drm/i915: Skip idling an idle engine
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50                                   enum i915_cache_level level)
51 {
52         return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58                 return false;
59
60         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61                 return true;
62
63         return obj->pin_display;
64 }
65
66 static int
67 insert_mappable_node(struct drm_i915_private *i915,
68                      struct drm_mm_node *node, u32 size)
69 {
70         memset(node, 0, sizeof(*node));
71         return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
72                                                    size, 0, 0, 0,
73                                                    i915->ggtt.mappable_end,
74                                                    DRM_MM_SEARCH_DEFAULT,
75                                                    DRM_MM_CREATE_DEFAULT);
76 }
77
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81         drm_mm_remove_node(node);
82 }
83
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86                                   size_t size)
87 {
88         spin_lock(&dev_priv->mm.object_stat_lock);
89         dev_priv->mm.object_count++;
90         dev_priv->mm.object_memory += size;
91         spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95                                      size_t size)
96 {
97         spin_lock(&dev_priv->mm.object_stat_lock);
98         dev_priv->mm.object_count--;
99         dev_priv->mm.object_memory -= size;
100         spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106         int ret;
107
108         if (!i915_reset_in_progress(error))
109                 return 0;
110
111         /*
112          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
113          * userspace. If it takes that long something really bad is going on and
114          * we should simply try to bail out and fail as gracefully as possible.
115          */
116         ret = wait_event_interruptible_timeout(error->reset_queue,
117                                                !i915_reset_in_progress(error),
118                                                10*HZ);
119         if (ret == 0) {
120                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
121                 return -EIO;
122         } else if (ret < 0) {
123                 return ret;
124         } else {
125                 return 0;
126         }
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131         struct drm_i915_private *dev_priv = dev->dev_private;
132         int ret;
133
134         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135         if (ret)
136                 return ret;
137
138         ret = mutex_lock_interruptible(&dev->struct_mutex);
139         if (ret)
140                 return ret;
141
142         WARN_ON(i915_verify_lists(dev));
143         return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148                             struct drm_file *file)
149 {
150         struct drm_i915_private *dev_priv = to_i915(dev);
151         struct i915_ggtt *ggtt = &dev_priv->ggtt;
152         struct drm_i915_gem_get_aperture *args = data;
153         struct i915_vma *vma;
154         size_t pinned;
155
156         pinned = 0;
157         mutex_lock(&dev->struct_mutex);
158         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159                 if (vma->pin_count)
160                         pinned += vma->node.size;
161         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162                 if (vma->pin_count)
163                         pinned += vma->node.size;
164         mutex_unlock(&dev->struct_mutex);
165
166         args->aper_size = ggtt->base.total;
167         args->aper_available_size = args->aper_size - pinned;
168
169         return 0;
170 }
171
172 static int
173 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174 {
175         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
176         char *vaddr = obj->phys_handle->vaddr;
177         struct sg_table *st;
178         struct scatterlist *sg;
179         int i;
180
181         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182                 return -EINVAL;
183
184         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185                 struct page *page;
186                 char *src;
187
188                 page = shmem_read_mapping_page(mapping, i);
189                 if (IS_ERR(page))
190                         return PTR_ERR(page);
191
192                 src = kmap_atomic(page);
193                 memcpy(vaddr, src, PAGE_SIZE);
194                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
195                 kunmap_atomic(src);
196
197                 put_page(page);
198                 vaddr += PAGE_SIZE;
199         }
200
201         i915_gem_chipset_flush(to_i915(obj->base.dev));
202
203         st = kmalloc(sizeof(*st), GFP_KERNEL);
204         if (st == NULL)
205                 return -ENOMEM;
206
207         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208                 kfree(st);
209                 return -ENOMEM;
210         }
211
212         sg = st->sgl;
213         sg->offset = 0;
214         sg->length = obj->base.size;
215
216         sg_dma_address(sg) = obj->phys_handle->busaddr;
217         sg_dma_len(sg) = obj->base.size;
218
219         obj->pages = st;
220         return 0;
221 }
222
223 static void
224 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
225 {
226         int ret;
227
228         BUG_ON(obj->madv == __I915_MADV_PURGED);
229
230         ret = i915_gem_object_set_to_cpu_domain(obj, true);
231         if (WARN_ON(ret)) {
232                 /* In the event of a disaster, abandon all caches and
233                  * hope for the best.
234                  */
235                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
236         }
237
238         if (obj->madv == I915_MADV_DONTNEED)
239                 obj->dirty = 0;
240
241         if (obj->dirty) {
242                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
243                 char *vaddr = obj->phys_handle->vaddr;
244                 int i;
245
246                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247                         struct page *page;
248                         char *dst;
249
250                         page = shmem_read_mapping_page(mapping, i);
251                         if (IS_ERR(page))
252                                 continue;
253
254                         dst = kmap_atomic(page);
255                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
256                         memcpy(dst, vaddr, PAGE_SIZE);
257                         kunmap_atomic(dst);
258
259                         set_page_dirty(page);
260                         if (obj->madv == I915_MADV_WILLNEED)
261                                 mark_page_accessed(page);
262                         put_page(page);
263                         vaddr += PAGE_SIZE;
264                 }
265                 obj->dirty = 0;
266         }
267
268         sg_free_table(obj->pages);
269         kfree(obj->pages);
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275         drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279         .get_pages = i915_gem_object_get_pages_phys,
280         .put_pages = i915_gem_object_put_pages_phys,
281         .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287         struct i915_vma *vma, *next;
288         int ret;
289
290         drm_gem_object_reference(&obj->base);
291         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292                 if (i915_vma_unbind(vma))
293                         break;
294
295         ret = i915_gem_object_put_pages(obj);
296         drm_gem_object_unreference(&obj->base);
297
298         return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303                             int align)
304 {
305         drm_dma_handle_t *phys;
306         int ret;
307
308         if (obj->phys_handle) {
309                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310                         return -EBUSY;
311
312                 return 0;
313         }
314
315         if (obj->madv != I915_MADV_WILLNEED)
316                 return -EFAULT;
317
318         if (obj->base.filp == NULL)
319                 return -EINVAL;
320
321         ret = drop_pages(obj);
322         if (ret)
323                 return ret;
324
325         /* create a new object */
326         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327         if (!phys)
328                 return -ENOMEM;
329
330         obj->phys_handle = phys;
331         obj->ops = &i915_gem_phys_ops;
332
333         return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338                      struct drm_i915_gem_pwrite *args,
339                      struct drm_file *file_priv)
340 {
341         struct drm_device *dev = obj->base.dev;
342         void *vaddr = obj->phys_handle->vaddr + args->offset;
343         char __user *user_data = u64_to_user_ptr(args->data_ptr);
344         int ret = 0;
345
346         /* We manually control the domain here and pretend that it
347          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348          */
349         ret = i915_gem_object_wait_rendering(obj, false);
350         if (ret)
351                 return ret;
352
353         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355                 unsigned long unwritten;
356
357                 /* The physical object once assigned is fixed for the lifetime
358                  * of the obj, so we can safely drop the lock and continue
359                  * to access vaddr.
360                  */
361                 mutex_unlock(&dev->struct_mutex);
362                 unwritten = copy_from_user(vaddr, user_data, args->size);
363                 mutex_lock(&dev->struct_mutex);
364                 if (unwritten) {
365                         ret = -EFAULT;
366                         goto out;
367                 }
368         }
369
370         drm_clflush_virt_range(vaddr, args->size);
371         i915_gem_chipset_flush(to_i915(dev));
372
373 out:
374         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375         return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380         struct drm_i915_private *dev_priv = dev->dev_private;
381         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387         kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392                 struct drm_device *dev,
393                 uint64_t size,
394                 uint32_t *handle_p)
395 {
396         struct drm_i915_gem_object *obj;
397         int ret;
398         u32 handle;
399
400         size = roundup(size, PAGE_SIZE);
401         if (size == 0)
402                 return -EINVAL;
403
404         /* Allocate the new object */
405         obj = i915_gem_object_create(dev, size);
406         if (IS_ERR(obj))
407                 return PTR_ERR(obj);
408
409         ret = drm_gem_handle_create(file, &obj->base, &handle);
410         /* drop reference from allocate - handle holds it now */
411         drm_gem_object_unreference_unlocked(&obj->base);
412         if (ret)
413                 return ret;
414
415         *handle_p = handle;
416         return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421                      struct drm_device *dev,
422                      struct drm_mode_create_dumb *args)
423 {
424         /* have to work out size/pitch and return them */
425         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426         args->size = args->pitch * args->height;
427         return i915_gem_create(file, dev,
428                                args->size, &args->handle);
429 }
430
431 /**
432  * Creates a new mm object and returns a handle to it.
433  * @dev: drm device pointer
434  * @data: ioctl data blob
435  * @file: drm file pointer
436  */
437 int
438 i915_gem_create_ioctl(struct drm_device *dev, void *data,
439                       struct drm_file *file)
440 {
441         struct drm_i915_gem_create *args = data;
442
443         return i915_gem_create(file, dev,
444                                args->size, &args->handle);
445 }
446
447 static inline int
448 __copy_to_user_swizzled(char __user *cpu_vaddr,
449                         const char *gpu_vaddr, int gpu_offset,
450                         int length)
451 {
452         int ret, cpu_offset = 0;
453
454         while (length > 0) {
455                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
456                 int this_length = min(cacheline_end - gpu_offset, length);
457                 int swizzled_gpu_offset = gpu_offset ^ 64;
458
459                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
460                                      gpu_vaddr + swizzled_gpu_offset,
461                                      this_length);
462                 if (ret)
463                         return ret + length;
464
465                 cpu_offset += this_length;
466                 gpu_offset += this_length;
467                 length -= this_length;
468         }
469
470         return 0;
471 }
472
473 static inline int
474 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
475                           const char __user *cpu_vaddr,
476                           int length)
477 {
478         int ret, cpu_offset = 0;
479
480         while (length > 0) {
481                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
482                 int this_length = min(cacheline_end - gpu_offset, length);
483                 int swizzled_gpu_offset = gpu_offset ^ 64;
484
485                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
486                                        cpu_vaddr + cpu_offset,
487                                        this_length);
488                 if (ret)
489                         return ret + length;
490
491                 cpu_offset += this_length;
492                 gpu_offset += this_length;
493                 length -= this_length;
494         }
495
496         return 0;
497 }
498
499 /*
500  * Pins the specified object's pages and synchronizes the object with
501  * GPU accesses. Sets needs_clflush to non-zero if the caller should
502  * flush the object from the CPU cache.
503  */
504 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
505                                     int *needs_clflush)
506 {
507         int ret;
508
509         *needs_clflush = 0;
510
511         if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
512                 return -EINVAL;
513
514         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
515                 /* If we're not in the cpu read domain, set ourself into the gtt
516                  * read domain and manually flush cachelines (if required). This
517                  * optimizes for the case when the gpu will dirty the data
518                  * anyway again before the next pread happens. */
519                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
520                                                         obj->cache_level);
521                 ret = i915_gem_object_wait_rendering(obj, true);
522                 if (ret)
523                         return ret;
524         }
525
526         ret = i915_gem_object_get_pages(obj);
527         if (ret)
528                 return ret;
529
530         i915_gem_object_pin_pages(obj);
531
532         return ret;
533 }
534
535 /* Per-page copy function for the shmem pread fastpath.
536  * Flushes invalid cachelines before reading the target if
537  * needs_clflush is set. */
538 static int
539 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
540                  char __user *user_data,
541                  bool page_do_bit17_swizzling, bool needs_clflush)
542 {
543         char *vaddr;
544         int ret;
545
546         if (unlikely(page_do_bit17_swizzling))
547                 return -EINVAL;
548
549         vaddr = kmap_atomic(page);
550         if (needs_clflush)
551                 drm_clflush_virt_range(vaddr + shmem_page_offset,
552                                        page_length);
553         ret = __copy_to_user_inatomic(user_data,
554                                       vaddr + shmem_page_offset,
555                                       page_length);
556         kunmap_atomic(vaddr);
557
558         return ret ? -EFAULT : 0;
559 }
560
561 static void
562 shmem_clflush_swizzled_range(char *addr, unsigned long length,
563                              bool swizzled)
564 {
565         if (unlikely(swizzled)) {
566                 unsigned long start = (unsigned long) addr;
567                 unsigned long end = (unsigned long) addr + length;
568
569                 /* For swizzling simply ensure that we always flush both
570                  * channels. Lame, but simple and it works. Swizzled
571                  * pwrite/pread is far from a hotpath - current userspace
572                  * doesn't use it at all. */
573                 start = round_down(start, 128);
574                 end = round_up(end, 128);
575
576                 drm_clflush_virt_range((void *)start, end - start);
577         } else {
578                 drm_clflush_virt_range(addr, length);
579         }
580
581 }
582
583 /* Only difference to the fast-path function is that this can handle bit17
584  * and uses non-atomic copy and kmap functions. */
585 static int
586 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
587                  char __user *user_data,
588                  bool page_do_bit17_swizzling, bool needs_clflush)
589 {
590         char *vaddr;
591         int ret;
592
593         vaddr = kmap(page);
594         if (needs_clflush)
595                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
596                                              page_length,
597                                              page_do_bit17_swizzling);
598
599         if (page_do_bit17_swizzling)
600                 ret = __copy_to_user_swizzled(user_data,
601                                               vaddr, shmem_page_offset,
602                                               page_length);
603         else
604                 ret = __copy_to_user(user_data,
605                                      vaddr + shmem_page_offset,
606                                      page_length);
607         kunmap(page);
608
609         return ret ? - EFAULT : 0;
610 }
611
612 static inline unsigned long
613 slow_user_access(struct io_mapping *mapping,
614                  uint64_t page_base, int page_offset,
615                  char __user *user_data,
616                  unsigned long length, bool pwrite)
617 {
618         void __iomem *ioaddr;
619         void *vaddr;
620         uint64_t unwritten;
621
622         ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
623         /* We can use the cpu mem copy function because this is X86. */
624         vaddr = (void __force *)ioaddr + page_offset;
625         if (pwrite)
626                 unwritten = __copy_from_user(vaddr, user_data, length);
627         else
628                 unwritten = __copy_to_user(user_data, vaddr, length);
629
630         io_mapping_unmap(ioaddr);
631         return unwritten;
632 }
633
634 static int
635 i915_gem_gtt_pread(struct drm_device *dev,
636                    struct drm_i915_gem_object *obj, uint64_t size,
637                    uint64_t data_offset, uint64_t data_ptr)
638 {
639         struct drm_i915_private *dev_priv = dev->dev_private;
640         struct i915_ggtt *ggtt = &dev_priv->ggtt;
641         struct drm_mm_node node;
642         char __user *user_data;
643         uint64_t remain;
644         uint64_t offset;
645         int ret;
646
647         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
648         if (ret) {
649                 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
650                 if (ret)
651                         goto out;
652
653                 ret = i915_gem_object_get_pages(obj);
654                 if (ret) {
655                         remove_mappable_node(&node);
656                         goto out;
657                 }
658
659                 i915_gem_object_pin_pages(obj);
660         } else {
661                 node.start = i915_gem_obj_ggtt_offset(obj);
662                 node.allocated = false;
663                 ret = i915_gem_object_put_fence(obj);
664                 if (ret)
665                         goto out_unpin;
666         }
667
668         ret = i915_gem_object_set_to_gtt_domain(obj, false);
669         if (ret)
670                 goto out_unpin;
671
672         user_data = u64_to_user_ptr(data_ptr);
673         remain = size;
674         offset = data_offset;
675
676         mutex_unlock(&dev->struct_mutex);
677         if (likely(!i915.prefault_disable)) {
678                 ret = fault_in_multipages_writeable(user_data, remain);
679                 if (ret) {
680                         mutex_lock(&dev->struct_mutex);
681                         goto out_unpin;
682                 }
683         }
684
685         while (remain > 0) {
686                 /* Operation in this page
687                  *
688                  * page_base = page offset within aperture
689                  * page_offset = offset within page
690                  * page_length = bytes to copy for this page
691                  */
692                 u32 page_base = node.start;
693                 unsigned page_offset = offset_in_page(offset);
694                 unsigned page_length = PAGE_SIZE - page_offset;
695                 page_length = remain < page_length ? remain : page_length;
696                 if (node.allocated) {
697                         wmb();
698                         ggtt->base.insert_page(&ggtt->base,
699                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
700                                                node.start,
701                                                I915_CACHE_NONE, 0);
702                         wmb();
703                 } else {
704                         page_base += offset & PAGE_MASK;
705                 }
706                 /* This is a slow read/write as it tries to read from
707                  * and write to user memory which may result into page
708                  * faults, and so we cannot perform this under struct_mutex.
709                  */
710                 if (slow_user_access(ggtt->mappable, page_base,
711                                      page_offset, user_data,
712                                      page_length, false)) {
713                         ret = -EFAULT;
714                         break;
715                 }
716
717                 remain -= page_length;
718                 user_data += page_length;
719                 offset += page_length;
720         }
721
722         mutex_lock(&dev->struct_mutex);
723         if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
724                 /* The user has modified the object whilst we tried
725                  * reading from it, and we now have no idea what domain
726                  * the pages should be in. As we have just been touching
727                  * them directly, flush everything back to the GTT
728                  * domain.
729                  */
730                 ret = i915_gem_object_set_to_gtt_domain(obj, false);
731         }
732
733 out_unpin:
734         if (node.allocated) {
735                 wmb();
736                 ggtt->base.clear_range(&ggtt->base,
737                                        node.start, node.size,
738                                        true);
739                 i915_gem_object_unpin_pages(obj);
740                 remove_mappable_node(&node);
741         } else {
742                 i915_gem_object_ggtt_unpin(obj);
743         }
744 out:
745         return ret;
746 }
747
748 static int
749 i915_gem_shmem_pread(struct drm_device *dev,
750                      struct drm_i915_gem_object *obj,
751                      struct drm_i915_gem_pread *args,
752                      struct drm_file *file)
753 {
754         char __user *user_data;
755         ssize_t remain;
756         loff_t offset;
757         int shmem_page_offset, page_length, ret = 0;
758         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759         int prefaulted = 0;
760         int needs_clflush = 0;
761         struct sg_page_iter sg_iter;
762
763         if (!i915_gem_object_has_struct_page(obj))
764                 return -ENODEV;
765
766         user_data = u64_to_user_ptr(args->data_ptr);
767         remain = args->size;
768
769         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770
771         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772         if (ret)
773                 return ret;
774
775         offset = args->offset;
776
777         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
778                          offset >> PAGE_SHIFT) {
779                 struct page *page = sg_page_iter_page(&sg_iter);
780
781                 if (remain <= 0)
782                         break;
783
784                 /* Operation in this page
785                  *
786                  * shmem_page_offset = offset within page in shmem file
787                  * page_length = bytes to copy for this page
788                  */
789                 shmem_page_offset = offset_in_page(offset);
790                 page_length = remain;
791                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
792                         page_length = PAGE_SIZE - shmem_page_offset;
793
794                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
795                         (page_to_phys(page) & (1 << 17)) != 0;
796
797                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
798                                        user_data, page_do_bit17_swizzling,
799                                        needs_clflush);
800                 if (ret == 0)
801                         goto next_page;
802
803                 mutex_unlock(&dev->struct_mutex);
804
805                 if (likely(!i915.prefault_disable) && !prefaulted) {
806                         ret = fault_in_multipages_writeable(user_data, remain);
807                         /* Userspace is tricking us, but we've already clobbered
808                          * its pages with the prefault and promised to write the
809                          * data up to the first fault. Hence ignore any errors
810                          * and just continue. */
811                         (void)ret;
812                         prefaulted = 1;
813                 }
814
815                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
816                                        user_data, page_do_bit17_swizzling,
817                                        needs_clflush);
818
819                 mutex_lock(&dev->struct_mutex);
820
821                 if (ret)
822                         goto out;
823
824 next_page:
825                 remain -= page_length;
826                 user_data += page_length;
827                 offset += page_length;
828         }
829
830 out:
831         i915_gem_object_unpin_pages(obj);
832
833         return ret;
834 }
835
836 /**
837  * Reads data from the object referenced by handle.
838  * @dev: drm device pointer
839  * @data: ioctl data blob
840  * @file: drm file pointer
841  *
842  * On error, the contents of *data are undefined.
