drm/i915: Use Write-Through cacheing for the display plane on Iris
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
41                                                    bool force);
42 static __must_check int
43 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
44                            struct i915_address_space *vm,
45                            unsigned alignment,
46                            bool map_and_fenceable,
47                            bool nonblocking);
48 static int i915_gem_phys_pwrite(struct drm_device *dev,
49                                 struct drm_i915_gem_object *obj,
50                                 struct drm_i915_gem_pwrite *args,
51                                 struct drm_file *file);
52
53 static void i915_gem_write_fence(struct drm_device *dev, int reg,
54                                  struct drm_i915_gem_object *obj);
55 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
56                                          struct drm_i915_fence_reg *fence,
57                                          bool enable);
58
59 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
60                                     struct shrink_control *sc);
61 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
62 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
63 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66                                   enum i915_cache_level level)
67 {
68         return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74                 return true;
75
76         return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81         if (obj->tiling_mode)
82                 i915_gem_release_mmap(obj);
83
84         /* As we do not have an associated fence register, we will force
85          * a tiling change if we ever need to acquire one.
86          */
87         obj->fence_dirty = false;
88         obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93                                   size_t size)
94 {
95         spin_lock(&dev_priv->mm.object_stat_lock);
96         dev_priv->mm.object_count++;
97         dev_priv->mm.object_memory += size;
98         spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102                                      size_t size)
103 {
104         spin_lock(&dev_priv->mm.object_stat_lock);
105         dev_priv->mm.object_count--;
106         dev_priv->mm.object_memory -= size;
107         spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113         int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116                    i915_terminally_wedged(error))
117         if (EXIT_COND)
118                 return 0;
119
120         /*
121          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122          * userspace. If it takes that long something really bad is going on and
123          * we should simply try to bail out and fail as gracefully as possible.
124          */
125         ret = wait_event_interruptible_timeout(error->reset_queue,
126                                                EXIT_COND,
127                                                10*HZ);
128         if (ret == 0) {
129                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130                 return -EIO;
131         } else if (ret < 0) {
132                 return ret;
133         }
134 #undef EXIT_COND
135
136         return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141         struct drm_i915_private *dev_priv = dev->dev_private;
142         int ret;
143
144         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145         if (ret)
146                 return ret;
147
148         ret = mutex_lock_interruptible(&dev->struct_mutex);
149         if (ret)
150                 return ret;
151
152         WARN_ON(i915_verify_lists(dev));
153         return 0;
154 }
155
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159         return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161
162 int
163 i915_gem_init_ioctl(struct drm_device *dev, void *data,
164                     struct drm_file *file)
165 {
166         struct drm_i915_private *dev_priv = dev->dev_private;
167         struct drm_i915_gem_init *args = data;
168
169         if (drm_core_check_feature(dev, DRIVER_MODESET))
170                 return -ENODEV;
171
172         if (args->gtt_start >= args->gtt_end ||
173             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174                 return -EINVAL;
175
176         /* GEM with user mode setting was never supported on ilk and later. */
177         if (INTEL_INFO(dev)->gen >= 5)
178                 return -ENODEV;
179
180         mutex_lock(&dev->struct_mutex);
181         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182                                   args->gtt_end);
183         dev_priv->gtt.mappable_end = args->gtt_end;
184         mutex_unlock(&dev->struct_mutex);
185
186         return 0;
187 }
188
189 int
190 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
191                             struct drm_file *file)
192 {
193         struct drm_i915_private *dev_priv = dev->dev_private;
194         struct drm_i915_gem_get_aperture *args = data;
195         struct drm_i915_gem_object *obj;
196         size_t pinned;
197
198         pinned = 0;
199         mutex_lock(&dev->struct_mutex);
200         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
201                 if (obj->pin_count)
202                         pinned += i915_gem_obj_ggtt_size(obj);
203         mutex_unlock(&dev->struct_mutex);
204
205         args->aper_size = dev_priv->gtt.base.total;
206         args->aper_available_size = args->aper_size - pinned;
207
208         return 0;
209 }
210
211 void *i915_gem_object_alloc(struct drm_device *dev)
212 {
213         struct drm_i915_private *dev_priv = dev->dev_private;
214         return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
215 }
216
217 void i915_gem_object_free(struct drm_i915_gem_object *obj)
218 {
219         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
220         kmem_cache_free(dev_priv->slab, obj);
221 }
222
223 static int
224 i915_gem_create(struct drm_file *file,
225                 struct drm_device *dev,
226                 uint64_t size,
227                 uint32_t *handle_p)
228 {
229         struct drm_i915_gem_object *obj;
230         int ret;
231         u32 handle;
232
233         size = roundup(size, PAGE_SIZE);
234         if (size == 0)
235                 return -EINVAL;
236
237         /* Allocate the new object */
238         obj = i915_gem_alloc_object(dev, size);
239         if (obj == NULL)
240                 return -ENOMEM;
241
242         ret = drm_gem_handle_create(file, &obj->base, &handle);
243         /* drop reference from allocate - handle holds it now */
244         drm_gem_object_unreference_unlocked(&obj->base);
245         if (ret)
246                 return ret;
247
248         *handle_p = handle;
249         return 0;
250 }
251
252 int
253 i915_gem_dumb_create(struct drm_file *file,
254                      struct drm_device *dev,
255                      struct drm_mode_create_dumb *args)
256 {
257         /* have to work out size/pitch and return them */
258         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
259         args->size = args->pitch * args->height;
260         return i915_gem_create(file, dev,
261                                args->size, &args->handle);
262 }
263
264 int i915_gem_dumb_destroy(struct drm_file *file,
265                           struct drm_device *dev,
266                           uint32_t handle)
267 {
268         return drm_gem_handle_delete(file, handle);
269 }
270
271 /**
272  * Creates a new mm object and returns a handle to it.
273  */
274 int
275 i915_gem_create_ioctl(struct drm_device *dev, void *data,
276                       struct drm_file *file)
277 {
278         struct drm_i915_gem_create *args = data;
279
280         return i915_gem_create(file, dev,
281                                args->size, &args->handle);
282 }
283
284 static inline int
285 __copy_to_user_swizzled(char __user *cpu_vaddr,
286                         const char *gpu_vaddr, int gpu_offset,
287                         int length)
288 {
289         int ret, cpu_offset = 0;
290
291         while (length > 0) {
292                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
293                 int this_length = min(cacheline_end - gpu_offset, length);
294                 int swizzled_gpu_offset = gpu_offset ^ 64;
295
296                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
297                                      gpu_vaddr + swizzled_gpu_offset,
298                                      this_length);
299                 if (ret)
300                         return ret + length;
301
302                 cpu_offset += this_length;
303                 gpu_offset += this_length;
304                 length -= this_length;
305         }
306
307         return 0;
308 }
309
310 static inline int
311 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
312                           const char __user *cpu_vaddr,
313                           int length)
314 {
315         int ret, cpu_offset = 0;
316
317         while (length > 0) {
318                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
319                 int this_length = min(cacheline_end - gpu_offset, length);
320                 int swizzled_gpu_offset = gpu_offset ^ 64;
321
322                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
323                                        cpu_vaddr + cpu_offset,
324                                        this_length);
325                 if (ret)
326                         return ret + length;
327
328                 cpu_offset += this_length;
329                 gpu_offset += this_length;
330                 length -= this_length;
331         }
332
333         return 0;
334 }
335
336 /* Per-page copy function for the shmem pread fastpath.
337  * Flushes invalid cachelines before reading the target if
338  * needs_clflush is set. */
339 static int
340 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
341                  char __user *user_data,
342                  bool page_do_bit17_swizzling, bool needs_clflush)
343 {
344         char *vaddr;
345         int ret;
346
347         if (unlikely(page_do_bit17_swizzling))
348                 return -EINVAL;
349
350         vaddr = kmap_atomic(page);
351         if (needs_clflush)
352                 drm_clflush_virt_range(vaddr + shmem_page_offset,
353                                        page_length);
354         ret = __copy_to_user_inatomic(user_data,
355                                       vaddr + shmem_page_offset,
356                                       page_length);
357         kunmap_atomic(vaddr);
358
359         return ret ? -EFAULT : 0;
360 }
361
362 static void
363 shmem_clflush_swizzled_range(char *addr, unsigned long length,
364                              bool swizzled)
365 {
366         if (unlikely(swizzled)) {
367                 unsigned long start = (unsigned long) addr;
368                 unsigned long end = (unsigned long) addr + length;
369
370                 /* For swizzling simply ensure that we always flush both
371                  * channels. Lame, but simple and it works. Swizzled
372                  * pwrite/pread is far from a hotpath - current userspace
373                  * doesn't use it at all. */
374                 start = round_down(start, 128);
375                 end = round_up(end, 128);
376
377                 drm_clflush_virt_range((void *)start, end - start);
378         } else {
379                 drm_clflush_virt_range(addr, length);
380         }
381
382 }
383
384 /* Only difference to the fast-path function is that this can handle bit17
385  * and uses non-atomic copy and kmap functions. */
386 static int
387 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
388                  char __user *user_data,
389                  bool page_do_bit17_swizzling, bool needs_clflush)
390 {
391         char *vaddr;
392         int ret;
393
394         vaddr = kmap(page);
395         if (needs_clflush)
396                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
397                                              page_length,
398                                              page_do_bit17_swizzling);
399
400         if (page_do_bit17_swizzling)
401                 ret = __copy_to_user_swizzled(user_data,
402                                               vaddr, shmem_page_offset,
403                                               page_length);
404         else
405                 ret = __copy_to_user(user_data,
406                                      vaddr + shmem_page_offset,
407                                      page_length);
408         kunmap(page);
409
410         return ret ? - EFAULT : 0;
411 }
412
413 static int
414 i915_gem_shmem_pread(struct drm_device *dev,
415                      struct drm_i915_gem_object *obj,
416                      struct drm_i915_gem_pread *args,
417                      struct drm_file *file)
418 {
419         char __user *user_data;
420         ssize_t remain;
421         loff_t offset;
422         int shmem_page_offset, page_length, ret = 0;
423         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
424         int prefaulted = 0;
425         int needs_clflush = 0;
426         struct sg_page_iter sg_iter;
427
428         user_data = to_user_ptr(args->data_ptr);
429         remain = args->size;
430
431         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
432
433         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
434                 /* If we're not in the cpu read domain, set ourself into the gtt
435                  * read domain and manually flush cachelines (if required). This
436                  * optimizes for the case when the gpu will dirty the data
437                  * anyway again before the next pread happens. */
438                 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
439                 if (i915_gem_obj_bound_any(obj)) {
440                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
441                         if (ret)
442                                 return ret;
443                 }
444         }
445
446         ret = i915_gem_object_get_pages(obj);
447         if (ret)
448                 return ret;
449
450         i915_gem_object_pin_pages(obj);
451
452         offset = args->offset;
453
454         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
455                          offset >> PAGE_SHIFT) {
456                 struct page *page = sg_page_iter_page(&sg_iter);
457
458                 if (remain <= 0)
459                         break;
460
461                 /* Operation in this page
462                  *
463                  * shmem_page_offset = offset within page in shmem file
464                  * page_length = bytes to copy for this page
465                  */
466                 shmem_page_offset = offset_in_page(offset);
467                 page_length = remain;
468                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
469                         page_length = PAGE_SIZE - shmem_page_offset;
470
471                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
472                         (page_to_phys(page) & (1 << 17)) != 0;
473
474                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
475                                        user_data, page_do_bit17_swizzling,
476                                        needs_clflush);
477                 if (ret == 0)
478                         goto next_page;
479
480                 mutex_unlock(&dev->struct_mutex);
481
482                 if (likely(!i915_prefault_disable) && !prefaulted) {
483                         ret = fault_in_multipages_writeable(user_data, remain);
484                         /* Userspace is tricking us, but we've already clobbered
485                          * its pages with the prefault and promised to write the
486                          * data up to the first fault. Hence ignore any errors
487                          * and just continue. */
488                         (void)ret;
489                         prefaulted = 1;
490                 }
491
492                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
493                                        user_data, page_do_bit17_swizzling,
494                                        needs_clflush);
495
496                 mutex_lock(&dev->struct_mutex);
497
498 next_page:
499                 mark_page_accessed(page);
500
501                 if (ret)
502                         goto out;
503
504                 remain -= page_length;
505                 user_data += page_length;
506                 offset += page_length;
507         }
508
509 out:
510         i915_gem_object_unpin_pages(obj);
511
512         return ret;
513 }
514
515 /**
516  * Reads data from the object referenced by handle.
517  *
518  * On error, the contents of *data are undefined.
519  */
520 int
521 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
522                      struct drm_file *file)
523 {
524         struct drm_i915_gem_pread *args = data;
525         struct drm_i915_gem_object *obj;
526         int ret = 0;
527
528         if (args->size == 0)
529                 return 0;
530
531         if (!access_ok(VERIFY_WRITE,
532                        to_user_ptr(args->data_ptr),
533                        args->size))
534                 return -EFAULT;
535
536         ret = i915_mutex_lock_interruptible(dev);
537         if (ret)
538                 return ret;
539
540         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
541         if (&obj->base == NULL) {
542                 ret = -ENOENT;
543                 goto unlock;
544         }
545
546         /* Bounds check source.  */
547         if (args->offset > obj->base.size ||
548             args->size > obj->base.size - args->offset) {
549                 ret = -EINVAL;
550                 goto out;
551         }
552
553         /* prime objects have no backing filp to GEM pread/pwrite
554          * pages from.
555          */
556         if (!obj->base.filp) {
557                 ret = -EINVAL;
558                 goto out;
559         }
560
561         trace_i915_gem_object_pread(obj, args->offset, args->size);
562
563         ret = i915_gem_shmem_pread(dev, obj, args, file);
564
565 out:
566         drm_gem_object_unreference(&obj->base);
567 unlock:
568         mutex_unlock(&dev->struct_mutex);
569         return ret;
570 }
571
572 /* This is the fast write path which cannot handle
573  * page faults in the source data
574  */
575
576 static inline int
577 fast_user_write(struct io_mapping *mapping,
578                 loff_t page_base, int page_offset,
579                 char __user *user_data,
580                 int length)
581 {
582         void __iomem *vaddr_atomic;
583         void *vaddr;
584         unsigned long unwritten;
585
586         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
587         /* We can use the cpu mem copy function because this is X86. */
588         vaddr = (void __force*)vaddr_atomic + page_offset;
589         unwritten = __copy_from_user_inatomic_nocache(vaddr,
590                                                       user_data, length);
591         io_mapping_unmap_atomic(vaddr_atomic);
592         return unwritten;
593 }
594
595 /**
596  * This is the fast pwrite path, where we copy the data directly from the
597  * user into the GTT, uncached.
598  */
599 static int
600 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
601                          struct drm_i915_gem_object *obj,
602                          struct drm_i915_gem_pwrite *args,
603                          struct drm_file *file)
604 {
605         drm_i915_private_t *dev_priv = dev->dev_private;
606         ssize_t remain;
607         loff_t offset, page_base;
608         char __user *user_data;
609         int page_offset, page_length, ret;
610
611         ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
612         if (ret)
613                 goto out;
614
615         ret = i915_gem_object_set_to_gtt_domain(obj, true);
616         if (ret)
617                 goto out_unpin;
618
619         ret = i915_gem_object_put_fence(obj);
620         if (ret)
621                 goto out_unpin;
622
623         user_data = to_user_ptr(args->data_ptr);
624         remain = args->size;
625
626         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
627
628         while (remain > 0) {
629                 /* Operation in this page
630                  *
631                  * page_base = page offset within aperture
632                  * page_offset = offset within page
633                  * page_length = bytes to copy for this page
634                  */
635                 page_base = offset & PAGE_MASK;
636                 page_offset = offset_in_page(offset);
637                 page_length = remain;
638                 if ((page_offset + remain) > PAGE_SIZE)
639                         page_length = PAGE_SIZE - page_offset;
640
641                 /* If we get a fault while copying data, then (presumably) our
642                  * source page isn't available.  Return the error and we'll
643                  * retry in the slow path.
644                  */
645                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
646                                     page_offset, user_data, page_length)) {
647                         ret = -EFAULT;
648                         goto out_unpin;
649                 }
650
651                 remain -= page_length;
652                 user_data += page_length;
653                 offset += page_length;
654         }
655
656 out_unpin:
657         i915_gem_object_unpin(obj);
658 out:
659         return ret;
660 }
661
662 /* Per-page copy function for the shmem pwrite fastpath.
