drm/i915: Mass convert dev->dev_private to to_i915(dev)
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50                                   enum i915_cache_level level)
51 {
52         return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58                 return false;
59
60         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61                 return true;
62
63         return obj->pin_display;
64 }
65
66 static int
67 insert_mappable_node(struct drm_i915_private *i915,
68                      struct drm_mm_node *node, u32 size)
69 {
70         memset(node, 0, sizeof(*node));
71         return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
72                                                    size, 0, 0, 0,
73                                                    i915->ggtt.mappable_end,
74                                                    DRM_MM_SEARCH_DEFAULT,
75                                                    DRM_MM_CREATE_DEFAULT);
76 }
77
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81         drm_mm_remove_node(node);
82 }
83
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86                                   size_t size)
87 {
88         spin_lock(&dev_priv->mm.object_stat_lock);
89         dev_priv->mm.object_count++;
90         dev_priv->mm.object_memory += size;
91         spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95                                      size_t size)
96 {
97         spin_lock(&dev_priv->mm.object_stat_lock);
98         dev_priv->mm.object_count--;
99         dev_priv->mm.object_memory -= size;
100         spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106         int ret;
107
108         if (!i915_reset_in_progress(error))
109                 return 0;
110
111         /*
112          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
113          * userspace. If it takes that long something really bad is going on and
114          * we should simply try to bail out and fail as gracefully as possible.
115          */
116         ret = wait_event_interruptible_timeout(error->reset_queue,
117                                                !i915_reset_in_progress(error),
118                                                10*HZ);
119         if (ret == 0) {
120                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
121                 return -EIO;
122         } else if (ret < 0) {
123                 return ret;
124         } else {
125                 return 0;
126         }
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131         struct drm_i915_private *dev_priv = to_i915(dev);
132         int ret;
133
134         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135         if (ret)
136                 return ret;
137
138         ret = mutex_lock_interruptible(&dev->struct_mutex);
139         if (ret)
140                 return ret;
141
142         WARN_ON(i915_verify_lists(dev));
143         return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148                             struct drm_file *file)
149 {
150         struct drm_i915_private *dev_priv = to_i915(dev);
151         struct i915_ggtt *ggtt = &dev_priv->ggtt;
152         struct drm_i915_gem_get_aperture *args = data;
153         struct i915_vma *vma;
154         size_t pinned;
155
156         pinned = 0;
157         mutex_lock(&dev->struct_mutex);
158         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159                 if (vma->pin_count)
160                         pinned += vma->node.size;
161         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162                 if (vma->pin_count)
163                         pinned += vma->node.size;
164         mutex_unlock(&dev->struct_mutex);
165
166         args->aper_size = ggtt->base.total;
167         args->aper_available_size = args->aper_size - pinned;
168
169         return 0;
170 }
171
172 static int
173 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174 {
175         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
176         char *vaddr = obj->phys_handle->vaddr;
177         struct sg_table *st;
178         struct scatterlist *sg;
179         int i;
180
181         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182                 return -EINVAL;
183
184         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185                 struct page *page;
186                 char *src;
187
188                 page = shmem_read_mapping_page(mapping, i);
189                 if (IS_ERR(page))
190                         return PTR_ERR(page);
191
192                 src = kmap_atomic(page);
193                 memcpy(vaddr, src, PAGE_SIZE);
194                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
195                 kunmap_atomic(src);
196
197                 put_page(page);
198                 vaddr += PAGE_SIZE;
199         }
200
201         i915_gem_chipset_flush(to_i915(obj->base.dev));
202
203         st = kmalloc(sizeof(*st), GFP_KERNEL);
204         if (st == NULL)
205                 return -ENOMEM;
206
207         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208                 kfree(st);
209                 return -ENOMEM;
210         }
211
212         sg = st->sgl;
213         sg->offset = 0;
214         sg->length = obj->base.size;
215
216         sg_dma_address(sg) = obj->phys_handle->busaddr;
217         sg_dma_len(sg) = obj->base.size;
218
219         obj->pages = st;
220         return 0;
221 }
222
223 static void
224 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
225 {
226         int ret;
227
228         BUG_ON(obj->madv == __I915_MADV_PURGED);
229
230         ret = i915_gem_object_set_to_cpu_domain(obj, true);
231         if (WARN_ON(ret)) {
232                 /* In the event of a disaster, abandon all caches and
233                  * hope for the best.
234                  */
235                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
236         }
237
238         if (obj->madv == I915_MADV_DONTNEED)
239                 obj->dirty = 0;
240
241         if (obj->dirty) {
242                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
243                 char *vaddr = obj->phys_handle->vaddr;
244                 int i;
245
246                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247                         struct page *page;
248                         char *dst;
249
250                         page = shmem_read_mapping_page(mapping, i);
251                         if (IS_ERR(page))
252                                 continue;
253
254                         dst = kmap_atomic(page);
255                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
256                         memcpy(dst, vaddr, PAGE_SIZE);
257                         kunmap_atomic(dst);
258
259                         set_page_dirty(page);
260                         if (obj->madv == I915_MADV_WILLNEED)
261                                 mark_page_accessed(page);
262                         put_page(page);
263                         vaddr += PAGE_SIZE;
264                 }
265                 obj->dirty = 0;
266         }
267
268         sg_free_table(obj->pages);
269         kfree(obj->pages);
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275         drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279         .get_pages = i915_gem_object_get_pages_phys,
280         .put_pages = i915_gem_object_put_pages_phys,
281         .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287         struct i915_vma *vma, *next;
288         int ret;
289
290         drm_gem_object_reference(&obj->base);
291         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292                 if (i915_vma_unbind(vma))
293                         break;
294
295         ret = i915_gem_object_put_pages(obj);
296         drm_gem_object_unreference(&obj->base);
297
298         return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303                             int align)
304 {
305         drm_dma_handle_t *phys;
306         int ret;
307
308         if (obj->phys_handle) {
309                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310                         return -EBUSY;
311
312                 return 0;
313         }
314
315         if (obj->madv != I915_MADV_WILLNEED)
316                 return -EFAULT;
317
318         if (obj->base.filp == NULL)
319                 return -EINVAL;
320
321         ret = drop_pages(obj);
322         if (ret)
323                 return ret;
324
325         /* create a new object */
326         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327         if (!phys)
328                 return -ENOMEM;
329
330         obj->phys_handle = phys;
331         obj->ops = &i915_gem_phys_ops;
332
333         return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338                      struct drm_i915_gem_pwrite *args,
339                      struct drm_file *file_priv)
340 {
341         struct drm_device *dev = obj->base.dev;
342         void *vaddr = obj->phys_handle->vaddr + args->offset;
343         char __user *user_data = u64_to_user_ptr(args->data_ptr);
344         int ret = 0;
345
346         /* We manually control the domain here and pretend that it
347          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348          */
349         ret = i915_gem_object_wait_rendering(obj, false);
350         if (ret)
351                 return ret;
352
353         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355                 unsigned long unwritten;
356
357                 /* The physical object once assigned is fixed for the lifetime
358                  * of the obj, so we can safely drop the lock and continue
359                  * to access vaddr.
360                  */
361                 mutex_unlock(&dev->struct_mutex);
362                 unwritten = copy_from_user(vaddr, user_data, args->size);
363                 mutex_lock(&dev->struct_mutex);
364                 if (unwritten) {
365                         ret = -EFAULT;
366                         goto out;
367                 }
368         }
369
370         drm_clflush_virt_range(vaddr, args->size);
371         i915_gem_chipset_flush(to_i915(dev));
372
373 out:
374         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375         return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380         struct drm_i915_private *dev_priv = to_i915(dev);
381         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
387         kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392                 struct drm_device *dev,
393                 uint64_t size,
394                 uint32_t *handle_p)
395 {
396         struct drm_i915_gem_object *obj;
397         int ret;
398         u32 handle;
399
400         size = roundup(size, PAGE_SIZE);
401         if (size == 0)
402                 return -EINVAL;
403
404         /* Allocate the new object */
405         obj = i915_gem_object_create(dev, size);
406         if (IS_ERR(obj))
407                 return PTR_ERR(obj);
408
409         ret = drm_gem_handle_create(file, &obj->base, &handle);
410         /* drop reference from allocate - handle holds it now */
411         drm_gem_object_unreference_unlocked(&obj->base);
412         if (ret)
413                 return ret;
414
415         *handle_p = handle;
416         return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421                      struct drm_device *dev,
422                      struct drm_mode_create_dumb *args)
423 {
424         /* have to work out size/pitch and return them */
425         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426         args->size = args->pitch * args->height;
427         return i915_gem_create(file, dev,
428                                args->size, &args->handle);
429 }
430
431 /**
432  * Creates a new mm object and returns a handle to it.
433  * @dev: drm device pointer
434  * @data: ioctl data blob
435  * @file: drm file pointer
436  */
437 int
438 i915_gem_create_ioctl(struct drm_device *dev, void *data,
439                       struct drm_file *file)
440 {
441         struct drm_i915_gem_create *args = data;
442
443         return i915_gem_create(file, dev,
444                                args->size, &args->handle);
445 }
446
447 static inline int
448 __copy_to_user_swizzled(char __user *cpu_vaddr,
449                         const char *gpu_vaddr, int gpu_offset,
450                         int length)
451 {
452         int ret, cpu_offset = 0;
453
454         while (length > 0) {
455                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
456                 int this_length = min(cacheline_end - gpu_offset, length);
457                 int swizzled_gpu_offset = gpu_offset ^ 64;
458
459                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
460                                      gpu_vaddr + swizzled_gpu_offset,
461                                      this_length);
462                 if (ret)
463                         return ret + length;
464
465                 cpu_offset += this_length;
466                 gpu_offset += this_length;
467                 length -= this_length;
468         }
469
470         return 0;
471 }
472
473 static inline int
474 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
475                           const char __user *cpu_vaddr,
476                           int length)
477 {
478         int ret, cpu_offset = 0;
479
480         while (length > 0) {
481                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
482                 int this_length = min(cacheline_end - gpu_offset, length);
483                 int swizzled_gpu_offset = gpu_offset ^ 64;
484
485                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
486                                        cpu_vaddr + cpu_offset,
487                                        this_length);
488                 if (ret)
489                         return ret + length;
490
491                 cpu_offset += this_length;
492                 gpu_offset += this_length;
493                 length -= this_length;
494         }
495
496         return 0;
497 }
498
499 /*
500  * Pins the specified object's pages and synchronizes the object with
501  * GPU accesses. Sets needs_clflush to non-zero if the caller should
502  * flush the object from the CPU cache.
503  */
504 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
505                                     int *needs_clflush)
506 {
507         int ret;
508
509         *needs_clflush = 0;
510
511         if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
512                 return -EINVAL;
513
514         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
515                 /* If we're not in the cpu read domain, set ourself into the gtt
516                  * read domain and manually flush cachelines (if required). This
517                  * optimizes for the case when the gpu will dirty the data
518                  * anyway again before the next pread happens. */
519                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
520                                                         obj->cache_level);
521                 ret = i915_gem_object_wait_rendering(obj, true);
522                 if (ret)
523                         return ret;
524         }
525
526         ret = i915_gem_object_get_pages(obj);
527         if (ret)
528                 return ret;
529
530         i915_gem_object_pin_pages(obj);
531
532         return ret;
533 }
534
535 /* Per-page copy function for the shmem pread fastpath.
536  * Flushes invalid cachelines before reading the target if
537  * needs_clflush is set. */
538 static int
539 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
540                  char __user *user_data,
541                  bool page_do_bit17_swizzling, bool needs_clflush)
542 {
543         char *vaddr;
544         int ret;
545
546         if (unlikely(page_do_bit17_swizzling))
547                 return -EINVAL;
548
549         vaddr = kmap_atomic(page);
550         if (needs_clflush)
551                 drm_clflush_virt_range(vaddr + shmem_page_offset,
552                                        page_length);
553         ret = __copy_to_user_inatomic(user_data,
554                                       vaddr + shmem_page_offset,
555                                       page_length);
556         kunmap_atomic(vaddr);
557
558         return ret ? -EFAULT : 0;
559 }
560
561 static void
562 shmem_clflush_swizzled_range(char *addr, unsigned long length,
563                              bool swizzled)
564 {
565         if (unlikely(swizzled)) {
566                 unsigned long start = (unsigned long) addr;
567                 unsigned long end = (unsigned long) addr + length;
568
569                 /* For swizzling simply ensure that we always flush both
570                  * channels. Lame, but simple and it works. Swizzled
571                  * pwrite/pread is far from a hotpath - current userspace
572                  * doesn't use it at all. */
573                 start = round_down(start, 128);
574                 end = round_up(end, 128);
575
576                 drm_clflush_virt_range((void *)start, end - start);
577         } else {
578                 drm_clflush_virt_range(addr, length);
579         }
580
581 }
582
583 /* Only difference to the fast-path function is that this can handle bit17
584  * and uses non-atomic copy and kmap functions. */
585 static int
586 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
587                  char __user *user_data,
588                  bool page_do_bit17_swizzling, bool needs_clflush)
589 {
590         char *vaddr;
591         int ret;
592
593         vaddr = kmap(page);
594         if (needs_clflush)
595                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
596                                              page_length,
597                                              page_do_bit17_swizzling);
598
599         if (page_do_bit17_swizzling)
600                 ret = __copy_to_user_swizzled(user_data,
601                                               vaddr, shmem_page_offset,
602                                               page_length);
603         else
604                 ret = __copy_to_user(user_data,
605                                      vaddr + shmem_page_offset,
606                                      page_length);
607         kunmap(page);
608
609         return ret ? - EFAULT : 0;
610 }
611
612 static inline unsigned long
613 slow_user_access(struct io_mapping *mapping,
614                  uint64_t page_base, int page_offset,
615                  char __user *user_data,
616                  unsigned long length, bool pwrite)
617 {
618         void __iomem *ioaddr;
619         void *vaddr;
620         uint64_t unwritten;
621
622         ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
623         /* We can use the cpu mem copy function because this is X86. */
624         vaddr = (void __force *)ioaddr + page_offset;
625         if (pwrite)
626                 unwritten = __copy_from_user(vaddr, user_data, length);
627         else
628                 unwritten = __copy_to_user(user_data, vaddr, length);
629
630         io_mapping_unmap(ioaddr);
631         return unwritten;
632 }
633
634 static int
635 i915_gem_gtt_pread(struct drm_device *dev,
636                    struct drm_i915_gem_object *obj, uint64_t size,
637                    uint64_t data_offset, uint64_t data_ptr)
638 {
639         struct drm_i915_private *dev_priv = to_i915(dev);
640         struct i915_ggtt *ggtt = &dev_priv->ggtt;
641         struct drm_mm_node node;
642         char __user *user_data;
643         uint64_t remain;
644         uint64_t offset;
645         int ret;
646
647         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
648         if (ret) {
649                 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
650                 if (ret)
651                         goto out;
652
653                 ret = i915_gem_object_get_pages(obj);
654                 if (ret) {
655                         remove_mappable_node(&node);
656                         goto out;
657                 }
658
659                 i915_gem_object_pin_pages(obj);
660         } else {
661                 node.start = i915_gem_obj_ggtt_offset(obj);
662                 node.allocated = false;
663                 ret = i915_gem_object_put_fence(obj);
664                 if (ret)
665                         goto out_unpin;
666         }
667
668         ret = i915_gem_object_set_to_gtt_domain(obj, false);
669         if (ret)
670                 goto out_unpin;
671
672         user_data = u64_to_user_ptr(data_ptr);
673         remain = size;
674         offset = data_offset;
675
676         mutex_unlock(&dev->struct_mutex);
677         if (likely(!i915.prefault_disable)) {
678                 ret = fault_in_multipages_writeable(user_data, remain);
679                 if (ret) {
680                         mutex_lock(&dev->struct_mutex);
681                         goto out_unpin;
682                 }
683         }
684
685         while (remain > 0) {
686                 /* Operation in this page
687                  *
688                  * page_base = page offset within aperture
689                  * page_offset = offset within page
690                  * page_length = bytes to copy for this page
691                  */
692                 u32 page_base = node.start;
693                 unsigned page_offset = offset_in_page(offset);
694                 unsigned page_length = PAGE_SIZE - page_offset;
695                 page_length = remain < page_length ? remain : page_length;
696                 if (node.allocated) {
697                         wmb();
698                         ggtt->base.insert_page(&ggtt->base,
699                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
700                                                node.start,
701                                                I915_CACHE_NONE, 0);
702                         wmb();
703                 } else {
704                         page_base += offset & PAGE_MASK;
705                 }
706                 /* This is a slow read/write as it tries to read from
707                  * and write to user memory which may result into page
708                  * faults, and so we cannot perform this under struct_mutex.
709                  */
710                 if (slow_user_access(ggtt->mappable, page_base,
711                                      page_offset, user_data,
712                                      page_length, false)) {
713                         ret = -EFAULT;
714                         break;
715                 }
716
717                 remain -= page_length;
718                 user_data += page_length;
719                 offset += page_length;
720         }
721
722         mutex_lock(&dev->struct_mutex);
723         if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
724                 /* The user has modified the object whilst we tried
725                  * reading from it, and we now have no idea what domain
726                  * the pages should be in. As we have just been touching
727                  * them directly, flush everything back to the GTT
728                  * domain.
729                  */
730                 ret = i915_gem_object_set_to_gtt_domain(obj, false);
731         }
732
733 out_unpin:
734         if (node.allocated) {
735                 wmb();
736                 ggtt->base.clear_range(&ggtt->base,
737                                        node.start, node.size,
738                                        true);
739                 i915_gem_object_unpin_pages(obj);
740                 remove_mappable_node(&node);
741         } else {
742                 i915_gem_object_ggtt_unpin(obj);
743         }
744 out:
745         return ret;
746 }
747
748 static int
749 i915_gem_shmem_pread(struct drm_device *dev,
750                      struct drm_i915_gem_object *obj,
751                      struct drm_i915_gem_pread *args,
752                      struct drm_file *file)
753 {
754         char __user *user_data;
755         ssize_t remain;
756         loff_t offset;
757         int shmem_page_offset, page_length, ret = 0;
758         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759         int prefaulted = 0;
760         int needs_clflush = 0;
761         struct sg_page_iter sg_iter;
762
763         if (!i915_gem_object_has_struct_page(obj))
764                 return -ENODEV;
765
766         user_data = u64_to_user_ptr(args->data_ptr);
767         remain = args->size;
768
769         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770
771         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772         if (ret)
773                 return ret;
774
775         offset = args->offset;
776
777         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
778                          offset >> PAGE_SHIFT) {
779                 struct page *page = sg_page_iter_page(&sg_iter);
780
781                 if (remain <= 0)
782                         break;
783
784                 /* Operation in this page
785                  *
786                  * shmem_page_offset = offset within page in shmem file
787                  * page_length = bytes to copy for this page
788                  */
789                 shmem_page_offset = offset_in_page(offset);
790                 page_length = remain;
791                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
792                         page_length = PAGE_SIZE - shmem_page_offset;
793
794                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
795                         (page_to_phys(page) & (1 << 17)) != 0;
796
797                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
798                                        user_data, page_do_bit17_swizzling,
799                                        needs_clflush);
800                 if (ret == 0)
801                         goto next_page;
802
803                 mutex_unlock(&dev->struct_mutex);
804
805                 if (likely(!i915.prefault_disable) && !prefaulted) {
806                         ret = fault_in_multipages_writeable(user_data, remain);
807                         /* Userspace is tricking us, but we've already clobbered
808                          * its pages with the prefault and promised to write the
809                          * data up to the first fault. Hence ignore any errors
810                          * and just continue. */
811                         (void)ret;
812                         prefaulted = 1;
813                 }
814
815                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
816                                        user_data, page_do_bit17_swizzling,
817                                        needs_clflush);
818
819                 mutex_lock(&dev->struct_mutex);
820
821                 if (ret)
822                         goto out;
823
824 next_page:
825                 remain -= page_length;
826                 user_data += page_length;
827                 offset += page_length;
828         }
829
830 out:
831         i915_gem_object_unpin_pages(obj);
832
833         return ret;
834 }
835
836 /**
837  * Reads data from the object referenced by handle.
838  * @dev: drm device pointer
839  * @data: ioctl data blob
840  * @file: drm file pointer
841  *
842  * On error, the contents of *data are undefined.