843  */
844 int
845 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846                      struct drm_file *file)
847 {
848         struct drm_i915_gem_pread *args = data;
849         struct drm_i915_gem_object *obj;
850         int ret = 0;
851
852         if (args->size == 0)
853                 return 0;
854
855         if (!access_ok(VERIFY_WRITE,
856                        u64_to_user_ptr(args->data_ptr),
857                        args->size))
858                 return -EFAULT;
859
860         ret = i915_mutex_lock_interruptible(dev);
861         if (ret)
862                 return ret;
863
864         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865         if (&obj->base == NULL) {
866                 ret = -ENOENT;
867                 goto unlock;
868         }
869
870         /* Bounds check source.  */
871         if (args->offset > obj->base.size ||
872             args->size > obj->base.size - args->offset) {
873                 ret = -EINVAL;
874                 goto out;
875         }
876
877         trace_i915_gem_object_pread(obj, args->offset, args->size);
878
879         ret = i915_gem_shmem_pread(dev, obj, args, file);
880
881         /* pread for non shmem backed objects */
882         if (ret == -EFAULT || ret == -ENODEV)
883                 ret = i915_gem_gtt_pread(dev, obj, args->size,
884                                         args->offset, args->data_ptr);
885
886 out:
887         drm_gem_object_unreference(&obj->base);
888 unlock:
889         mutex_unlock(&dev->struct_mutex);
890         return ret;
891 }
892
893 /* This is the fast write path which cannot handle
894  * page faults in the source data
895  */
896
897 static inline int
898 fast_user_write(struct io_mapping *mapping,
899                 loff_t page_base, int page_offset,
900                 char __user *user_data,
901                 int length)
902 {
903         void __iomem *vaddr_atomic;
904         void *vaddr;
905         unsigned long unwritten;
906
907         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
908         /* We can use the cpu mem copy function because this is X86. */
909         vaddr = (void __force*)vaddr_atomic + page_offset;
910         unwritten = __copy_from_user_inatomic_nocache(vaddr,
911                                                       user_data, length);
912         io_mapping_unmap_atomic(vaddr_atomic);
913         return unwritten;
914 }
915
916 /**
917  * This is the fast pwrite path, where we copy the data directly from the
918  * user into the GTT, uncached.
919  * @dev: drm device pointer
920  * @obj: i915 gem object
921  * @args: pwrite arguments structure
922  * @file: drm file pointer
923  */
924 static int
925 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
926                          struct drm_i915_gem_object *obj,
927                          struct drm_i915_gem_pwrite *args,
928                          struct drm_file *file)
929 {
930         struct i915_ggtt *ggtt = &i915->ggtt;
931         struct drm_device *dev = obj->base.dev;
932         struct drm_mm_node node;
933         uint64_t remain, offset;
934         char __user *user_data;
935         int ret;
936         bool hit_slow_path = false;
937
938         if (obj->tiling_mode != I915_TILING_NONE)
939                 return -EFAULT;
940
941         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
942         if (ret) {
943                 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
944                 if (ret)
945                         goto out;
946
947                 ret = i915_gem_object_get_pages(obj);
948                 if (ret) {
949                         remove_mappable_node(&node);
950                         goto out;
951                 }
952
953                 i915_gem_object_pin_pages(obj);
954         } else {
955                 node.start = i915_gem_obj_ggtt_offset(obj);
956                 node.allocated = false;
957                 ret = i915_gem_object_put_fence(obj);
958                 if (ret)
959                         goto out_unpin;
960         }
961
962         ret = i915_gem_object_set_to_gtt_domain(obj, true);
963         if (ret)
964                 goto out_unpin;
965
966         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
967         obj->dirty = true;
968
969         user_data = u64_to_user_ptr(args->data_ptr);
970         offset = args->offset;
971         remain = args->size;
972         while (remain) {
973                 /* Operation in this page
974                  *
975                  * page_base = page offset within aperture
976                  * page_offset = offset within page
977                  * page_length = bytes to copy for this page
978                  */
979                 u32 page_base = node.start;
980                 unsigned page_offset = offset_in_page(offset);
981                 unsigned page_length = PAGE_SIZE - page_offset;
982                 page_length = remain < page_length ? remain : page_length;
983                 if (node.allocated) {
984                         wmb(); /* flush the write before we modify the GGTT */
985                         ggtt->base.insert_page(&ggtt->base,
986                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
987                                                node.start, I915_CACHE_NONE, 0);
988                         wmb(); /* flush modifications to the GGTT (insert_page) */
989                 } else {
990                         page_base += offset & PAGE_MASK;
991                 }
992                 /* If we get a fault while copying data, then (presumably) our
993                  * source page isn't available.  Return the error and we'll
994                  * retry in the slow path.
995                  * If the object is non-shmem backed, we retry again with the
996                  * path that handles page fault.
997                  */
998                 if (fast_user_write(ggtt->mappable, page_base,
999                                     page_offset, user_data, page_length)) {
1000                         hit_slow_path = true;
1001                         mutex_unlock(&dev->struct_mutex);
1002                         if (slow_user_access(ggtt->mappable,
1003                                              page_base,
1004                                              page_offset, user_data,
1005                                              page_length, true)) {
1006                                 ret = -EFAULT;
1007                                 mutex_lock(&dev->struct_mutex);
1008                                 goto out_flush;
1009                         }
1010
1011                         mutex_lock(&dev->struct_mutex);
1012                 }
1013
1014                 remain -= page_length;
1015                 user_data += page_length;
1016                 offset += page_length;
1017         }
1018
1019 out_flush:
1020         if (hit_slow_path) {
1021                 if (ret == 0 &&
1022                     (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1023                         /* The user has modified the object whilst we tried
1024                          * reading from it, and we now have no idea what domain
1025                          * the pages should be in. As we have just been touching
1026                          * them directly, flush everything back to the GTT
1027                          * domain.
1028                          */
1029                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030                 }
1031         }
1032
1033         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
1034 out_unpin:
1035         if (node.allocated) {
1036                 wmb();
1037                 ggtt->base.clear_range(&ggtt->base,
1038                                        node.start, node.size,
1039                                        true);
1040                 i915_gem_object_unpin_pages(obj);
1041                 remove_mappable_node(&node);
1042         } else {
1043                 i915_gem_object_ggtt_unpin(obj);
1044         }
1045 out:
1046         return ret;
1047 }
1048
1049 /* Per-page copy function for the shmem pwrite fastpath.
1050  * Flushes invalid cachelines before writing to the target if
1051  * needs_clflush_before is set and flushes out any written cachelines after
1052  * writing if needs_clflush is set. */
1053 static int
1054 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1055                   char __user *user_data,
1056                   bool page_do_bit17_swizzling,
1057                   bool needs_clflush_before,
1058                   bool needs_clflush_after)
1059 {
1060         char *vaddr;
1061         int ret;
1062
1063         if (unlikely(page_do_bit17_swizzling))
1064                 return -EINVAL;
1065
1066         vaddr = kmap_atomic(page);
1067         if (needs_clflush_before)
1068                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1069                                        page_length);
1070         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1071                                         user_data, page_length);
1072         if (needs_clflush_after)
1073                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1074                                        page_length);
1075         kunmap_atomic(vaddr);
1076
1077         return ret ? -EFAULT : 0;
1078 }
1079
1080 /* Only difference to the fast-path function is that this can handle bit17
1081  * and uses non-atomic copy and kmap functions. */
1082 static int
1083 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1084                   char __user *user_data,
1085                   bool page_do_bit17_swizzling,
1086                   bool needs_clflush_before,
1087                   bool needs_clflush_after)
1088 {
1089         char *vaddr;
1090         int ret;
1091
1092         vaddr = kmap(page);
1093         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1094                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1095                                              page_length,
1096                                              page_do_bit17_swizzling);
1097         if (page_do_bit17_swizzling)
1098                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1099                                                 user_data,
1100                                                 page_length);
1101         else
1102                 ret = __copy_from_user(vaddr + shmem_page_offset,
1103                                        user_data,
1104                                        page_length);
1105         if (needs_clflush_after)
1106                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1107                                              page_length,
1108                                              page_do_bit17_swizzling);
1109         kunmap(page);
1110
1111         return ret ? -EFAULT : 0;
1112 }
1113
1114 static int
1115 i915_gem_shmem_pwrite(struct drm_device *dev,
1116                       struct drm_i915_gem_object *obj,
1117                       struct drm_i915_gem_pwrite *args,
1118                       struct drm_file *file)
1119 {
1120         ssize_t remain;
1121         loff_t offset;
1122         char __user *user_data;
1123         int shmem_page_offset, page_length, ret = 0;
1124         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1125         int hit_slowpath = 0;
1126         int needs_clflush_after = 0;
1127         int needs_clflush_before = 0;
1128         struct sg_page_iter sg_iter;
1129
1130         user_data = u64_to_user_ptr(args->data_ptr);
1131         remain = args->size;
1132
1133         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1134
1135         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1136                 /* If we're not in the cpu write domain, set ourself into the gtt
1137                  * write domain and manually flush cachelines (if required). This
1138                  * optimizes for the case when the gpu will use the data
1139                  * right away and we therefore have to clflush anyway. */
1140                 needs_clflush_after = cpu_write_needs_clflush(obj);
1141                 ret = i915_gem_object_wait_rendering(obj, false);
1142                 if (ret)
1143                         return ret;
1144         }
1145         /* Same trick applies to invalidate partially written cachelines read
1146          * before writing. */
1147         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1148                 needs_clflush_before =
1149                         !cpu_cache_is_coherent(dev, obj->cache_level);
1150
1151         ret = i915_gem_object_get_pages(obj);
1152         if (ret)
1153                 return ret;
1154
1155         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1156
1157         i915_gem_object_pin_pages(obj);
1158
1159         offset = args->offset;
1160         obj->dirty = 1;
1161
1162         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1163                          offset >> PAGE_SHIFT) {
1164                 struct page *page = sg_page_iter_page(&sg_iter);
1165                 int partial_cacheline_write;
1166
1167                 if (remain <= 0)
1168                         break;
1169
1170                 /* Operation in this page
1171                  *
1172                  * shmem_page_offset = offset within page in shmem file
1173                  * page_length = bytes to copy for this page
1174                  */
1175                 shmem_page_offset = offset_in_page(offset);
1176
1177                 page_length = remain;
1178                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1179                         page_length = PAGE_SIZE - shmem_page_offset;
1180
1181                 /* If we don't overwrite a cacheline completely we need to be
1182                  * careful to have up-to-date data by first clflushing. Don't
1183                  * overcomplicate things and flush the entire patch. */
1184                 partial_cacheline_write = needs_clflush_before &&
1185                         ((shmem_page_offset | page_length)
1186                                 & (boot_cpu_data.x86_clflush_size - 1));
1187
1188                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1189                         (page_to_phys(page) & (1 << 17)) != 0;
1190
1191                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1192                                         user_data, page_do_bit17_swizzling,
1193                                         partial_cacheline_write,
1194                                         needs_clflush_after);
1195                 if (ret == 0)
1196                         goto next_page;
1197
1198                 hit_slowpath = 1;
1199                 mutex_unlock(&dev->struct_mutex);
1200                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1201                                         user_data, page_do_bit17_swizzling,
1202                                         partial_cacheline_write,
1203                                         needs_clflush_after);
1204
1205                 mutex_lock(&dev->struct_mutex);
1206
1207                 if (ret)
1208                         goto out;
1209
1210 next_page:
1211                 remain -= page_length;
1212                 user_data += page_length;
1213                 offset += page_length;
1214         }
1215
1216 out:
1217         i915_gem_object_unpin_pages(obj);
1218
1219         if (hit_slowpath) {
1220                 /*
1221                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1222                  * cachelines in-line while writing and the object moved
1223                  * out of the cpu write domain while we've dropped the lock.
1224                  */
1225                 if (!needs_clflush_after &&
1226                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1227                         if (i915_gem_clflush_object(obj, obj->pin_display))
1228                                 needs_clflush_after = true;
1229                 }
1230         }
1231
1232         if (needs_clflush_after)
1233                 i915_gem_chipset_flush(to_i915(dev));
1234         else
1235                 obj->cache_dirty = true;
1236
1237         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1238         return ret;
1239 }
1240
1241 /**
1242  * Writes data to the object referenced by handle.
1243  * @dev: drm device
1244  * @data: ioctl data blob
1245  * @file: drm file
1246  *
1247  * On error, the contents of the buffer that were to be modified are undefined.
1248  */
1249 int
1250 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1251                       struct drm_file *file)
1252 {
1253         struct drm_i915_private *dev_priv = dev->dev_private;
1254         struct drm_i915_gem_pwrite *args = data;
1255         struct drm_i915_gem_object *obj;
1256         int ret;
1257
1258         if (args->size == 0)
1259                 return 0;
1260
1261         if (!access_ok(VERIFY_READ,
1262                        u64_to_user_ptr(args->data_ptr),
1263                        args->size))
1264                 return -EFAULT;
1265
1266         if (likely(!i915.prefault_disable)) {
1267                 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1268                                                    args->size);
1269                 if (ret)
1270                         return -EFAULT;
1271         }
1272
1273         intel_runtime_pm_get(dev_priv);
1274
1275         ret = i915_mutex_lock_interruptible(dev);
1276         if (ret)
1277                 goto put_rpm;
1278
1279         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1280         if (&obj->base == NULL) {
1281                 ret = -ENOENT;
1282                 goto unlock;
1283         }
1284
1285         /* Bounds check destination. */
1286         if (args->offset > obj->base.size ||
1287             args->size > obj->base.size - args->offset) {
1288                 ret = -EINVAL;
1289                 goto out;
1290         }
1291
1292         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1293
1294         ret = -EFAULT;
1295         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1296          * it would end up going through the fenced access, and we'll get
1297          * different detiling behavior between reading and writing.
1298          * pread/pwrite currently are reading and writing from the CPU
1299          * perspective, requiring manual detiling by the client.
1300          */
1301         if (!i915_gem_object_has_struct_page(obj) ||
1302             cpu_write_needs_clflush(obj)) {
1303                 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1304                 /* Note that the gtt paths might fail with non-page-backed user
1305                  * pointers (e.g. gtt mappings when moving data between
1306                  * textures). Fallback to the shmem path in that case. */
1307         }
1308
1309         if (ret == -EFAULT) {
1310                 if (obj->phys_handle)
1311                         ret = i915_gem_phys_pwrite(obj, args, file);
1312                 else if (i915_gem_object_has_struct_page(obj))
1313                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1314                 else
1315                         ret = -ENODEV;
1316         }
1317
1318 out:
1319         drm_gem_object_unreference(&obj->base);
1320 unlock:
1321         mutex_unlock(&dev->struct_mutex);
1322 put_rpm:
1323         intel_runtime_pm_put(dev_priv);
1324
1325         return ret;
1326 }
1327
1328 static int
1329 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1330 {
1331         if (__i915_terminally_wedged(reset_counter))
1332                 return -EIO;
1333
1334         if (__i915_reset_in_progress(reset_counter)) {
1335                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1336                  * -EIO unconditionally for these. */
1337                 if (!interruptible)
1338                         return -EIO;
1339
1340                 return -EAGAIN;
1341         }
1342
1343         return 0;
1344 }
1345
1346 static void fake_irq(unsigned long data)
1347 {
1348         wake_up_process((struct task_struct *)data);
1349 }
1350
1351 static bool missed_irq(struct drm_i915_private *dev_priv,
1352                        struct intel_engine_cs *engine)
1353 {
1354         return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1355 }
1356
1357 static unsigned long local_clock_us(unsigned *cpu)
1358 {
1359         unsigned long t;
1360
1361         /* Cheaply and approximately convert from nanoseconds to microseconds.
1362          * The result and subsequent calculations are also defined in the same
1363          * approximate microseconds units. The principal source of timing
1364          * error here is from the simple truncation.
1365          *
1366          * Note that local_clock() is only defined wrt to the current CPU;
1367          * the comparisons are no longer valid if we switch CPUs. Instead of
1368          * blocking preemption for the entire busywait, we can detect the CPU
1369          * switch and use that as indicator of system load and a reason to
1370          * stop busywaiting, see busywait_stop().
1371          */
1372         *cpu = get_cpu();
1373         t = local_clock() >> 10;
1374         put_cpu();
1375
1376         return t;
1377 }
1378
1379 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1380 {
1381         unsigned this_cpu;
1382
1383         if (time_after(local_clock_us(&this_cpu), timeout))
1384                 return true;
1385
1386         return this_cpu != cpu;
1387 }
1388
1389 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1390 {
1391         unsigned long timeout;
1392         unsigned cpu;
1393
1394         /* When waiting for high frequency requests, e.g. during synchronous
1395          * rendering split between the CPU and GPU, the finite amount of time
1396          * required to set up the irq and wait upon it limits the response
1397          * rate. By busywaiting on the request completion for a short while we
1398          * can service the high frequency waits as quick as possible. However,
1399          * if it is a slow request, we want to sleep as quickly as possible.
1400          * The tradeoff between waiting and sleeping is roughly the time it
1401          * takes to sleep on a request, on the order of a microsecond.
1402          */
1403
1404         if (req->engine->irq_refcount)
1405                 return -EBUSY;
1406
1407         /* Only spin if we know the GPU is processing this request */
1408         if (!i915_gem_request_started(req, true))
1409                 return -EAGAIN;
1410
1411         timeout = local_clock_us(&cpu) + 5;
1412         while (!need_resched()) {
1413                 if (i915_gem_request_completed(req, true))
1414                         return 0;
1415
1416                 if (signal_pending_state(state, current))
1417                         break;
1418
1419                 if (busywait_stop(timeout, cpu))
1420                         break;
1421
1422                 cpu_relax_lowlatency();
1423         }
1424
1425         if (i915_gem_request_completed(req, false))
1426                 return 0;
1427
1428         return -EAGAIN;
1429 }
1430
1431 /**
1432  * __i915_wait_request - wait until execution of request has finished
1433  * @req: duh!
1434  * @interruptible: do an interruptible wait (normally yes)
1435  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1436  * @rps: RPS client
1437  *
1438  * Note: It is of utmost importance that the passed in seqno and reset_counter
1439  * values have been read by the caller in an smp safe manner. Where read-side
1440  * locks are involved, it is sufficient to read the reset_counter before
1441  * unlocking the lock that protects the seqno. For lockless tricks, the
1442  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1443  * inserted.
1444  *
1445  * Returns 0 if the request was found within the alloted time. Else returns the
1446  * errno with remaining time filled in timeout argument.
1447  */
1448 int __i915_wait_request(struct drm_i915_gem_request *req,
1449                         bool interruptible,
1450                         s64 *timeout,
1451                         struct intel_rps_client *rps)
1452 {
1453         struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1454         struct drm_i915_private *dev_priv = req->i915;
1455         const bool irq_test_in_progress =
1456                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1457         int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1458         DEFINE_WAIT(wait);
1459         unsigned long timeout_expire;
1460         s64 before = 0; /* Only to silence a compiler warning. */
1461         int ret;
1462
1463         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1464
1465         if (list_empty(&req->list))
1466                 return 0;
1467
1468         if (i915_gem_request_completed(req, true))
1469                 return 0;
1470
1471         timeout_expire = 0;
1472         if (timeout) {
1473                 if (WARN_ON(*timeout < 0))
1474                         return -EINVAL;
1475
1476                 if (*timeout == 0)
1477                         return -ETIME;
1478
1479                 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1480
1481                 /*
1482                  * Record current time in case interrupted by signal, or wedged.
1483                  */
1484                 before = ktime_get_raw_ns();
1485         }
1486
1487         if (INTEL_INFO(dev_priv)->gen >= 6)
1488                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1489
1490         trace_i915_gem_request_wait_begin(req);
1491
1492         /* Optimistic spin for the next jiffie before touching IRQs */
1493         ret = __i915_spin_request(req, state);
1494         if (ret == 0)
1495                 goto out;
1496
1497         if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1498                 ret = -ENODEV;
1499                 goto out;
1500         }
1501
1502         for (;;) {
1503                 struct timer_list timer;
1504
1505                 prepare_to_wait(&engine->irq_queue, &wait, state);
1506
1507                 /* We need to check whether any gpu reset happened in between
1508                  * the request being submitted and now. If a reset has occurred,
1509                  * the request is effectively complete (we either are in the
1510                  * process of or have discarded the rendering and completely
1511                  * reset the GPU. The results of the request are lost and we
1512                  * are free to continue on with the original operation.
