Merge tag 'gcc-plugins-v4.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem_fence.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include <drm/drmP.h>
25 #include <drm/i915_drm.h>
26 #include "i915_drv.h"
27
28 /**
29  * DOC: fence register handling
30  *
31  * Important to avoid confusions: "fences" in the i915 driver are not execution
32  * fences used to track command completion but hardware detiler objects which
33  * wrap a given range of the global GTT. Each platform has only a fairly limited
34  * set of these objects.
35  *
36  * Fences are used to detile GTT memory mappings. They're also connected to the
37  * hardware frontbuffer render tracking and hence interact with frontbuffer
38  * compression. Furthermore on older platforms fences are required for tiled
39  * objects used by the display engine. They can also be used by the render
40  * engine - they're required for blitter commands and are optional for render
41  * commands. But on gen4+ both display (with the exception of fbc) and rendering
42  * have their own tiling state bits and don't need fences.
43  *
44  * Also note that fences only support X and Y tiling and hence can't be used for
45  * the fancier new tiling formats like W, Ys and Yf.
46  *
47  * Finally note that because fences are such a restricted resource they're
48  * dynamically associated with objects. Furthermore fence state is committed to
49  * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
50  * explicitly call i915_gem_object_get_fence() to synchronize fencing status
51  * for cpu access. Also note that some code wants an unfenced view, for those
52  * cases the fence can be removed forcefully with i915_gem_object_put_fence().
53  *
54  * Internally these functions will synchronize with userspace access by removing
55  * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
56  */
57
58 #define pipelined 0
59
60 static void i965_write_fence_reg(struct drm_i915_fence_reg *fence,
61                                  struct i915_vma *vma)
62 {
63         i915_reg_t fence_reg_lo, fence_reg_hi;
64         int fence_pitch_shift;
65         u64 val;
66
67         if (INTEL_INFO(fence->i915)->gen >= 6) {
68                 fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
69                 fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
70                 fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
71
72         } else {
73                 fence_reg_lo = FENCE_REG_965_LO(fence->id);
74                 fence_reg_hi = FENCE_REG_965_HI(fence->id);
75                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
76         }
77
78         val = 0;
79         if (vma) {
80                 unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
81                 bool is_y_tiled = tiling == I915_TILING_Y;
82                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
83                 u32 row_size = stride * (is_y_tiled ? 32 : 8);
84                 u32 size = rounddown((u32)vma->node.size, row_size);
85
86                 val = ((vma->node.start + size - 4096) & 0xfffff000) << 32;
87                 val |= vma->node.start & 0xfffff000;
88                 val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
89                 if (is_y_tiled)
90                         val |= BIT(I965_FENCE_TILING_Y_SHIFT);
91                 val |= I965_FENCE_REG_VALID;
92         }
93
94         if (!pipelined) {
95                 struct drm_i915_private *dev_priv = fence->i915;
96
97                 /* To w/a incoherency with non-atomic 64-bit register updates,
98                  * we split the 64-bit update into two 32-bit writes. In order
99                  * for a partial fence not to be evaluated between writes, we
100                  * precede the update with write to turn off the fence register,
101                  * and only enable the fence as the last step.
102                  *
103                  * For extra levels of paranoia, we make sure each step lands
104                  * before applying the next step.