843  */
844 int
845 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846                      struct drm_file *file)
847 {
848         struct drm_i915_gem_pread *args = data;
849         struct drm_i915_gem_object *obj;
850         int ret = 0;
851
852         if (args->size == 0)
853                 return 0;
854
855         if (!access_ok(VERIFY_WRITE,
856                        u64_to_user_ptr(args->data_ptr),
857                        args->size))
858                 return -EFAULT;
859
860         ret = i915_mutex_lock_interruptible(dev);
861         if (ret)
862                 return ret;
863
864         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865         if (&obj->base == NULL) {
866                 ret = -ENOENT;
867                 goto unlock;
868         }
869
870         /* Bounds check source.  */
871         if (args->offset > obj->base.size ||
872             args->size > obj->base.size - args->offset) {
873                 ret = -EINVAL;
874                 goto out;
875         }
876
877         trace_i915_gem_object_pread(obj, args->offset, args->size);
878
879         ret = i915_gem_shmem_pread(dev, obj, args, file);
880
881         /* pread for non shmem backed objects */
882         if (ret == -EFAULT || ret == -ENODEV)
883                 ret = i915_gem_gtt_pread(dev, obj, args->size,
884                                         args->offset, args->data_ptr);
885
886 out:
887         drm_gem_object_unreference(&obj->base);
888 unlock:
889         mutex_unlock(&dev->struct_mutex);
890         return ret;
891 }
892
893 /* This is the fast write path which cannot handle
894  * page faults in the source data
895  */
896
897 static inline int
898 fast_user_write(struct io_mapping *mapping,
899                 loff_t page_base, int page_offset,
900                 char __user *user_data,
901                 int length)
902 {
903         void __iomem *vaddr_atomic;
904         void *vaddr;
905         unsigned long unwritten;
906
907         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
908         /* We can use the cpu mem copy function because this is X86. */
909         vaddr = (void __force*)vaddr_atomic + page_offset;
910         unwritten = __copy_from_user_inatomic_nocache(vaddr,
911                                                       user_data, length);
912         io_mapping_unmap_atomic(vaddr_atomic);
913         return unwritten;
914 }
915
916 /**
917  * This is the fast pwrite path, where we copy the data directly from the
918  * user into the GTT, uncached.
919  * @dev: drm device pointer
920  * @obj: i915 gem object
921  * @args: pwrite arguments structure
922  * @file: drm file pointer
923  */
924 static int
925 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
926                          struct drm_i915_gem_object *obj,
927                          struct drm_i915_gem_pwrite *args,
928                          struct drm_file *file)
929 {
930         struct i915_ggtt *ggtt = &i915->ggtt;
931         struct drm_device *dev = obj->base.dev;
932         struct drm_mm_node node;
933         uint64_t remain, offset;
934         char __user *user_data;
935         int ret;
936         bool hit_slow_path = false;
937
938         if (obj->tiling_mode != I915_TILING_NONE)
939                 return -EFAULT;
940
941         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
942         if (ret) {
943                 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
944                 if (ret)
945                         goto out;
946
947                 ret = i915_gem_object_get_pages(obj);
948                 if (ret) {
949                         remove_mappable_node(&node);
950                         goto out;
951                 }
952
953                 i915_gem_object_pin_pages(obj);
954         } else {
955                 node.start = i915_gem_obj_ggtt_offset(obj);
956                 node.allocated = false;
957                 ret = i915_gem_object_put_fence(obj);
958                 if (ret)
959                         goto out_unpin;
960         }
961
962         ret = i915_gem_object_set_to_gtt_domain(obj, true);
963         if (ret)
964                 goto out_unpin;
965
966         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
967         obj->dirty = true;
968
969         user_data = u64_to_user_ptr(args->data_ptr);
970         offset = args->offset;
971         remain = args->size;
972         while (remain) {
973                 /* Operation in this page
974                  *
975                  * page_base = page offset within aperture
976                  * page_offset = offset within page
977                  * page_length = bytes to copy for this page
978                  */
979                 u32 page_base = node.start;
980                 unsigned page_offset = offset_in_page(offset);
981                 unsigned page_length = PAGE_SIZE - page_offset;
982                 page_length = remain < page_length ? remain : page_length;
983                 if (node.allocated) {
984                         wmb(); /* flush the write before we modify the GGTT */
985                         ggtt->base.insert_page(&ggtt->base,
986                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
987                                                node.start, I915_CACHE_NONE, 0);
988                         wmb(); /* flush modifications to the GGTT (insert_page) */
989                 } else {
990                         page_base += offset & PAGE_MASK;
991                 }
992                 /* If we get a fault while copying data, then (presumably) our
993                  * source page isn't available.  Return the error and we'll
994                  * retry in the slow path.
995                  * If the object is non-shmem backed, we retry again with the
996                  * path that handles page fault.
997                  */
998                 if (fast_user_write(ggtt->mappable, page_base,
999                                     page_offset, user_data, page_length)) {
1000                         hit_slow_path = true;
1001                         mutex_unlock(&dev->struct_mutex);
1002                         if (slow_user_access(ggtt->mappable,
1003                                              page_base,
1004                                              page_offset, user_data,
1005                                              page_length, true)) {
1006                                 ret = -EFAULT;
1007                                 mutex_lock(&dev->struct_mutex);
1008                                 goto out_flush;
1009                         }
1010
1011                         mutex_lock(&dev->struct_mutex);
1012                 }
1013
1014                 remain -= page_length;
1015                 user_data += page_length;
1016                 offset += page_length;
1017         }
1018
1019 out_flush:
1020         if (hit_slow_path) {
1021                 if (ret == 0 &&
1022                     (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1023                         /* The user has modified the object whilst we tried
1024                          * reading from it, and we now have no idea what domain
1025                          * the pages should be in. As we have just been touching
1026                          * them directly, flush everything back to the GTT
1027                          * domain.
1028                          */
1029                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030                 }
1031         }
1032
1033         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
1034 out_unpin:
1035         if (node.allocated) {
1036                 wmb();
1037                 ggtt->base.clear_range(&ggtt->base,
1038                                        node.start, node.size,
1039                                        true);
1040                 i915_gem_object_unpin_pages(obj);
1041                 remove_mappable_node(&node);
1042         } else {
1043                 i915_gem_object_ggtt_unpin(obj);
1044         }
1045 out:
1046         return ret;
1047 }
1048
1049 /* Per-page copy function for the shmem pwrite fastpath.
1050  * Flushes invalid cachelines before writing to the target if
1051  * needs_clflush_before is set and flushes out any written cachelines after
1052  * writing if needs_clflush is set. */
1053 static int
1054 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1055                   char __user *user_data,
1056                   bool page_do_bit17_swizzling,
1057                   bool needs_clflush_before,
1058                   bool needs_clflush_after)
1059 {
1060         char *vaddr;
1061         int ret;
1062
1063         if (unlikely(page_do_bit17_swizzling))
1064                 return -EINVAL;
1065
1066         vaddr = kmap_atomic(page);
1067         if (needs_clflush_before)
1068                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1069                                        page_length);
1070         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1071                                         user_data, page_length);
1072         if (needs_clflush_after)
1073                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1074                                        page_length);
1075         kunmap_atomic(vaddr);
1076
1077         return ret ? -EFAULT : 0;
1078 }
1079
1080 /* Only difference to the fast-path function is that this can handle bit17
1081  * and uses non-atomic copy and kmap functions. */
1082 static int
1083 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1084                   char __user *user_data,
1085                   bool page_do_bit17_swizzling,
1086                   bool needs_clflush_before,
1087                   bool needs_clflush_after)
1088 {
1089         char *vaddr;
1090         int ret;
1091
1092         vaddr = kmap(page);
1093         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1094                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1095                                              page_length,
1096                                              page_do_bit17_swizzling);
1097         if (page_do_bit17_swizzling)
1098                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1099                                                 user_data,
1100                                                 page_length);
1101         else
1102                 ret = __copy_from_user(vaddr + shmem_page_offset,
1103                                        user_data,
1104                                        page_length);
1105         if (needs_clflush_after)
1106                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1107                                              page_length,
1108                                              page_do_bit17_swizzling);
1109         kunmap(page);
1110
1111         return ret ? -EFAULT : 0;
1112 }
1113
1114 static int
1115 i915_gem_shmem_pwrite(struct drm_device *dev,
1116                       struct drm_i915_gem_object *obj,
1117                       struct drm_i915_gem_pwrite *args,
1118                       struct drm_file *file)
1119 {
1120         ssize_t remain;
1121         loff_t offset;
1122         char __user *user_data;
1123         int shmem_page_offset, page_length, ret = 0;
1124         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1125         int hit_slowpath = 0;
1126         int needs_clflush_after = 0;
1127         int needs_clflush_before = 0;
1128         struct sg_page_iter sg_iter;
1129
1130         user_data = u64_to_user_ptr(args->data_ptr);
1131         remain = args->size;
1132
1133         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1134
1135         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1136                 /* If we're not in the cpu write domain, set ourself into the gtt
1137                  * write domain and manually flush cachelines (if required). This
1138                  * optimizes for the case when the gpu will use the data
1139                  * right away and we therefore have to clflush anyway. */
1140                 needs_clflush_after = cpu_write_needs_clflush(obj);
1141                 ret = i915_gem_object_wait_rendering(obj, false);
1142                 if (ret)
1143                         return ret;
1144         }
1145         /* Same trick applies to invalidate partially written cachelines read
1146          * before writing. */
1147         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1148                 needs_clflush_before =
1149                         !cpu_cache_is_coherent(dev, obj->cache_level);
1150
1151         ret = i915_gem_object_get_pages(obj);
1152         if (ret)
1153                 return ret;
1154
1155         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1156
1157         i915_gem_object_pin_pages(obj);
1158
1159         offset = args->offset;
1160         obj->dirty = 1;
1161
1162         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1163                          offset >> PAGE_SHIFT) {
1164                 struct page *page = sg_page_iter_page(&sg_iter);
1165                 int partial_cacheline_write;
1166
1167                 if (remain <= 0)
1168                         break;
1169
1170                 /* Operation in this page
1171                  *
1172                  * shmem_page_offset = offset within page in shmem file
1173                  * page_length = bytes to copy for this page
1174                  */
1175                 shmem_page_offset = offset_in_page(offset);
1176
1177                 page_length = remain;
1178                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1179                         page_length = PAGE_SIZE - shmem_page_offset;
1180
1181                 /* If we don't overwrite a cacheline completely we need to be
1182                  * careful to have up-to-date data by first clflushing. Don't
1183                  * overcomplicate things and flush the entire patch. */
1184                 partial_cacheline_write = needs_clflush_before &&
1185                         ((shmem_page_offset | page_length)
1186                                 & (boot_cpu_data.x86_clflush_size - 1));
1187
1188                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1189                         (page_to_phys(page) & (1 << 17)) != 0;
1190
1191                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1192                                         user_data, page_do_bit17_swizzling,
1193                                         partial_cacheline_write,
1194                                         needs_clflush_after);
1195                 if (ret == 0)
1196                         goto next_page;
1197
1198                 hit_slowpath = 1;
1199                 mutex_unlock(&dev->struct_mutex);
1200                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1201                                         user_data, page_do_bit17_swizzling,
1202                                         partial_cacheline_write,
1203                                         needs_clflush_after);
1204
1205                 mutex_lock(&dev->struct_mutex);
1206
1207                 if (ret)
1208                         goto out;
1209
1210 next_page:
1211                 remain -= page_length;
1212                 user_data += page_length;
1213                 offset += page_length;
1214         }
1215
1216 out:
1217         i915_gem_object_unpin_pages(obj);
1218
1219         if (hit_slowpath) {
1220                 /*
1221                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1222                  * cachelines in-line while writing and the object moved
1223                  * out of the cpu write domain while we've dropped the lock.
1224                  */
1225                 if (!needs_clflush_after &&
1226                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1227                         if (i915_gem_clflush_object(obj, obj->pin_display))
1228                                 needs_clflush_after = true;
1229                 }
1230         }
1231
1232         if (needs_clflush_after)
1233                 i915_gem_chipset_flush(to_i915(dev));
1234         else
1235                 obj->cache_dirty = true;
1236
1237         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1238         return ret;
1239 }
1240
1241 /**
1242  * Writes data to the object referenced by handle.
1243  * @dev: drm device
1244  * @data: ioctl data blob
1245  * @file: drm file
1246  *
1247  * On error, the contents of the buffer that were to be modified are undefined.
1248  */
1249 int
1250 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1251                       struct drm_file *file)
1252 {
1253         struct drm_i915_private *dev_priv = to_i915(dev);
1254         struct drm_i915_gem_pwrite *args = data;
1255         struct drm_i915_gem_object *obj;
1256         int ret;
1257
1258         if (args->size == 0)
1259                 return 0;
1260
1261         if (!access_ok(VERIFY_READ,
1262                        u64_to_user_ptr(args->data_ptr),
1263                        args->size))
1264                 return -EFAULT;
1265
1266         if (likely(!i915.prefault_disable)) {
1267                 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1268                                                    args->size);
1269                 if (ret)
1270                         return -EFAULT;
1271         }
1272
1273         intel_runtime_pm_get(dev_priv);
1274
1275         ret = i915_mutex_lock_interruptible(dev);
1276         if (ret)
1277                 goto put_rpm;
1278
1279         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1280         if (&obj->base == NULL) {
1281                 ret = -ENOENT;
1282                 goto unlock;
1283         }
1284
1285         /* Bounds check destination. */
1286         if (args->offset > obj->base.size ||
1287             args->size > obj->base.size - args->offset) {
1288                 ret = -EINVAL;
1289                 goto out;
1290         }
1291
1292         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1293
1294         ret = -EFAULT;
1295         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1296          * it would end up going through the fenced access, and we'll get
1297          * different detiling behavior between reading and writing.
1298          * pread/pwrite currently are reading and writing from the CPU
1299          * perspective, requiring manual detiling by the client.
1300          */
1301         if (!i915_gem_object_has_struct_page(obj) ||
1302             cpu_write_needs_clflush(obj)) {
1303                 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1304                 /* Note that the gtt paths might fail with non-page-backed user
1305                  * pointers (e.g. gtt mappings when moving data between
1306                  * textures). Fallback to the shmem path in that case. */
1307         }
1308
1309         if (ret == -EFAULT) {
1310                 if (obj->phys_handle)
1311                         ret = i915_gem_phys_pwrite(obj, args, file);
1312                 else if (i915_gem_object_has_struct_page(obj))
1313                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1314                 else
1315                         ret = -ENODEV;
1316         }
1317
1318 out:
1319         drm_gem_object_unreference(&obj->base);
1320 unlock:
1321         mutex_unlock(&dev->struct_mutex);
1322 put_rpm:
1323         intel_runtime_pm_put(dev_priv);
1324
1325         return ret;
1326 }
1327
1328 static int
1329 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1330 {
1331         if (__i915_terminally_wedged(reset_counter))
1332                 return -EIO;
1333
1334         if (__i915_reset_in_progress(reset_counter)) {
1335                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1336                  * -EIO unconditionally for these. */
1337                 if (!interruptible)
1338                         return -EIO;
1339
1340                 return -EAGAIN;
1341         }
1342
1343         return 0;
1344 }
1345
1346 static unsigned long local_clock_us(unsigned *cpu)
1347 {
1348         unsigned long t;
1349
1350         /* Cheaply and approximately convert from nanoseconds to microseconds.
1351          * The result and subsequent calculations are also defined in the same
1352          * approximate microseconds units. The principal source of timing
1353          * error here is from the simple truncation.
1354          *
1355          * Note that local_clock() is only defined wrt to the current CPU;
1356          * the comparisons are no longer valid if we switch CPUs. Instead of
1357          * blocking preemption for the entire busywait, we can detect the CPU
1358          * switch and use that as indicator of system load and a reason to
1359          * stop busywaiting, see busywait_stop().
1360          */
1361         *cpu = get_cpu();
1362         t = local_clock() >> 10;
1363         put_cpu();
1364
1365         return t;
1366 }
1367
1368 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1369 {
1370         unsigned this_cpu;
1371
1372         if (time_after(local_clock_us(&this_cpu), timeout))
1373                 return true;
1374
1375         return this_cpu != cpu;
1376 }
1377
1378 bool __i915_spin_request(const struct drm_i915_gem_request *req,
1379                          int state, unsigned long timeout_us)
1380 {
1381         unsigned cpu;
1382
1383         /* When waiting for high frequency requests, e.g. during synchronous
1384          * rendering split between the CPU and GPU, the finite amount of time
1385          * required to set up the irq and wait upon it limits the response
1386          * rate. By busywaiting on the request completion for a short while we
1387          * can service the high frequency waits as quick as possible. However,
1388          * if it is a slow request, we want to sleep as quickly as possible.
1389          * The tradeoff between waiting and sleeping is roughly the time it
1390          * takes to sleep on a request, on the order of a microsecond.
1391          */
1392
1393         timeout_us += local_clock_us(&cpu);
1394         do {
1395                 if (i915_gem_request_completed(req))
1396                         return true;
1397
1398                 if (signal_pending_state(state, current))
1399                         break;
1400
1401                 if (busywait_stop(timeout_us, cpu))
1402                         break;
1403
1404                 cpu_relax_lowlatency();
1405         } while (!need_resched());
1406
1407         return false;
1408 }
1409
1410 /**
1411  * __i915_wait_request - wait until execution of request has finished
1412  * @req: duh!
1413  * @interruptible: do an interruptible wait (normally yes)
1414  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1415  * @rps: RPS client
1416  *
1417  * Note: It is of utmost importance that the passed in seqno and reset_counter
1418  * values have been read by the caller in an smp safe manner. Where read-side
1419  * locks are involved, it is sufficient to read the reset_counter before
1420  * unlocking the lock that protects the seqno. For lockless tricks, the
1421  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1422  * inserted.
1423  *
1424  * Returns 0 if the request was found within the alloted time. Else returns the
1425  * errno with remaining time filled in timeout argument.
1426  */
1427 int __i915_wait_request(struct drm_i915_gem_request *req,
1428                         bool interruptible,
1429                         s64 *timeout,
1430                         struct intel_rps_client *rps)
1431 {
1432         int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1433         DEFINE_WAIT(reset);
1434         struct intel_wait wait;
1435         unsigned long timeout_remain;
1436         s64 before = 0; /* Only to silence a compiler warning. */
1437         int ret = 0;
1438
1439         might_sleep();
1440
1441         if (list_empty(&req->list))
1442                 return 0;
1443
1444         if (i915_gem_request_completed(req))
1445                 return 0;
1446
1447         timeout_remain = MAX_SCHEDULE_TIMEOUT;
1448         if (timeout) {
1449                 if (WARN_ON(*timeout < 0))
1450                         return -EINVAL;
1451
1452                 if (*timeout == 0)
1453                         return -ETIME;
1454
1455                 timeout_remain = nsecs_to_jiffies_timeout(*timeout);
1456
1457                 /*
1458                  * Record current time in case interrupted by signal, or wedged.
1459                  */
1460                 before = ktime_get_raw_ns();
1461         }
1462
1463         trace_i915_gem_request_wait_begin(req);
1464
1465         /* This client is about to stall waiting for the GPU. In many cases
1466          * this is undesirable and limits the throughput of the system, as
1467          * many clients cannot continue processing user input/output whilst
1468          * blocked. RPS autotuning may take tens of milliseconds to respond
1469          * to the GPU load and thus incurs additional latency for the client.
1470          * We can circumvent that by promoting the GPU frequency to maximum
1471          * before we wait. This makes the GPU throttle up much more quickly
1472          * (good for benchmarks and user experience, e.g. window animations),
1473          * but at a cost of spending more power processing the workload
1474          * (bad for battery). Not all clients even want their results
1475          * immediately and for them we should just let the GPU select its own
1476          * frequency to maximise efficiency. To prevent a single client from
1477          * forcing the clocks too high for the whole system, we only allow
1478          * each client to waitboost once in a busy period.
1479          */
1480         if (INTEL_INFO(req->i915)->gen >= 6)
1481                 gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
1482
1483         /* Optimistic spin for the next ~jiffie before touching IRQs */
1484         if (i915_spin_request(req, state, 5))
1485                 goto complete;
1486
1487         set_current_state(state);
1488         add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1489
1490         intel_wait_init(&wait, req->seqno);
1491         if (intel_engine_add_wait(req->engine, &wait))
1492                 /* In order to check that we haven't missed the interrupt
1493                  * as we enabled it, we need to kick ourselves to do a
1494                  * coherent check on the seqno before we sleep.
1495                  */
1496                 goto wakeup;
1497
1498         for (;;) {
1499                 if (signal_pending_state(state, current)) {
1500                         ret = -ERESTARTSYS;
1501                         break;
1502                 }
1503
1504                 /* Ensure that even if the GPU hangs, we get woken up.
1505                  *
1506                  * However, note that if no one is waiting, we never notice
1507                  * a gpu hang. Eventually, we will have to wait for a resource
1508                  * held by the GPU and so trigger a hangcheck. In the most
1509                  * pathological case, this will be upon memory starvation!