1513                  */
1514                 if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1515                         ret = 0;
1516                         break;
1517                 }
1518
1519                 if (i915_gem_request_completed(req, false)) {
1520                         ret = 0;
1521                         break;
1522                 }
1523
1524                 if (signal_pending_state(state, current)) {
1525                         ret = -ERESTARTSYS;
1526                         break;
1527                 }
1528
1529                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1530                         ret = -ETIME;
1531                         break;
1532                 }
1533
1534                 timer.function = NULL;
1535                 if (timeout || missed_irq(dev_priv, engine)) {
1536                         unsigned long expire;
1537
1538                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1539                         expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1540                         mod_timer(&timer, expire);
1541                 }
1542
1543                 io_schedule();
1544
1545                 if (timer.function) {
1546                         del_singleshot_timer_sync(&timer);
1547                         destroy_timer_on_stack(&timer);
1548                 }
1549         }
1550         if (!irq_test_in_progress)
1551                 engine->irq_put(engine);
1552
1553         finish_wait(&engine->irq_queue, &wait);
1554
1555 out:
1556         trace_i915_gem_request_wait_end(req);
1557
1558         if (timeout) {
1559                 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1560
1561                 *timeout = tres < 0 ? 0 : tres;
1562
1563                 /*
1564                  * Apparently ktime isn't accurate enough and occasionally has a
1565                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1566                  * things up to make the test happy. We allow up to 1 jiffy.
1567                  *
1568                  * This is a regrssion from the timespec->ktime conversion.
1569                  */
1570                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1571                         *timeout = 0;
1572         }
1573
1574         return ret;
1575 }
1576
1577 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1578                                    struct drm_file *file)
1579 {
1580         struct drm_i915_file_private *file_priv;
1581
1582         WARN_ON(!req || !file || req->file_priv);
1583
1584         if (!req || !file)
1585                 return -EINVAL;
1586
1587         if (req->file_priv)
1588                 return -EINVAL;
1589
1590         file_priv = file->driver_priv;
1591
1592         spin_lock(&file_priv->mm.lock);
1593         req->file_priv = file_priv;
1594         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1595         spin_unlock(&file_priv->mm.lock);
1596
1597         req->pid = get_pid(task_pid(current));
1598
1599         return 0;
1600 }
1601
1602 static inline void
1603 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1604 {
1605         struct drm_i915_file_private *file_priv = request->file_priv;
1606
1607         if (!file_priv)
1608                 return;
1609
1610         spin_lock(&file_priv->mm.lock);
1611         list_del(&request->client_list);
1612         request->file_priv = NULL;
1613         spin_unlock(&file_priv->mm.lock);
1614
1615         put_pid(request->pid);
1616         request->pid = NULL;
1617 }
1618
1619 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1620 {
1621         trace_i915_gem_request_retire(request);
1622
1623         /* We know the GPU must have read the request to have
1624          * sent us the seqno + interrupt, so use the position
1625          * of tail of the request to update the last known position
1626          * of the GPU head.
1627          *
1628          * Note this requires that we are always called in request
1629          * completion order.
1630          */
1631         request->ringbuf->last_retired_head = request->postfix;
1632
1633         list_del_init(&request->list);
1634         i915_gem_request_remove_from_client(request);
1635
1636         if (request->previous_context) {
1637                 if (i915.enable_execlists)
1638                         intel_lr_context_unpin(request->previous_context,
1639                                                request->engine);
1640         }
1641
1642         i915_gem_context_unreference(request->ctx);
1643         i915_gem_request_unreference(request);
1644 }
1645
1646 static void
1647 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1648 {
1649         struct intel_engine_cs *engine = req->engine;
1650         struct drm_i915_gem_request *tmp;
1651
1652         lockdep_assert_held(&engine->i915->dev->struct_mutex);
1653
1654         if (list_empty(&req->list))
1655                 return;
1656
1657         do {
1658                 tmp = list_first_entry(&engine->request_list,
1659                                        typeof(*tmp), list);
1660
1661                 i915_gem_request_retire(tmp);
1662         } while (tmp != req);
1663
1664         WARN_ON(i915_verify_lists(engine->dev));
1665 }
1666
1667 /**
1668  * Waits for a request to be signaled, and cleans up the
1669  * request and object lists appropriately for that event.
1670  * @req: request to wait on
1671  */
1672 int
1673 i915_wait_request(struct drm_i915_gem_request *req)
1674 {
1675         struct drm_i915_private *dev_priv = req->i915;
1676         bool interruptible;
1677         int ret;
1678
1679         interruptible = dev_priv->mm.interruptible;
1680
1681         BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1682
1683         ret = __i915_wait_request(req, interruptible, NULL, NULL);
1684         if (ret)
1685                 return ret;
1686
1687         /* If the GPU hung, we want to keep the requests to find the guilty. */
1688         if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
1689                 __i915_gem_request_retire__upto(req);
1690
1691         return 0;
1692 }
1693
1694 /**
1695  * Ensures that all rendering to the object has completed and the object is
1696  * safe to unbind from the GTT or access from the CPU.
1697  * @obj: i915 gem object
1698  * @readonly: waiting for read access or write
1699  */
1700 int
1701 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1702                                bool readonly)
1703 {
1704         int ret, i;
1705
1706         if (!obj->active)
1707                 return 0;
1708
1709         if (readonly) {
1710                 if (obj->last_write_req != NULL) {
1711                         ret = i915_wait_request(obj->last_write_req);
1712                         if (ret)
1713                                 return ret;
1714
1715                         i = obj->last_write_req->engine->id;
1716                         if (obj->last_read_req[i] == obj->last_write_req)
1717                                 i915_gem_object_retire__read(obj, i);
1718                         else
1719                                 i915_gem_object_retire__write(obj);
1720                 }
1721         } else {
1722                 for (i = 0; i < I915_NUM_ENGINES; i++) {
1723                         if (obj->last_read_req[i] == NULL)
1724                                 continue;
1725
1726                         ret = i915_wait_request(obj->last_read_req[i]);
1727                         if (ret)
1728                                 return ret;
1729
1730                         i915_gem_object_retire__read(obj, i);
1731                 }
1732                 GEM_BUG_ON(obj->active);
1733         }
1734
1735         return 0;
1736 }
1737
1738 static void
1739 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1740                                struct drm_i915_gem_request *req)
1741 {
1742         int ring = req->engine->id;
1743
1744         if (obj->last_read_req[ring] == req)
1745                 i915_gem_object_retire__read(obj, ring);
1746         else if (obj->last_write_req == req)
1747                 i915_gem_object_retire__write(obj);
1748
1749         if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
1750                 __i915_gem_request_retire__upto(req);
1751 }
1752
1753 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1754  * as the object state may change during this call.
1755  */
1756 static __must_check int
1757 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1758                                             struct intel_rps_client *rps,
1759                                             bool readonly)
1760 {
1761         struct drm_device *dev = obj->base.dev;
1762         struct drm_i915_private *dev_priv = dev->dev_private;
1763         struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1764         int ret, i, n = 0;
1765
1766         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1767         BUG_ON(!dev_priv->mm.interruptible);
1768
1769         if (!obj->active)
1770                 return 0;
1771
1772         if (readonly) {
1773                 struct drm_i915_gem_request *req;
1774
1775                 req = obj->last_write_req;
1776                 if (req == NULL)
1777                         return 0;
1778
1779                 requests[n++] = i915_gem_request_reference(req);
1780         } else {
1781                 for (i = 0; i < I915_NUM_ENGINES; i++) {
1782                         struct drm_i915_gem_request *req;
1783
1784                         req = obj->last_read_req[i];
1785                         if (req == NULL)
1786                                 continue;
1787
1788                         requests[n++] = i915_gem_request_reference(req);
1789                 }
1790         }
1791
1792         mutex_unlock(&dev->struct_mutex);
1793         ret = 0;
1794         for (i = 0; ret == 0 && i < n; i++)
1795                 ret = __i915_wait_request(requests[i], true, NULL, rps);
1796         mutex_lock(&dev->struct_mutex);
1797
1798         for (i = 0; i < n; i++) {
1799                 if (ret == 0)
1800                         i915_gem_object_retire_request(obj, requests[i]);
1801                 i915_gem_request_unreference(requests[i]);
1802         }
1803
1804         return ret;
1805 }
1806
1807 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1808 {
1809         struct drm_i915_file_private *fpriv = file->driver_priv;
1810         return &fpriv->rps;
1811 }
1812
1813 static enum fb_op_origin
1814 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1815 {
1816         return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1817                ORIGIN_GTT : ORIGIN_CPU;
1818 }
1819
1820 /**
1821  * Called when user space prepares to use an object with the CPU, either
1822  * through the mmap ioctl's mapping or a GTT mapping.
1823  * @dev: drm device
1824  * @data: ioctl data blob
1825  * @file: drm file
1826  */
1827 int
1828 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1829                           struct drm_file *file)
1830 {
1831         struct drm_i915_gem_set_domain *args = data;
1832         struct drm_i915_gem_object *obj;
1833         uint32_t read_domains = args->read_domains;
1834         uint32_t write_domain = args->write_domain;
1835         int ret;
1836
1837         /* Only handle setting domains to types used by the CPU. */
1838         if (write_domain & I915_GEM_GPU_DOMAINS)
1839                 return -EINVAL;
1840
1841         if (read_domains & I915_GEM_GPU_DOMAINS)
1842                 return -EINVAL;
1843
1844         /* Having something in the write domain implies it's in the read
1845          * domain, and only that read domain.  Enforce that in the request.
1846          */
1847         if (write_domain != 0 && read_domains != write_domain)
1848                 return -EINVAL;
1849
1850         ret = i915_mutex_lock_interruptible(dev);
1851         if (ret)
1852                 return ret;
1853
1854         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1855         if (&obj->base == NULL) {
1856                 ret = -ENOENT;
1857                 goto unlock;
1858         }
1859
1860         /* Try to flush the object off the GPU without holding the lock.
1861          * We will repeat the flush holding the lock in the normal manner
1862          * to catch cases where we are gazumped.
1863          */
1864         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1865                                                           to_rps_client(file),
1866                                                           !write_domain);
1867         if (ret)
1868                 goto unref;
1869
1870         if (read_domains & I915_GEM_DOMAIN_GTT)
1871                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1872         else
1873                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1874
1875         if (write_domain != 0)
1876                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1877
1878 unref:
1879         drm_gem_object_unreference(&obj->base);
1880 unlock:
1881         mutex_unlock(&dev->struct_mutex);
1882         return ret;
1883 }
1884
1885 /**
1886  * Called when user space has done writes to this buffer
1887  * @dev: drm device
1888  * @data: ioctl data blob
1889  * @file: drm file
1890  */
1891 int
1892 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1893                          struct drm_file *file)
1894 {
1895         struct drm_i915_gem_sw_finish *args = data;
1896         struct drm_i915_gem_object *obj;
1897         int ret = 0;
1898
1899         ret = i915_mutex_lock_interruptible(dev);
1900         if (ret)
1901                 return ret;
1902
1903         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1904         if (&obj->base == NULL) {
1905                 ret = -ENOENT;
1906                 goto unlock;
1907         }
1908
1909         /* Pinned buffers may be scanout, so flush the cache */
1910         if (obj->pin_display)
1911                 i915_gem_object_flush_cpu_write_domain(obj);
1912
1913         drm_gem_object_unreference(&obj->base);
1914 unlock:
1915         mutex_unlock(&dev->struct_mutex);
1916         return ret;
1917 }
1918
1919 /**
1920  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1921  *                       it is mapped to.
1922  * @dev: drm device
1923  * @data: ioctl data blob
1924  * @file: drm file
1925  *
1926  * While the mapping holds a reference on the contents of the object, it doesn't
1927  * imply a ref on the object itself.
1928  *
1929  * IMPORTANT:
1930  *
1931  * DRM driver writers who look a this function as an example for how to do GEM
1932  * mmap support, please don't implement mmap support like here. The modern way
1933  * to implement DRM mmap support is with an mmap offset ioctl (like
1934  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1935  * That way debug tooling like valgrind will understand what's going on, hiding
1936  * the mmap call in a driver private ioctl will break that. The i915 driver only
1937  * does cpu mmaps this way because we didn't know better.
1938  */
1939 int
1940 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1941                     struct drm_file *file)
1942 {
1943         struct drm_i915_gem_mmap *args = data;
1944         struct drm_gem_object *obj;
1945         unsigned long addr;
1946
1947         if (args->flags & ~(I915_MMAP_WC))
1948                 return -EINVAL;
1949
1950         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1951                 return -ENODEV;
1952
1953         obj = drm_gem_object_lookup(file, args->handle);
1954         if (obj == NULL)
1955                 return -ENOENT;
1956
1957         /* prime objects have no backing filp to GEM mmap
1958          * pages from.
1959          */
1960         if (!obj->filp) {
1961                 drm_gem_object_unreference_unlocked(obj);
1962                 return -EINVAL;
1963         }
1964
1965         addr = vm_mmap(obj->filp, 0, args->size,
1966                        PROT_READ | PROT_WRITE, MAP_SHARED,
1967                        args->offset);
1968         if (args->flags & I915_MMAP_WC) {
1969                 struct mm_struct *mm = current->mm;
1970                 struct vm_area_struct *vma;
1971
1972                 if (down_write_killable(&mm->mmap_sem)) {
1973                         drm_gem_object_unreference_unlocked(obj);
1974                         return -EINTR;
1975                 }
1976                 vma = find_vma(mm, addr);
1977                 if (vma)
1978                         vma->vm_page_prot =
1979                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1980                 else
1981                         addr = -ENOMEM;
1982                 up_write(&mm->mmap_sem);
1983
1984                 /* This may race, but that's ok, it only gets set */
1985                 WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1986         }
1987         drm_gem_object_unreference_unlocked(obj);
1988         if (IS_ERR((void *)addr))
1989                 return addr;
1990
1991         args->addr_ptr = (uint64_t) addr;
1992
1993         return 0;
1994 }
1995
1996 /**
1997  * i915_gem_fault - fault a page into the GTT
1998  * @vma: VMA in question
1999  * @vmf: fault info
2000  *
2001  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
2002  * from userspace.  The fault handler takes care of binding the object to
2003  * the GTT (if needed), allocating and programming a fence register (again,
2004  * only if needed based on whether the old reg is still valid or the object
2005  * is tiled) and inserting a new PTE into the faulting process.
2006  *
2007  * Note that the faulting process may involve evicting existing objects
2008  * from the GTT and/or fence registers to make room.  So performance may
2009  * suffer if the GTT working set is large or there are few fence registers
2010  * left.
2011  */
2012 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2013 {
2014         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
2015         struct drm_device *dev = obj->base.dev;
2016         struct drm_i915_private *dev_priv = to_i915(dev);
2017         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2018         struct i915_ggtt_view view = i915_ggtt_view_normal;
2019         pgoff_t page_offset;
2020         unsigned long pfn;
2021         int ret = 0;
2022         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2023
2024         intel_runtime_pm_get(dev_priv);
2025
2026         /* We don't use vmf->pgoff since that has the fake offset */
2027         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
2028                 PAGE_SHIFT;
2029
2030         ret = i915_mutex_lock_interruptible(dev);
2031         if (ret)
2032                 goto out;
2033
2034         trace_i915_gem_object_fault(obj, page_offset, true, write);
2035
2036         /* Try to flush the object off the GPU first without holding the lock.
2037          * Upon reacquiring the lock, we will perform our sanity checks and then
2038          * repeat the flush holding the lock in the normal manner to catch cases
2039          * where we are gazumped.
2040          */
2041         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2042         if (ret)
2043                 goto unlock;
2044
2045         /* Access to snoopable pages through the GTT is incoherent. */
2046         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2047                 ret = -EFAULT;
2048                 goto unlock;
2049         }
2050
2051         /* Use a partial view if the object is bigger than the aperture. */
2052         if (obj->base.size >= ggtt->mappable_end &&
2053             obj->tiling_mode == I915_TILING_NONE) {
2054                 static const unsigned int chunk_size = 256; // 1 MiB
2055
2056                 memset(&view, 0, sizeof(view));
2057                 view.type = I915_GGTT_VIEW_PARTIAL;
2058                 view.params.partial.offset = rounddown(page_offset, chunk_size);
2059                 view.params.partial.size =
2060                         min_t(unsigned int,
2061                               chunk_size,
2062                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
2063                               view.params.partial.offset);
2064         }
2065
2066         /* Now pin it into the GTT if needed */
2067         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2068         if (ret)
2069                 goto unlock;
2070
2071         ret = i915_gem_object_set_to_gtt_domain(obj, write);
2072         if (ret)
2073                 goto unpin;
2074
2075         ret = i915_gem_object_get_fence(obj);
2076         if (ret)
2077                 goto unpin;
2078
2079         /* Finally, remap it using the new GTT offset */
2080         pfn = ggtt->mappable_base +
2081                 i915_gem_obj_ggtt_offset_view(obj, &view);
2082         pfn >>= PAGE_SHIFT;
2083
2084         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
2085                 /* Overriding existing pages in partial view does not cause
2086                  * us any trouble as TLBs are still valid because the fault
2087                  * is due to userspace losing part of the mapping or never
2088                  * having accessed it before (at this partials' range).
2089                  */
2090                 unsigned long base = vma->vm_start +
2091                                      (view.params.partial.offset << PAGE_SHIFT);
2092                 unsigned int i;
2093
2094                 for (i = 0; i < view.params.partial.size; i++) {
2095                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2096                         if (ret)
2097                                 break;
2098                 }
2099
2100                 obj->fault_mappable = true;
2101         } else {
2102                 if (!obj->fault_mappable) {
2103                         unsigned long size = min_t(unsigned long,
2104                                                    vma->vm_end - vma->vm_start,
2105                                                    obj->base.size);
2106                         int i;
2107
2108                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
2109                                 ret = vm_insert_pfn(vma,
2110                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
2111                                                     pfn + i);
2112                                 if (ret)
2113                                         break;
2114                         }
2115
2116                         obj->fault_mappable = true;
2117                 } else
2118                         ret = vm_insert_pfn(vma,
2119                                             (unsigned long)vmf->virtual_address,
2120                                             pfn + page_offset);
2121         }
2122 unpin:
2123         i915_gem_object_ggtt_unpin_view(obj, &view);
2124 unlock:
2125         mutex_unlock(&dev->struct_mutex);
2126 out:
2127         switch (ret) {
2128         case -EIO:
2129                 /*
2130                  * We eat errors when the gpu is terminally wedged to avoid
2131                  * userspace unduly crashing (gl has no provisions for mmaps to
2132                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
2133                  * and so needs to be reported.
2134                  */
2135                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2136                         ret = VM_FAULT_SIGBUS;
2137                         break;
2138                 }
2139         case -EAGAIN:
2140                 /*
2141                  * EAGAIN means the gpu is hung and we'll wait for the error
2142                  * handler to reset everything when re-faulting in
2143                  * i915_mutex_lock_interruptible.
2144                  */
2145         case 0:
2146         case -ERESTARTSYS:
2147         case -EINTR:
2148         case -EBUSY:
2149                 /*
2150                  * EBUSY is ok: this just means that another thread
2151                  * already did the job.
2152                  */
2153                 ret = VM_FAULT_NOPAGE;
2154                 break;
2155         case -ENOMEM:
2156                 ret = VM_FAULT_OOM;
2157                 break;
2158         case -ENOSPC:
2159         case -EFAULT:
2160                 ret = VM_FAULT_SIGBUS;
2161                 break;
2162         default:
2163                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2164                 ret = VM_FAULT_SIGBUS;
2165                 break;
2166         }
2167
2168         intel_runtime_pm_put(dev_priv);
2169         return ret;
2170 }
2171
2172 /**
2173  * i915_gem_release_mmap - remove physical page mappings
2174  * @obj: obj in question
2175  *
2176  * Preserve the reservation of the mmapping with the DRM core code, but
2177  * relinquish ownership of the pages back to the system.
2178  *
2179  * It is vital that we remove the page mapping if we have mapped a tiled
2180  * object through the GTT and then lose the fence register due to
2181  * resource pressure. Similarly if the object has been moved out of the
2182  * aperture, than pages mapped into userspace must be revoked. Removing the
2183  * mapping will then trigger a page fault on the next user access, allowing
2184  * fixup by i915_gem_fault().
2185  */
2186 void
2187 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2188 {
2189         /* Serialisation between user GTT access and our code depends upon
2190          * revoking the CPU's PTE whilst the mutex is held. The next user
2191          * pagefault then has to wait until we release the mutex.
