != ctx)
2037                                 i915_dump_lrc_obj(m, ring,
2038                                                   ctx->engine[i].state);
2039                 }
2040         }
2041
2042         mutex_unlock(&dev->struct_mutex);
2043
2044         return 0;
2045 }
2046
2047 static int i915_execlists(struct seq_file *m, void *data)
2048 {
2049         struct drm_info_node *node = (struct drm_info_node *)m->private;
2050         struct drm_device *dev = node->minor->dev;
2051         struct drm_i915_private *dev_priv = dev->dev_private;
2052         struct intel_engine_cs *ring;
2053         u32 status_pointer;
2054         u8 read_pointer;
2055         u8 write_pointer;
2056         u32 status;
2057         u32 ctx_id;
2058         struct list_head *cursor;
2059         int ring_id, i;
2060         int ret;
2061
2062         if (!i915.enable_execlists) {
2063                 seq_puts(m, "Logical Ring Contexts are disabled\n");
2064                 return 0;
2065         }
2066
2067         ret = mutex_lock_interruptible(&dev->struct_mutex);
2068         if (ret)
2069                 return ret;
2070
2071         intel_runtime_pm_get(dev_priv);
2072
2073         for_each_ring(ring, dev_priv, ring_id) {
2074                 struct drm_i915_gem_request *head_req = NULL;
2075                 int count = 0;
2076                 unsigned long flags;
2077
2078                 seq_printf(m, "%s\n", ring->name);
2079
2080                 status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
2081                 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
2082                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2083                            status, ctx_id);
2084
2085                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2086                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2087
2088                 read_pointer = ring->next_context_status_buffer;
2089                 write_pointer = status_pointer & 0x07;
2090                 if (read_pointer > write_pointer)
2091                         write_pointer += 6;
2092                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2093                            read_pointer, write_pointer);
2094
2095                 for (i = 0; i < 6; i++) {
2096                         status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
2097                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
2098
2099                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2100                                    i, status, ctx_id);
2101                 }
2102
2103                 spin_lock_irqsave(&ring->execlist_lock, flags);
2104                 list_for_each(cursor, &ring->execlist_queue)
2105                         count++;
2106                 head_req = list_first_entry_or_null(&ring->execlist_queue,
2107                                 struct drm_i915_gem_request, execlist_link);
2108                 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2109
2110                 seq_printf(m, "\t%d requests in queue\n", count);
2111                 if (head_req) {
2112                         struct drm_i915_gem_object *ctx_obj;
2113
2114                         ctx_obj = head_req->ctx->engine[ring_id].state;
2115                         seq_printf(m, "\tHead request id: %u\n",
2116                                    intel_execlists_ctx_id(ctx_obj));
2117                         seq_printf(m, "\tHead request tail: %u\n",
2118                                    head_req->tail);
2119                 }
2120
2121                 seq_putc(m, '\n');
2122         }
2123
2124         intel_runtime_pm_put(dev_priv);
2125         mutex_unlock(&dev->struct_mutex);
2126
2127         return 0;
2128 }
2129
2130 static const char *swizzle_string(unsigned swizzle)
2131 {
2132         switch (swizzle) {
2133         case I915_BIT_6_SWIZZLE_NONE:
2134                 return "none";
2135         case I915_BIT_6_SWIZZLE_9:
2136                 return "bit9";
2137         case I915_BIT_6_SWIZZLE_9_10:
2138                 return "bit9/bit10";
2139         case I915_BIT_6_SWIZZLE_9_11:
2140                 return "bit9/bit11";
2141         case I915_BIT_6_SWIZZLE_9_10_11:
2142                 return "bit9/bit10/bit11";
2143         case I915_BIT_6_SWIZZLE_9_17:
2144                 return "bit9/bit17";
2145         case I915_BIT_6_SWIZZLE_9_10_17:
2146                 return "bit9/bit10/bit17";
2147         case I915_BIT_6_SWIZZLE_UNKNOWN:
2148                 return "unknown";
2149         }
2150
2151         return "bug";
2152 }
2153
2154 static int i915_swizzle_info(struct seq_file *m, void *data)
2155 {
2156         struct drm_info_node *node = m->private;
2157         struct drm_device *dev = node->minor->dev;
2158         struct drm_i915_private *dev_priv = dev->dev_private;
2159         int ret;
2160
2161         ret = mutex_lock_interruptible(&dev->struct_mutex);
2162         if (ret)
2163                 return ret;
2164         intel_runtime_pm_get(dev_priv);
2165
2166         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2167                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2168         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2169                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2170
2171         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2172                 seq_printf(m, "DDC = 0x%08x\n",
2173                            I915_READ(DCC));
2174                 seq_printf(m, "DDC2 = 0x%08x\n",
2175                            I915_READ(DCC2));
2176                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2177                            I915_READ16(C0DRB3));
2178                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2179                            I915_READ16(C1DRB3));
2180         } else if (INTEL_INFO(dev)->gen >= 6) {
2181                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2182                            I915_READ(MAD_DIMM_C0));
2183                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2184                            I915_READ(MAD_DIMM_C1));
2185                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2186                            I915_READ(MAD_DIMM_C2));
2187                 seq_printf(m, "TILECTL = 0x%08x\n",
2188                            I915_READ(TILECTL));
2189                 if (INTEL_INFO(dev)->gen >= 8)
2190                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2191                                    I915_READ(GAMTARBMODE));
2192                 else
2193                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2194                                    I915_READ(ARB_MODE));
2195                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2196                            I915_READ(DISP_ARB_CTL));
2197         }
2198
2199         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2200                 seq_puts(m, "L-shaped memory detected\n");
2201
2202         intel_runtime_pm_put(dev_priv);
2203         mutex_unlock(&dev->struct_mutex);
2204
2205         return 0;
2206 }
2207
2208 static int per_file_ctx(int id, void *ptr, void *data)
2209 {
2210         struct intel_context *ctx = ptr;
2211         struct seq_file *m = data;
2212         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2213
2214         if (!ppgtt) {
2215                 seq_printf(m, "  no ppgtt for context %d\n",
2216                            ctx->user_handle);
2217                 return 0;
2218         }
2219
2220         if (i915_gem_context_is_default(ctx))
2221                 seq_puts(m, "  default context:\n");
2222         else
2223                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2224         ppgtt->debug_dump(ppgtt, m);
2225
2226         return 0;
2227 }
2228
2229 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2230 {
2231         struct drm_i915_private *dev_priv = dev->dev_private;
2232         struct intel_engine_cs *ring;
2233         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2234         int unused, i;
2235
2236         if (!ppgtt)
2237                 return;
2238
2239         for_each_ring(ring, dev_priv, unused) {
2240                 seq_printf(m, "%s\n", ring->name);
2241                 for (i = 0; i < 4; i++) {
2242                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
2243                         pdp <<= 32;
2244                         pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
2245                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2246                 }
2247         }
2248 }
2249
2250 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2251 {
2252         struct drm_i915_private *dev_priv = dev->dev_private;
2253         struct intel_engine_cs *ring;
2254         int i;
2255
2256         if (INTEL_INFO(dev)->gen == 6)
2257                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2258
2259         for_each_ring(ring, dev_priv, i) {
2260                 seq_printf(m, "%s\n", ring->name);
2261                 if (INTEL_INFO(dev)->gen == 7)
2262                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2263                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2264                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2265                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2266         }
2267         if (dev_priv->mm.aliasing_ppgtt) {
2268                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2269
2270                 seq_puts(m, "aliasing PPGTT:\n");
2271                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2272
2273                 ppgtt->debug_dump(ppgtt, m);
2274         }
2275
2276         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2277 }
2278
2279 static int i915_ppgtt_info(struct seq_file *m, void *data)
2280 {
2281         struct drm_info_node *node = m->private;
2282         struct drm_device *dev = node->minor->dev;
2283         struct drm_i915_private *dev_priv = dev->dev_private;
2284         struct drm_file *file;
2285
2286         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2287         if (ret)
2288                 return ret;
2289         intel_runtime_pm_get(dev_priv);
2290
2291         if (INTEL_INFO(dev)->gen >= 8)
2292                 gen8_ppgtt_info(m, dev);
2293         else if (INTEL_INFO(dev)->gen >= 6)
2294                 gen6_ppgtt_info(m, dev);
2295
2296         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2297                 struct drm_i915_file_private *file_priv = file->driver_priv;
2298                 struct task_struct *task;
2299
2300                 task = get_pid_task(file->pid, PIDTYPE_PID);
2301                 if (!task) {
2302                         ret = -ESRCH;
2303                         goto out_put;
2304                 }
2305                 seq_printf(m, "\nproc: %s\n", task->comm);
2306                 put_task_struct(task);
2307                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2308                              (void *)(unsigned long)m);
2309         }
2310
2311 out_put:
2312         intel_runtime_pm_put(dev_priv);
2313         mutex_unlock(&dev->struct_mutex);
2314
2315         return ret;
2316 }
2317
2318 static int count_irq_waiters(struct drm_i915_private *i915)
2319 {
2320         struct intel_engine_cs *ring;
2321         int count = 0;
2322         int i;
2323
2324         for_each_ring(ring, i915, i)
2325                 count += ring->irq_refcount;
2326
2327         return count;
2328 }
2329
2330 static int i915_rps_boost_info(struct seq_file *m, void *data)
2331 {
2332         struct drm_info_node *node = m->private;
2333         struct drm_device *dev = node->minor->dev;
2334         struct drm_i915_private *dev_priv = dev->dev_private;
2335         struct drm_file *file;
2336
2337         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2338         seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2339         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2340         seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2341                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2342                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2343                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2344                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2345                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2346         spin_lock(&dev_priv->rps.client_lock);
2347         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2348                 struct drm_i915_file_private *file_priv = file->driver_priv;
2349                 struct task_struct *task;
2350
2351                 rcu_read_lock();
2352                 task = pid_task(file->pid, PIDTYPE_PID);
2353                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2354                            task ? task->comm : "<unknown>",
2355                            task ? task->pid : -1,
2356                            file_priv->rps.boosts,
2357                            list_empty(&file_priv->rps.link) ? "" : ", active");
2358                 rcu_read_unlock();
2359         }
2360         seq_printf(m, "Semaphore boosts: %d%s\n",
2361                    dev_priv->rps.semaphores.boosts,
2362                    list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2363         seq_printf(m, "MMIO flip boosts: %d%s\n",
2364                    dev_priv->rps.mmioflips.boosts,
2365                    list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2366         seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2367         spin_unlock(&dev_priv->rps.client_lock);
2368
2369         return 0;
2370 }
2371
2372 static int i915_llc(struct seq_file *m, void *data)
2373 {
2374         struct drm_info_node *node = m->private;
2375         struct drm_device *dev = node->minor->dev;
2376         struct drm_i915_private *dev_priv = dev->dev_private;
2377
2378         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2379         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2380         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2381
2382         return 0;
2383 }
2384
2385 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2386 {
2387         struct drm_info_node *node = m->private;
2388         struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2389         struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2390         u32 tmp, i;
2391
2392         if (!HAS_GUC_UCODE(dev_priv->dev))
2393                 return 0;
2394
2395         seq_printf(m, "GuC firmware status:\n");
2396         seq_printf(m, "\tpath: %s\n",
2397                 guc_fw->guc_fw_path);
2398         seq_printf(m, "\tfetch: %s\n",
2399                 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2400         seq_printf(m, "\tload: %s\n",
2401                 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2402         seq_printf(m, "\tversion wanted: %d.%d\n",
2403                 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2404         seq_printf(m, "\tversion found: %d.%d\n",
2405                 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2406         seq_printf(m, "\theader: offset is %d; size = %d\n",
2407                 guc_fw->header_offset, guc_fw->header_size);
2408         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2409                 guc_fw->ucode_offset, guc_fw->ucode_size);
2410         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2411                 guc_fw->rsa_offset, guc_fw->rsa_size);
2412
2413         tmp = I915_READ(GUC_STATUS);
2414
2415         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2416         seq_printf(m, "\tBootrom status = 0x%x\n",
2417                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2418         seq_printf(m, "\tuKernel status = 0x%x\n",
2419                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2420         seq_printf(m, "\tMIA Core status = 0x%x\n",
2421                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2422         seq_puts(m, "\nScratch registers:\n");
2423         for (i = 0; i < 16; i++)
2424                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2425
2426         return 0;
2427 }
2428
2429 static void i915_guc_client_info(struct seq_file *m,