1510                  */
1511                 i915_queue_hangcheck(req->i915);
1512
1513                 timeout_remain = io_schedule_timeout(timeout_remain);
1514                 if (timeout_remain == 0) {
1515                         ret = -ETIME;
1516                         break;
1517                 }
1518
1519                 if (intel_wait_complete(&wait))
1520                         break;
1521
1522                 set_current_state(state);
1523
1524 wakeup:
1525                 /* Carefully check if the request is complete, giving time
1526                  * for the seqno to be visible following the interrupt.
1527                  * We also have to check in case we are kicked by the GPU
1528                  * reset in order to drop the struct_mutex.
1529                  */
1530                 if (__i915_request_irq_complete(req))
1531                         break;
1532
1533                 /* Only spin if we know the GPU is processing this request */
1534                 if (i915_spin_request(req, state, 2))
1535                         break;
1536         }
1537         remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1538
1539         intel_engine_remove_wait(req->engine, &wait);
1540         __set_current_state(TASK_RUNNING);
1541 complete:
1542         trace_i915_gem_request_wait_end(req);
1543
1544         if (timeout) {
1545                 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1546
1547                 *timeout = tres < 0 ? 0 : tres;
1548
1549                 /*
1550                  * Apparently ktime isn't accurate enough and occasionally has a
1551                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1552                  * things up to make the test happy. We allow up to 1 jiffy.
1553                  *
1554                  * This is a regrssion from the timespec->ktime conversion.
1555                  */
1556                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1557                         *timeout = 0;
1558         }
1559
1560         if (rps && req->seqno == req->engine->last_submitted_seqno) {
1561                 /* The GPU is now idle and this client has stalled.
1562                  * Since no other client has submitted a request in the
1563                  * meantime, assume that this client is the only one
1564                  * supplying work to the GPU but is unable to keep that
1565                  * work supplied because it is waiting. Since the GPU is
1566                  * then never kept fully busy, RPS autoclocking will
1567                  * keep the clocks relatively low, causing further delays.
1568                  * Compensate by giving the synchronous client credit for
1569                  * a waitboost next time.
1570                  */
1571                 spin_lock(&req->i915->rps.client_lock);
1572                 list_del_init(&rps->link);
1573                 spin_unlock(&req->i915->rps.client_lock);
1574         }
1575
1576         return ret;
1577 }
1578
1579 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1580                                    struct drm_file *file)
1581 {
1582         struct drm_i915_file_private *file_priv;
1583
1584         WARN_ON(!req || !file || req->file_priv);
1585
1586         if (!req || !file)
1587                 return -EINVAL;
1588
1589         if (req->file_priv)
1590                 return -EINVAL;
1591
1592         file_priv = file->driver_priv;
1593
1594         spin_lock(&file_priv->mm.lock);
1595         req->file_priv = file_priv;
1596         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1597         spin_unlock(&file_priv->mm.lock);
1598
1599         req->pid = get_pid(task_pid(current));
1600
1601         return 0;
1602 }
1603
1604 static inline void
1605 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1606 {
1607         struct drm_i915_file_private *file_priv = request->file_priv;
1608
1609         if (!file_priv)
1610                 return;
1611
1612         spin_lock(&file_priv->mm.lock);
1613         list_del(&request->client_list);
1614         request->file_priv = NULL;
1615         spin_unlock(&file_priv->mm.lock);
1616
1617         put_pid(request->pid);
1618         request->pid = NULL;
1619 }
1620
1621 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1622 {
1623         trace_i915_gem_request_retire(request);
1624
1625         /* We know the GPU must have read the request to have
1626          * sent us the seqno + interrupt, so use the position
1627          * of tail of the request to update the last known position
1628          * of the GPU head.
1629          *
1630          * Note this requires that we are always called in request
1631          * completion order.
1632          */
1633         request->ringbuf->last_retired_head = request->postfix;
1634
1635         list_del_init(&request->list);
1636         i915_gem_request_remove_from_client(request);
1637
1638         if (request->previous_context) {
1639                 if (i915.enable_execlists)
1640                         intel_lr_context_unpin(request->previous_context,
1641                                                request->engine);
1642         }
1643
1644         i915_gem_context_unreference(request->ctx);
1645         i915_gem_request_unreference(request);
1646 }
1647
1648 static void
1649 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1650 {
1651         struct intel_engine_cs *engine = req->engine;
1652         struct drm_i915_gem_request *tmp;
1653
1654         lockdep_assert_held(&engine->i915->dev->struct_mutex);
1655
1656         if (list_empty(&req->list))
1657                 return;
1658
1659         do {
1660                 tmp = list_first_entry(&engine->request_list,
1661                                        typeof(*tmp), list);
1662
1663                 i915_gem_request_retire(tmp);
1664         } while (tmp != req);
1665
1666         WARN_ON(i915_verify_lists(engine->dev));
1667 }
1668
1669 /**
1670  * Waits for a request to be signaled, and cleans up the
1671  * request and object lists appropriately for that event.
1672  * @req: request to wait on
1673  */
1674 int
1675 i915_wait_request(struct drm_i915_gem_request *req)
1676 {
1677         struct drm_i915_private *dev_priv = req->i915;
1678         bool interruptible;
1679         int ret;
1680
1681         interruptible = dev_priv->mm.interruptible;
1682
1683         BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1684
1685         ret = __i915_wait_request(req, interruptible, NULL, NULL);
1686         if (ret)
1687                 return ret;
1688
1689         /* If the GPU hung, we want to keep the requests to find the guilty. */
1690         if (!i915_reset_in_progress(&dev_priv->gpu_error))
1691                 __i915_gem_request_retire__upto(req);
1692
1693         return 0;
1694 }
1695
1696 /**
1697  * Ensures that all rendering to the object has completed and the object is
1698  * safe to unbind from the GTT or access from the CPU.
1699  * @obj: i915 gem object
1700  * @readonly: waiting for read access or write
1701  */
1702 int
1703 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1704                                bool readonly)
1705 {
1706         int ret, i;
1707
1708         if (!obj->active)
1709                 return 0;
1710
1711         if (readonly) {
1712                 if (obj->last_write_req != NULL) {
1713                         ret = i915_wait_request(obj->last_write_req);
1714                         if (ret)
1715                                 return ret;
1716
1717                         i = obj->last_write_req->engine->id;
1718                         if (obj->last_read_req[i] == obj->last_write_req)
1719                                 i915_gem_object_retire__read(obj, i);
1720                         else
1721                                 i915_gem_object_retire__write(obj);
1722                 }
1723         } else {
1724                 for (i = 0; i < I915_NUM_ENGINES; i++) {
1725                         if (obj->last_read_req[i] == NULL)
1726                                 continue;
1727
1728                         ret = i915_wait_request(obj->last_read_req[i]);
1729                         if (ret)
1730                                 return ret;
1731
1732                         i915_gem_object_retire__read(obj, i);
1733                 }
1734                 GEM_BUG_ON(obj->active);
1735         }
1736
1737         return 0;
1738 }
1739
1740 static void
1741 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1742                                struct drm_i915_gem_request *req)
1743 {
1744         int ring = req->engine->id;
1745
1746         if (obj->last_read_req[ring] == req)
1747                 i915_gem_object_retire__read(obj, ring);
1748         else if (obj->last_write_req == req)
1749                 i915_gem_object_retire__write(obj);
1750
1751         if (!i915_reset_in_progress(&req->i915->gpu_error))
1752                 __i915_gem_request_retire__upto(req);
1753 }
1754
1755 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1756  * as the object state may change during this call.
1757  */
1758 static __must_check int
1759 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1760                                             struct intel_rps_client *rps,
1761                                             bool readonly)
1762 {
1763         struct drm_device *dev = obj->base.dev;
1764         struct drm_i915_private *dev_priv = to_i915(dev);
1765         struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1766         int ret, i, n = 0;
1767
1768         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1769         BUG_ON(!dev_priv->mm.interruptible);
1770
1771         if (!obj->active)
1772                 return 0;
1773
1774         if (readonly) {
1775                 struct drm_i915_gem_request *req;
1776
1777                 req = obj->last_write_req;
1778                 if (req == NULL)
1779                         return 0;
1780
1781                 requests[n++] = i915_gem_request_reference(req);
1782         } else {
1783                 for (i = 0; i < I915_NUM_ENGINES; i++) {
1784                         struct drm_i915_gem_request *req;
1785
1786                         req = obj->last_read_req[i];
1787                         if (req == NULL)
1788                                 continue;
1789
1790                         requests[n++] = i915_gem_request_reference(req);
1791                 }
1792         }
1793
1794         mutex_unlock(&dev->struct_mutex);
1795         ret = 0;
1796         for (i = 0; ret == 0 && i < n; i++)
1797                 ret = __i915_wait_request(requests[i], true, NULL, rps);
1798         mutex_lock(&dev->struct_mutex);
1799
1800         for (i = 0; i < n; i++) {
1801                 if (ret == 0)
1802                         i915_gem_object_retire_request(obj, requests[i]);
1803                 i915_gem_request_unreference(requests[i]);
1804         }
1805
1806         return ret;
1807 }
1808
1809 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1810 {
1811         struct drm_i915_file_private *fpriv = file->driver_priv;
1812         return &fpriv->rps;
1813 }
1814
1815 static enum fb_op_origin
1816 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1817 {
1818         return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1819                ORIGIN_GTT : ORIGIN_CPU;
1820 }
1821
1822 /**
1823  * Called when user space prepares to use an object with the CPU, either
1824  * through the mmap ioctl's mapping or a GTT mapping.
1825  * @dev: drm device
1826  * @data: ioctl data blob
1827  * @file: drm file
1828  */
1829 int
1830 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1831                           struct drm_file *file)
1832 {
1833         struct drm_i915_gem_set_domain *args = data;
1834         struct drm_i915_gem_object *obj;
1835         uint32_t read_domains = args->read_domains;
1836         uint32_t write_domain = args->write_domain;
1837         int ret;
1838
1839         /* Only handle setting domains to types used by the CPU. */
1840         if (write_domain & I915_GEM_GPU_DOMAINS)
1841                 return -EINVAL;
1842
1843         if (read_domains & I915_GEM_GPU_DOMAINS)
1844                 return -EINVAL;
1845
1846         /* Having something in the write domain implies it's in the read
1847          * domain, and only that read domain.  Enforce that in the request.
1848          */
1849         if (write_domain != 0 && read_domains != write_domain)
1850                 return -EINVAL;
1851
1852         ret = i915_mutex_lock_interruptible(dev);
1853         if (ret)
1854                 return ret;
1855
1856         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1857         if (&obj->base == NULL) {
1858                 ret = -ENOENT;
1859                 goto unlock;
1860         }
1861
1862         /* Try to flush the object off the GPU without holding the lock.
1863          * We will repeat the flush holding the lock in the normal manner
1864          * to catch cases where we are gazumped.
1865          */
1866         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1867                                                           to_rps_client(file),
1868                                                           !write_domain);
1869         if (ret)
1870                 goto unref;
1871
1872         if (read_domains & I915_GEM_DOMAIN_GTT)
1873                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1874         else
1875                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1876
1877         if (write_domain != 0)
1878                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1879
1880 unref:
1881         drm_gem_object_unreference(&obj->base);
1882 unlock:
1883         mutex_unlock(&dev->struct_mutex);
1884         return ret;
1885 }
1886
1887 /**
1888  * Called when user space has done writes to this buffer
1889  * @dev: drm device
1890  * @data: ioctl data blob
1891  * @file: drm file
1892  */
1893 int
1894 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1895                          struct drm_file *file)
1896 {
1897         struct drm_i915_gem_sw_finish *args = data;
1898         struct drm_i915_gem_object *obj;
1899         int ret = 0;
1900
1901         ret = i915_mutex_lock_interruptible(dev);
1902         if (ret)
1903                 return ret;
1904
1905         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1906         if (&obj->base == NULL) {
1907                 ret = -ENOENT;
1908                 goto unlock;
1909         }
1910
1911         /* Pinned buffers may be scanout, so flush the cache */
1912         if (obj->pin_display)
1913                 i915_gem_object_flush_cpu_write_domain(obj);
1914
1915         drm_gem_object_unreference(&obj->base);
1916 unlock:
1917         mutex_unlock(&dev->struct_mutex);
1918         return ret;
1919 }
1920
1921 /**
1922  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1923  *                       it is mapped to.
1924  * @dev: drm device
1925  * @data: ioctl data blob
1926  * @file: drm file
1927  *
1928  * While the mapping holds a reference on the contents of the object, it doesn't
1929  * imply a ref on the object itself.
1930  *
1931  * IMPORTANT:
1932  *
1933  * DRM driver writers who look a this function as an example for how to do GEM
1934  * mmap support, please don't implement mmap support like here. The modern way
1935  * to implement DRM mmap support is with an mmap offset ioctl (like
1936  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1937  * That way debug tooling like valgrind will understand what's going on, hiding
1938  * the mmap call in a driver private ioctl will break that. The i915 driver only
1939  * does cpu mmaps this way because we didn't know better.
1940  */
1941 int
1942 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1943                     struct drm_file *file)
1944 {
1945         struct drm_i915_gem_mmap *args = data;
1946         struct drm_gem_object *obj;
1947         unsigned long addr;
1948
1949         if (args->flags & ~(I915_MMAP_WC))
1950                 return -EINVAL;
1951
1952         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1953                 return -ENODEV;
1954
1955         obj = drm_gem_object_lookup(file, args->handle);
1956         if (obj == NULL)
1957                 return -ENOENT;
1958
1959         /* prime objects have no backing filp to GEM mmap
1960          * pages from.
1961          */
1962         if (!obj->filp) {
1963                 drm_gem_object_unreference_unlocked(obj);
1964                 return -EINVAL;
1965         }
1966
1967         addr = vm_mmap(obj->filp, 0, args->size,
1968                        PROT_READ | PROT_WRITE, MAP_SHARED,
1969                        args->offset);
1970         if (args->flags & I915_MMAP_WC) {
1971                 struct mm_struct *mm = current->mm;
1972                 struct vm_area_struct *vma;
1973
1974                 if (down_write_killable(&mm->mmap_sem)) {
1975                         drm_gem_object_unreference_unlocked(obj);
1976                         return -EINTR;
1977                 }
1978                 vma = find_vma(mm, addr);
1979                 if (vma)
1980                         vma->vm_page_prot =
1981                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1982                 else
1983                         addr = -ENOMEM;
1984                 up_write(&mm->mmap_sem);
1985
1986                 /* This may race, but that's ok, it only gets set */
1987                 WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1988         }
1989         drm_gem_object_unreference_unlocked(obj);
1990         if (IS_ERR((void *)addr))
1991                 return addr;
1992
1993         args->addr_ptr = (uint64_t) addr;
1994
1995         return 0;
1996 }
1997
1998 /**
1999  * i915_gem_fault - fault a page into the GTT
2000  * @vma: VMA in question
2001  * @vmf: fault info
2002  *
2003  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
2004  * from userspace.  The fault handler takes care of binding the object to
2005  * the GTT (if needed), allocating and programming a fence register (again,
2006  * only if needed based on whether the old reg is still valid or the object
2007  * is tiled) and inserting a new PTE into the faulting process.
2008  *
2009  * Note that the faulting process may involve evicting existing objects
2010  * from the GTT and/or fence registers to make room.  So performance may
2011  * suffer if the GTT working set is large or there are few fence registers
2012  * left.
2013  */
2014 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2015 {
2016         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
2017         struct drm_device *dev = obj->base.dev;
2018         struct drm_i915_private *dev_priv = to_i915(dev);
2019         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2020         struct i915_ggtt_view view = i915_ggtt_view_normal;
2021         pgoff_t page_offset;
2022         unsigned long pfn;
2023         int ret = 0;
2024         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2025
2026         intel_runtime_pm_get(dev_priv);
2027
2028         /* We don't use vmf->pgoff since that has the fake offset */
2029         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
2030                 PAGE_SHIFT;
2031
2032         ret = i915_mutex_lock_interruptible(dev);
2033         if (ret)
2034                 goto out;
2035
2036         trace_i915_gem_object_fault(obj, page_offset, true, write);
2037
2038         /* Try to flush the object off the GPU first without holding the lock.
2039          * Upon reacquiring the lock, we will perform our sanity checks and then
2040          * repeat the flush holding the lock in the normal manner to catch cases
2041          * where we are gazumped.
2042          */
2043         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2044         if (ret)
2045                 goto unlock;
2046
2047         /* Access to snoopable pages through the GTT is incoherent. */
2048         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2049                 ret = -EFAULT;
2050                 goto unlock;
2051         }
2052
2053         /* Use a partial view if the object is bigger than the aperture. */
2054         if (obj->base.size >= ggtt->mappable_end &&
2055             obj->tiling_mode == I915_TILING_NONE) {
2056                 static const unsigned int chunk_size = 256; // 1 MiB
2057
2058                 memset(&view, 0, sizeof(view));
2059                 view.type = I915_GGTT_VIEW_PARTIAL;
2060                 view.params.partial.offset = rounddown(page_offset, chunk_size);
2061                 view.params.partial.size =
2062                         min_t(unsigned int,
2063                               chunk_size,
2064                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
2065                               view.params.partial.offset);
2066         }
2067
2068         /* Now pin it into the GTT if needed */
2069         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2070         if (ret)
2071                 goto unlock;
2072
2073         ret = i915_gem_object_set_to_gtt_domain(obj, write);
2074         if (ret)
2075                 goto unpin;
2076
2077         ret = i915_gem_object_get_fence(obj);
2078         if (ret)
2079                 goto unpin;
2080
2081         /* Finally, remap it using the new GTT offset */
2082         pfn = ggtt->mappable_base +
2083                 i915_gem_obj_ggtt_offset_view(obj, &view);
2084         pfn >>= PAGE_SHIFT;
2085
2086         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
2087                 /* Overriding existing pages in partial view does not cause
2088                  * us any trouble as TLBs are still valid because the fault
2089                  * is due to userspace losing part of the mapping or never
2090                  * having accessed it before (at this partials' range).
2091                  */
2092                 unsigned long base = vma->vm_start +
2093                                      (view.params.partial.offset << PAGE_SHIFT);
2094                 unsigned int i;
2095
2096                 for (i = 0; i < view.params.partial.size; i++) {
2097                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2098                         if (ret)
2099                                 break;
2100                 }
2101
2102                 obj->fault_mappable = true;
2103         } else {
2104                 if (!obj->fault_mappable) {
2105                         unsigned long size = min_t(unsigned long,
2106                                                    vma->vm_end - vma->vm_start,
2107                                                    obj->base.size);
2108                         int i;
2109
2110                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
2111                                 ret = vm_insert_pfn(vma,
2112                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
2113                                                     pfn + i);
2114                                 if (ret)
2115                                         break;
2116                         }
2117
2118                         obj->fault_mappable = true;
2119                 } else
2120                         ret = vm_insert_pfn(vma,
2121                                             (unsigned long)vmf->virtual_address,
2122                                             pfn + page_offset);
2123         }
2124 unpin:
2125         i915_gem_object_ggtt_unpin_view(obj, &view);
2126 unlock:
2127         mutex_unlock(&dev->struct_mutex);
2128 out:
2129         switch (ret) {
2130         case -EIO:
2131                 /*
2132                  * We eat errors when the gpu is terminally wedged to avoid
2133                  * userspace unduly crashing (gl has no provisions for mmaps to
2134                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
2135                  * and so needs to be reported.
2136                  */
2137                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2138                         ret = VM_FAULT_SIGBUS;
2139                         break;
2140                 }
2141         case -EAGAIN:
2142                 /*
2143                  * EAGAIN means the gpu is hung and we'll wait for the error
2144                  * handler to reset everything when re-faulting in
2145                  * i915_mutex_lock_interruptible.
2146                  */
2147         case 0:
2148         case -ERESTARTSYS:
2149         case -EINTR:
2150         case -EBUSY:
2151                 /*
2152                  * EBUSY is ok: this just means that another thread
2153                  * already did the job.
2154                  */
2155                 ret = VM_FAULT_NOPAGE;
2156                 break;
2157         case -ENOMEM:
2158                 ret = VM_FAULT_OOM;
2159                 break;
2160         case -ENOSPC:
2161         case -EFAULT:
2162                 ret = VM_FAULT_SIGBUS;
2163                 break;
2164         default:
2165                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2166                 ret = VM_FAULT_SIGBUS;
2167                 break;
2168         }
2169
2170         intel_runtime_pm_put(dev_priv);
2171         return ret;
2172 }
2173
2174 /**
2175  * i915_gem_release_mmap - remove physical page mappings
2176  * @obj: obj in question
2177  *
2178  * Preserve the reservation of the mmapping with the DRM core code, but
2179  * relinquish ownership of the pages back to the system.
2180  *
2181  * It is vital that we remove the page mapping if we have mapped a tiled
2182  * object through the GTT and then lose the fence register due to
2183  * resource pressure. Similarly if the object has been moved out of the
2184  * aperture, than pages mapped into userspace must be revoked. Removing the
2185  * mapping will then trigger a page fault on the next user access, allowing
2186  * fixup by i915_gem_fault().