105                  */
106                 I915_WRITE(fence_reg_lo, 0);
107                 POSTING_READ(fence_reg_lo);
108
109                 I915_WRITE(fence_reg_hi, upper_32_bits(val));
110                 I915_WRITE(fence_reg_lo, lower_32_bits(val));
111                 POSTING_READ(fence_reg_lo);
112         }
113 }
114
115 static void i915_write_fence_reg(struct drm_i915_fence_reg *fence,
116                                  struct i915_vma *vma)
117 {
118         u32 val;
119
120         val = 0;
121         if (vma) {
122                 unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
123                 bool is_y_tiled = tiling == I915_TILING_Y;
124                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
125                 int pitch_val;
126                 int tile_width;
127
128                 WARN((vma->node.start & ~I915_FENCE_START_MASK) ||
129                      !is_power_of_2(vma->node.size) ||
130                      (vma->node.start & (vma->node.size - 1)),
131                      "object 0x%08llx [fenceable? %d] not 1M or pot-size (0x%08llx) aligned\n",
132                      vma->node.start,
133                      i915_vma_is_map_and_fenceable(vma),
134                      vma->node.size);
135
136                 if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence->i915))
137                         tile_width = 128;
138                 else
139                         tile_width = 512;
140
141                 /* Note: pitch better be a power of two tile widths */
142                 pitch_val = stride / tile_width;
143                 pitch_val = ffs(pitch_val) - 1;
144
145                 val = vma->node.start;
146                 if (is_y_tiled)
147                         val |= BIT(I830_FENCE_TILING_Y_SHIFT);
148                 val |= I915_FENCE_SIZE_BITS(vma->node.size);
149                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
150                 val |= I830_FENCE_REG_VALID;
151         }
152
153         if (!pipelined) {
154                 struct drm_i915_private *dev_priv = fence->i915;
155                 i915_reg_t reg = FENCE_REG(fence->id);
156
157                 I915_WRITE(reg, val);
158                 POSTING_READ(reg);
159         }
160 }
161
162 static void i830_write_fence_reg(struct drm_i915_fence_reg *fence,
163                                  struct i915_vma *vma)
164 {
165         u32 val;
166
167         val = 0;
168         if (vma) {
169                 unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
170                 bool is_y_tiled = tiling == I915_TILING_Y;
171                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
172                 u32 pitch_val;
173
174                 WARN((vma->node.start & ~I830_FENCE_START_MASK) ||
175                      !is_power_of_2(vma->node.size) ||
176                      (vma->node.start & (vma->node.size - 1)),
177                      "object 0x%08llx not 512K or pot-size 0x%08llx aligned\n",
178                      vma->node.start, vma->node.size);
179
180                 pitch_val = stride / 128;
181                 pitch_val = ffs(pitch_val) - 1;
182
183                 val = vma->node.start;
184                 if (is_y_tiled)
185                         val |= BIT(I830_FENCE_TILING_Y_SHIFT);
186                 val |= I830_FENCE_SIZE_BITS(vma->node.size);
187                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
188                 val |= I830_FENCE_REG_VALID;
189         }
190
191         if (!pipelined) {
192                 struct drm_i915_private *dev_priv = fence->i915;
193                 i915_reg_t reg = FENCE_REG(fence->id);
194
195                 I915_WRITE(reg, val);
196                 POSTING_READ(reg);
197         }
198 }
199
200 static void fence_write(struct drm_i915_fence_reg *fence,
201                         struct i915_vma *vma)
202 {
203         /* Previous access through the fence register is marshalled by
204          * the mb() inside the fault handlers (i915_gem_release_mmaps)
205          * and explicitly managed for internal users.
206          */
207
208         if (IS_GEN2(fence->i915))
209                 i830_write_fence_reg(fence, vma);
210         else if (IS_GEN3(fence->i915))
211                 i915_write_fence_reg(fence, vma);
212         else
213                 i965_write_fence_reg(fence, vma);
214
215         /* Access through the fenced region afterwards is
216          * ordered by the posting reads whilst writing the registers.
217          */
218
219         fence->dirty = false;
220 }
221
222 static int fence_update(struct drm_i915_fence_reg *fence,
223                         struct i915_vma *vma)
224 {
225         int ret;
226
227         if (vma) {
228                 if (!i915_vma_is_map_and_fenceable(vma))
229                         return -EINVAL;
230
231                 if (WARN(!i915_gem_object_get_stride(vma->obj) ||
232                          !i915_gem_object_get_tiling(vma->obj),
233                          "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
234                          i915_gem_object_get_stride(vma->obj),
235                          i915_gem_object_get_tiling(vma->obj)))
236                         return -EINVAL;
237
238                 ret = i915_gem_active_retire(&vma->last_fence,
239                                              &vma->obj->base.dev->struct_mutex);
240                 if (ret)
241                         return ret;
242         }
243
244         if (fence->vma) {
245                 ret = i915_gem_active_retire(&fence->vma->last_fence,
246                                       &fence->vma->obj->base.dev->struct_mutex);
247                 if (ret)
248                         return ret;
249         }
250
251         if (fence->vma && fence->vma != vma) {
252                 /* Ensure that all userspace CPU access is completed before
253                  * stealing the fence.
254                  */
255                 i915_gem_release_mmap(fence->vma->obj);
256
257                 fence->vma->fence = NULL;
258                 fence->vma = NULL;
259
260                 list_move(&fence->link, &fence->i915->mm.fence_list);
261         }
262
263         fence_write(fence, vma);
264
265         if (vma) {
266                 if (fence->vma != vma) {
267                         vma->fence = fence;
268                         fence->vma = vma;
269                 }
270
271                 list_move_tail(&fence->link, &fence->i915->mm.fence_list);
272         }
273
274         return 0;
275 }
276
277 /**
278  * i915_vma_put_fence - force-remove fence for a VMA
279  * @vma: vma to map linearly (not through a fence reg)
280  *
281  * This function force-removes any fence from the given object, which is useful
282  * if the kernel wants to do untiled GTT access.