2430                                  struct drm_i915_private *dev_priv,
2431                                  struct i915_guc_client *client)
2432 {
2433         struct intel_engine_cs *ring;
2434         uint64_t tot = 0;
2435         uint32_t i;
2436
2437         seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2438                 client->priority, client->ctx_index, client->proc_desc_offset);
2439         seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2440                 client->doorbell_id, client->doorbell_offset, client->cookie);
2441         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2442                 client->wq_size, client->wq_offset, client->wq_tail);
2443
2444         seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2445         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2446         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2447
2448         for_each_ring(ring, dev_priv, i) {
2449                 seq_printf(m, "\tSubmissions: %llu %s\n",
2450                                 client->submissions[i],
2451                                 ring->name);
2452                 tot += client->submissions[i];
2453         }
2454         seq_printf(m, "\tTotal: %llu\n", tot);
2455 }
2456
2457 static int i915_guc_info(struct seq_file *m, void *data)
2458 {
2459         struct drm_info_node *node = m->private;
2460         struct drm_device *dev = node->minor->dev;
2461         struct drm_i915_private *dev_priv = dev->dev_private;
2462         struct intel_guc guc;
2463         struct i915_guc_client client = {};
2464         struct intel_engine_cs *ring;
2465         enum intel_ring_id i;
2466         u64 total = 0;
2467
2468         if (!HAS_GUC_SCHED(dev_priv->dev))
2469                 return 0;
2470
2471         /* Take a local copy of the GuC data, so we can dump it at leisure */
2472         spin_lock(&dev_priv->guc.host2guc_lock);
2473         guc = dev_priv->guc;
2474         if (guc.execbuf_client) {
2475                 spin_lock(&guc.execbuf_client->wq_lock);
2476                 client = *guc.execbuf_client;
2477                 spin_unlock(&guc.execbuf_client->wq_lock);
2478         }
2479         spin_unlock(&dev_priv->guc.host2guc_lock);
2480
2481         seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2482         seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2483         seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2484         seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2485         seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2486
2487         seq_printf(m, "\nGuC submissions:\n");
2488         for_each_ring(ring, dev_priv, i) {
2489                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x %9d\n",
2490                         ring->name, guc.submissions[i],
2491                         guc.last_seqno[i], guc.last_seqno[i]);
2492                 total += guc.submissions[i];
2493         }
2494         seq_printf(m, "\t%s: %llu\n", "Total", total);
2495
2496         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2497         i915_guc_client_info(m, dev_priv, &client);
2498
2499         /* Add more as required ... */
2500
2501         return 0;
2502 }
2503
2504 static int i915_guc_log_dump(struct seq_file *m, void *data)
2505 {
2506         struct drm_info_node *node = m->private;
2507         struct drm_device *dev = node->minor->dev;
2508         struct drm_i915_private *dev_priv = dev->dev_private;
2509         struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2510         u32 *log;
2511         int i = 0, pg;
2512
2513         if (!log_obj)
2514                 return 0;
2515
2516         for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2517                 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2518
2519                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2520                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2521                                    *(log + i), *(log + i + 1),
2522                                    *(log + i + 2), *(log + i + 3));
2523
2524                 kunmap_atomic(log);
2525         }
2526
2527         seq_putc(m, '\n');
2528
2529         return 0;
2530 }
2531
2532 static int i915_edp_psr_status(struct seq_file *m, void *data)
2533 {
2534         struct drm_info_node *node = m->private;
2535         struct drm_device *dev = node->minor->dev;
2536         struct drm_i915_private *dev_priv = dev->dev_private;
2537         u32 psrperf = 0;
2538         u32 stat[3];
2539         enum pipe pipe;
2540         bool enabled = false;
2541
2542         if (!HAS_PSR(dev)) {
2543                 seq_puts(m, "PSR not supported\n");
2544                 return 0;
2545         }
2546
2547         intel_runtime_pm_get(dev_priv);
2548
2549         mutex_lock(&dev_priv->psr.lock);
2550         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2551         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2552         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2553         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2554         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2555                    dev_priv->psr.busy_frontbuffer_bits);
2556         seq_printf(m, "Re-enable work scheduled: %s\n",
2557                    yesno(work_busy(&dev_priv->psr.work.work)));
2558
2559         if (HAS_DDI(dev))
2560                 enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2561         else {
2562                 for_each_pipe(dev_priv, pipe) {
2563                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2564                                 VLV_EDP_PSR_CURR_STATE_MASK;
2565                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2566                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2567                                 enabled = true;
2568                 }
2569         }
2570         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2571
2572         if (!HAS_DDI(dev))
2573                 for_each_pipe(dev_priv, pipe) {
2574                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2575                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2576                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2577                 }
2578         seq_puts(m, "\n");
2579
2580         /* CHV PSR has no kind of performance counter */
2581         if (HAS_DDI(dev)) {
2582                 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2583                         EDP_PSR_PERF_CNT_MASK;
2584
2585                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2586         }
2587         mutex_unlock(&dev_priv->psr.lock);
2588
2589         intel_runtime_pm_put(dev_priv);
2590         return 0;
2591 }
2592
2593 static int i915_sink_crc(struct seq_file *m, void *data)
2594 {
2595         struct drm_info_node *node = m->private;
2596         struct drm_device *dev = node->minor->dev;
2597         struct intel_encoder *encoder;
2598         struct intel_connector *connector;
2599         struct intel_dp *intel_dp = NULL;
2600         int ret;
2601         u8 crc[6];
2602
2603         drm_modeset_lock_all(dev);
2604         for_each_intel_connector(dev, connector) {
2605
2606                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2607                         continue;
2608
2609                 if (!connector->base.encoder)
2610                         continue;
2611
2612                 encoder = to_intel_encoder(connector->base.encoder);
2613                 if (encoder->type != INTEL_OUTPUT_EDP)
2614                         continue;
2615
2616                 intel_dp = enc_to_intel_dp(&encoder->base);
2617
2618                 ret = intel_dp_sink_crc(intel_dp, crc);
2619                 if (ret)
2620                         goto out;
2621
2622                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2623                            crc[0], crc[1], crc[2],
2624                            crc[3], crc[4], crc[5]);
2625                 goto out;
2626         }
2627         ret = -ENODEV;
2628 out:
2629         drm_modeset_unlock_all(dev);
2630         return ret;
2631 }
2632
2633 static int i915_energy_uJ(struct seq_file *m, void *data)
2634 {
2635         struct drm_info_node *node = m->private;
2636         struct drm_device *dev = node->minor->dev;
2637         struct drm_i915_private *dev_priv = dev->dev_private;
2638         u64 power;
2639         u32 units;
2640
2641         if (INTEL_INFO(dev)->gen < 6)
2642                 return -ENODEV;
2643
2644         intel_runtime_pm_get(dev_priv);
2645
2646         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2647         power = (power & 0x1f00) >> 8;
2648         units = 1000000 / (1 << power); /* convert to uJ */
2649         power = I915_READ(MCH_SECP_NRG_STTS);
2650         power *= units;
2651
2652         intel_runtime_pm_put(dev_priv);
2653
2654         seq_printf(m, "%llu", (long long unsigned)power);
2655
2656         return 0;
2657 }
2658
2659 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2660 {
2661         struct drm_info_node *node = m->private;
2662         struct drm_device *dev = node->minor->dev;
2663         struct drm_i915_private *dev_priv = dev->dev_private;
2664
2665         if (!HAS_RUNTIME_PM(dev)) {
2666                 seq_puts(m, "not supported\n");
2667                 return 0;
2668         }
2669
2670         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2671         seq_printf(m, "IRQs disabled: %s\n",
2672                    yesno(!intel_irqs_enabled(dev_priv)));
2673 #ifdef CONFIG_PM
2674         seq_printf(m, "Usage count: %d\n",
2675                    atomic_read(&dev->dev->power.usage_count));
2676 #else
2677         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2678 #endif
2679
2680         return 0;
2681 }
2682
2683 static const char *power_domain_str(enum intel_display_power_domain domain)
2684 {
2685         switch (domain) {
2686         case POWER_DOMAIN_PIPE_A:
2687                 return "PIPE_A";
2688         case POWER_DOMAIN_PIPE_B:
2689                 return "PIPE_B";
2690         case POWER_DOMAIN_PIPE_C:
2691                 return "PIPE_C";
2692         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2693                 return "PIPE_A_PANEL_FITTER";
2694         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2695                 return "PIPE_B_PANEL_FITTER";
2696         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2697                 return "PIPE_C_PANEL_FITTER";
2698         case POWER_DOMAIN_TRANSCODER_A:
2699                 return "TRANSCODER_A";
2700         case POWER_DOMAIN_TRANSCODER_B:
2701                 return "TRANSCODER_B";
2702         case POWER_DOMAIN_TRANSCODER_C:
2703                 return "TRANSCODER_C";
2704         case POWER_DOMAIN_TRANSCODER_EDP:
2705                 return "TRANSCODER_EDP";
2706         case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2707                 return "PORT_DDI_A_2_LANES";
2708         case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2709                 return "PORT_DDI_A_4_LANES";
2710         case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2711                 return "PORT_DDI_B_2_LANES";
2712         case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2713                 return "PORT_DDI_B_4_LANES";
2714         case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2715                 return "PORT_DDI_C_2_LANES";
2716         case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2717                 return "PORT_DDI_C_4_LANES";
2718         case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2719                 return "PORT_DDI_D_2_LANES";
2720         case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2721                 return "PORT_DDI_D_4_LANES";
2722         case POWER_DOMAIN_PORT_DDI_E_2_LANES:
2723                 return "PORT_DDI_E_2_LANES";
2724         case POWER_DOMAIN_PORT_DSI:
2725                 return "PORT_DSI";
2726         case POWER_DOMAIN_PORT_CRT:
2727                 return "PORT_CRT";
2728         case POWER_DOMAIN_PORT_OTHER:
2729                 return "PORT_OTHER";
2730         case POWER_DOMAIN_VGA:
2731                 return "VGA";
2732         case POWER_DOMAIN_AUDIO:
2733                 return "AUDIO";
2734         case POWER_DOMAIN_PLLS:
2735                 return "PLLS";
2736         case POWER_DOMAIN_AUX_A:
2737                 return "AUX_A";
2738         case POWER_DOMAIN_AUX_B:
2739                 return "AUX_B";
2740         case POWER_DOMAIN_AUX_C:
2741                 return "AUX_C";
2742         case POWER_DOMAIN_AUX_D:
2743                 return "AUX_D";
2744         case POWER_DOMAIN_INIT:
2745                 return "INIT";
2746         default:
2747                 MISSING_CASE(domain);
2748                 return "?";
2749         }
2750 }
2751
2752 static int i915_power_domain_info(struct seq_file *m, void *unused)
2753 {
2754         struct drm_info_node *node = m->private;
2755         struct drm_device *dev = node->minor->dev;
2756         struct drm_i915_private *dev_priv = dev->dev_private;
2757         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2758         int i;
2759
2760         mutex_lock(&power_domains->lock);
2761
2762         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2763         for (i = 0; i < power_domains->power_well_count; i++) {
2764                 struct i915_power_well *power_well;
2765                 enum intel_display_power_domain power_domain;
2766
2767                 power_well = &power_domains->power_wells[i];
2768                 seq_printf(m, "%-25s %d\n", power_well->name,
2769                            power_well->count);
2770
2771                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2772                      power_domain++) {
2773                         if (!(BIT(power_domain) & power_well->domains))
2774                                 continue;
2775
2776                         seq_printf(m, "  %-23s %d\n",
2777                                  power_domain_str(power_domain),
2778                                  power_domains->domain_use_count[power_domain]);
2779                 }
2780         }
2781
2782         mutex_unlock(&power_domains->lock);
2783
2784         return 0;
2785 }
2786
2787 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2788                                  struct drm_display_mode *mode)
2789 {
2790         int i;
2791
2792         for (i = 0; i < tabs; i++)
2793                 seq_putc(m, '\t');
2794
2795         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2796                    mode->base.id, mode->name,
2797                    mode->vrefresh, mode->clock,
2798                    mode->hdisplay, mode->hsync_start,
2799                    mode->hsync_end, mode->htotal,
2800                    mode->vdisplay, mode->vsync_start,
2801                    mode->vsync_end, mode->vtotal,
2802                    mode->type, mode->flags);
2803 }
2804
2805 static void intel_encoder_info(struct seq_file *m,
2806                                struct intel_crtc *intel_crtc,
2807                                struct intel_encoder *intel_encoder)
2808 {
2809         struct drm_info_node *node = m->private;
2810         struct drm_device *dev = node->minor->dev;
2811         struct drm_crtc *crtc = &intel_crtc->base;
2812         struct intel_connector *intel_connector;
2813         struct drm_encoder *encoder;
2814
2815         encoder = &intel_encoder->base;
2816         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2817                    encoder->base.id, encoder->name);
2818         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2819                 struct drm_connector *connector = &intel_connector->base;
2820                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2821                            connector->base.id,
2822                            connector->name,
2823                            drm_get_connector_status_name(connector->status));
2824                 if (connector->status == connector_status_connected) {
2825                         struct drm_display_mode *mode = &crtc->mode;
2826                         seq_printf(m, ", mode:\n");
2827                         intel_seq_print_mode(m, 2, mode);
2828                 } else {