663  * Flushes invalid cachelines before writing to the target if
664  * needs_clflush_before is set and flushes out any written cachelines after
665  * writing if needs_clflush is set. */
666 static int
667 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
668                   char __user *user_data,
669                   bool page_do_bit17_swizzling,
670                   bool needs_clflush_before,
671                   bool needs_clflush_after)
672 {
673         char *vaddr;
674         int ret;
675
676         if (unlikely(page_do_bit17_swizzling))
677                 return -EINVAL;
678
679         vaddr = kmap_atomic(page);
680         if (needs_clflush_before)
681                 drm_clflush_virt_range(vaddr + shmem_page_offset,
682                                        page_length);
683         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
684                                                 user_data,
685                                                 page_length);
686         if (needs_clflush_after)
687                 drm_clflush_virt_range(vaddr + shmem_page_offset,
688                                        page_length);
689         kunmap_atomic(vaddr);
690
691         return ret ? -EFAULT : 0;
692 }
693
694 /* Only difference to the fast-path function is that this can handle bit17
695  * and uses non-atomic copy and kmap functions. */
696 static int
697 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
698                   char __user *user_data,
699                   bool page_do_bit17_swizzling,
700                   bool needs_clflush_before,
701                   bool needs_clflush_after)
702 {
703         char *vaddr;
704         int ret;
705
706         vaddr = kmap(page);
707         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
708                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
709                                              page_length,
710                                              page_do_bit17_swizzling);
711         if (page_do_bit17_swizzling)
712                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
713                                                 user_data,
714                                                 page_length);
715         else
716                 ret = __copy_from_user(vaddr + shmem_page_offset,
717                                        user_data,
718                                        page_length);
719         if (needs_clflush_after)
720                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
721                                              page_length,
722                                              page_do_bit17_swizzling);
723         kunmap(page);
724
725         return ret ? -EFAULT : 0;
726 }
727
728 static int
729 i915_gem_shmem_pwrite(struct drm_device *dev,
730                       struct drm_i915_gem_object *obj,
731                       struct drm_i915_gem_pwrite *args,
732                       struct drm_file *file)
733 {
734         ssize_t remain;
735         loff_t offset;
736         char __user *user_data;
737         int shmem_page_offset, page_length, ret = 0;
738         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
739         int hit_slowpath = 0;
740         int needs_clflush_after = 0;
741         int needs_clflush_before = 0;
742         struct sg_page_iter sg_iter;
743
744         user_data = to_user_ptr(args->data_ptr);
745         remain = args->size;
746
747         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
748
749         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750                 /* If we're not in the cpu write domain, set ourself into the gtt
751                  * write domain and manually flush cachelines (if required). This
752                  * optimizes for the case when the gpu will use the data
753                  * right away and we therefore have to clflush anyway. */
754                 needs_clflush_after = cpu_write_needs_clflush(obj);
755                 if (i915_gem_obj_bound_any(obj)) {
756                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
757                         if (ret)
758                                 return ret;
759                 }
760         }
761         /* Same trick applies to invalidate partially written cachelines read
762          * before writing. */
763         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
764                 needs_clflush_before =
765                         !cpu_cache_is_coherent(dev, obj->cache_level);
766
767         ret = i915_gem_object_get_pages(obj);
768         if (ret)
769                 return ret;
770
771         i915_gem_object_pin_pages(obj);
772
773         offset = args->offset;
774         obj->dirty = 1;
775
776         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
777                          offset >> PAGE_SHIFT) {
778                 struct page *page = sg_page_iter_page(&sg_iter);
779                 int partial_cacheline_write;
780
781                 if (remain <= 0)
782                         break;
783
784                 /* Operation in this page
785                  *
786                  * shmem_page_offset = offset within page in shmem file
787                  * page_length = bytes to copy for this page
788                  */
789                 shmem_page_offset = offset_in_page(offset);
790
791                 page_length = remain;
792                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
793                         page_length = PAGE_SIZE - shmem_page_offset;
794
795                 /* If we don't overwrite a cacheline completely we need to be
796                  * careful to have up-to-date data by first clflushing. Don't
797                  * overcomplicate things and flush the entire patch. */
798                 partial_cacheline_write = needs_clflush_before &&
799                         ((shmem_page_offset | page_length)
800                                 & (boot_cpu_data.x86_clflush_size - 1));
801
802                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803                         (page_to_phys(page) & (1 << 17)) != 0;
804
805                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
806                                         user_data, page_do_bit17_swizzling,
807                                         partial_cacheline_write,
808                                         needs_clflush_after);
809                 if (ret == 0)
810                         goto next_page;
811
812                 hit_slowpath = 1;
813                 mutex_unlock(&dev->struct_mutex);
814                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
815                                         user_data, page_do_bit17_swizzling,
816                                         partial_cacheline_write,
817                                         needs_clflush_after);
818
819                 mutex_lock(&dev->struct_mutex);
820
821 next_page:
822                 set_page_dirty(page);
823                 mark_page_accessed(page);
824
825                 if (ret)
826                         goto out;
827
828                 remain -= page_length;
829                 user_data += page_length;
830                 offset += page_length;
831         }
832
833 out:
834         i915_gem_object_unpin_pages(obj);
835
836         if (hit_slowpath) {
837                 /*
838                  * Fixup: Flush cpu caches in case we didn't flush the dirty
839                  * cachelines in-line while writing and the object moved
840                  * out of the cpu write domain while we've dropped the lock.
841                  */
842                 if (!needs_clflush_after &&
843                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
844                         if (i915_gem_clflush_object(obj, obj->pin_display))
845                                 i915_gem_chipset_flush(dev);
846                 }
847         }
848
849         if (needs_clflush_after)
850                 i915_gem_chipset_flush(dev);
851
852         return ret;
853 }
854
855 /**
856  * Writes data to the object referenced by handle.
857  *
858  * On error, the contents of the buffer that were to be modified are undefined.
859  */
860 int
861 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
862                       struct drm_file *file)
863 {
864         struct drm_i915_gem_pwrite *args = data;
865         struct drm_i915_gem_object *obj;
866         int ret;
867
868         if (args->size == 0)
869                 return 0;
870
871         if (!access_ok(VERIFY_READ,
872                        to_user_ptr(args->data_ptr),
873                        args->size))
874                 return -EFAULT;
875
876         if (likely(!i915_prefault_disable)) {
877                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
878                                                    args->size);
879                 if (ret)
880                         return -EFAULT;
881         }
882
883         ret = i915_mutex_lock_interruptible(dev);
884         if (ret)
885                 return ret;
886
887         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
888         if (&obj->base == NULL) {
889                 ret = -ENOENT;
890                 goto unlock;
891         }
892
893         /* Bounds check destination. */
894         if (args->offset > obj->base.size ||
895             args->size > obj->base.size - args->offset) {
896                 ret = -EINVAL;
897                 goto out;
898         }
899
900         /* prime objects have no backing filp to GEM pread/pwrite
901          * pages from.
902          */
903         if (!obj->base.filp) {
904                 ret = -EINVAL;
905                 goto out;
906         }
907
908         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
909
910         ret = -EFAULT;
911         /* We can only do the GTT pwrite on untiled buffers, as otherwise
912          * it would end up going through the fenced access, and we'll get
913          * different detiling behavior between reading and writing.
914          * pread/pwrite currently are reading and writing from the CPU
915          * perspective, requiring manual detiling by the client.
916          */
917         if (obj->phys_obj) {
918                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
919                 goto out;
920         }
921
922         if (obj->tiling_mode == I915_TILING_NONE &&
923             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
924             cpu_write_needs_clflush(obj)) {
925                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
926                 /* Note that the gtt paths might fail with non-page-backed user
927                  * pointers (e.g. gtt mappings when moving data between
928                  * textures). Fallback to the shmem path in that case. */
929         }
930
931         if (ret == -EFAULT || ret == -ENOSPC)
932                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
933
934 out:
935         drm_gem_object_unreference(&obj->base);
936 unlock:
937         mutex_unlock(&dev->struct_mutex);
938         return ret;
939 }
940
941 int
942 i915_gem_check_wedge(struct i915_gpu_error *error,
943                      bool interruptible)
944 {
945         if (i915_reset_in_progress(error)) {
946                 /* Non-interruptible callers can't handle -EAGAIN, hence return
947                  * -EIO unconditionally for these. */
948                 if (!interruptible)
949                         return -EIO;
950
951                 /* Recovery complete, but the reset failed ... */
952                 if (i915_terminally_wedged(error))
953                         return -EIO;
954
955                 return -EAGAIN;
956         }
957
958         return 0;
959 }
960
961 /*
962  * Compare seqno against outstanding lazy request. Emit a request if they are
963  * equal.
964  */
965 static int
966 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
967 {
968         int ret;
969
970         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
971
972         ret = 0;
973         if (seqno == ring->outstanding_lazy_request)
974                 ret = i915_add_request(ring, NULL);
975
976         return ret;
977 }
978
979 /**
980  * __wait_seqno - wait until execution of seqno has finished
981  * @ring: the ring expected to report seqno
982  * @seqno: duh!
983  * @reset_counter: reset sequence associated with the given seqno
984  * @interruptible: do an interruptible wait (normally yes)
985  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
986  *
987  * Note: It is of utmost importance that the passed in seqno and reset_counter
988  * values have been read by the caller in an smp safe manner. Where read-side
989  * locks are involved, it is sufficient to read the reset_counter before
990  * unlocking the lock that protects the seqno. For lockless tricks, the
991  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
992  * inserted.
993  *
994  * Returns 0 if the seqno was found within the alloted time. Else returns the
995  * errno with remaining time filled in timeout argument.
996  */
997 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
998                         unsigned reset_counter,
999                         bool interruptible, struct timespec *timeout)
1000 {
1001         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1002         struct timespec before, now, wait_time={1,0};
1003         unsigned long timeout_jiffies;
1004         long end;
1005         bool wait_forever = true;
1006         int ret;
1007
1008         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1009                 return 0;
1010
1011         trace_i915_gem_request_wait_begin(ring, seqno);
1012
1013         if (timeout != NULL) {
1014                 wait_time = *timeout;
1015                 wait_forever = false;
1016         }
1017
1018         timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1019
1020         if (WARN_ON(!ring->irq_get(ring)))
1021                 return -ENODEV;
1022
1023         /* Record current time in case interrupted by signal, or wedged * */
1024         getrawmonotonic(&before);
1025
1026 #define EXIT_COND \
1027         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1028          i915_reset_in_progress(&dev_priv->gpu_error) || \
1029          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1030         do {
1031                 if (interruptible)
1032                         end = wait_event_interruptible_timeout(ring->irq_queue,
1033                                                                EXIT_COND,
1034                                                                timeout_jiffies);
1035                 else
1036                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037                                                  timeout_jiffies);
1038
1039                 /* We need to check whether any gpu reset happened in between
1040                  * the caller grabbing the seqno and now ... */
1041                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1042                         end = -EAGAIN;
1043
1044                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1045                  * gone. */
1046                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1047                 if (ret)
1048                         end = ret;
1049         } while (end == 0 && wait_forever);
1050
1051         getrawmonotonic(&now);
1052
1053         ring->irq_put(ring);
1054         trace_i915_gem_request_wait_end(ring, seqno);
1055 #undef EXIT_COND
1056
1057         if (timeout) {
1058                 struct timespec sleep_time = timespec_sub(now, before);
1059                 *timeout = timespec_sub(*timeout, sleep_time);
1060                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1061                         set_normalized_timespec(timeout, 0, 0);
1062         }
1063
1064         switch (end) {
1065         case -EIO:
1066         case -EAGAIN: /* Wedged */
1067         case -ERESTARTSYS: /* Signal */
1068                 return (int)end;
1069         case 0: /* Timeout */
1070                 return -ETIME;
1071         default: /* Completed */
1072                 WARN_ON(end < 0); /* We're not aware of other errors */
1073                 return 0;
1074         }
1075 }
1076
1077 /**
1078  * Waits for a sequence number to be signaled, and cleans up the
1079  * request and object lists appropriately for that event.
1080  */
1081 int
1082 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1083 {
1084         struct drm_device *dev = ring->dev;
1085         struct drm_i915_private *dev_priv = dev->dev_private;
1086         bool interruptible = dev_priv->mm.interruptible;
1087         int ret;
1088
1089         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1090         BUG_ON(seqno == 0);
1091
1092         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1093         if (ret)
1094                 return ret;
1095
1096         ret = i915_gem_check_olr(ring, seqno);
1097         if (ret)
1098                 return ret;
1099
1100         return __wait_seqno(ring, seqno,
1101                             atomic_read(&dev_priv->gpu_error.reset_counter),
1102                             interruptible, NULL);
1103 }
1104
1105 static int
1106 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1107                                      struct intel_ring_buffer *ring)
1108 {
1109         i915_gem_retire_requests_ring(ring);
1110
1111         /* Manually manage the write flush as we may have not yet
1112          * retired the buffer.
1113          *
1114          * Note that the last_write_seqno is always the earlier of
1115          * the two (read/write) seqno, so if we haved successfully waited,
1116          * we know we have passed the last write.
1117          */
1118         obj->last_write_seqno = 0;
1119         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1120
1121         return 0;
1122 }
1123
1124 /**
1125  * Ensures that all rendering to the object has completed and the object is
1126  * safe to unbind from the GTT or access from the CPU.
1127  */
1128 static __must_check int
1129 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1130                                bool readonly)
1131 {
1132         struct intel_ring_buffer *ring = obj->ring;
1133         u32 seqno;
1134         int ret;
1135
1136         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1137         if (seqno == 0)
1138                 return 0;
1139
1140         ret = i915_wait_seqno(ring, seqno);
1141         if (ret)
1142                 return ret;
1143
1144         return i915_gem_object_wait_rendering__tail(obj, ring);
1145 }
1146
1147 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1148  * as the object state may change during this call.
1149  */
1150 static __must_check int
1151 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1152                                             bool readonly)
1153 {
1154         struct drm_device *dev = obj->base.dev;
1155         struct drm_i915_private *dev_priv = dev->dev_private;
1156         struct intel_ring_buffer *ring = obj->ring;
1157         unsigned reset_counter;
1158         u32 seqno;
1159         int ret;
1160
1161         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1162         BUG_ON(!dev_priv->mm.interruptible);
1163
1164         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1165         if (seqno == 0)
1166                 return 0;
1167
1168         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1169         if (ret)
1170                 return ret;
1171
1172         ret = i915_gem_check_olr(ring, seqno);
1173         if (ret)
1174                 return ret;
1175
1176         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1177         mutex_unlock(&dev->struct_mutex);
1178         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1179         mutex_lock(&dev->struct_mutex);
1180         if (ret)
1181                 return ret;
1182
1183         return i915_gem_object_wait_rendering__tail(obj, ring);
1184 }
1185
1186 /**
1187  * Called when user space prepares to use an object with the CPU, either
1188  * through the mmap ioctl's mapping or a GTT mapping.
1189  */
1190 int
1191 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1192                           struct drm_file *file)
1193 {
1194         struct drm_i915_gem_set_domain *args = data;
1195         struct drm_i915_gem_object *obj;
1196         uint32_t read_domains = args->read_domains;
1197         uint32_t write_domain = args->write_domain;
1198         int ret;
1199
1200         /* Only handle setting domains to types used by the CPU. */
1201         if (write_domain & I915_GEM_GPU_DOMAINS)
1202                 return -EINVAL;
1203
1204         if (read_domains & I915_GEM_GPU_DOMAINS)
1205                 return -EINVAL;
1206
1207         /* Having something in the write domain implies it's in the read
1208          * domain, and only that read domain.  Enforce that in the request.
1209          */
1210         if (write_domain != 0 && read_domains != write_domain)
1211                 return -EINVAL;
1212
1213         ret = i915_mutex_lock_interruptible(dev);
1214         if (ret)
1215                 return ret;
1216
1217         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1218         if (&obj->base == NULL) {
1219                 ret = -ENOENT;
1220                 goto unlock;
1221         }
1222
1223         /* Try to flush the object off the GPU without holding the lock.
1224          * We will repeat the flush holding the lock in the normal manner
1225          * to catch cases where we are gazumped.
1226          */
1227         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1228         if (ret)
1229                 goto unref;
1230
1231         if (read_domains & I915_GEM_DOMAIN_GTT) {
1232                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1233
1234                 /* Silently promote "you're not bound, there was nothing to do"
1235                  * to success, since the client was just asking us to
1236                  * make sure everything was done.
1237                  */
1238                 if (ret == -EINVAL)
1239                         ret = 0;
1240         } else {
1241                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1242         }
1243
1244 unref:
1245         drm_gem_object_unreference(&obj->base);
1246 unlock:
1247         mutex_unlock(&dev->struct_mutex);
1248         return ret;
1249 }
1250
1251 /**
1252  * Called when user space has done writes to this buffer
1253  */
1254 int
1255 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1256                          struct drm_file *file)
1257 {
1258         struct drm_i915_gem_sw_finish *args = data;
1259         struct drm_i915_gem_object *obj;
1260         int ret = 0;
1261
1262         ret = i915_mutex_lock_interruptible(dev);
1263         if (ret)
1264                 return ret;
1265
1266         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1267         if (&obj->base == NULL) {
1268                 ret = -ENOENT;
1269                 goto unlock;
1270         }
1271
1272         /* Pinned buffers may be scanout, so flush the cache */
1273         if (obj->pin_display)
1274                 i915_gem_object_flush_cpu_write_domain(obj, true);
1275
1276         drm_gem_object_unreference(&obj->base);
1277 unlock:
1278         mutex_unlock(&dev->struct_mutex);
1279         return ret;
1280 }
1281
1282 /**
1283  * Maps the contents of an object, returning the address it is mapped
1284  * into.
1285  *
1286  * While the mapping holds a reference on the contents of the object, it doesn't
1287  * imply a ref on the object itself.
1288  */
1289 int
1290 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1291                     struct drm_file *file)
1292 {
1293         struct drm_i915_gem_mmap *args = data;
1294         struct drm_gem_object *obj;
1295         unsigned long addr;
1296
1297         obj = drm_gem_object_lookup(dev, file, args->handle);
1298         if (obj == NULL)
1299                 return -ENOENT;
1300
1301         /* prime objects have no backing filp to GEM mmap
1302          * pages from.