2187  */
2188 void
2189 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2190 {
2191         /* Serialisation between user GTT access and our code depends upon
2192          * revoking the CPU's PTE whilst the mutex is held. The next user
2193          * pagefault then has to wait until we release the mutex.
2194          */
2195         lockdep_assert_held(&obj->base.dev->struct_mutex);
2196
2197         if (!obj->fault_mappable)
2198                 return;
2199
2200         drm_vma_node_unmap(&obj->base.vma_node,
2201                            obj->base.dev->anon_inode->i_mapping);
2202
2203         /* Ensure that the CPU's PTE are revoked and there are not outstanding
2204          * memory transactions from userspace before we return. The TLB
2205          * flushing implied above by changing the PTE above *should* be
2206          * sufficient, an extra barrier here just provides us with a bit
2207          * of paranoid documentation about our requirement to serialise
2208          * memory writes before touching registers / GSM.
2209          */
2210         wmb();
2211
2212         obj->fault_mappable = false;
2213 }
2214
2215 void
2216 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2217 {
2218         struct drm_i915_gem_object *obj;
2219
2220         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2221                 i915_gem_release_mmap(obj);
2222 }
2223
2224 uint32_t
2225 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2226 {
2227         uint32_t gtt_size;
2228
2229         if (INTEL_INFO(dev)->gen >= 4 ||
2230             tiling_mode == I915_TILING_NONE)
2231                 return size;
2232
2233         /* Previous chips need a power-of-two fence region when tiling */
2234         if (IS_GEN3(dev))
2235                 gtt_size = 1024*1024;
2236         else
2237                 gtt_size = 512*1024;
2238
2239         while (gtt_size < size)
2240                 gtt_size <<= 1;
2241
2242         return gtt_size;
2243 }
2244
2245 /**
2246  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2247  * @dev: drm device
2248  * @size: object size
2249  * @tiling_mode: tiling mode
2250  * @fenced: is fenced alignemned required or not
2251  *
2252  * Return the required GTT alignment for an object, taking into account
2253  * potential fence register mapping.
2254  */
2255 uint32_t
2256 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2257                            int tiling_mode, bool fenced)
2258 {
2259         /*
2260          * Minimum alignment is 4k (GTT page size), but might be greater
2261          * if a fence register is needed for the object.
2262          */
2263         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2264             tiling_mode == I915_TILING_NONE)
2265                 return 4096;
2266
2267         /*
2268          * Previous chips need to be aligned to the size of the smallest
2269          * fence register that can contain the object.
2270          */
2271         return i915_gem_get_gtt_size(dev, size, tiling_mode);
2272 }
2273
2274 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2275 {
2276         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2277         int ret;
2278
2279         dev_priv->mm.shrinker_no_lock_stealing = true;
2280
2281         ret = drm_gem_create_mmap_offset(&obj->base);
2282         if (ret != -ENOSPC)
2283                 goto out;
2284
2285         /* Badly fragmented mmap space? The only way we can recover
2286          * space is by destroying unwanted objects. We can't randomly release
2287          * mmap_offsets as userspace expects them to be persistent for the
2288          * lifetime of the objects. The closest we can is to release the
2289          * offsets on purgeable objects by truncating it and marking it purged,
2290          * which prevents userspace from ever using that object again.
2291          */
2292         i915_gem_shrink(dev_priv,
2293                         obj->base.size >> PAGE_SHIFT,
2294                         I915_SHRINK_BOUND |
2295                         I915_SHRINK_UNBOUND |
2296                         I915_SHRINK_PURGEABLE);
2297         ret = drm_gem_create_mmap_offset(&obj->base);
2298         if (ret != -ENOSPC)
2299                 goto out;
2300
2301         i915_gem_shrink_all(dev_priv);
2302         ret = drm_gem_create_mmap_offset(&obj->base);
2303 out:
2304         dev_priv->mm.shrinker_no_lock_stealing = false;
2305
2306         return ret;
2307 }
2308
2309 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2310 {
2311         drm_gem_free_mmap_offset(&obj->base);
2312 }
2313
2314 int
2315 i915_gem_mmap_gtt(struct drm_file *file,
2316                   struct drm_device *dev,
2317                   uint32_t handle,
2318                   uint64_t *offset)
2319 {
2320         struct drm_i915_gem_object *obj;
2321         int ret;
2322
2323         ret = i915_mutex_lock_interruptible(dev);
2324         if (ret)
2325                 return ret;
2326
2327         obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2328         if (&obj->base == NULL) {
2329                 ret = -ENOENT;
2330                 goto unlock;
2331         }
2332
2333         if (obj->madv != I915_MADV_WILLNEED) {
2334                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2335                 ret = -EFAULT;
2336                 goto out;
2337         }
2338
2339         ret = i915_gem_object_create_mmap_offset(obj);
2340         if (ret)
2341                 goto out;
2342
2343         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2344
2345 out:
2346         drm_gem_object_unreference(&obj->base);
2347 unlock:
2348         mutex_unlock(&dev->struct_mutex);
2349         return ret;
2350 }
2351
2352 /**
2353  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2354  * @dev: DRM device
2355  * @data: GTT mapping ioctl data
2356  * @file: GEM object info
2357  *
2358  * Simply returns the fake offset to userspace so it can mmap it.
2359  * The mmap call will end up in drm_gem_mmap(), which will set things
2360  * up so we can get faults in the handler above.
2361  *
2362  * The fault handler will take care of binding the object into the GTT
2363  * (since it may have been evicted to make room for something), allocating
2364  * a fence register, and mapping the appropriate aperture address into
2365  * userspace.
2366  */
2367 int
2368 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2369                         struct drm_file *file)
2370 {
2371         struct drm_i915_gem_mmap_gtt *args = data;
2372
2373         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2374 }
2375
2376 /* Immediately discard the backing storage */
2377 static void
2378 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2379 {
2380         i915_gem_object_free_mmap_offset(obj);
2381
2382         if (obj->base.filp == NULL)
2383                 return;
2384
2385         /* Our goal here is to return as much of the memory as
2386          * is possible back to the system as we are called from OOM.
2387          * To do this we must instruct the shmfs to drop all of its
2388          * backing pages, *now*.
2389          */
2390         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2391         obj->madv = __I915_MADV_PURGED;
2392 }
2393
2394 /* Try to discard unwanted pages */
2395 static void
2396 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2397 {
2398         struct address_space *mapping;
2399
2400         switch (obj->madv) {
2401         case I915_MADV_DONTNEED:
2402                 i915_gem_object_truncate(obj);
2403         case __I915_MADV_PURGED:
2404                 return;
2405         }
2406
2407         if (obj->base.filp == NULL)
2408                 return;
2409
2410         mapping = file_inode(obj->base.filp)->i_mapping,
2411         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2412 }
2413
2414 static void
2415 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2416 {
2417         struct sgt_iter sgt_iter;
2418         struct page *page;
2419         int ret;
2420
2421         BUG_ON(obj->madv == __I915_MADV_PURGED);
2422
2423         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2424         if (WARN_ON(ret)) {
2425                 /* In the event of a disaster, abandon all caches and
2426                  * hope for the best.
2427                  */
2428                 i915_gem_clflush_object(obj, true);
2429                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2430         }
2431
2432         i915_gem_gtt_finish_object(obj);
2433
2434         if (i915_gem_object_needs_bit17_swizzle(obj))
2435                 i915_gem_object_save_bit_17_swizzle(obj);
2436
2437         if (obj->madv == I915_MADV_DONTNEED)
2438                 obj->dirty = 0;
2439
2440         for_each_sgt_page(page, sgt_iter, obj->pages) {
2441                 if (obj->dirty)
2442                         set_page_dirty(page);
2443
2444                 if (obj->madv == I915_MADV_WILLNEED)
2445                         mark_page_accessed(page);
2446
2447                 put_page(page);
2448         }
2449         obj->dirty = 0;
2450
2451         sg_free_table(obj->pages);
2452         kfree(obj->pages);
2453 }
2454
2455 int
2456 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2457 {
2458         const struct drm_i915_gem_object_ops *ops = obj->ops;
2459
2460         if (obj->pages == NULL)
2461                 return 0;
2462
2463         if (obj->pages_pin_count)
2464                 return -EBUSY;
2465
2466         BUG_ON(i915_gem_obj_bound_any(obj));
2467
2468         /* ->put_pages might need to allocate memory for the bit17 swizzle
2469          * array, hence protect them from being reaped by removing them from gtt
2470          * lists early. */
2471         list_del(&obj->global_list);
2472
2473         if (obj->mapping) {
2474                 if (is_vmalloc_addr(obj->mapping))
2475                         vunmap(obj->mapping);
2476                 else
2477                         kunmap(kmap_to_page(obj->mapping));
2478                 obj->mapping = NULL;
2479         }
2480
2481         ops->put_pages(obj);
2482         obj->pages = NULL;
2483
2484         i915_gem_object_invalidate(obj);
2485
2486         return 0;
2487 }
2488
2489 static int
2490 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2491 {
2492         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2493         int page_count, i;
2494         struct address_space *mapping;
2495         struct sg_table *st;
2496         struct scatterlist *sg;
2497         struct sgt_iter sgt_iter;
2498         struct page *page;
2499         unsigned long last_pfn = 0;     /* suppress gcc warning */
2500         int ret;
2501         gfp_t gfp;
2502
2503         /* Assert that the object is not currently in any GPU domain. As it
2504          * wasn't in the GTT, there shouldn't be any way it could have been in
2505          * a GPU cache
2506          */
2507         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2508         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2509
2510         st = kmalloc(sizeof(*st), GFP_KERNEL);
2511         if (st == NULL)
2512                 return -ENOMEM;
2513
2514         page_count = obj->base.size / PAGE_SIZE;
2515         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2516                 kfree(st);
2517                 return -ENOMEM;
2518         }
2519
2520         /* Get the list of pages out of our struct file.  They'll be pinned
2521          * at this point until we release them.
2522          *
2523          * Fail silently without starting the shrinker
2524          */
2525         mapping = file_inode(obj->base.filp)->i_mapping;
2526         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2527         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2528         sg = st->sgl;
2529         st->nents = 0;
2530         for (i = 0; i < page_count; i++) {
2531                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2532                 if (IS_ERR(page)) {
2533                         i915_gem_shrink(dev_priv,
2534                                         page_count,
2535                                         I915_SHRINK_BOUND |
2536                                         I915_SHRINK_UNBOUND |
2537                                         I915_SHRINK_PURGEABLE);
2538                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2539                 }
2540                 if (IS_ERR(page)) {
2541                         /* We've tried hard to allocate the memory by reaping
2542                          * our own buffer, now let the real VM do its job and
2543                          * go down in flames if truly OOM.
2544                          */
2545                         i915_gem_shrink_all(dev_priv);
2546                         page = shmem_read_mapping_page(mapping, i);
2547                         if (IS_ERR(page)) {
2548                                 ret = PTR_ERR(page);
2549                                 goto err_pages;
2550                         }
2551                 }
2552 #ifdef CONFIG_SWIOTLB
2553                 if (swiotlb_nr_tbl()) {
2554                         st->nents++;
2555                         sg_set_page(sg, page, PAGE_SIZE, 0);
2556                         sg = sg_next(sg);
2557                         continue;
2558                 }
2559 #endif
2560                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2561                         if (i)
2562                                 sg = sg_next(sg);
2563                         st->nents++;
2564                         sg_set_page(sg, page, PAGE_SIZE, 0);
2565                 } else {
2566                         sg->length += PAGE_SIZE;
2567                 }
2568                 last_pfn = page_to_pfn(page);
2569
2570                 /* Check that the i965g/gm workaround works. */
2571                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2572         }
2573 #ifdef CONFIG_SWIOTLB
2574         if (!swiotlb_nr_tbl())
2575 #endif
2576                 sg_mark_end(sg);
2577         obj->pages = st;
2578
2579         ret = i915_gem_gtt_prepare_object(obj);
2580         if (ret)
2581                 goto err_pages;
2582
2583         if (i915_gem_object_needs_bit17_swizzle(obj))
2584                 i915_gem_object_do_bit_17_swizzle(obj);
2585
2586         if (obj->tiling_mode != I915_TILING_NONE &&
2587             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2588                 i915_gem_object_pin_pages(obj);
2589
2590         return 0;
2591
2592 err_pages:
2593         sg_mark_end(sg);
2594         for_each_sgt_page(page, sgt_iter, st)
2595                 put_page(page);
2596         sg_free_table(st);
2597         kfree(st);
2598
2599         /* shmemfs first checks if there is enough memory to allocate the page
2600          * and reports ENOSPC should there be insufficient, along with the usual
2601          * ENOMEM for a genuine allocation failure.
2602          *
2603          * We use ENOSPC in our driver to mean that we have run out of aperture
2604          * space and so want to translate the error from shmemfs back to our
2605          * usual understanding of ENOMEM.
2606          */
2607         if (ret == -ENOSPC)
2608                 ret = -ENOMEM;
2609
2610         return ret;
2611 }
2612
2613 /* Ensure that the associated pages are gathered from the backing storage
2614  * and pinned into our object. i915_gem_object_get_pages() may be called
2615  * multiple times before they are released by a single call to
2616  * i915_gem_object_put_pages() - once the pages are no longer referenced
2617  * either as a result of memory pressure (reaping pages under the shrinker)
2618  * or as the object is itself released.
2619  */
2620 int
2621 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2622 {
2623         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2624         const struct drm_i915_gem_object_ops *ops = obj->ops;
2625         int ret;
2626
2627         if (obj->pages)
2628                 return 0;
2629
2630         if (obj->madv != I915_MADV_WILLNEED) {
2631                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2632                 return -EFAULT;
2633         }
2634
2635         BUG_ON(obj->pages_pin_count);
2636
2637         ret = ops->get_pages(obj);
2638         if (ret)
2639                 return ret;
2640
2641         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2642
2643         obj->get_page.sg = obj->pages->sgl;
2644         obj->get_page.last = 0;
2645
2646         return 0;
2647 }
2648
2649 /* The 'mapping' part of i915_gem_object_pin_map() below */
2650 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2651 {
2652         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2653         struct sg_table *sgt = obj->pages;
2654         struct sgt_iter sgt_iter;
2655         struct page *page;
2656         struct page *stack_pages[32];
2657         struct page **pages = stack_pages;
2658         unsigned long i = 0;
2659         void *addr;
2660
2661         /* A single page can always be kmapped */
2662         if (n_pages == 1)
2663                 return kmap(sg_page(sgt->sgl));
2664
2665         if (n_pages > ARRAY_SIZE(stack_pages)) {
2666                 /* Too big for stack -- allocate temporary array instead */
2667                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2668                 if (!pages)
2669                         return NULL;
2670         }
2671
2672         for_each_sgt_page(page, sgt_iter, sgt)
2673                 pages[i++] = page;
2674
2675         /* Check that we have the expected number of pages */
2676         GEM_BUG_ON(i != n_pages);
2677
2678         addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2679
2680         if (pages != stack_pages)
2681                 drm_free_large(pages);
2682
2683         return addr;
2684 }
2685
2686 /* get, pin, and map the pages of the object into kernel space */
2687 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2688 {
2689         int ret;
2690
2691         lockdep_assert_held(&obj->base.dev->struct_mutex);
2692
2693         ret = i915_gem_object_get_pages(obj);
2694         if (ret)
2695                 return ERR_PTR(ret);
2696
2697         i915_gem_object_pin_pages(obj);
2698
2699         if (!obj->mapping) {
2700                 obj->mapping = i915_gem_object_map(obj);
2701                 if (!obj->mapping) {
2702                         i915_gem_object_unpin_pages(obj);
2703                         return ERR_PTR(-ENOMEM);
2704                 }
2705         }
2706
2707         return obj->mapping;
2708 }
2709
2710 void i915_vma_move_to_active(struct i915_vma *vma,
2711                              struct drm_i915_gem_request *req)
2712 {
2713         struct drm_i915_gem_object *obj = vma->obj;
2714         struct intel_engine_cs *engine;
2715
2716         engine = i915_gem_request_get_engine(req);
2717
2718         /* Add a reference if we're newly entering the active list. */
2719         if (obj->active == 0)
2720                 drm_gem_object_reference(&obj->base);
2721         obj->active |= intel_engine_flag(engine);
2722
2723         list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2724         i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2725
2726         list_move_tail(&vma->vm_link, &vma->vm->active_list);
2727 }
2728
2729 static void
2730 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2731 {
2732         GEM_BUG_ON(obj->last_write_req == NULL);
2733         GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2734
2735         i915_gem_request_assign(&obj->last_write_req, NULL);
2736         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2737 }
2738
2739 static void
2740 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2741 {
2742         struct i915_vma *vma;
2743
2744         GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2745         GEM_BUG_ON(!(obj->active & (1 << ring)));
2746
2747         list_del_init(&obj->engine_list[ring]);
2748         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2749
2750         if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2751                 i915_gem_object_retire__write(obj);
2752
2753         obj->active &= ~(1 << ring);
2754         if (obj->active)
2755                 return;
2756
2757         /* Bump our place on the bound list to keep it roughly in LRU order
2758          * so that we don't steal from recently used but inactive objects
2759          * (unless we are forced to ofc!)
2760          */
2761         list_move_tail(&obj->global_list,
2762                        &to_i915(obj->base.dev)->mm.bound_list);
2763
2764         list_for_each_entry(vma, &obj->vma_list, obj_link) {
2765                 if (!list_empty(&vma->vm_link))
2766                         list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2767         }
2768
2769         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2770         drm_gem_object_unreference(&obj->base);
2771 }
2772
2773 static int
2774 i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2775 {
2776         struct intel_engine_cs *engine;
2777         int ret;
2778
2779         /* Carefully retire all requests without writing to the rings */
2780         for_each_engine(engine, dev_priv) {
2781                 ret = intel_engine_idle(engine);
2782                 if (ret)
2783                         return ret;
2784         }
2785         i915_gem_retire_requests(dev_priv);
2786
2787         /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
2788         if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
2789                 while (intel_kick_waiters(dev_priv) ||
2790                        intel_kick_signalers(dev_priv))
2791                         yield();
2792         }
2793
2794         /* Finally reset hw state */
2795         for_each_engine(engine, dev_priv)
2796                 intel_ring_init_seqno(engine, seqno);
2797
2798         return 0;
2799 }
2800
2801 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2802 {
2803         struct drm_i915_private *dev_priv = to_i915(dev);
2804         int ret;
2805
2806         if (seqno == 0)
2807                 return -EINVAL;
2808
2809         /* HWS page needs to be set less than what we
2810          * will inject to ring
2811          */
2812         ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2813         if (ret)
2814                 return ret;
2815
2816         /* Carefully set the last_seqno value so that wrap
2817          * detection still works
2818          */
2819         dev_priv->next_seqno = seqno;
2820         dev_priv->last_seqno = seqno - 1;
2821         if (dev_priv->last_seqno == 0)
2822                 dev_priv->last_seqno--;
2823
2824         return 0;
2825 }
2826
2827 int
2828 i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2829 {
2830         /* reserve 0 for non-seqno */
2831         if (dev_priv->next_seqno == 0) {
2832                 int ret = i915_gem_init_seqno(dev_priv, 0);
2833                 if (ret)
2834                         return ret;
2835
2836                 dev_priv->next_seqno = 1;
2837         }
2838
2839         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2840         return 0;
2841 }
2842
2843 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
2844 {
2845         struct drm_i915_private *dev_priv = engine->i915;
2846
2847         dev_priv->gt.active_engines |= intel_engine_flag(engine);
2848         if (dev_priv->gt.awake)
2849                 return;
2850
2851         intel_runtime_pm_get_noresume(dev_priv);
2852         dev_priv->gt.awake = true;
2853
2854         i915_update_gfx_val(dev_priv);
2855         if (INTEL_GEN(dev_priv) >= 6)
2856                 gen6_rps_busy(dev_priv);
2857
2858         queue_delayed_work(dev_priv->wq,
2859                            &dev_priv->gt.retire_work,
2860                            round_jiffies_up_relative(HZ));
2861 }
2862
2863 /*
2864  * NB: This function is not allowed to fail. Doing so would mean the the
2865  * request is not being tracked for completion but the work itself is
2866  * going to happen on the hardware. This would be a Bad Thing(tm).
2867  */
2868 void __i915_add_request(struct drm_i915_gem_request *request,
2869                         struct drm_i915_gem_object *obj,
2870                         bool flush_caches)
2871 {
2872         struct intel_engine_cs *engine;
2873         struct intel_ringbuffer *ringbuf;
2874         u32 request_start;
2875         u32 reserved_tail;
2876         int ret;
2877
2878         if (WARN_ON(request == NULL))
2879                 return;
2880
2881         engine = request->engine;
2882         ringbuf = request->ringbuf;
2883
2884         /*
2885          * To ensure that this call will not fail, space for its emissions
2886          * should already have been reserved in the ring buffer. Let the ring
2887          * know that it is time to use that space up.