2829                         seq_putc(m, '\n');
2830                 }
2831         }
2832 }
2833
2834 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2835 {
2836         struct drm_info_node *node = m->private;
2837         struct drm_device *dev = node->minor->dev;
2838         struct drm_crtc *crtc = &intel_crtc->base;
2839         struct intel_encoder *intel_encoder;
2840         struct drm_plane_state *plane_state = crtc->primary->state;
2841         struct drm_framebuffer *fb = plane_state->fb;
2842
2843         if (fb)
2844                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2845                            fb->base.id, plane_state->src_x >> 16,
2846                            plane_state->src_y >> 16, fb->width, fb->height);
2847         else
2848                 seq_puts(m, "\tprimary plane disabled\n");
2849         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2850                 intel_encoder_info(m, intel_crtc, intel_encoder);
2851 }
2852
2853 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2854 {
2855         struct drm_display_mode *mode = panel->fixed_mode;
2856
2857         seq_printf(m, "\tfixed mode:\n");
2858         intel_seq_print_mode(m, 2, mode);
2859 }
2860
2861 static void intel_dp_info(struct seq_file *m,
2862                           struct intel_connector *intel_connector)
2863 {
2864         struct intel_encoder *intel_encoder = intel_connector->encoder;
2865         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2866
2867         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2868         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2869         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2870                 intel_panel_info(m, &intel_connector->panel);
2871 }
2872
2873 static void intel_hdmi_info(struct seq_file *m,
2874                             struct intel_connector *intel_connector)
2875 {
2876         struct intel_encoder *intel_encoder = intel_connector->encoder;
2877         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2878
2879         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2880 }
2881
2882 static void intel_lvds_info(struct seq_file *m,
2883                             struct intel_connector *intel_connector)
2884 {
2885         intel_panel_info(m, &intel_connector->panel);
2886 }
2887
2888 static void intel_connector_info(struct seq_file *m,
2889                                  struct drm_connector *connector)
2890 {
2891         struct intel_connector *intel_connector = to_intel_connector(connector);
2892         struct intel_encoder *intel_encoder = intel_connector->encoder;
2893         struct drm_display_mode *mode;
2894
2895         seq_printf(m, "connector %d: type %s, status: %s\n",
2896                    connector->base.id, connector->name,
2897                    drm_get_connector_status_name(connector->status));
2898         if (connector->status == connector_status_connected) {
2899                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2900                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2901                            connector->display_info.width_mm,
2902                            connector->display_info.height_mm);
2903                 seq_printf(m, "\tsubpixel order: %s\n",
2904                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2905                 seq_printf(m, "\tCEA rev: %d\n",
2906                            connector->display_info.cea_rev);
2907         }
2908         if (intel_encoder) {
2909                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2910                     intel_encoder->type == INTEL_OUTPUT_EDP)
2911                         intel_dp_info(m, intel_connector);
2912                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2913                         intel_hdmi_info(m, intel_connector);
2914                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2915                         intel_lvds_info(m, intel_connector);
2916         }
2917
2918         seq_printf(m, "\tmodes:\n");
2919         list_for_each_entry(mode, &connector->modes, head)
2920                 intel_seq_print_mode(m, 2, mode);
2921 }
2922
2923 static bool cursor_active(struct drm_device *dev, int pipe)
2924 {
2925         struct drm_i915_private *dev_priv = dev->dev_private;
2926         u32 state;
2927
2928         if (IS_845G(dev) || IS_I865G(dev))
2929                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2930         else
2931                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2932
2933         return state;
2934 }
2935
2936 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2937 {
2938         struct drm_i915_private *dev_priv = dev->dev_private;
2939         u32 pos;
2940
2941         pos = I915_READ(CURPOS(pipe));
2942
2943         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2944         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2945                 *x = -*x;
2946
2947         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2948         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2949                 *y = -*y;
2950
2951         return cursor_active(dev, pipe);
2952 }
2953
2954 static int i915_display_info(struct seq_file *m, void *unused)
2955 {
2956         struct drm_info_node *node = m->private;
2957         struct drm_device *dev = node->minor->dev;
2958         struct drm_i915_private *dev_priv = dev->dev_private;
2959         struct intel_crtc *crtc;
2960         struct drm_connector *connector;
2961
2962         intel_runtime_pm_get(dev_priv);
2963         drm_modeset_lock_all(dev);
2964         seq_printf(m, "CRTC info\n");
2965         seq_printf(m, "---------\n");
2966         for_each_intel_crtc(dev, crtc) {
2967                 bool active;
2968                 struct intel_crtc_state *pipe_config;
2969                 int x, y;
2970
2971                 pipe_config = to_intel_crtc_state(crtc->base.state);
2972
2973                 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2974                            crtc->base.base.id, pipe_name(crtc->pipe),
2975                            yesno(pipe_config->base.active),
2976                            pipe_config->pipe_src_w, pipe_config->pipe_src_h);
2977                 if (pipe_config->base.active) {
2978                         intel_crtc_info(m, crtc);
2979
2980                         active = cursor_position(dev, crtc->pipe, &x, &y);
2981                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2982                                    yesno(crtc->cursor_base),
2983                                    x, y, crtc->base.cursor->state->crtc_w,
2984                                    crtc->base.cursor->state->crtc_h,
2985                                    crtc->cursor_addr, yesno(active));
2986                 }
2987
2988                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2989                            yesno(!crtc->cpu_fifo_underrun_disabled),
2990                            yesno(!crtc->pch_fifo_underrun_disabled));
2991         }
2992
2993         seq_printf(m, "\n");
2994         seq_printf(m, "Connector info\n");
2995         seq_printf(m, "--------------\n");
2996         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2997                 intel_connector_info(m, connector);
2998         }
2999         drm_modeset_unlock_all(dev);
3000         intel_runtime_pm_put(dev_priv);
3001
3002         return 0;
3003 }
3004
3005 static int i915_semaphore_status(struct seq_file *m, void *unused)
3006 {
3007         struct drm_info_node *node = (struct drm_info_node *) m->private;
3008         struct drm_device *dev = node->minor->dev;
3009         struct drm_i915_private *dev_priv = dev->dev_private;
3010         struct intel_engine_cs *ring;
3011         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3012         int i, j, ret;
3013
3014         if (!i915_semaphore_is_enabled(dev)) {
3015                 seq_puts(m, "Semaphores are disabled\n");
3016                 return 0;
3017         }
3018
3019         ret = mutex_lock_interruptible(&dev->struct_mutex);
3020         if (ret)
3021                 return ret;
3022         intel_runtime_pm_get(dev_priv);
3023
3024         if (IS_BROADWELL(dev)) {
3025                 struct page *page;
3026                 uint64_t *seqno;
3027
3028                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3029
3030                 seqno = (uint64_t *)kmap_atomic(page);
3031                 for_each_ring(ring, dev_priv, i) {
3032                         uint64_t offset;
3033
3034                         seq_printf(m, "%s\n", ring->name);
3035
3036                         seq_puts(m, "  Last signal:");
3037                         for (j = 0; j < num_rings; j++) {
3038                                 offset = i * I915_NUM_RINGS + j;
3039                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3040                                            seqno[offset], offset * 8);
3041                         }
3042                         seq_putc(m, '\n');
3043
3044                         seq_puts(m, "  Last wait:  ");
3045                         for (j = 0; j < num_rings; j++) {
3046                                 offset = i + (j * I915_NUM_RINGS);
3047                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3048                                            seqno[offset], offset * 8);
3049                         }
3050                         seq_putc(m, '\n');
3051
3052                 }
3053                 kunmap_atomic(seqno);
3054         } else {
3055                 seq_puts(m, "  Last signal:");
3056                 for_each_ring(ring, dev_priv, i)
3057                         for (j = 0; j < num_rings; j++)
3058                                 seq_printf(m, "0x%08x\n",
3059                                            I915_READ(ring->semaphore.mbox.signal[j]));
3060                 seq_putc(m, '\n');
3061         }
3062
3063         seq_puts(m, "\nSync seqno:\n");
3064         for_each_ring(ring, dev_priv, i) {
3065                 for (j = 0; j < num_rings; j++) {
3066                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
3067                 }
3068                 seq_putc(m, '\n');
3069         }
3070         seq_putc(m, '\n');
3071
3072         intel_runtime_pm_put(dev_priv);
3073         mutex_unlock(&dev->struct_mutex);
3074         return 0;
3075 }
3076
3077 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3078 {
3079         struct drm_info_node *node = (struct drm_info_node *) m->private;
3080         struct drm_device *dev = node->minor->dev;
3081         struct drm_i915_private *dev_priv = dev->dev_private;
3082         int i;
3083
3084         drm_modeset_lock_all(dev);
3085         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3086                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3087
3088                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3089                 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
3090                            pll->config.crtc_mask, pll->active, yesno(pll->on));
3091                 seq_printf(m, " tracked hardware state:\n");
3092                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3093                 seq_printf(m, " dpll_md: 0x%08x\n",
3094                            pll->config.hw_state.dpll_md);
3095                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3096                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3097                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3098         }
3099         drm_modeset_unlock_all(dev);
3100
3101         return 0;
3102 }
3103
3104 static int i915_wa_registers(struct seq_file *m, void *unused)
3105 {
3106         int i;
3107         int ret;
3108         struct drm_info_node *node = (struct drm_info_node *) m->private;
3109         struct drm_device *dev = node->minor->dev;
3110         struct drm_i915_private *dev_priv = dev->dev_private;
3111
3112         ret = mutex_lock_interruptible(&dev->struct_mutex);
3113         if (ret)
3114                 return ret;
3115
3116         intel_runtime_pm_get(dev_priv);
3117
3118         seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
3119         for (i = 0; i < dev_priv->workarounds.count; ++i) {
3120                 u32 addr, mask, value, read;
3121                 bool ok;
3122
3123                 addr = dev_priv->workarounds.reg[i].addr;
3124                 mask = dev_priv->workarounds.reg[i].mask;
3125                 value = dev_priv->workarounds.reg[i].value;
3126                 read = I915_READ(addr);
3127                 ok = (value & mask) == (read & mask);
3128                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3129                            addr, value, mask, read, ok ? "OK" : "FAIL");
3130         }
3131
3132         intel_runtime_pm_put(dev_priv);
3133         mutex_unlock(&dev->struct_mutex);
3134
3135         return 0;
3136 }
3137
3138 static int i915_ddb_info(struct seq_file *m, void *unused)
3139 {
3140         struct drm_info_node *node = m->private;
3141         struct drm_device *dev = node->minor->dev;
3142         struct drm_i915_private *dev_priv = dev->dev_private;
3143         struct skl_ddb_allocation *ddb;
3144         struct skl_ddb_entry *entry;
3145         enum pipe pipe;
3146         int plane;
3147
3148         if (INTEL_INFO(dev)->gen < 9)
3149                 return 0;
3150
3151         drm_modeset_lock_all(dev);
3152
3153         ddb = &dev_priv->wm.skl_hw.ddb;
3154
3155         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3156
3157         for_each_pipe(dev_priv, pipe) {
3158                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3159
3160                 for_each_plane(dev_priv, pipe, plane) {
3161                         entry = &ddb->plane[pipe][plane];
3162                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3163                                    entry->start, entry->end,
3164                                    skl_ddb_entry_size(entry));
3165                 }
3166
3167                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3168                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3169                            entry->end, skl_ddb_entry_size(entry));
3170         }
3171
3172         drm_modeset_unlock_all(dev);
3173
3174         return 0;
3175 }
3176
3177 static void drrs_status_per_crtc(struct seq_file *m,
3178                 struct drm_device *dev, struct intel_crtc *intel_crtc)
3179 {
3180         struct intel_encoder *intel_encoder;
3181         struct drm_i915_private *dev_priv = dev->dev_private;
3182         struct i915_drrs *drrs = &dev_priv->drrs;
3183         int vrefresh = 0;
3184
3185         for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3186                 /* Encoder connected on this CRTC */
3187                 switch (intel_encoder->type) {
3188                 case INTEL_OUTPUT_EDP:
3189                         seq_puts(m, "eDP:\n");
3190                         break;
3191                 case INTEL_OUTPUT_DSI:
3192                         seq_puts(m, "DSI:\n");
3193                         break;
3194                 case INTEL_OUTPUT_HDMI:
3195                         seq_puts(m, "HDMI:\n");
3196                         break;
3197                 case INTEL_OUTPUT_DISPLAYPORT:
3198                         seq_puts(m, "DP:\n");
3199                         break;
3200                 default:
3201                         seq_printf(m, "Other encoder (id=%d).\n",
3202                                                 intel_encoder->type);
3203                         return;
3204                 }
3205         }
3206
3207         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3208                 seq_puts(m, "\tVBT: DRRS_type: Static");
3209         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3210                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3211         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3212                 seq_puts(m, "\tVBT: DRRS_type: None");
3213         else
3214                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3215
3216         seq_puts(m, "\n\n");
3217
3218         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3219                 struct intel_panel *panel;
3220