2192          */
2193         lockdep_assert_held(&obj->base.dev->struct_mutex);
2194
2195         if (!obj->fault_mappable)
2196                 return;
2197
2198         drm_vma_node_unmap(&obj->base.vma_node,
2199                            obj->base.dev->anon_inode->i_mapping);
2200
2201         /* Ensure that the CPU's PTE are revoked and there are not outstanding
2202          * memory transactions from userspace before we return. The TLB
2203          * flushing implied above by changing the PTE above *should* be
2204          * sufficient, an extra barrier here just provides us with a bit
2205          * of paranoid documentation about our requirement to serialise
2206          * memory writes before touching registers / GSM.
2207          */
2208         wmb();
2209
2210         obj->fault_mappable = false;
2211 }
2212
2213 void
2214 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2215 {
2216         struct drm_i915_gem_object *obj;
2217
2218         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2219                 i915_gem_release_mmap(obj);
2220 }
2221
2222 uint32_t
2223 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2224 {
2225         uint32_t gtt_size;
2226
2227         if (INTEL_INFO(dev)->gen >= 4 ||
2228             tiling_mode == I915_TILING_NONE)
2229                 return size;
2230
2231         /* Previous chips need a power-of-two fence region when tiling */
2232         if (IS_GEN3(dev))
2233                 gtt_size = 1024*1024;
2234         else
2235                 gtt_size = 512*1024;
2236
2237         while (gtt_size < size)
2238                 gtt_size <<= 1;
2239
2240         return gtt_size;
2241 }
2242
2243 /**
2244  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2245  * @dev: drm device
2246  * @size: object size
2247  * @tiling_mode: tiling mode
2248  * @fenced: is fenced alignemned required or not
2249  *
2250  * Return the required GTT alignment for an object, taking into account
2251  * potential fence register mapping.
2252  */
2253 uint32_t
2254 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2255                            int tiling_mode, bool fenced)
2256 {
2257         /*
2258          * Minimum alignment is 4k (GTT page size), but might be greater
2259          * if a fence register is needed for the object.
2260          */
2261         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2262             tiling_mode == I915_TILING_NONE)
2263                 return 4096;
2264
2265         /*
2266          * Previous chips need to be aligned to the size of the smallest
2267          * fence register that can contain the object.
2268          */
2269         return i915_gem_get_gtt_size(dev, size, tiling_mode);
2270 }
2271
2272 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2273 {
2274         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2275         int ret;
2276
2277         dev_priv->mm.shrinker_no_lock_stealing = true;
2278
2279         ret = drm_gem_create_mmap_offset(&obj->base);
2280         if (ret != -ENOSPC)
2281                 goto out;
2282
2283         /* Badly fragmented mmap space? The only way we can recover
2284          * space is by destroying unwanted objects. We can't randomly release
2285          * mmap_offsets as userspace expects them to be persistent for the
2286          * lifetime of the objects. The closest we can is to release the
2287          * offsets on purgeable objects by truncating it and marking it purged,
2288          * which prevents userspace from ever using that object again.
2289          */
2290         i915_gem_shrink(dev_priv,
2291                         obj->base.size >> PAGE_SHIFT,
2292                         I915_SHRINK_BOUND |
2293                         I915_SHRINK_UNBOUND |
2294                         I915_SHRINK_PURGEABLE);
2295         ret = drm_gem_create_mmap_offset(&obj->base);
2296         if (ret != -ENOSPC)
2297                 goto out;
2298
2299         i915_gem_shrink_all(dev_priv);
2300         ret = drm_gem_create_mmap_offset(&obj->base);
2301 out:
2302         dev_priv->mm.shrinker_no_lock_stealing = false;
2303
2304         return ret;
2305 }
2306
2307 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2308 {
2309         drm_gem_free_mmap_offset(&obj->base);
2310 }
2311
2312 int
2313 i915_gem_mmap_gtt(struct drm_file *file,
2314                   struct drm_device *dev,
2315                   uint32_t handle,
2316                   uint64_t *offset)
2317 {
2318         struct drm_i915_gem_object *obj;
2319         int ret;
2320
2321         ret = i915_mutex_lock_interruptible(dev);
2322         if (ret)
2323                 return ret;
2324
2325         obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2326         if (&obj->base == NULL) {
2327                 ret = -ENOENT;
2328                 goto unlock;
2329         }
2330
2331         if (obj->madv != I915_MADV_WILLNEED) {
2332                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2333                 ret = -EFAULT;
2334                 goto out;
2335         }
2336
2337         ret = i915_gem_object_create_mmap_offset(obj);
2338         if (ret)
2339                 goto out;
2340
2341         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2342
2343 out:
2344         drm_gem_object_unreference(&obj->base);
2345 unlock:
2346         mutex_unlock(&dev->struct_mutex);
2347         return ret;
2348 }
2349
2350 /**
2351  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2352  * @dev: DRM device
2353  * @data: GTT mapping ioctl data
2354  * @file: GEM object info
2355  *
2356  * Simply returns the fake offset to userspace so it can mmap it.
2357  * The mmap call will end up in drm_gem_mmap(), which will set things
2358  * up so we can get faults in the handler above.
2359  *
2360  * The fault handler will take care of binding the object into the GTT
2361  * (since it may have been evicted to make room for something), allocating
2362  * a fence register, and mapping the appropriate aperture address into
2363  * userspace.
2364  */
2365 int
2366 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2367                         struct drm_file *file)
2368 {
2369         struct drm_i915_gem_mmap_gtt *args = data;
2370
2371         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2372 }
2373
2374 /* Immediately discard the backing storage */
2375 static void
2376 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2377 {
2378         i915_gem_object_free_mmap_offset(obj);
2379
2380         if (obj->base.filp == NULL)
2381                 return;
2382
2383         /* Our goal here is to return as much of the memory as
2384          * is possible back to the system as we are called from OOM.
2385          * To do this we must instruct the shmfs to drop all of its
2386          * backing pages, *now*.
2387          */
2388         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2389         obj->madv = __I915_MADV_PURGED;
2390 }
2391
2392 /* Try to discard unwanted pages */
2393 static void
2394 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2395 {
2396         struct address_space *mapping;
2397
2398         switch (obj->madv) {
2399         case I915_MADV_DONTNEED:
2400                 i915_gem_object_truncate(obj);
2401         case __I915_MADV_PURGED:
2402                 return;
2403         }
2404
2405         if (obj->base.filp == NULL)
2406                 return;
2407
2408         mapping = file_inode(obj->base.filp)->i_mapping,
2409         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2410 }
2411
2412 static void
2413 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2414 {
2415         struct sgt_iter sgt_iter;
2416         struct page *page;
2417         int ret;
2418
2419         BUG_ON(obj->madv == __I915_MADV_PURGED);
2420
2421         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2422         if (WARN_ON(ret)) {
2423                 /* In the event of a disaster, abandon all caches and
2424                  * hope for the best.
2425                  */
2426                 i915_gem_clflush_object(obj, true);
2427                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2428         }
2429
2430         i915_gem_gtt_finish_object(obj);
2431
2432         if (i915_gem_object_needs_bit17_swizzle(obj))
2433                 i915_gem_object_save_bit_17_swizzle(obj);
2434
2435         if (obj->madv == I915_MADV_DONTNEED)
2436                 obj->dirty = 0;
2437
2438         for_each_sgt_page(page, sgt_iter, obj->pages) {
2439                 if (obj->dirty)
2440                         set_page_dirty(page);
2441
2442                 if (obj->madv == I915_MADV_WILLNEED)
2443                         mark_page_accessed(page);
2444
2445                 put_page(page);
2446         }
2447         obj->dirty = 0;
2448
2449         sg_free_table(obj->pages);
2450         kfree(obj->pages);
2451 }
2452
2453 int
2454 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2455 {
2456         const struct drm_i915_gem_object_ops *ops = obj->ops;
2457
2458         if (obj->pages == NULL)
2459                 return 0;
2460
2461         if (obj->pages_pin_count)
2462                 return -EBUSY;
2463
2464         BUG_ON(i915_gem_obj_bound_any(obj));
2465
2466         /* ->put_pages might need to allocate memory for the bit17 swizzle
2467          * array, hence protect them from being reaped by removing them from gtt
2468          * lists early. */
2469         list_del(&obj->global_list);
2470
2471         if (obj->mapping) {
2472                 if (is_vmalloc_addr(obj->mapping))
2473                         vunmap(obj->mapping);
2474                 else
2475                         kunmap(kmap_to_page(obj->mapping));
2476                 obj->mapping = NULL;
2477         }
2478
2479         ops->put_pages(obj);
2480         obj->pages = NULL;
2481
2482         i915_gem_object_invalidate(obj);
2483
2484         return 0;
2485 }
2486
2487 static int
2488 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2489 {
2490         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2491         int page_count, i;
2492         struct address_space *mapping;
2493         struct sg_table *st;
2494         struct scatterlist *sg;
2495         struct sgt_iter sgt_iter;
2496         struct page *page;
2497         unsigned long last_pfn = 0;     /* suppress gcc warning */
2498         int ret;
2499         gfp_t gfp;
2500
2501         /* Assert that the object is not currently in any GPU domain. As it
2502          * wasn't in the GTT, there shouldn't be any way it could have been in
2503          * a GPU cache
2504          */
2505         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2506         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2507
2508         st = kmalloc(sizeof(*st), GFP_KERNEL);
2509         if (st == NULL)
2510                 return -ENOMEM;
2511
2512         page_count = obj->base.size / PAGE_SIZE;
2513         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2514                 kfree(st);
2515                 return -ENOMEM;
2516         }
2517
2518         /* Get the list of pages out of our struct file.  They'll be pinned
2519          * at this point until we release them.
2520          *
2521          * Fail silently without starting the shrinker
2522          */
2523         mapping = file_inode(obj->base.filp)->i_mapping;
2524         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2525         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2526         sg = st->sgl;
2527         st->nents = 0;
2528         for (i = 0; i < page_count; i++) {
2529                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2530                 if (IS_ERR(page)) {
2531                         i915_gem_shrink(dev_priv,
2532                                         page_count,
2533                                         I915_SHRINK_BOUND |
2534                                         I915_SHRINK_UNBOUND |
2535                                         I915_SHRINK_PURGEABLE);
2536                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2537                 }
2538                 if (IS_ERR(page)) {
2539                         /* We've tried hard to allocate the memory by reaping
2540                          * our own buffer, now let the real VM do its job and
2541                          * go down in flames if truly OOM.
2542                          */
2543                         i915_gem_shrink_all(dev_priv);
2544                         page = shmem_read_mapping_page(mapping, i);
2545                         if (IS_ERR(page)) {
2546                                 ret = PTR_ERR(page);
2547                                 goto err_pages;
2548                         }
2549                 }
2550 #ifdef CONFIG_SWIOTLB
2551                 if (swiotlb_nr_tbl()) {
2552                         st->nents++;
2553                         sg_set_page(sg, page, PAGE_SIZE, 0);
2554                         sg = sg_next(sg);
2555                         continue;
2556                 }
2557 #endif
2558                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2559                         if (i)
2560                                 sg = sg_next(sg);
2561                         st->nents++;
2562                         sg_set_page(sg, page, PAGE_SIZE, 0);
2563                 } else {
2564                         sg->length += PAGE_SIZE;
2565                 }
2566                 last_pfn = page_to_pfn(page);
2567
2568                 /* Check that the i965g/gm workaround works. */
2569                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2570         }
2571 #ifdef CONFIG_SWIOTLB
2572         if (!swiotlb_nr_tbl())
2573 #endif
2574                 sg_mark_end(sg);
2575         obj->pages = st;
2576
2577         ret = i915_gem_gtt_prepare_object(obj);
2578         if (ret)
2579                 goto err_pages;
2580
2581         if (i915_gem_object_needs_bit17_swizzle(obj))
2582                 i915_gem_object_do_bit_17_swizzle(obj);
2583
2584         if (obj->tiling_mode != I915_TILING_NONE &&
2585             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2586                 i915_gem_object_pin_pages(obj);
2587
2588         return 0;
2589
2590 err_pages:
2591         sg_mark_end(sg);
2592         for_each_sgt_page(page, sgt_iter, st)
2593                 put_page(page);
2594         sg_free_table(st);
2595         kfree(st);
2596
2597         /* shmemfs first checks if there is enough memory to allocate the page
2598          * and reports ENOSPC should there be insufficient, along with the usual
2599          * ENOMEM for a genuine allocation failure.
2600          *
2601          * We use ENOSPC in our driver to mean that we have run out of aperture
2602          * space and so want to translate the error from shmemfs back to our
2603          * usual understanding of ENOMEM.
2604          */
2605         if (ret == -ENOSPC)
2606                 ret = -ENOMEM;
2607
2608         return ret;
2609 }
2610
2611 /* Ensure that the associated pages are gathered from the backing storage
2612  * and pinned into our object. i915_gem_object_get_pages() may be called
2613  * multiple times before they are released by a single call to
2614  * i915_gem_object_put_pages() - once the pages are no longer referenced
2615  * either as a result of memory pressure (reaping pages under the shrinker)
2616  * or as the object is itself released.
2617  */
2618 int
2619 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2620 {
2621         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2622         const struct drm_i915_gem_object_ops *ops = obj->ops;
2623         int ret;
2624
2625         if (obj->pages)
2626                 return 0;
2627
2628         if (obj->madv != I915_MADV_WILLNEED) {
2629                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2630                 return -EFAULT;
2631         }
2632
2633         BUG_ON(obj->pages_pin_count);
2634
2635         ret = ops->get_pages(obj);
2636         if (ret)
2637                 return ret;
2638
2639         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2640
2641         obj->get_page.sg = obj->pages->sgl;
2642         obj->get_page.last = 0;
2643
2644         return 0;
2645 }
2646
2647 /* The 'mapping' part of i915_gem_object_pin_map() below */
2648 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2649 {
2650         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2651         struct sg_table *sgt = obj->pages;
2652         struct sgt_iter sgt_iter;
2653         struct page *page;
2654         struct page *stack_pages[32];
2655         struct page **pages = stack_pages;
2656         unsigned long i = 0;
2657         void *addr;
2658
2659         /* A single page can always be kmapped */
2660         if (n_pages == 1)
2661                 return kmap(sg_page(sgt->sgl));
2662
2663         if (n_pages > ARRAY_SIZE(stack_pages)) {
2664                 /* Too big for stack -- allocate temporary array instead */
2665                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2666                 if (!pages)
2667                         return NULL;
2668         }
2669
2670         for_each_sgt_page(page, sgt_iter, sgt)
2671                 pages[i++] = page;
2672
2673         /* Check that we have the expected number of pages */
2674         GEM_BUG_ON(i != n_pages);
2675
2676         addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2677
2678         if (pages != stack_pages)
2679                 drm_free_large(pages);
2680
2681         return addr;
2682 }
2683
2684 /* get, pin, and map the pages of the object into kernel space */
2685 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2686 {
2687         int ret;
2688
2689         lockdep_assert_held(&obj->base.dev->struct_mutex);
2690
2691         ret = i915_gem_object_get_pages(obj);
2692         if (ret)
2693                 return ERR_PTR(ret);
2694
2695         i915_gem_object_pin_pages(obj);
2696
2697         if (!obj->mapping) {
2698                 obj->mapping = i915_gem_object_map(obj);
2699                 if (!obj->mapping) {
2700                         i915_gem_object_unpin_pages(obj);
2701                         return ERR_PTR(-ENOMEM);
2702                 }
2703         }
2704
2705         return obj->mapping;
2706 }
2707
2708 void i915_vma_move_to_active(struct i915_vma *vma,
2709                              struct drm_i915_gem_request *req)
2710 {
2711         struct drm_i915_gem_object *obj = vma->obj;
2712         struct intel_engine_cs *engine;
2713
2714         engine = i915_gem_request_get_engine(req);
2715
2716         /* Add a reference if we're newly entering the active list. */
2717         if (obj->active == 0)
2718                 drm_gem_object_reference(&obj->base);
2719         obj->active |= intel_engine_flag(engine);
2720
2721         list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2722         i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2723
2724         list_move_tail(&vma->vm_link, &vma->vm->active_list);
2725 }
2726
2727 static void
2728 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2729 {
2730         GEM_BUG_ON(obj->last_write_req == NULL);
2731         GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2732
2733         i915_gem_request_assign(&obj->last_write_req, NULL);
2734         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2735 }
2736
2737 static void
2738 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2739 {
2740         struct i915_vma *vma;
2741
2742         GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2743         GEM_BUG_ON(!(obj->active & (1 << ring)));
2744
2745         list_del_init(&obj->engine_list[ring]);
2746         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2747
2748         if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2749                 i915_gem_object_retire__write(obj);
2750
2751         obj->active &= ~(1 << ring);
2752         if (obj->active)
2753                 return;
2754
2755         /* Bump our place on the bound list to keep it roughly in LRU order
2756          * so that we don't steal from recently used but inactive objects
2757          * (unless we are forced to ofc!)
2758          */
2759         list_move_tail(&obj->global_list,
2760                        &to_i915(obj->base.dev)->mm.bound_list);
2761
2762         list_for_each_entry(vma, &obj->vma_list, obj_link) {
2763                 if (!list_empty(&vma->vm_link))
2764                         list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2765         }
2766
2767         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2768         drm_gem_object_unreference(&obj->base);
2769 }
2770
2771 static int
2772 i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2773 {
2774         struct intel_engine_cs *engine;
2775         int ret;
2776
2777         /* Carefully retire all requests without writing to the rings */
2778         for_each_engine(engine, dev_priv) {
2779                 ret = intel_engine_idle(engine);
2780                 if (ret)
2781                         return ret;
2782         }
2783         i915_gem_retire_requests(dev_priv);
2784
2785         /* Finally reset hw state */
2786         for_each_engine(engine, dev_priv)
2787                 intel_ring_init_seqno(engine, seqno);
2788
2789         return 0;
2790 }
2791
2792 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2793 {
2794         struct drm_i915_private *dev_priv = dev->dev_private;
2795         int ret;
2796
2797         if (seqno == 0)
2798                 return -EINVAL;
2799
2800         /* HWS page needs to be set less than what we
2801          * will inject to ring
2802          */
2803         ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2804         if (ret)
2805                 return ret;
2806
2807         /* Carefully set the last_seqno value so that wrap
2808          * detection still works
2809          */
2810         dev_priv->next_seqno = seqno;
2811         dev_priv->last_seqno = seqno - 1;
2812         if (dev_priv->last_seqno == 0)
2813                 dev_priv->last_seqno--;
2814
2815         return 0;
2816 }
2817
2818 int
2819 i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2820 {
2821         /* reserve 0 for non-seqno */
2822         if (dev_priv->next_seqno == 0) {
2823                 int ret = i915_gem_init_seqno(dev_priv, 0);
2824                 if (ret)
2825                         return ret;
2826
2827                 dev_priv->next_seqno = 1;
2828         }
2829
2830         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2831         return 0;
2832 }
2833
2834 /*
2835  * NB: This function is not allowed to fail. Doing so would mean the the
2836  * request is not being tracked for completion but the work itself is
2837  * going to happen on the hardware. This would be a Bad Thing(tm).
2838  */
2839 void __i915_add_request(struct drm_i915_gem_request *request,
2840                         struct drm_i915_gem_object *obj,
2841                         bool flush_caches)
2842 {
2843         struct intel_engine_cs *engine;
2844         struct drm_i915_private *dev_priv;
2845         struct intel_ringbuffer *ringbuf;
2846         u32 request_start;
2847         u32 reserved_tail;
2848         int ret;
2849
2850         if (WARN_ON(request == NULL))
2851                 return;
2852
2853         engine = request->engine;
2854         dev_priv = request->i915;
2855         ringbuf = request->ringbuf;
2856
2857         /*
2858          * To ensure that this call will not fail, space for its emissions
2859          * should already have been reserved in the ring buffer. Let the ring
2860          * know that it is time to use that space up.
2861          */
2862         request_start = intel_ring_get_tail(ringbuf);
2863         reserved_tail = request->reserved_space;
2864         request->reserved_space = 0;
2865
2866         /*
2867          * Emit any outstanding flushes - execbuf can fail to emit the flush
2868          * after having emitted the batchbuffer command. Hence we need to fix
2869          * things up similar to emitting the lazy request. The difference here
2870          * is that the flush _must_ happen before the next request, no matter
2871          * what.
2872          */
2873         if (flush_caches) {
2874                 if (i915.enable_execlists)
2875                         ret = logical_ring_flush_all_caches(request);
2876                 else
2877                         ret = intel_ring_flush_all_caches(request);
2878                 /* Not allowed to fail! */
2879                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2880         }
2881
2882         trace_i915_gem_request_add(request);
2883
2884         request->head = request_start;
2885
2886         /* Whilst this request exists, batch_obj will be on the
2887          * active_list, and so will hold the active reference. Only when this
2888          * request is retired will the the batch_obj be moved onto the
2889          * inactive_list and lose its active reference. Hence we do not need
2890          * to explicitly hold another reference here.