1303          */
1304         if (!obj->filp) {
1305                 drm_gem_object_unreference_unlocked(obj);
1306                 return -EINVAL;
1307         }
1308
1309         addr = vm_mmap(obj->filp, 0, args->size,
1310                        PROT_READ | PROT_WRITE, MAP_SHARED,
1311                        args->offset);
1312         drm_gem_object_unreference_unlocked(obj);
1313         if (IS_ERR((void *)addr))
1314                 return addr;
1315
1316         args->addr_ptr = (uint64_t) addr;
1317
1318         return 0;
1319 }
1320
1321 /**
1322  * i915_gem_fault - fault a page into the GTT
1323  * vma: VMA in question
1324  * vmf: fault info
1325  *
1326  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1327  * from userspace.  The fault handler takes care of binding the object to
1328  * the GTT (if needed), allocating and programming a fence register (again,
1329  * only if needed based on whether the old reg is still valid or the object
1330  * is tiled) and inserting a new PTE into the faulting process.
1331  *
1332  * Note that the faulting process may involve evicting existing objects
1333  * from the GTT and/or fence registers to make room.  So performance may
1334  * suffer if the GTT working set is large or there are few fence registers
1335  * left.
1336  */
1337 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1338 {
1339         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1340         struct drm_device *dev = obj->base.dev;
1341         drm_i915_private_t *dev_priv = dev->dev_private;
1342         pgoff_t page_offset;
1343         unsigned long pfn;
1344         int ret = 0;
1345         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1346
1347         /* We don't use vmf->pgoff since that has the fake offset */
1348         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1349                 PAGE_SHIFT;
1350
1351         ret = i915_mutex_lock_interruptible(dev);
1352         if (ret)
1353                 goto out;
1354
1355         trace_i915_gem_object_fault(obj, page_offset, true, write);
1356
1357         /* Access to snoopable pages through the GTT is incoherent. */
1358         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1359                 ret = -EINVAL;
1360                 goto unlock;
1361         }
1362
1363         /* Now bind it into the GTT if needed */
1364         ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1365         if (ret)
1366                 goto unlock;
1367
1368         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1369         if (ret)
1370                 goto unpin;
1371
1372         ret = i915_gem_object_get_fence(obj);
1373         if (ret)
1374                 goto unpin;
1375
1376         obj->fault_mappable = true;
1377
1378         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1379         pfn >>= PAGE_SHIFT;
1380         pfn += page_offset;
1381
1382         /* Finally, remap it using the new GTT offset */
1383         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1384 unpin:
1385         i915_gem_object_unpin(obj);
1386 unlock:
1387         mutex_unlock(&dev->struct_mutex);
1388 out:
1389         switch (ret) {
1390         case -EIO:
1391                 /* If this -EIO is due to a gpu hang, give the reset code a
1392                  * chance to clean up the mess. Otherwise return the proper
1393                  * SIGBUS. */
1394                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1395                         return VM_FAULT_SIGBUS;
1396         case -EAGAIN:
1397                 /* Give the error handler a chance to run and move the
1398                  * objects off the GPU active list. Next time we service the
1399                  * fault, we should be able to transition the page into the
1400                  * GTT without touching the GPU (and so avoid further
1401                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1402                  * with coherency, just lost writes.
1403                  */
1404                 set_need_resched();
1405         case 0:
1406         case -ERESTARTSYS:
1407         case -EINTR:
1408         case -EBUSY:
1409                 /*
1410                  * EBUSY is ok: this just means that another thread
1411                  * already did the job.
1412                  */
1413                 return VM_FAULT_NOPAGE;
1414         case -ENOMEM:
1415                 return VM_FAULT_OOM;
1416         case -ENOSPC:
1417                 return VM_FAULT_SIGBUS;
1418         default:
1419                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1420                 return VM_FAULT_SIGBUS;
1421         }
1422 }
1423
1424 /**
1425  * i915_gem_release_mmap - remove physical page mappings
1426  * @obj: obj in question
1427  *
1428  * Preserve the reservation of the mmapping with the DRM core code, but
1429  * relinquish ownership of the pages back to the system.
1430  *
1431  * It is vital that we remove the page mapping if we have mapped a tiled
1432  * object through the GTT and then lose the fence register due to
1433  * resource pressure. Similarly if the object has been moved out of the
1434  * aperture, than pages mapped into userspace must be revoked. Removing the
1435  * mapping will then trigger a page fault on the next user access, allowing
1436  * fixup by i915_gem_fault().
1437  */
1438 void
1439 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1440 {
1441         if (!obj->fault_mappable)
1442                 return;
1443
1444         if (obj->base.dev->dev_mapping)
1445                 unmap_mapping_range(obj->base.dev->dev_mapping,
1446                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1447                                     obj->base.size, 1);
1448
1449         obj->fault_mappable = false;
1450 }
1451
1452 uint32_t
1453 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1454 {
1455         uint32_t gtt_size;
1456
1457         if (INTEL_INFO(dev)->gen >= 4 ||
1458             tiling_mode == I915_TILING_NONE)
1459                 return size;
1460
1461         /* Previous chips need a power-of-two fence region when tiling */
1462         if (INTEL_INFO(dev)->gen == 3)
1463                 gtt_size = 1024*1024;
1464         else
1465                 gtt_size = 512*1024;
1466
1467         while (gtt_size < size)
1468                 gtt_size <<= 1;
1469
1470         return gtt_size;
1471 }
1472
1473 /**
1474  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1475  * @obj: object to check
1476  *
1477  * Return the required GTT alignment for an object, taking into account
1478  * potential fence register mapping.
1479  */
1480 uint32_t
1481 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1482                            int tiling_mode, bool fenced)
1483 {
1484         /*
1485          * Minimum alignment is 4k (GTT page size), but might be greater
1486          * if a fence register is needed for the object.
1487          */
1488         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1489             tiling_mode == I915_TILING_NONE)
1490                 return 4096;
1491
1492         /*
1493          * Previous chips need to be aligned to the size of the smallest
1494          * fence register that can contain the object.
1495          */
1496         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1497 }
1498
1499 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1500 {
1501         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1502         int ret;
1503
1504         if (obj->base.map_list.map)
1505                 return 0;
1506
1507         dev_priv->mm.shrinker_no_lock_stealing = true;
1508
1509         ret = drm_gem_create_mmap_offset(&obj->base);
1510         if (ret != -ENOSPC)
1511                 goto out;
1512
1513         /* Badly fragmented mmap space? The only way we can recover
1514          * space is by destroying unwanted objects. We can't randomly release
1515          * mmap_offsets as userspace expects them to be persistent for the
1516          * lifetime of the objects. The closest we can is to release the
1517          * offsets on purgeable objects by truncating it and marking it purged,
1518          * which prevents userspace from ever using that object again.
1519          */
1520         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1521         ret = drm_gem_create_mmap_offset(&obj->base);
1522         if (ret != -ENOSPC)
1523                 goto out;
1524
1525         i915_gem_shrink_all(dev_priv);
1526         ret = drm_gem_create_mmap_offset(&obj->base);
1527 out:
1528         dev_priv->mm.shrinker_no_lock_stealing = false;
1529
1530         return ret;
1531 }
1532
1533 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1534 {
1535         if (!obj->base.map_list.map)
1536                 return;
1537
1538         drm_gem_free_mmap_offset(&obj->base);
1539 }
1540
1541 int
1542 i915_gem_mmap_gtt(struct drm_file *file,
1543                   struct drm_device *dev,
1544                   uint32_t handle,
1545                   uint64_t *offset)
1546 {
1547         struct drm_i915_private *dev_priv = dev->dev_private;
1548         struct drm_i915_gem_object *obj;
1549         int ret;
1550
1551         ret = i915_mutex_lock_interruptible(dev);
1552         if (ret)
1553                 return ret;
1554
1555         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1556         if (&obj->base == NULL) {
1557                 ret = -ENOENT;
1558                 goto unlock;
1559         }
1560
1561         if (obj->base.size > dev_priv->gtt.mappable_end) {
1562                 ret = -E2BIG;
1563                 goto out;
1564         }
1565
1566         if (obj->madv != I915_MADV_WILLNEED) {
1567                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1568                 ret = -EINVAL;
1569                 goto out;
1570         }
1571
1572         ret = i915_gem_object_create_mmap_offset(obj);
1573         if (ret)
1574                 goto out;
1575
1576         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1577
1578 out:
1579         drm_gem_object_unreference(&obj->base);
1580 unlock:
1581         mutex_unlock(&dev->struct_mutex);
1582         return ret;
1583 }
1584
1585 /**
1586  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1587  * @dev: DRM device
1588  * @data: GTT mapping ioctl data
1589  * @file: GEM object info
1590  *
1591  * Simply returns the fake offset to userspace so it can mmap it.
1592  * The mmap call will end up in drm_gem_mmap(), which will set things
1593  * up so we can get faults in the handler above.
1594  *
1595  * The fault handler will take care of binding the object into the GTT
1596  * (since it may have been evicted to make room for something), allocating
1597  * a fence register, and mapping the appropriate aperture address into
1598  * userspace.
1599  */
1600 int
1601 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1602                         struct drm_file *file)
1603 {
1604         struct drm_i915_gem_mmap_gtt *args = data;
1605
1606         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1607 }
1608
1609 /* Immediately discard the backing storage */
1610 static void
1611 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1612 {
1613         struct inode *inode;
1614
1615         i915_gem_object_free_mmap_offset(obj);
1616
1617         if (obj->base.filp == NULL)
1618                 return;
1619
1620         /* Our goal here is to return as much of the memory as
1621          * is possible back to the system as we are called from OOM.
1622          * To do this we must instruct the shmfs to drop all of its
1623          * backing pages, *now*.
1624          */
1625         inode = file_inode(obj->base.filp);
1626         shmem_truncate_range(inode, 0, (loff_t)-1);
1627
1628         obj->madv = __I915_MADV_PURGED;
1629 }
1630
1631 static inline int
1632 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1633 {
1634         return obj->madv == I915_MADV_DONTNEED;
1635 }
1636
1637 static void
1638 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1639 {
1640         struct sg_page_iter sg_iter;
1641         int ret;
1642
1643         BUG_ON(obj->madv == __I915_MADV_PURGED);
1644
1645         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1646         if (ret) {
1647                 /* In the event of a disaster, abandon all caches and
1648                  * hope for the best.
1649                  */
1650                 WARN_ON(ret != -EIO);
1651                 i915_gem_clflush_object(obj, true);
1652                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1653         }
1654
1655         if (i915_gem_object_needs_bit17_swizzle(obj))
1656                 i915_gem_object_save_bit_17_swizzle(obj);
1657
1658         if (obj->madv == I915_MADV_DONTNEED)
1659                 obj->dirty = 0;
1660
1661         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1662                 struct page *page = sg_page_iter_page(&sg_iter);
1663
1664                 if (obj->dirty)
1665                         set_page_dirty(page);
1666
1667                 if (obj->madv == I915_MADV_WILLNEED)
1668                         mark_page_accessed(page);
1669
1670                 page_cache_release(page);
1671         }
1672         obj->dirty = 0;
1673
1674         sg_free_table(obj->pages);
1675         kfree(obj->pages);
1676 }
1677
1678 int
1679 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1680 {
1681         const struct drm_i915_gem_object_ops *ops = obj->ops;
1682
1683         if (obj->pages == NULL)
1684                 return 0;
1685
1686         if (obj->pages_pin_count)
1687                 return -EBUSY;
1688
1689         BUG_ON(i915_gem_obj_bound_any(obj));
1690
1691         /* ->put_pages might need to allocate memory for the bit17 swizzle
1692          * array, hence protect them from being reaped by removing them from gtt
1693          * lists early. */
1694         list_del(&obj->global_list);
1695
1696         ops->put_pages(obj);
1697         obj->pages = NULL;
1698
1699         if (i915_gem_object_is_purgeable(obj))
1700                 i915_gem_object_truncate(obj);
1701
1702         return 0;
1703 }
1704
1705 static long
1706 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1707                   bool purgeable_only)
1708 {
1709         struct drm_i915_gem_object *obj, *next;
1710         long count = 0;
1711
1712         list_for_each_entry_safe(obj, next,
1713                                  &dev_priv->mm.unbound_list,
1714                                  global_list) {
1715                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1716                     i915_gem_object_put_pages(obj) == 0) {
1717                         count += obj->base.size >> PAGE_SHIFT;
1718                         if (count >= target)
1719                                 return count;
1720                 }
1721         }
1722
1723         list_for_each_entry_safe(obj, next, &dev_priv->mm.bound_list,
1724                                  global_list) {
1725                 struct i915_vma *vma, *v;
1726
1727                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1728                         continue;
1729
1730                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1731                         if (i915_vma_unbind(vma))
1732                                 break;
1733
1734                 if (!i915_gem_object_put_pages(obj)) {
1735                         count += obj->base.size >> PAGE_SHIFT;
1736                         if (count >= target)
1737                                 return count;
1738                 }
1739         }
1740
1741         return count;
1742 }
1743
1744 static long
1745 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1746 {
1747         return __i915_gem_shrink(dev_priv, target, true);
1748 }
1749
1750 static void
1751 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1752 {
1753         struct drm_i915_gem_object *obj, *next;
1754
1755         i915_gem_evict_everything(dev_priv->dev);
1756
1757         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1758                                  global_list)
1759                 i915_gem_object_put_pages(obj);
1760 }
1761
1762 static int
1763 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1764 {
1765         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1766         int page_count, i;
1767         struct address_space *mapping;
1768         struct sg_table *st;
1769         struct scatterlist *sg;
1770         struct sg_page_iter sg_iter;
1771         struct page *page;
1772         unsigned long last_pfn = 0;     /* suppress gcc warning */
1773         gfp_t gfp;
1774
1775         /* Assert that the object is not currently in any GPU domain. As it
1776          * wasn't in the GTT, there shouldn't be any way it could have been in
1777          * a GPU cache
1778          */
1779         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1780         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1781
1782         st = kmalloc(sizeof(*st), GFP_KERNEL);
1783         if (st == NULL)
1784                 return -ENOMEM;
1785
1786         page_count = obj->base.size / PAGE_SIZE;
1787         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1788                 sg_free_table(st);
1789                 kfree(st);
1790                 return -ENOMEM;
1791         }
1792
1793         /* Get the list of pages out of our struct file.  They'll be pinned
1794          * at this point until we release them.
1795          *
1796          * Fail silently without starting the shrinker
1797          */
1798         mapping = file_inode(obj->base.filp)->i_mapping;
1799         gfp = mapping_gfp_mask(mapping);
1800         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1801         gfp &= ~(__GFP_IO | __GFP_WAIT);
1802         sg = st->sgl;
1803         st->nents = 0;
1804         for (i = 0; i < page_count; i++) {
1805                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1806                 if (IS_ERR(page)) {
1807                         i915_gem_purge(dev_priv, page_count);
1808                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1809                 }
1810                 if (IS_ERR(page)) {
1811                         /* We've tried hard to allocate the memory by reaping
1812                          * our own buffer, now let the real VM do its job and
1813                          * go down in flames if truly OOM.
1814                          */
1815                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1816                         gfp |= __GFP_IO | __GFP_WAIT;
1817
1818                         i915_gem_shrink_all(dev_priv);
1819                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1820                         if (IS_ERR(page))
1821                                 goto err_pages;
1822
1823                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1824                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1825                 }
1826 #ifdef CONFIG_SWIOTLB
1827                 if (swiotlb_nr_tbl()) {
1828                         st->nents++;
1829                         sg_set_page(sg, page, PAGE_SIZE, 0);
1830                         sg = sg_next(sg);
1831                         continue;
1832                 }
1833 #endif
1834                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1835                         if (i)
1836                                 sg = sg_next(sg);
1837                         st->nents++;
1838                         sg_set_page(sg, page, PAGE_SIZE, 0);
1839                 } else {
1840                         sg->length += PAGE_SIZE;
1841                 }
1842                 last_pfn = page_to_pfn(page);
1843         }
1844 #ifdef CONFIG_SWIOTLB
1845         if (!swiotlb_nr_tbl())
1846 #endif
1847                 sg_mark_end(sg);
1848         obj->pages = st;
1849
1850         if (i915_gem_object_needs_bit17_swizzle(obj))
1851                 i915_gem_object_do_bit_17_swizzle(obj);
1852
1853         return 0;
1854
1855 err_pages:
1856         sg_mark_end(sg);
1857         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1858                 page_cache_release(sg_page_iter_page(&sg_iter));
1859         sg_free_table(st);
1860         kfree(st);
1861         return PTR_ERR(page);
1862 }
1863
1864 /* Ensure that the associated pages are gathered from the backing storage
1865  * and pinned into our object. i915_gem_object_get_pages() may be called
1866  * multiple times before they are released by a single call to
1867  * i915_gem_object_put_pages() - once the pages are no longer referenced
1868  * either as a result of memory pressure (reaping pages under the shrinker)
1869  * or as the object is itself released.
