Merge tag 'mmc-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34
35 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
36
37 /**
38  * DOC: Global GTT views
39  *
40  * Background and previous state
41  *
42  * Historically objects could exists (be bound) in global GTT space only as
43  * singular instances with a view representing all of the object's backing pages
44  * in a linear fashion. This view will be called a normal view.
45  *
46  * To support multiple views of the same object, where the number of mapped
47  * pages is not equal to the backing store, or where the layout of the pages
48  * is not linear, concept of a GGTT view was added.
49  *
50  * One example of an alternative view is a stereo display driven by a single
51  * image. In this case we would have a framebuffer looking like this
52  * (2x2 pages):
53  *
54  *    12
55  *    34
56  *
57  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
58  * rendering. In contrast, fed to the display engine would be an alternative
59  * view which could look something like this:
60  *
61  *   1212
62  *   3434
63  *
64  * In this example both the size and layout of pages in the alternative view is
65  * different from the normal view.
66  *
67  * Implementation and usage
68  *
69  * GGTT views are implemented using VMAs and are distinguished via enum
70  * i915_ggtt_view_type and struct i915_ggtt_view.
71  *
72  * A new flavour of core GEM functions which work with GGTT bound objects were
73  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
74  * renaming  in large amounts of code. They take the struct i915_ggtt_view
75  * parameter encapsulating all metadata required to implement a view.
76  *
77  * As a helper for callers which are only interested in the normal view,
78  * globally const i915_ggtt_view_normal singleton instance exists. All old core
79  * GEM API functions, the ones not taking the view parameter, are operating on,
80  * or with the normal GGTT view.
81  *
82  * Code wanting to add or use a new GGTT view needs to:
83  *
84  * 1. Add a new enum with a suitable name.
85  * 2. Extend the metadata in the i915_ggtt_view structure if required.
86  * 3. Add support to i915_get_vma_pages().
87  *
88  * New views are required to build a scatter-gather table from within the
89  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
90  * exists for the lifetime of an VMA.
91  *
92  * Core API is designed to have copy semantics which means that passed in
93  * struct i915_ggtt_view does not need to be persistent (left around after
94  * calling the core API functions).
95  *
96  */
97
98 static inline struct i915_ggtt *
99 i915_vm_to_ggtt(struct i915_address_space *vm)
100 {
101         GEM_BUG_ON(!i915_is_ggtt(vm));
102         return container_of(vm, struct i915_ggtt, base);
103 }
104
105 static int
106 i915_get_ggtt_vma_pages(struct i915_vma *vma);
107
108 const struct i915_ggtt_view i915_ggtt_view_normal = {
109         .type = I915_GGTT_VIEW_NORMAL,
110 };
111 const struct i915_ggtt_view i915_ggtt_view_rotated = {
112         .type = I915_GGTT_VIEW_ROTATED,
113 };
114
115 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
116                                 int enable_ppgtt)
117 {
118         bool has_aliasing_ppgtt;
119         bool has_full_ppgtt;
120         bool has_full_48bit_ppgtt;
121
122         has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
123         has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
124         has_full_48bit_ppgtt =
125                 IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
126
127         if (intel_vgpu_active(dev_priv)) {
128                 /* emulation is too hard */
129                 has_full_ppgtt = false;
130                 has_full_48bit_ppgtt = false;
131         }
132
133         if (!has_aliasing_ppgtt)
134                 return 0;
135
136         /*
137          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
138          * execlists, the sole mechanism available to submit work.
139          */
140         if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
141                 return 0;
142
143         if (enable_ppgtt == 1)
144                 return 1;
145
146         if (enable_ppgtt == 2 && has_full_ppgtt)
147                 return 2;
148
149         if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
150                 return 3;
151
152 #ifdef CONFIG_INTEL_IOMMU
153         /* Disable ppgtt on SNB if VT-d is on. */
154         if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
155                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
156                 return 0;
157         }
158 #endif
159
160         /* Early VLV doesn't have this */
161         if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
162                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
163                 return 0;
164         }
165
166         if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
167                 return has_full_48bit_ppgtt ? 3 : 2;
168         else
169                 return has_aliasing_ppgtt ? 1 : 0;
170 }
171
172 static int ppgtt_bind_vma(struct i915_vma *vma,
173                           enum i915_cache_level cache_level,
174                           u32 unused)
175 {
176         u32 pte_flags = 0;
177
178         vma->pages = vma->obj->pages;
179
180         /* Currently applicable only to VLV */
181         if (vma->obj->gt_ro)
182                 pte_flags |= PTE_READ_ONLY;
183
184         vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
185                                 cache_level, pte_flags);
186
187         return 0;
188 }
189
190 static void ppgtt_unbind_vma(struct i915_vma *vma)
191 {
192         vma->vm->clear_range(vma->vm,
193                              vma->node.start,
194                              vma->size,
195                              true);
196 }
197
198 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
199                                   enum i915_cache_level level,
200                                   bool valid)
201 {
202         gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
203         pte |= addr;
204
205         switch (level) {
206         case I915_CACHE_NONE:
207                 pte |= PPAT_UNCACHED_INDEX;
208                 break;
209         case I915_CACHE_WT:
210                 pte |= PPAT_DISPLAY_ELLC_INDEX;
211                 break;
212         default:
213                 pte |= PPAT_CACHED_INDEX;
214                 break;
215         }
216
217         return pte;
218 }
219
220 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
221                                   const enum i915_cache_level level)
222 {
223         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
224         pde |= addr;
225         if (level != I915_CACHE_NONE)
226                 pde |= PPAT_CACHED_PDE_INDEX;
227         else
228                 pde |= PPAT_UNCACHED_INDEX;
229         return pde;
230 }
231
232 #define gen8_pdpe_encode gen8_pde_encode
233 #define gen8_pml4e_encode gen8_pde_encode
234
235 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
236                                  enum i915_cache_level level,
237                                  bool valid, u32 unused)
238 {
239         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
240         pte |= GEN6_PTE_ADDR_ENCODE(addr);
241
242         switch (level) {
243         case I915_CACHE_L3_LLC:
244         case I915_CACHE_LLC:
245                 pte |= GEN6_PTE_CACHE_LLC;
246                 break;
247         case I915_CACHE_NONE:
248                 pte |= GEN6_PTE_UNCACHED;
249                 break;
250         default:
251                 MISSING_CASE(level);
252         }
253
254         return pte;
255 }
256
257 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
258                                  enum i915_cache_level level,
259                                  bool valid, u32 unused)
260 {
261         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
262         pte |= GEN6_PTE_ADDR_ENCODE(addr);
263
264         switch (level) {
265         case I915_CACHE_L3_LLC:
266                 pte |= GEN7_PTE_CACHE_L3_LLC;
267                 break;
268         case I915_CACHE_LLC:
269                 pte |= GEN6_PTE_CACHE_LLC;
270                 break;
271         case I915_CACHE_NONE:
272                 pte |= GEN6_PTE_UNCACHED;
273                 break;
274         default:
275                 MISSING_CASE(level);
276         }
277
278         return pte;
279 }
280
281 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
282                                  enum i915_cache_level level,
283                                  bool valid, u32 flags)
284 {
285         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
286         pte |= GEN6_PTE_ADDR_ENCODE(addr);
287
288         if (!(flags & PTE_READ_ONLY))
289                 pte |= BYT_PTE_WRITEABLE;
290
291         if (level != I915_CACHE_NONE)
292                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
293
294         return pte;
295 }
296
297 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
298                                  enum i915_cache_level level,
299                                  bool valid, u32 unused)
300 {
301         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
302         pte |= HSW_PTE_ADDR_ENCODE(addr);
303
304         if (level != I915_CACHE_NONE)
305                 pte |= HSW_WB_LLC_AGE3;
306
307         return pte;
308 }
309
310 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
311                                   enum i915_cache_level level,
312                                   bool valid, u32 unused)
313 {
314         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
315         pte |= HSW_PTE_ADDR_ENCODE(addr);
316
317         switch (level) {
318         case I915_CACHE_NONE:
319                 break;
320         case I915_CACHE_WT:
321                 pte |= HSW_WT_ELLC_LLC_AGE3;
322                 break;
323         default:
324                 pte |= HSW_WB_ELLC_LLC_AGE3;
325                 break;
326         }
327
328         return pte;
329 }
330
331 static int __setup_page_dma(struct drm_device *dev,
332                             struct i915_page_dma *p, gfp_t flags)
333 {
334         struct device *kdev = &dev->pdev->dev;
335
336         p->page = alloc_page(flags);
337         if (!p->page)
338                 return -ENOMEM;
339
340         p->daddr = dma_map_page(kdev,
341                                 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
342
343         if (dma_mapping_error(kdev, p->daddr)) {
344                 __free_page(p->page);
345                 return -EINVAL;
346         }
347
348         return 0;
349 }
350
351 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
352 {
353         return __setup_page_dma(dev, p, I915_GFP_DMA);
354 }
355
356 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
357 {
358         struct pci_dev *pdev = dev->pdev;
359
360         if (WARN_ON(!p->page))
361                 return;
362
363         dma_unmap_page(&pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
364         __free_page(p->page);
365         memset(p, 0, sizeof(*p));
366 }
367
368 static void *kmap_page_dma(struct i915_page_dma *p)
369 {
370         return kmap_atomic(p->page);
371 }
372
373 /* We use the flushing unmap only with ppgtt structures:
374  * page directories, page tables and scratch pages.