2891          */
2892         request->batch_obj = obj;
2893
2894         /* Seal the request and mark it as pending execution. Note that
2895          * we may inspect this state, without holding any locks, during
2896          * hangcheck. Hence we apply the barrier to ensure that we do not
2897          * see a more recent value in the hws than we are tracking.
2898          */
2899         request->emitted_jiffies = jiffies;
2900         request->previous_seqno = engine->last_submitted_seqno;
2901         smp_store_mb(engine->last_submitted_seqno, request->seqno);
2902         list_add_tail(&request->list, &engine->request_list);
2903
2904         /* Record the position of the start of the request so that
2905          * should we detect the updated seqno part-way through the
2906          * GPU processing the request, we never over-estimate the
2907          * position of the head.
2908          */
2909         request->postfix = intel_ring_get_tail(ringbuf);
2910
2911         if (i915.enable_execlists)
2912                 ret = engine->emit_request(request);
2913         else {
2914                 ret = engine->add_request(request);
2915
2916                 request->tail = intel_ring_get_tail(ringbuf);
2917         }
2918         /* Not allowed to fail! */
2919         WARN(ret, "emit|add_request failed: %d!\n", ret);
2920
2921         i915_queue_hangcheck(engine->i915);
2922
2923         queue_delayed_work(dev_priv->wq,
2924                            &dev_priv->mm.retire_work,
2925                            round_jiffies_up_relative(HZ));
2926         intel_mark_busy(dev_priv);
2927
2928         /* Sanity check that the reserved size was large enough. */
2929         ret = intel_ring_get_tail(ringbuf) - request_start;
2930         if (ret < 0)
2931                 ret += ringbuf->size;
2932         WARN_ONCE(ret > reserved_tail,
2933                   "Not enough space reserved (%d bytes) "
2934                   "for adding the request (%d bytes)\n",
2935                   reserved_tail, ret);
2936 }
2937
2938 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2939                                    const struct i915_gem_context *ctx)
2940 {
2941         unsigned long elapsed;
2942
2943         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2944
2945         if (ctx->hang_stats.banned)
2946                 return true;
2947
2948         if (ctx->hang_stats.ban_period_seconds &&
2949             elapsed <= ctx->hang_stats.ban_period_seconds) {
2950                 if (!i915_gem_context_is_default(ctx)) {
2951                         DRM_DEBUG("context hanging too fast, banning!\n");
2952                         return true;
2953                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2954                         if (i915_stop_ring_allow_warn(dev_priv))
2955                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2956                         return true;
2957                 }
2958         }
2959
2960         return false;
2961 }
2962
2963 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2964                                   struct i915_gem_context *ctx,
2965                                   const bool guilty)
2966 {
2967         struct i915_ctx_hang_stats *hs;
2968
2969         if (WARN_ON(!ctx))
2970                 return;
2971
2972         hs = &ctx->hang_stats;
2973
2974         if (guilty) {
2975                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2976                 hs->batch_active++;
2977                 hs->guilty_ts = get_seconds();
2978         } else {
2979                 hs->batch_pending++;
2980         }
2981 }
2982
2983 void i915_gem_request_free(struct kref *req_ref)
2984 {
2985         struct drm_i915_gem_request *req = container_of(req_ref,
2986                                                  typeof(*req), ref);
2987         kmem_cache_free(req->i915->requests, req);
2988 }
2989
2990 static inline int
2991 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2992                          struct i915_gem_context *ctx,
2993                          struct drm_i915_gem_request **req_out)
2994 {
2995         struct drm_i915_private *dev_priv = engine->i915;
2996         unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2997         struct drm_i915_gem_request *req;
2998         int ret;
2999
3000         if (!req_out)
3001                 return -EINVAL;
3002
3003         *req_out = NULL;
3004
3005         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
3006          * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
3007          * and restart.
3008          */
3009         ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
3010         if (ret)
3011                 return ret;
3012
3013         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
3014         if (req == NULL)
3015                 return -ENOMEM;
3016
3017         ret = i915_gem_get_seqno(engine->i915, &req->seqno);
3018         if (ret)
3019                 goto err;
3020
3021         kref_init(&req->ref);
3022         req->i915 = dev_priv;
3023         req->engine = engine;
3024         req->reset_counter = reset_counter;
3025         req->ctx  = ctx;
3026         i915_gem_context_reference(req->ctx);
3027
3028         /*
3029          * Reserve space in the ring buffer for all the commands required to
3030          * eventually emit this request. This is to guarantee that the
3031          * i915_add_request() call can't fail. Note that the reserve may need
3032          * to be redone if the request is not actually submitted straight
3033          * away, e.g. because a GPU scheduler has deferred it.
3034          */
3035         req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
3036
3037         if (i915.enable_execlists)
3038                 ret = intel_logical_ring_alloc_request_extras(req);
3039         else
3040                 ret = intel_ring_alloc_request_extras(req);
3041         if (ret)
3042                 goto err_ctx;
3043
3044         *req_out = req;
3045         return 0;
3046
3047 err_ctx:
3048         i915_gem_context_unreference(ctx);
3049 err:
3050         kmem_cache_free(dev_priv->requests, req);
3051         return ret;
3052 }
3053
3054 /**
3055  * i915_gem_request_alloc - allocate a request structure
3056  *
3057  * @engine: engine that we wish to issue the request on.
3058  * @ctx: context that the request will be associated with.
3059  *       This can be NULL if the request is not directly related to
3060  *       any specific user context, in which case this function will
3061  *       choose an appropriate context to use.
3062  *
3063  * Returns a pointer to the allocated request if successful,
3064  * or an error code if not.
3065  */
3066 struct drm_i915_gem_request *
3067 i915_gem_request_alloc(struct intel_engine_cs *engine,
3068                        struct i915_gem_context *ctx)
3069 {
3070         struct drm_i915_gem_request *req;
3071         int err;
3072
3073         if (ctx == NULL)
3074                 ctx = engine->i915->kernel_context;
3075         err = __i915_gem_request_alloc(engine, ctx, &req);
3076         return err ? ERR_PTR(err) : req;
3077 }
3078
3079 struct drm_i915_gem_request *
3080 i915_gem_find_active_request(struct intel_engine_cs *engine)
3081 {
3082         struct drm_i915_gem_request *request;
3083
3084         list_for_each_entry(request, &engine->request_list, list) {
3085                 if (i915_gem_request_completed(request, false))
3086                         continue;
3087
3088                 return request;
3089         }
3090
3091         return NULL;
3092 }
3093
3094 static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
3095                                        struct intel_engine_cs *engine)
3096 {
3097         struct drm_i915_gem_request *request;
3098         bool ring_hung;
3099
3100         request = i915_gem_find_active_request(engine);
3101
3102         if (request == NULL)
3103                 return;
3104
3105         ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3106
3107         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
3108
3109         list_for_each_entry_continue(request, &engine->request_list, list)
3110                 i915_set_reset_status(dev_priv, request->ctx, false);
3111 }
3112
3113 static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
3114                                         struct intel_engine_cs *engine)
3115 {
3116         struct intel_ringbuffer *buffer;
3117
3118         while (!list_empty(&engine->active_list)) {
3119                 struct drm_i915_gem_object *obj;
3120
3121                 obj = list_first_entry(&engine->active_list,
3122                                        struct drm_i915_gem_object,
3123                                        engine_list[engine->id]);
3124
3125                 i915_gem_object_retire__read(obj, engine->id);
3126         }
3127
3128         /*
3129          * Clear the execlists queue up before freeing the requests, as those
3130          * are the ones that keep the context and ringbuffer backing objects
3131          * pinned in place.
3132          */
3133
3134         if (i915.enable_execlists) {
3135                 /* Ensure irq handler finishes or is cancelled. */
3136                 tasklet_kill(&engine->irq_tasklet);
3137
3138                 intel_execlists_cancel_requests(engine);
3139         }
3140
3141         /*
3142          * We must free the requests after all the corresponding objects have
3143          * been moved off active lists. Which is the same order as the normal
3144          * retire_requests function does. This is important if object hold
3145          * implicit references on things like e.g. ppgtt address spaces through
3146          * the request.
3147          */
3148         while (!list_empty(&engine->request_list)) {
3149                 struct drm_i915_gem_request *request;
3150
3151                 request = list_first_entry(&engine->request_list,
3152                                            struct drm_i915_gem_request,
3153                                            list);
3154
3155                 i915_gem_request_retire(request);
3156         }
3157
3158         /* Having flushed all requests from all queues, we know that all
3159          * ringbuffers must now be empty. However, since we do not reclaim
3160          * all space when retiring the request (to prevent HEADs colliding
3161          * with rapid ringbuffer wraparound) the amount of available space
3162          * upon reset is less than when we start. Do one more pass over
3163          * all the ringbuffers to reset last_retired_head.
3164          */
3165         list_for_each_entry(buffer, &engine->buffers, link) {
3166                 buffer->last_retired_head = buffer->tail;
3167                 intel_ring_update_space(buffer);
3168         }
3169
3170         intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3171 }
3172
3173 void i915_gem_reset(struct drm_device *dev)
3174 {
3175         struct drm_i915_private *dev_priv = dev->dev_private;
3176         struct intel_engine_cs *engine;
3177
3178         /*
3179          * Before we free the objects from the requests, we need to inspect
3180          * them for finding the guilty party. As the requests only borrow
3181          * their reference to the objects, the inspection must be done first.
3182          */
3183         for_each_engine(engine, dev_priv)
3184                 i915_gem_reset_engine_status(dev_priv, engine);
3185
3186         for_each_engine(engine, dev_priv)
3187                 i915_gem_reset_engine_cleanup(dev_priv, engine);
3188
3189         i915_gem_context_reset(dev);
3190
3191         i915_gem_restore_fences(dev);
3192
3193         WARN_ON(i915_verify_lists(dev));
3194 }
3195
3196 /**
3197  * This function clears the request list as sequence numbers are passed.
3198  * @engine: engine to retire requests on
3199  */
3200 void
3201 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3202 {
3203         WARN_ON(i915_verify_lists(engine->dev));
3204
3205         /* Retire requests first as we use it above for the early return.
3206          * If we retire requests last, we may use a later seqno and so clear
3207          * the requests lists without clearing the active list, leading to
3208          * confusion.
3209          */
3210         while (!list_empty(&engine->request_list)) {
3211                 struct drm_i915_gem_request *request;
3212
3213                 request = list_first_entry(&engine->request_list,
3214                                            struct drm_i915_gem_request,
3215                                            list);
3216
3217                 if (!i915_gem_request_completed(request, true))
3218                         break;
3219
3220                 i915_gem_request_retire(request);
3221         }
3222
3223         /* Move any buffers on the active list that are no longer referenced
3224          * by the ringbuffer to the flushing/inactive lists as appropriate,
3225          * before we free the context associated with the requests.
3226          */
3227         while (!list_empty(&engine->active_list)) {
3228                 struct drm_i915_gem_object *obj;
3229
3230                 obj = list_first_entry(&engine->active_list,
3231                                        struct drm_i915_gem_object,
3232                                        engine_list[engine->id]);
3233
3234                 if (!list_empty(&obj->last_read_req[engine->id]->list))
3235                         break;
3236
3237                 i915_gem_object_retire__read(obj, engine->id);
3238         }
3239
3240         if (unlikely(engine->trace_irq_req &&
3241                      i915_gem_request_completed(engine->trace_irq_req, true))) {
3242                 engine->irq_put(engine);
3243                 i915_gem_request_assign(&engine->trace_irq_req, NULL);
3244         }
3245
3246         WARN_ON(i915_verify_lists(engine->dev));
3247 }
3248
3249 bool
3250 i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3251 {
3252         struct intel_engine_cs *engine;
3253         bool idle = true;
3254
3255         for_each_engine(engine, dev_priv) {
3256                 i915_gem_retire_requests_ring(engine);
3257                 idle &= list_empty(&engine->request_list);
3258                 if (i915.enable_execlists) {
3259                         spin_lock_bh(&engine->execlist_lock);
3260                         idle &= list_empty(&engine->execlist_queue);
3261                         spin_unlock_bh(&engine->execlist_lock);
3262                 }
3263         }
3264
3265         if (idle)
3266                 mod_delayed_work(dev_priv->wq,
3267                                    &dev_priv->mm.idle_work,
3268                                    msecs_to_jiffies(100));
3269
3270         return idle;
3271 }
3272
3273 static void
3274 i915_gem_retire_work_handler(struct work_struct *work)
3275 {
3276         struct drm_i915_private *dev_priv =
3277                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3278         struct drm_device *dev = dev_priv->dev;
3279         bool idle;
3280
3281         /* Come back later if the device is busy... */
3282         idle = false;
3283         if (mutex_trylock(&dev->struct_mutex)) {
3284                 idle = i915_gem_retire_requests(dev_priv);
3285                 mutex_unlock(&dev->struct_mutex);
3286         }
3287         if (!idle)
3288                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3289                                    round_jiffies_up_relative(HZ));
3290 }
3291
3292 static void
3293 i915_gem_idle_work_handler(struct work_struct *work)
3294 {
3295         struct drm_i915_private *dev_priv =
3296                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3297         struct drm_device *dev = dev_priv->dev;
3298         struct intel_engine_cs *engine;
3299
3300         for_each_engine(engine, dev_priv)
3301                 if (!list_empty(&engine->request_list))
3302                         return;
3303
3304         /* we probably should sync with hangcheck here, using cancel_work_sync.
3305          * Also locking seems to be fubar here, engine->request_list is protected
3306          * by dev->struct_mutex. */
3307
3308         intel_mark_idle(dev_priv);
3309
3310         if (mutex_trylock(&dev->struct_mutex)) {
3311                 for_each_engine(engine, dev_priv)
3312                         i915_gem_batch_pool_fini(&engine->batch_pool);
3313
3314                 mutex_unlock(&dev->struct_mutex);
3315         }
3316 }
3317
3318 /**
3319  * Ensures that an object will eventually get non-busy by flushing any required
3320  * write domains, emitting any outstanding lazy request and retiring and
3321  * completed requests.
3322  * @obj: object to flush
3323  */
3324 static int
3325 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3326 {
3327         int i;
3328
3329         if (!obj->active)
3330                 return 0;
3331
3332         for (i = 0; i < I915_NUM_ENGINES; i++) {
3333                 struct drm_i915_gem_request *req;
3334
3335                 req = obj->last_read_req[i];
3336                 if (req == NULL)
3337                         continue;
3338
3339                 if (i915_gem_request_completed(req, true))
3340                         i915_gem_object_retire__read(obj, i);
3341         }
3342
3343         return 0;
3344 }
3345
3346 /**
3347  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3348  * @dev: drm device pointer
3349  * @data: ioctl data blob
3350  * @file: drm file pointer
3351  *
3352  * Returns 0 if successful, else an error is returned with the remaining time in
3353  * the timeout parameter.
3354  *  -ETIME: object is still busy after timeout
3355  *  -ERESTARTSYS: signal interrupted the wait
3356  *  -ENONENT: object doesn't exist
3357  * Also possible, but rare:
3358  *  -EAGAIN: GPU wedged
3359  *  -ENOMEM: damn
3360  *  -ENODEV: Internal IRQ fail
3361  *  -E?: The add request failed
3362  *
3363  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3364  * non-zero timeout parameter the wait ioctl will wait for the given number of
3365  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3366  * without holding struct_mutex the object may become re-busied before this
3367  * function completes. A similar but shorter * race condition exists in the busy
3368  * ioctl
3369  */
3370 int
3371 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3372 {
3373         struct drm_i915_gem_wait *args = data;
3374         struct drm_i915_gem_object *obj;
3375         struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3376         int i, n = 0;
3377         int ret;
3378
3379         if (args->flags != 0)
3380                 return -EINVAL;
3381
3382         ret = i915_mutex_lock_interruptible(dev);
3383         if (ret)
3384                 return ret;
3385
3386         obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3387         if (&obj->base == NULL) {
3388                 mutex_unlock(&dev->struct_mutex);
3389                 return -ENOENT;
3390         }
3391
3392         /* Need to make sure the object gets inactive eventually. */
3393         ret = i915_gem_object_flush_active(obj);
3394         if (ret)
3395                 goto out;
3396
3397         if (!obj->active)
3398                 goto out;
3399
3400         /* Do this after OLR check to make sure we make forward progress polling
3401          * on this IOCTL with a timeout == 0 (like busy ioctl)
3402          */
3403         if (args->timeout_ns == 0) {
3404                 ret = -ETIME;
3405                 goto out;
3406         }
3407
3408         drm_gem_object_unreference(&obj->base);
3409
3410         for (i = 0; i < I915_NUM_ENGINES; i++) {
3411                 if (obj->last_read_req[i] == NULL)
3412                         continue;
3413
3414                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3415         }
3416
3417         mutex_unlock(&dev->struct_mutex);
3418
3419         for (i = 0; i < n; i++) {
3420                 if (ret == 0)
3421                         ret = __i915_wait_request(req[i], true,
3422                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3423                                                   to_rps_client(file));
3424                 i915_gem_request_unreference(req[i]);
3425         }
3426         return ret;
3427
3428 out:
3429         drm_gem_object_unreference(&obj->base);
3430         mutex_unlock(&dev->struct_mutex);
3431         return ret;
3432 }
3433
3434 static int
3435 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3436                        struct intel_engine_cs *to,
3437                        struct drm_i915_gem_request *from_req,
3438                        struct drm_i915_gem_request **to_req)
3439 {
3440         struct intel_engine_cs *from;
3441         int ret;
3442
3443         from = i915_gem_request_get_engine(from_req);
3444         if (to == from)
3445                 return 0;
3446
3447         if (i915_gem_request_completed(from_req, true))
3448                 return 0;
3449
3450         if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3451                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3452                 ret = __i915_wait_request(from_req,
3453                                           i915->mm.interruptible,
3454                                           NULL,
3455                                           &i915->rps.semaphores);
3456                 if (ret)
3457                         return ret;
3458
3459                 i915_gem_object_retire_request(obj, from_req);
3460         } else {
3461                 int idx = intel_ring_sync_index(from, to);
3462                 u32 seqno = i915_gem_request_get_seqno(from_req);
3463
3464                 WARN_ON(!to_req);
3465
3466                 if (seqno <= from->semaphore.sync_seqno[idx])
3467                         return 0;
3468
3469                 if (*to_req == NULL) {
3470                         struct drm_i915_gem_request *req;
3471
3472                         req = i915_gem_request_alloc(to, NULL);
3473                         if (IS_ERR(req))
3474                                 return PTR_ERR(req);
3475
3476                         *to_req = req;
3477                 }
3478
3479                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3480                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3481                 if (ret)
3482                         return ret;
3483
3484                 /* We use last_read_req because sync_to()
3485                  * might have just caused seqno wrap under
3486                  * the radar.
3487                  */
3488                 from->semaphore.sync_seqno[idx] =
3489                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3490         }
3491
3492         return 0;
3493 }
3494
3495 /**
3496  * i915_gem_object_sync - sync an object to a ring.
3497  *
3498  * @obj: object which may be in use on another ring.
3499  * @to: ring we wish to use the object on. May be NULL.
3500  * @to_req: request we wish to use the object for. See below.
3501  *          This will be allocated and returned if a request is
3502  *          required but not passed in.
3503  *
3504  * This code is meant to abstract object synchronization with the GPU.
3505  * Calling with NULL implies synchronizing the object with the CPU
3506  * rather than a particular GPU ring. Conceptually we serialise writes
3507  * between engines inside the GPU. We only allow one engine to write
3508  * into a buffer at any time, but multiple readers. To ensure each has
3509  * a coherent view of memory, we must:
3510  *
3511  * - If there is an outstanding write request to the object, the new
3512  *   request must wait for it to complete (either CPU or in hw, requests
3513  *   on the same ring will be naturally ordered).
3514  *
3515  * - If we are a write request (pending_write_domain is set), the new
3516  *   request must wait for outstanding read requests to complete.
3517  *
3518  * For CPU synchronisation (NULL to) no request is required. For syncing with
3519  * rings to_req must be non-NULL. However, a request does not have to be
3520  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3521  * request will be allocated automatically and returned through *to_req. Note
3522  * that it is not guaranteed that commands will be emitted (because the system
3523  * might already be idle). Hence there is no need to create a request that
3524  * might never have any work submitted. Note further that if a request is
3525  * returned in *to_req, it is the responsibility of the caller to submit
3526  * that request (after potentially adding more work to it).