3221                 mutex_lock(&drrs->mutex);
3222                 /* DRRS Supported */
3223                 seq_puts(m, "\tDRRS Supported: Yes\n");
3224
3225                 /* disable_drrs() will make drrs->dp NULL */
3226                 if (!drrs->dp) {
3227                         seq_puts(m, "Idleness DRRS: Disabled");
3228                         mutex_unlock(&drrs->mutex);
3229                         return;
3230                 }
3231
3232                 panel = &drrs->dp->attached_connector->panel;
3233                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3234                                         drrs->busy_frontbuffer_bits);
3235
3236                 seq_puts(m, "\n\t\t");
3237                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3238                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3239                         vrefresh = panel->fixed_mode->vrefresh;
3240                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3241                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3242                         vrefresh = panel->downclock_mode->vrefresh;
3243                 } else {
3244                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3245                                                 drrs->refresh_rate_type);
3246                         mutex_unlock(&drrs->mutex);
3247                         return;
3248                 }
3249                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3250
3251                 seq_puts(m, "\n\t\t");
3252                 mutex_unlock(&drrs->mutex);
3253         } else {
3254                 /* DRRS not supported. Print the VBT parameter*/
3255                 seq_puts(m, "\tDRRS Supported : No");
3256         }
3257         seq_puts(m, "\n");
3258 }
3259
3260 static int i915_drrs_status(struct seq_file *m, void *unused)
3261 {
3262         struct drm_info_node *node = m->private;
3263         struct drm_device *dev = node->minor->dev;
3264         struct intel_crtc *intel_crtc;
3265         int active_crtc_cnt = 0;
3266
3267         for_each_intel_crtc(dev, intel_crtc) {
3268                 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3269
3270                 if (intel_crtc->base.state->active) {
3271                         active_crtc_cnt++;
3272                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3273
3274                         drrs_status_per_crtc(m, dev, intel_crtc);
3275                 }
3276
3277                 drm_modeset_unlock(&intel_crtc->base.mutex);
3278         }
3279
3280         if (!active_crtc_cnt)
3281                 seq_puts(m, "No active crtc found\n");
3282
3283         return 0;
3284 }
3285
3286 struct pipe_crc_info {
3287         const char *name;
3288         struct drm_device *dev;
3289         enum pipe pipe;
3290 };
3291
3292 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3293 {
3294         struct drm_info_node *node = (struct drm_info_node *) m->private;
3295         struct drm_device *dev = node->minor->dev;
3296         struct drm_encoder *encoder;
3297         struct intel_encoder *intel_encoder;
3298         struct intel_digital_port *intel_dig_port;
3299         drm_modeset_lock_all(dev);
3300         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3301                 intel_encoder = to_intel_encoder(encoder);
3302                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3303                         continue;
3304                 intel_dig_port = enc_to_dig_port(encoder);
3305                 if (!intel_dig_port->dp.can_mst)
3306                         continue;
3307
3308                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3309         }
3310         drm_modeset_unlock_all(dev);
3311         return 0;
3312 }
3313
3314 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3315 {
3316         struct pipe_crc_info *info = inode->i_private;
3317         struct drm_i915_private *dev_priv = info->dev->dev_private;
3318         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3319
3320         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3321                 return -ENODEV;
3322
3323         spin_lock_irq(&pipe_crc->lock);
3324
3325         if (pipe_crc->opened) {
3326                 spin_unlock_irq(&pipe_crc->lock);
3327                 return -EBUSY; /* already open */
3328         }
3329
3330         pipe_crc->opened = true;
3331         filep->private_data = inode->i_private;
3332
3333         spin_unlock_irq(&pipe_crc->lock);
3334
3335         return 0;
3336 }
3337
3338 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3339 {
3340         struct pipe_crc_info *info = inode->i_private;
3341         struct drm_i915_private *dev_priv = info->dev->dev_private;
3342         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3343
3344         spin_lock_irq(&pipe_crc->lock);
3345         pipe_crc->opened = false;
3346         spin_unlock_irq(&pipe_crc->lock);
3347
3348         return 0;
3349 }
3350
3351 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3352 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3353 /* account for \'0' */
3354 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3355
3356 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3357 {
3358         assert_spin_locked(&pipe_crc->lock);
3359         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3360                         INTEL_PIPE_CRC_ENTRIES_NR);
3361 }
3362
3363 static ssize_t
3364 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3365                    loff_t *pos)
3366 {
3367         struct pipe_crc_info *info = filep->private_data;
3368         struct drm_device *dev = info->dev;
3369         struct drm_i915_private *dev_priv = dev->dev_private;
3370         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3371         char buf[PIPE_CRC_BUFFER_LEN];
3372         int n_entries;
3373         ssize_t bytes_read;
3374
3375         /*
3376          * Don't allow user space to provide buffers not big enough to hold
3377          * a line of data.
3378          */
3379         if (count < PIPE_CRC_LINE_LEN)
3380                 return -EINVAL;
3381
3382         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3383                 return 0;
3384
3385         /* nothing to read */
3386         spin_lock_irq(&pipe_crc->lock);
3387         while (pipe_crc_data_count(pipe_crc) == 0) {
3388                 int ret;
3389
3390                 if (filep->f_flags & O_NONBLOCK) {
3391                         spin_unlock_irq(&pipe_crc->lock);
3392                         return -EAGAIN;
3393                 }
3394
3395                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3396                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3397                 if (ret) {
3398                         spin_unlock_irq(&pipe_crc->lock);
3399                         return ret;
3400                 }
3401         }
3402
3403         /* We now have one or more entries to read */
3404         n_entries = count / PIPE_CRC_LINE_LEN;
3405
3406         bytes_read = 0;
3407         while (n_entries > 0) {
3408                 struct intel_pipe_crc_entry *entry =
3409                         &pipe_crc->entries[pipe_crc->tail];
3410                 int ret;
3411
3412                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3413                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3414                         break;
3415
3416                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3417                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3418
3419                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3420                                        "%8u %8x %8x %8x %8x %8x\n",
3421                                        entry->frame, entry->crc[0],
3422                                        entry->crc[1], entry->crc[2],
3423                                        entry->crc[3], entry->crc[4]);
3424
3425                 spin_unlock_irq(&pipe_crc->lock);
3426
3427                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3428                 if (ret == PIPE_CRC_LINE_LEN)
3429                         return -EFAULT;
3430
3431                 user_buf += PIPE_CRC_LINE_LEN;
3432                 n_entries--;
3433
3434                 spin_lock_irq(&pipe_crc->lock);
3435         }
3436
3437         spin_unlock_irq(&pipe_crc->lock);
3438
3439         return bytes_read;
3440 }
3441
3442 static const struct file_operations i915_pipe_crc_fops = {
3443         .owner = THIS_MODULE,
3444         .open = i915_pipe_crc_open,
3445         .read = i915_pipe_crc_read,
3446         .release = i915_pipe_crc_release,
3447 };
3448
3449 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3450         {
3451                 .name = "i915_pipe_A_crc",
3452                 .pipe = PIPE_A,
3453         },
3454         {
3455                 .name = "i915_pipe_B_crc",
3456                 .pipe = PIPE_B,
3457         },
3458         {
3459                 .name = "i915_pipe_C_crc",
3460                 .pipe = PIPE_C,
3461         },
3462 };
3463
3464 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3465                                 enum pipe pipe)
3466 {
3467         struct drm_device *dev = minor->dev;
3468         struct dentry *ent;
3469         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3470
3471         info->dev = dev;
3472         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3473                                   &i915_pipe_crc_fops);
3474         if (!ent)
3475                 return -ENOMEM;
3476
3477         return drm_add_fake_info_node(minor, ent, info);
3478 }
3479
3480 static const char * const pipe_crc_sources[] = {
3481         "none",
3482         "plane1",
3483         "plane2",
3484         "pf",
3485         "pipe",
3486         "TV",
3487         "DP-B",
3488         "DP-C",
3489         "DP-D",
3490         "auto",
3491 };
3492
3493 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3494 {
3495         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3496         return pipe_crc_sources[source];
3497 }
3498
3499 static int display_crc_ctl_show(struct seq_file *m, void *data)
3500 {
3501         struct drm_device *dev = m->private;
3502         struct drm_i915_private *dev_priv = dev->dev_private;
3503         int i;
3504
3505         for (i = 0; i < I915_MAX_PIPES; i++)
3506                 seq_printf(m, "%c %s\n", pipe_name(i),
3507                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3508
3509         return 0;
3510 }
3511
3512 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3513 {
3514         struct drm_device *dev = inode->i_private;
3515
3516         return single_open(file, display_crc_ctl_show, dev);
3517 }
3518
3519 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3520                                  uint32_t *val)
3521 {
3522         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3523                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3524
3525         switch (*source) {
3526         case INTEL_PIPE_CRC_SOURCE_PIPE:
3527                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3528                 break;
3529         case INTEL_PIPE_CRC_SOURCE_NONE:
3530                 *val = 0;
3531                 break;
3532         default:
3533                 return -EINVAL;
3534         }
3535
3536         return 0;
3537 }
3538
3539 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3540                                      enum intel_pipe_crc_source *source)
3541 {
3542         struct intel_encoder *encoder;
3543         struct intel_crtc *crtc;
3544         struct intel_digital_port *dig_port;
3545         int ret = 0;
3546
3547         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3548
3549         drm_modeset_lock_all(dev);
3550         for_each_intel_encoder(dev, encoder) {
3551                 if (!encoder->base.crtc)
3552                         continue;
3553
3554                 crtc = to_intel_crtc(encoder->base.crtc);
3555
3556                 if (crtc->pipe != pipe)
3557                         continue;
3558
3559                 switch (encoder->type) {
3560                 case INTEL_OUTPUT_TVOUT:
3561                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3562                         break;
3563                 case INTEL_OUTPUT_DISPLAYPORT:
3564                 case INTEL_OUTPUT_EDP:
3565                         dig_port = enc_to_dig_port(&encoder->base);
3566                         switch (dig_port->port) {
3567                         case PORT_B:
3568                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3569                                 break;
3570                         case PORT_C:
3571                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3572                                 break;
3573                         case PORT_D:
3574                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3575                                 break;
3576                         default:
3577                                 WARN(1, "nonexisting DP port %c\n",
3578                                      port_name(dig_port->port));
3579                                 break;
3580                         }
3581                         break;
3582                 default:
3583                         break;
3584                 }
3585         }
3586         drm_modeset_unlock_all(dev);
3587
3588         return ret;
3589 }
3590
3591 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3592                                 enum pipe pipe,
3593                                 enum intel_pipe_crc_source *source,
3594                                 uint32_t *val)
3595 {
3596         struct drm_i915_private *dev_priv = dev->dev_private;
3597         bool need_stable_symbols = false;
3598
3599         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3600                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3601                 if (ret)
3602                         return ret;
3603         }
3604
3605         switch (*source) {
3606         case INTEL_PIPE_CRC_SOURCE_PIPE:
3607                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3608                 break;
3609         case INTEL_PIPE_CRC_SOURCE_DP_B:
3610                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3611                 need_stable_symbols = true;
3612                 break;
3613         case INTEL_PIPE_CRC_SOURCE_DP_C:
3614                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3615                 need_stable_symbols = true;
3616                 break;
3617         case INTEL_PIPE_CRC_SOURCE_DP_D:
3618                 if (!IS_CHERRYVIEW(dev))
3619                         return -EINVAL;
3620                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3621                 need_stable_symbols = true;
3622                 break;
3623         case INTEL_PIPE_CRC_SOURCE_NONE:
3624                 *val = 0;
3625                 break;
3626         default:
3627                 return -EINVAL;
3628         }
3629
3630         /*
3631          * When the pipe CRC tap point is after the transcoders we need
3632          * to tweak symbol-level features to produce a deterministic series of
3633          * symbols for a given frame. We need to reset those features only once
3634          * a frame (instead of every nth symbol):
3635          *   - DC-balance: used to ensure a better clock recovery from the data
3636          *     link (SDVO)
3637          *   - DisplayPort scrambling: used for EMI reduction
3638          */
3639         if (need_stable_symbols) {
3640                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3641
3642                 tmp |= DC_BALANCE_RESET_VLV;
3643                 switch (pipe) {
3644                 case PIPE_A:
3645                         tmp |= PIPE_A_SCRAMBLE_RESET;
3646                         break;
3647                 case PIPE_B:
3648                         tmp |= PIPE_B_SCRAMBLE_RESET;
3649                         break;
3650                 case PIPE_C:
3651                         tmp |= PIPE_C_SCRAMBLE_RESET;
3652                         break;
3653                 default:
3654                         return -EINVAL;
3655                 }
3656                 I915_WRITE(PORT_DFT2_G4X, tmp);