375  */
376 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
377 {
378         /* There are only few exceptions for gen >=6. chv and bxt.
379          * And we are not sure about the latter so play safe for now.
380          */
381         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
382                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
383
384         kunmap_atomic(vaddr);
385 }
386
387 #define kmap_px(px) kmap_page_dma(px_base(px))
388 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
389
390 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
391 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
392 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
393 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
394
395 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
396                           const uint64_t val)
397 {
398         int i;
399         uint64_t * const vaddr = kmap_page_dma(p);
400
401         for (i = 0; i < 512; i++)
402                 vaddr[i] = val;
403
404         kunmap_page_dma(dev, vaddr);
405 }
406
407 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
408                              const uint32_t val32)
409 {
410         uint64_t v = val32;
411
412         v = v << 32 | val32;
413
414         fill_page_dma(dev, p, v);
415 }
416
417 static int
418 setup_scratch_page(struct drm_device *dev,
419                    struct i915_page_dma *scratch,
420                    gfp_t gfp)
421 {
422         return __setup_page_dma(dev, scratch, gfp | __GFP_ZERO);
423 }
424
425 static void cleanup_scratch_page(struct drm_device *dev,
426                                  struct i915_page_dma *scratch)
427 {
428         cleanup_page_dma(dev, scratch);
429 }
430
431 static struct i915_page_table *alloc_pt(struct drm_device *dev)
432 {
433         struct i915_page_table *pt;
434         const size_t count = INTEL_INFO(dev)->gen >= 8 ?
435                 GEN8_PTES : GEN6_PTES;
436         int ret = -ENOMEM;
437
438         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
439         if (!pt)
440                 return ERR_PTR(-ENOMEM);
441
442         pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
443                                 GFP_KERNEL);
444
445         if (!pt->used_ptes)
446                 goto fail_bitmap;
447
448         ret = setup_px(dev, pt);
449         if (ret)
450                 goto fail_page_m;
451
452         return pt;
453
454 fail_page_m:
455         kfree(pt->used_ptes);
456 fail_bitmap:
457         kfree(pt);
458
459         return ERR_PTR(ret);
460 }
461
462 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
463 {
464         cleanup_px(dev, pt);
465         kfree(pt->used_ptes);
466         kfree(pt);
467 }
468
469 static void gen8_initialize_pt(struct i915_address_space *vm,
470                                struct i915_page_table *pt)
471 {
472         gen8_pte_t scratch_pte;
473
474         scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
475                                       I915_CACHE_LLC, true);
476
477         fill_px(vm->dev, pt, scratch_pte);
478 }
479
480 static void gen6_initialize_pt(struct i915_address_space *vm,
481                                struct i915_page_table *pt)
482 {
483         gen6_pte_t scratch_pte;
484
485         WARN_ON(vm->scratch_page.daddr == 0);
486
487         scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
488                                      I915_CACHE_LLC, true, 0);
489
490         fill32_px(vm->dev, pt, scratch_pte);
491 }
492
493 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
494 {
495         struct i915_page_directory *pd;
496         int ret = -ENOMEM;
497
498         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
499         if (!pd)
500                 return ERR_PTR(-ENOMEM);
501
502         pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
503                                 sizeof(*pd->used_pdes), GFP_KERNEL);
504         if (!pd->used_pdes)
505                 goto fail_bitmap;
506
507         ret = setup_px(dev, pd);
508         if (ret)
509                 goto fail_page_m;
510
511         return pd;
512
513 fail_page_m:
514         kfree(pd->used_pdes);
515 fail_bitmap:
516         kfree(pd);
517
518         return ERR_PTR(ret);
519 }
520
521 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
522 {
523         if (px_page(pd)) {
524                 cleanup_px(dev, pd);
525                 kfree(pd->used_pdes);
526                 kfree(pd);
527         }
528 }
529
530 static void gen8_initialize_pd(struct i915_address_space *vm,
531                                struct i915_page_directory *pd)
532 {
533         gen8_pde_t scratch_pde;
534
535         scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
536
537         fill_px(vm->dev, pd, scratch_pde);
538 }
539
540 static int __pdp_init(struct drm_device *dev,
541                       struct i915_page_directory_pointer *pdp)
542 {
543         size_t pdpes = I915_PDPES_PER_PDP(dev);
544
545         pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
546                                   sizeof(unsigned long),
547                                   GFP_KERNEL);
548         if (!pdp->used_pdpes)
549                 return -ENOMEM;
550
551         pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
552                                       GFP_KERNEL);
553         if (!pdp->page_directory) {
554                 kfree(pdp->used_pdpes);
555                 /* the PDP might be the statically allocated top level. Keep it
556                  * as clean as possible */
557                 pdp->used_pdpes = NULL;
558                 return -ENOMEM;
559         }
560
561         return 0;
562 }
563
564 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
565 {
566         kfree(pdp->used_pdpes);
567         kfree(pdp->page_directory);
568         pdp->page_directory = NULL;
569 }
570
571 static struct
572 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
573 {
574         struct i915_page_directory_pointer *pdp;
575         int ret = -ENOMEM;
576
577         WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
578
579         pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
580         if (!pdp)
581                 return ERR_PTR(-ENOMEM);
582
583         ret = __pdp_init(dev, pdp);
584         if (ret)
585                 goto fail_bitmap;
586
587         ret = setup_px(dev, pdp);
588         if (ret)
589                 goto fail_page_m;
590
591         return pdp;
592
593 fail_page_m:
594         __pdp_fini(pdp);
595 fail_bitmap:
596         kfree(pdp);
597
598         return ERR_PTR(ret);
599 }
600
601 static void free_pdp(struct drm_device *dev,
602                      struct i915_page_directory_pointer *pdp)
603 {
604         __pdp_fini(pdp);
605         if (USES_FULL_48BIT_PPGTT(dev)) {
606                 cleanup_px(dev, pdp);
607                 kfree(pdp);
608         }
609 }
610
611 static void gen8_initialize_pdp(struct i915_address_space *vm,
612                                 struct i915_page_directory_pointer *pdp)
613 {
614         gen8_ppgtt_pdpe_t scratch_pdpe;
615
616         scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
617
618         fill_px(vm->dev, pdp, scratch_pdpe);
619 }
620
621 static void gen8_initialize_pml4(struct i915_address_space *vm,
622                                  struct i915_pml4 *pml4)
623 {
624         gen8_ppgtt_pml4e_t scratch_pml4e;
625
626         scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
627                                           I915_CACHE_LLC);
628
629         fill_px(vm->dev, pml4, scratch_pml4e);
630 }
631
632 static void
633 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
634                           struct i915_page_directory_pointer *pdp,
635                           struct i915_page_directory *pd,
636                           int index)
637 {
638         gen8_ppgtt_pdpe_t *page_directorypo;
639
640         if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
641                 return;
642
643         page_directorypo = kmap_px(pdp);
644         page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
645         kunmap_px(ppgtt, page_directorypo);
646 }
647
648 static void
649 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
650                                   struct i915_pml4 *pml4,
651                                   struct i915_page_directory_pointer *pdp,
652                                   int index)
653 {
654         gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
655
656         WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
657         pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
658         kunmap_px(ppgtt, pagemap);
659 }
660
661 /* Broadwell Page Directory Pointer Descriptors */
662 static int gen8_write_pdp(struct drm_i915_gem_request *req,
663                           unsigned entry,
664                           dma_addr_t addr)
665 {
666         struct intel_ring *ring = req->ring;
667         struct intel_engine_cs *engine = req->engine;
668         int ret;
669
670         BUG_ON(entry >= 4);
671
672         ret = intel_ring_begin(req, 6);
673         if (ret)
674                 return ret;
675
676         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
677         intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, entry));
678         intel_ring_emit(ring, upper_32_bits(addr));
679         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
680         intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, entry));
681         intel_ring_emit(ring, lower_32_bits(addr));
682         intel_ring_advance(ring);
683
684         return 0;
685 }
686
687 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
688                                  struct drm_i915_gem_request *req)
689 {
690         int i, ret;
691
692         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
693                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
694
695                 ret = gen8_write_pdp(req, i, pd_daddr);
696                 if (ret)
697                         return ret;
698         }
699
700         return 0;
701 }
702
703 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
704                               struct drm_i915_gem_request *req)
705 {
706         return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
707 }
708
709 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
710                                        struct i915_page_directory_pointer *pdp,
711                                        uint64_t start,
712                                        uint64_t length,
713                                        gen8_pte_t scratch_pte)
714 {
715         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
716         gen8_pte_t *pt_vaddr;
717         unsigned pdpe = gen8_pdpe_index(start);
718         unsigned pde = gen8_pde_index(start);
719         unsigned pte = gen8_pte_index(start);
720         unsigned num_entries = length >> PAGE_SHIFT;
721         unsigned last_pte, i;
722
723         if (WARN_ON(!pdp))
724                 return;
725
726         while (num_entries) {
727                 struct i915_page_directory *pd;
728                 struct i915_page_table *pt;
729
730                 if (WARN_ON(!pdp->page_directory[pdpe]))
731                         break;
732
733                 pd = pdp->page_directory[pdpe];
734
735                 if (WARN_ON(!pd->page_table[pde]))
736                         break;
737
738                 pt = pd->page_table[pde];
739
740                 if (WARN_ON(!px_page(pt)))
741                         break;
742
743                 last_pte = pte + num_entries;
744                 if (last_pte > GEN8_PTES)
745                         last_pte = GEN8_PTES;
746
747                 pt_vaddr = kmap_px(pt);
748
749                 for (i = pte; i < last_pte; i++) {
750                         pt_vaddr[i] = scratch_pte;
751                         num_entries--;
752                 }
753
754                 kunmap_px(ppgtt, pt_vaddr);
755
756                 pte = 0;
757                 if (++pde == I915_PDES) {
758                         if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
759                                 break;
760                         pde = 0;
761                 }