2888          */
2889         request_start = intel_ring_get_tail(ringbuf);
2890         reserved_tail = request->reserved_space;
2891         request->reserved_space = 0;
2892
2893         /*
2894          * Emit any outstanding flushes - execbuf can fail to emit the flush
2895          * after having emitted the batchbuffer command. Hence we need to fix
2896          * things up similar to emitting the lazy request. The difference here
2897          * is that the flush _must_ happen before the next request, no matter
2898          * what.
2899          */
2900         if (flush_caches) {
2901                 if (i915.enable_execlists)
2902                         ret = logical_ring_flush_all_caches(request);
2903                 else
2904                         ret = intel_ring_flush_all_caches(request);
2905                 /* Not allowed to fail! */
2906                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2907         }
2908
2909         trace_i915_gem_request_add(request);
2910
2911         request->head = request_start;
2912
2913         /* Whilst this request exists, batch_obj will be on the
2914          * active_list, and so will hold the active reference. Only when this
2915          * request is retired will the the batch_obj be moved onto the
2916          * inactive_list and lose its active reference. Hence we do not need
2917          * to explicitly hold another reference here.
2918          */
2919         request->batch_obj = obj;
2920
2921         /* Seal the request and mark it as pending execution. Note that
2922          * we may inspect this state, without holding any locks, during
2923          * hangcheck. Hence we apply the barrier to ensure that we do not
2924          * see a more recent value in the hws than we are tracking.
2925          */
2926         request->emitted_jiffies = jiffies;
2927         request->previous_seqno = engine->last_submitted_seqno;
2928         smp_store_mb(engine->last_submitted_seqno, request->seqno);
2929         list_add_tail(&request->list, &engine->request_list);
2930
2931         /* Record the position of the start of the request so that
2932          * should we detect the updated seqno part-way through the
2933          * GPU processing the request, we never over-estimate the
2934          * position of the head.
2935          */
2936         request->postfix = intel_ring_get_tail(ringbuf);
2937
2938         if (i915.enable_execlists)
2939                 ret = engine->emit_request(request);
2940         else {
2941                 ret = engine->add_request(request);
2942
2943                 request->tail = intel_ring_get_tail(ringbuf);
2944         }
2945         /* Not allowed to fail! */
2946         WARN(ret, "emit|add_request failed: %d!\n", ret);
2947         /* Sanity check that the reserved size was large enough. */
2948         ret = intel_ring_get_tail(ringbuf) - request_start;
2949         if (ret < 0)
2950                 ret += ringbuf->size;
2951         WARN_ONCE(ret > reserved_tail,
2952                   "Not enough space reserved (%d bytes) "
2953                   "for adding the request (%d bytes)\n",
2954                   reserved_tail, ret);
2955
2956         i915_gem_mark_busy(engine);
2957 }
2958
2959 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2960 {
2961         unsigned long elapsed;
2962
2963         if (ctx->hang_stats.banned)
2964                 return true;
2965
2966         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2967         if (ctx->hang_stats.ban_period_seconds &&
2968             elapsed <= ctx->hang_stats.ban_period_seconds) {
2969                 DRM_DEBUG("context hanging too fast, banning!\n");
2970                 return true;
2971         }
2972
2973         return false;
2974 }
2975
2976 static void i915_set_reset_status(struct i915_gem_context *ctx,
2977                                   const bool guilty)
2978 {
2979         struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2980
2981         if (guilty) {
2982                 hs->banned = i915_context_is_banned(ctx);
2983                 hs->batch_active++;
2984                 hs->guilty_ts = get_seconds();
2985         } else {
2986                 hs->batch_pending++;
2987         }
2988 }
2989
2990 void i915_gem_request_free(struct kref *req_ref)
2991 {
2992         struct drm_i915_gem_request *req = container_of(req_ref,
2993                                                  typeof(*req), ref);
2994         kmem_cache_free(req->i915->requests, req);
2995 }
2996
2997 static inline int
2998 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2999                          struct i915_gem_context *ctx,
3000                          struct drm_i915_gem_request **req_out)
3001 {
3002         struct drm_i915_private *dev_priv = engine->i915;
3003         unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
3004         struct drm_i915_gem_request *req;
3005         int ret;
3006
3007         if (!req_out)
3008                 return -EINVAL;
3009
3010         *req_out = NULL;
3011
3012         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
3013          * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
3014          * and restart.
3015          */
3016         ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
3017         if (ret)
3018                 return ret;
3019
3020         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
3021         if (req == NULL)
3022                 return -ENOMEM;
3023
3024         ret = i915_gem_get_seqno(engine->i915, &req->seqno);
3025         if (ret)
3026                 goto err;
3027
3028         kref_init(&req->ref);
3029         req->i915 = dev_priv;
3030         req->engine = engine;
3031         req->ctx  = ctx;
3032         i915_gem_context_reference(req->ctx);
3033
3034         /*
3035          * Reserve space in the ring buffer for all the commands required to
3036          * eventually emit this request. This is to guarantee that the
3037          * i915_add_request() call can't fail. Note that the reserve may need
3038          * to be redone if the request is not actually submitted straight
3039          * away, e.g. because a GPU scheduler has deferred it.
3040          */
3041         req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
3042
3043         if (i915.enable_execlists)
3044                 ret = intel_logical_ring_alloc_request_extras(req);
3045         else
3046                 ret = intel_ring_alloc_request_extras(req);
3047         if (ret)
3048                 goto err_ctx;
3049
3050         *req_out = req;
3051         return 0;
3052
3053 err_ctx:
3054         i915_gem_context_unreference(ctx);
3055 err:
3056         kmem_cache_free(dev_priv->requests, req);
3057         return ret;
3058 }
3059
3060 /**
3061  * i915_gem_request_alloc - allocate a request structure
3062  *
3063  * @engine: engine that we wish to issue the request on.
3064  * @ctx: context that the request will be associated with.
3065  *       This can be NULL if the request is not directly related to
3066  *       any specific user context, in which case this function will
3067  *       choose an appropriate context to use.
3068  *
3069  * Returns a pointer to the allocated request if successful,
3070  * or an error code if not.
3071  */
3072 struct drm_i915_gem_request *
3073 i915_gem_request_alloc(struct intel_engine_cs *engine,
3074                        struct i915_gem_context *ctx)
3075 {
3076         struct drm_i915_gem_request *req;
3077         int err;
3078
3079         if (ctx == NULL)
3080                 ctx = engine->i915->kernel_context;
3081         err = __i915_gem_request_alloc(engine, ctx, &req);
3082         return err ? ERR_PTR(err) : req;
3083 }
3084
3085 struct drm_i915_gem_request *
3086 i915_gem_find_active_request(struct intel_engine_cs *engine)
3087 {
3088         struct drm_i915_gem_request *request;
3089
3090         /* We are called by the error capture and reset at a random
3091          * point in time. In particular, note that neither is crucially
3092          * ordered with an interrupt. After a hang, the GPU is dead and we
3093          * assume that no more writes can happen (we waited long enough for
3094          * all writes that were in transaction to be flushed) - adding an
3095          * extra delay for a recent interrupt is pointless. Hence, we do
3096          * not need an engine->irq_seqno_barrier() before the seqno reads.
3097          */
3098         list_for_each_entry(request, &engine->request_list, list) {
3099                 if (i915_gem_request_completed(request))
3100                         continue;
3101
3102                 return request;
3103         }
3104
3105         return NULL;
3106 }
3107
3108 static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
3109 {
3110         struct drm_i915_gem_request *request;
3111         bool ring_hung;
3112
3113         request = i915_gem_find_active_request(engine);
3114         if (request == NULL)
3115                 return;
3116
3117         ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3118
3119         i915_set_reset_status(request->ctx, ring_hung);
3120         list_for_each_entry_continue(request, &engine->request_list, list)
3121                 i915_set_reset_status(request->ctx, false);
3122 }
3123
3124 static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
3125 {
3126         struct intel_ringbuffer *buffer;
3127
3128         while (!list_empty(&engine->active_list)) {
3129                 struct drm_i915_gem_object *obj;
3130
3131                 obj = list_first_entry(&engine->active_list,
3132                                        struct drm_i915_gem_object,
3133                                        engine_list[engine->id]);
3134
3135                 i915_gem_object_retire__read(obj, engine->id);
3136         }
3137
3138         /*
3139          * Clear the execlists queue up before freeing the requests, as those
3140          * are the ones that keep the context and ringbuffer backing objects
3141          * pinned in place.
3142          */
3143
3144         if (i915.enable_execlists) {
3145                 /* Ensure irq handler finishes or is cancelled. */
3146                 tasklet_kill(&engine->irq_tasklet);
3147
3148                 intel_execlists_cancel_requests(engine);
3149         }
3150
3151         /*
3152          * We must free the requests after all the corresponding objects have
3153          * been moved off active lists. Which is the same order as the normal
3154          * retire_requests function does. This is important if object hold
3155          * implicit references on things like e.g. ppgtt address spaces through
3156          * the request.
3157          */
3158         while (!list_empty(&engine->request_list)) {
3159                 struct drm_i915_gem_request *request;
3160
3161                 request = list_first_entry(&engine->request_list,
3162                                            struct drm_i915_gem_request,
3163                                            list);
3164
3165                 i915_gem_request_retire(request);
3166         }
3167
3168         /* Having flushed all requests from all queues, we know that all
3169          * ringbuffers must now be empty. However, since we do not reclaim
3170          * all space when retiring the request (to prevent HEADs colliding
3171          * with rapid ringbuffer wraparound) the amount of available space
3172          * upon reset is less than when we start. Do one more pass over
3173          * all the ringbuffers to reset last_retired_head.
3174          */
3175         list_for_each_entry(buffer, &engine->buffers, link) {
3176                 buffer->last_retired_head = buffer->tail;
3177                 intel_ring_update_space(buffer);
3178         }
3179
3180         intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3181 }
3182
3183 void i915_gem_reset(struct drm_device *dev)
3184 {
3185         struct drm_i915_private *dev_priv = to_i915(dev);
3186         struct intel_engine_cs *engine;
3187
3188         /*
3189          * Before we free the objects from the requests, we need to inspect
3190          * them for finding the guilty party. As the requests only borrow
3191          * their reference to the objects, the inspection must be done first.
3192          */
3193         for_each_engine(engine, dev_priv)
3194                 i915_gem_reset_engine_status(engine);
3195
3196         for_each_engine(engine, dev_priv)
3197                 i915_gem_reset_engine_cleanup(engine);
3198
3199         i915_gem_context_reset(dev);
3200
3201         i915_gem_restore_fences(dev);
3202
3203         WARN_ON(i915_verify_lists(dev));
3204 }
3205
3206 /**
3207  * This function clears the request list as sequence numbers are passed.
3208  * @engine: engine to retire requests on
3209  */
3210 void
3211 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3212 {
3213         WARN_ON(i915_verify_lists(engine->dev));
3214
3215         /* Retire requests first as we use it above for the early return.
3216          * If we retire requests last, we may use a later seqno and so clear
3217          * the requests lists without clearing the active list, leading to
3218          * confusion.
3219          */
3220         while (!list_empty(&engine->request_list)) {
3221                 struct drm_i915_gem_request *request;
3222
3223                 request = list_first_entry(&engine->request_list,
3224                                            struct drm_i915_gem_request,
3225                                            list);
3226
3227                 if (!i915_gem_request_completed(request))
3228                         break;
3229
3230                 i915_gem_request_retire(request);
3231         }
3232
3233         /* Move any buffers on the active list that are no longer referenced
3234          * by the ringbuffer to the flushing/inactive lists as appropriate,
3235          * before we free the context associated with the requests.
3236          */
3237         while (!list_empty(&engine->active_list)) {
3238                 struct drm_i915_gem_object *obj;
3239
3240                 obj = list_first_entry(&engine->active_list,
3241                                        struct drm_i915_gem_object,
3242                                        engine_list[engine->id]);
3243
3244                 if (!list_empty(&obj->last_read_req[engine->id]->list))
3245                         break;
3246
3247                 i915_gem_object_retire__read(obj, engine->id);
3248         }
3249
3250         WARN_ON(i915_verify_lists(engine->dev));
3251 }
3252
3253 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3254 {
3255         struct intel_engine_cs *engine;
3256
3257         lockdep_assert_held(&dev_priv->dev->struct_mutex);
3258
3259         if (dev_priv->gt.active_engines == 0)
3260                 return;
3261
3262         GEM_BUG_ON(!dev_priv->gt.awake);
3263
3264         for_each_engine(engine, dev_priv) {
3265                 i915_gem_retire_requests_ring(engine);
3266                 if (list_empty(&engine->request_list))
3267                         dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
3268         }
3269
3270         if (dev_priv->gt.active_engines == 0)
3271                 queue_delayed_work(dev_priv->wq,
3272                                    &dev_priv->gt.idle_work,
3273                                    msecs_to_jiffies(100));
3274 }
3275
3276 static void
3277 i915_gem_retire_work_handler(struct work_struct *work)
3278 {
3279         struct drm_i915_private *dev_priv =
3280                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3281         struct drm_device *dev = dev_priv->dev;
3282
3283         /* Come back later if the device is busy... */
3284         if (mutex_trylock(&dev->struct_mutex)) {
3285                 i915_gem_retire_requests(dev_priv);
3286                 mutex_unlock(&dev->struct_mutex);
3287         }
3288
3289         /* Keep the retire handler running until we are finally idle.
3290          * We do not need to do this test under locking as in the worst-case
3291          * we queue the retire worker once too often.
3292          */
3293         if (lockless_dereference(dev_priv->gt.awake))
3294                 queue_delayed_work(dev_priv->wq,
3295                                    &dev_priv->gt.retire_work,
3296                                    round_jiffies_up_relative(HZ));
3297 }
3298
3299 static void
3300 i915_gem_idle_work_handler(struct work_struct *work)
3301 {
3302         struct drm_i915_private *dev_priv =
3303                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3304         struct drm_device *dev = dev_priv->dev;
3305         struct intel_engine_cs *engine;
3306         unsigned int stuck_engines;
3307         bool rearm_hangcheck;
3308
3309         if (!READ_ONCE(dev_priv->gt.awake))
3310                 return;
3311
3312         if (READ_ONCE(dev_priv->gt.active_engines))
3313                 return;
3314
3315         rearm_hangcheck =
3316                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3317
3318         if (!mutex_trylock(&dev->struct_mutex)) {
3319                 /* Currently busy, come back later */
3320                 mod_delayed_work(dev_priv->wq,
3321                                  &dev_priv->gt.idle_work,
3322                                  msecs_to_jiffies(50));
3323                 goto out_rearm;
3324         }
3325
3326         if (dev_priv->gt.active_engines)
3327                 goto out_unlock;
3328
3329         for_each_engine(engine, dev_priv)
3330                 i915_gem_batch_pool_fini(&engine->batch_pool);
3331
3332         GEM_BUG_ON(!dev_priv->gt.awake);
3333         dev_priv->gt.awake = false;
3334         rearm_hangcheck = false;
3335
3336         stuck_engines = intel_kick_waiters(dev_priv);
3337         if (unlikely(stuck_engines)) {
3338                 DRM_DEBUG_DRIVER("kicked stuck waiters...missed irq\n");
3339                 dev_priv->gpu_error.missed_irq_rings |= stuck_engines;
3340         }
3341
3342         if (INTEL_GEN(dev_priv) >= 6)
3343                 gen6_rps_idle(dev_priv);
3344         intel_runtime_pm_put(dev_priv);
3345 out_unlock:
3346         mutex_unlock(&dev->struct_mutex);
3347
3348 out_rearm:
3349         if (rearm_hangcheck) {
3350                 GEM_BUG_ON(!dev_priv->gt.awake);
3351                 i915_queue_hangcheck(dev_priv);
3352         }
3353 }
3354
3355 /**
3356  * Ensures that an object will eventually get non-busy by flushing any required
3357  * write domains, emitting any outstanding lazy request and retiring and
3358  * completed requests.
3359  * @obj: object to flush
3360  */
3361 static int
3362 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3363 {
3364         int i;
3365
3366         if (!obj->active)
3367                 return 0;
3368
3369         for (i = 0; i < I915_NUM_ENGINES; i++) {
3370                 struct drm_i915_gem_request *req;
3371
3372                 req = obj->last_read_req[i];
3373                 if (req == NULL)
3374                         continue;
3375
3376                 if (i915_gem_request_completed(req))
3377                         i915_gem_object_retire__read(obj, i);
3378         }
3379
3380         return 0;
3381 }
3382
3383 /**
3384  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3385  * @dev: drm device pointer
3386  * @data: ioctl data blob
3387  * @file: drm file pointer
3388  *
3389  * Returns 0 if successful, else an error is returned with the remaining time in
3390  * the timeout parameter.
3391  *  -ETIME: object is still busy after timeout
3392  *  -ERESTARTSYS: signal interrupted the wait
3393  *  -ENONENT: object doesn't exist
3394  * Also possible, but rare:
3395  *  -EAGAIN: GPU wedged
3396  *  -ENOMEM: damn
3397  *  -ENODEV: Internal IRQ fail
3398  *  -E?: The add request failed
3399  *
3400  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3401  * non-zero timeout parameter the wait ioctl will wait for the given number of
3402  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3403  * without holding struct_mutex the object may become re-busied before this
3404  * function completes. A similar but shorter * race condition exists in the busy
3405  * ioctl
3406  */
3407 int
3408 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3409 {
3410         struct drm_i915_gem_wait *args = data;
3411         struct drm_i915_gem_object *obj;
3412         struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3413         int i, n = 0;
3414         int ret;
3415
3416         if (args->flags != 0)
3417                 return -EINVAL;
3418
3419         ret = i915_mutex_lock_interruptible(dev);
3420         if (ret)
3421                 return ret;
3422
3423         obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3424         if (&obj->base == NULL) {
3425                 mutex_unlock(&dev->struct_mutex);
3426                 return -ENOENT;
3427         }
3428
3429         /* Need to make sure the object gets inactive eventually. */
3430         ret = i915_gem_object_flush_active(obj);
3431         if (ret)
3432                 goto out;
3433
3434         if (!obj->active)
3435                 goto out;
3436
3437         /* Do this after OLR check to make sure we make forward progress polling
3438          * on this IOCTL with a timeout == 0 (like busy ioctl)
3439          */
3440         if (args->timeout_ns == 0) {
3441                 ret = -ETIME;
3442                 goto out;
3443         }
3444
3445         drm_gem_object_unreference(&obj->base);
3446
3447         for (i = 0; i < I915_NUM_ENGINES; i++) {
3448                 if (obj->last_read_req[i] == NULL)
3449                         continue;
3450
3451                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3452         }
3453
3454         mutex_unlock(&dev->struct_mutex);
3455
3456         for (i = 0; i < n; i++) {
3457                 if (ret == 0)
3458                         ret = __i915_wait_request(req[i], true,
3459                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3460                                                   to_rps_client(file));
3461                 i915_gem_request_unreference(req[i]);
3462         }
3463         return ret;
3464
3465 out:
3466         drm_gem_object_unreference(&obj->base);
3467         mutex_unlock(&dev->struct_mutex);
3468         return ret;
3469 }
3470
3471 static int
3472 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3473                        struct intel_engine_cs *to,
3474                        struct drm_i915_gem_request *from_req,
3475                        struct drm_i915_gem_request **to_req)
3476 {
3477         struct intel_engine_cs *from;
3478         int ret;
3479
3480         from = i915_gem_request_get_engine(from_req);
3481         if (to == from)
3482                 return 0;
3483
3484         if (i915_gem_request_completed(from_req))
3485                 return 0;
3486
3487         if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3488                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3489                 ret = __i915_wait_request(from_req,
3490                                           i915->mm.interruptible,
3491                                           NULL,
3492                                           &i915->rps.semaphores);
3493                 if (ret)
3494                         return ret;
3495
3496                 i915_gem_object_retire_request(obj, from_req);
3497         } else {
3498                 int idx = intel_ring_sync_index(from, to);
3499                 u32 seqno = i915_gem_request_get_seqno(from_req);
3500
3501                 WARN_ON(!to_req);
3502
3503                 if (seqno <= from->semaphore.sync_seqno[idx])
3504                         return 0;
3505
3506                 if (*to_req == NULL) {
3507                         struct drm_i915_gem_request *req;
3508
3509                         req = i915_gem_request_alloc(to, NULL);
3510                         if (IS_ERR(req))
3511                                 return PTR_ERR(req);
3512
3513                         *to_req = req;
3514                 }
3515
3516                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3517                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3518                 if (ret)
3519                         return ret;
3520
3521                 /* We use last_read_req because sync_to()
3522                  * might have just caused seqno wrap under
3523                  * the radar.