3657         }
3658
3659         return 0;
3660 }
3661
3662 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3663                                  enum pipe pipe,
3664                                  enum intel_pipe_crc_source *source,
3665                                  uint32_t *val)
3666 {
3667         struct drm_i915_private *dev_priv = dev->dev_private;
3668         bool need_stable_symbols = false;
3669
3670         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3671                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3672                 if (ret)
3673                         return ret;
3674         }
3675
3676         switch (*source) {
3677         case INTEL_PIPE_CRC_SOURCE_PIPE:
3678                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3679                 break;
3680         case INTEL_PIPE_CRC_SOURCE_TV:
3681                 if (!SUPPORTS_TV(dev))
3682                         return -EINVAL;
3683                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3684                 break;
3685         case INTEL_PIPE_CRC_SOURCE_DP_B:
3686                 if (!IS_G4X(dev))
3687                         return -EINVAL;
3688                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3689                 need_stable_symbols = true;
3690                 break;
3691         case INTEL_PIPE_CRC_SOURCE_DP_C:
3692                 if (!IS_G4X(dev))
3693                         return -EINVAL;
3694                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3695                 need_stable_symbols = true;
3696                 break;
3697         case INTEL_PIPE_CRC_SOURCE_DP_D:
3698                 if (!IS_G4X(dev))
3699                         return -EINVAL;
3700                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3701                 need_stable_symbols = true;
3702                 break;
3703         case INTEL_PIPE_CRC_SOURCE_NONE:
3704                 *val = 0;
3705                 break;
3706         default:
3707                 return -EINVAL;
3708         }
3709
3710         /*
3711          * When the pipe CRC tap point is after the transcoders we need
3712          * to tweak symbol-level features to produce a deterministic series of
3713          * symbols for a given frame. We need to reset those features only once
3714          * a frame (instead of every nth symbol):
3715          *   - DC-balance: used to ensure a better clock recovery from the data
3716          *     link (SDVO)
3717          *   - DisplayPort scrambling: used for EMI reduction
3718          */
3719         if (need_stable_symbols) {
3720                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3721
3722                 WARN_ON(!IS_G4X(dev));
3723
3724                 I915_WRITE(PORT_DFT_I9XX,
3725                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3726
3727                 if (pipe == PIPE_A)
3728                         tmp |= PIPE_A_SCRAMBLE_RESET;
3729                 else
3730                         tmp |= PIPE_B_SCRAMBLE_RESET;
3731
3732                 I915_WRITE(PORT_DFT2_G4X, tmp);
3733         }
3734
3735         return 0;
3736 }
3737
3738 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3739                                          enum pipe pipe)
3740 {
3741         struct drm_i915_private *dev_priv = dev->dev_private;
3742         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3743
3744         switch (pipe) {
3745         case PIPE_A:
3746                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3747                 break;
3748         case PIPE_B:
3749                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3750                 break;
3751         case PIPE_C:
3752                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3753                 break;
3754         default:
3755                 return;
3756         }
3757         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3758                 tmp &= ~DC_BALANCE_RESET_VLV;
3759         I915_WRITE(PORT_DFT2_G4X, tmp);
3760
3761 }
3762
3763 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3764                                          enum pipe pipe)
3765 {
3766         struct drm_i915_private *dev_priv = dev->dev_private;
3767         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3768
3769         if (pipe == PIPE_A)
3770                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3771         else
3772                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3773         I915_WRITE(PORT_DFT2_G4X, tmp);
3774
3775         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3776                 I915_WRITE(PORT_DFT_I9XX,
3777                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3778         }
3779 }
3780
3781 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3782                                 uint32_t *val)
3783 {
3784         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3785                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3786
3787         switch (*source) {
3788         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3789                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3790                 break;
3791         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3792                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3793                 break;
3794         case INTEL_PIPE_CRC_SOURCE_PIPE:
3795                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3796                 break;
3797         case INTEL_PIPE_CRC_SOURCE_NONE:
3798                 *val = 0;
3799                 break;
3800         default:
3801                 return -EINVAL;
3802         }
3803
3804         return 0;
3805 }
3806
3807 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3808 {
3809         struct drm_i915_private *dev_priv = dev->dev_private;
3810         struct intel_crtc *crtc =
3811                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3812         struct intel_crtc_state *pipe_config;
3813         struct drm_atomic_state *state;
3814         int ret = 0;
3815
3816         drm_modeset_lock_all(dev);
3817         state = drm_atomic_state_alloc(dev);
3818         if (!state) {
3819                 ret = -ENOMEM;
3820                 goto out;
3821         }
3822
3823         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3824         pipe_config = intel_atomic_get_crtc_state(state, crtc);
3825         if (IS_ERR(pipe_config)) {
3826                 ret = PTR_ERR(pipe_config);
3827                 goto out;
3828         }
3829
3830         pipe_config->pch_pfit.force_thru = enable;
3831         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3832             pipe_config->pch_pfit.enabled != enable)
3833                 pipe_config->base.connectors_changed = true;
3834
3835         ret = drm_atomic_commit(state);
3836 out:
3837         drm_modeset_unlock_all(dev);
3838         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3839         if (ret)
3840                 drm_atomic_state_free(state);
3841 }
3842
3843 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3844                                 enum pipe pipe,
3845                                 enum intel_pipe_crc_source *source,
3846                                 uint32_t *val)
3847 {
3848         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3849                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3850
3851         switch (*source) {
3852         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3853                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3854                 break;
3855         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3856                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3857                 break;
3858         case INTEL_PIPE_CRC_SOURCE_PF:
3859                 if (IS_HASWELL(dev) && pipe == PIPE_A)
3860                         hsw_trans_edp_pipe_A_crc_wa(dev, true);
3861
3862                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3863                 break;
3864         case INTEL_PIPE_CRC_SOURCE_NONE:
3865                 *val = 0;
3866                 break;
3867         default:
3868                 return -EINVAL;
3869         }
3870
3871         return 0;
3872 }
3873
3874 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3875                                enum intel_pipe_crc_source source)
3876 {
3877         struct drm_i915_private *dev_priv = dev->dev_private;
3878         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3879         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3880                                                                         pipe));
3881         u32 val = 0; /* shut up gcc */
3882         int ret;
3883
3884         if (pipe_crc->source == source)
3885                 return 0;
3886
3887         /* forbid changing the source without going back to 'none' */
3888         if (pipe_crc->source && source)
3889                 return -EINVAL;
3890
3891         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3892                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3893                 return -EIO;
3894         }
3895
3896         if (IS_GEN2(dev))
3897                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3898         else if (INTEL_INFO(dev)->gen < 5)
3899                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3900         else if (IS_VALLEYVIEW(dev))
3901                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3902         else if (IS_GEN5(dev) || IS_GEN6(dev))
3903                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3904         else
3905                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3906
3907         if (ret != 0)
3908                 return ret;
3909
3910         /* none -> real source transition */
3911         if (source) {
3912                 struct intel_pipe_crc_entry *entries;
3913
3914                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3915                                  pipe_name(pipe), pipe_crc_source_name(source));
3916
3917                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
3918                                   sizeof(pipe_crc->entries[0]),
3919                                   GFP_KERNEL);
3920                 if (!entries)
3921                         return -ENOMEM;
3922
3923                 /*
3924                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3925                  * enabled and disabled dynamically based on package C states,
3926                  * user space can't make reliable use of the CRCs, so let's just
3927                  * completely disable it.
3928                  */
3929                 hsw_disable_ips(crtc);
3930
3931                 spin_lock_irq(&pipe_crc->lock);
3932                 kfree(pipe_crc->entries);
3933                 pipe_crc->entries = entries;
3934                 pipe_crc->head = 0;
3935                 pipe_crc->tail = 0;
3936                 spin_unlock_irq(&pipe_crc->lock);
3937         }
3938
3939         pipe_crc->source = source;
3940
3941         I915_WRITE(PIPE_CRC_CTL(pipe), val);
3942         POSTING_READ(PIPE_CRC_CTL(pipe));
3943
3944         /* real source -> none transition */
3945         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3946                 struct intel_pipe_crc_entry *entries;
3947                 struct intel_crtc *crtc =
3948                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3949
3950                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3951                                  pipe_name(pipe));
3952
3953                 drm_modeset_lock(&crtc->base.mutex, NULL);
3954                 if (crtc->base.state->active)
3955                         intel_wait_for_vblank(dev, pipe);
3956                 drm_modeset_unlock(&crtc->base.mutex);
3957
3958                 spin_lock_irq(&pipe_crc->lock);
3959                 entries = pipe_crc->entries;
3960                 pipe_crc->entries = NULL;
3961                 pipe_crc->head = 0;
3962                 pipe_crc->tail = 0;
3963                 spin_unlock_irq(&pipe_crc->lock);
3964
3965                 kfree(entries);
3966
3967                 if (IS_G4X(dev))
3968                         g4x_undo_pipe_scramble_reset(dev, pipe);
3969                 else if (IS_VALLEYVIEW(dev))
3970                         vlv_undo_pipe_scramble_reset(dev, pipe);
3971                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3972                         hsw_trans_edp_pipe_A_crc_wa(dev, false);
3973
3974                 hsw_enable_ips(crtc);
3975         }
3976
3977         return 0;
3978 }
3979
3980 /*
3981  * Parse pipe CRC command strings:
3982  *   command: wsp* object wsp+ name wsp+ source wsp*
3983  *   object: 'pipe'
3984  *   name: (A | B | C)
3985  *   source: (none | plane1 | plane2 | pf)
3986  *   wsp: (#0x20 | #0x9 | #0xA)+
3987  *
3988  * eg.:
3989  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3990  *  "pipe A none"    ->  Stop CRC
3991  */
3992 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3993 {
3994         int n_words = 0;
3995
3996         while (*buf) {
3997                 char *end;
3998
3999                 /* skip leading white space */
4000                 buf = skip_spaces(buf);
4001                 if (!*buf)
4002                         break;  /* end of buffer */
4003
4004                 /* find end of word */
4005                 for (end = buf; *end && !isspace(*end); end++)
4006                         ;
4007
4008                 if (n_words == max_words) {
4009                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4010                                          max_words);
4011                         return -EINVAL; /* ran out of words[] before bytes */
4012                 }
4013
4014                 if (*end)
4015                         *end++ = '\0';
4016                 words[n_words++] = buf;
4017                 buf = end;
4018         }
4019
4020         return n_words;
4021 }
4022
4023 enum intel_pipe_crc_object {
4024         PIPE_CRC_OBJECT_PIPE,
4025 };
4026
4027 static const char * const pipe_crc_objects[] = {
4028         "pipe",
4029 };
4030
4031 static int
4032 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4033 {
4034         int i;
4035
4036         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4037                 if (!strcmp(buf, pipe_crc_objects[i])) {
4038                         *o = i;
4039                         return 0;
4040                     }
4041
4042         return -EINVAL;
4043 }
4044
4045 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4046 {
4047         const char name = buf[0];
4048
4049         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4050                 return -EINVAL;
4051
4052         *pipe = name - 'A';
4053
4054         return 0;
4055 }
4056
4057 static int
4058 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4059 {
4060         int i;
4061
4062         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4063                 if (!strcmp(buf, pipe_crc_sources[i])) {
4064                         *s = i;
4065                         return 0;
4066                     }
4067
4068         return -EINVAL;
4069 }
4070
4071 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4072 {
4073 #define N_WORDS 3
4074         int n_words;
4075         char *words[N_WORDS];
4076         enum pipe pipe;
4077         enum intel_pipe_crc_object object;
4078         enum intel_pipe_crc_source source;
4079
4080         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4081         if (n_words != N_WORDS) {
4082                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4083                                  N_WORDS);
4084                 return -EINVAL;
4085         }
4086
4087         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4088                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4089                 return -EINVAL;
4090         }
4091
4092         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4093                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4094                 return -EINVAL;
4095         }
4096