762         }
763 }
764
765 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
766                                    uint64_t start,
767                                    uint64_t length,
768                                    bool use_scratch)
769 {
770         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
771         gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
772                                                  I915_CACHE_LLC, use_scratch);
773
774         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
775                 gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
776                                            scratch_pte);
777         } else {
778                 uint64_t pml4e;
779                 struct i915_page_directory_pointer *pdp;
780
781                 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
782                         gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
783                                                    scratch_pte);
784                 }
785         }
786 }
787
788 static void
789 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
790                               struct i915_page_directory_pointer *pdp,
791                               struct sg_page_iter *sg_iter,
792                               uint64_t start,
793                               enum i915_cache_level cache_level)
794 {
795         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
796         gen8_pte_t *pt_vaddr;
797         unsigned pdpe = gen8_pdpe_index(start);
798         unsigned pde = gen8_pde_index(start);
799         unsigned pte = gen8_pte_index(start);
800
801         pt_vaddr = NULL;
802
803         while (__sg_page_iter_next(sg_iter)) {
804                 if (pt_vaddr == NULL) {
805                         struct i915_page_directory *pd = pdp->page_directory[pdpe];
806                         struct i915_page_table *pt = pd->page_table[pde];
807                         pt_vaddr = kmap_px(pt);
808                 }
809
810                 pt_vaddr[pte] =
811                         gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
812                                         cache_level, true);
813                 if (++pte == GEN8_PTES) {
814                         kunmap_px(ppgtt, pt_vaddr);
815                         pt_vaddr = NULL;
816                         if (++pde == I915_PDES) {
817                                 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
818                                         break;
819                                 pde = 0;
820                         }
821                         pte = 0;
822                 }
823         }
824
825         if (pt_vaddr)
826                 kunmap_px(ppgtt, pt_vaddr);
827 }
828
829 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
830                                       struct sg_table *pages,
831                                       uint64_t start,
832                                       enum i915_cache_level cache_level,
833                                       u32 unused)
834 {
835         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
836         struct sg_page_iter sg_iter;
837
838         __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
839
840         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
841                 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
842                                               cache_level);
843         } else {
844                 struct i915_page_directory_pointer *pdp;
845                 uint64_t pml4e;
846                 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
847
848                 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
849                         gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
850                                                       start, cache_level);
851                 }
852         }
853 }
854
855 static void gen8_free_page_tables(struct drm_device *dev,
856                                   struct i915_page_directory *pd)
857 {
858         int i;
859
860         if (!px_page(pd))
861                 return;
862
863         for_each_set_bit(i, pd->used_pdes, I915_PDES) {
864                 if (WARN_ON(!pd->page_table[i]))
865                         continue;
866
867                 free_pt(dev, pd->page_table[i]);
868                 pd->page_table[i] = NULL;
869         }
870 }
871
872 static int gen8_init_scratch(struct i915_address_space *vm)
873 {
874         struct drm_device *dev = vm->dev;
875         int ret;
876
877         ret = setup_scratch_page(dev, &vm->scratch_page, I915_GFP_DMA);
878         if (ret)
879                 return ret;
880
881         vm->scratch_pt = alloc_pt(dev);
882         if (IS_ERR(vm->scratch_pt)) {
883                 ret = PTR_ERR(vm->scratch_pt);
884                 goto free_scratch_page;
885         }
886
887         vm->scratch_pd = alloc_pd(dev);
888         if (IS_ERR(vm->scratch_pd)) {
889                 ret = PTR_ERR(vm->scratch_pd);
890                 goto free_pt;
891         }
892
893         if (USES_FULL_48BIT_PPGTT(dev)) {
894                 vm->scratch_pdp = alloc_pdp(dev);
895                 if (IS_ERR(vm->scratch_pdp)) {
896                         ret = PTR_ERR(vm->scratch_pdp);
897                         goto free_pd;
898                 }
899         }
900
901         gen8_initialize_pt(vm, vm->scratch_pt);
902         gen8_initialize_pd(vm, vm->scratch_pd);
903         if (USES_FULL_48BIT_PPGTT(dev))
904                 gen8_initialize_pdp(vm, vm->scratch_pdp);
905
906         return 0;
907
908 free_pd:
909         free_pd(dev, vm->scratch_pd);
910 free_pt:
911         free_pt(dev, vm->scratch_pt);
912 free_scratch_page:
913         cleanup_scratch_page(dev, &vm->scratch_page);
914
915         return ret;
916 }
917
918 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
919 {
920         enum vgt_g2v_type msg;
921         struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
922         int i;
923
924         if (USES_FULL_48BIT_PPGTT(dev_priv)) {
925                 u64 daddr = px_dma(&ppgtt->pml4);
926
927                 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
928                 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
929
930                 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
931                                 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
932         } else {
933                 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
934                         u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
935
936                         I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
937                         I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
938                 }
939
940                 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
941                                 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
942         }
943
944         I915_WRITE(vgtif_reg(g2v_notify), msg);
945
946         return 0;
947 }
948
949 static void gen8_free_scratch(struct i915_address_space *vm)
950 {
951         struct drm_device *dev = vm->dev;
952
953         if (USES_FULL_48BIT_PPGTT(dev))
954                 free_pdp(dev, vm->scratch_pdp);
955         free_pd(dev, vm->scratch_pd);
956         free_pt(dev, vm->scratch_pt);
957         cleanup_scratch_page(dev, &vm->scratch_page);
958 }
959
960 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
961                                     struct i915_page_directory_pointer *pdp)
962 {
963         int i;
964
965         for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
966                 if (WARN_ON(!pdp->page_directory[i]))
967                         continue;
968
969                 gen8_free_page_tables(dev, pdp->page_directory[i]);
970                 free_pd(dev, pdp->page_directory[i]);
971         }
972
973         free_pdp(dev, pdp);
974 }
975
976 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
977 {
978         int i;
979
980         for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
981                 if (WARN_ON(!ppgtt->pml4.pdps[i]))
982                         continue;
983
984                 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
985         }
986
987         cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
988 }
989
990 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
991 {
992         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
993
994         if (intel_vgpu_active(to_i915(vm->dev)))
995                 gen8_ppgtt_notify_vgt(ppgtt, false);
996
997         if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
998                 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
999         else
1000                 gen8_ppgtt_cleanup_4lvl(ppgtt);
1001
1002         gen8_free_scratch(vm);
1003 }
1004
1005 /**
1006  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1007  * @vm: Master vm structure.
1008  * @pd: Page directory for this address range.
1009  * @start:      Starting virtual address to begin allocations.
1010  * @length:     Size of the allocations.
1011  * @new_pts:    Bitmap set by function with new allocations. Likely used by the
1012  *              caller to free on error.
1013  *
1014  * Allocate the required number of page tables. Extremely similar to
1015  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1016  * the page directory boundary (instead of the page directory pointer). That
1017  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1018  * possible, and likely that the caller will need to use multiple calls of this
1019  * function to achieve the appropriate allocation.
1020  *
1021  * Return: 0 if success; negative error code otherwise.
1022  */
1023 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1024                                      struct i915_page_directory *pd,
1025                                      uint64_t start,
1026                                      uint64_t length,
1027                                      unsigned long *new_pts)
1028 {
1029         struct drm_device *dev = vm->dev;
1030         struct i915_page_table *pt;
1031         uint32_t pde;
1032
1033         gen8_for_each_pde(pt, pd, start, length, pde) {
1034                 /* Don't reallocate page tables */
1035                 if (test_bit(pde, pd->used_pdes)) {
1036                         /* Scratch is never allocated this way */
1037                         WARN_ON(pt == vm->scratch_pt);
1038                         continue;
1039                 }
1040
1041                 pt = alloc_pt(dev);
1042                 if (IS_ERR(pt))
1043                         goto unwind_out;
1044
1045                 gen8_initialize_pt(vm, pt);
1046                 pd->page_table[pde] = pt;
1047                 __set_bit(pde, new_pts);
1048                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1049         }
1050
1051         return 0;
1052
1053 unwind_out:
1054         for_each_set_bit(pde, new_pts, I915_PDES)
1055                 free_pt(dev, pd->page_table[pde]);
1056
1057         return -ENOMEM;
1058 }
1059
1060 /**
1061  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1062  * @vm: Master vm structure.
1063  * @pdp:        Page directory pointer for this address range.
1064  * @start:      Starting virtual address to begin allocations.
1065  * @length:     Size of the allocations.
1066  * @new_pds:    Bitmap set by function with new allocations. Likely used by the
1067  *              caller to free on error.
1068  *
1069  * Allocate the required number of page directories starting at the pde index of
1070  * @start, and ending at the pde index @start + @length. This function will skip
1071  * over already allocated page directories within the range, and only allocate
1072  * new ones, setting the appropriate pointer within the pdp as well as the
1073  * correct position in the bitmap @new_pds.
1074  *
1075  * The function will only allocate the pages within the range for a give page
1076  * directory pointer. In other words, if @start + @length straddles a virtually
1077  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1078  * required by the caller, This is not currently possible, and the BUG in the
1079  * code will prevent it.