3524                  */
3525                 from->semaphore.sync_seqno[idx] =
3526                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3527         }
3528
3529         return 0;
3530 }
3531
3532 /**
3533  * i915_gem_object_sync - sync an object to a ring.
3534  *
3535  * @obj: object which may be in use on another ring.
3536  * @to: ring we wish to use the object on. May be NULL.
3537  * @to_req: request we wish to use the object for. See below.
3538  *          This will be allocated and returned if a request is
3539  *          required but not passed in.
3540  *
3541  * This code is meant to abstract object synchronization with the GPU.
3542  * Calling with NULL implies synchronizing the object with the CPU
3543  * rather than a particular GPU ring. Conceptually we serialise writes
3544  * between engines inside the GPU. We only allow one engine to write
3545  * into a buffer at any time, but multiple readers. To ensure each has
3546  * a coherent view of memory, we must:
3547  *
3548  * - If there is an outstanding write request to the object, the new
3549  *   request must wait for it to complete (either CPU or in hw, requests
3550  *   on the same ring will be naturally ordered).
3551  *
3552  * - If we are a write request (pending_write_domain is set), the new
3553  *   request must wait for outstanding read requests to complete.
3554  *
3555  * For CPU synchronisation (NULL to) no request is required. For syncing with
3556  * rings to_req must be non-NULL. However, a request does not have to be
3557  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3558  * request will be allocated automatically and returned through *to_req. Note
3559  * that it is not guaranteed that commands will be emitted (because the system
3560  * might already be idle). Hence there is no need to create a request that
3561  * might never have any work submitted. Note further that if a request is
3562  * returned in *to_req, it is the responsibility of the caller to submit
3563  * that request (after potentially adding more work to it).
3564  *
3565  * Returns 0 if successful, else propagates up the lower layer error.
3566  */
3567 int
3568 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3569                      struct intel_engine_cs *to,
3570                      struct drm_i915_gem_request **to_req)
3571 {
3572         const bool readonly = obj->base.pending_write_domain == 0;
3573         struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3574         int ret, i, n;
3575
3576         if (!obj->active)
3577                 return 0;
3578
3579         if (to == NULL)
3580                 return i915_gem_object_wait_rendering(obj, readonly);
3581
3582         n = 0;
3583         if (readonly) {
3584                 if (obj->last_write_req)
3585                         req[n++] = obj->last_write_req;
3586         } else {
3587                 for (i = 0; i < I915_NUM_ENGINES; i++)
3588                         if (obj->last_read_req[i])
3589                                 req[n++] = obj->last_read_req[i];
3590         }
3591         for (i = 0; i < n; i++) {
3592                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3593                 if (ret)
3594                         return ret;
3595         }
3596
3597         return 0;
3598 }
3599
3600 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3601 {
3602         u32 old_write_domain, old_read_domains;
3603
3604         /* Force a pagefault for domain tracking on next user access */
3605         i915_gem_release_mmap(obj);
3606
3607         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3608                 return;
3609
3610         old_read_domains = obj->base.read_domains;
3611         old_write_domain = obj->base.write_domain;
3612
3613         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3614         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3615
3616         trace_i915_gem_object_change_domain(obj,
3617                                             old_read_domains,
3618                                             old_write_domain);
3619 }
3620
3621 static void __i915_vma_iounmap(struct i915_vma *vma)
3622 {
3623         GEM_BUG_ON(vma->pin_count);
3624
3625         if (vma->iomap == NULL)
3626                 return;
3627
3628         io_mapping_unmap(vma->iomap);
3629         vma->iomap = NULL;
3630 }
3631
3632 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3633 {
3634         struct drm_i915_gem_object *obj = vma->obj;
3635         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3636         int ret;
3637
3638         if (list_empty(&vma->obj_link))
3639                 return 0;
3640
3641         if (!drm_mm_node_allocated(&vma->node)) {
3642                 i915_gem_vma_destroy(vma);
3643                 return 0;
3644         }
3645
3646         if (vma->pin_count)
3647                 return -EBUSY;
3648
3649         BUG_ON(obj->pages == NULL);
3650
3651         if (wait) {
3652                 ret = i915_gem_object_wait_rendering(obj, false);
3653                 if (ret)
3654                         return ret;
3655         }
3656
3657         if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3658                 i915_gem_object_finish_gtt(obj);
3659
3660                 /* release the fence reg _after_ flushing */
3661                 ret = i915_gem_object_put_fence(obj);
3662                 if (ret)
3663                         return ret;
3664
3665                 __i915_vma_iounmap(vma);
3666         }
3667
3668         trace_i915_vma_unbind(vma);
3669
3670         vma->vm->unbind_vma(vma);
3671         vma->bound = 0;
3672
3673         list_del_init(&vma->vm_link);
3674         if (vma->is_ggtt) {
3675                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3676                         obj->map_and_fenceable = false;
3677                 } else if (vma->ggtt_view.pages) {
3678                         sg_free_table(vma->ggtt_view.pages);
3679                         kfree(vma->ggtt_view.pages);
3680                 }
3681                 vma->ggtt_view.pages = NULL;
3682         }
3683
3684         drm_mm_remove_node(&vma->node);
3685         i915_gem_vma_destroy(vma);
3686
3687         /* Since the unbound list is global, only move to that list if
3688          * no more VMAs exist. */
3689         if (list_empty(&obj->vma_list))
3690                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3691
3692         /* And finally now the object is completely decoupled from this vma,
3693          * we can drop its hold on the backing storage and allow it to be
3694          * reaped by the shrinker.
3695          */
3696         i915_gem_object_unpin_pages(obj);
3697
3698         return 0;
3699 }
3700
3701 int i915_vma_unbind(struct i915_vma *vma)
3702 {
3703         return __i915_vma_unbind(vma, true);
3704 }
3705
3706 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3707 {
3708         return __i915_vma_unbind(vma, false);
3709 }
3710
3711 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3712 {
3713         struct intel_engine_cs *engine;
3714         int ret;
3715
3716         lockdep_assert_held(&dev_priv->dev->struct_mutex);
3717
3718         for_each_engine(engine, dev_priv) {
3719                 if (engine->last_context == NULL)
3720                         continue;
3721
3722                 ret = intel_engine_idle(engine);
3723                 if (ret)
3724                         return ret;
3725         }
3726
3727         WARN_ON(i915_verify_lists(dev));
3728         return 0;
3729 }
3730
3731 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3732                                      unsigned long cache_level)
3733 {
3734         struct drm_mm_node *gtt_space = &vma->node;
3735         struct drm_mm_node *other;
3736
3737         /*
3738          * On some machines we have to be careful when putting differing types
3739          * of snoopable memory together to avoid the prefetcher crossing memory
3740          * domains and dying. During vm initialisation, we decide whether or not
3741          * these constraints apply and set the drm_mm.color_adjust
3742          * appropriately.
3743          */
3744         if (vma->vm->mm.color_adjust == NULL)
3745                 return true;
3746
3747         if (!drm_mm_node_allocated(gtt_space))
3748                 return true;
3749
3750         if (list_empty(&gtt_space->node_list))
3751                 return true;
3752
3753         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3754         if (other->allocated && !other->hole_follows && other->color != cache_level)
3755                 return false;
3756
3757         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3758         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3759                 return false;
3760
3761         return true;
3762 }
3763
3764 /**
3765  * Finds free space in the GTT aperture and binds the object or a view of it
3766  * there.
3767  * @obj: object to bind
3768  * @vm: address space to bind into
3769  * @ggtt_view: global gtt view if applicable
3770  * @alignment: requested alignment
3771  * @flags: mask of PIN_* flags to use
3772  */
3773 static struct i915_vma *
3774 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3775                            struct i915_address_space *vm,
3776                            const struct i915_ggtt_view *ggtt_view,
3777                            unsigned alignment,
3778                            uint64_t flags)
3779 {
3780         struct drm_device *dev = obj->base.dev;
3781         struct drm_i915_private *dev_priv = to_i915(dev);
3782         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3783         u32 fence_alignment, unfenced_alignment;
3784         u32 search_flag, alloc_flag;
3785         u64 start, end;
3786         u64 size, fence_size;
3787         struct i915_vma *vma;
3788         int ret;
3789
3790         if (i915_is_ggtt(vm)) {
3791                 u32 view_size;
3792
3793                 if (WARN_ON(!ggtt_view))
3794                         return ERR_PTR(-EINVAL);
3795
3796                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3797
3798                 fence_size = i915_gem_get_gtt_size(dev,
3799                                                    view_size,
3800                                                    obj->tiling_mode);
3801                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3802                                                              view_size,
3803                                                              obj->tiling_mode,
3804                                                              true);
3805                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3806                                                                 view_size,
3807                                                                 obj->tiling_mode,
3808                                                                 false);
3809                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3810         } else {
3811                 fence_size = i915_gem_get_gtt_size(dev,
3812                                                    obj->base.size,
3813                                                    obj->tiling_mode);
3814                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3815                                                              obj->base.size,
3816                                                              obj->tiling_mode,
3817                                                              true);
3818                 unfenced_alignment =
3819                         i915_gem_get_gtt_alignment(dev,
3820                                                    obj->base.size,
3821                                                    obj->tiling_mode,
3822                                                    false);
3823                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3824         }
3825
3826         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3827         end = vm->total;
3828         if (flags & PIN_MAPPABLE)
3829                 end = min_t(u64, end, ggtt->mappable_end);
3830         if (flags & PIN_ZONE_4G)
3831                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3832
3833         if (alignment == 0)
3834                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3835                                                 unfenced_alignment;
3836         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3837                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3838                           ggtt_view ? ggtt_view->type : 0,
3839                           alignment);
3840                 return ERR_PTR(-EINVAL);
3841         }
3842
3843         /* If binding the object/GGTT view requires more space than the entire
3844          * aperture has, reject it early before evicting everything in a vain
3845          * attempt to find space.
3846          */
3847         if (size > end) {
3848                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3849                           ggtt_view ? ggtt_view->type : 0,
3850                           size,
3851                           flags & PIN_MAPPABLE ? "mappable" : "total",
3852                           end);
3853                 return ERR_PTR(-E2BIG);
3854         }
3855
3856         ret = i915_gem_object_get_pages(obj);
3857         if (ret)
3858                 return ERR_PTR(ret);
3859
3860         i915_gem_object_pin_pages(obj);
3861
3862         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3863                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3864
3865         if (IS_ERR(vma))
3866                 goto err_unpin;
3867
3868         if (flags & PIN_OFFSET_FIXED) {
3869                 uint64_t offset = flags & PIN_OFFSET_MASK;
3870
3871                 if (offset & (alignment - 1) || offset + size > end) {
3872                         ret = -EINVAL;
3873                         goto err_free_vma;
3874                 }
3875                 vma->node.start = offset;
3876                 vma->node.size = size;
3877                 vma->node.color = obj->cache_level;
3878                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3879                 if (ret) {
3880                         ret = i915_gem_evict_for_vma(vma);
3881                         if (ret == 0)
3882                                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3883                 }
3884                 if (ret)
3885                         goto err_free_vma;
3886         } else {
3887                 if (flags & PIN_HIGH) {
3888                         search_flag = DRM_MM_SEARCH_BELOW;
3889                         alloc_flag = DRM_MM_CREATE_TOP;
3890                 } else {
3891                         search_flag = DRM_MM_SEARCH_DEFAULT;
3892                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3893                 }
3894
3895 search_free:
3896                 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3897                                                           size, alignment,
3898                                                           obj->cache_level,
3899                                                           start, end,
3900                                                           search_flag,
3901                                                           alloc_flag);
3902                 if (ret) {
3903                         ret = i915_gem_evict_something(dev, vm, size, alignment,
3904                                                        obj->cache_level,
3905                                                        start, end,
3906                                                        flags);
3907                         if (ret == 0)
3908                                 goto search_free;
3909
3910                         goto err_free_vma;
3911                 }
3912         }
3913         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3914                 ret = -EINVAL;
3915                 goto err_remove_node;
3916         }
3917
3918         trace_i915_vma_bind(vma, flags);
3919         ret = i915_vma_bind(vma, obj->cache_level, flags);
3920         if (ret)
3921                 goto err_remove_node;
3922
3923         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3924         list_add_tail(&vma->vm_link, &vm->inactive_list);
3925
3926         return vma;
3927
3928 err_remove_node:
3929         drm_mm_remove_node(&vma->node);
3930 err_free_vma:
3931         i915_gem_vma_destroy(vma);
3932         vma = ERR_PTR(ret);
3933 err_unpin:
3934         i915_gem_object_unpin_pages(obj);
3935         return vma;
3936 }
3937
3938 bool
3939 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3940                         bool force)
3941 {
3942         /* If we don't have a page list set up, then we're not pinned
3943          * to GPU, and we can ignore the cache flush because it'll happen
3944          * again at bind time.
3945          */
3946         if (obj->pages == NULL)
3947                 return false;
3948
3949         /*
3950          * Stolen memory is always coherent with the GPU as it is explicitly
3951          * marked as wc by the system, or the system is cache-coherent.
3952          */
3953         if (obj->stolen || obj->phys_handle)
3954                 return false;
3955
3956         /* If the GPU is snooping the contents of the CPU cache,
3957          * we do not need to manually clear the CPU cache lines.  However,
3958          * the caches are only snooped when the render cache is
3959          * flushed/invalidated.  As we always have to emit invalidations
3960          * and flushes when moving into and out of the RENDER domain, correct
3961          * snooping behaviour occurs naturally as the result of our domain
3962          * tracking.
3963          */
3964         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3965                 obj->cache_dirty = true;
3966                 return false;
3967         }
3968
3969         trace_i915_gem_object_clflush(obj);
3970         drm_clflush_sg(obj->pages);
3971         obj->cache_dirty = false;
3972
3973         return true;
3974 }
3975
3976 /** Flushes the GTT write domain for the object if it's dirty. */
3977 static void
3978 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3979 {
3980         uint32_t old_write_domain;
3981
3982         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3983                 return;
3984
3985         /* No actual flushing is required for the GTT write domain.  Writes
3986          * to it immediately go to main memory as far as we know, so there's
3987          * no chipset flush.  It also doesn't land in render cache.
3988          *
3989          * However, we do have to enforce the order so that all writes through
3990          * the GTT land before any writes to the device, such as updates to
3991          * the GATT itself.
3992          */
3993         wmb();
3994
3995         old_write_domain = obj->base.write_domain;
3996         obj->base.write_domain = 0;
3997
3998         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3999
4000         trace_i915_gem_object_change_domain(obj,
4001                                             obj->base.read_domains,
4002                                             old_write_domain);
4003 }
4004
4005 /** Flushes the CPU write domain for the object if it's dirty. */
4006 static void
4007 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
4008 {
4009         uint32_t old_write_domain;
4010
4011         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
4012                 return;
4013
4014         if (i915_gem_clflush_object(obj, obj->pin_display))
4015                 i915_gem_chipset_flush(to_i915(obj->base.dev));
4016
4017         old_write_domain = obj->base.write_domain;
4018         obj->base.write_domain = 0;
4019
4020         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
4021
4022         trace_i915_gem_object_change_domain(obj,
4023                                             obj->base.read_domains,
4024                                             old_write_domain);
4025 }
4026
4027 /**
4028  * Moves a single object to the GTT read, and possibly write domain.
4029  * @obj: object to act on
4030  * @write: ask for write access or read only
4031  *
4032  * This function returns when the move is complete, including waiting on
4033  * flushes to occur.
4034  */
4035 int
4036 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4037 {
4038         struct drm_device *dev = obj->base.dev;
4039         struct drm_i915_private *dev_priv = to_i915(dev);
4040         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4041         uint32_t old_write_domain, old_read_domains;
4042         struct i915_vma *vma;
4043         int ret;
4044
4045         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4046                 return 0;
4047
4048         ret = i915_gem_object_wait_rendering(obj, !write);
4049         if (ret)
4050                 return ret;
4051
4052         /* Flush and acquire obj->pages so that we are coherent through
4053          * direct access in memory with previous cached writes through
4054          * shmemfs and that our cache domain tracking remains valid.
4055          * For example, if the obj->filp was moved to swap without us
4056          * being notified and releasing the pages, we would mistakenly
4057          * continue to assume that the obj remained out of the CPU cached
4058          * domain.
4059          */
4060         ret = i915_gem_object_get_pages(obj);
4061         if (ret)
4062                 return ret;
4063
4064         i915_gem_object_flush_cpu_write_domain(obj);
4065
4066         /* Serialise direct access to this object with the barriers for
4067          * coherent writes from the GPU, by effectively invalidating the
4068          * GTT domain upon first access.
4069          */
4070         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4071                 mb();
4072
4073         old_write_domain = obj->base.write_domain;
4074         old_read_domains = obj->base.read_domains;
4075
4076         /* It should now be out of any other write domains, and we can update
4077          * the domain values for our changes.
4078          */
4079         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4080         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4081         if (write) {
4082                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4083                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4084                 obj->dirty = 1;
4085         }
4086
4087         trace_i915_gem_object_change_domain(obj,
4088                                             old_read_domains,
4089                                             old_write_domain);
4090
4091         /* And bump the LRU for this access */
4092         vma = i915_gem_obj_to_ggtt(obj);
4093         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4094                 list_move_tail(&vma->vm_link,
4095                                &ggtt->base.inactive_list);
4096
4097         return 0;
4098 }
4099
4100 /**
4101  * Changes the cache-level of an object across all VMA.
4102  * @obj: object to act on
4103  * @cache_level: new cache level to set for the object
4104  *
4105  * After this function returns, the object will be in the new cache-level
4106  * across all GTT and the contents of the backing storage will be coherent,
4107  * with respect to the new cache-level. In order to keep the backing storage
4108  * coherent for all users, we only allow a single cache level to be set
4109  * globally on the object and prevent it from being changed whilst the
4110  * hardware is reading from the object. That is if the object is currently
4111  * on the scanout it will be set to uncached (or equivalent display
4112  * cache coherency) and all non-MOCS GPU access will also be uncached so
4113  * that all direct access to the scanout remains coherent.
4114  */
4115 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4116                                     enum i915_cache_level cache_level)
4117 {
4118         struct drm_device *dev = obj->base.dev;
4119         struct i915_vma *vma, *next;
4120         bool bound = false;
4121         int ret = 0;
4122
4123         if (obj->cache_level == cache_level)
4124                 goto out;
4125
4126         /* Inspect the list of currently bound VMA and unbind any that would
4127          * be invalid given the new cache-level. This is principally to
4128          * catch the issue of the CS prefetch crossing page boundaries and
4129          * reading an invalid PTE on older architectures.
4130          */
4131         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4132                 if (!drm_mm_node_allocated(&vma->node))
4133                         continue;
4134
4135                 if (vma->pin_count) {
4136                         DRM_DEBUG("can not change the cache level of pinned objects\n");
4137                         return -EBUSY;
4138                 }
4139
4140                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4141                         ret = i915_vma_unbind(vma);
4142                         if (ret)
4143                                 return ret;
4144                 } else
4145                         bound = true;
4146         }
4147
4148         /* We can reuse the existing drm_mm nodes but need to change the
4149          * cache-level on the PTE. We could simply unbind them all and
4150          * rebind with the correct cache-level on next use. However since
4151          * we already have a valid slot, dma mapping, pages etc, we may as
4152          * rewrite the PTE in the belief that doing so tramples upon less
4153          * state and so involves less work.
4154          */
4155         if (bound) {
4156                 /* Before we change the PTE, the GPU must not be accessing it.
4157                  * If we wait upon the object, we know that all the bound
4158                  * VMA are no longer active.
4159                  */
4160                 ret = i915_gem_object_wait_rendering(obj, false);
4161                 if (ret)
4162                         return ret;
4163
4164                 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
4165                         /* Access to snoopable pages through the GTT is
4166                          * incoherent and on some machines causes a hard
4167                          * lockup. Relinquish the CPU mmaping to force
4168                          * userspace to refault in the pages and we can
4169                          * then double check if the GTT mapping is still
4170                          * valid for that pointer access.
4171                          */
4172                         i915_gem_release_mmap(obj);
4173
4174                         /* As we no longer need a fence for GTT access,
4175                          * we can relinquish it now (and so prevent having
4176                          * to steal a fence from someone else on the next
4177                          * fence request). Note GPU activity would have
4178                          * dropped the fence as all snoopable access is
4179                          * supposed to be linear.
4180                          */
4181                         ret = i915_gem_object_put_fence(obj);
4182                         if (ret)
4183                                 return ret;
4184                 } else {
4185                         /* We either have incoherent backing store and
4186                          * so no GTT access or the architecture is fully
4187                          * coherent. In such cases, existing GTT mmaps
4188                          * ignore the cache bit in the PTE and we can
4189                          * rewrite it without confusing the GPU or having
4190                          * to force userspace to fault back in its mmaps.