4097         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4098                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4099                 return -EINVAL;
4100         }
4101
4102         return pipe_crc_set_source(dev, pipe, source);
4103 }
4104
4105 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4106                                      size_t len, loff_t *offp)
4107 {
4108         struct seq_file *m = file->private_data;
4109         struct drm_device *dev = m->private;
4110         char *tmpbuf;
4111         int ret;
4112
4113         if (len == 0)
4114                 return 0;
4115
4116         if (len > PAGE_SIZE - 1) {
4117                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4118                                  PAGE_SIZE);
4119                 return -E2BIG;
4120         }
4121
4122         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4123         if (!tmpbuf)
4124                 return -ENOMEM;
4125
4126         if (copy_from_user(tmpbuf, ubuf, len)) {
4127                 ret = -EFAULT;
4128                 goto out;
4129         }
4130         tmpbuf[len] = '\0';
4131
4132         ret = display_crc_ctl_parse(dev, tmpbuf, len);
4133
4134 out:
4135         kfree(tmpbuf);
4136         if (ret < 0)
4137                 return ret;
4138
4139         *offp += len;
4140         return len;
4141 }
4142
4143 static const struct file_operations i915_display_crc_ctl_fops = {
4144         .owner = THIS_MODULE,
4145         .open = display_crc_ctl_open,
4146         .read = seq_read,
4147         .llseek = seq_lseek,
4148         .release = single_release,
4149         .write = display_crc_ctl_write
4150 };
4151
4152 static ssize_t i915_displayport_test_active_write(struct file *file,
4153                                             const char __user *ubuf,
4154                                             size_t len, loff_t *offp)
4155 {
4156         char *input_buffer;
4157         int status = 0;
4158         struct drm_device *dev;
4159         struct drm_connector *connector;
4160         struct list_head *connector_list;
4161         struct intel_dp *intel_dp;
4162         int val = 0;
4163
4164         dev = ((struct seq_file *)file->private_data)->private;
4165
4166         connector_list = &dev->mode_config.connector_list;
4167
4168         if (len == 0)
4169                 return 0;
4170
4171         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4172         if (!input_buffer)
4173                 return -ENOMEM;
4174
4175         if (copy_from_user(input_buffer, ubuf, len)) {
4176                 status = -EFAULT;
4177                 goto out;
4178         }
4179
4180         input_buffer[len] = '\0';
4181         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4182
4183         list_for_each_entry(connector, connector_list, head) {
4184
4185                 if (connector->connector_type !=
4186                     DRM_MODE_CONNECTOR_DisplayPort)
4187                         continue;
4188
4189                 if (connector->status == connector_status_connected &&
4190                     connector->encoder != NULL) {
4191                         intel_dp = enc_to_intel_dp(connector->encoder);
4192                         status = kstrtoint(input_buffer, 10, &val);
4193                         if (status < 0)
4194                                 goto out;
4195                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4196                         /* To prevent erroneous activation of the compliance
4197                          * testing code, only accept an actual value of 1 here
4198                          */
4199                         if (val == 1)
4200                                 intel_dp->compliance_test_active = 1;
4201                         else
4202                                 intel_dp->compliance_test_active = 0;
4203                 }
4204         }
4205 out:
4206         kfree(input_buffer);
4207         if (status < 0)
4208                 return status;
4209
4210         *offp += len;
4211         return len;
4212 }
4213
4214 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4215 {
4216         struct drm_device *dev = m->private;
4217         struct drm_connector *connector;
4218         struct list_head *connector_list = &dev->mode_config.connector_list;
4219         struct intel_dp *intel_dp;
4220
4221         list_for_each_entry(connector, connector_list, head) {
4222
4223                 if (connector->connector_type !=
4224                     DRM_MODE_CONNECTOR_DisplayPort)
4225                         continue;
4226
4227                 if (connector->status == connector_status_connected &&
4228                     connector->encoder != NULL) {
4229                         intel_dp = enc_to_intel_dp(connector->encoder);
4230                         if (intel_dp->compliance_test_active)
4231                                 seq_puts(m, "1");
4232                         else
4233                                 seq_puts(m, "0");
4234                 } else
4235                         seq_puts(m, "0");
4236         }
4237
4238         return 0;
4239 }
4240
4241 static int i915_displayport_test_active_open(struct inode *inode,
4242                                        struct file *file)
4243 {
4244         struct drm_device *dev = inode->i_private;
4245
4246         return single_open(file, i915_displayport_test_active_show, dev);
4247 }
4248
4249 static const struct file_operations i915_displayport_test_active_fops = {
4250         .owner = THIS_MODULE,
4251         .open = i915_displayport_test_active_open,
4252         .read = seq_read,
4253         .llseek = seq_lseek,
4254         .release = single_release,
4255         .write = i915_displayport_test_active_write
4256 };
4257
4258 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4259 {
4260         struct drm_device *dev = m->private;
4261         struct drm_connector *connector;
4262         struct list_head *connector_list = &dev->mode_config.connector_list;
4263         struct intel_dp *intel_dp;
4264
4265         list_for_each_entry(connector, connector_list, head) {
4266
4267                 if (connector->connector_type !=
4268                     DRM_MODE_CONNECTOR_DisplayPort)
4269                         continue;
4270
4271                 if (connector->status == connector_status_connected &&
4272                     connector->encoder != NULL) {
4273                         intel_dp = enc_to_intel_dp(connector->encoder);
4274                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4275                 } else
4276                         seq_puts(m, "0");
4277         }
4278
4279         return 0;
4280 }
4281 static int i915_displayport_test_data_open(struct inode *inode,
4282                                        struct file *file)
4283 {
4284         struct drm_device *dev = inode->i_private;
4285
4286         return single_open(file, i915_displayport_test_data_show, dev);
4287 }
4288
4289 static const struct file_operations i915_displayport_test_data_fops = {
4290         .owner = THIS_MODULE,
4291         .open = i915_displayport_test_data_open,
4292         .read = seq_read,
4293         .llseek = seq_lseek,
4294         .release = single_release
4295 };
4296
4297 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4298 {
4299         struct drm_device *dev = m->private;
4300         struct drm_connector *connector;
4301         struct list_head *connector_list = &dev->mode_config.connector_list;
4302         struct intel_dp *intel_dp;
4303
4304         list_for_each_entry(connector, connector_list, head) {
4305
4306                 if (connector->connector_type !=
4307                     DRM_MODE_CONNECTOR_DisplayPort)
4308                         continue;
4309
4310                 if (connector->status == connector_status_connected &&
4311                     connector->encoder != NULL) {
4312                         intel_dp = enc_to_intel_dp(connector->encoder);
4313                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4314                 } else
4315                         seq_puts(m, "0");
4316         }
4317
4318         return 0;
4319 }
4320
4321 static int i915_displayport_test_type_open(struct inode *inode,
4322                                        struct file *file)
4323 {
4324         struct drm_device *dev = inode->i_private;
4325
4326         return single_open(file, i915_displayport_test_type_show, dev);
4327 }
4328
4329 static const struct file_operations i915_displayport_test_type_fops = {
4330         .owner = THIS_MODULE,
4331         .open = i915_displayport_test_type_open,
4332         .read = seq_read,
4333         .llseek = seq_lseek,
4334         .release = single_release
4335 };
4336
4337 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4338 {
4339         struct drm_device *dev = m->private;
4340         int level;
4341         int num_levels;
4342
4343         if (IS_CHERRYVIEW(dev))
4344                 num_levels = 3;
4345         else if (IS_VALLEYVIEW(dev))
4346                 num_levels = 1;
4347         else
4348                 num_levels = ilk_wm_max_level(dev) + 1;
4349
4350         drm_modeset_lock_all(dev);
4351
4352         for (level = 0; level < num_levels; level++) {
4353                 unsigned int latency = wm[level];
4354
4355                 /*
4356                  * - WM1+ latency values in 0.5us units
4357                  * - latencies are in us on gen9/vlv/chv
4358                  */
4359                 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev))
4360                         latency *= 10;
4361                 else if (level > 0)
4362                         latency *= 5;
4363
4364                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4365                            level, wm[level], latency / 10, latency % 10);
4366         }
4367
4368         drm_modeset_unlock_all(dev);
4369 }
4370
4371 static int pri_wm_latency_show(struct seq_file *m, void *data)
4372 {
4373         struct drm_device *dev = m->private;
4374         struct drm_i915_private *dev_priv = dev->dev_private;
4375         const uint16_t *latencies;
4376
4377         if (INTEL_INFO(dev)->gen >= 9)
4378                 latencies = dev_priv->wm.skl_latency;
4379         else
4380                 latencies = to_i915(dev)->wm.pri_latency;
4381
4382         wm_latency_show(m, latencies);
4383
4384         return 0;
4385 }
4386
4387 static int spr_wm_latency_show(struct seq_file *m, void *data)
4388 {
4389         struct drm_device *dev = m->private;
4390         struct drm_i915_private *dev_priv = dev->dev_private;
4391         const uint16_t *latencies;
4392
4393         if (INTEL_INFO(dev)->gen >= 9)
4394                 latencies = dev_priv->wm.skl_latency;
4395         else
4396                 latencies = to_i915(dev)->wm.spr_latency;
4397
4398         wm_latency_show(m, latencies);
4399
4400         return 0;
4401 }
4402
4403 static int cur_wm_latency_show(struct seq_file *m, void *data)
4404 {
4405         struct drm_device *dev = m->private;
4406         struct drm_i915_private *dev_priv = dev->dev_private;
4407         const uint16_t *latencies;
4408
4409         if (INTEL_INFO(dev)->gen >= 9)
4410                 latencies = dev_priv->wm.skl_latency;
4411         else
4412                 latencies = to_i915(dev)->wm.cur_latency;
4413
4414         wm_latency_show(m, latencies);
4415
4416         return 0;
4417 }
4418
4419 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4420 {
4421         struct drm_device *dev = inode->i_private;
4422
4423         if (INTEL_INFO(dev)->gen < 5)
4424                 return -ENODEV;
4425
4426         return single_open(file, pri_wm_latency_show, dev);
4427 }
4428
4429 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4430 {
4431         struct drm_device *dev = inode->i_private;
4432
4433         if (HAS_GMCH_DISPLAY(dev))
4434                 return -ENODEV;
4435
4436         return single_open(file, spr_wm_latency_show, dev);
4437 }
4438
4439 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4440 {
4441         struct drm_device *dev = inode->i_private;
4442
4443         if (HAS_GMCH_DISPLAY(dev))
4444                 return -ENODEV;
4445
4446         return single_open(file, cur_wm_latency_show, dev);
4447 }
4448
4449 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4450                                 size_t len, loff_t *offp, uint16_t wm[8])
4451 {
4452         struct seq_file *m = file->private_data;
4453         struct drm_device *dev = m->private;
4454         uint16_t new[8] = { 0 };
4455         int num_levels;
4456         int level;
4457         int ret;
4458         char tmp[32];
4459
4460         if (IS_CHERRYVIEW(dev))
4461                 num_levels = 3;
4462         else if (IS_VALLEYVIEW(dev))
4463                 num_levels = 1;
4464         else
4465                 num_levels = ilk_wm_max_level(dev) + 1;
4466
4467         if (len >= sizeof(tmp))
4468                 return -EINVAL;
4469
4470         if (copy_from_user(tmp, ubuf, len))
4471                 return -EFAULT;
4472
4473         tmp[len] = '\0';
4474
4475         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4476                      &new[0], &new[1], &new[2], &new[3],
4477                      &new[4], &new[5], &new[6], &new[7]);
4478         if (ret != num_levels)
4479                 return -EINVAL;
4480
4481         drm_modeset_lock_all(dev);
4482
4483         for (level = 0; level < num_levels; level++)
4484                 wm[level] = new[level];
4485
4486         drm_modeset_unlock_all(dev);
4487
4488         return len;
4489 }
4490
4491
4492 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4493                                     size_t len, loff_t *offp)
4494 {
4495         struct seq_file *m = file->private_data;
4496         struct drm_device *dev = m->private;
4497         struct drm_i915_private *dev_priv = dev->dev_private;
4498         uint16_t *latencies;
4499
4500         if (INTEL_INFO(dev)->gen >= 9)
4501                 latencies = dev_priv->wm.skl_latency;
4502         else
4503                 latencies = to_i915(dev)->wm.pri_latency;
4504
4505         return wm_latency_write(file, ubuf, len, offp, latencies);
4506 }
4507
4508 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4509                                     size_t len, loff_t *offp)
4510 {
4511         struct seq_file *m = file->private_data;
4512         struct drm_device *dev = m->private;
4513         struct drm_i915_private *dev_priv = dev->dev_private;
4514         uint16_t *latencies;
4515
4516         if (INTEL_INFO(dev)->gen >= 9)
4517                 latencies = dev_priv->wm.skl_latency;
4518         else
4519                 latencies = to_i915(dev)->wm.spr_latency;
4520
4521         return wm_latency_write(file, ubuf, len, offp, latencies);
4522 }
4523
4524 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4525                                     size_t len, loff_t *offp)
4526 {
4527         struct seq_file *m = file->private_data;
4528         struct drm_device *dev = m->private;
4529         struct drm_i915_private *dev_priv = dev->dev_private;
4530         uint16_t *latencies;
4531
4532         if (INTEL_INFO(dev)->gen >= 9)
4533                 latencies = dev_priv->wm.skl_latency;
4534         else
4535                 latencies = to_i915(dev)->wm.cur_latency;
4536
4537         return wm_latency_write(file, ubuf, len, offp, latencies);
4538 }
4539
4540 static const struct file_operations i915_pri_wm_latency_fops = {
4541         .owner = THIS_MODULE,
4542         .open = pri_wm_latency_open,
4543         .read = seq_read,
4544         .llseek = seq_lseek,
4545         .release = single_release,
4546         .write = pri_wm_latency_write
4547 };
4548
4549 static const struct file_operations i915_spr_wm_latency_fops = {
4550         .owner = THIS_MODULE,
4551         .open = spr_wm_latency_open,
4552         .read = seq_read,
4553         .llseek = seq_lseek,
4554         .release = single_release,
4555         .write = spr_wm_latency_write
4556 };
4557
4558 static const struct file_operations i915_cur_wm_latency_fops = {
4559         .owner = THIS_MODULE,
4560         .open = cur_wm_latency_open,
4561         .read = seq_read,
4562         .llseek = seq_lseek,
4563         .release = single_release,
4564         .write = cur_wm_latency_write
4565 };
4566
4567 static int
4568 i915_wedged_get(void *data, u64 *val)
4569 {
4570         struct drm_device *dev = data;