1080  *
1081  * Return: 0 if success; negative error code otherwise.
1082  */
1083 static int
1084 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1085                                   struct i915_page_directory_pointer *pdp,
1086                                   uint64_t start,
1087                                   uint64_t length,
1088                                   unsigned long *new_pds)
1089 {
1090         struct drm_device *dev = vm->dev;
1091         struct i915_page_directory *pd;
1092         uint32_t pdpe;
1093         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1094
1095         WARN_ON(!bitmap_empty(new_pds, pdpes));
1096
1097         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1098                 if (test_bit(pdpe, pdp->used_pdpes))
1099                         continue;
1100
1101                 pd = alloc_pd(dev);
1102                 if (IS_ERR(pd))
1103                         goto unwind_out;
1104
1105                 gen8_initialize_pd(vm, pd);
1106                 pdp->page_directory[pdpe] = pd;
1107                 __set_bit(pdpe, new_pds);
1108                 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1109         }
1110
1111         return 0;
1112
1113 unwind_out:
1114         for_each_set_bit(pdpe, new_pds, pdpes)
1115                 free_pd(dev, pdp->page_directory[pdpe]);
1116
1117         return -ENOMEM;
1118 }
1119
1120 /**
1121  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1122  * @vm: Master vm structure.
1123  * @pml4:       Page map level 4 for this address range.
1124  * @start:      Starting virtual address to begin allocations.
1125  * @length:     Size of the allocations.
1126  * @new_pdps:   Bitmap set by function with new allocations. Likely used by the
1127  *              caller to free on error.
1128  *
1129  * Allocate the required number of page directory pointers. Extremely similar to
1130  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1131  * The main difference is here we are limited by the pml4 boundary (instead of
1132  * the page directory pointer).
1133  *
1134  * Return: 0 if success; negative error code otherwise.
1135  */
1136 static int
1137 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1138                                   struct i915_pml4 *pml4,
1139                                   uint64_t start,
1140                                   uint64_t length,
1141                                   unsigned long *new_pdps)
1142 {
1143         struct drm_device *dev = vm->dev;
1144         struct i915_page_directory_pointer *pdp;
1145         uint32_t pml4e;
1146
1147         WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1148
1149         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1150                 if (!test_bit(pml4e, pml4->used_pml4es)) {
1151                         pdp = alloc_pdp(dev);
1152                         if (IS_ERR(pdp))
1153                                 goto unwind_out;
1154
1155                         gen8_initialize_pdp(vm, pdp);
1156                         pml4->pdps[pml4e] = pdp;
1157                         __set_bit(pml4e, new_pdps);
1158                         trace_i915_page_directory_pointer_entry_alloc(vm,
1159                                                                       pml4e,
1160                                                                       start,
1161                                                                       GEN8_PML4E_SHIFT);
1162                 }
1163         }
1164
1165         return 0;
1166
1167 unwind_out:
1168         for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1169                 free_pdp(dev, pml4->pdps[pml4e]);
1170
1171         return -ENOMEM;
1172 }
1173
1174 static void
1175 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1176 {
1177         kfree(new_pts);
1178         kfree(new_pds);
1179 }
1180
1181 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1182  * of these are based on the number of PDPEs in the system.
1183  */
1184 static
1185 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1186                                          unsigned long **new_pts,
1187                                          uint32_t pdpes)
1188 {
1189         unsigned long *pds;
1190         unsigned long *pts;
1191
1192         pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1193         if (!pds)
1194                 return -ENOMEM;
1195
1196         pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1197                       GFP_TEMPORARY);
1198         if (!pts)
1199                 goto err_out;
1200
1201         *new_pds = pds;
1202         *new_pts = pts;
1203
1204         return 0;
1205
1206 err_out:
1207         free_gen8_temp_bitmaps(pds, pts);
1208         return -ENOMEM;
1209 }
1210
1211 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1212  * the page table structures, we mark them dirty so that
1213  * context switching/execlist queuing code takes extra steps
1214  * to ensure that tlbs are flushed.
1215  */
1216 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1217 {
1218         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1219 }
1220
1221 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1222                                     struct i915_page_directory_pointer *pdp,
1223                                     uint64_t start,
1224                                     uint64_t length)
1225 {
1226         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1227         unsigned long *new_page_dirs, *new_page_tables;
1228         struct drm_device *dev = vm->dev;
1229         struct i915_page_directory *pd;
1230         const uint64_t orig_start = start;
1231         const uint64_t orig_length = length;
1232         uint32_t pdpe;
1233         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1234         int ret;
1235
1236         /* Wrap is never okay since we can only represent 48b, and we don't
1237          * actually use the other side of the canonical address space.
1238          */
1239         if (WARN_ON(start + length < start))
1240                 return -ENODEV;
1241
1242         if (WARN_ON(start + length > vm->total))
1243                 return -ENODEV;
1244
1245         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1246         if (ret)
1247                 return ret;
1248
1249         /* Do the allocations first so we can easily bail out */
1250         ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1251                                                 new_page_dirs);
1252         if (ret) {
1253                 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1254                 return ret;
1255         }
1256
1257         /* For every page directory referenced, allocate page tables */
1258         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1259                 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1260                                                 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1261                 if (ret)
1262                         goto err_out;
1263         }
1264
1265         start = orig_start;
1266         length = orig_length;
1267
1268         /* Allocations have completed successfully, so set the bitmaps, and do
1269          * the mappings. */
1270         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1271                 gen8_pde_t *const page_directory = kmap_px(pd);
1272                 struct i915_page_table *pt;
1273                 uint64_t pd_len = length;
1274                 uint64_t pd_start = start;
1275                 uint32_t pde;
1276
1277                 /* Every pd should be allocated, we just did that above. */
1278                 WARN_ON(!pd);
1279
1280                 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1281                         /* Same reasoning as pd */
1282                         WARN_ON(!pt);
1283                         WARN_ON(!pd_len);
1284                         WARN_ON(!gen8_pte_count(pd_start, pd_len));
1285
1286                         /* Set our used ptes within the page table */
1287                         bitmap_set(pt->used_ptes,
1288                                    gen8_pte_index(pd_start),
1289                                    gen8_pte_count(pd_start, pd_len));
1290
1291                         /* Our pde is now pointing to the pagetable, pt */
1292                         __set_bit(pde, pd->used_pdes);
1293
1294                         /* Map the PDE to the page table */
1295                         page_directory[pde] = gen8_pde_encode(px_dma(pt),
1296                                                               I915_CACHE_LLC);
1297                         trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1298                                                         gen8_pte_index(start),
1299                                                         gen8_pte_count(start, length),
1300                                                         GEN8_PTES);
1301
1302                         /* NB: We haven't yet mapped ptes to pages. At this
1303                          * point we're still relying on insert_entries() */
1304                 }
1305
1306                 kunmap_px(ppgtt, page_directory);
1307                 __set_bit(pdpe, pdp->used_pdpes);
1308                 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1309         }
1310
1311         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1312         mark_tlbs_dirty(ppgtt);
1313         return 0;
1314
1315 err_out:
1316         while (pdpe--) {
1317                 unsigned long temp;
1318
1319                 for_each_set_bit(temp, new_page_tables + pdpe *
1320                                 BITS_TO_LONGS(I915_PDES), I915_PDES)
1321                         free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1322         }
1323
1324         for_each_set_bit(pdpe, new_page_dirs, pdpes)
1325                 free_pd(dev, pdp->page_directory[pdpe]);
1326
1327         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1328         mark_tlbs_dirty(ppgtt);
1329         return ret;
1330 }
1331
1332 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1333                                     struct i915_pml4 *pml4,
1334                                     uint64_t start,
1335                                     uint64_t length)
1336 {
1337         DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1338         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1339         struct i915_page_directory_pointer *pdp;
1340         uint64_t pml4e;
1341         int ret = 0;
1342
1343         /* Do the pml4 allocations first, so we don't need to track the newly
1344          * allocated tables below the pdp */
1345         bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1346
1347         /* The pagedirectory and pagetable allocations are done in the shared 3
1348          * and 4 level code. Just allocate the pdps.