3527  *
3528  * Returns 0 if successful, else propagates up the lower layer error.
3529  */
3530 int
3531 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3532                      struct intel_engine_cs *to,
3533                      struct drm_i915_gem_request **to_req)
3534 {
3535         const bool readonly = obj->base.pending_write_domain == 0;
3536         struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3537         int ret, i, n;
3538
3539         if (!obj->active)
3540                 return 0;
3541
3542         if (to == NULL)
3543                 return i915_gem_object_wait_rendering(obj, readonly);
3544
3545         n = 0;
3546         if (readonly) {
3547                 if (obj->last_write_req)
3548                         req[n++] = obj->last_write_req;
3549         } else {
3550                 for (i = 0; i < I915_NUM_ENGINES; i++)
3551                         if (obj->last_read_req[i])
3552                                 req[n++] = obj->last_read_req[i];
3553         }
3554         for (i = 0; i < n; i++) {
3555                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3556                 if (ret)
3557                         return ret;
3558         }
3559
3560         return 0;
3561 }
3562
3563 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3564 {
3565         u32 old_write_domain, old_read_domains;
3566
3567         /* Force a pagefault for domain tracking on next user access */
3568         i915_gem_release_mmap(obj);
3569
3570         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3571                 return;
3572
3573         old_read_domains = obj->base.read_domains;
3574         old_write_domain = obj->base.write_domain;
3575
3576         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3577         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3578
3579         trace_i915_gem_object_change_domain(obj,
3580                                             old_read_domains,
3581                                             old_write_domain);
3582 }
3583
3584 static void __i915_vma_iounmap(struct i915_vma *vma)
3585 {
3586         GEM_BUG_ON(vma->pin_count);
3587
3588         if (vma->iomap == NULL)
3589                 return;
3590
3591         io_mapping_unmap(vma->iomap);
3592         vma->iomap = NULL;
3593 }
3594
3595 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3596 {
3597         struct drm_i915_gem_object *obj = vma->obj;
3598         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3599         int ret;
3600
3601         if (list_empty(&vma->obj_link))
3602                 return 0;
3603
3604         if (!drm_mm_node_allocated(&vma->node)) {
3605                 i915_gem_vma_destroy(vma);
3606                 return 0;
3607         }
3608
3609         if (vma->pin_count)
3610                 return -EBUSY;
3611
3612         BUG_ON(obj->pages == NULL);
3613
3614         if (wait) {
3615                 ret = i915_gem_object_wait_rendering(obj, false);
3616                 if (ret)
3617                         return ret;
3618         }
3619
3620         if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3621                 i915_gem_object_finish_gtt(obj);
3622
3623                 /* release the fence reg _after_ flushing */
3624                 ret = i915_gem_object_put_fence(obj);
3625                 if (ret)
3626                         return ret;
3627
3628                 __i915_vma_iounmap(vma);
3629         }
3630
3631         trace_i915_vma_unbind(vma);
3632
3633         vma->vm->unbind_vma(vma);
3634         vma->bound = 0;
3635
3636         list_del_init(&vma->vm_link);
3637         if (vma->is_ggtt) {
3638                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3639                         obj->map_and_fenceable = false;
3640                 } else if (vma->ggtt_view.pages) {
3641                         sg_free_table(vma->ggtt_view.pages);
3642                         kfree(vma->ggtt_view.pages);
3643                 }
3644                 vma->ggtt_view.pages = NULL;
3645         }
3646
3647         drm_mm_remove_node(&vma->node);
3648         i915_gem_vma_destroy(vma);
3649
3650         /* Since the unbound list is global, only move to that list if
3651          * no more VMAs exist. */
3652         if (list_empty(&obj->vma_list))
3653                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3654
3655         /* And finally now the object is completely decoupled from this vma,
3656          * we can drop its hold on the backing storage and allow it to be
3657          * reaped by the shrinker.
3658          */
3659         i915_gem_object_unpin_pages(obj);
3660
3661         return 0;
3662 }
3663
3664 int i915_vma_unbind(struct i915_vma *vma)
3665 {
3666         return __i915_vma_unbind(vma, true);
3667 }
3668
3669 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3670 {
3671         return __i915_vma_unbind(vma, false);
3672 }
3673
3674 int i915_gpu_idle(struct drm_device *dev)
3675 {
3676         struct drm_i915_private *dev_priv = dev->dev_private;
3677         struct intel_engine_cs *engine;
3678         int ret;
3679
3680         for_each_engine(engine, dev_priv) {
3681                 if (engine->last_context == NULL)
3682                         continue;
3683
3684                 if (!i915.enable_execlists) {
3685                         struct drm_i915_gem_request *req;
3686
3687                         req = i915_gem_request_alloc(engine, NULL);
3688                         if (IS_ERR(req))
3689                                 return PTR_ERR(req);
3690
3691                         ret = i915_switch_context(req);
3692                         i915_add_request_no_flush(req);
3693                         if (ret)
3694                                 return ret;
3695                 }
3696
3697                 ret = intel_engine_idle(engine);
3698                 if (ret)
3699                         return ret;
3700         }
3701
3702         WARN_ON(i915_verify_lists(dev));
3703         return 0;
3704 }
3705
3706 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3707                                      unsigned long cache_level)
3708 {
3709         struct drm_mm_node *gtt_space = &vma->node;
3710         struct drm_mm_node *other;
3711
3712         /*
3713          * On some machines we have to be careful when putting differing types
3714          * of snoopable memory together to avoid the prefetcher crossing memory
3715          * domains and dying. During vm initialisation, we decide whether or not
3716          * these constraints apply and set the drm_mm.color_adjust
3717          * appropriately.
3718          */
3719         if (vma->vm->mm.color_adjust == NULL)
3720                 return true;
3721
3722         if (!drm_mm_node_allocated(gtt_space))
3723                 return true;
3724
3725         if (list_empty(&gtt_space->node_list))
3726                 return true;
3727
3728         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3729         if (other->allocated && !other->hole_follows && other->color != cache_level)
3730                 return false;
3731
3732         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3733         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3734                 return false;
3735
3736         return true;
3737 }
3738
3739 /**
3740  * Finds free space in the GTT aperture and binds the object or a view of it
3741  * there.
3742  * @obj: object to bind
3743  * @vm: address space to bind into
3744  * @ggtt_view: global gtt view if applicable
3745  * @alignment: requested alignment
3746  * @flags: mask of PIN_* flags to use
3747  */
3748 static struct i915_vma *
3749 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3750                            struct i915_address_space *vm,
3751                            const struct i915_ggtt_view *ggtt_view,
3752                            unsigned alignment,
3753                            uint64_t flags)
3754 {
3755         struct drm_device *dev = obj->base.dev;
3756         struct drm_i915_private *dev_priv = to_i915(dev);
3757         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3758         u32 fence_alignment, unfenced_alignment;
3759         u32 search_flag, alloc_flag;
3760         u64 start, end;
3761         u64 size, fence_size;
3762         struct i915_vma *vma;
3763         int ret;
3764
3765         if (i915_is_ggtt(vm)) {
3766                 u32 view_size;
3767
3768                 if (WARN_ON(!ggtt_view))
3769                         return ERR_PTR(-EINVAL);
3770
3771                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3772
3773                 fence_size = i915_gem_get_gtt_size(dev,
3774                                                    view_size,
3775                                                    obj->tiling_mode);
3776                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3777                                                              view_size,
3778                                                              obj->tiling_mode,
3779                                                              true);
3780                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3781                                                                 view_size,
3782                                                                 obj->tiling_mode,
3783                                                                 false);
3784                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3785         } else {
3786                 fence_size = i915_gem_get_gtt_size(dev,
3787                                                    obj->base.size,
3788                                                    obj->tiling_mode);
3789                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3790                                                              obj->base.size,
3791                                                              obj->tiling_mode,
3792                                                              true);
3793                 unfenced_alignment =
3794                         i915_gem_get_gtt_alignment(dev,
3795                                                    obj->base.size,
3796                                                    obj->tiling_mode,
3797                                                    false);
3798                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3799         }
3800
3801         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3802         end = vm->total;
3803         if (flags & PIN_MAPPABLE)
3804                 end = min_t(u64, end, ggtt->mappable_end);
3805         if (flags & PIN_ZONE_4G)
3806                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3807
3808         if (alignment == 0)
3809                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3810                                                 unfenced_alignment;
3811         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3812                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3813                           ggtt_view ? ggtt_view->type : 0,
3814                           alignment);
3815                 return ERR_PTR(-EINVAL);
3816         }
3817
3818         /* If binding the object/GGTT view requires more space than the entire
3819          * aperture has, reject it early before evicting everything in a vain
3820          * attempt to find space.
3821          */
3822         if (size > end) {
3823                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3824                           ggtt_view ? ggtt_view->type : 0,
3825                           size,
3826                           flags & PIN_MAPPABLE ? "mappable" : "total",
3827                           end);
3828                 return ERR_PTR(-E2BIG);
3829         }
3830
3831         ret = i915_gem_object_get_pages(obj);
3832         if (ret)
3833                 return ERR_PTR(ret);
3834
3835         i915_gem_object_pin_pages(obj);
3836
3837         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3838                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3839
3840         if (IS_ERR(vma))
3841                 goto err_unpin;
3842
3843         if (flags & PIN_OFFSET_FIXED) {
3844                 uint64_t offset = flags & PIN_OFFSET_MASK;
3845
3846                 if (offset & (alignment - 1) || offset + size > end) {
3847                         ret = -EINVAL;
3848                         goto err_free_vma;
3849                 }
3850                 vma->node.start = offset;
3851                 vma->node.size = size;
3852                 vma->node.color = obj->cache_level;
3853                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3854                 if (ret) {
3855                         ret = i915_gem_evict_for_vma(vma);
3856                         if (ret == 0)
3857                                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3858                 }
3859                 if (ret)
3860                         goto err_free_vma;
3861         } else {
3862                 if (flags & PIN_HIGH) {
3863                         search_flag = DRM_MM_SEARCH_BELOW;
3864                         alloc_flag = DRM_MM_CREATE_TOP;
3865                 } else {
3866                         search_flag = DRM_MM_SEARCH_DEFAULT;
3867                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3868                 }
3869
3870 search_free:
3871                 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3872                                                           size, alignment,
3873                                                           obj->cache_level,
3874                                                           start, end,
3875                                                           search_flag,
3876                                                           alloc_flag);
3877                 if (ret) {
3878                         ret = i915_gem_evict_something(dev, vm, size, alignment,
3879                                                        obj->cache_level,
3880                                                        start, end,
3881                                                        flags);
3882                         if (ret == 0)
3883                                 goto search_free;
3884
3885                         goto err_free_vma;
3886                 }
3887         }
3888         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3889                 ret = -EINVAL;
3890                 goto err_remove_node;
3891         }
3892
3893         trace_i915_vma_bind(vma, flags);
3894         ret = i915_vma_bind(vma, obj->cache_level, flags);
3895         if (ret)
3896                 goto err_remove_node;
3897
3898         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3899         list_add_tail(&vma->vm_link, &vm->inactive_list);
3900
3901         return vma;
3902
3903 err_remove_node:
3904         drm_mm_remove_node(&vma->node);
3905 err_free_vma:
3906         i915_gem_vma_destroy(vma);
3907         vma = ERR_PTR(ret);
3908 err_unpin:
3909         i915_gem_object_unpin_pages(obj);
3910         return vma;
3911 }
3912
3913 bool
3914 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3915                         bool force)
3916 {
3917         /* If we don't have a page list set up, then we're not pinned
3918          * to GPU, and we can ignore the cache flush because it'll happen
3919          * again at bind time.
3920          */
3921         if (obj->pages == NULL)
3922                 return false;
3923
3924         /*
3925          * Stolen memory is always coherent with the GPU as it is explicitly
3926          * marked as wc by the system, or the system is cache-coherent.
3927          */
3928         if (obj->stolen || obj->phys_handle)
3929                 return false;
3930
3931         /* If the GPU is snooping the contents of the CPU cache,
3932          * we do not need to manually clear the CPU cache lines.  However,
3933          * the caches are only snooped when the render cache is
3934          * flushed/invalidated.  As we always have to emit invalidations
3935          * and flushes when moving into and out of the RENDER domain, correct
3936          * snooping behaviour occurs naturally as the result of our domain
3937          * tracking.
3938          */
3939         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3940                 obj->cache_dirty = true;
3941                 return false;
3942         }
3943
3944         trace_i915_gem_object_clflush(obj);
3945         drm_clflush_sg(obj->pages);
3946         obj->cache_dirty = false;
3947
3948         return true;
3949 }
3950
3951 /** Flushes the GTT write domain for the object if it's dirty. */
3952 static void
3953 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3954 {
3955         uint32_t old_write_domain;
3956
3957         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3958                 return;
3959
3960         /* No actual flushing is required for the GTT write domain.  Writes
3961          * to it immediately go to main memory as far as we know, so there's
3962          * no chipset flush.  It also doesn't land in render cache.
3963          *
3964          * However, we do have to enforce the order so that all writes through
3965          * the GTT land before any writes to the device, such as updates to
3966          * the GATT itself.
3967          */
3968         wmb();
3969
3970         old_write_domain = obj->base.write_domain;
3971         obj->base.write_domain = 0;
3972
3973         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3974
3975         trace_i915_gem_object_change_domain(obj,
3976                                             obj->base.read_domains,
3977                                             old_write_domain);
3978 }
3979
3980 /** Flushes the CPU write domain for the object if it's dirty. */
3981 static void
3982 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3983 {
3984         uint32_t old_write_domain;
3985
3986         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3987                 return;
3988
3989         if (i915_gem_clflush_object(obj, obj->pin_display))
3990                 i915_gem_chipset_flush(to_i915(obj->base.dev));
3991
3992         old_write_domain = obj->base.write_domain;
3993         obj->base.write_domain = 0;
3994
3995         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3996
3997         trace_i915_gem_object_change_domain(obj,
3998                                             obj->base.read_domains,
3999                                             old_write_domain);
4000 }
4001
4002 /**
4003  * Moves a single object to the GTT read, and possibly write domain.
4004  * @obj: object to act on
4005  * @write: ask for write access or read only
4006  *
4007  * This function returns when the move is complete, including waiting on
4008  * flushes to occur.
4009  */
4010 int
4011 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4012 {
4013         struct drm_device *dev = obj->base.dev;
4014         struct drm_i915_private *dev_priv = to_i915(dev);
4015         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4016         uint32_t old_write_domain, old_read_domains;
4017         struct i915_vma *vma;
4018         int ret;
4019
4020         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4021                 return 0;
4022
4023         ret = i915_gem_object_wait_rendering(obj, !write);
4024         if (ret)
4025                 return ret;
4026
4027         /* Flush and acquire obj->pages so that we are coherent through
4028          * direct access in memory with previous cached writes through
4029          * shmemfs and that our cache domain tracking remains valid.
4030          * For example, if the obj->filp was moved to swap without us
4031          * being notified and releasing the pages, we would mistakenly
4032          * continue to assume that the obj remained out of the CPU cached
4033          * domain.
4034          */
4035         ret = i915_gem_object_get_pages(obj);
4036         if (ret)
4037                 return ret;
4038
4039         i915_gem_object_flush_cpu_write_domain(obj);
4040
4041         /* Serialise direct access to this object with the barriers for
4042          * coherent writes from the GPU, by effectively invalidating the
4043          * GTT domain upon first access.
4044          */
4045         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4046                 mb();
4047
4048         old_write_domain = obj->base.write_domain;
4049         old_read_domains = obj->base.read_domains;
4050
4051         /* It should now be out of any other write domains, and we can update
4052          * the domain values for our changes.
4053          */
4054         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4055         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4056         if (write) {
4057                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4058                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4059                 obj->dirty = 1;
4060         }
4061
4062         trace_i915_gem_object_change_domain(obj,
4063                                             old_read_domains,
4064                                             old_write_domain);
4065
4066         /* And bump the LRU for this access */
4067         vma = i915_gem_obj_to_ggtt(obj);
4068         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4069                 list_move_tail(&vma->vm_link,
4070                                &ggtt->base.inactive_list);
4071
4072         return 0;
4073 }
4074
4075 /**
4076  * Changes the cache-level of an object across all VMA.
4077  * @obj: object to act on
4078  * @cache_level: new cache level to set for the object
4079  *
4080  * After this function returns, the object will be in the new cache-level
4081  * across all GTT and the contents of the backing storage will be coherent,
4082  * with respect to the new cache-level. In order to keep the backing storage
4083  * coherent for all users, we only allow a single cache level to be set
4084  * globally on the object and prevent it from being changed whilst the
4085  * hardware is reading from the object. That is if the object is currently
4086  * on the scanout it will be set to uncached (or equivalent display
4087  * cache coherency) and all non-MOCS GPU access will also be uncached so
4088  * that all direct access to the scanout remains coherent.
4089  */
4090 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4091                                     enum i915_cache_level cache_level)
4092 {
4093         struct drm_device *dev = obj->base.dev;
4094         struct i915_vma *vma, *next;
4095         bool bound = false;
4096         int ret = 0;
4097
4098         if (obj->cache_level == cache_level)
4099                 goto out;
4100
4101         /* Inspect the list of currently bound VMA and unbind any that would
4102          * be invalid given the new cache-level. This is principally to
4103          * catch the issue of the CS prefetch crossing page boundaries and
4104          * reading an invalid PTE on older architectures.
4105          */
4106         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4107                 if (!drm_mm_node_allocated(&vma->node))
4108                         continue;
4109
4110                 if (vma->pin_count) {
4111                         DRM_DEBUG("can not change the cache level of pinned objects\n");
4112                         return -EBUSY;
4113                 }
4114
4115                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4116                         ret = i915_vma_unbind(vma);
4117                         if (ret)
4118                                 return ret;
4119                 } else
4120                         bound = true;
4121         }
4122
4123         /* We can reuse the existing drm_mm nodes but need to change the
4124          * cache-level on the PTE. We could simply unbind them all and
4125          * rebind with the correct cache-level on next use. However since
4126          * we already have a valid slot, dma mapping, pages etc, we may as
4127          * rewrite the PTE in the belief that doing so tramples upon less
4128          * state and so involves less work.
4129          */
4130         if (bound) {
4131                 /* Before we change the PTE, the GPU must not be accessing it.
4132                  * If we wait upon the object, we know that all the bound
4133                  * VMA are no longer active.
4134                  */
4135                 ret = i915_gem_object_wait_rendering(obj, false);
4136                 if (ret)
4137                         return ret;
4138
4139                 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
4140                         /* Access to snoopable pages through the GTT is
4141                          * incoherent and on some machines causes a hard
4142                          * lockup. Relinquish the CPU mmaping to force
4143                          * userspace to refault in the pages and we can
4144                          * then double check if the GTT mapping is still
4145                          * valid for that pointer access.
4146                          */
4147                         i915_gem_release_mmap(obj);
4148
4149                         /* As we no longer need a fence for GTT access,
4150                          * we can relinquish it now (and so prevent having
4151                          * to steal a fence from someone else on the next
4152                          * fence request). Note GPU activity would have
4153                          * dropped the fence as all snoopable access is
4154                          * supposed to be linear.
4155                          */
4156                         ret = i915_gem_object_put_fence(obj);
4157                         if (ret)
4158                                 return ret;
4159                 } else {
4160                         /* We either have incoherent backing store and
4161                          * so no GTT access or the architecture is fully
4162                          * coherent. In such cases, existing GTT mmaps
4163                          * ignore the cache bit in the PTE and we can
4164                          * rewrite it without confusing the GPU or having
4165                          * to force userspace to fault back in its mmaps.
4166                          */
4167                 }
4168
4169                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4170                         if (!drm_mm_node_allocated(&vma->node))
4171                                 continue;
4172
4173                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4174                         if (ret)
4175                                 return ret;
4176                 }
4177         }
4178
4179         list_for_each_entry(vma, &obj->vma_list, obj_link)
4180                 vma->node.color = cache_level;
4181         obj->cache_level = cache_level;
4182
4183 out:
4184         /* Flush the dirty CPU caches to the backing storage so that the
4185          * object is now coherent at its new cache level (with respect
4186          * to the access domain).