1870  */
1871 int
1872 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1873 {
1874         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1875         const struct drm_i915_gem_object_ops *ops = obj->ops;
1876         int ret;
1877
1878         if (obj->pages)
1879                 return 0;
1880
1881         if (obj->madv != I915_MADV_WILLNEED) {
1882                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1883                 return -EINVAL;
1884         }
1885
1886         BUG_ON(obj->pages_pin_count);
1887
1888         ret = ops->get_pages(obj);
1889         if (ret)
1890                 return ret;
1891
1892         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1893         return 0;
1894 }
1895
1896 void
1897 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1898                                struct intel_ring_buffer *ring)
1899 {
1900         struct drm_device *dev = obj->base.dev;
1901         struct drm_i915_private *dev_priv = dev->dev_private;
1902         u32 seqno = intel_ring_get_seqno(ring);
1903
1904         BUG_ON(ring == NULL);
1905         if (obj->ring != ring && obj->last_write_seqno) {
1906                 /* Keep the seqno relative to the current ring */
1907                 obj->last_write_seqno = seqno;
1908         }
1909         obj->ring = ring;
1910
1911         /* Add a reference if we're newly entering the active list. */
1912         if (!obj->active) {
1913                 drm_gem_object_reference(&obj->base);
1914                 obj->active = 1;
1915         }
1916
1917         list_move_tail(&obj->ring_list, &ring->active_list);
1918
1919         obj->last_read_seqno = seqno;
1920
1921         if (obj->fenced_gpu_access) {
1922                 obj->last_fenced_seqno = seqno;
1923
1924                 /* Bump MRU to take account of the delayed flush */
1925                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1926                         struct drm_i915_fence_reg *reg;
1927
1928                         reg = &dev_priv->fence_regs[obj->fence_reg];
1929                         list_move_tail(&reg->lru_list,
1930                                        &dev_priv->mm.fence_list);
1931                 }
1932         }
1933 }
1934
1935 static void
1936 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1937 {
1938         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1939         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1940         struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1941
1942         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1943         BUG_ON(!obj->active);
1944
1945         list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
1946
1947         list_del_init(&obj->ring_list);
1948         obj->ring = NULL;
1949
1950         obj->last_read_seqno = 0;
1951         obj->last_write_seqno = 0;
1952         obj->base.write_domain = 0;
1953
1954         obj->last_fenced_seqno = 0;
1955         obj->fenced_gpu_access = false;
1956
1957         obj->active = 0;
1958         drm_gem_object_unreference(&obj->base);
1959
1960         WARN_ON(i915_verify_lists(dev));
1961 }
1962
1963 static int
1964 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1965 {
1966         struct drm_i915_private *dev_priv = dev->dev_private;
1967         struct intel_ring_buffer *ring;
1968         int ret, i, j;
1969
1970         /* Carefully retire all requests without writing to the rings */
1971         for_each_ring(ring, dev_priv, i) {
1972                 ret = intel_ring_idle(ring);
1973                 if (ret)
1974                         return ret;
1975         }
1976         i915_gem_retire_requests(dev);
1977
1978         /* Finally reset hw state */
1979         for_each_ring(ring, dev_priv, i) {
1980                 intel_ring_init_seqno(ring, seqno);
1981
1982                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1983                         ring->sync_seqno[j] = 0;
1984         }
1985
1986         return 0;
1987 }
1988
1989 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1990 {
1991         struct drm_i915_private *dev_priv = dev->dev_private;
1992         int ret;
1993
1994         if (seqno == 0)
1995                 return -EINVAL;
1996
1997         /* HWS page needs to be set less than what we
1998          * will inject to ring
1999          */
2000         ret = i915_gem_init_seqno(dev, seqno - 1);
2001         if (ret)
2002                 return ret;
2003
2004         /* Carefully set the last_seqno value so that wrap
2005          * detection still works
2006          */
2007         dev_priv->next_seqno = seqno;
2008         dev_priv->last_seqno = seqno - 1;
2009         if (dev_priv->last_seqno == 0)
2010                 dev_priv->last_seqno--;
2011
2012         return 0;
2013 }
2014
2015 int
2016 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2017 {
2018         struct drm_i915_private *dev_priv = dev->dev_private;
2019
2020         /* reserve 0 for non-seqno */
2021         if (dev_priv->next_seqno == 0) {
2022                 int ret = i915_gem_init_seqno(dev, 0);
2023                 if (ret)
2024                         return ret;
2025
2026                 dev_priv->next_seqno = 1;
2027         }
2028
2029         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2030         return 0;
2031 }
2032
2033 int __i915_add_request(struct intel_ring_buffer *ring,
2034                        struct drm_file *file,
2035                        struct drm_i915_gem_object *obj,
2036                        u32 *out_seqno)
2037 {
2038         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2039         struct drm_i915_gem_request *request;
2040         u32 request_ring_position, request_start;
2041         int was_empty;
2042         int ret;
2043
2044         request_start = intel_ring_get_tail(ring);
2045         /*
2046          * Emit any outstanding flushes - execbuf can fail to emit the flush
2047          * after having emitted the batchbuffer command. Hence we need to fix
2048          * things up similar to emitting the lazy request. The difference here
2049          * is that the flush _must_ happen before the next request, no matter
2050          * what.
2051          */
2052         ret = intel_ring_flush_all_caches(ring);
2053         if (ret)
2054                 return ret;
2055
2056         request = kmalloc(sizeof(*request), GFP_KERNEL);
2057         if (request == NULL)
2058                 return -ENOMEM;
2059
2060
2061         /* Record the position of the start of the request so that
2062          * should we detect the updated seqno part-way through the
2063          * GPU processing the request, we never over-estimate the
2064          * position of the head.
2065          */
2066         request_ring_position = intel_ring_get_tail(ring);
2067
2068         ret = ring->add_request(ring);
2069         if (ret) {
2070                 kfree(request);
2071                 return ret;
2072         }
2073
2074         request->seqno = intel_ring_get_seqno(ring);
2075         request->ring = ring;
2076         request->head = request_start;
2077         request->tail = request_ring_position;
2078         request->ctx = ring->last_context;
2079         request->batch_obj = obj;
2080
2081         /* Whilst this request exists, batch_obj will be on the
2082          * active_list, and so will hold the active reference. Only when this
2083          * request is retired will the the batch_obj be moved onto the
2084          * inactive_list and lose its active reference. Hence we do not need
2085          * to explicitly hold another reference here.
2086          */
2087
2088         if (request->ctx)
2089                 i915_gem_context_reference(request->ctx);
2090
2091         request->emitted_jiffies = jiffies;
2092         was_empty = list_empty(&ring->request_list);
2093         list_add_tail(&request->list, &ring->request_list);
2094         request->file_priv = NULL;
2095
2096         if (file) {
2097                 struct drm_i915_file_private *file_priv = file->driver_priv;
2098
2099                 spin_lock(&file_priv->mm.lock);
2100                 request->file_priv = file_priv;
2101                 list_add_tail(&request->client_list,
2102                               &file_priv->mm.request_list);
2103                 spin_unlock(&file_priv->mm.lock);
2104         }
2105
2106         trace_i915_gem_request_add(ring, request->seqno);
2107         ring->outstanding_lazy_request = 0;
2108
2109         if (!dev_priv->ums.mm_suspended) {
2110                 i915_queue_hangcheck(ring->dev);
2111
2112                 if (was_empty) {
2113                         queue_delayed_work(dev_priv->wq,
2114                                            &dev_priv->mm.retire_work,
2115                                            round_jiffies_up_relative(HZ));
2116                         intel_mark_busy(dev_priv->dev);
2117                 }
2118         }
2119
2120         if (out_seqno)
2121                 *out_seqno = request->seqno;
2122         return 0;
2123 }
2124
2125 static inline void
2126 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2127 {
2128         struct drm_i915_file_private *file_priv = request->file_priv;
2129
2130         if (!file_priv)
2131                 return;
2132
2133         spin_lock(&file_priv->mm.lock);
2134         if (request->file_priv) {
2135                 list_del(&request->client_list);
2136                 request->file_priv = NULL;
2137         }
2138         spin_unlock(&file_priv->mm.lock);
2139 }
2140
2141 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2142                                     struct i915_address_space *vm)
2143 {
2144         if (acthd >= i915_gem_obj_offset(obj, vm) &&
2145             acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2146                 return true;
2147
2148         return false;
2149 }
2150
2151 static bool i915_head_inside_request(const u32 acthd_unmasked,
2152                                      const u32 request_start,
2153                                      const u32 request_end)
2154 {
2155         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2156
2157         if (request_start < request_end) {
2158                 if (acthd >= request_start && acthd < request_end)
2159                         return true;
2160         } else if (request_start > request_end) {
2161                 if (acthd >= request_start || acthd < request_end)
2162                         return true;
2163         }
2164
2165         return false;
2166 }
2167
2168 static struct i915_address_space *
2169 request_to_vm(struct drm_i915_gem_request *request)
2170 {
2171         struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2172         struct i915_address_space *vm;
2173
2174         vm = &dev_priv->gtt.base;
2175
2176         return vm;
2177 }
2178
2179 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2180                                 const u32 acthd, bool *inside)
2181 {
2182         /* There is a possibility that unmasked head address
2183          * pointing inside the ring, matches the batch_obj address range.
2184          * However this is extremely unlikely.
2185          */
2186         if (request->batch_obj) {
2187                 if (i915_head_inside_object(acthd, request->batch_obj,
2188                                             request_to_vm(request))) {
2189                         *inside = true;
2190                         return true;
2191                 }
2192         }
2193
2194         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2195                 *inside = false;
2196                 return true;
2197         }
2198
2199         return false;
2200 }
2201
2202 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2203                                   struct drm_i915_gem_request *request,
2204                                   u32 acthd)
2205 {
2206         struct i915_ctx_hang_stats *hs = NULL;
2207         bool inside, guilty;
2208         unsigned long offset = 0;
2209
2210         /* Innocent until proven guilty */
2211         guilty = false;
2212
2213         if (request->batch_obj)
2214                 offset = i915_gem_obj_offset(request->batch_obj,
2215                                              request_to_vm(request));
2216
2217         if (ring->hangcheck.action != HANGCHECK_WAIT &&
2218             i915_request_guilty(request, acthd, &inside)) {
2219                 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2220                           ring->name,
2221                           inside ? "inside" : "flushing",
2222                           offset,
2223                           request->ctx ? request->ctx->id : 0,
2224                           acthd);
2225
2226                 guilty = true;
2227         }
2228
2229         /* If contexts are disabled or this is the default context, use
2230          * file_priv->reset_state
2231          */
2232         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2233                 hs = &request->ctx->hang_stats;
2234         else if (request->file_priv)
2235                 hs = &request->file_priv->hang_stats;
2236
2237         if (hs) {
2238                 if (guilty)
2239                         hs->batch_active++;
2240                 else
2241                         hs->batch_pending++;
2242         }
2243 }
2244
2245 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2246 {
2247         list_del(&request->list);
2248         i915_gem_request_remove_from_client(request);
2249
2250         if (request->ctx)
2251                 i915_gem_context_unreference(request->ctx);
2252
2253         kfree(request);
2254 }
2255
2256 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2257                                       struct intel_ring_buffer *ring)
2258 {
2259         u32 completed_seqno;
2260         u32 acthd;
2261
2262         acthd = intel_ring_get_active_head(ring);
2263         completed_seqno = ring->get_seqno(ring, false);
2264
2265         while (!list_empty(&ring->request_list)) {
2266                 struct drm_i915_gem_request *request;
2267
2268                 request = list_first_entry(&ring->request_list,
2269                                            struct drm_i915_gem_request,
2270                                            list);
2271
2272                 if (request->seqno > completed_seqno)
2273                         i915_set_reset_status(ring, request, acthd);
2274
2275                 i915_gem_free_request(request);
2276         }
2277
2278         while (!list_empty(&ring->active_list)) {
2279                 struct drm_i915_gem_object *obj;
2280
2281                 obj = list_first_entry(&ring->active_list,
2282                                        struct drm_i915_gem_object,
2283                                        ring_list);
2284
2285                 i915_gem_object_move_to_inactive(obj);
2286         }
2287 }
2288
2289 void i915_gem_restore_fences(struct drm_device *dev)
2290 {
2291         struct drm_i915_private *dev_priv = dev->dev_private;
2292         int i;
2293
2294         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2295                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2296
2297                 /*
2298                  * Commit delayed tiling changes if we have an object still
2299                  * attached to the fence, otherwise just clear the fence.
2300                  */
2301                 if (reg->obj) {
2302                         i915_gem_object_update_fence(reg->obj, reg,
2303                                                      reg->obj->tiling_mode);
2304                 } else {
2305                         i915_gem_write_fence(dev, i, NULL);
2306                 }
2307         }
2308 }
2309
2310 void i915_gem_reset(struct drm_device *dev)
2311 {
2312         struct drm_i915_private *dev_priv = dev->dev_private;
2313         struct intel_ring_buffer *ring;
2314         int i;
2315
2316         for_each_ring(ring, dev_priv, i)
2317                 i915_gem_reset_ring_lists(dev_priv, ring);
2318
2319         i915_gem_restore_fences(dev);
2320 }
2321
2322 /**
2323  * This function clears the request list as sequence numbers are passed.
2324  */
2325 void
2326 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2327 {
2328         uint32_t seqno;
2329
2330         if (list_empty(&ring->request_list))
2331                 return;
2332
2333         WARN_ON(i915_verify_lists(ring->dev));
2334
2335         seqno = ring->get_seqno(ring, true);
2336
2337         while (!list_empty(&ring->request_list)) {
2338                 struct drm_i915_gem_request *request;
2339
2340                 request = list_first_entry(&ring->request_list,
2341                                            struct drm_i915_gem_request,
2342                                            list);
2343
2344                 if (!i915_seqno_passed(seqno, request->seqno))
2345                         break;
2346
2347                 trace_i915_gem_request_retire(ring, request->seqno);
2348                 /* We know the GPU must have read the request to have
2349                  * sent us the seqno + interrupt, so use the position
2350                  * of tail of the request to update the last known position
2351                  * of the GPU head.
2352                  */
2353                 ring->last_retired_head = request->tail;
2354
2355                 i915_gem_free_request(request);
2356         }
2357
2358         /* Move any buffers on the active list that are no longer referenced
2359          * by the ringbuffer to the flushing/inactive lists as appropriate.
2360          */
2361         while (!list_empty(&ring->active_list)) {
2362                 struct drm_i915_gem_object *obj;
2363
2364                 obj = list_first_entry(&ring->active_list,
2365                                       struct drm_i915_gem_object,
2366                                       ring_list);
2367
2368                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2369                         break;
2370
2371                 i915_gem_object_move_to_inactive(obj);
2372         }
2373
2374         if (unlikely(ring->trace_irq_seqno &&
2375                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2376                 ring->irq_put(ring);
2377                 ring->trace_irq_seqno = 0;
2378         }
2379
2380         WARN_ON(i915_verify_lists(ring->dev));
2381 }
2382
2383 void
2384 i915_gem_retire_requests(struct drm_device *dev)
2385 {
2386         drm_i915_private_t *dev_priv = dev->dev_private;
2387         struct intel_ring_buffer *ring;
2388         int i;
2389
2390         for_each_ring(ring, dev_priv, i)
2391                 i915_gem_retire_requests_ring(ring);
2392 }
2393
2394 static void
2395 i915_gem_retire_work_handler(struct work_struct *work)
2396 {
2397         drm_i915_private_t *dev_priv;
2398         struct drm_device *dev;
2399         struct intel_ring_buffer *ring;
2400         bool idle;
2401         int i;
2402
2403         dev_priv = container_of(work, drm_i915_private_t,
2404                                 mm.retire_work.work);
2405         dev = dev_priv->dev;
2406
2407         /* Come back later if the device is busy... */
2408         if (!mutex_trylock(&dev->struct_mutex)) {
2409                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2410                                    round_jiffies_up_relative(HZ));
2411                 return;
2412         }
2413
2414         i915_gem_retire_requests(dev);
2415
2416         /* Send a periodic flush down the ring so we don't hold onto GEM
2417          * objects indefinitely.
2418          */
2419         idle = true;
2420         for_each_ring(ring, dev_priv, i) {
2421                 if (ring->gpu_caches_dirty)
2422                         i915_add_request(ring, NULL);
2423
2424                 idle &= list_empty(&ring->request_list);
2425         }
2426
2427         if (!dev_priv->ums.mm_suspended && !idle)
2428                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2429                                    round_jiffies_up_relative(HZ));
2430         if (idle)
2431                 intel_mark_idle(dev);
2432
2433         mutex_unlock(&dev->struct_mutex);
2434 }
2435
2436 /**
2437  * Ensures that an object will eventually get non-busy by flushing any required
2438  * write domains, emitting any outstanding lazy request and retiring and
2439  * completed requests.
2440  */
2441 static int
2442 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2443 {
2444         int ret;
2445
2446         if (obj->active) {
2447                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2448                 if (ret)
2449                         return ret;
2450
2451                 i915_gem_retire_requests_ring(obj->ring);
2452         }
2453
2454         return 0;
2455 }
2456
2457 /**
2458  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2459  * @DRM_IOCTL_ARGS: standard ioctl arguments
2460  *
2461  * Returns 0 if successful, else an error is returned with the remaining time in
2462  * the timeout parameter.