1349          */
1350         ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1351                                                 new_pdps);
1352         if (ret)
1353                 return ret;
1354
1355         WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1356              "The allocation has spanned more than 512GB. "
1357              "It is highly likely this is incorrect.");
1358
1359         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1360                 WARN_ON(!pdp);
1361
1362                 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1363                 if (ret)
1364                         goto err_out;
1365
1366                 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1367         }
1368
1369         bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1370                   GEN8_PML4ES_PER_PML4);
1371
1372         return 0;
1373
1374 err_out:
1375         for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1376                 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1377
1378         return ret;
1379 }
1380
1381 static int gen8_alloc_va_range(struct i915_address_space *vm,
1382                                uint64_t start, uint64_t length)
1383 {
1384         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1385
1386         if (USES_FULL_48BIT_PPGTT(vm->dev))
1387                 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1388         else
1389                 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1390 }
1391
1392 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1393                           uint64_t start, uint64_t length,
1394                           gen8_pte_t scratch_pte,
1395                           struct seq_file *m)
1396 {
1397         struct i915_page_directory *pd;
1398         uint32_t pdpe;
1399
1400         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1401                 struct i915_page_table *pt;
1402                 uint64_t pd_len = length;
1403                 uint64_t pd_start = start;
1404                 uint32_t pde;
1405
1406                 if (!test_bit(pdpe, pdp->used_pdpes))
1407                         continue;
1408
1409                 seq_printf(m, "\tPDPE #%d\n", pdpe);
1410                 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1411                         uint32_t  pte;
1412                         gen8_pte_t *pt_vaddr;
1413
1414                         if (!test_bit(pde, pd->used_pdes))
1415                                 continue;
1416
1417                         pt_vaddr = kmap_px(pt);
1418                         for (pte = 0; pte < GEN8_PTES; pte += 4) {
1419                                 uint64_t va =
1420                                         (pdpe << GEN8_PDPE_SHIFT) |
1421                                         (pde << GEN8_PDE_SHIFT) |
1422                                         (pte << GEN8_PTE_SHIFT);
1423                                 int i;
1424                                 bool found = false;
1425
1426                                 for (i = 0; i < 4; i++)
1427                                         if (pt_vaddr[pte + i] != scratch_pte)
1428                                                 found = true;
1429                                 if (!found)
1430                                         continue;
1431
1432                                 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1433                                 for (i = 0; i < 4; i++) {
1434                                         if (pt_vaddr[pte + i] != scratch_pte)
1435                                                 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1436                                         else
1437                                                 seq_puts(m, "  SCRATCH ");
1438                                 }
1439                                 seq_puts(m, "\n");
1440                         }
1441                         /* don't use kunmap_px, it could trigger
1442                          * an unnecessary flush.
1443                          */
1444                         kunmap_atomic(pt_vaddr);
1445                 }
1446         }
1447 }
1448
1449 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1450 {
1451         struct i915_address_space *vm = &ppgtt->base;
1452         uint64_t start = ppgtt->base.start;
1453         uint64_t length = ppgtt->base.total;
1454         gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
1455                                                  I915_CACHE_LLC, true);
1456
1457         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1458                 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1459         } else {
1460                 uint64_t pml4e;
1461                 struct i915_pml4 *pml4 = &ppgtt->pml4;
1462                 struct i915_page_directory_pointer *pdp;
1463
1464                 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1465                         if (!test_bit(pml4e, pml4->used_pml4es))
1466                                 continue;
1467
1468                         seq_printf(m, "    PML4E #%llu\n", pml4e);
1469                         gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1470                 }
1471         }
1472 }
1473
1474 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1475 {
1476         unsigned long *new_page_dirs, *new_page_tables;
1477         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1478         int ret;
1479
1480         /* We allocate temp bitmap for page tables for no gain
1481          * but as this is for init only, lets keep the things simple
1482          */
1483         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1484         if (ret)
1485                 return ret;
1486
1487         /* Allocate for all pdps regardless of how the ppgtt
1488          * was defined.
1489          */
1490         ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1491                                                 0, 1ULL << 32,
1492                                                 new_page_dirs);
1493         if (!ret)
1494                 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1495
1496         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1497
1498         return ret;
1499 }
1500
1501 /*
1502  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1503  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1504  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1505  * space.
1506  *
1507  */
1508 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1509 {
1510         int ret;
1511
1512         ret = gen8_init_scratch(&ppgtt->base);
1513         if (ret)
1514                 return ret;
1515
1516         ppgtt->base.start = 0;
1517         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1518         ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1519         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1520         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1521         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1522         ppgtt->base.bind_vma = ppgtt_bind_vma;
1523         ppgtt->debug_dump = gen8_dump_ppgtt;
1524
1525         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1526                 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1527                 if (ret)
1528                         goto free_scratch;
1529
1530                 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1531
1532                 ppgtt->base.total = 1ULL << 48;
1533                 ppgtt->switch_mm = gen8_48b_mm_switch;
1534         } else {
1535                 ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1536                 if (ret)
1537                         goto free_scratch;
1538
1539                 ppgtt->base.total = 1ULL << 32;
1540                 ppgtt->switch_mm = gen8_legacy_mm_switch;
1541                 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1542                                                               0, 0,
1543                                                               GEN8_PML4E_SHIFT);
1544
1545                 if (intel_vgpu_active(to_i915(ppgtt->base.dev))) {
1546                         ret = gen8_preallocate_top_level_pdps(ppgtt);
1547                         if (ret)
1548                                 goto free_scratch;
1549                 }
1550         }
1551
1552         if (intel_vgpu_active(to_i915(ppgtt->base.dev)))
1553                 gen8_ppgtt_notify_vgt(ppgtt, true);
1554
1555         return 0;
1556
1557 free_scratch:
1558         gen8_free_scratch(&ppgtt->base);
1559         return ret;
1560 }
1561
1562 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1563 {
1564         struct i915_address_space *vm = &ppgtt->base;
1565         struct i915_page_table *unused;
1566         gen6_pte_t scratch_pte;
1567         uint32_t pd_entry;
1568         uint32_t  pte, pde;
1569         uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1570
1571         scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1572                                      I915_CACHE_LLC, true, 0);
1573
1574         gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1575                 u32 expected;
1576                 gen6_pte_t *pt_vaddr;
1577                 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1578                 pd_entry = readl(ppgtt->pd_addr + pde);
1579                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1580
1581                 if (pd_entry != expected)
1582                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1583                                    pde,
1584                                    pd_entry,
1585                                    expected);
1586                 seq_printf(m, "\tPDE: %x\n", pd_entry);
1587
1588                 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1589
1590                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1591                         unsigned long va =
1592                                 (pde * PAGE_SIZE * GEN6_PTES) +
1593                                 (pte * PAGE_SIZE);
1594                         int i;
1595                         bool found = false;
1596                         for (i = 0; i < 4; i++)
1597                                 if (pt_vaddr[pte + i] != scratch_pte)
1598                                         found = true;
1599                         if (!found)
1600                                 continue;
1601
1602                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1603                         for (i = 0; i < 4; i++) {
1604                                 if (pt_vaddr[pte + i] != scratch_pte)
1605                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1606                                 else
1607                                         seq_puts(m, "  SCRATCH ");
1608                         }
1609                         seq_puts(m, "\n");
1610                 }
1611                 kunmap_px(ppgtt, pt_vaddr);
1612         }
1613 }
1614
1615 /* Write pde (index) from the page directory @pd to the page table @pt */
1616 static void gen6_write_pde(struct i915_page_directory *pd,
1617                             const int pde, struct i915_page_table *pt)
1618 {
1619         /* Caller needs to make sure the write completes if necessary */
1620         struct i915_hw_ppgtt *ppgtt =
1621                 container_of(pd, struct i915_hw_ppgtt, pd);
1622         u32 pd_entry;
1623
1624         pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1625         pd_entry |= GEN6_PDE_VALID;
1626
1627         writel(pd_entry, ppgtt->pd_addr + pde);
1628 }
1629
1630 /* Write all the page tables found in the ppgtt structure to incrementing page
1631  * directories. */
1632 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1633                                   struct i915_page_directory *pd,
1634                                   uint32_t start, uint32_t length)
1635 {
1636         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1637         struct i915_page_table *pt;
1638         uint32_t pde;
1639
1640         gen6_for_each_pde(pt, pd, start, length, pde)
1641                 gen6_write_pde(pd, pde, pt);
1642
1643         /* Make sure write is complete before other code can use this page
1644          * table. Also require for WC mapped PTEs */
1645         readl(ggtt->gsm);
1646 }
1647
1648 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1649 {
1650         BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1651
1652         return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1653 }
1654
1655 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1656                          struct drm_i915_gem_request *req)
1657 {
1658         struct intel_ring *ring = req->ring;
1659         struct intel_engine_cs *engine = req->engine;