4571         struct drm_i915_private *dev_priv = dev->dev_private;
4572
4573         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4574
4575         return 0;
4576 }
4577
4578 static int
4579 i915_wedged_set(void *data, u64 val)
4580 {
4581         struct drm_device *dev = data;
4582         struct drm_i915_private *dev_priv = dev->dev_private;
4583
4584         /*
4585          * There is no safeguard against this debugfs entry colliding
4586          * with the hangcheck calling same i915_handle_error() in
4587          * parallel, causing an explosion. For now we assume that the
4588          * test harness is responsible enough not to inject gpu hangs
4589          * while it is writing to 'i915_wedged'
4590          */
4591
4592         if (i915_reset_in_progress(&dev_priv->gpu_error))
4593                 return -EAGAIN;
4594
4595         intel_runtime_pm_get(dev_priv);
4596
4597         i915_handle_error(dev, val,
4598                           "Manually setting wedged to %llu", val);
4599
4600         intel_runtime_pm_put(dev_priv);
4601
4602         return 0;
4603 }
4604
4605 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4606                         i915_wedged_get, i915_wedged_set,
4607                         "%llu\n");
4608
4609 static int
4610 i915_ring_stop_get(void *data, u64 *val)
4611 {
4612         struct drm_device *dev = data;
4613         struct drm_i915_private *dev_priv = dev->dev_private;
4614
4615         *val = dev_priv->gpu_error.stop_rings;
4616
4617         return 0;
4618 }
4619
4620 static int
4621 i915_ring_stop_set(void *data, u64 val)
4622 {
4623         struct drm_device *dev = data;
4624         struct drm_i915_private *dev_priv = dev->dev_private;
4625         int ret;
4626
4627         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4628
4629         ret = mutex_lock_interruptible(&dev->struct_mutex);
4630         if (ret)
4631                 return ret;
4632
4633         dev_priv->gpu_error.stop_rings = val;
4634         mutex_unlock(&dev->struct_mutex);
4635
4636         return 0;
4637 }
4638
4639 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4640                         i915_ring_stop_get, i915_ring_stop_set,
4641                         "0x%08llx\n");
4642
4643 static int
4644 i915_ring_missed_irq_get(void *data, u64 *val)
4645 {
4646         struct drm_device *dev = data;
4647         struct drm_i915_private *dev_priv = dev->dev_private;
4648
4649         *val = dev_priv->gpu_error.missed_irq_rings;
4650         return 0;
4651 }
4652
4653 static int
4654 i915_ring_missed_irq_set(void *data, u64 val)
4655 {
4656         struct drm_device *dev = data;
4657         struct drm_i915_private *dev_priv = dev->dev_private;
4658         int ret;
4659
4660         /* Lock against concurrent debugfs callers */
4661         ret = mutex_lock_interruptible(&dev->struct_mutex);
4662         if (ret)
4663                 return ret;
4664         dev_priv->gpu_error.missed_irq_rings = val;
4665         mutex_unlock(&dev->struct_mutex);
4666
4667         return 0;
4668 }
4669
4670 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4671                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4672                         "0x%08llx\n");
4673
4674 static int
4675 i915_ring_test_irq_get(void *data, u64 *val)
4676 {
4677         struct drm_device *dev = data;
4678         struct drm_i915_private *dev_priv = dev->dev_private;
4679
4680         *val = dev_priv->gpu_error.test_irq_rings;
4681
4682         return 0;
4683 }
4684
4685 static int
4686 i915_ring_test_irq_set(void *data, u64 val)
4687 {
4688         struct drm_device *dev = data;
4689         struct drm_i915_private *dev_priv = dev->dev_private;
4690         int ret;
4691
4692         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4693
4694         /* Lock against concurrent debugfs callers */
4695         ret = mutex_lock_interruptible(&dev->struct_mutex);
4696         if (ret)
4697                 return ret;
4698
4699         dev_priv->gpu_error.test_irq_rings = val;
4700         mutex_unlock(&dev->struct_mutex);
4701
4702         return 0;
4703 }
4704
4705 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4706                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4707                         "0x%08llx\n");
4708
4709 #define DROP_UNBOUND 0x1
4710 #define DROP_BOUND 0x2
4711 #define DROP_RETIRE 0x4
4712 #define DROP_ACTIVE 0x8
4713 #define DROP_ALL (DROP_UNBOUND | \
4714                   DROP_BOUND | \
4715                   DROP_RETIRE | \
4716                   DROP_ACTIVE)
4717 static int
4718 i915_drop_caches_get(void *data, u64 *val)
4719 {
4720         *val = DROP_ALL;
4721
4722         return 0;
4723 }
4724
4725 static int
4726 i915_drop_caches_set(void *data, u64 val)
4727 {
4728         struct drm_device *dev = data;
4729         struct drm_i915_private *dev_priv = dev->dev_private;
4730         int ret;
4731
4732         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4733
4734         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4735          * on ioctls on -EAGAIN. */
4736         ret = mutex_lock_interruptible(&dev->struct_mutex);
4737         if (ret)
4738                 return ret;
4739
4740         if (val & DROP_ACTIVE) {
4741                 ret = i915_gpu_idle(dev);
4742                 if (ret)
4743                         goto unlock;
4744         }
4745
4746         if (val & (DROP_RETIRE | DROP_ACTIVE))
4747                 i915_gem_retire_requests(dev);
4748
4749         if (val & DROP_BOUND)
4750                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4751
4752         if (val & DROP_UNBOUND)
4753                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4754
4755 unlock:
4756         mutex_unlock(&dev->struct_mutex);
4757
4758         return ret;
4759 }
4760
4761 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4762                         i915_drop_caches_get, i915_drop_caches_set,
4763                         "0x%08llx\n");
4764
4765 static int
4766 i915_max_freq_get(void *data, u64 *val)
4767 {
4768         struct drm_device *dev = data;
4769         struct drm_i915_private *dev_priv = dev->dev_private;
4770         int ret;
4771
4772         if (INTEL_INFO(dev)->gen < 6)
4773                 return -ENODEV;
4774
4775         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4776
4777         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4778         if (ret)
4779                 return ret;
4780
4781         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4782         mutex_unlock(&dev_priv->rps.hw_lock);
4783
4784         return 0;
4785 }
4786
4787 static int
4788 i915_max_freq_set(void *data, u64 val)
4789 {
4790         struct drm_device *dev = data;
4791         struct drm_i915_private *dev_priv = dev->dev_private;
4792         u32 hw_max, hw_min;
4793         int ret;
4794
4795         if (INTEL_INFO(dev)->gen < 6)
4796                 return -ENODEV;
4797
4798         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4799
4800         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4801
4802         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4803         if (ret)
4804                 return ret;
4805
4806         /*
4807          * Turbo will still be enabled, but won't go above the set value.
4808          */
4809         val = intel_freq_opcode(dev_priv, val);
4810
4811         hw_max = dev_priv->rps.max_freq;
4812         hw_min = dev_priv->rps.min_freq;
4813
4814         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4815                 mutex_unlock(&dev_priv->rps.hw_lock);
4816                 return -EINVAL;
4817         }
4818
4819         dev_priv->rps.max_freq_softlimit = val;
4820
4821         intel_set_rps(dev, val);
4822
4823         mutex_unlock(&dev_priv->rps.hw_lock);
4824
4825         return 0;
4826 }
4827
4828 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4829                         i915_max_freq_get, i915_max_freq_set,
4830                         "%llu\n");
4831
4832 static int
4833 i915_min_freq_get(void *data, u64 *val)
4834 {
4835         struct drm_device *dev = data;
4836         struct drm_i915_private *dev_priv = dev->dev_private;
4837         int ret;
4838
4839         if (INTEL_INFO(dev)->gen < 6)
4840                 return -ENODEV;
4841
4842         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4843
4844         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4845         if (ret)
4846                 return ret;
4847
4848         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4849         mutex_unlock(&dev_priv->rps.hw_lock);
4850
4851         return 0;
4852 }
4853
4854 static int
4855 i915_min_freq_set(void *data, u64 val)
4856 {
4857         struct drm_device *dev = data;
4858         struct drm_i915_private *dev_priv = dev->dev_private;
4859         u32 hw_max, hw_min;
4860         int ret;
4861
4862         if (INTEL_INFO(dev)->gen < 6)
4863                 return -ENODEV;
4864
4865         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4866
4867         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4868
4869         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4870         if (ret)
4871                 return ret;
4872
4873         /*
4874          * Turbo will still be enabled, but won't go below the set value.
4875          */
4876         val = intel_freq_opcode(dev_priv, val);
4877
4878         hw_max = dev_priv->rps.max_freq;
4879         hw_min = dev_priv->rps.min_freq;
4880
4881         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4882                 mutex_unlock(&dev_priv->rps.hw_lock);
4883                 return -EINVAL;
4884         }
4885
4886         dev_priv->rps.min_freq_softlimit = val;
4887
4888         intel_set_rps(dev, val);
4889
4890         mutex_unlock(&dev_priv->rps.hw_lock);
4891
4892         return 0;
4893 }
4894
4895 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4896                         i915_min_freq_get, i915_min_freq_set,
4897                         "%llu\n");
4898
4899 static int
4900 i915_cache_sharing_get(void *data, u64 *val)
4901 {
4902         struct drm_device *dev = data;
4903         struct drm_i915_private *dev_priv = dev->dev_private;
4904         u32 snpcr;
4905         int ret;
4906
4907         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4908                 return -ENODEV;
4909
4910         ret = mutex_lock_interruptible(&dev->struct_mutex);
4911         if (ret)
4912                 return ret;
4913         intel_runtime_pm_get(dev_priv);
4914
4915         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4916
4917         intel_runtime_pm_put(dev_priv);
4918         mutex_unlock(&dev_priv->dev->struct_mutex);
4919
4920         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4921
4922         return 0;
4923 }
4924
4925 static int
4926 i915_cache_sharing_set(void *data, u64 val)
4927 {
4928         struct drm_device *dev = data;
4929         struct drm_i915_private *dev_priv = dev->dev_private;
4930         u32 snpcr;
4931
4932         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4933                 return -ENODEV;
4934
4935         if (val > 3)
4936                 return -EINVAL;
4937
4938         intel_runtime_pm_get(dev_priv);
4939         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4940
4941         /* Update the cache sharing policy here as well */
4942         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4943         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4944         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4945         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4946
4947         intel_runtime_pm_put(dev_priv);
4948         return 0;
4949 }
4950
4951 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4952                         i915_cache_sharing_get, i915_cache_sharing_set,
4953                         "%llu\n");
4954
4955 struct sseu_dev_status {
4956         unsigned int slice_total;
4957         unsigned int subslice_total;
4958         unsigned int subslice_per_slice;
4959         unsigned int eu_total;
4960         unsigned int eu_per_subslice;
4961 };
4962
4963 static void cherryview_sseu_device_status(struct drm_device *dev,
4964                                           struct sseu_dev_status *stat)
4965 {
4966         struct drm_i915_private *dev_priv = dev->dev_private;
4967         int ss_max = 2;
4968         int ss;
4969         u32 sig1[ss_max], sig2[ss_max];
4970
4971         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4972         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4973         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4974         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4975
4976         for (ss = 0; ss < ss_max; ss++) {
4977                 unsigned int eu_cnt;
4978
4979                 if (sig1[ss] & CHV_SS_PG_ENABLE)
4980                         /* skip disabled subslice */
4981                         continue;
4982
4983                 stat->slice_total = 1;
4984                 stat->subslice_per_slice++;
4985                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4986                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4987                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4988                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4989                 stat->eu_total += eu_cnt;
4990                 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
4991         }
4992         stat->subslice_total = stat->subslice_per_slice;
4993 }
4994
4995 static void gen9_sseu_device_status(struct drm_device *dev,
4996                                     struct sseu_dev_status *stat)
4997 {
4998         struct drm_i915_private *dev_priv = dev->dev_private;
4999         int s_max = 3, ss_max = 4;
5000         int s, ss;
5001         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5002
5003         /* BXT has a single slice and at most 3 subslices. */
5004         if (IS_BROXTON(dev)) {
5005                 s_max = 1;
5006                 ss_max = 3;
5007         }
5008
5009         for (s = 0; s < s_max; s++) {
5010                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5011                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5012                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5013         }
5014
5015         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5016                      GEN9_PGCTL_SSA_EU19_ACK |
5017                      GEN9_PGCTL_SSA_EU210_ACK |
5018                      GEN9_PGCTL_SSA_EU311_ACK;
5019         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5020                      GEN9_PGCTL_SSB_EU19_ACK |
5021                      GEN9_PGCTL_SSB_EU210_ACK |
5022                      GEN9_PGCTL_SSB_EU311_ACK;
5023
5024         for (s = 0; s < s_max; s++) {
5025                 unsigned int ss_cnt = 0;
5026
5027                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5028                         /* skip disabled slice */
5029                         continue;
5030
5031                 stat->slice_total++;
5032
5033                 if (IS_SKYLAKE(dev))
5034                         ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5035
5036                 for (ss = 0; ss < ss_max; ss++) {
5037                         unsigned int eu_cnt;
5038
5039                         if (IS_BROXTON(dev) &&
5040                             !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5041                                 /* skip disabled subslice */
5042                                 continue;
5043
5044                         if (IS_BROXTON(dev))
5045                                 ss_cnt++;
5046
5047                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5048                                                eu_mask[ss%2]);
5049                         stat->eu_total += eu_cnt;
5050                         stat->eu_per_subslice = max(stat->eu_per_subslice,
5051                                                     eu_cnt);
5052                 }
5053
5054                 stat->subslice_total += ss_cnt;
5055                 stat->subslice_per_slice = max(stat->subslice_per_slice,
5056                                                ss_cnt);
5057         }
5058 }
5059
5060 static void broadwell_sseu_device_status(struct drm_device *dev,