4191                          */
4192                 }
4193
4194                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4195                         if (!drm_mm_node_allocated(&vma->node))
4196                                 continue;
4197
4198                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4199                         if (ret)
4200                                 return ret;
4201                 }
4202         }
4203
4204         list_for_each_entry(vma, &obj->vma_list, obj_link)
4205                 vma->node.color = cache_level;
4206         obj->cache_level = cache_level;
4207
4208 out:
4209         /* Flush the dirty CPU caches to the backing storage so that the
4210          * object is now coherent at its new cache level (with respect
4211          * to the access domain).
4212          */
4213         if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
4214                 if (i915_gem_clflush_object(obj, true))
4215                         i915_gem_chipset_flush(to_i915(obj->base.dev));
4216         }
4217
4218         return 0;
4219 }
4220
4221 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4222                                struct drm_file *file)
4223 {
4224         struct drm_i915_gem_caching *args = data;
4225         struct drm_i915_gem_object *obj;
4226
4227         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4228         if (&obj->base == NULL)
4229                 return -ENOENT;
4230
4231         switch (obj->cache_level) {
4232         case I915_CACHE_LLC:
4233         case I915_CACHE_L3_LLC:
4234                 args->caching = I915_CACHING_CACHED;
4235                 break;
4236
4237         case I915_CACHE_WT:
4238                 args->caching = I915_CACHING_DISPLAY;
4239                 break;
4240
4241         default:
4242                 args->caching = I915_CACHING_NONE;
4243                 break;
4244         }
4245
4246         drm_gem_object_unreference_unlocked(&obj->base);
4247         return 0;
4248 }
4249
4250 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4251                                struct drm_file *file)
4252 {
4253         struct drm_i915_private *dev_priv = to_i915(dev);
4254         struct drm_i915_gem_caching *args = data;
4255         struct drm_i915_gem_object *obj;
4256         enum i915_cache_level level;
4257         int ret;
4258
4259         switch (args->caching) {
4260         case I915_CACHING_NONE:
4261                 level = I915_CACHE_NONE;
4262                 break;
4263         case I915_CACHING_CACHED:
4264                 /*
4265                  * Due to a HW issue on BXT A stepping, GPU stores via a
4266                  * snooped mapping may leave stale data in a corresponding CPU
4267                  * cacheline, whereas normally such cachelines would get
4268                  * invalidated.
4269                  */
4270                 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4271                         return -ENODEV;
4272
4273                 level = I915_CACHE_LLC;
4274                 break;
4275         case I915_CACHING_DISPLAY:
4276                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4277                 break;
4278         default:
4279                 return -EINVAL;
4280         }
4281
4282         intel_runtime_pm_get(dev_priv);
4283
4284         ret = i915_mutex_lock_interruptible(dev);
4285         if (ret)
4286                 goto rpm_put;
4287
4288         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4289         if (&obj->base == NULL) {
4290                 ret = -ENOENT;
4291                 goto unlock;
4292         }
4293
4294         ret = i915_gem_object_set_cache_level(obj, level);
4295
4296         drm_gem_object_unreference(&obj->base);
4297 unlock:
4298         mutex_unlock(&dev->struct_mutex);
4299 rpm_put:
4300         intel_runtime_pm_put(dev_priv);
4301
4302         return ret;
4303 }
4304
4305 /*
4306  * Prepare buffer for display plane (scanout, cursors, etc).
4307  * Can be called from an uninterruptible phase (modesetting) and allows
4308  * any flushes to be pipelined (for pageflips).
4309  */
4310 int
4311 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4312                                      u32 alignment,
4313                                      const struct i915_ggtt_view *view)
4314 {
4315         u32 old_read_domains, old_write_domain;
4316         int ret;
4317
4318         /* Mark the pin_display early so that we account for the
4319          * display coherency whilst setting up the cache domains.
4320          */
4321         obj->pin_display++;
4322
4323         /* The display engine is not coherent with the LLC cache on gen6.  As
4324          * a result, we make sure that the pinning that is about to occur is
4325          * done with uncached PTEs. This is lowest common denominator for all
4326          * chipsets.
4327          *
4328          * However for gen6+, we could do better by using the GFDT bit instead
4329          * of uncaching, which would allow us to flush all the LLC-cached data
4330          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4331          */
4332         ret = i915_gem_object_set_cache_level(obj,
4333                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4334         if (ret)
4335                 goto err_unpin_display;
4336
4337         /* As the user may map the buffer once pinned in the display plane
4338          * (e.g. libkms for the bootup splash), we have to ensure that we
4339          * always use map_and_fenceable for all scanout buffers.
4340          */
4341         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4342                                        view->type == I915_GGTT_VIEW_NORMAL ?
4343                                        PIN_MAPPABLE : 0);
4344         if (ret)
4345                 goto err_unpin_display;
4346
4347         i915_gem_object_flush_cpu_write_domain(obj);
4348
4349         old_write_domain = obj->base.write_domain;
4350         old_read_domains = obj->base.read_domains;
4351
4352         /* It should now be out of any other write domains, and we can update
4353          * the domain values for our changes.
4354          */
4355         obj->base.write_domain = 0;
4356         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4357
4358         trace_i915_gem_object_change_domain(obj,
4359                                             old_read_domains,
4360                                             old_write_domain);
4361
4362         return 0;
4363
4364 err_unpin_display:
4365         obj->pin_display--;
4366         return ret;
4367 }
4368
4369 void
4370 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4371                                          const struct i915_ggtt_view *view)
4372 {
4373         if (WARN_ON(obj->pin_display == 0))
4374                 return;
4375
4376         i915_gem_object_ggtt_unpin_view(obj, view);
4377
4378         obj->pin_display--;
4379 }
4380
4381 /**
4382  * Moves a single object to the CPU read, and possibly write domain.
4383  * @obj: object to act on
4384  * @write: requesting write or read-only access
4385  *
4386  * This function returns when the move is complete, including waiting on
4387  * flushes to occur.
4388  */
4389 int
4390 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4391 {
4392         uint32_t old_write_domain, old_read_domains;
4393         int ret;
4394
4395         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4396                 return 0;
4397
4398         ret = i915_gem_object_wait_rendering(obj, !write);
4399         if (ret)
4400                 return ret;
4401
4402         i915_gem_object_flush_gtt_write_domain(obj);
4403
4404         old_write_domain = obj->base.write_domain;
4405         old_read_domains = obj->base.read_domains;
4406
4407         /* Flush the CPU cache if it's still invalid. */
4408         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4409                 i915_gem_clflush_object(obj, false);
4410
4411                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4412         }
4413
4414         /* It should now be out of any other write domains, and we can update
4415          * the domain values for our changes.
4416          */
4417         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4418
4419         /* If we're writing through the CPU, then the GPU read domains will
4420          * need to be invalidated at next use.
4421          */
4422         if (write) {
4423                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4424                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4425         }
4426
4427         trace_i915_gem_object_change_domain(obj,
4428                                             old_read_domains,
4429                                             old_write_domain);
4430
4431         return 0;
4432 }
4433
4434 /* Throttle our rendering by waiting until the ring has completed our requests
4435  * emitted over 20 msec ago.
4436  *
4437  * Note that if we were to use the current jiffies each time around the loop,
4438  * we wouldn't escape the function with any frames outstanding if the time to
4439  * render a frame was over 20ms.
4440  *
4441  * This should get us reasonable parallelism between CPU and GPU but also
4442  * relatively low latency when blocking on a particular request to finish.
4443  */
4444 static int
4445 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4446 {
4447         struct drm_i915_private *dev_priv = to_i915(dev);
4448         struct drm_i915_file_private *file_priv = file->driver_priv;
4449         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4450         struct drm_i915_gem_request *request, *target = NULL;
4451         int ret;
4452
4453         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4454         if (ret)
4455                 return ret;
4456
4457         /* ABI: return -EIO if already wedged */
4458         if (i915_terminally_wedged(&dev_priv->gpu_error))
4459                 return -EIO;
4460
4461         spin_lock(&file_priv->mm.lock);
4462         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4463                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4464                         break;
4465
4466                 /*
4467                  * Note that the request might not have been submitted yet.
4468                  * In which case emitted_jiffies will be zero.
4469                  */
4470                 if (!request->emitted_jiffies)
4471                         continue;
4472
4473                 target = request;
4474         }
4475         if (target)
4476                 i915_gem_request_reference(target);
4477         spin_unlock(&file_priv->mm.lock);
4478
4479         if (target == NULL)
4480                 return 0;
4481
4482         ret = __i915_wait_request(target, true, NULL, NULL);
4483         i915_gem_request_unreference(target);
4484
4485         return ret;
4486 }
4487
4488 static bool
4489 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4490 {
4491         struct drm_i915_gem_object *obj = vma->obj;
4492
4493         if (alignment &&
4494             vma->node.start & (alignment - 1))
4495                 return true;
4496
4497         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4498                 return true;
4499
4500         if (flags & PIN_OFFSET_BIAS &&
4501             vma->node.start < (flags & PIN_OFFSET_MASK))
4502                 return true;
4503
4504         if (flags & PIN_OFFSET_FIXED &&
4505             vma->node.start != (flags & PIN_OFFSET_MASK))
4506                 return true;
4507
4508         return false;
4509 }
4510
4511 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4512 {
4513         struct drm_i915_gem_object *obj = vma->obj;
4514         bool mappable, fenceable;
4515         u32 fence_size, fence_alignment;
4516
4517         fence_size = i915_gem_get_gtt_size(obj->base.dev,
4518                                            obj->base.size,
4519                                            obj->tiling_mode);
4520         fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4521                                                      obj->base.size,
4522                                                      obj->tiling_mode,
4523                                                      true);
4524
4525         fenceable = (vma->node.size == fence_size &&
4526                      (vma->node.start & (fence_alignment - 1)) == 0);
4527
4528         mappable = (vma->node.start + fence_size <=
4529                     to_i915(obj->base.dev)->ggtt.mappable_end);
4530
4531         obj->map_and_fenceable = mappable && fenceable;
4532 }
4533
4534 static int
4535 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4536                        struct i915_address_space *vm,
4537                        const struct i915_ggtt_view *ggtt_view,
4538                        uint32_t alignment,
4539                        uint64_t flags)
4540 {
4541         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4542         struct i915_vma *vma;
4543         unsigned bound;
4544         int ret;
4545
4546         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4547                 return -ENODEV;
4548
4549         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4550                 return -EINVAL;
4551
4552         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4553                 return -EINVAL;
4554
4555         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4556                 return -EINVAL;
4557
4558         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4559                           i915_gem_obj_to_vma(obj, vm);
4560
4561         if (vma) {
4562                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4563                         return -EBUSY;
4564
4565                 if (i915_vma_misplaced(vma, alignment, flags)) {
4566                         WARN(vma->pin_count,
4567                              "bo is already pinned in %s with incorrect alignment:"
4568                              " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4569                              " obj->map_and_fenceable=%d\n",
4570                              ggtt_view ? "ggtt" : "ppgtt",
4571                              upper_32_bits(vma->node.start),
4572                              lower_32_bits(vma->node.start),
4573                              alignment,
4574                              !!(flags & PIN_MAPPABLE),
4575                              obj->map_and_fenceable);
4576                         ret = i915_vma_unbind(vma);
4577                         if (ret)
4578                                 return ret;
4579
4580                         vma = NULL;
4581                 }
4582         }
4583
4584         bound = vma ? vma->bound : 0;
4585         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4586                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4587                                                  flags);
4588                 if (IS_ERR(vma))
4589                         return PTR_ERR(vma);
4590         } else {
4591                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4592                 if (ret)
4593                         return ret;
4594         }
4595
4596         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4597             (bound ^ vma->bound) & GLOBAL_BIND) {
4598                 __i915_vma_set_map_and_fenceable(vma);
4599                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4600         }
4601
4602         vma->pin_count++;
4603         return 0;
4604 }
4605
4606 int
4607 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4608                     struct i915_address_space *vm,
4609                     uint32_t alignment,
4610                     uint64_t flags)
4611 {
4612         return i915_gem_object_do_pin(obj, vm,
4613                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4614                                       alignment, flags);
4615 }
4616
4617 int
4618 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4619                          const struct i915_ggtt_view *view,
4620                          uint32_t alignment,
4621                          uint64_t flags)
4622 {
4623         struct drm_device *dev = obj->base.dev;
4624         struct drm_i915_private *dev_priv = to_i915(dev);
4625         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4626
4627         BUG_ON(!view);
4628
4629         return i915_gem_object_do_pin(obj, &ggtt->base, view,
4630                                       alignment, flags | PIN_GLOBAL);
4631 }
4632
4633 void
4634 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4635                                 const struct i915_ggtt_view *view)
4636 {
4637         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4638
4639         WARN_ON(vma->pin_count == 0);
4640         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4641
4642         --vma->pin_count;
4643 }
4644
4645 int
4646 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4647                     struct drm_file *file)
4648 {
4649         struct drm_i915_gem_busy *args = data;
4650         struct drm_i915_gem_object *obj;
4651         int ret;
4652
4653         ret = i915_mutex_lock_interruptible(dev);
4654         if (ret)
4655                 return ret;
4656
4657         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4658         if (&obj->base == NULL) {
4659                 ret = -ENOENT;
4660                 goto unlock;
4661         }
4662
4663         /* Count all active objects as busy, even if they are currently not used
4664          * by the gpu. Users of this interface expect objects to eventually
4665          * become non-busy without any further actions, therefore emit any
4666          * necessary flushes here.
4667          */
4668         ret = i915_gem_object_flush_active(obj);
4669         if (ret)
4670                 goto unref;
4671
4672         args->busy = 0;
4673         if (obj->active) {
4674                 int i;
4675
4676                 for (i = 0; i < I915_NUM_ENGINES; i++) {
4677                         struct drm_i915_gem_request *req;
4678
4679                         req = obj->last_read_req[i];
4680                         if (req)
4681                                 args->busy |= 1 << (16 + req->engine->exec_id);
4682                 }
4683                 if (obj->last_write_req)
4684                         args->busy |= obj->last_write_req->engine->exec_id;
4685         }
4686
4687 unref:
4688         drm_gem_object_unreference(&obj->base);
4689 unlock:
4690         mutex_unlock(&dev->struct_mutex);
4691         return ret;
4692 }
4693
4694 int
4695 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4696                         struct drm_file *file_priv)
4697 {
4698         return i915_gem_ring_throttle(dev, file_priv);
4699 }
4700
4701 int
4702 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4703                        struct drm_file *file_priv)
4704 {
4705         struct drm_i915_private *dev_priv = to_i915(dev);
4706         struct drm_i915_gem_madvise *args = data;
4707         struct drm_i915_gem_object *obj;
4708         int ret;
4709
4710         switch (args->madv) {
4711         case I915_MADV_DONTNEED:
4712         case I915_MADV_WILLNEED:
4713             break;
4714         default:
4715             return -EINVAL;
4716         }
4717
4718         ret = i915_mutex_lock_interruptible(dev);
4719         if (ret)
4720                 return ret;
4721
4722         obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4723         if (&obj->base == NULL) {
4724                 ret = -ENOENT;
4725                 goto unlock;
4726         }
4727
4728         if (i915_gem_obj_is_pinned(obj)) {
4729                 ret = -EINVAL;
4730                 goto out;
4731         }
4732
4733         if (obj->pages &&
4734             obj->tiling_mode != I915_TILING_NONE &&
4735             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4736                 if (obj->madv == I915_MADV_WILLNEED)
4737                         i915_gem_object_unpin_pages(obj);
4738                 if (args->madv == I915_MADV_WILLNEED)
4739                         i915_gem_object_pin_pages(obj);
4740         }
4741
4742         if (obj->madv != __I915_MADV_PURGED)
4743                 obj->madv = args->madv;
4744
4745         /* if the object is no longer attached, discard its backing storage */
4746         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4747                 i915_gem_object_truncate(obj);
4748
4749         args->retained = obj->madv != __I915_MADV_PURGED;
4750
4751 out:
4752         drm_gem_object_unreference(&obj->base);
4753 unlock:
4754         mutex_unlock(&dev->struct_mutex);
4755         return ret;
4756 }
4757
4758 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4759                           const struct drm_i915_gem_object_ops *ops)
4760 {
4761         int i;
4762
4763         INIT_LIST_HEAD(&obj->global_list);
4764         for (i = 0; i < I915_NUM_ENGINES; i++)
4765                 INIT_LIST_HEAD(&obj->engine_list[i]);
4766         INIT_LIST_HEAD(&obj->obj_exec_link);
4767         INIT_LIST_HEAD(&obj->vma_list);
4768         INIT_LIST_HEAD(&obj->batch_pool_link);
4769
4770         obj->ops = ops;
4771
4772         obj->fence_reg = I915_FENCE_REG_NONE;
4773         obj->madv = I915_MADV_WILLNEED;
4774
4775         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4776 }
4777
4778 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4779         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4780         .get_pages = i915_gem_object_get_pages_gtt,
4781         .put_pages = i915_gem_object_put_pages_gtt,
4782 };
4783
4784 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4785                                                   size_t size)
4786 {
4787         struct drm_i915_gem_object *obj;
4788         struct address_space *mapping;
4789         gfp_t mask;
4790         int ret;
4791
4792         obj = i915_gem_object_alloc(dev);
4793         if (obj == NULL)
4794                 return ERR_PTR(-ENOMEM);
4795
4796         ret = drm_gem_object_init(dev, &obj->base, size);
4797         if (ret)
4798                 goto fail;
4799
4800         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4801         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4802                 /* 965gm cannot relocate objects above 4GiB. */
4803                 mask &= ~__GFP_HIGHMEM;
4804                 mask |= __GFP_DMA32;
4805         }
4806
4807         mapping = file_inode(obj->base.filp)->i_mapping;
4808         mapping_set_gfp_mask(mapping, mask);
4809
4810         i915_gem_object_init(obj, &i915_gem_object_ops);
4811
4812         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4813         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4814
4815         if (HAS_LLC(dev)) {
4816                 /* On some devices, we can have the GPU use the LLC (the CPU
4817                  * cache) for about a 10% performance improvement
4818                  * compared to uncached.  Graphics requests other than
4819                  * display scanout are coherent with the CPU in
4820                  * accessing this cache.  This means in this mode we
4821                  * don't need to clflush on the CPU side, and on the
4822                  * GPU side we only need to flush internal caches to
4823                  * get data visible to the CPU.
4824                  *
4825                  * However, we maintain the display planes as UC, and so
4826                  * need to rebind when first used as such.
4827                  */
4828                 obj->cache_level = I915_CACHE_LLC;
4829         } else
4830                 obj->cache_level = I915_CACHE_NONE;
4831
4832         trace_i915_gem_object_create(obj);
4833
4834         return obj;
4835
4836 fail:
4837         i915_gem_object_free(obj);
4838
4839         return ERR_PTR(ret);
4840 }
4841
4842 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4843 {
4844         /* If we are the last user of the backing storage (be it shmemfs
4845          * pages or stolen etc), we know that the pages are going to be
4846          * immediately released. In this case, we can then skip copying
4847          * back the contents from the GPU.
4848          */
4849
4850         if (obj->madv != I915_MADV_WILLNEED)
4851                 return false;
4852
4853         if (obj->base.filp == NULL)
4854                 return true;
4855
4856         /* At first glance, this looks racy, but then again so would be
4857          * userspace racing mmap against close. However, the first external
4858          * reference to the filp can only be obtained through the
4859          * i915_gem_mmap_ioctl() which safeguards us against the user
4860          * acquiring such a reference whilst we are in the middle of
4861          * freeing the object.