1660         int ret;
1661
1662         /* NB: TLBs must be flushed and invalidated before a switch */
1663         ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1664         if (ret)
1665                 return ret;
1666
1667         ret = intel_ring_begin(req, 6);
1668         if (ret)
1669                 return ret;
1670
1671         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1672         intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1673         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1674         intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1675         intel_ring_emit(ring, get_pd_offset(ppgtt));
1676         intel_ring_emit(ring, MI_NOOP);
1677         intel_ring_advance(ring);
1678
1679         return 0;
1680 }
1681
1682 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1683                           struct drm_i915_gem_request *req)
1684 {
1685         struct intel_ring *ring = req->ring;
1686         struct intel_engine_cs *engine = req->engine;
1687         int ret;
1688
1689         /* NB: TLBs must be flushed and invalidated before a switch */
1690         ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1691         if (ret)
1692                 return ret;
1693
1694         ret = intel_ring_begin(req, 6);
1695         if (ret)
1696                 return ret;
1697
1698         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1699         intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1700         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1701         intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1702         intel_ring_emit(ring, get_pd_offset(ppgtt));
1703         intel_ring_emit(ring, MI_NOOP);
1704         intel_ring_advance(ring);
1705
1706         /* XXX: RCS is the only one to auto invalidate the TLBs? */
1707         if (engine->id != RCS) {
1708                 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1709                 if (ret)
1710                         return ret;
1711         }
1712
1713         return 0;
1714 }
1715
1716 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1717                           struct drm_i915_gem_request *req)
1718 {
1719         struct intel_engine_cs *engine = req->engine;
1720         struct drm_i915_private *dev_priv = req->i915;
1721
1722         I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1723         I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1724         return 0;
1725 }
1726
1727 static void gen8_ppgtt_enable(struct drm_device *dev)
1728 {
1729         struct drm_i915_private *dev_priv = to_i915(dev);
1730         struct intel_engine_cs *engine;
1731
1732         for_each_engine(engine, dev_priv) {
1733                 u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1734                 I915_WRITE(RING_MODE_GEN7(engine),
1735                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1736         }
1737 }
1738
1739 static void gen7_ppgtt_enable(struct drm_device *dev)
1740 {
1741         struct drm_i915_private *dev_priv = to_i915(dev);
1742         struct intel_engine_cs *engine;
1743         uint32_t ecochk, ecobits;
1744
1745         ecobits = I915_READ(GAC_ECO_BITS);
1746         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1747
1748         ecochk = I915_READ(GAM_ECOCHK);
1749         if (IS_HASWELL(dev)) {
1750                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1751         } else {
1752                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1753                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1754         }
1755         I915_WRITE(GAM_ECOCHK, ecochk);
1756
1757         for_each_engine(engine, dev_priv) {
1758                 /* GFX_MODE is per-ring on gen7+ */
1759                 I915_WRITE(RING_MODE_GEN7(engine),
1760                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1761         }
1762 }
1763
1764 static void gen6_ppgtt_enable(struct drm_device *dev)
1765 {
1766         struct drm_i915_private *dev_priv = to_i915(dev);
1767         uint32_t ecochk, gab_ctl, ecobits;
1768
1769         ecobits = I915_READ(GAC_ECO_BITS);
1770         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1771                    ECOBITS_PPGTT_CACHE64B);
1772
1773         gab_ctl = I915_READ(GAB_CTL);
1774         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1775
1776         ecochk = I915_READ(GAM_ECOCHK);
1777         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1778
1779         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1780 }
1781
1782 /* PPGTT support for Sandybdrige/Gen6 and later */
1783 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1784                                    uint64_t start,
1785                                    uint64_t length,
1786                                    bool use_scratch)
1787 {
1788         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1789         gen6_pte_t *pt_vaddr, scratch_pte;
1790         unsigned first_entry = start >> PAGE_SHIFT;
1791         unsigned num_entries = length >> PAGE_SHIFT;
1792         unsigned act_pt = first_entry / GEN6_PTES;
1793         unsigned first_pte = first_entry % GEN6_PTES;
1794         unsigned last_pte, i;
1795
1796         scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1797                                      I915_CACHE_LLC, true, 0);
1798
1799         while (num_entries) {
1800                 last_pte = first_pte + num_entries;
1801                 if (last_pte > GEN6_PTES)
1802                         last_pte = GEN6_PTES;
1803
1804                 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1805
1806                 for (i = first_pte; i < last_pte; i++)
1807                         pt_vaddr[i] = scratch_pte;
1808
1809                 kunmap_px(ppgtt, pt_vaddr);
1810
1811                 num_entries -= last_pte - first_pte;
1812                 first_pte = 0;
1813                 act_pt++;
1814         }
1815 }
1816
1817 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1818                                       struct sg_table *pages,
1819                                       uint64_t start,
1820                                       enum i915_cache_level cache_level, u32 flags)
1821 {
1822         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1823         unsigned first_entry = start >> PAGE_SHIFT;
1824         unsigned act_pt = first_entry / GEN6_PTES;
1825         unsigned act_pte = first_entry % GEN6_PTES;
1826         gen6_pte_t *pt_vaddr = NULL;
1827         struct sgt_iter sgt_iter;
1828         dma_addr_t addr;
1829
1830         for_each_sgt_dma(addr, sgt_iter, pages) {
1831                 if (pt_vaddr == NULL)
1832                         pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1833
1834                 pt_vaddr[act_pte] =
1835                         vm->pte_encode(addr, cache_level, true, flags);
1836
1837                 if (++act_pte == GEN6_PTES) {
1838                         kunmap_px(ppgtt, pt_vaddr);
1839                         pt_vaddr = NULL;
1840                         act_pt++;
1841                         act_pte = 0;
1842                 }
1843         }
1844
1845         if (pt_vaddr)
1846                 kunmap_px(ppgtt, pt_vaddr);
1847 }
1848
1849 static int gen6_alloc_va_range(struct i915_address_space *vm,
1850                                uint64_t start_in, uint64_t length_in)
1851 {
1852         DECLARE_BITMAP(new_page_tables, I915_PDES);
1853         struct drm_device *dev = vm->dev;
1854         struct drm_i915_private *dev_priv = to_i915(dev);
1855         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1856         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1857         struct i915_page_table *pt;
1858         uint32_t start, length, start_save, length_save;
1859         uint32_t pde;
1860         int ret;
1861
1862         if (WARN_ON(start_in + length_in > ppgtt->base.total))
1863                 return -ENODEV;
1864
1865         start = start_save = start_in;
1866         length = length_save = length_in;
1867
1868         bitmap_zero(new_page_tables, I915_PDES);
1869
1870         /* The allocation is done in two stages so that we can bail out with
1871          * minimal amount of pain. The first stage finds new page tables that
1872          * need allocation. The second stage marks use ptes within the page
1873          * tables.
1874          */
1875         gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1876                 if (pt != vm->scratch_pt) {
1877                         WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1878                         continue;
1879                 }
1880
1881                 /* We've already allocated a page table */
1882                 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1883
1884                 pt = alloc_pt(dev);
1885                 if (IS_ERR(pt)) {
1886                         ret = PTR_ERR(pt);
1887                         goto unwind_out;
1888                 }
1889
1890                 gen6_initialize_pt(vm, pt);
1891
1892                 ppgtt->pd.page_table[pde] = pt;
1893                 __set_bit(pde, new_page_tables);
1894                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1895         }
1896
1897         start = start_save;
1898         length = length_save;
1899
1900         gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1901                 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1902
1903                 bitmap_zero(tmp_bitmap, GEN6_PTES);
1904                 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1905                            gen6_pte_count(start, length));
1906
1907                 if (__test_and_clear_bit(pde, new_page_tables))
1908                         gen6_write_pde(&ppgtt->pd, pde, pt);
1909
1910                 trace_i915_page_table_entry_map(vm, pde, pt,
1911                                          gen6_pte_index(start),
1912                                          gen6_pte_count(start, length),
1913                                          GEN6_PTES);
1914                 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1915                                 GEN6_PTES);
1916         }
1917
1918         WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1919
1920         /* Make sure write is complete before other code can use this page
1921          * table. Also require for WC mapped PTEs */
1922         readl(ggtt->gsm);
1923
1924         mark_tlbs_dirty(ppgtt);
1925         return 0;
1926
1927 unwind_out:
1928         for_each_set_bit(pde, new_page_tables, I915_PDES) {
1929                 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1930
1931                 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1932                 free_pt(vm->dev, pt);
1933         }
1934
1935         mark_tlbs_dirty(ppgtt);
1936         return ret;
1937 }
1938
1939 static int gen6_init_scratch(struct i915_address_space *vm)
1940 {
1941         struct drm_device *dev = vm->dev;
1942         int ret;
1943
1944         ret = setup_scratch_page(dev, &vm->scratch_page, I915_GFP_DMA);
1945         if (ret)
1946                 return ret;
1947
1948         vm->scratch_pt = alloc_pt(dev);
1949         if (IS_ERR(vm->scratch_pt)) {
1950                 cleanup_scratch_page(dev, &vm->scratch_page);
1951                 return PTR_ERR(vm->scratch_pt);
1952         }
1953
1954         gen6_initialize_pt(vm, vm->scratch_pt);
1955
1956         return 0;
1957 }
1958
1959 static void gen6_free_scratch(struct i915_address_space *vm)
1960 {
1961         struct drm_device *dev = vm->dev;
1962
1963         free_pt(dev, vm->scratch_pt);
1964         cleanup_scratch_page(dev, &vm->scratch_page);
1965 }
1966
1967 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1968 {
1969         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1970         struct i915_page_directory *pd = &ppgtt->pd;
1971         struct drm_device *dev = vm->dev;
1972         struct i915_page_table *pt;
1973         uint32_t pde;
1974
1975         drm_mm_remove_node(&ppgtt->node);
1976
1977         gen6_for_all_pdes(pt, pd, pde)
1978                 if (pt != vm->scratch_pt)
1979                         free_pt(dev, pt);
1980
1981         gen6_free_scratch(vm);
1982 }
1983
1984 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1985 {
1986         struct i915_address_space *vm = &ppgtt->base;
1987         struct drm_device *dev = ppgtt->base.dev;
1988         struct drm_i915_private *dev_priv = to_i915(dev);
1989         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1990         bool retried = false;
1991         int ret;
1992
1993         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1994          * allocator works in address space sizes, so it's multiplied by page
1995          * size. We allocate at the top of the GTT to avoid fragmentation.