283  *
284  * Returns:
285  *
286  * 0 on success, negative error code on failure.
287  */
288 int
289 i915_vma_put_fence(struct i915_vma *vma)
290 {
291         struct drm_i915_fence_reg *fence = vma->fence;
292
293         if (!fence)
294                 return 0;
295
296         if (fence->pin_count)
297                 return -EBUSY;
298
299         return fence_update(fence, NULL);
300 }
301
302 static struct drm_i915_fence_reg *fence_find(struct drm_i915_private *dev_priv)
303 {
304         struct drm_i915_fence_reg *fence;
305
306         list_for_each_entry(fence, &dev_priv->mm.fence_list, link) {
307                 if (fence->pin_count)
308                         continue;
309
310                 return fence;
311         }
312
313         /* Wait for completion of pending flips which consume fences */
314         if (intel_has_pending_fb_unpin(&dev_priv->drm))
315                 return ERR_PTR(-EAGAIN);
316
317         return ERR_PTR(-EDEADLK);
318 }
319
320 /**
321  * i915_vma_get_fence - set up fencing for a vma
322  * @vma: vma to map through a fence reg
323  *
324  * When mapping objects through the GTT, userspace wants to be able to write
325  * to them without having to worry about swizzling if the object is tiled.
326  * This function walks the fence regs looking for a free one for @obj,
327  * stealing one if it can't find any.
328  *
329  * It then sets up the reg based on the object's properties: address, pitch
330  * and tiling format.
331  *
332  * For an untiled surface, this removes any existing fence.
333  *
334  * Returns:
335  *
336  * 0 on success, negative error code on failure.
337  */
338 int
339 i915_vma_get_fence(struct i915_vma *vma)
340 {
341         struct drm_i915_fence_reg *fence;
342         struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
343
344         /* Just update our place in the LRU if our fence is getting reused. */
345         if (vma->fence) {
346                 fence = vma->fence;
347                 if (!fence->dirty) {
348                         list_move_tail(&fence->link,
349                                        &fence->i915->mm.fence_list);
350                         return 0;
351                 }
352         } else if (set) {
353                 fence = fence_find(to_i915(vma->vm->dev));
354                 if (IS_ERR(fence))
355                         return PTR_ERR(fence);
356         } else
357                 return 0;
358
359         return fence_update(fence, set);
360 }
361
362 /**
363  * i915_gem_restore_fences - restore fence state
364  * @dev: DRM device
365  *
366  * Restore the hw fence state to match the software tracking again, to be called
367  * after a gpu reset and on resume.
368  */
369 void i915_gem_restore_fences(struct drm_device *dev)
370 {
371         struct drm_i915_private *dev_priv = to_i915(dev);
372         int i;
373
374         for (i = 0; i < dev_priv->num_fence_regs; i++) {
375                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
376                 struct i915_vma *vma = reg->vma;
377
378                 /*
379                  * Commit delayed tiling changes if we have an object still
380                  * attached to the fence, otherwise just clear the fence.
381                  */
382                 if (vma && !i915_gem_object_is_tiled(vma->obj))
383                         vma = NULL;
384
385                 fence_update(reg, vma);
386         }
387 }
388
389 /**
390  * DOC: tiling swizzling details
391  *
392  * The idea behind tiling is to increase cache hit rates by rearranging
393  * pixel data so that a group of pixel accesses are in the same cacheline.
394  * Performance improvement from doing this on the back/depth buffer are on
395  * the order of 30%.
396  *
397  * Intel architectures make this somewhat more complicated, though, by
398  * adjustments made to addressing of data when the memory is in interleaved
399  * mode (matched pairs of DIMMS) to improve memory bandwidth.
400  * For interleaved memory, the CPU sends every sequential 64 bytes
401  * to an alternate memory channel so it can get the bandwidth from both.
402  *
403  * The GPU also rearranges its accesses for increased bandwidth to interleaved
404  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
405  * it does it a little differently, since one walks addresses not just in the
406  * X direction but also Y.  So, along with alternating channels when bit
407  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
408  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
409  * are common to both the 915 and 965-class hardware.
410  *
411  * The CPU also sometimes XORs in higher bits as well, to improve
412  * bandwidth doing strided access like we do so frequently in graphics.  This
413  * is called "Channel XOR Randomization" in the MCH documentation.  The result
414  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
415  * decode.
416  *
417  * All of this bit 6 XORing has an effect on our memory management,
418  * as we need to make sure that the 3d driver can correctly address object
419  * contents.