2463  *  -ETIME: object is still busy after timeout
2464  *  -ERESTARTSYS: signal interrupted the wait
2465  *  -ENONENT: object doesn't exist
2466  * Also possible, but rare:
2467  *  -EAGAIN: GPU wedged
2468  *  -ENOMEM: damn
2469  *  -ENODEV: Internal IRQ fail
2470  *  -E?: The add request failed
2471  *
2472  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2473  * non-zero timeout parameter the wait ioctl will wait for the given number of
2474  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2475  * without holding struct_mutex the object may become re-busied before this
2476  * function completes. A similar but shorter * race condition exists in the busy
2477  * ioctl
2478  */
2479 int
2480 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2481 {
2482         drm_i915_private_t *dev_priv = dev->dev_private;
2483         struct drm_i915_gem_wait *args = data;
2484         struct drm_i915_gem_object *obj;
2485         struct intel_ring_buffer *ring = NULL;
2486         struct timespec timeout_stack, *timeout = NULL;
2487         unsigned reset_counter;
2488         u32 seqno = 0;
2489         int ret = 0;
2490
2491         if (args->timeout_ns >= 0) {
2492                 timeout_stack = ns_to_timespec(args->timeout_ns);
2493                 timeout = &timeout_stack;
2494         }
2495
2496         ret = i915_mutex_lock_interruptible(dev);
2497         if (ret)
2498                 return ret;
2499
2500         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2501         if (&obj->base == NULL) {
2502                 mutex_unlock(&dev->struct_mutex);
2503                 return -ENOENT;
2504         }
2505
2506         /* Need to make sure the object gets inactive eventually. */
2507         ret = i915_gem_object_flush_active(obj);
2508         if (ret)
2509                 goto out;
2510
2511         if (obj->active) {
2512                 seqno = obj->last_read_seqno;
2513                 ring = obj->ring;
2514         }
2515
2516         if (seqno == 0)
2517                  goto out;
2518
2519         /* Do this after OLR check to make sure we make forward progress polling
2520          * on this IOCTL with a 0 timeout (like busy ioctl)
2521          */
2522         if (!args->timeout_ns) {
2523                 ret = -ETIME;
2524                 goto out;
2525         }
2526
2527         drm_gem_object_unreference(&obj->base);
2528         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2529         mutex_unlock(&dev->struct_mutex);
2530
2531         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2532         if (timeout)
2533                 args->timeout_ns = timespec_to_ns(timeout);
2534         return ret;
2535
2536 out:
2537         drm_gem_object_unreference(&obj->base);
2538         mutex_unlock(&dev->struct_mutex);
2539         return ret;
2540 }
2541
2542 /**
2543  * i915_gem_object_sync - sync an object to a ring.
2544  *
2545  * @obj: object which may be in use on another ring.
2546  * @to: ring we wish to use the object on. May be NULL.
2547  *
2548  * This code is meant to abstract object synchronization with the GPU.
2549  * Calling with NULL implies synchronizing the object with the CPU
2550  * rather than a particular GPU ring.
2551  *
2552  * Returns 0 if successful, else propagates up the lower layer error.
2553  */
2554 int
2555 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2556                      struct intel_ring_buffer *to)
2557 {
2558         struct intel_ring_buffer *from = obj->ring;
2559         u32 seqno;
2560         int ret, idx;
2561
2562         if (from == NULL || to == from)
2563                 return 0;
2564
2565         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2566                 return i915_gem_object_wait_rendering(obj, false);
2567
2568         idx = intel_ring_sync_index(from, to);
2569
2570         seqno = obj->last_read_seqno;
2571         if (seqno <= from->sync_seqno[idx])
2572                 return 0;
2573
2574         ret = i915_gem_check_olr(obj->ring, seqno);
2575         if (ret)
2576                 return ret;
2577
2578         ret = to->sync_to(to, from, seqno);
2579         if (!ret)
2580                 /* We use last_read_seqno because sync_to()
2581                  * might have just caused seqno wrap under
2582                  * the radar.
2583                  */
2584                 from->sync_seqno[idx] = obj->last_read_seqno;
2585
2586         return ret;
2587 }
2588
2589 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2590 {
2591         u32 old_write_domain, old_read_domains;
2592
2593         /* Force a pagefault for domain tracking on next user access */
2594         i915_gem_release_mmap(obj);
2595
2596         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2597                 return;
2598
2599         /* Wait for any direct GTT access to complete */
2600         mb();
2601
2602         old_read_domains = obj->base.read_domains;
2603         old_write_domain = obj->base.write_domain;
2604
2605         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2606         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2607
2608         trace_i915_gem_object_change_domain(obj,
2609                                             old_read_domains,
2610                                             old_write_domain);
2611 }
2612
2613 int i915_vma_unbind(struct i915_vma *vma)
2614 {
2615         struct drm_i915_gem_object *obj = vma->obj;
2616         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2617         int ret;
2618
2619         if (list_empty(&vma->vma_link))
2620                 return 0;
2621
2622         if (obj->pin_count)
2623                 return -EBUSY;
2624
2625         BUG_ON(obj->pages == NULL);
2626
2627         ret = i915_gem_object_finish_gpu(obj);
2628         if (ret)
2629                 return ret;
2630         /* Continue on if we fail due to EIO, the GPU is hung so we
2631          * should be safe and we need to cleanup or else we might
2632          * cause memory corruption through use-after-free.
2633          */
2634
2635         i915_gem_object_finish_gtt(obj);
2636
2637         /* release the fence reg _after_ flushing */
2638         ret = i915_gem_object_put_fence(obj);
2639         if (ret)
2640                 return ret;
2641
2642         trace_i915_vma_unbind(vma);
2643
2644         if (obj->has_global_gtt_mapping)
2645                 i915_gem_gtt_unbind_object(obj);
2646         if (obj->has_aliasing_ppgtt_mapping) {
2647                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2648                 obj->has_aliasing_ppgtt_mapping = 0;
2649         }
2650         i915_gem_gtt_finish_object(obj);
2651         i915_gem_object_unpin_pages(obj);
2652
2653         list_del(&vma->mm_list);
2654         /* Avoid an unnecessary call to unbind on rebind. */
2655         if (i915_is_ggtt(vma->vm))
2656                 obj->map_and_fenceable = true;
2657
2658         drm_mm_remove_node(&vma->node);
2659         i915_gem_vma_destroy(vma);
2660
2661         /* Since the unbound list is global, only move to that list if
2662          * no more VMAs exist.
2663          * NB: Until we have real VMAs there will only ever be one */
2664         WARN_ON(!list_empty(&obj->vma_list));
2665         if (list_empty(&obj->vma_list))
2666                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2667
2668         return 0;
2669 }
2670
2671 /**
2672  * Unbinds an object from the global GTT aperture.
2673  */
2674 int
2675 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2676 {
2677         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2678         struct i915_address_space *ggtt = &dev_priv->gtt.base;
2679
2680         if (!i915_gem_obj_ggtt_bound(obj))
2681                 return 0;
2682
2683         if (obj->pin_count)
2684                 return -EBUSY;
2685
2686         BUG_ON(obj->pages == NULL);
2687
2688         return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2689 }
2690
2691 int i915_gpu_idle(struct drm_device *dev)
2692 {
2693         drm_i915_private_t *dev_priv = dev->dev_private;
2694         struct intel_ring_buffer *ring;
2695         int ret, i;
2696
2697         /* Flush everything onto the inactive list. */
2698         for_each_ring(ring, dev_priv, i) {
2699                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2700                 if (ret)
2701                         return ret;
2702
2703                 ret = intel_ring_idle(ring);
2704                 if (ret)
2705                         return ret;
2706         }
2707
2708         return 0;
2709 }
2710
2711 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2712                                  struct drm_i915_gem_object *obj)
2713 {
2714         drm_i915_private_t *dev_priv = dev->dev_private;
2715         int fence_reg;
2716         int fence_pitch_shift;
2717
2718         if (INTEL_INFO(dev)->gen >= 6) {
2719                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2720                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2721         } else {
2722                 fence_reg = FENCE_REG_965_0;
2723                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2724         }
2725
2726         fence_reg += reg * 8;
2727
2728         /* To w/a incoherency with non-atomic 64-bit register updates,
2729          * we split the 64-bit update into two 32-bit writes. In order
2730          * for a partial fence not to be evaluated between writes, we
2731          * precede the update with write to turn off the fence register,
2732          * and only enable the fence as the last step.
2733          *
2734          * For extra levels of paranoia, we make sure each step lands
2735          * before applying the next step.
2736          */
2737         I915_WRITE(fence_reg, 0);
2738         POSTING_READ(fence_reg);
2739
2740         if (obj) {
2741                 u32 size = i915_gem_obj_ggtt_size(obj);
2742                 uint64_t val;
2743
2744                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2745                                  0xfffff000) << 32;
2746                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2747                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2748                 if (obj->tiling_mode == I915_TILING_Y)
2749                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2750                 val |= I965_FENCE_REG_VALID;
2751
2752                 I915_WRITE(fence_reg + 4, val >> 32);
2753                 POSTING_READ(fence_reg + 4);
2754
2755                 I915_WRITE(fence_reg + 0, val);
2756                 POSTING_READ(fence_reg);
2757         } else {
2758                 I915_WRITE(fence_reg + 4, 0);
2759                 POSTING_READ(fence_reg + 4);
2760         }
2761 }
2762
2763 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2764                                  struct drm_i915_gem_object *obj)
2765 {
2766         drm_i915_private_t *dev_priv = dev->dev_private;
2767         u32 val;
2768
2769         if (obj) {
2770                 u32 size = i915_gem_obj_ggtt_size(obj);
2771                 int pitch_val;
2772                 int tile_width;
2773
2774                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2775                      (size & -size) != size ||
2776                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2777                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2778                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2779
2780                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2781                         tile_width = 128;
2782                 else
2783                         tile_width = 512;
2784
2785                 /* Note: pitch better be a power of two tile widths */
2786                 pitch_val = obj->stride / tile_width;
2787                 pitch_val = ffs(pitch_val) - 1;
2788
2789                 val = i915_gem_obj_ggtt_offset(obj);
2790                 if (obj->tiling_mode == I915_TILING_Y)
2791                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2792                 val |= I915_FENCE_SIZE_BITS(size);
2793                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2794                 val |= I830_FENCE_REG_VALID;
2795         } else
2796                 val = 0;
2797
2798         if (reg < 8)
2799                 reg = FENCE_REG_830_0 + reg * 4;
2800         else
2801                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2802
2803         I915_WRITE(reg, val);
2804         POSTING_READ(reg);
2805 }
2806
2807 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2808                                 struct drm_i915_gem_object *obj)
2809 {
2810         drm_i915_private_t *dev_priv = dev->dev_private;
2811         uint32_t val;
2812
2813         if (obj) {
2814                 u32 size = i915_gem_obj_ggtt_size(obj);
2815                 uint32_t pitch_val;
2816
2817                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2818                      (size & -size) != size ||
2819                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2820                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2821                      i915_gem_obj_ggtt_offset(obj), size);
2822
2823                 pitch_val = obj->stride / 128;
2824                 pitch_val = ffs(pitch_val) - 1;
2825
2826                 val = i915_gem_obj_ggtt_offset(obj);
2827                 if (obj->tiling_mode == I915_TILING_Y)
2828                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2829                 val |= I830_FENCE_SIZE_BITS(size);
2830                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2831                 val |= I830_FENCE_REG_VALID;
2832         } else
2833                 val = 0;
2834
2835         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2836         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2837 }
2838
2839 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2840 {
2841         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2842 }
2843
2844 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2845                                  struct drm_i915_gem_object *obj)
2846 {
2847         struct drm_i915_private *dev_priv = dev->dev_private;
2848
2849         /* Ensure that all CPU reads are completed before installing a fence
2850          * and all writes before removing the fence.
2851          */
2852         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2853                 mb();
2854
2855         WARN(obj && (!obj->stride || !obj->tiling_mode),
2856              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2857              obj->stride, obj->tiling_mode);
2858
2859         switch (INTEL_INFO(dev)->gen) {
2860         case 7:
2861         case 6:
2862         case 5:
2863         case 4: i965_write_fence_reg(dev, reg, obj); break;
2864         case 3: i915_write_fence_reg(dev, reg, obj); break;
2865         case 2: i830_write_fence_reg(dev, reg, obj); break;
2866         default: BUG();
2867         }
2868
2869         /* And similarly be paranoid that no direct access to this region
2870          * is reordered to before the fence is installed.
2871          */
2872         if (i915_gem_object_needs_mb(obj))
2873                 mb();
2874 }
2875
2876 static inline int fence_number(struct drm_i915_private *dev_priv,
2877                                struct drm_i915_fence_reg *fence)
2878 {
2879         return fence - dev_priv->fence_regs;
2880 }
2881
2882 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2883                                          struct drm_i915_fence_reg *fence,
2884                                          bool enable)
2885 {
2886         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2887         int reg = fence_number(dev_priv, fence);
2888
2889         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2890
2891         if (enable) {
2892                 obj->fence_reg = reg;
2893                 fence->obj = obj;
2894                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2895         } else {
2896                 obj->fence_reg = I915_FENCE_REG_NONE;
2897                 fence->obj = NULL;
2898                 list_del_init(&fence->lru_list);
2899         }
2900         obj->fence_dirty = false;
2901 }
2902
2903 static int
2904 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2905 {
2906         if (obj->last_fenced_seqno) {
2907                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2908                 if (ret)
2909                         return ret;
2910
2911                 obj->last_fenced_seqno = 0;
2912         }
2913
2914         obj->fenced_gpu_access = false;
2915         return 0;
2916 }
2917
2918 int
2919 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2920 {
2921         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2922         struct drm_i915_fence_reg *fence;
2923         int ret;
2924
2925         ret = i915_gem_object_wait_fence(obj);
2926         if (ret)
2927                 return ret;
2928
2929         if (obj->fence_reg == I915_FENCE_REG_NONE)
2930                 return 0;
2931
2932         fence = &dev_priv->fence_regs[obj->fence_reg];
2933
2934         i915_gem_object_fence_lost(obj);
2935         i915_gem_object_update_fence(obj, fence, false);
2936
2937         return 0;
2938 }
2939
2940 static struct drm_i915_fence_reg *
2941 i915_find_fence_reg(struct drm_device *dev)
2942 {
2943         struct drm_i915_private *dev_priv = dev->dev_private;
2944         struct drm_i915_fence_reg *reg, *avail;
2945         int i;
2946
2947         /* First try to find a free reg */
2948         avail = NULL;
2949         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2950                 reg = &dev_priv->fence_regs[i];
2951                 if (!reg->obj)
2952                         return reg;
2953
2954                 if (!reg->pin_count)
2955                         avail = reg;
2956         }
2957
2958         if (avail == NULL)
2959                 return NULL;
2960
2961         /* None available, try to steal one or wait for a user to finish */
2962         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2963                 if (reg->pin_count)
2964                         continue;
2965
2966                 return reg;
2967         }
2968
2969         return NULL;
2970 }
2971
2972 /**
2973  * i915_gem_object_get_fence - set up fencing for an object
2974  * @obj: object to map through a fence reg
2975  *
2976  * When mapping objects through the GTT, userspace wants to be able to write
2977  * to them without having to worry about swizzling if the object is tiled.
2978  * This function walks the fence regs looking for a free one for @obj,
2979  * stealing one if it can't find any.
2980  *
2981  * It then sets up the reg based on the object's properties: address, pitch
2982  * and tiling format.
2983  *
2984  * For an untiled surface, this removes any existing fence.
2985  */
2986 int
2987 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2988 {
2989         struct drm_device *dev = obj->base.dev;
2990         struct drm_i915_private *dev_priv = dev->dev_private;
2991         bool enable = obj->tiling_mode != I915_TILING_NONE;
2992         struct drm_i915_fence_reg *reg;
2993         int ret;
2994
2995         /* Have we updated the tiling parameters upon the object and so
2996          * will need to serialise the write to the associated fence register?
2997          */
2998         if (obj->fence_dirty) {
2999                 ret = i915_gem_object_wait_fence(obj);
3000                 if (ret)
3001                         return ret;
3002         }
3003
3004         /* Just update our place in the LRU if our fence is getting reused. */
3005         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3006                 reg = &dev_priv->fence_regs[obj->fence_reg];
3007                 if (!obj->fence_dirty) {
3008                         list_move_tail(&reg->lru_list,
3009                                        &dev_priv->mm.fence_list);
3010                         return 0;
3011                 }
3012         } else if (enable) {
3013                 reg = i915_find_fence_reg(dev);
3014                 if (reg == NULL)
3015                         return -EDEADLK;
3016
3017                 if (reg->obj) {
3018                         struct drm_i915_gem_object *old = reg->obj;
3019
3020                         ret = i915_gem_object_wait_fence(old);
3021                         if (ret)
3022                                 return ret;
3023
3024                         i915_gem_object_fence_lost(old);
3025                 }
3026         } else
3027                 return 0;
3028
3029         i915_gem_object_update_fence(obj, reg, enable);
3030
3031         return 0;
3032 }
3033
3034 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3035                                      struct drm_mm_node *gtt_space,
3036                                      unsigned long cache_level)
3037 {
3038         struct drm_mm_node *other;
3039
3040         /* On non-LLC machines we have to be careful when putting differing
3041          * types of snoopable memory together to avoid the prefetcher
3042          * crossing memory domains and dying.