4187          */
4188         if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
4189                 if (i915_gem_clflush_object(obj, true))
4190                         i915_gem_chipset_flush(to_i915(obj->base.dev));
4191         }
4192
4193         return 0;
4194 }
4195
4196 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4197                                struct drm_file *file)
4198 {
4199         struct drm_i915_gem_caching *args = data;
4200         struct drm_i915_gem_object *obj;
4201
4202         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4203         if (&obj->base == NULL)
4204                 return -ENOENT;
4205
4206         switch (obj->cache_level) {
4207         case I915_CACHE_LLC:
4208         case I915_CACHE_L3_LLC:
4209                 args->caching = I915_CACHING_CACHED;
4210                 break;
4211
4212         case I915_CACHE_WT:
4213                 args->caching = I915_CACHING_DISPLAY;
4214                 break;
4215
4216         default:
4217                 args->caching = I915_CACHING_NONE;
4218                 break;
4219         }
4220
4221         drm_gem_object_unreference_unlocked(&obj->base);
4222         return 0;
4223 }
4224
4225 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4226                                struct drm_file *file)
4227 {
4228         struct drm_i915_private *dev_priv = dev->dev_private;
4229         struct drm_i915_gem_caching *args = data;
4230         struct drm_i915_gem_object *obj;
4231         enum i915_cache_level level;
4232         int ret;
4233
4234         switch (args->caching) {
4235         case I915_CACHING_NONE:
4236                 level = I915_CACHE_NONE;
4237                 break;
4238         case I915_CACHING_CACHED:
4239                 /*
4240                  * Due to a HW issue on BXT A stepping, GPU stores via a
4241                  * snooped mapping may leave stale data in a corresponding CPU
4242                  * cacheline, whereas normally such cachelines would get
4243                  * invalidated.
4244                  */
4245                 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4246                         return -ENODEV;
4247
4248                 level = I915_CACHE_LLC;
4249                 break;
4250         case I915_CACHING_DISPLAY:
4251                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4252                 break;
4253         default:
4254                 return -EINVAL;
4255         }
4256
4257         intel_runtime_pm_get(dev_priv);
4258
4259         ret = i915_mutex_lock_interruptible(dev);
4260         if (ret)
4261                 goto rpm_put;
4262
4263         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4264         if (&obj->base == NULL) {
4265                 ret = -ENOENT;
4266                 goto unlock;
4267         }
4268
4269         ret = i915_gem_object_set_cache_level(obj, level);
4270
4271         drm_gem_object_unreference(&obj->base);
4272 unlock:
4273         mutex_unlock(&dev->struct_mutex);
4274 rpm_put:
4275         intel_runtime_pm_put(dev_priv);
4276
4277         return ret;
4278 }
4279
4280 /*
4281  * Prepare buffer for display plane (scanout, cursors, etc).
4282  * Can be called from an uninterruptible phase (modesetting) and allows
4283  * any flushes to be pipelined (for pageflips).
4284  */
4285 int
4286 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4287                                      u32 alignment,
4288                                      const struct i915_ggtt_view *view)
4289 {
4290         u32 old_read_domains, old_write_domain;
4291         int ret;
4292
4293         /* Mark the pin_display early so that we account for the
4294          * display coherency whilst setting up the cache domains.
4295          */
4296         obj->pin_display++;
4297
4298         /* The display engine is not coherent with the LLC cache on gen6.  As
4299          * a result, we make sure that the pinning that is about to occur is
4300          * done with uncached PTEs. This is lowest common denominator for all
4301          * chipsets.
4302          *
4303          * However for gen6+, we could do better by using the GFDT bit instead
4304          * of uncaching, which would allow us to flush all the LLC-cached data
4305          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4306          */
4307         ret = i915_gem_object_set_cache_level(obj,
4308                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4309         if (ret)
4310                 goto err_unpin_display;
4311
4312         /* As the user may map the buffer once pinned in the display plane
4313          * (e.g. libkms for the bootup splash), we have to ensure that we
4314          * always use map_and_fenceable for all scanout buffers.
4315          */
4316         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4317                                        view->type == I915_GGTT_VIEW_NORMAL ?
4318                                        PIN_MAPPABLE : 0);
4319         if (ret)
4320                 goto err_unpin_display;
4321
4322         i915_gem_object_flush_cpu_write_domain(obj);
4323
4324         old_write_domain = obj->base.write_domain;
4325         old_read_domains = obj->base.read_domains;
4326
4327         /* It should now be out of any other write domains, and we can update
4328          * the domain values for our changes.
4329          */
4330         obj->base.write_domain = 0;
4331         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4332
4333         trace_i915_gem_object_change_domain(obj,
4334                                             old_read_domains,
4335                                             old_write_domain);
4336
4337         return 0;
4338
4339 err_unpin_display:
4340         obj->pin_display--;
4341         return ret;
4342 }
4343
4344 void
4345 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4346                                          const struct i915_ggtt_view *view)
4347 {
4348         if (WARN_ON(obj->pin_display == 0))
4349                 return;
4350
4351         i915_gem_object_ggtt_unpin_view(obj, view);
4352
4353         obj->pin_display--;
4354 }
4355
4356 /**
4357  * Moves a single object to the CPU read, and possibly write domain.
4358  * @obj: object to act on
4359  * @write: requesting write or read-only access
4360  *
4361  * This function returns when the move is complete, including waiting on
4362  * flushes to occur.
4363  */
4364 int
4365 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4366 {
4367         uint32_t old_write_domain, old_read_domains;
4368         int ret;
4369
4370         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4371                 return 0;
4372
4373         ret = i915_gem_object_wait_rendering(obj, !write);
4374         if (ret)
4375                 return ret;
4376
4377         i915_gem_object_flush_gtt_write_domain(obj);
4378
4379         old_write_domain = obj->base.write_domain;
4380         old_read_domains = obj->base.read_domains;
4381
4382         /* Flush the CPU cache if it's still invalid. */
4383         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4384                 i915_gem_clflush_object(obj, false);
4385
4386                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4387         }
4388
4389         /* It should now be out of any other write domains, and we can update
4390          * the domain values for our changes.
4391          */
4392         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4393
4394         /* If we're writing through the CPU, then the GPU read domains will
4395          * need to be invalidated at next use.
4396          */
4397         if (write) {
4398                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4399                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4400         }
4401
4402         trace_i915_gem_object_change_domain(obj,
4403                                             old_read_domains,
4404                                             old_write_domain);
4405
4406         return 0;
4407 }
4408
4409 /* Throttle our rendering by waiting until the ring has completed our requests
4410  * emitted over 20 msec ago.
4411  *
4412  * Note that if we were to use the current jiffies each time around the loop,
4413  * we wouldn't escape the function with any frames outstanding if the time to
4414  * render a frame was over 20ms.
4415  *
4416  * This should get us reasonable parallelism between CPU and GPU but also
4417  * relatively low latency when blocking on a particular request to finish.
4418  */
4419 static int
4420 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4421 {
4422         struct drm_i915_private *dev_priv = dev->dev_private;
4423         struct drm_i915_file_private *file_priv = file->driver_priv;
4424         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4425         struct drm_i915_gem_request *request, *target = NULL;
4426         int ret;
4427
4428         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4429         if (ret)
4430                 return ret;
4431
4432         /* ABI: return -EIO if already wedged */
4433         if (i915_terminally_wedged(&dev_priv->gpu_error))
4434                 return -EIO;
4435
4436         spin_lock(&file_priv->mm.lock);
4437         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4438                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4439                         break;
4440
4441                 /*
4442                  * Note that the request might not have been submitted yet.
4443                  * In which case emitted_jiffies will be zero.
4444                  */
4445                 if (!request->emitted_jiffies)
4446                         continue;
4447
4448                 target = request;
4449         }
4450         if (target)
4451                 i915_gem_request_reference(target);
4452         spin_unlock(&file_priv->mm.lock);
4453
4454         if (target == NULL)
4455                 return 0;
4456
4457         ret = __i915_wait_request(target, true, NULL, NULL);
4458         if (ret == 0)
4459                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4460
4461         i915_gem_request_unreference(target);
4462
4463         return ret;
4464 }
4465
4466 static bool
4467 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4468 {
4469         struct drm_i915_gem_object *obj = vma->obj;
4470
4471         if (alignment &&
4472             vma->node.start & (alignment - 1))
4473                 return true;
4474
4475         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4476                 return true;
4477
4478         if (flags & PIN_OFFSET_BIAS &&
4479             vma->node.start < (flags & PIN_OFFSET_MASK))
4480                 return true;
4481
4482         if (flags & PIN_OFFSET_FIXED &&
4483             vma->node.start != (flags & PIN_OFFSET_MASK))
4484                 return true;
4485
4486         return false;
4487 }
4488
4489 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4490 {
4491         struct drm_i915_gem_object *obj = vma->obj;
4492         bool mappable, fenceable;
4493         u32 fence_size, fence_alignment;
4494
4495         fence_size = i915_gem_get_gtt_size(obj->base.dev,
4496                                            obj->base.size,
4497                                            obj->tiling_mode);
4498         fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4499                                                      obj->base.size,
4500                                                      obj->tiling_mode,
4501                                                      true);
4502
4503         fenceable = (vma->node.size == fence_size &&
4504                      (vma->node.start & (fence_alignment - 1)) == 0);
4505
4506         mappable = (vma->node.start + fence_size <=
4507                     to_i915(obj->base.dev)->ggtt.mappable_end);
4508
4509         obj->map_and_fenceable = mappable && fenceable;
4510 }
4511
4512 static int
4513 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4514                        struct i915_address_space *vm,
4515                        const struct i915_ggtt_view *ggtt_view,
4516                        uint32_t alignment,
4517                        uint64_t flags)
4518 {
4519         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4520         struct i915_vma *vma;
4521         unsigned bound;
4522         int ret;
4523
4524         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4525                 return -ENODEV;
4526
4527         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4528                 return -EINVAL;
4529
4530         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4531                 return -EINVAL;
4532
4533         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4534                 return -EINVAL;
4535
4536         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4537                           i915_gem_obj_to_vma(obj, vm);
4538
4539         if (vma) {
4540                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4541                         return -EBUSY;
4542
4543                 if (i915_vma_misplaced(vma, alignment, flags)) {
4544                         WARN(vma->pin_count,
4545                              "bo is already pinned in %s with incorrect alignment:"
4546                              " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4547                              " obj->map_and_fenceable=%d\n",
4548                              ggtt_view ? "ggtt" : "ppgtt",
4549                              upper_32_bits(vma->node.start),
4550                              lower_32_bits(vma->node.start),
4551                              alignment,
4552                              !!(flags & PIN_MAPPABLE),
4553                              obj->map_and_fenceable);
4554                         ret = i915_vma_unbind(vma);
4555                         if (ret)
4556                                 return ret;
4557
4558                         vma = NULL;
4559                 }
4560         }
4561
4562         bound = vma ? vma->bound : 0;
4563         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4564                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4565                                                  flags);
4566                 if (IS_ERR(vma))
4567                         return PTR_ERR(vma);
4568         } else {
4569                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4570                 if (ret)
4571                         return ret;
4572         }
4573
4574         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4575             (bound ^ vma->bound) & GLOBAL_BIND) {
4576                 __i915_vma_set_map_and_fenceable(vma);
4577                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4578         }
4579
4580         vma->pin_count++;
4581         return 0;
4582 }
4583
4584 int
4585 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4586                     struct i915_address_space *vm,
4587                     uint32_t alignment,
4588                     uint64_t flags)
4589 {
4590         return i915_gem_object_do_pin(obj, vm,
4591                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4592                                       alignment, flags);
4593 }
4594
4595 int
4596 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4597                          const struct i915_ggtt_view *view,
4598                          uint32_t alignment,
4599                          uint64_t flags)
4600 {
4601         struct drm_device *dev = obj->base.dev;
4602         struct drm_i915_private *dev_priv = to_i915(dev);
4603         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4604
4605         BUG_ON(!view);
4606
4607         return i915_gem_object_do_pin(obj, &ggtt->base, view,
4608                                       alignment, flags | PIN_GLOBAL);
4609 }
4610
4611 void
4612 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4613                                 const struct i915_ggtt_view *view)
4614 {
4615         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4616
4617         WARN_ON(vma->pin_count == 0);
4618         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4619
4620         --vma->pin_count;
4621 }
4622
4623 int
4624 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4625                     struct drm_file *file)
4626 {
4627         struct drm_i915_gem_busy *args = data;
4628         struct drm_i915_gem_object *obj;
4629         int ret;
4630
4631         ret = i915_mutex_lock_interruptible(dev);
4632         if (ret)
4633                 return ret;
4634
4635         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4636         if (&obj->base == NULL) {
4637                 ret = -ENOENT;
4638                 goto unlock;
4639         }
4640
4641         /* Count all active objects as busy, even if they are currently not used
4642          * by the gpu. Users of this interface expect objects to eventually
4643          * become non-busy without any further actions, therefore emit any
4644          * necessary flushes here.
4645          */
4646         ret = i915_gem_object_flush_active(obj);
4647         if (ret)
4648                 goto unref;
4649
4650         args->busy = 0;
4651         if (obj->active) {
4652                 int i;
4653
4654                 for (i = 0; i < I915_NUM_ENGINES; i++) {
4655                         struct drm_i915_gem_request *req;
4656
4657                         req = obj->last_read_req[i];
4658                         if (req)
4659                                 args->busy |= 1 << (16 + req->engine->exec_id);
4660                 }
4661                 if (obj->last_write_req)
4662                         args->busy |= obj->last_write_req->engine->exec_id;
4663         }
4664
4665 unref:
4666         drm_gem_object_unreference(&obj->base);
4667 unlock:
4668         mutex_unlock(&dev->struct_mutex);
4669         return ret;
4670 }
4671
4672 int
4673 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4674                         struct drm_file *file_priv)
4675 {
4676         return i915_gem_ring_throttle(dev, file_priv);
4677 }
4678
4679 int
4680 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4681                        struct drm_file *file_priv)
4682 {
4683         struct drm_i915_private *dev_priv = dev->dev_private;
4684         struct drm_i915_gem_madvise *args = data;
4685         struct drm_i915_gem_object *obj;
4686         int ret;
4687
4688         switch (args->madv) {
4689         case I915_MADV_DONTNEED:
4690         case I915_MADV_WILLNEED:
4691             break;
4692         default:
4693             return -EINVAL;
4694         }
4695
4696         ret = i915_mutex_lock_interruptible(dev);
4697         if (ret)
4698                 return ret;
4699
4700         obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4701         if (&obj->base == NULL) {
4702                 ret = -ENOENT;
4703                 goto unlock;
4704         }
4705
4706         if (i915_gem_obj_is_pinned(obj)) {
4707                 ret = -EINVAL;
4708                 goto out;
4709         }
4710
4711         if (obj->pages &&
4712             obj->tiling_mode != I915_TILING_NONE &&
4713             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4714                 if (obj->madv == I915_MADV_WILLNEED)
4715                         i915_gem_object_unpin_pages(obj);
4716                 if (args->madv == I915_MADV_WILLNEED)
4717                         i915_gem_object_pin_pages(obj);
4718         }
4719
4720         if (obj->madv != __I915_MADV_PURGED)
4721                 obj->madv = args->madv;
4722
4723         /* if the object is no longer attached, discard its backing storage */
4724         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4725                 i915_gem_object_truncate(obj);
4726
4727         args->retained = obj->madv != __I915_MADV_PURGED;
4728
4729 out:
4730         drm_gem_object_unreference(&obj->base);
4731 unlock:
4732         mutex_unlock(&dev->struct_mutex);
4733         return ret;
4734 }
4735
4736 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4737                           const struct drm_i915_gem_object_ops *ops)
4738 {
4739         int i;
4740
4741         INIT_LIST_HEAD(&obj->global_list);
4742         for (i = 0; i < I915_NUM_ENGINES; i++)
4743                 INIT_LIST_HEAD(&obj->engine_list[i]);
4744         INIT_LIST_HEAD(&obj->obj_exec_link);
4745         INIT_LIST_HEAD(&obj->vma_list);
4746         INIT_LIST_HEAD(&obj->batch_pool_link);
4747
4748         obj->ops = ops;
4749
4750         obj->fence_reg = I915_FENCE_REG_NONE;
4751         obj->madv = I915_MADV_WILLNEED;
4752
4753         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4754 }
4755
4756 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4757         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4758         .get_pages = i915_gem_object_get_pages_gtt,
4759         .put_pages = i915_gem_object_put_pages_gtt,
4760 };
4761
4762 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4763                                                   size_t size)
4764 {
4765         struct drm_i915_gem_object *obj;
4766         struct address_space *mapping;
4767         gfp_t mask;
4768         int ret;
4769
4770         obj = i915_gem_object_alloc(dev);
4771         if (obj == NULL)
4772                 return ERR_PTR(-ENOMEM);
4773
4774         ret = drm_gem_object_init(dev, &obj->base, size);
4775         if (ret)
4776                 goto fail;
4777
4778         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4779         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4780                 /* 965gm cannot relocate objects above 4GiB. */
4781                 mask &= ~__GFP_HIGHMEM;
4782                 mask |= __GFP_DMA32;
4783         }
4784
4785         mapping = file_inode(obj->base.filp)->i_mapping;
4786         mapping_set_gfp_mask(mapping, mask);
4787
4788         i915_gem_object_init(obj, &i915_gem_object_ops);
4789
4790         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4791         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4792
4793         if (HAS_LLC(dev)) {
4794                 /* On some devices, we can have the GPU use the LLC (the CPU
4795                  * cache) for about a 10% performance improvement
4796                  * compared to uncached.  Graphics requests other than
4797                  * display scanout are coherent with the CPU in
4798                  * accessing this cache.  This means in this mode we
4799                  * don't need to clflush on the CPU side, and on the
4800                  * GPU side we only need to flush internal caches to
4801                  * get data visible to the CPU.
4802                  *
4803                  * However, we maintain the display planes as UC, and so
4804                  * need to rebind when first used as such.
4805                  */
4806                 obj->cache_level = I915_CACHE_LLC;
4807         } else
4808                 obj->cache_level = I915_CACHE_NONE;
4809
4810         trace_i915_gem_object_create(obj);
4811
4812         return obj;
4813
4814 fail:
4815         i915_gem_object_free(obj);
4816
4817         return ERR_PTR(ret);
4818 }
4819
4820 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4821 {
4822         /* If we are the last user of the backing storage (be it shmemfs
4823          * pages or stolen etc), we know that the pages are going to be
4824          * immediately released. In this case, we can then skip copying
4825          * back the contents from the GPU.
4826          */
4827
4828         if (obj->madv != I915_MADV_WILLNEED)
4829                 return false;
4830
4831         if (obj->base.filp == NULL)
4832                 return true;
4833
4834         /* At first glance, this looks racy, but then again so would be
4835          * userspace racing mmap against close. However, the first external
4836          * reference to the filp can only be obtained through the
4837          * i915_gem_mmap_ioctl() which safeguards us against the user
4838          * acquiring such a reference whilst we are in the middle of
4839          * freeing the object.