5061                                          struct sseu_dev_status *stat)
5062 {
5063         struct drm_i915_private *dev_priv = dev->dev_private;
5064         int s;
5065         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5066
5067         stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5068
5069         if (stat->slice_total) {
5070                 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5071                 stat->subslice_total = stat->slice_total *
5072                                        stat->subslice_per_slice;
5073                 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5074                 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5075
5076                 /* subtract fused off EU(s) from enabled slice(s) */
5077                 for (s = 0; s < stat->slice_total; s++) {
5078                         u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5079
5080                         stat->eu_total -= hweight8(subslice_7eu);
5081                 }
5082         }
5083 }
5084
5085 static int i915_sseu_status(struct seq_file *m, void *unused)
5086 {
5087         struct drm_info_node *node = (struct drm_info_node *) m->private;
5088         struct drm_device *dev = node->minor->dev;
5089         struct sseu_dev_status stat;
5090
5091         if (INTEL_INFO(dev)->gen < 8)
5092                 return -ENODEV;
5093
5094         seq_puts(m, "SSEU Device Info\n");
5095         seq_printf(m, "  Available Slice Total: %u\n",
5096                    INTEL_INFO(dev)->slice_total);
5097         seq_printf(m, "  Available Subslice Total: %u\n",
5098                    INTEL_INFO(dev)->subslice_total);
5099         seq_printf(m, "  Available Subslice Per Slice: %u\n",
5100                    INTEL_INFO(dev)->subslice_per_slice);
5101         seq_printf(m, "  Available EU Total: %u\n",
5102                    INTEL_INFO(dev)->eu_total);
5103         seq_printf(m, "  Available EU Per Subslice: %u\n",
5104                    INTEL_INFO(dev)->eu_per_subslice);
5105         seq_printf(m, "  Has Slice Power Gating: %s\n",
5106                    yesno(INTEL_INFO(dev)->has_slice_pg));
5107         seq_printf(m, "  Has Subslice Power Gating: %s\n",
5108                    yesno(INTEL_INFO(dev)->has_subslice_pg));
5109         seq_printf(m, "  Has EU Power Gating: %s\n",
5110                    yesno(INTEL_INFO(dev)->has_eu_pg));
5111
5112         seq_puts(m, "SSEU Device Status\n");
5113         memset(&stat, 0, sizeof(stat));
5114         if (IS_CHERRYVIEW(dev)) {
5115                 cherryview_sseu_device_status(dev, &stat);
5116         } else if (IS_BROADWELL(dev)) {
5117                 broadwell_sseu_device_status(dev, &stat);
5118         } else if (INTEL_INFO(dev)->gen >= 9) {
5119                 gen9_sseu_device_status(dev, &stat);
5120         }
5121         seq_printf(m, "  Enabled Slice Total: %u\n",
5122                    stat.slice_total);
5123         seq_printf(m, "  Enabled Subslice Total: %u\n",
5124                    stat.subslice_total);
5125         seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5126                    stat.subslice_per_slice);
5127         seq_printf(m, "  Enabled EU Total: %u\n",
5128                    stat.eu_total);
5129         seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5130                    stat.eu_per_subslice);
5131
5132         return 0;
5133 }
5134
5135 static int i915_forcewake_open(struct inode *inode, struct file *file)
5136 {
5137         struct drm_device *dev = inode->i_private;
5138         struct drm_i915_private *dev_priv = dev->dev_private;
5139
5140         if (INTEL_INFO(dev)->gen < 6)
5141                 return 0;
5142
5143         intel_runtime_pm_get(dev_priv);
5144         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5145
5146         return 0;
5147 }
5148
5149 static int i915_forcewake_release(struct inode *inode, struct file *file)
5150 {
5151         struct drm_device *dev = inode->i_private;
5152         struct drm_i915_private *dev_priv = dev->dev_private;
5153
5154         if (INTEL_INFO(dev)->gen < 6)
5155                 return 0;
5156
5157         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5158         intel_runtime_pm_put(dev_priv);
5159
5160         return 0;
5161 }
5162
5163 static const struct file_operations i915_forcewake_fops = {
5164         .owner = THIS_MODULE,
5165         .open = i915_forcewake_open,
5166         .release = i915_forcewake_release,
5167 };
5168
5169 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5170 {
5171         struct drm_device *dev = minor->dev;
5172         struct dentry *ent;
5173
5174         ent = debugfs_create_file("i915_forcewake_user",
5175                                   S_IRUSR,
5176                                   root, dev,
5177                                   &i915_forcewake_fops);
5178         if (!ent)
5179                 return -ENOMEM;
5180
5181         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5182 }
5183
5184 static int i915_debugfs_create(struct dentry *root,
5185                                struct drm_minor *minor,
5186                                const char *name,
5187                                const struct file_operations *fops)
5188 {
5189         struct drm_device *dev = minor->dev;
5190         struct dentry *ent;
5191
5192         ent = debugfs_create_file(name,
5193                                   S_IRUGO | S_IWUSR,
5194                                   root, dev,
5195                                   fops);
5196         if (!ent)
5197                 return -ENOMEM;
5198
5199         return drm_add_fake_info_node(minor, ent, fops);
5200 }
5201
5202 static const struct drm_info_list i915_debugfs_list[] = {
5203         {"i915_capabilities", i915_capabilities, 0},
5204         {"i915_gem_objects", i915_gem_object_info, 0},
5205         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5206         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5207         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5208         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5209         {"i915_gem_stolen", i915_gem_stolen_list_info },
5210         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5211         {"i915_gem_request", i915_gem_request_info, 0},
5212         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5213         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5214         {"i915_gem_interrupt", i915_interrupt_info, 0},
5215         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5216         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5217         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5218         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5219         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5220         {"i915_guc_info", i915_guc_info, 0},
5221         {"i915_guc_load_status", i915_guc_load_status_info, 0},
5222         {"i915_guc_log_dump", i915_guc_log_dump, 0},
5223         {"i915_frequency_info", i915_frequency_info, 0},
5224         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5225         {"i915_drpc_info", i915_drpc_info, 0},
5226         {"i915_emon_status", i915_emon_status, 0},
5227         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5228         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5229         {"i915_fbc_status", i915_fbc_status, 0},
5230         {"i915_ips_status", i915_ips_status, 0},
5231         {"i915_sr_status", i915_sr_status, 0},
5232         {"i915_opregion", i915_opregion, 0},
5233         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5234         {"i915_context_status", i915_context_status, 0},
5235         {"i915_dump_lrc", i915_dump_lrc, 0},
5236         {"i915_execlists", i915_execlists, 0},
5237         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5238         {"i915_swizzle_info", i915_swizzle_info, 0},
5239         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5240         {"i915_llc", i915_llc, 0},
5241         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5242         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5243         {"i915_energy_uJ", i915_energy_uJ, 0},
5244         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5245         {"i915_power_domain_info", i915_power_domain_info, 0},
5246         {"i915_display_info", i915_display_info, 0},
5247         {"i915_semaphore_status", i915_semaphore_status, 0},
5248         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5249         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5250         {"i915_wa_registers", i915_wa_registers, 0},
5251         {"i915_ddb_info", i915_ddb_info, 0},
5252         {"i915_sseu_status", i915_sseu_status, 0},
5253         {"i915_drrs_status", i915_drrs_status, 0},
5254         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5255 };
5256 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5257
5258 static const struct i915_debugfs_files {
5259         const char *name;
5260         const struct file_operations *fops;
5261 } i915_debugfs_files[] = {
5262         {"i915_wedged", &i915_wedged_fops},
5263         {"i915_max_freq", &i915_max_freq_fops},
5264         {"i915_min_freq", &i915_min_freq_fops},
5265         {"i915_cache_sharing", &i915_cache_sharing_fops},
5266         {"i915_ring_stop", &i915_ring_stop_fops},
5267         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5268         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5269         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5270         {"i915_error_state", &i915_error_state_fops},
5271         {"i915_next_seqno", &i915_next_seqno_fops},
5272         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5273         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5274         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5275         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5276         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5277         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5278         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5279         {"i915_dp_test_active", &i915_displayport_test_active_fops}
5280 };
5281
5282 void intel_display_crc_init(struct drm_device *dev)
5283 {
5284         struct drm_i915_private *dev_priv = dev->dev_private;
5285         enum pipe pipe;
5286
5287         for_each_pipe(dev_priv, pipe) {
5288                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5289
5290                 pipe_crc->opened = false;
5291                 spin_lock_init(&pipe_crc->lock);
5292                 init_waitqueue_head(&pipe_crc->wq);
5293         }
5294 }
5295
5296 int i915_debugfs_init(struct drm_minor *minor)
5297 {
5298         int ret, i;
5299
5300         ret = i915_forcewake_create(minor->debugfs_root, minor);
5301         if (ret)
5302                 return ret;
5303
5304         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5305                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5306                 if (ret)
5307                         return ret;
5308         }
5309
5310         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5311                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5312                                           i915_debugfs_files[i].name,
5313                                           i915_debugfs_files[i].fops);
5314                 if (ret)
5315                         return ret;
5316         }
5317
5318         return drm_debugfs_create_files(i915_debugfs_list,
5319                                         I915_DEBUGFS_ENTRIES,
5320                                         minor->debugfs_root, minor);
5321 }
5322
5323 void i915_debugfs_cleanup(struct drm_minor *minor)
5324 {
5325         int i;
5326
5327         drm_debugfs_remove_files(i915_debugfs_list,
5328                                  I915_DEBUGFS_ENTRIES, minor);
5329
5330         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5331                                  1, minor);
5332
5333         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5334                 struct drm_info_list *info_list =
5335                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5336
5337                 drm_debugfs_remove_files(info_list, 1, minor);
5338         }
5339
5340         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5341                 struct drm_info_list *info_list =
5342                         (struct drm_info_list *) i915_debugfs_files[i].fops;
5343
5344                 drm_debugfs_remove_files(info_list, 1, minor);
5345         }
5346 }
5347
5348 struct dpcd_block {
5349         /* DPCD dump start address. */
5350         unsigned int offset;
5351         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5352         unsigned int end;
5353         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5354         size_t size;
5355         /* Only valid for eDP. */
5356         bool edp;
5357 };
5358
5359 static const struct dpcd_block i915_dpcd_debug[] = {
5360         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5361         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5362         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5363         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5364         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5365         { .offset = DP_SET_POWER },
5366         { .offset = DP_EDP_DPCD_REV },
5367         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5368         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5369         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5370 };
5371
5372 static int i915_dpcd_show(struct seq_file *m, void *data)
5373 {
5374         struct drm_connector *connector = m->private;
5375         struct intel_dp *intel_dp =
5376                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5377         uint8_t buf[16];
5378         ssize_t err;
5379         int i;
5380
5381         if (connector->status != connector_status_connected)
5382                 return -ENODEV;
5383
5384         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5385                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5386                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5387
5388                 if (b->edp &&
5389                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5390                         continue;
5391
5392                 /* low tech for now */
5393                 if (WARN_ON(size > sizeof(buf)))
5394                         continue;
5395
5396                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5397                 if (err <= 0) {
5398                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5399                                   size, b->offset, err);
5400                         continue;
5401                 }
5402
5403                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5404         }
5405
5406         return 0;
5407 }
5408
5409 static int i915_dpcd_open(struct inode *inode, struct file *file)
5410 {
5411         return single_open(file, i915_dpcd_show, inode->i_private);
5412 }
5413
5414 static const struct file_operations i915_dpcd_fops = {
5415         .owner = THIS_MODULE,
5416         .open = i915_dpcd_open,
5417         .read = seq_read,
5418         .llseek = seq_lseek,
5419         .release = single_release,
5420 };
5421
5422 /**
5423  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5424  * @connector: pointer to a registered drm_connector
5425  *
5426  * Cleanup will be done by drm_connector_unregister() through a call to
5427  * drm_debugfs_connector_remove().
5428  *
5429  * Returns 0 on success, negative error codes on error.
5430  */
5431 int i915_debugfs_connector_add(struct drm_connector *connector)
5432 {
5433         struct dentry *root = connector->debugfs_entry;
5434
5435         /* The connector must have been registered beforehands. */
5436         if (!root)
5437                 return -ENODEV;
5438
5439         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5440             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5441                 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5442                                     &i915_dpcd_fops);
5443
5444         return 0;
5445 }