3043          */
3044         if (HAS_LLC(dev))
3045                 return true;
3046
3047         if (!drm_mm_node_allocated(gtt_space))
3048                 return true;
3049
3050         if (list_empty(&gtt_space->node_list))
3051                 return true;
3052
3053         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3054         if (other->allocated && !other->hole_follows && other->color != cache_level)
3055                 return false;
3056
3057         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3058         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3059                 return false;
3060
3061         return true;
3062 }
3063
3064 static void i915_gem_verify_gtt(struct drm_device *dev)
3065 {
3066 #if WATCH_GTT
3067         struct drm_i915_private *dev_priv = dev->dev_private;
3068         struct drm_i915_gem_object *obj;
3069         int err = 0;
3070
3071         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3072                 if (obj->gtt_space == NULL) {
3073                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3074                         err++;
3075                         continue;
3076                 }
3077
3078                 if (obj->cache_level != obj->gtt_space->color) {
3079                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3080                                i915_gem_obj_ggtt_offset(obj),
3081                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3082                                obj->cache_level,
3083                                obj->gtt_space->color);
3084                         err++;
3085                         continue;
3086                 }
3087
3088                 if (!i915_gem_valid_gtt_space(dev,
3089                                               obj->gtt_space,
3090                                               obj->cache_level)) {
3091                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3092                                i915_gem_obj_ggtt_offset(obj),
3093                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3094                                obj->cache_level);
3095                         err++;
3096                         continue;
3097                 }
3098         }
3099
3100         WARN_ON(err);
3101 #endif
3102 }
3103
3104 /**
3105  * Finds free space in the GTT aperture and binds the object there.
3106  */
3107 static int
3108 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3109                            struct i915_address_space *vm,
3110                            unsigned alignment,
3111                            bool map_and_fenceable,
3112                            bool nonblocking)
3113 {
3114         struct drm_device *dev = obj->base.dev;
3115         drm_i915_private_t *dev_priv = dev->dev_private;
3116         u32 size, fence_size, fence_alignment, unfenced_alignment;
3117         bool mappable, fenceable;
3118         size_t gtt_max =
3119                 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3120         struct i915_vma *vma;
3121         int ret;
3122
3123         if (WARN_ON(!list_empty(&obj->vma_list)))
3124                 return -EBUSY;
3125
3126         fence_size = i915_gem_get_gtt_size(dev,
3127                                            obj->base.size,
3128                                            obj->tiling_mode);
3129         fence_alignment = i915_gem_get_gtt_alignment(dev,
3130                                                      obj->base.size,
3131                                                      obj->tiling_mode, true);
3132         unfenced_alignment =
3133                 i915_gem_get_gtt_alignment(dev,
3134                                                     obj->base.size,
3135                                                     obj->tiling_mode, false);
3136
3137         if (alignment == 0)
3138                 alignment = map_and_fenceable ? fence_alignment :
3139                                                 unfenced_alignment;
3140         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3141                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3142                 return -EINVAL;
3143         }
3144
3145         size = map_and_fenceable ? fence_size : obj->base.size;
3146
3147         /* If the object is bigger than the entire aperture, reject it early
3148          * before evicting everything in a vain attempt to find space.
3149          */
3150         if (obj->base.size > gtt_max) {
3151                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3152                           obj->base.size,
3153                           map_and_fenceable ? "mappable" : "total",
3154                           gtt_max);
3155                 return -E2BIG;
3156         }
3157
3158         ret = i915_gem_object_get_pages(obj);
3159         if (ret)
3160                 return ret;
3161
3162         i915_gem_object_pin_pages(obj);
3163
3164         /* FIXME: For now we only ever use 1 VMA per object */
3165         BUG_ON(!i915_is_ggtt(vm));
3166         WARN_ON(!list_empty(&obj->vma_list));
3167
3168         vma = i915_gem_vma_create(obj, vm);
3169         if (IS_ERR(vma)) {
3170                 ret = PTR_ERR(vma);
3171                 goto err_unpin;
3172         }
3173
3174 search_free:
3175         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3176                                                   size, alignment,
3177                                                   obj->cache_level, 0, gtt_max);
3178         if (ret) {
3179                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3180                                                obj->cache_level,
3181                                                map_and_fenceable,
3182                                                nonblocking);
3183                 if (ret == 0)
3184                         goto search_free;
3185
3186                 goto err_free_vma;
3187         }
3188         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3189                                               obj->cache_level))) {
3190                 ret = -EINVAL;
3191                 goto err_remove_node;
3192         }
3193
3194         ret = i915_gem_gtt_prepare_object(obj);
3195         if (ret)
3196                 goto err_remove_node;
3197
3198         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3199         list_add_tail(&vma->mm_list, &vm->inactive_list);
3200
3201         fenceable =
3202                 i915_is_ggtt(vm) &&
3203                 i915_gem_obj_ggtt_size(obj) == fence_size &&
3204                 (i915_gem_obj_ggtt_offset(obj) & (fence_alignment - 1)) == 0;
3205
3206         mappable =
3207                 i915_is_ggtt(vm) &&
3208                 vma->node.start + obj->base.size <= dev_priv->gtt.mappable_end;
3209
3210         /* Map and fenceable only changes if the VM is the global GGTT */
3211         if (i915_is_ggtt(vm))
3212                 obj->map_and_fenceable = mappable && fenceable;
3213
3214         WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3215
3216         trace_i915_vma_bind(vma, map_and_fenceable);
3217         i915_gem_verify_gtt(dev);
3218         return 0;
3219
3220 err_remove_node:
3221         drm_mm_remove_node(&vma->node);
3222 err_free_vma:
3223         i915_gem_vma_destroy(vma);
3224 err_unpin:
3225         i915_gem_object_unpin_pages(obj);
3226         return ret;
3227 }
3228
3229 bool
3230 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3231                         bool force)
3232 {
3233         /* If we don't have a page list set up, then we're not pinned
3234          * to GPU, and we can ignore the cache flush because it'll happen
3235          * again at bind time.
3236          */
3237         if (obj->pages == NULL)
3238                 return false;
3239
3240         /*
3241          * Stolen memory is always coherent with the GPU as it is explicitly
3242          * marked as wc by the system, or the system is cache-coherent.
3243          */
3244         if (obj->stolen)
3245                 return false;
3246
3247         /* If the GPU is snooping the contents of the CPU cache,
3248          * we do not need to manually clear the CPU cache lines.  However,
3249          * the caches are only snooped when the render cache is
3250          * flushed/invalidated.  As we always have to emit invalidations
3251          * and flushes when moving into and out of the RENDER domain, correct
3252          * snooping behaviour occurs naturally as the result of our domain
3253          * tracking.
3254          */
3255         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3256                 return false;
3257
3258         trace_i915_gem_object_clflush(obj);
3259         drm_clflush_sg(obj->pages);
3260
3261         return true;
3262 }
3263
3264 /** Flushes the GTT write domain for the object if it's dirty. */
3265 static void
3266 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3267 {
3268         uint32_t old_write_domain;
3269
3270         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3271                 return;
3272
3273         /* No actual flushing is required for the GTT write domain.  Writes
3274          * to it immediately go to main memory as far as we know, so there's
3275          * no chipset flush.  It also doesn't land in render cache.
3276          *
3277          * However, we do have to enforce the order so that all writes through
3278          * the GTT land before any writes to the device, such as updates to
3279          * the GATT itself.
3280          */
3281         wmb();
3282
3283         old_write_domain = obj->base.write_domain;
3284         obj->base.write_domain = 0;
3285
3286         trace_i915_gem_object_change_domain(obj,
3287                                             obj->base.read_domains,
3288                                             old_write_domain);
3289 }
3290
3291 /** Flushes the CPU write domain for the object if it's dirty. */
3292 static void
3293 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3294                                        bool force)
3295 {
3296         uint32_t old_write_domain;
3297
3298         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3299                 return;
3300
3301         if (i915_gem_clflush_object(obj, force))
3302                 i915_gem_chipset_flush(obj->base.dev);
3303
3304         old_write_domain = obj->base.write_domain;
3305         obj->base.write_domain = 0;
3306
3307         trace_i915_gem_object_change_domain(obj,
3308                                             obj->base.read_domains,
3309                                             old_write_domain);
3310 }
3311
3312 /**
3313  * Moves a single object to the GTT read, and possibly write domain.
3314  *
3315  * This function returns when the move is complete, including waiting on
3316  * flushes to occur.
3317  */
3318 int
3319 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3320 {
3321         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3322         uint32_t old_write_domain, old_read_domains;
3323         int ret;
3324
3325         /* Not valid to be called on unbound objects. */
3326         if (!i915_gem_obj_bound_any(obj))
3327                 return -EINVAL;
3328
3329         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3330                 return 0;
3331
3332         ret = i915_gem_object_wait_rendering(obj, !write);
3333         if (ret)
3334                 return ret;
3335
3336         i915_gem_object_flush_cpu_write_domain(obj, false);
3337
3338         /* Serialise direct access to this object with the barriers for
3339          * coherent writes from the GPU, by effectively invalidating the
3340          * GTT domain upon first access.
3341          */
3342         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3343                 mb();
3344
3345         old_write_domain = obj->base.write_domain;
3346         old_read_domains = obj->base.read_domains;
3347
3348         /* It should now be out of any other write domains, and we can update
3349          * the domain values for our changes.
3350          */
3351         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3352         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3353         if (write) {
3354                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3355                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3356                 obj->dirty = 1;
3357         }
3358
3359         trace_i915_gem_object_change_domain(obj,
3360                                             old_read_domains,
3361                                             old_write_domain);
3362
3363         /* And bump the LRU for this access */
3364         if (i915_gem_object_is_inactive(obj)) {
3365                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3366                                                            &dev_priv->gtt.base);
3367                 if (vma)
3368                         list_move_tail(&vma->mm_list,
3369                                        &dev_priv->gtt.base.inactive_list);
3370
3371         }
3372
3373         return 0;
3374 }
3375
3376 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3377                                     enum i915_cache_level cache_level)
3378 {
3379         struct drm_device *dev = obj->base.dev;
3380         drm_i915_private_t *dev_priv = dev->dev_private;
3381         struct i915_vma *vma;
3382         int ret;
3383
3384         if (obj->cache_level == cache_level)
3385                 return 0;
3386
3387         if (obj->pin_count) {
3388                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3389                 return -EBUSY;
3390         }
3391
3392         list_for_each_entry(vma, &obj->vma_list, vma_link) {
3393                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3394                         ret = i915_vma_unbind(vma);
3395                         if (ret)
3396                                 return ret;
3397
3398                         break;
3399                 }
3400         }
3401
3402         if (i915_gem_obj_bound_any(obj)) {
3403                 ret = i915_gem_object_finish_gpu(obj);
3404                 if (ret)
3405                         return ret;
3406
3407                 i915_gem_object_finish_gtt(obj);
3408
3409                 /* Before SandyBridge, you could not use tiling or fence
3410                  * registers with snooped memory, so relinquish any fences
3411                  * currently pointing to our region in the aperture.
3412                  */
3413                 if (INTEL_INFO(dev)->gen < 6) {
3414                         ret = i915_gem_object_put_fence(obj);
3415                         if (ret)
3416                                 return ret;
3417                 }
3418
3419                 if (obj->has_global_gtt_mapping)
3420                         i915_gem_gtt_bind_object(obj, cache_level);
3421                 if (obj->has_aliasing_ppgtt_mapping)
3422                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3423                                                obj, cache_level);
3424         }
3425
3426         list_for_each_entry(vma, &obj->vma_list, vma_link)
3427                 vma->node.color = cache_level;
3428         obj->cache_level = cache_level;
3429
3430         if (cpu_write_needs_clflush(obj)) {
3431                 u32 old_read_domains, old_write_domain;
3432
3433                 /* If we're coming from LLC cached, then we haven't
3434                  * actually been tracking whether the data is in the
3435                  * CPU cache or not, since we only allow one bit set
3436                  * in obj->write_domain and have been skipping the clflushes.
3437                  * Just set it to the CPU cache for now.
3438                  */
3439                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3440                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3441
3442                 old_read_domains = obj->base.read_domains;
3443                 old_write_domain = obj->base.write_domain;
3444
3445                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3446                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3447
3448                 trace_i915_gem_object_change_domain(obj,
3449                                                     old_read_domains,
3450                                                     old_write_domain);
3451         }
3452
3453         i915_gem_verify_gtt(dev);
3454         return 0;
3455 }
3456
3457 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3458                                struct drm_file *file)
3459 {
3460         struct drm_i915_gem_caching *args = data;
3461         struct drm_i915_gem_object *obj;
3462         int ret;
3463
3464         ret = i915_mutex_lock_interruptible(dev);
3465         if (ret)
3466                 return ret;
3467
3468         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3469         if (&obj->base == NULL) {
3470                 ret = -ENOENT;
3471                 goto unlock;
3472         }
3473
3474         switch (obj->cache_level) {
3475         case I915_CACHE_LLC:
3476         case I915_CACHE_L3_LLC:
3477                 args->caching = I915_CACHING_CACHED;
3478                 break;
3479
3480         default:
3481                 args->caching = I915_CACHING_NONE;
3482                 break;
3483         }
3484
3485         drm_gem_object_unreference(&obj->base);
3486 unlock:
3487         mutex_unlock(&dev->struct_mutex);
3488         return ret;
3489 }
3490
3491 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3492                                struct drm_file *file)
3493 {
3494         struct drm_i915_gem_caching *args = data;
3495         struct drm_i915_gem_object *obj;
3496         enum i915_cache_level level;
3497         int ret;
3498
3499         switch (args->caching) {
3500         case I915_CACHING_NONE:
3501                 level = I915_CACHE_NONE;
3502                 break;
3503         case I915_CACHING_CACHED:
3504                 level = I915_CACHE_LLC;
3505                 break;
3506         default:
3507                 return -EINVAL;
3508         }
3509
3510         ret = i915_mutex_lock_interruptible(dev);
3511         if (ret)
3512                 return ret;
3513
3514         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3515         if (&obj->base == NULL) {
3516                 ret = -ENOENT;
3517                 goto unlock;
3518         }
3519
3520         ret = i915_gem_object_set_cache_level(obj, level);
3521
3522         drm_gem_object_unreference(&obj->base);
3523 unlock:
3524         mutex_unlock(&dev->struct_mutex);
3525         return ret;
3526 }
3527
3528 static bool is_pin_display(struct drm_i915_gem_object *obj)
3529 {
3530         /* There are 3 sources that pin objects:
3531          *   1. The display engine (scanouts, sprites, cursors);
3532          *   2. Reservations for execbuffer;
3533          *   3. The user.
3534          *
3535          * We can ignore reservations as we hold the struct_mutex and
3536          * are only called outside of the reservation path.  The user
3537          * can only increment pin_count once, and so if after
3538          * subtracting the potential reference by the user, any pin_count
3539          * remains, it must be due to another use by the display engine.
3540          */
3541         return obj->pin_count - !!obj->user_pin_count;
3542 }
3543
3544 /*
3545  * Prepare buffer for display plane (scanout, cursors, etc).
3546  * Can be called from an uninterruptible phase (modesetting) and allows
3547  * any flushes to be pipelined (for pageflips).
3548  */
3549 int
3550 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3551                                      u32 alignment,
3552                                      struct intel_ring_buffer *pipelined)
3553 {
3554         u32 old_read_domains, old_write_domain;
3555         int ret;
3556
3557         if (pipelined != obj->ring) {
3558                 ret = i915_gem_object_sync(obj, pipelined);
3559                 if (ret)
3560                         return ret;
3561         }
3562
3563         /* Mark the pin_display early so that we account for the
3564          * display coherency whilst setting up the cache domains.
3565          */
3566         obj->pin_display = true;
3567
3568         /* The display engine is not coherent with the LLC cache on gen6.  As
3569          * a result, we make sure that the pinning that is about to occur is
3570          * done with uncached PTEs. This is lowest common denominator for all
3571          * chipsets.
3572          *
3573          * However for gen6+, we could do better by using the GFDT bit instead
3574          * of uncaching, which would allow us to flush all the LLC-cached data
3575          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3576          */
3577         ret = i915_gem_object_set_cache_level(obj,
3578                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3579         if (ret)
3580                 goto err_unpin_display;
3581
3582         /* As the user may map the buffer once pinned in the display plane
3583          * (e.g. libkms for the bootup splash), we have to ensure that we
3584          * always use map_and_fenceable for all scanout buffers.
3585          */
3586         ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3587         if (ret)
3588                 goto err_unpin_display;
3589
3590         i915_gem_object_flush_cpu_write_domain(obj, true);
3591
3592         old_write_domain = obj->base.write_domain;
3593         old_read_domains = obj->base.read_domains;
3594
3595         /* It should now be out of any other write domains, and we can update
3596          * the domain values for our changes.
3597          */
3598         obj->base.write_domain = 0;
3599         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3600
3601         trace_i915_gem_object_change_domain(obj,
3602                                             old_read_domains,
3603                                             old_write_domain);
3604
3605         return 0;
3606
3607 err_unpin_display:
3608         obj->pin_display = is_pin_display(obj);
3609         return ret;
3610 }
3611
3612 void
3613 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3614 {
3615         i915_gem_object_unpin(obj);
3616         obj->pin_display = is_pin_display(obj);
3617 }
3618
3619 int
3620 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3621 {
3622         int ret;
3623
3624         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3625                 return 0;
3626
3627         ret = i915_gem_object_wait_rendering(obj, false);
3628         if (ret)
3629                 return ret;
3630
3631         /* Ensure that we invalidate the GPU's caches and TLBs. */
3632         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3633         return 0;
3634 }
3635
3636 /**
3637  * Moves a single object to the CPU read, and possibly write domain.
3638  *
3639  * This function returns when the move is complete, including waiting on
3640  * flushes to occur.