4840          */
4841         return atomic_long_read(&obj->base.filp->f_count) == 1;
4842 }
4843
4844 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4845 {
4846         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4847         struct drm_device *dev = obj->base.dev;
4848         struct drm_i915_private *dev_priv = dev->dev_private;
4849         struct i915_vma *vma, *next;
4850
4851         intel_runtime_pm_get(dev_priv);
4852
4853         trace_i915_gem_object_destroy(obj);
4854
4855         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4856                 int ret;
4857
4858                 vma->pin_count = 0;
4859                 ret = i915_vma_unbind(vma);
4860                 if (WARN_ON(ret == -ERESTARTSYS)) {
4861                         bool was_interruptible;
4862
4863                         was_interruptible = dev_priv->mm.interruptible;
4864                         dev_priv->mm.interruptible = false;
4865
4866                         WARN_ON(i915_vma_unbind(vma));
4867
4868                         dev_priv->mm.interruptible = was_interruptible;
4869                 }
4870         }
4871
4872         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4873          * before progressing. */
4874         if (obj->stolen)
4875                 i915_gem_object_unpin_pages(obj);
4876
4877         WARN_ON(obj->frontbuffer_bits);
4878
4879         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4880             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4881             obj->tiling_mode != I915_TILING_NONE)
4882                 i915_gem_object_unpin_pages(obj);
4883
4884         if (WARN_ON(obj->pages_pin_count))
4885                 obj->pages_pin_count = 0;
4886         if (discard_backing_storage(obj))
4887                 obj->madv = I915_MADV_DONTNEED;
4888         i915_gem_object_put_pages(obj);
4889         i915_gem_object_free_mmap_offset(obj);
4890
4891         BUG_ON(obj->pages);
4892
4893         if (obj->base.import_attach)
4894                 drm_prime_gem_destroy(&obj->base, NULL);
4895
4896         if (obj->ops->release)
4897                 obj->ops->release(obj);
4898
4899         drm_gem_object_release(&obj->base);
4900         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4901
4902         kfree(obj->bit_17);
4903         i915_gem_object_free(obj);
4904
4905         intel_runtime_pm_put(dev_priv);
4906 }
4907
4908 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4909                                      struct i915_address_space *vm)
4910 {
4911         struct i915_vma *vma;
4912         list_for_each_entry(vma, &obj->vma_list, obj_link) {
4913                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4914                     vma->vm == vm)
4915                         return vma;
4916         }
4917         return NULL;
4918 }
4919
4920 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4921                                            const struct i915_ggtt_view *view)
4922 {
4923         struct i915_vma *vma;
4924
4925         GEM_BUG_ON(!view);
4926
4927         list_for_each_entry(vma, &obj->vma_list, obj_link)
4928                 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4929                         return vma;
4930         return NULL;
4931 }
4932
4933 void i915_gem_vma_destroy(struct i915_vma *vma)
4934 {
4935         WARN_ON(vma->node.allocated);
4936
4937         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4938         if (!list_empty(&vma->exec_list))
4939                 return;
4940
4941         if (!vma->is_ggtt)
4942                 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4943
4944         list_del(&vma->obj_link);
4945
4946         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4947 }
4948
4949 static void
4950 i915_gem_stop_engines(struct drm_device *dev)
4951 {
4952         struct drm_i915_private *dev_priv = dev->dev_private;
4953         struct intel_engine_cs *engine;
4954
4955         for_each_engine(engine, dev_priv)
4956                 dev_priv->gt.stop_engine(engine);
4957 }
4958
4959 int
4960 i915_gem_suspend(struct drm_device *dev)
4961 {
4962         struct drm_i915_private *dev_priv = dev->dev_private;
4963         int ret = 0;
4964
4965         mutex_lock(&dev->struct_mutex);
4966         ret = i915_gpu_idle(dev);
4967         if (ret)
4968                 goto err;
4969
4970         i915_gem_retire_requests(dev_priv);
4971
4972         i915_gem_stop_engines(dev);
4973         i915_gem_context_lost(dev_priv);
4974         mutex_unlock(&dev->struct_mutex);
4975
4976         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4977         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4978         flush_delayed_work(&dev_priv->mm.idle_work);
4979
4980         /* Assert that we sucessfully flushed all the work and
4981          * reset the GPU back to its idle, low power state.
4982          */
4983         WARN_ON(dev_priv->mm.busy);
4984
4985         return 0;
4986
4987 err:
4988         mutex_unlock(&dev->struct_mutex);
4989         return ret;
4990 }
4991
4992 void i915_gem_init_swizzling(struct drm_device *dev)
4993 {
4994         struct drm_i915_private *dev_priv = dev->dev_private;
4995
4996         if (INTEL_INFO(dev)->gen < 5 ||
4997             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4998                 return;
4999
5000         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5001                                  DISP_TILE_SURFACE_SWIZZLING);
5002
5003         if (IS_GEN5(dev))
5004                 return;
5005
5006         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5007         if (IS_GEN6(dev))
5008                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5009         else if (IS_GEN7(dev))
5010                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5011         else if (IS_GEN8(dev))
5012                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5013         else
5014                 BUG();
5015 }
5016
5017 static void init_unused_ring(struct drm_device *dev, u32 base)
5018 {
5019         struct drm_i915_private *dev_priv = dev->dev_private;
5020
5021         I915_WRITE(RING_CTL(base), 0);
5022         I915_WRITE(RING_HEAD(base), 0);
5023         I915_WRITE(RING_TAIL(base), 0);
5024         I915_WRITE(RING_START(base), 0);
5025 }
5026
5027 static void init_unused_rings(struct drm_device *dev)
5028 {
5029         if (IS_I830(dev)) {
5030                 init_unused_ring(dev, PRB1_BASE);
5031                 init_unused_ring(dev, SRB0_BASE);
5032                 init_unused_ring(dev, SRB1_BASE);
5033                 init_unused_ring(dev, SRB2_BASE);
5034                 init_unused_ring(dev, SRB3_BASE);
5035         } else if (IS_GEN2(dev)) {
5036                 init_unused_ring(dev, SRB0_BASE);
5037                 init_unused_ring(dev, SRB1_BASE);
5038         } else if (IS_GEN3(dev)) {
5039                 init_unused_ring(dev, PRB1_BASE);
5040                 init_unused_ring(dev, PRB2_BASE);
5041         }
5042 }
5043
5044 int i915_gem_init_engines(struct drm_device *dev)
5045 {
5046         struct drm_i915_private *dev_priv = dev->dev_private;
5047         int ret;
5048
5049         ret = intel_init_render_ring_buffer(dev);
5050         if (ret)
5051                 return ret;
5052
5053         if (HAS_BSD(dev)) {
5054                 ret = intel_init_bsd_ring_buffer(dev);
5055                 if (ret)
5056                         goto cleanup_render_ring;
5057         }
5058
5059         if (HAS_BLT(dev)) {
5060                 ret = intel_init_blt_ring_buffer(dev);
5061                 if (ret)
5062                         goto cleanup_bsd_ring;
5063         }
5064
5065         if (HAS_VEBOX(dev)) {
5066                 ret = intel_init_vebox_ring_buffer(dev);
5067                 if (ret)
5068                         goto cleanup_blt_ring;
5069         }
5070
5071         if (HAS_BSD2(dev)) {
5072                 ret = intel_init_bsd2_ring_buffer(dev);
5073                 if (ret)
5074                         goto cleanup_vebox_ring;
5075         }
5076
5077         return 0;
5078
5079 cleanup_vebox_ring:
5080         intel_cleanup_engine(&dev_priv->engine[VECS]);
5081 cleanup_blt_ring:
5082         intel_cleanup_engine(&dev_priv->engine[BCS]);
5083 cleanup_bsd_ring:
5084         intel_cleanup_engine(&dev_priv->engine[VCS]);
5085 cleanup_render_ring:
5086         intel_cleanup_engine(&dev_priv->engine[RCS]);
5087
5088         return ret;
5089 }
5090
5091 int
5092 i915_gem_init_hw(struct drm_device *dev)
5093 {
5094         struct drm_i915_private *dev_priv = dev->dev_private;
5095         struct intel_engine_cs *engine;
5096         int ret;
5097
5098         /* Double layer security blanket, see i915_gem_init() */
5099         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5100
5101         if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
5102                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5103
5104         if (IS_HASWELL(dev))
5105                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5106                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5107
5108         if (HAS_PCH_NOP(dev)) {
5109                 if (IS_IVYBRIDGE(dev)) {
5110                         u32 temp = I915_READ(GEN7_MSG_CTL);
5111                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5112                         I915_WRITE(GEN7_MSG_CTL, temp);
5113                 } else if (INTEL_INFO(dev)->gen >= 7) {
5114                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5115                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5116                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5117                 }
5118         }
5119
5120         i915_gem_init_swizzling(dev);
5121
5122         /*
5123          * At least 830 can leave some of the unused rings
5124          * "active" (ie. head != tail) after resume which
5125          * will prevent c3 entry. Makes sure all unused rings
5126          * are totally idle.
5127          */
5128         init_unused_rings(dev);
5129
5130         BUG_ON(!dev_priv->kernel_context);
5131
5132         ret = i915_ppgtt_init_hw(dev);
5133         if (ret) {
5134                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5135                 goto out;
5136         }
5137
5138         /* Need to do basic initialisation of all rings first: */
5139         for_each_engine(engine, dev_priv) {
5140                 ret = engine->init_hw(engine);
5141                 if (ret)
5142                         goto out;
5143         }
5144
5145         intel_mocs_init_l3cc_table(dev);
5146
5147         /* We can't enable contexts until all firmware is loaded */
5148         ret = intel_guc_setup(dev);
5149         if (ret)
5150                 goto out;
5151
5152         /*
5153          * Increment the next seqno by 0x100 so we have a visible break
5154          * on re-initialisation
5155          */
5156         ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
5157
5158 out:
5159         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5160         return ret;
5161 }
5162
5163 int i915_gem_init(struct drm_device *dev)
5164 {
5165         struct drm_i915_private *dev_priv = dev->dev_private;
5166         int ret;
5167
5168         mutex_lock(&dev->struct_mutex);
5169
5170         if (!i915.enable_execlists) {
5171                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5172                 dev_priv->gt.init_engines = i915_gem_init_engines;
5173                 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
5174                 dev_priv->gt.stop_engine = intel_stop_engine;
5175         } else {
5176                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5177                 dev_priv->gt.init_engines = intel_logical_rings_init;
5178                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5179                 dev_priv->gt.stop_engine = intel_logical_ring_stop;
5180         }
5181
5182         /* This is just a security blanket to placate dragons.
5183          * On some systems, we very sporadically observe that the first TLBs
5184          * used by the CS may be stale, despite us poking the TLB reset. If
5185          * we hold the forcewake during initialisation these problems
5186          * just magically go away.
5187          */
5188         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5189
5190         i915_gem_init_userptr(dev_priv);
5191         i915_gem_init_ggtt(dev);
5192
5193         ret = i915_gem_context_init(dev);
5194         if (ret)
5195                 goto out_unlock;
5196
5197         ret = dev_priv->gt.init_engines(dev);
5198         if (ret)
5199                 goto out_unlock;
5200
5201         ret = i915_gem_init_hw(dev);
5202         if (ret == -EIO) {
5203                 /* Allow ring initialisation to fail by marking the GPU as
5204                  * wedged. But we only want to do this where the GPU is angry,
5205                  * for all other failure, such as an allocation failure, bail.
5206                  */
5207                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5208                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5209                 ret = 0;
5210         }
5211
5212 out_unlock:
5213         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5214         mutex_unlock(&dev->struct_mutex);
5215
5216         return ret;
5217 }
5218
5219 void
5220 i915_gem_cleanup_engines(struct drm_device *dev)
5221 {
5222         struct drm_i915_private *dev_priv = dev->dev_private;
5223         struct intel_engine_cs *engine;
5224
5225         for_each_engine(engine, dev_priv)
5226                 dev_priv->gt.cleanup_engine(engine);
5227 }
5228
5229 static void
5230 init_engine_lists(struct intel_engine_cs *engine)
5231 {
5232         INIT_LIST_HEAD(&engine->active_list);
5233         INIT_LIST_HEAD(&engine->request_list);
5234 }
5235
5236 void
5237 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5238 {
5239         struct drm_device *dev = dev_priv->dev;
5240
5241         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5242             !IS_CHERRYVIEW(dev_priv))
5243                 dev_priv->num_fence_regs = 32;
5244         else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5245                  IS_I945GM(dev_priv) || IS_G33(dev_priv))
5246                 dev_priv->num_fence_regs = 16;
5247         else
5248                 dev_priv->num_fence_regs = 8;
5249
5250         if (intel_vgpu_active(dev_priv))
5251                 dev_priv->num_fence_regs =
5252                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5253
5254         /* Initialize fence registers to zero */
5255         i915_gem_restore_fences(dev);
5256
5257         i915_gem_detect_bit_6_swizzle(dev);
5258 }
5259
5260 void
5261 i915_gem_load_init(struct drm_device *dev)
5262 {
5263         struct drm_i915_private *dev_priv = dev->dev_private;
5264         int i;
5265
5266         dev_priv->objects =
5267                 kmem_cache_create("i915_gem_object",
5268                                   sizeof(struct drm_i915_gem_object), 0,
5269                                   SLAB_HWCACHE_ALIGN,
5270                                   NULL);
5271         dev_priv->vmas =
5272                 kmem_cache_create("i915_gem_vma",
5273                                   sizeof(struct i915_vma), 0,
5274                                   SLAB_HWCACHE_ALIGN,
5275                                   NULL);
5276         dev_priv->requests =
5277                 kmem_cache_create("i915_gem_request",
5278                                   sizeof(struct drm_i915_gem_request), 0,
5279                                   SLAB_HWCACHE_ALIGN,
5280                                   NULL);
5281
5282         INIT_LIST_HEAD(&dev_priv->vm_list);
5283         INIT_LIST_HEAD(&dev_priv->context_list);
5284         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5285         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5286         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5287         for (i = 0; i < I915_NUM_ENGINES; i++)
5288                 init_engine_lists(&dev_priv->engine[i]);
5289         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5290                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5291         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5292                           i915_gem_retire_work_handler);
5293         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5294                           i915_gem_idle_work_handler);
5295         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5296
5297         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5298
5299         /*
5300          * Set initial sequence number for requests.
5301          * Using this number allows the wraparound to happen early,
5302          * catching any obvious problems.
5303          */
5304         dev_priv->next_seqno = ((u32)~0 - 0x1100);
5305         dev_priv->last_seqno = ((u32)~0 - 0x1101);
5306
5307         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5308
5309         init_waitqueue_head(&dev_priv->pending_flip_queue);
5310
5311         dev_priv->mm.interruptible = true;
5312
5313         mutex_init(&dev_priv->fb_tracking.lock);
5314 }
5315
5316 void i915_gem_load_cleanup(struct drm_device *dev)
5317 {
5318         struct drm_i915_private *dev_priv = to_i915(dev);
5319
5320         kmem_cache_destroy(dev_priv->requests);
5321         kmem_cache_destroy(dev_priv->vmas);
5322         kmem_cache_destroy(dev_priv->objects);
5323 }
5324
5325 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5326 {
5327         struct drm_i915_gem_object *obj;
5328
5329         /* Called just before we write the hibernation image.
5330          *
5331          * We need to update the domain tracking to reflect that the CPU
5332          * will be accessing all the pages to create and restore from the
5333          * hibernation, and so upon restoration those pages will be in the
5334          * CPU domain.
5335          *
5336          * To make sure the hibernation image contains the latest state,
5337          * we update that state just before writing out the image.
5338          */
5339
5340         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5341                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5342                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5343         }
5344
5345         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5346                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5347                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5348         }
5349
5350         return 0;
5351 }
5352
5353 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5354 {
5355         struct drm_i915_file_private *file_priv = file->driver_priv;
5356
5357         /* Clean up our request list when the client is going away, so that
5358          * later retire_requests won't dereference our soon-to-be-gone
5359          * file_priv.
5360          */
5361         spin_lock(&file_priv->mm.lock);
5362         while (!list_empty(&file_priv->mm.request_list)) {
5363                 struct drm_i915_gem_request *request;
5364
5365                 request = list_first_entry(&file_priv->mm.request_list,
5366                                            struct drm_i915_gem_request,
5367                                            client_list);
5368                 list_del(&request->client_list);
5369                 request->file_priv = NULL;
5370         }
5371         spin_unlock(&file_priv->mm.lock);
5372
5373         if (!list_empty(&file_priv->rps.link)) {
5374                 spin_lock(&to_i915(dev)->rps.client_lock);
5375                 list_del(&file_priv->rps.link);
5376                 spin_unlock(&to_i915(dev)->rps.client_lock);
5377         }
5378 }
5379
5380 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5381 {
5382         struct drm_i915_file_private *file_priv;
5383         int ret;
5384
5385         DRM_DEBUG_DRIVER("\n");
5386
5387         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5388         if (!file_priv)
5389                 return -ENOMEM;
5390
5391         file->driver_priv = file_priv;
5392         file_priv->dev_priv = dev->dev_private;
5393         file_priv->file = file;
5394         INIT_LIST_HEAD(&file_priv->rps.link);
5395
5396         spin_lock_init(&file_priv->mm.lock);
5397         INIT_LIST_HEAD(&file_priv->mm.request_list);
5398
5399         file_priv->bsd_ring = -1;
5400
5401         ret = i915_gem_context_open(dev, file);
5402         if (ret)
5403                 kfree(file_priv);
5404
5405         return ret;
5406 }
5407
5408 /**
5409  * i915_gem_track_fb - update frontbuffer tracking
5410  * @old: current GEM buffer for the frontbuffer slots
5411  * @new: new GEM buffer for the frontbuffer slots
5412  * @frontbuffer_bits: bitmask of frontbuffer slots
5413  *
5414  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5415  * from @old and setting them in @new. Both @old and @new can be NULL.
5416  */
5417 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5418                        struct drm_i915_gem_object *new,
5419                        unsigned frontbuffer_bits)
5420 {
5421         if (old) {
5422                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5423                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5424                 old->frontbuffer_bits &= ~frontbuffer_bits;
5425         }
5426
5427         if (new) {
5428                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5429                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5430                 new->frontbuffer_bits |= frontbuffer_bits;
5431         }
5432 }
5433
5434 /* All the new VM stuff */
5435 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5436                         struct i915_address_space *vm)
5437 {
5438         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5439         struct i915_vma *vma;
5440
5441         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5442
5443         list_for_each_entry(vma, &o->vma_list, obj_link) {
5444                 if (vma->is_ggtt &&
5445                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5446                         continue;
5447                 if (vma->vm == vm)
5448                         return vma->node.start;
5449         }
5450
5451         WARN(1, "%s vma for this object not found.\n",
5452              i915_is_ggtt(vm) ? "global" : "ppgtt");
5453         return -1;
5454 }
5455
5456 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5457                                   const struct i915_ggtt_view *view)
5458 {
5459         struct i915_vma *vma;
5460
5461         list_for_each_entry(vma, &o->vma_list, obj_link)
5462                 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5463                         return vma->node.start;
5464
5465         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5466         return -1;
5467 }
5468
5469 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5470                         struct i915_address_space *vm)
5471 {
5472         struct i915_vma *vma;
5473
5474         list_for_each_entry(vma, &o->vma_list, obj_link) {
5475                 if (vma->is_ggtt &&
5476                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5477                         continue;
5478                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5479                         return true;
5480         }
5481
5482         return false;
5483 }
5484
5485 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5486                                   const struct i915_ggtt_view *view)
5487 {
5488         struct i915_vma *vma;
5489
5490         list_for_each_entry(vma, &o->vma_list, obj_link)
5491                 if (vma->is_ggtt &&
5492                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5493                     drm_mm_node_allocated(&vma->node))
5494                         return true;
5495
5496         return false;
5497 }
5498
5499 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5500 {
5501         struct i915_vma *vma;
5502
5503         list_for_each_entry(vma, &o->vma_list, obj_link)
5504                 if (drm_mm_node_allocated(&vma->node))
5505                         return true;
5506
5507         return false;
5508 }
5509
5510 unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5511 {
5512         struct i915_vma *vma;
5513
5514         GEM_BUG_ON(list_empty(&o->vma_list));
5515
5516         list_for_each_entry(vma, &o->vma_list, obj_link) {
5517                 if (vma->is_ggtt &&
5518                     vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5519                         return vma->node.size;
5520         }
5521
5522         return 0;
5523 }
5524
5525 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5526 {
5527         struct i915_vma *vma;
5528         list_for_each_entry(vma, &obj->vma_list, obj_link)
5529                 if (vma->pin_count > 0)
5530                         return true;
5531
5532         return false;
5533 }
5534
5535 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5536 struct page *
5537 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5538 {
5539         struct page *page;
5540
5541         /* Only default objects have per-page dirty tracking */
5542         if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
5543                 return NULL;
5544
5545         page = i915_gem_object_get_page(obj, n);
5546         set_page_dirty(page);
5547         return page;
5548 }
5549
5550 /* Allocate a new GEM object and fill it with the supplied data */
5551 struct drm_i915_gem_object *
5552 i915_gem_object_create_from_data(struct drm_device *dev,
5553                                  const void *data, size_t size)
5554 {
5555         struct drm_i915_gem_object *obj;
5556         struct sg_table *sg;
5557         size_t bytes;
5558         int ret;
5559
5560         obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5561         if (IS_ERR(obj))
5562                 return obj;
5563
5564         ret = i915_gem_object_set_to_cpu_domain(obj, true);
5565         if (ret)
5566                 goto fail;
5567
5568         ret = i915_gem_object_get_pages(obj);
5569         if (ret)
5570                 goto fail;
5571
5572         i915_gem_object_pin_pages(obj);
5573         sg = obj->pages;
5574         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5575         obj->dirty = 1;         /* Backing store is now out of date */
5576         i915_gem_object_unpin_pages(obj);
5577
5578         if (WARN_ON(bytes != size)) {
5579                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5580                 ret = -EFAULT;
5581                 goto fail;
5582         }
5583
5584         return obj;
5585
5586 fail:
5587         drm_gem_object_unreference(&obj->base);
5588         return ERR_PTR(ret);
5589 }