1996          */
1997         BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1998
1999         ret = gen6_init_scratch(vm);
2000         if (ret)
2001                 return ret;
2002
2003 alloc:
2004         ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2005                                                   &ppgtt->node, GEN6_PD_SIZE,
2006                                                   GEN6_PD_ALIGN, 0,
2007                                                   0, ggtt->base.total,
2008                                                   DRM_MM_TOPDOWN);
2009         if (ret == -ENOSPC && !retried) {
2010                 ret = i915_gem_evict_something(&ggtt->base,
2011                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
2012                                                I915_CACHE_NONE,
2013                                                0, ggtt->base.total,
2014                                                0);
2015                 if (ret)
2016                         goto err_out;
2017
2018                 retried = true;
2019                 goto alloc;
2020         }
2021
2022         if (ret)
2023                 goto err_out;
2024
2025
2026         if (ppgtt->node.start < ggtt->mappable_end)
2027                 DRM_DEBUG("Forced to use aperture for PDEs\n");
2028
2029         return 0;
2030
2031 err_out:
2032         gen6_free_scratch(vm);
2033         return ret;
2034 }
2035
2036 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2037 {
2038         return gen6_ppgtt_allocate_page_directories(ppgtt);
2039 }
2040
2041 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2042                                   uint64_t start, uint64_t length)
2043 {
2044         struct i915_page_table *unused;
2045         uint32_t pde;
2046
2047         gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2048                 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2049 }
2050
2051 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2052 {
2053         struct drm_device *dev = ppgtt->base.dev;
2054         struct drm_i915_private *dev_priv = to_i915(dev);
2055         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2056         int ret;
2057
2058         ppgtt->base.pte_encode = ggtt->base.pte_encode;
2059         if (intel_vgpu_active(dev_priv) || IS_GEN6(dev))
2060                 ppgtt->switch_mm = gen6_mm_switch;
2061         else if (IS_HASWELL(dev))
2062                 ppgtt->switch_mm = hsw_mm_switch;
2063         else if (IS_GEN7(dev))
2064                 ppgtt->switch_mm = gen7_mm_switch;
2065         else
2066                 BUG();
2067
2068         ret = gen6_ppgtt_alloc(ppgtt);
2069         if (ret)
2070                 return ret;
2071
2072         ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2073         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2074         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2075         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2076         ppgtt->base.bind_vma = ppgtt_bind_vma;
2077         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2078         ppgtt->base.start = 0;
2079         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2080         ppgtt->debug_dump = gen6_dump_ppgtt;
2081
2082         ppgtt->pd.base.ggtt_offset =
2083                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2084
2085         ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2086                 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2087
2088         gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2089
2090         gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2091
2092         DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2093                          ppgtt->node.size >> 20,
2094                          ppgtt->node.start / PAGE_SIZE);
2095
2096         DRM_DEBUG("Adding PPGTT at offset %x\n",
2097                   ppgtt->pd.base.ggtt_offset << 10);
2098
2099         return 0;
2100 }
2101
2102 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2103                            struct drm_i915_private *dev_priv)
2104 {
2105         ppgtt->base.dev = &dev_priv->drm;
2106
2107         if (INTEL_INFO(dev_priv)->gen < 8)
2108                 return gen6_ppgtt_init(ppgtt);
2109         else
2110                 return gen8_ppgtt_init(ppgtt);
2111 }
2112
2113 static void i915_address_space_init(struct i915_address_space *vm,
2114                                     struct drm_i915_private *dev_priv)
2115 {
2116         drm_mm_init(&vm->mm, vm->start, vm->total);
2117         INIT_LIST_HEAD(&vm->active_list);
2118         INIT_LIST_HEAD(&vm->inactive_list);
2119         INIT_LIST_HEAD(&vm->unbound_list);
2120         list_add_tail(&vm->global_link, &dev_priv->vm_list);
2121 }
2122
2123 static void gtt_write_workarounds(struct drm_device *dev)
2124 {
2125         struct drm_i915_private *dev_priv = to_i915(dev);
2126
2127         /* This function is for gtt related workarounds. This function is
2128          * called on driver load and after a GPU reset, so you can place
2129          * workarounds here even if they get overwritten by GPU reset.
2130          */
2131         /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2132         if (IS_BROADWELL(dev))
2133                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2134         else if (IS_CHERRYVIEW(dev))
2135                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2136         else if (IS_SKYLAKE(dev))
2137                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2138         else if (IS_BROXTON(dev))
2139                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2140 }
2141
2142 static int i915_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2143                            struct drm_i915_private *dev_priv,
2144                            struct drm_i915_file_private *file_priv)
2145 {
2146         int ret;
2147
2148         ret = __hw_ppgtt_init(ppgtt, dev_priv);
2149         if (ret == 0) {
2150                 kref_init(&ppgtt->ref);
2151                 i915_address_space_init(&ppgtt->base, dev_priv);
2152                 ppgtt->base.file = file_priv;
2153         }
2154
2155         return ret;
2156 }
2157
2158 int i915_ppgtt_init_hw(struct drm_device *dev)
2159 {
2160         gtt_write_workarounds(dev);
2161
2162         /* In the case of execlists, PPGTT is enabled by the context descriptor
2163          * and the PDPs are contained within the context itself.  We don't
2164          * need to do anything here. */
2165         if (i915.enable_execlists)
2166                 return 0;
2167
2168         if (!USES_PPGTT(dev))
2169                 return 0;
2170
2171         if (IS_GEN6(dev))
2172                 gen6_ppgtt_enable(dev);
2173         else if (IS_GEN7(dev))
2174                 gen7_ppgtt_enable(dev);
2175         else if (INTEL_INFO(dev)->gen >= 8)
2176                 gen8_ppgtt_enable(dev);
2177         else
2178                 MISSING_CASE(INTEL_INFO(dev)->gen);
2179
2180         return 0;
2181 }
2182
2183 struct i915_hw_ppgtt *
2184 i915_ppgtt_create(struct drm_i915_private *dev_priv,
2185                   struct drm_i915_file_private *fpriv)
2186 {
2187         struct i915_hw_ppgtt *ppgtt;
2188         int ret;
2189
2190         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2191         if (!ppgtt)
2192                 return ERR_PTR(-ENOMEM);
2193
2194         ret = i915_ppgtt_init(ppgtt, dev_priv, fpriv);
2195         if (ret) {
2196                 kfree(ppgtt);
2197                 return ERR_PTR(ret);
2198         }
2199
2200         trace_i915_ppgtt_create(&ppgtt->base);
2201
2202         return ppgtt;
2203 }
2204
2205 void  i915_ppgtt_release(struct kref *kref)
2206 {
2207         struct i915_hw_ppgtt *ppgtt =
2208                 container_of(kref, struct i915_hw_ppgtt, ref);
2209
2210         trace_i915_ppgtt_release(&ppgtt->base);
2211
2212         /* vmas should already be unbound and destroyed */
2213         WARN_ON(!list_empty(&ppgtt->base.active_list));
2214         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2215         WARN_ON(!list_empty(&ppgtt->base.unbound_list));
2216
2217         list_del(&ppgtt->base.global_link);
2218         drm_mm_takedown(&ppgtt->base.mm);
2219
2220         ppgtt->base.cleanup(&ppgtt->base);
2221         kfree(ppgtt);
2222 }
2223
2224 /* Certain Gen5 chipsets require require idling the GPU before
2225  * unmapping anything from the GTT when VT-d is enabled.
2226  */
2227 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2228 {
2229 #ifdef CONFIG_INTEL_IOMMU
2230         /* Query intel_iommu to see if we need the workaround. Presumably that
2231          * was loaded first.
2232          */
2233         if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
2234                 return true;
2235 #endif
2236         return false;
2237 }
2238
2239 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2240 {
2241         struct intel_engine_cs *engine;
2242
2243         if (INTEL_INFO(dev_priv)->gen < 6)
2244                 return;
2245
2246         for_each_engine(engine, dev_priv) {
2247                 u32 fault_reg;
2248                 fault_reg = I915_READ(RING_FAULT_REG(engine));
2249                 if (fault_reg & RING_FAULT_VALID) {
2250                         DRM_DEBUG_DRIVER("Unexpected fault\n"
2251                                          "\tAddr: 0x%08lx\n"
2252                                          "\tAddress space: %s\n"
2253                                          "\tSource ID: %d\n"
2254                                          "\tType: %d\n",
2255                                          fault_reg & PAGE_MASK,
2256                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2257                                          RING_FAULT_SRCID(fault_reg),
2258                                          RING_FAULT_FAULT_TYPE(fault_reg));
2259                         I915_WRITE(RING_FAULT_REG(engine),
2260                                    fault_reg & ~RING_FAULT_VALID);
2261                 }
2262         }
2263         POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS]));
2264 }
2265
2266 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2267 {
2268         if (INTEL_INFO(dev_priv)->gen < 6) {
2269                 intel_gtt_chipset_flush();
2270         } else {
2271                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2272                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2273         }
2274 }
2275
2276 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2277 {
2278         struct drm_i915_private *dev_priv = to_i915(dev);
2279         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2280
2281         /* Don't bother messing with faults pre GEN6 as we have little
2282          * documentation supporting that it's a good idea.