420  *
421  * If we don't have interleaved memory, all tiling is safe and no swizzling is
422  * required.
423  *
424  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
425  * 17 is not just a page offset, so as we page an object out and back in,
426  * individual pages in it will have different bit 17 addresses, resulting in
427  * each 64 bytes being swapped with its neighbor!
428  *
429  * Otherwise, if interleaved, we have to tell the 3d driver what the address
430  * swizzling it needs to do is, since it's writing with the CPU to the pages
431  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
432  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
433  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
434  * to match what the GPU expects.
435  */
436
437 /**
438  * i915_gem_detect_bit_6_swizzle - detect bit 6 swizzling pattern
439  * @dev: DRM device
440  *
441  * Detects bit 6 swizzling of address lookup between IGD access and CPU
442  * access through main memory.
443  */
444 void
445 i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
446 {
447         struct drm_i915_private *dev_priv = to_i915(dev);
448         uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
449         uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
450
451         if (INTEL_INFO(dev)->gen >= 8 || IS_VALLEYVIEW(dev)) {
452                 /*
453                  * On BDW+, swizzling is not used. We leave the CPU memory
454                  * controller in charge of optimizing memory accesses without
455                  * the extra address manipulation GPU side.
456                  *
457                  * VLV and CHV don't have GPU swizzling.
458                  */
459                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
460                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
461         } else if (INTEL_INFO(dev)->gen >= 6) {
462                 if (dev_priv->preserve_bios_swizzle) {
463                         if (I915_READ(DISP_ARB_CTL) &
464                             DISP_TILE_SURFACE_SWIZZLING) {
465                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
466                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
467                         } else {
468                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
469                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
470                         }
471                 } else {
472                         uint32_t dimm_c0, dimm_c1;
473                         dimm_c0 = I915_READ(MAD_DIMM_C0);
474                         dimm_c1 = I915_READ(MAD_DIMM_C1);
475                         dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
476                         dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
477                         /* Enable swizzling when the channels are populated
478                          * with identically sized dimms. We don't need to check
479                          * the 3rd channel because no cpu with gpu attached
480                          * ships in that configuration. Also, swizzling only
481                          * makes sense for 2 channels anyway. */
482                         if (dimm_c0 == dimm_c1) {
483                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
484                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
485                         } else {
486                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
487                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
488                         }
489                 }
490         } else if (IS_GEN5(dev)) {
491                 /* On Ironlake whatever DRAM config, GPU always do
492                  * same swizzling setup.
493                  */
494                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
495                 swizzle_y = I915_BIT_6_SWIZZLE_9;
496         } else if (IS_GEN2(dev)) {
497                 /* As far as we know, the 865 doesn't have these bit 6
498                  * swizzling issues.
499                  */
500                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
501                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
502         } else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
503                 uint32_t dcc;
504
505                 /* On 9xx chipsets, channel interleave by the CPU is
506                  * determined by DCC.  For single-channel, neither the CPU
507                  * nor the GPU do swizzling.  For dual channel interleaved,
508                  * the GPU's interleave is bit 9 and 10 for X tiled, and bit
509                  * 9 for Y tiled.  The CPU's interleave is independent, and
510                  * can be based on either bit 11 (haven't seen this yet) or
511                  * bit 17 (common).
512                  */
513                 dcc = I915_READ(DCC);
514                 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
515                 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
516                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
517                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
518                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
519                         break;
520                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
521                         if (dcc & DCC_CHANNEL_XOR_DISABLE) {
522                                 /* This is the base swizzling by the GPU for
523                                  * tiled buffers.
524                                  */
525                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
526                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
527                         } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
528                                 /* Bit 11 swizzling by the CPU in addition. */
529                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
530                                 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
531                         } else {
532                                 /* Bit 17 swizzling by the CPU in addition. */
533                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
534                                 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
535                         }
536                         break;
537                 }
538
539                 /* check for L-shaped memory aka modified enhanced addressing */
540                 if (IS_GEN4(dev) &&
541                     !(I915_READ(DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
542                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
543                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
544                 }
545
546                 if (dcc == 0xffffffff) {
547                         DRM_ERROR("Couldn't read from MCHBAR.  "
548                                   "Disabling tiling.\n");
549                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
550                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
551                 }
552         } else {
553                 /* The 965, G33, and newer, have a very flexible memory
554                  * configuration.  It will enable dual-channel mode
555                  * (interleaving) on as much memory as it can, and the GPU
556                  * will additionally sometimes enable different bit 6
557                  * swizzling for tiled objects from the CPU.