3641  */
3642 int
3643 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3644 {
3645         uint32_t old_write_domain, old_read_domains;
3646         int ret;
3647
3648         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3649                 return 0;
3650
3651         ret = i915_gem_object_wait_rendering(obj, !write);
3652         if (ret)
3653                 return ret;
3654
3655         i915_gem_object_flush_gtt_write_domain(obj);
3656
3657         old_write_domain = obj->base.write_domain;
3658         old_read_domains = obj->base.read_domains;
3659
3660         /* Flush the CPU cache if it's still invalid. */
3661         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3662                 i915_gem_clflush_object(obj, false);
3663
3664                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3665         }
3666
3667         /* It should now be out of any other write domains, and we can update
3668          * the domain values for our changes.
3669          */
3670         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3671
3672         /* If we're writing through the CPU, then the GPU read domains will
3673          * need to be invalidated at next use.
3674          */
3675         if (write) {
3676                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3677                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3678         }
3679
3680         trace_i915_gem_object_change_domain(obj,
3681                                             old_read_domains,
3682                                             old_write_domain);
3683
3684         return 0;
3685 }
3686
3687 /* Throttle our rendering by waiting until the ring has completed our requests
3688  * emitted over 20 msec ago.
3689  *
3690  * Note that if we were to use the current jiffies each time around the loop,
3691  * we wouldn't escape the function with any frames outstanding if the time to
3692  * render a frame was over 20ms.
3693  *
3694  * This should get us reasonable parallelism between CPU and GPU but also
3695  * relatively low latency when blocking on a particular request to finish.
3696  */
3697 static int
3698 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3699 {
3700         struct drm_i915_private *dev_priv = dev->dev_private;
3701         struct drm_i915_file_private *file_priv = file->driver_priv;
3702         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3703         struct drm_i915_gem_request *request;
3704         struct intel_ring_buffer *ring = NULL;
3705         unsigned reset_counter;
3706         u32 seqno = 0;
3707         int ret;
3708
3709         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3710         if (ret)
3711                 return ret;
3712
3713         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3714         if (ret)
3715                 return ret;
3716
3717         spin_lock(&file_priv->mm.lock);
3718         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3719                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3720                         break;
3721
3722                 ring = request->ring;
3723                 seqno = request->seqno;
3724         }
3725         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3726         spin_unlock(&file_priv->mm.lock);
3727
3728         if (seqno == 0)
3729                 return 0;
3730
3731         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3732         if (ret == 0)
3733                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3734
3735         return ret;
3736 }
3737
3738 int
3739 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3740                     struct i915_address_space *vm,
3741                     uint32_t alignment,
3742                     bool map_and_fenceable,
3743                     bool nonblocking)
3744 {
3745         struct i915_vma *vma;
3746         int ret;
3747
3748         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3749                 return -EBUSY;
3750
3751         WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3752
3753         vma = i915_gem_obj_to_vma(obj, vm);
3754
3755         if (vma) {
3756                 if ((alignment &&
3757                      vma->node.start & (alignment - 1)) ||
3758                     (map_and_fenceable && !obj->map_and_fenceable)) {
3759                         WARN(obj->pin_count,
3760                              "bo is already pinned with incorrect alignment:"
3761                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3762                              " obj->map_and_fenceable=%d\n",
3763                              i915_gem_obj_offset(obj, vm), alignment,
3764                              map_and_fenceable,
3765                              obj->map_and_fenceable);
3766                         ret = i915_vma_unbind(vma);
3767                         if (ret)
3768                                 return ret;
3769                 }
3770         }
3771
3772         if (!i915_gem_obj_bound(obj, vm)) {
3773                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3774
3775                 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3776                                                  map_and_fenceable,
3777                                                  nonblocking);
3778                 if (ret)
3779                         return ret;
3780
3781                 if (!dev_priv->mm.aliasing_ppgtt)
3782                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3783         }
3784
3785         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3786                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3787
3788         obj->pin_count++;
3789         obj->pin_mappable |= map_and_fenceable;
3790
3791         return 0;
3792 }
3793
3794 void
3795 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3796 {
3797         BUG_ON(obj->pin_count == 0);
3798         BUG_ON(!i915_gem_obj_bound_any(obj));
3799
3800         if (--obj->pin_count == 0)
3801                 obj->pin_mappable = false;
3802 }
3803
3804 int
3805 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3806                    struct drm_file *file)
3807 {
3808         struct drm_i915_gem_pin *args = data;
3809         struct drm_i915_gem_object *obj;
3810         int ret;
3811
3812         ret = i915_mutex_lock_interruptible(dev);
3813         if (ret)
3814                 return ret;
3815
3816         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3817         if (&obj->base == NULL) {
3818                 ret = -ENOENT;
3819                 goto unlock;
3820         }
3821
3822         if (obj->madv != I915_MADV_WILLNEED) {
3823                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3824                 ret = -EINVAL;
3825                 goto out;
3826         }
3827
3828         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3829                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3830                           args->handle);
3831                 ret = -EINVAL;
3832                 goto out;
3833         }
3834
3835         if (obj->user_pin_count == 0) {
3836                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3837                 if (ret)
3838                         goto out;
3839         }
3840
3841         obj->user_pin_count++;
3842         obj->pin_filp = file;
3843
3844         args->offset = i915_gem_obj_ggtt_offset(obj);
3845 out:
3846         drm_gem_object_unreference(&obj->base);
3847 unlock:
3848         mutex_unlock(&dev->struct_mutex);
3849         return ret;
3850 }
3851
3852 int
3853 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3854                      struct drm_file *file)
3855 {
3856         struct drm_i915_gem_pin *args = data;
3857         struct drm_i915_gem_object *obj;
3858         int ret;
3859
3860         ret = i915_mutex_lock_interruptible(dev);
3861         if (ret)
3862                 return ret;
3863
3864         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3865         if (&obj->base == NULL) {
3866                 ret = -ENOENT;
3867                 goto unlock;
3868         }
3869
3870         if (obj->pin_filp != file) {
3871                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3872                           args->handle);
3873                 ret = -EINVAL;
3874                 goto out;
3875         }
3876         obj->user_pin_count--;
3877         if (obj->user_pin_count == 0) {
3878                 obj->pin_filp = NULL;
3879                 i915_gem_object_unpin(obj);
3880         }
3881
3882 out:
3883         drm_gem_object_unreference(&obj->base);
3884 unlock:
3885         mutex_unlock(&dev->struct_mutex);
3886         return ret;
3887 }
3888
3889 int
3890 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3891                     struct drm_file *file)
3892 {
3893         struct drm_i915_gem_busy *args = data;
3894         struct drm_i915_gem_object *obj;
3895         int ret;
3896
3897         ret = i915_mutex_lock_interruptible(dev);
3898         if (ret)
3899                 return ret;
3900
3901         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3902         if (&obj->base == NULL) {
3903                 ret = -ENOENT;
3904                 goto unlock;
3905         }
3906
3907         /* Count all active objects as busy, even if they are currently not used
3908          * by the gpu. Users of this interface expect objects to eventually
3909          * become non-busy without any further actions, therefore emit any
3910          * necessary flushes here.
3911          */
3912         ret = i915_gem_object_flush_active(obj);
3913
3914         args->busy = obj->active;
3915         if (obj->ring) {
3916                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3917                 args->busy |= intel_ring_flag(obj->ring) << 16;
3918         }
3919
3920         drm_gem_object_unreference(&obj->base);
3921 unlock:
3922         mutex_unlock(&dev->struct_mutex);
3923         return ret;
3924 }
3925
3926 int
3927 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3928                         struct drm_file *file_priv)
3929 {
3930         return i915_gem_ring_throttle(dev, file_priv);
3931 }
3932
3933 int
3934 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3935                        struct drm_file *file_priv)
3936 {
3937         struct drm_i915_gem_madvise *args = data;
3938         struct drm_i915_gem_object *obj;
3939         int ret;
3940
3941         switch (args->madv) {
3942         case I915_MADV_DONTNEED:
3943         case I915_MADV_WILLNEED:
3944             break;
3945         default:
3946             return -EINVAL;
3947         }
3948
3949         ret = i915_mutex_lock_interruptible(dev);
3950         if (ret)
3951                 return ret;
3952
3953         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3954         if (&obj->base == NULL) {
3955                 ret = -ENOENT;
3956                 goto unlock;
3957         }
3958
3959         if (obj->pin_count) {
3960                 ret = -EINVAL;
3961                 goto out;
3962         }
3963
3964         if (obj->madv != __I915_MADV_PURGED)
3965                 obj->madv = args->madv;
3966
3967         /* if the object is no longer attached, discard its backing storage */
3968         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3969                 i915_gem_object_truncate(obj);
3970
3971         args->retained = obj->madv != __I915_MADV_PURGED;
3972
3973 out:
3974         drm_gem_object_unreference(&obj->base);
3975 unlock:
3976         mutex_unlock(&dev->struct_mutex);
3977         return ret;
3978 }
3979
3980 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3981                           const struct drm_i915_gem_object_ops *ops)
3982 {
3983         INIT_LIST_HEAD(&obj->global_list);
3984         INIT_LIST_HEAD(&obj->ring_list);
3985         INIT_LIST_HEAD(&obj->exec_list);
3986         INIT_LIST_HEAD(&obj->vma_list);
3987
3988         obj->ops = ops;
3989
3990         obj->fence_reg = I915_FENCE_REG_NONE;
3991         obj->madv = I915_MADV_WILLNEED;
3992         /* Avoid an unnecessary call to unbind on the first bind. */
3993         obj->map_and_fenceable = true;
3994
3995         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3996 }
3997
3998 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3999         .get_pages = i915_gem_object_get_pages_gtt,
4000         .put_pages = i915_gem_object_put_pages_gtt,
4001 };
4002
4003 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4004                                                   size_t size)
4005 {
4006         struct drm_i915_gem_object *obj;
4007         struct address_space *mapping;
4008         gfp_t mask;
4009
4010         obj = i915_gem_object_alloc(dev);
4011         if (obj == NULL)
4012                 return NULL;
4013
4014         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4015                 i915_gem_object_free(obj);
4016                 return NULL;
4017         }
4018
4019         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4020         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4021                 /* 965gm cannot relocate objects above 4GiB. */
4022                 mask &= ~__GFP_HIGHMEM;
4023                 mask |= __GFP_DMA32;
4024         }
4025
4026         mapping = file_inode(obj->base.filp)->i_mapping;
4027         mapping_set_gfp_mask(mapping, mask);
4028
4029         i915_gem_object_init(obj, &i915_gem_object_ops);
4030
4031         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4032         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4033
4034         if (HAS_LLC(dev)) {
4035                 /* On some devices, we can have the GPU use the LLC (the CPU
4036                  * cache) for about a 10% performance improvement
4037                  * compared to uncached.  Graphics requests other than
4038                  * display scanout are coherent with the CPU in
4039                  * accessing this cache.  This means in this mode we
4040                  * don't need to clflush on the CPU side, and on the
4041                  * GPU side we only need to flush internal caches to
4042                  * get data visible to the CPU.
4043                  *
4044                  * However, we maintain the display planes as UC, and so
4045                  * need to rebind when first used as such.
4046                  */
4047                 obj->cache_level = I915_CACHE_LLC;
4048         } else
4049                 obj->cache_level = I915_CACHE_NONE;
4050
4051         trace_i915_gem_object_create(obj);
4052
4053         return obj;
4054 }
4055
4056 int i915_gem_init_object(struct drm_gem_object *obj)
4057 {
4058         BUG();
4059
4060         return 0;
4061 }
4062
4063 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4064 {
4065         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4066         struct drm_device *dev = obj->base.dev;
4067         drm_i915_private_t *dev_priv = dev->dev_private;
4068         struct i915_vma *vma, *next;
4069
4070         trace_i915_gem_object_destroy(obj);
4071
4072         if (obj->phys_obj)
4073                 i915_gem_detach_phys_object(dev, obj);
4074
4075         obj->pin_count = 0;
4076         /* NB: 0 or 1 elements */
4077         WARN_ON(!list_empty(&obj->vma_list) &&
4078                 !list_is_singular(&obj->vma_list));
4079         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4080                 int ret = i915_vma_unbind(vma);
4081                 if (WARN_ON(ret == -ERESTARTSYS)) {
4082                         bool was_interruptible;
4083
4084                         was_interruptible = dev_priv->mm.interruptible;
4085                         dev_priv->mm.interruptible = false;
4086
4087                         WARN_ON(i915_vma_unbind(vma));
4088
4089                         dev_priv->mm.interruptible = was_interruptible;
4090                 }
4091         }
4092
4093         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4094          * before progressing. */
4095         if (obj->stolen)
4096                 i915_gem_object_unpin_pages(obj);
4097
4098         if (WARN_ON(obj->pages_pin_count))
4099                 obj->pages_pin_count = 0;
4100         i915_gem_object_put_pages(obj);
4101         i915_gem_object_free_mmap_offset(obj);
4102         i915_gem_object_release_stolen(obj);
4103
4104         BUG_ON(obj->pages);
4105
4106         if (obj->base.import_attach)
4107                 drm_prime_gem_destroy(&obj->base, NULL);
4108
4109         drm_gem_object_release(&obj->base);
4110         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4111
4112         kfree(obj->bit_17);
4113         i915_gem_object_free(obj);
4114 }
4115
4116 struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4117                                      struct i915_address_space *vm)
4118 {
4119         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4120         if (vma == NULL)
4121                 return ERR_PTR(-ENOMEM);
4122
4123         INIT_LIST_HEAD(&vma->vma_link);
4124         INIT_LIST_HEAD(&vma->mm_list);
4125         vma->vm = vm;
4126         vma->obj = obj;
4127
4128         /* Keep GGTT vmas first to make debug easier */
4129         if (i915_is_ggtt(vm))
4130                 list_add(&vma->vma_link, &obj->vma_list);
4131         else
4132                 list_add_tail(&vma->vma_link, &obj->vma_list);
4133
4134         return vma;
4135 }
4136
4137 void i915_gem_vma_destroy(struct i915_vma *vma)
4138 {
4139         WARN_ON(vma->node.allocated);
4140         list_del(&vma->vma_link);
4141         kfree(vma);
4142 }
4143
4144 int
4145 i915_gem_idle(struct drm_device *dev)
4146 {
4147         drm_i915_private_t *dev_priv = dev->dev_private;
4148         int ret;
4149
4150         if (dev_priv->ums.mm_suspended) {
4151                 mutex_unlock(&dev->struct_mutex);
4152                 return 0;
4153         }
4154
4155         ret = i915_gpu_idle(dev);
4156         if (ret) {
4157                 mutex_unlock(&dev->struct_mutex);
4158                 return ret;
4159         }
4160         i915_gem_retire_requests(dev);
4161
4162         /* Under UMS, be paranoid and evict. */
4163         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4164                 i915_gem_evict_everything(dev);
4165
4166         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4167
4168         i915_kernel_lost_context(dev);
4169         i915_gem_cleanup_ringbuffer(dev);
4170
4171         /* Cancel the retire work handler, which should be idle now. */
4172         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4173
4174         return 0;
4175 }
4176
4177 void i915_gem_l3_remap(struct drm_device *dev)
4178 {
4179         drm_i915_private_t *dev_priv = dev->dev_private;
4180         u32 misccpctl;
4181         int i;
4182
4183         if (!HAS_L3_GPU_CACHE(dev))
4184                 return;
4185
4186         if (!dev_priv->l3_parity.remap_info)
4187                 return;
4188
4189         misccpctl = I915_READ(GEN7_MISCCPCTL);
4190         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4191         POSTING_READ(GEN7_MISCCPCTL);
4192
4193         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4194                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4195                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4196                         DRM_DEBUG("0x%x was already programmed to %x\n",
4197                                   GEN7_L3LOG_BASE + i, remap);
4198                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4199                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
4200                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4201         }
4202
4203         /* Make sure all the writes land before disabling dop clock gating */
4204         POSTING_READ(GEN7_L3LOG_BASE);
4205
4206         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4207 }
4208
4209 void i915_gem_init_swizzling(struct drm_device *dev)
4210 {
4211         drm_i915_private_t *dev_priv = dev->dev_private;
4212
4213         if (INTEL_INFO(dev)->gen < 5 ||
4214             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4215                 return;
4216
4217         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4218                                  DISP_TILE_SURFACE_SWIZZLING);
4219
4220         if (IS_GEN5(dev))
4221                 return;
4222
4223         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4224         if (IS_GEN6(dev))
4225                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4226         else if (IS_GEN7(dev))
4227                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4228         else
4229                 BUG();
4230 }
4231
4232 static bool
4233 intel_enable_blt(struct drm_device *dev)
4234 {
4235         if (!HAS_BLT(dev))
4236                 return false;
4237
4238         /* The blitter was dysfunctional on early prototypes */
4239         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4240                 DRM_INFO("BLT not supported on this pre-production hardware;"
4241                          " graphics performance will be degraded.\n");
4242                 return false;
4243         }
4244
4245         return true;
4246 }
4247
4248 static int i915_gem_init_rings(struct drm_device *dev)
4249 {
4250         struct drm_i915_private *dev_priv = dev->dev_private;
4251         int ret;
4252
4253         ret = intel_init_render_ring_buffer(dev);
4254         if (ret)
4255                 return ret;
4256
4257         if (HAS_BSD(dev)) {
4258                 ret = intel_init_bsd_ring_buffer(dev);
4259                 if (ret)
4260                         goto cleanup_render_ring;
4261         }
4262
4263         if (intel_enable_blt(dev)) {
4264                 ret = intel_init_blt_ring_buffer(dev);
4265                 if (ret)
4266                         goto cleanup_bsd_ring;
4267         }
4268
4269         if (HAS_VEBOX(dev)) {
4270                 ret = intel_init_vebox_ring_buffer(dev);
4271                 if (ret)
4272                         goto cleanup_blt_ring;
4273         }
4274
4275
4276         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4277         if (ret)
4278                 goto cleanup_vebox_ring;
4279
4280         return 0;
4281
4282 cleanup_vebox_ring:
4283         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4284 cleanup_blt_ring:
4285         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4286 cleanup_bsd_ring:
4287         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4288 cleanup_render_ring:
4289         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4290
4291         return ret;
4292 }
4293
4294 int
4295 i915_gem_init_hw(struct drm_device *dev)
4296 {
4297         drm_i915_private_t *dev_priv = dev->dev_private;
4298         int ret;
4299
4300         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4301                 return -EIO;
4302
4303         if (dev_priv->ellc_size)
4304                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4305
4306         if (HAS_PCH_NOP(dev)) {
4307                 u32 temp = I915_READ(GEN7_MSG_CTL);
4308                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4309                 I915_WRITE(GEN7_MSG_CTL, temp);
4310         }
4311
4312         i915_gem_l3_remap(dev);
4313
4314         i915_gem_init_swizzling(dev);
4315
4316         ret = i915_gem_init_rings(dev);
4317         if (ret)
4318                 return ret;
4319
4320         /*
4321          * XXX: There was some w/a described somewhere suggesting loading
4322          * contexts before PPGTT.