4862          */
4863         return atomic_long_read(&obj->base.filp->f_count) == 1;
4864 }
4865
4866 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4867 {
4868         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4869         struct drm_device *dev = obj->base.dev;
4870         struct drm_i915_private *dev_priv = to_i915(dev);
4871         struct i915_vma *vma, *next;
4872
4873         intel_runtime_pm_get(dev_priv);
4874
4875         trace_i915_gem_object_destroy(obj);
4876
4877         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4878                 int ret;
4879
4880                 vma->pin_count = 0;
4881                 ret = i915_vma_unbind(vma);
4882                 if (WARN_ON(ret == -ERESTARTSYS)) {
4883                         bool was_interruptible;
4884
4885                         was_interruptible = dev_priv->mm.interruptible;
4886                         dev_priv->mm.interruptible = false;
4887
4888                         WARN_ON(i915_vma_unbind(vma));
4889
4890                         dev_priv->mm.interruptible = was_interruptible;
4891                 }
4892         }
4893
4894         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4895          * before progressing. */
4896         if (obj->stolen)
4897                 i915_gem_object_unpin_pages(obj);
4898
4899         WARN_ON(obj->frontbuffer_bits);
4900
4901         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4902             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4903             obj->tiling_mode != I915_TILING_NONE)
4904                 i915_gem_object_unpin_pages(obj);
4905
4906         if (WARN_ON(obj->pages_pin_count))
4907                 obj->pages_pin_count = 0;
4908         if (discard_backing_storage(obj))
4909                 obj->madv = I915_MADV_DONTNEED;
4910         i915_gem_object_put_pages(obj);
4911         i915_gem_object_free_mmap_offset(obj);
4912
4913         BUG_ON(obj->pages);
4914
4915         if (obj->base.import_attach)
4916                 drm_prime_gem_destroy(&obj->base, NULL);
4917
4918         if (obj->ops->release)
4919                 obj->ops->release(obj);
4920
4921         drm_gem_object_release(&obj->base);
4922         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4923
4924         kfree(obj->bit_17);
4925         i915_gem_object_free(obj);
4926
4927         intel_runtime_pm_put(dev_priv);
4928 }
4929
4930 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4931                                      struct i915_address_space *vm)
4932 {
4933         struct i915_vma *vma;
4934         list_for_each_entry(vma, &obj->vma_list, obj_link) {
4935                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4936                     vma->vm == vm)
4937                         return vma;
4938         }
4939         return NULL;
4940 }
4941
4942 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4943                                            const struct i915_ggtt_view *view)
4944 {
4945         struct i915_vma *vma;
4946
4947         GEM_BUG_ON(!view);
4948
4949         list_for_each_entry(vma, &obj->vma_list, obj_link)
4950                 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4951                         return vma;
4952         return NULL;
4953 }
4954
4955 void i915_gem_vma_destroy(struct i915_vma *vma)
4956 {
4957         WARN_ON(vma->node.allocated);
4958
4959         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4960         if (!list_empty(&vma->exec_list))
4961                 return;
4962
4963         if (!vma->is_ggtt)
4964                 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4965
4966         list_del(&vma->obj_link);
4967
4968         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4969 }
4970
4971 static void
4972 i915_gem_stop_engines(struct drm_device *dev)
4973 {
4974         struct drm_i915_private *dev_priv = to_i915(dev);
4975         struct intel_engine_cs *engine;
4976
4977         for_each_engine(engine, dev_priv)
4978                 dev_priv->gt.stop_engine(engine);
4979 }
4980
4981 int
4982 i915_gem_suspend(struct drm_device *dev)
4983 {
4984         struct drm_i915_private *dev_priv = to_i915(dev);
4985         int ret = 0;
4986
4987         mutex_lock(&dev->struct_mutex);
4988         ret = i915_gem_wait_for_idle(dev_priv);
4989         if (ret)
4990                 goto err;
4991
4992         i915_gem_retire_requests(dev_priv);
4993
4994         i915_gem_stop_engines(dev);
4995         i915_gem_context_lost(dev_priv);
4996         mutex_unlock(&dev->struct_mutex);
4997
4998         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4999         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
5000         flush_delayed_work(&dev_priv->gt.idle_work);
5001
5002         /* Assert that we sucessfully flushed all the work and
5003          * reset the GPU back to its idle, low power state.
5004          */
5005         WARN_ON(dev_priv->gt.awake);
5006
5007         return 0;
5008
5009 err:
5010         mutex_unlock(&dev->struct_mutex);
5011         return ret;
5012 }
5013
5014 void i915_gem_init_swizzling(struct drm_device *dev)
5015 {
5016         struct drm_i915_private *dev_priv = to_i915(dev);
5017
5018         if (INTEL_INFO(dev)->gen < 5 ||
5019             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5020                 return;
5021
5022         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5023                                  DISP_TILE_SURFACE_SWIZZLING);
5024
5025         if (IS_GEN5(dev))
5026                 return;
5027
5028         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5029         if (IS_GEN6(dev))
5030                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5031         else if (IS_GEN7(dev))
5032                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5033         else if (IS_GEN8(dev))
5034                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5035         else
5036                 BUG();
5037 }
5038
5039 static void init_unused_ring(struct drm_device *dev, u32 base)
5040 {
5041         struct drm_i915_private *dev_priv = to_i915(dev);
5042
5043         I915_WRITE(RING_CTL(base), 0);
5044         I915_WRITE(RING_HEAD(base), 0);
5045         I915_WRITE(RING_TAIL(base), 0);
5046         I915_WRITE(RING_START(base), 0);
5047 }
5048
5049 static void init_unused_rings(struct drm_device *dev)
5050 {
5051         if (IS_I830(dev)) {
5052                 init_unused_ring(dev, PRB1_BASE);
5053                 init_unused_ring(dev, SRB0_BASE);
5054                 init_unused_ring(dev, SRB1_BASE);
5055                 init_unused_ring(dev, SRB2_BASE);
5056                 init_unused_ring(dev, SRB3_BASE);
5057         } else if (IS_GEN2(dev)) {
5058                 init_unused_ring(dev, SRB0_BASE);
5059                 init_unused_ring(dev, SRB1_BASE);
5060         } else if (IS_GEN3(dev)) {
5061                 init_unused_ring(dev, PRB1_BASE);
5062                 init_unused_ring(dev, PRB2_BASE);
5063         }
5064 }
5065
5066 int i915_gem_init_engines(struct drm_device *dev)
5067 {
5068         struct drm_i915_private *dev_priv = to_i915(dev);
5069         int ret;
5070
5071         ret = intel_init_render_ring_buffer(dev);
5072         if (ret)
5073                 return ret;
5074
5075         if (HAS_BSD(dev)) {
5076                 ret = intel_init_bsd_ring_buffer(dev);
5077                 if (ret)
5078                         goto cleanup_render_ring;
5079         }
5080
5081         if (HAS_BLT(dev)) {
5082                 ret = intel_init_blt_ring_buffer(dev);
5083                 if (ret)
5084                         goto cleanup_bsd_ring;
5085         }
5086
5087         if (HAS_VEBOX(dev)) {
5088                 ret = intel_init_vebox_ring_buffer(dev);
5089                 if (ret)
5090                         goto cleanup_blt_ring;
5091         }
5092
5093         if (HAS_BSD2(dev)) {
5094                 ret = intel_init_bsd2_ring_buffer(dev);
5095                 if (ret)
5096                         goto cleanup_vebox_ring;
5097         }
5098
5099         return 0;
5100
5101 cleanup_vebox_ring:
5102         intel_cleanup_engine(&dev_priv->engine[VECS]);
5103 cleanup_blt_ring:
5104         intel_cleanup_engine(&dev_priv->engine[BCS]);
5105 cleanup_bsd_ring:
5106         intel_cleanup_engine(&dev_priv->engine[VCS]);
5107 cleanup_render_ring:
5108         intel_cleanup_engine(&dev_priv->engine[RCS]);
5109
5110         return ret;
5111 }
5112
5113 int
5114 i915_gem_init_hw(struct drm_device *dev)
5115 {
5116         struct drm_i915_private *dev_priv = to_i915(dev);
5117         struct intel_engine_cs *engine;
5118         int ret;
5119
5120         /* Double layer security blanket, see i915_gem_init() */
5121         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5122
5123         if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
5124                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5125
5126         if (IS_HASWELL(dev))
5127                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5128                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5129
5130         if (HAS_PCH_NOP(dev)) {
5131                 if (IS_IVYBRIDGE(dev)) {
5132                         u32 temp = I915_READ(GEN7_MSG_CTL);
5133                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5134                         I915_WRITE(GEN7_MSG_CTL, temp);
5135                 } else if (INTEL_INFO(dev)->gen >= 7) {
5136                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5137                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5138                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5139                 }
5140         }
5141
5142         i915_gem_init_swizzling(dev);
5143
5144         /*
5145          * At least 830 can leave some of the unused rings
5146          * "active" (ie. head != tail) after resume which
5147          * will prevent c3 entry. Makes sure all unused rings
5148          * are totally idle.
5149          */
5150         init_unused_rings(dev);
5151
5152         BUG_ON(!dev_priv->kernel_context);
5153
5154         ret = i915_ppgtt_init_hw(dev);
5155         if (ret) {
5156                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5157                 goto out;
5158         }
5159
5160         /* Need to do basic initialisation of all rings first: */
5161         for_each_engine(engine, dev_priv) {
5162                 ret = engine->init_hw(engine);
5163                 if (ret)
5164                         goto out;
5165         }
5166
5167         intel_mocs_init_l3cc_table(dev);
5168
5169         /* We can't enable contexts until all firmware is loaded */
5170         ret = intel_guc_setup(dev);
5171         if (ret)
5172                 goto out;
5173
5174 out:
5175         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5176         return ret;
5177 }
5178
5179 int i915_gem_init(struct drm_device *dev)
5180 {
5181         struct drm_i915_private *dev_priv = to_i915(dev);
5182         int ret;
5183
5184         mutex_lock(&dev->struct_mutex);
5185
5186         if (!i915.enable_execlists) {
5187                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5188                 dev_priv->gt.init_engines = i915_gem_init_engines;
5189                 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
5190                 dev_priv->gt.stop_engine = intel_stop_engine;
5191         } else {
5192                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5193                 dev_priv->gt.init_engines = intel_logical_rings_init;
5194                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5195                 dev_priv->gt.stop_engine = intel_logical_ring_stop;
5196         }
5197
5198         /* This is just a security blanket to placate dragons.
5199          * On some systems, we very sporadically observe that the first TLBs
5200          * used by the CS may be stale, despite us poking the TLB reset. If
5201          * we hold the forcewake during initialisation these problems
5202          * just magically go away.
5203          */
5204         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5205
5206         i915_gem_init_userptr(dev_priv);
5207         i915_gem_init_ggtt(dev);
5208
5209         ret = i915_gem_context_init(dev);
5210         if (ret)
5211                 goto out_unlock;
5212
5213         ret = dev_priv->gt.init_engines(dev);
5214         if (ret)
5215                 goto out_unlock;
5216
5217         ret = i915_gem_init_hw(dev);
5218         if (ret == -EIO) {
5219                 /* Allow ring initialisation to fail by marking the GPU as
5220                  * wedged. But we only want to do this where the GPU is angry,
5221                  * for all other failure, such as an allocation failure, bail.
5222                  */
5223                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5224                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5225                 ret = 0;
5226         }
5227
5228 out_unlock:
5229         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5230         mutex_unlock(&dev->struct_mutex);
5231
5232         return ret;
5233 }
5234
5235 void
5236 i915_gem_cleanup_engines(struct drm_device *dev)
5237 {
5238         struct drm_i915_private *dev_priv = to_i915(dev);
5239         struct intel_engine_cs *engine;
5240
5241         for_each_engine(engine, dev_priv)
5242                 dev_priv->gt.cleanup_engine(engine);
5243 }
5244
5245 static void
5246 init_engine_lists(struct intel_engine_cs *engine)
5247 {
5248         INIT_LIST_HEAD(&engine->active_list);
5249         INIT_LIST_HEAD(&engine->request_list);
5250 }
5251
5252 void
5253 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5254 {
5255         struct drm_device *dev = dev_priv->dev;
5256
5257         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5258             !IS_CHERRYVIEW(dev_priv))
5259                 dev_priv->num_fence_regs = 32;
5260         else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5261                  IS_I945GM(dev_priv) || IS_G33(dev_priv))
5262                 dev_priv->num_fence_regs = 16;
5263         else
5264                 dev_priv->num_fence_regs = 8;
5265
5266         if (intel_vgpu_active(dev_priv))
5267                 dev_priv->num_fence_regs =
5268                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5269
5270         /* Initialize fence registers to zero */
5271         i915_gem_restore_fences(dev);
5272
5273         i915_gem_detect_bit_6_swizzle(dev);
5274 }
5275
5276 void
5277 i915_gem_load_init(struct drm_device *dev)
5278 {
5279         struct drm_i915_private *dev_priv = to_i915(dev);
5280         int i;
5281
5282         dev_priv->objects =
5283                 kmem_cache_create("i915_gem_object",
5284                                   sizeof(struct drm_i915_gem_object), 0,
5285                                   SLAB_HWCACHE_ALIGN,
5286                                   NULL);
5287         dev_priv->vmas =
5288                 kmem_cache_create("i915_gem_vma",
5289                                   sizeof(struct i915_vma), 0,
5290                                   SLAB_HWCACHE_ALIGN,
5291                                   NULL);
5292         dev_priv->requests =
5293                 kmem_cache_create("i915_gem_request",
5294                                   sizeof(struct drm_i915_gem_request), 0,
5295                                   SLAB_HWCACHE_ALIGN,
5296                                   NULL);
5297
5298         INIT_LIST_HEAD(&dev_priv->vm_list);
5299         INIT_LIST_HEAD(&dev_priv->context_list);
5300         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5301         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5302         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5303         for (i = 0; i < I915_NUM_ENGINES; i++)
5304                 init_engine_lists(&dev_priv->engine[i]);
5305         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5306                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5307         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5308                           i915_gem_retire_work_handler);
5309         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5310                           i915_gem_idle_work_handler);
5311         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5312         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5313
5314         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5315
5316         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5317
5318         init_waitqueue_head(&dev_priv->pending_flip_queue);
5319
5320         dev_priv->mm.interruptible = true;
5321
5322         mutex_init(&dev_priv->fb_tracking.lock);
5323 }
5324
5325 void i915_gem_load_cleanup(struct drm_device *dev)
5326 {
5327         struct drm_i915_private *dev_priv = to_i915(dev);
5328
5329         kmem_cache_destroy(dev_priv->requests);
5330         kmem_cache_destroy(dev_priv->vmas);
5331         kmem_cache_destroy(dev_priv->objects);
5332 }
5333
5334 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5335 {
5336         struct drm_i915_gem_object *obj;
5337
5338         /* Called just before we write the hibernation image.
5339          *
5340          * We need to update the domain tracking to reflect that the CPU
5341          * will be accessing all the pages to create and restore from the
5342          * hibernation, and so upon restoration those pages will be in the
5343          * CPU domain.
5344          *
5345          * To make sure the hibernation image contains the latest state,
5346          * we update that state just before writing out the image.
5347          */
5348
5349         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5350                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5351                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5352         }
5353
5354         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5355                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5356                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5357         }
5358
5359         return 0;
5360 }
5361
5362 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5363 {
5364         struct drm_i915_file_private *file_priv = file->driver_priv;
5365
5366         /* Clean up our request list when the client is going away, so that
5367          * later retire_requests won't dereference our soon-to-be-gone
5368          * file_priv.
5369          */
5370         spin_lock(&file_priv->mm.lock);
5371         while (!list_empty(&file_priv->mm.request_list)) {
5372                 struct drm_i915_gem_request *request;
5373
5374                 request = list_first_entry(&file_priv->mm.request_list,
5375                                            struct drm_i915_gem_request,
5376                                            client_list);
5377                 list_del(&request->client_list);
5378                 request->file_priv = NULL;
5379         }
5380         spin_unlock(&file_priv->mm.lock);
5381
5382         if (!list_empty(&file_priv->rps.link)) {
5383                 spin_lock(&to_i915(dev)->rps.client_lock);
5384                 list_del(&file_priv->rps.link);
5385                 spin_unlock(&to_i915(dev)->rps.client_lock);
5386         }
5387 }
5388
5389 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5390 {
5391         struct drm_i915_file_private *file_priv;
5392         int ret;
5393
5394         DRM_DEBUG_DRIVER("\n");
5395
5396         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5397         if (!file_priv)
5398                 return -ENOMEM;
5399
5400         file->driver_priv = file_priv;
5401         file_priv->dev_priv = dev->dev_private;
5402         file_priv->file = file;
5403         INIT_LIST_HEAD(&file_priv->rps.link);
5404
5405         spin_lock_init(&file_priv->mm.lock);
5406         INIT_LIST_HEAD(&file_priv->mm.request_list);
5407
5408         file_priv->bsd_ring = -1;
5409
5410         ret = i915_gem_context_open(dev, file);
5411         if (ret)
5412                 kfree(file_priv);
5413
5414         return ret;
5415 }
5416
5417 /**
5418  * i915_gem_track_fb - update frontbuffer tracking
5419  * @old: current GEM buffer for the frontbuffer slots
5420  * @new: new GEM buffer for the frontbuffer slots
5421  * @frontbuffer_bits: bitmask of frontbuffer slots
5422  *
5423  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5424  * from @old and setting them in @new. Both @old and @new can be NULL.
5425  */
5426 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5427                        struct drm_i915_gem_object *new,
5428                        unsigned frontbuffer_bits)
5429 {
5430         if (old) {
5431                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5432                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5433                 old->frontbuffer_bits &= ~frontbuffer_bits;
5434         }
5435
5436         if (new) {
5437                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5438                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5439                 new->frontbuffer_bits |= frontbuffer_bits;
5440         }
5441 }
5442
5443 /* All the new VM stuff */
5444 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5445                         struct i915_address_space *vm)
5446 {
5447         struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5448         struct i915_vma *vma;
5449
5450         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5451
5452         list_for_each_entry(vma, &o->vma_list, obj_link) {
5453                 if (vma->is_ggtt &&
5454                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5455                         continue;
5456                 if (vma->vm == vm)
5457                         return vma->node.start;
5458         }
5459
5460         WARN(1, "%s vma for this object not found.\n",
5461              i915_is_ggtt(vm) ? "global" : "ppgtt");
5462         return -1;
5463 }
5464
5465 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5466                                   const struct i915_ggtt_view *view)
5467 {
5468         struct i915_vma *vma;
5469
5470         list_for_each_entry(vma, &o->vma_list, obj_link)
5471                 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5472                         return vma->node.start;
5473
5474         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5475         return -1;
5476 }
5477
5478 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5479                         struct i915_address_space *vm)
5480 {
5481         struct i915_vma *vma;
5482
5483         list_for_each_entry(vma, &o->vma_list, obj_link) {
5484                 if (vma->is_ggtt &&
5485                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5486                         continue;
5487                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5488                         return true;
5489         }
5490
5491         return false;
5492 }
5493
5494 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5495                                   const struct i915_ggtt_view *view)
5496 {
5497         struct i915_vma *vma;
5498
5499         list_for_each_entry(vma, &o->vma_list, obj_link)
5500                 if (vma->is_ggtt &&
5501                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5502                     drm_mm_node_allocated(&vma->node))
5503                         return true;
5504
5505         return false;
5506 }
5507
5508 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5509 {
5510         struct i915_vma *vma;
5511
5512         list_for_each_entry(vma, &o->vma_list, obj_link)
5513                 if (drm_mm_node_allocated(&vma->node))
5514                         return true;
5515
5516         return false;
5517 }
5518
5519 unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5520 {
5521         struct i915_vma *vma;
5522
5523         GEM_BUG_ON(list_empty(&o->vma_list));
5524
5525         list_for_each_entry(vma, &o->vma_list, obj_link) {
5526                 if (vma->is_ggtt &&
5527                     vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5528                         return vma->node.size;
5529         }
5530
5531         return 0;
5532 }
5533
5534 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5535 {
5536         struct i915_vma *vma;
5537         list_for_each_entry(vma, &obj->vma_list, obj_link)
5538                 if (vma->pin_count > 0)
5539                         return true;
5540
5541         return false;
5542 }
5543
5544 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5545 struct page *
5546 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5547 {
5548         struct page *page;
5549
5550         /* Only default objects have per-page dirty tracking */
5551         if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
5552                 return NULL;
5553
5554         page = i915_gem_object_get_page(obj, n);
5555         set_page_dirty(page);
5556         return page;
5557 }
5558
5559 /* Allocate a new GEM object and fill it with the supplied data */
5560 struct drm_i915_gem_object *
5561 i915_gem_object_create_from_data(struct drm_device *dev,
5562                                  const void *data, size_t size)
5563 {
5564         struct drm_i915_gem_object *obj;
5565         struct sg_table *sg;
5566         size_t bytes;
5567         int ret;
5568
5569         obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5570         if (IS_ERR(obj))
5571                 return obj;
5572
5573         ret = i915_gem_object_set_to_cpu_domain(obj, true);
5574         if (ret)
5575                 goto fail;
5576
5577         ret = i915_gem_object_get_pages(obj);
5578         if (ret)
5579                 goto fail;
5580
5581         i915_gem_object_pin_pages(obj);
5582         sg = obj->pages;
5583         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5584         obj->dirty = 1;         /* Backing store is now out of date */
5585         i915_gem_object_unpin_pages(obj);
5586
5587         if (WARN_ON(bytes != size)) {
5588                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5589                 ret = -EFAULT;
5590                 goto fail;
5591         }
5592
5593         return obj;
5594
5595 fail:
5596         drm_gem_object_unreference(&obj->base);
5597         return ERR_PTR(ret);
5598 }