558                  *
559                  * Here's what I found on the G965:
560                  *    slot fill         memory size  swizzling
561                  * 0A   0B   1A   1B    1-ch   2-ch
562                  * 512  0    0    0     512    0     O
563                  * 512  0    512  0     16     1008  X
564                  * 512  0    0    512   16     1008  X
565                  * 0    512  0    512   16     1008  X
566                  * 1024 1024 1024 0     2048   1024  O
567                  *
568                  * We could probably detect this based on either the DRB
569                  * matching, which was the case for the swizzling required in
570                  * the table above, or from the 1-ch value being less than
571                  * the minimum size of a rank.
572                  *
573                  * Reports indicate that the swizzling actually
574                  * varies depending upon page placement inside the
575                  * channels, i.e. we see swizzled pages where the
576                  * banks of memory are paired and unswizzled on the
577                  * uneven portion, so leave that as unknown.
578                  */
579                 if (I915_READ16(C0DRB3) == I915_READ16(C1DRB3)) {
580                         swizzle_x = I915_BIT_6_SWIZZLE_9_10;
581                         swizzle_y = I915_BIT_6_SWIZZLE_9;
582                 }
583         }
584
585         if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
586             swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
587                 /* Userspace likes to explode if it sees unknown swizzling,
588                  * so lie. We will finish the lie when reporting through
589                  * the get-tiling-ioctl by reporting the physical swizzle
590                  * mode as unknown instead.
591                  *
592                  * As we don't strictly know what the swizzling is, it may be
593                  * bit17 dependent, and so we need to also prevent the pages
594                  * from being moved.
595                  */
596                 dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
597                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
598                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
599         }
600
601         dev_priv->mm.bit_6_swizzle_x = swizzle_x;
602         dev_priv->mm.bit_6_swizzle_y = swizzle_y;
603 }
604
605 /*
606  * Swap every 64 bytes of this page around, to account for it having a new
607  * bit 17 of its physical address and therefore being interpreted differently
608  * by the GPU.
609  */
610 static void
611 i915_gem_swizzle_page(struct page *page)
612 {
613         char temp[64];
614         char *vaddr;
615         int i;
616
617         vaddr = kmap(page);
618
619         for (i = 0; i < PAGE_SIZE; i += 128) {
620                 memcpy(temp, &vaddr[i], 64);
621                 memcpy(&vaddr[i], &vaddr[i + 64], 64);
622                 memcpy(&vaddr[i + 64], temp, 64);
623         }
624
625         kunmap(page);
626 }
627
628 /**
629  * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
630  * @obj: i915 GEM buffer object
631  *
632  * This function fixes up the swizzling in case any page frame number for this
633  * object has changed in bit 17 since that state has been saved with
634  * i915_gem_object_save_bit_17_swizzle().
635  *
636  * This is called when pinning backing storage again, since the kernel is free
637  * to move unpinned backing storage around (either by directly moving pages or
638  * by swapping them out and back in again).
639  */
640 void
641 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
642 {
643         struct sgt_iter sgt_iter;
644         struct page *page;
645         int i;
646
647         if (obj->bit_17 == NULL)
648                 return;
649
650         i = 0;
651         for_each_sgt_page(page, sgt_iter, obj->pages) {
652                 char new_bit_17 = page_to_phys(page) >> 17;
653                 if ((new_bit_17 & 0x1) !=
654                     (test_bit(i, obj->bit_17) != 0)) {
655                         i915_gem_swizzle_page(page);
656                         set_page_dirty(page);
657                 }
658                 i++;
659         }
660 }
661
662 /**
663  * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
664  * @obj: i915 GEM buffer object
665  *
666  * This function saves the bit 17 of each page frame number so that swizzling
667  * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
668  * be called before the backing storage can be unpinned.
669  */
670 void
671 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
672 {
673         struct sgt_iter sgt_iter;
674         struct page *page;
675         int page_count = obj->base.size >> PAGE_SHIFT;
676         int i;
677
678         if (obj->bit_17 == NULL) {
679                 obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
680                                       sizeof(long), GFP_KERNEL);
681                 if (obj->bit_17 == NULL) {
682                         DRM_ERROR("Failed to allocate memory for bit 17 "
683                                   "record\n");
684                         return;
685                 }
686         }
687
688         i = 0;
689
690         for_each_sgt_page(page, sgt_iter, obj->pages) {
691                 if (page_to_phys(page) & (1 << 17))
692                         __set_bit(i, obj->bit_17);
693                 else
694                         __clear_bit(i, obj->bit_17);
695                 i++;
696         }
697 }