4323          */
4324         i915_gem_context_init(dev);
4325         if (dev_priv->mm.aliasing_ppgtt) {
4326                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4327                 if (ret) {
4328                         i915_gem_cleanup_aliasing_ppgtt(dev);
4329                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4330                 }
4331         }
4332
4333         return 0;
4334 }
4335
4336 int i915_gem_init(struct drm_device *dev)
4337 {
4338         struct drm_i915_private *dev_priv = dev->dev_private;
4339         int ret;
4340
4341         mutex_lock(&dev->struct_mutex);
4342
4343         if (IS_VALLEYVIEW(dev)) {
4344                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4345                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4346                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4347                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4348         }
4349
4350         i915_gem_init_global_gtt(dev);
4351
4352         ret = i915_gem_init_hw(dev);
4353         mutex_unlock(&dev->struct_mutex);
4354         if (ret) {
4355                 i915_gem_cleanup_aliasing_ppgtt(dev);
4356                 return ret;
4357         }
4358
4359         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4360         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4361                 dev_priv->dri1.allow_batchbuffer = 1;
4362         return 0;
4363 }
4364
4365 void
4366 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4367 {
4368         drm_i915_private_t *dev_priv = dev->dev_private;
4369         struct intel_ring_buffer *ring;
4370         int i;
4371
4372         for_each_ring(ring, dev_priv, i)
4373                 intel_cleanup_ring_buffer(ring);
4374 }
4375
4376 int
4377 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4378                        struct drm_file *file_priv)
4379 {
4380         struct drm_i915_private *dev_priv = dev->dev_private;
4381         int ret;
4382
4383         if (drm_core_check_feature(dev, DRIVER_MODESET))
4384                 return 0;
4385
4386         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4387                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4388                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4389         }
4390
4391         mutex_lock(&dev->struct_mutex);
4392         dev_priv->ums.mm_suspended = 0;
4393
4394         ret = i915_gem_init_hw(dev);
4395         if (ret != 0) {
4396                 mutex_unlock(&dev->struct_mutex);
4397                 return ret;
4398         }
4399
4400         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4401         mutex_unlock(&dev->struct_mutex);
4402
4403         ret = drm_irq_install(dev);
4404         if (ret)
4405                 goto cleanup_ringbuffer;
4406
4407         return 0;
4408
4409 cleanup_ringbuffer:
4410         mutex_lock(&dev->struct_mutex);
4411         i915_gem_cleanup_ringbuffer(dev);
4412         dev_priv->ums.mm_suspended = 1;
4413         mutex_unlock(&dev->struct_mutex);
4414
4415         return ret;
4416 }
4417
4418 int
4419 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4420                        struct drm_file *file_priv)
4421 {
4422         struct drm_i915_private *dev_priv = dev->dev_private;
4423         int ret;
4424
4425         if (drm_core_check_feature(dev, DRIVER_MODESET))
4426                 return 0;
4427
4428         drm_irq_uninstall(dev);
4429
4430         mutex_lock(&dev->struct_mutex);
4431         ret =  i915_gem_idle(dev);
4432
4433         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4434          * We need to replace this with a semaphore, or something.
4435          * And not confound ums.mm_suspended!
4436          */
4437         if (ret != 0)
4438                 dev_priv->ums.mm_suspended = 1;
4439         mutex_unlock(&dev->struct_mutex);
4440
4441         return ret;
4442 }
4443
4444 void
4445 i915_gem_lastclose(struct drm_device *dev)
4446 {
4447         int ret;
4448
4449         if (drm_core_check_feature(dev, DRIVER_MODESET))
4450                 return;
4451
4452         mutex_lock(&dev->struct_mutex);
4453         ret = i915_gem_idle(dev);
4454         if (ret)
4455                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4456         mutex_unlock(&dev->struct_mutex);
4457 }
4458
4459 static void
4460 init_ring_lists(struct intel_ring_buffer *ring)
4461 {
4462         INIT_LIST_HEAD(&ring->active_list);
4463         INIT_LIST_HEAD(&ring->request_list);
4464 }
4465
4466 static void i915_init_vm(struct drm_i915_private *dev_priv,
4467                          struct i915_address_space *vm)
4468 {
4469         vm->dev = dev_priv->dev;
4470         INIT_LIST_HEAD(&vm->active_list);
4471         INIT_LIST_HEAD(&vm->inactive_list);
4472         INIT_LIST_HEAD(&vm->global_link);
4473         list_add(&vm->global_link, &dev_priv->vm_list);
4474 }
4475
4476 void
4477 i915_gem_load(struct drm_device *dev)
4478 {
4479         drm_i915_private_t *dev_priv = dev->dev_private;
4480         int i;
4481
4482         dev_priv->slab =
4483                 kmem_cache_create("i915_gem_object",
4484                                   sizeof(struct drm_i915_gem_object), 0,
4485                                   SLAB_HWCACHE_ALIGN,
4486                                   NULL);
4487
4488         INIT_LIST_HEAD(&dev_priv->vm_list);
4489         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4490
4491         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4492         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4493         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4494         for (i = 0; i < I915_NUM_RINGS; i++)
4495                 init_ring_lists(&dev_priv->ring[i]);
4496         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4497                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4498         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4499                           i915_gem_retire_work_handler);
4500         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4501
4502         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4503         if (IS_GEN3(dev)) {
4504                 I915_WRITE(MI_ARB_STATE,
4505                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4506         }
4507
4508         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4509
4510         /* Old X drivers will take 0-2 for front, back, depth buffers */
4511         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4512                 dev_priv->fence_reg_start = 3;
4513
4514         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4515                 dev_priv->num_fence_regs = 32;
4516         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4517                 dev_priv->num_fence_regs = 16;
4518         else
4519                 dev_priv->num_fence_regs = 8;
4520
4521         /* Initialize fence registers to zero */
4522         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4523         i915_gem_restore_fences(dev);
4524
4525         i915_gem_detect_bit_6_swizzle(dev);
4526         init_waitqueue_head(&dev_priv->pending_flip_queue);
4527
4528         dev_priv->mm.interruptible = true;
4529
4530         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4531         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4532         register_shrinker(&dev_priv->mm.inactive_shrinker);
4533 }
4534
4535 /*
4536  * Create a physically contiguous memory object for this object
4537  * e.g. for cursor + overlay regs
4538  */
4539 static int i915_gem_init_phys_object(struct drm_device *dev,
4540                                      int id, int size, int align)
4541 {
4542         drm_i915_private_t *dev_priv = dev->dev_private;
4543         struct drm_i915_gem_phys_object *phys_obj;
4544         int ret;
4545
4546         if (dev_priv->mm.phys_objs[id - 1] || !size)
4547                 return 0;
4548
4549         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4550         if (!phys_obj)
4551                 return -ENOMEM;
4552
4553         phys_obj->id = id;
4554
4555         phys_obj->handle = drm_pci_alloc(dev, size, align);
4556         if (!phys_obj->handle) {
4557                 ret = -ENOMEM;
4558                 goto kfree_obj;
4559         }
4560 #ifdef CONFIG_X86
4561         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4562 #endif
4563
4564         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4565
4566         return 0;
4567 kfree_obj:
4568         kfree(phys_obj);
4569         return ret;
4570 }
4571
4572 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4573 {
4574         drm_i915_private_t *dev_priv = dev->dev_private;
4575         struct drm_i915_gem_phys_object *phys_obj;
4576
4577         if (!dev_priv->mm.phys_objs[id - 1])
4578                 return;
4579
4580         phys_obj = dev_priv->mm.phys_objs[id - 1];
4581         if (phys_obj->cur_obj) {
4582                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4583         }
4584
4585 #ifdef CONFIG_X86
4586         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4587 #endif
4588         drm_pci_free(dev, phys_obj->handle);
4589         kfree(phys_obj);
4590         dev_priv->mm.phys_objs[id - 1] = NULL;
4591 }
4592
4593 void i915_gem_free_all_phys_object(struct drm_device *dev)
4594 {
4595         int i;
4596
4597         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4598                 i915_gem_free_phys_object(dev, i);
4599 }
4600
4601 void i915_gem_detach_phys_object(struct drm_device *dev,
4602                                  struct drm_i915_gem_object *obj)
4603 {
4604         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4605         char *vaddr;
4606         int i;
4607         int page_count;
4608
4609         if (!obj->phys_obj)
4610                 return;
4611         vaddr = obj->phys_obj->handle->vaddr;
4612
4613         page_count = obj->base.size / PAGE_SIZE;
4614         for (i = 0; i < page_count; i++) {
4615                 struct page *page = shmem_read_mapping_page(mapping, i);
4616                 if (!IS_ERR(page)) {
4617                         char *dst = kmap_atomic(page);
4618                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4619                         kunmap_atomic(dst);
4620
4621                         drm_clflush_pages(&page, 1);
4622
4623                         set_page_dirty(page);
4624                         mark_page_accessed(page);
4625                         page_cache_release(page);
4626                 }
4627         }
4628         i915_gem_chipset_flush(dev);
4629
4630         obj->phys_obj->cur_obj = NULL;
4631         obj->phys_obj = NULL;
4632 }
4633
4634 int
4635 i915_gem_attach_phys_object(struct drm_device *dev,
4636                             struct drm_i915_gem_object *obj,
4637                             int id,
4638                             int align)
4639 {
4640         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4641         drm_i915_private_t *dev_priv = dev->dev_private;
4642         int ret = 0;
4643         int page_count;
4644         int i;
4645
4646         if (id > I915_MAX_PHYS_OBJECT)
4647                 return -EINVAL;
4648
4649         if (obj->phys_obj) {
4650                 if (obj->phys_obj->id == id)
4651                         return 0;
4652                 i915_gem_detach_phys_object(dev, obj);
4653         }
4654
4655         /* create a new object */
4656         if (!dev_priv->mm.phys_objs[id - 1]) {
4657                 ret = i915_gem_init_phys_object(dev, id,
4658                                                 obj->base.size, align);
4659                 if (ret) {
4660                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4661                                   id, obj->base.size);
4662                         return ret;
4663                 }
4664         }
4665
4666         /* bind to the object */
4667         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4668         obj->phys_obj->cur_obj = obj;
4669
4670         page_count = obj->base.size / PAGE_SIZE;
4671
4672         for (i = 0; i < page_count; i++) {
4673                 struct page *page;
4674                 char *dst, *src;
4675
4676                 page = shmem_read_mapping_page(mapping, i);
4677                 if (IS_ERR(page))
4678                         return PTR_ERR(page);
4679
4680                 src = kmap_atomic(page);
4681                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4682                 memcpy(dst, src, PAGE_SIZE);
4683                 kunmap_atomic(src);
4684
4685                 mark_page_accessed(page);
4686                 page_cache_release(page);
4687         }
4688
4689         return 0;
4690 }
4691
4692 static int
4693 i915_gem_phys_pwrite(struct drm_device *dev,
4694                      struct drm_i915_gem_object *obj,
4695                      struct drm_i915_gem_pwrite *args,
4696                      struct drm_file *file_priv)
4697 {
4698         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4699         char __user *user_data = to_user_ptr(args->data_ptr);
4700
4701         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4702                 unsigned long unwritten;
4703
4704                 /* The physical object once assigned is fixed for the lifetime
4705                  * of the obj, so we can safely drop the lock and continue
4706                  * to access vaddr.
4707                  */
4708                 mutex_unlock(&dev->struct_mutex);
4709                 unwritten = copy_from_user(vaddr, user_data, args->size);
4710                 mutex_lock(&dev->struct_mutex);
4711                 if (unwritten)
4712                         return -EFAULT;
4713         }
4714
4715         i915_gem_chipset_flush(dev);
4716         return 0;
4717 }
4718
4719 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4720 {
4721         struct drm_i915_file_private *file_priv = file->driver_priv;
4722
4723         /* Clean up our request list when the client is going away, so that
4724          * later retire_requests won't dereference our soon-to-be-gone
4725          * file_priv.
4726          */
4727         spin_lock(&file_priv->mm.lock);
4728         while (!list_empty(&file_priv->mm.request_list)) {
4729                 struct drm_i915_gem_request *request;
4730
4731                 request = list_first_entry(&file_priv->mm.request_list,
4732                                            struct drm_i915_gem_request,
4733                                            client_list);
4734                 list_del(&request->client_list);
4735                 request->file_priv = NULL;
4736         }
4737         spin_unlock(&file_priv->mm.lock);
4738 }
4739
4740 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4741 {
4742         if (!mutex_is_locked(mutex))
4743                 return false;
4744
4745 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4746         return mutex->owner == task;
4747 #else
4748         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4749         return false;
4750 #endif
4751 }
4752
4753 static int
4754 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4755 {
4756         struct drm_i915_private *dev_priv =
4757                 container_of(shrinker,
4758                              struct drm_i915_private,
4759                              mm.inactive_shrinker);
4760         struct drm_device *dev = dev_priv->dev;
4761         struct drm_i915_gem_object *obj;
4762         int nr_to_scan = sc->nr_to_scan;
4763         bool unlock = true;
4764         int cnt;
4765
4766         if (!mutex_trylock(&dev->struct_mutex)) {
4767                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4768                         return 0;
4769
4770                 if (dev_priv->mm.shrinker_no_lock_stealing)
4771                         return 0;
4772
4773                 unlock = false;
4774         }
4775
4776         if (nr_to_scan) {
4777                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4778                 if (nr_to_scan > 0)
4779                         nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4780                                                         false);
4781                 if (nr_to_scan > 0)
4782                         i915_gem_shrink_all(dev_priv);
4783         }
4784
4785         cnt = 0;
4786         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4787                 if (obj->pages_pin_count == 0)
4788                         cnt += obj->base.size >> PAGE_SHIFT;
4789
4790         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4791                 if (obj->active)
4792                         continue;
4793
4794                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4795                         cnt += obj->base.size >> PAGE_SHIFT;
4796         }
4797
4798         if (unlock)
4799                 mutex_unlock(&dev->struct_mutex);
4800         return cnt;
4801 }
4802
4803 /* All the new VM stuff */
4804 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4805                                   struct i915_address_space *vm)
4806 {
4807         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4808         struct i915_vma *vma;
4809
4810         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4811                 vm = &dev_priv->gtt.base;
4812
4813         BUG_ON(list_empty(&o->vma_list));
4814         list_for_each_entry(vma, &o->vma_list, vma_link) {
4815                 if (vma->vm == vm)
4816                         return vma->node.start;
4817
4818         }
4819         return -1;
4820 }
4821
4822 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4823                         struct i915_address_space *vm)
4824 {
4825         struct i915_vma *vma;
4826
4827         list_for_each_entry(vma, &o->vma_list, vma_link)
4828                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4829                         return true;
4830
4831         return false;
4832 }
4833
4834 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4835 {
4836         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4837         struct i915_address_space *vm;
4838
4839         list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4840                 if (i915_gem_obj_bound(o, vm))
4841                         return true;
4842
4843         return false;
4844 }
4845
4846 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4847                                 struct i915_address_space *vm)
4848 {
4849         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4850         struct i915_vma *vma;
4851
4852         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4853                 vm = &dev_priv->gtt.base;
4854
4855         BUG_ON(list_empty(&o->vma_list));
4856
4857         list_for_each_entry(vma, &o->vma_list, vma_link)
4858                 if (vma->vm == vm)
4859                         return vma->node.size;
4860
4861         return 0;
4862 }
4863
4864 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4865                                      struct i915_address_space *vm)
4866 {
4867         struct i915_vma *vma;
4868         list_for_each_entry(vma, &obj->vma_list, vma_link)
4869                 if (vma->vm == vm)
4870                         return vma;
4871
4872         return NULL;
4873 }