2283          */
2284         if (INTEL_INFO(dev)->gen < 6)
2285                 return;
2286
2287         i915_check_and_clear_faults(dev_priv);
2288
2289         ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
2290                              true);
2291
2292         i915_ggtt_flush(dev_priv);
2293 }
2294
2295 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2296 {
2297         if (!dma_map_sg(&obj->base.dev->pdev->dev,
2298                         obj->pages->sgl, obj->pages->nents,
2299                         PCI_DMA_BIDIRECTIONAL))
2300                 return -ENOSPC;
2301
2302         return 0;
2303 }
2304
2305 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2306 {
2307         writeq(pte, addr);
2308 }
2309
2310 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2311                                   dma_addr_t addr,
2312                                   uint64_t offset,
2313                                   enum i915_cache_level level,
2314                                   u32 unused)
2315 {
2316         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2317         gen8_pte_t __iomem *pte =
2318                 (gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2319                 (offset >> PAGE_SHIFT);
2320         int rpm_atomic_seq;
2321
2322         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2323
2324         gen8_set_pte(pte, gen8_pte_encode(addr, level, true));
2325
2326         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2327         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2328
2329         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2330 }
2331
2332 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2333                                      struct sg_table *st,
2334                                      uint64_t start,
2335                                      enum i915_cache_level level, u32 unused)
2336 {
2337         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2338         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2339         struct sgt_iter sgt_iter;
2340         gen8_pte_t __iomem *gtt_entries;
2341         gen8_pte_t gtt_entry;
2342         dma_addr_t addr;
2343         int rpm_atomic_seq;
2344         int i = 0;
2345
2346         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2347
2348         gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2349
2350         for_each_sgt_dma(addr, sgt_iter, st) {
2351                 gtt_entry = gen8_pte_encode(addr, level, true);
2352                 gen8_set_pte(&gtt_entries[i++], gtt_entry);
2353         }
2354
2355         /*
2356          * XXX: This serves as a posting read to make sure that the PTE has
2357          * actually been updated. There is some concern that even though
2358          * registers and PTEs are within the same BAR that they are potentially
2359          * of NUMA access patterns. Therefore, even with the way we assume
2360          * hardware should work, we must keep this posting read for paranoia.
2361          */
2362         if (i != 0)
2363                 WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2364
2365         /* This next bit makes the above posting read even more important. We
2366          * want to flush the TLBs only after we're certain all the PTE updates
2367          * have finished.
2368          */
2369         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2370         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2371
2372         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2373 }
2374
2375 struct insert_entries {
2376         struct i915_address_space *vm;
2377         struct sg_table *st;
2378         uint64_t start;
2379         enum i915_cache_level level;
2380         u32 flags;
2381 };
2382
2383 static int gen8_ggtt_insert_entries__cb(void *_arg)
2384 {
2385         struct insert_entries *arg = _arg;
2386         gen8_ggtt_insert_entries(arg->vm, arg->st,
2387                                  arg->start, arg->level, arg->flags);
2388         return 0;
2389 }
2390
2391 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2392                                           struct sg_table *st,
2393                                           uint64_t start,
2394                                           enum i915_cache_level level,
2395                                           u32 flags)
2396 {
2397         struct insert_entries arg = { vm, st, start, level, flags };
2398         stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2399 }
2400
2401 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2402                                   dma_addr_t addr,
2403                                   uint64_t offset,
2404                                   enum i915_cache_level level,
2405                                   u32 flags)
2406 {
2407         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2408         gen6_pte_t __iomem *pte =
2409                 (gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2410                 (offset >> PAGE_SHIFT);
2411         int rpm_atomic_seq;
2412
2413         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2414
2415         iowrite32(vm->pte_encode(addr, level, true, flags), pte);
2416
2417         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2418         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2419
2420         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2421 }
2422
2423 /*
2424  * Binds an object into the global gtt with the specified cache level. The object
2425  * will be accessible to the GPU via commands whose operands reference offsets
2426  * within the global GTT as well as accessible by the GPU through the GMADR
2427  * mapped BAR (dev_priv->mm.gtt->gtt).
2428  */
2429 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2430                                      struct sg_table *st,
2431                                      uint64_t start,
2432                                      enum i915_cache_level level, u32 flags)
2433 {
2434         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2435         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2436         struct sgt_iter sgt_iter;
2437         gen6_pte_t __iomem *gtt_entries;
2438         gen6_pte_t gtt_entry;
2439         dma_addr_t addr;
2440         int rpm_atomic_seq;
2441         int i = 0;
2442
2443         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2444
2445         gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2446
2447         for_each_sgt_dma(addr, sgt_iter, st) {
2448                 gtt_entry = vm->pte_encode(addr, level, true, flags);
2449                 iowrite32(gtt_entry, &gtt_entries[i++]);
2450         }
2451
2452         /* XXX: This serves as a posting read to make sure that the PTE has
2453          * actually been updated. There is some concern that even though
2454          * registers and PTEs are within the same BAR that they are potentially
2455          * of NUMA access patterns. Therefore, even with the way we assume
2456          * hardware should work, we must keep this posting read for paranoia.
2457          */
2458         if (i != 0)
2459                 WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2460
2461         /* This next bit makes the above posting read even more important. We
2462          * want to flush the TLBs only after we're certain all the PTE updates
2463          * have finished.
2464          */
2465         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2466         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2467
2468         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2469 }
2470
2471 static void nop_clear_range(struct i915_address_space *vm,
2472                             uint64_t start,
2473                             uint64_t length,
2474                             bool use_scratch)
2475 {
2476 }
2477
2478 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2479                                   uint64_t start,
2480                                   uint64_t length,
2481                                   bool use_scratch)
2482 {
2483         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2484         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2485         unsigned first_entry = start >> PAGE_SHIFT;
2486         unsigned num_entries = length >> PAGE_SHIFT;
2487         gen8_pte_t scratch_pte, __iomem *gtt_base =
2488                 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2489         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2490         int i;
2491         int rpm_atomic_seq;
2492
2493         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2494
2495         if (WARN(num_entries > max_entries,
2496                  "First entry = %d; Num entries = %d (max=%d)\n",
2497                  first_entry, num_entries, max_entries))
2498                 num_entries = max_entries;
2499
2500         scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
2501                                       I915_CACHE_LLC,
2502                                       use_scratch);
2503         for (i = 0; i < num_entries; i++)
2504                 gen8_set_pte(&gtt_base[i], scratch_pte);
2505         readl(gtt_base);
2506
2507         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2508 }
2509
2510 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2511                                   uint64_t start,
2512                                   uint64_t length,
2513                                   bool use_scratch)
2514 {
2515         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2516         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2517         unsigned first_entry = start >> PAGE_SHIFT;
2518         unsigned num_entries = length >> PAGE_SHIFT;
2519         gen6_pte_t scratch_pte, __iomem *gtt_base =
2520                 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2521         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2522         int i;
2523         int rpm_atomic_seq;
2524
2525         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2526
2527         if (WARN(num_entries > max_entries,
2528                  "First entry = %d; Num entries = %d (max=%d)\n",
2529                  first_entry, num_entries, max_entries))
2530                 num_entries = max_entries;
2531
2532         scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2533                                      I915_CACHE_LLC, use_scratch, 0);
2534
2535         for (i = 0; i < num_entries; i++)
2536                 iowrite32(scratch_pte, &gtt_base[i]);
2537         readl(gtt_base);
2538
2539         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2540 }
2541
2542 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2543                                   dma_addr_t addr,
2544                                   uint64_t offset,
2545                                   enum i915_cache_level cache_level,
2546                                   u32 unused)
2547 {
2548         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2549         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2550                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2551         int rpm_atomic_seq;
2552
2553         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2554
2555         intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2556
2557         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2558 }
2559
2560 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2561                                      struct sg_table *pages,
2562                                      uint64_t start,
2563                                      enum i915_cache_level cache_level, u32 unused)
2564 {
2565         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2566         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2567                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2568         int rpm_atomic_seq;
2569
2570         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2571
2572         intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2573
2574         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2575
2576 }
2577
2578 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2579                                   uint64_t start,
2580                                   uint64_t length,
2581                                   bool unused)
2582 {
2583         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2584         unsigned first_entry = start >> PAGE_SHIFT;
2585         unsigned num_entries = length >> PAGE_SHIFT;
2586         int rpm_atomic_seq;
2587
2588         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2589
2590         intel_gtt_clear_range(first_entry, num_entries);
2591
2592         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2593 }
2594
2595 static int ggtt_bind_vma(struct i915_vma *vma,
2596                          enum i915_cache_level cache_level,
2597                          u32 flags)
2598 {
2599         struct drm_i915_gem_object *obj = vma->obj;
2600         u32 pte_flags = 0;
2601         int ret;
2602
2603         ret = i915_get_ggtt_vma_pages(vma);
2604         if (ret)
2605                 return ret;
2606
2607         /* Currently applicable only to VLV */
2608         if (obj->gt_ro)
2609                 pte_flags |= PTE_READ_ONLY;
2610
2611         vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
2612                                 cache_level, pte_flags);
2613
2614         /*
2615          * Without aliasing PPGTT there's no difference between
2616          * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2617          * upgrade to both bound if we bind either to avoid double-binding.
2618          */
2619         vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2620
2621         return 0;
2622 }
2623
2624 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2625                                  enum i915_cache_level cache_level,
2626                                  u32 flags)
2627 {
2628         u32 pte_flags;
2629         int ret;
2630
2631         ret = i915_get_ggtt_vma_pages(vma);
2632         if (ret)
2633                 return ret;
2634
2635         /* Currently applicable only to VLV */
2636         pte_flags = 0;
2637         if (vma->obj->gt_ro)
2638                 pte_flags |= PTE_READ_ONLY;
2639
2640
2641         if (flags & I915_VMA_GLOBAL_BIND) {
2642                 vma->vm->insert_entries(vma->vm,
2643                                         vma->pages, vma->node.start,
2644                                         cache_level, pte_flags);
2645         }
2646
2647         if (flags & I915_VMA_LOCAL_BIND) {
2648                 struct i915_hw_ppgtt *appgtt =
2649                         to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2650                 appgtt->base.insert_entries(&appgtt->base,
2651                                             vma->pages, vma->node.start,
2652                                             cache_level, pte_flags);
2653         }
2654
2655         return 0;
2656 }
2657
2658 static void ggtt_unbind_vma(struct i915_vma *vma)
2659 {
2660         struct i915_hw_ppgtt *appgtt = to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2661         const u64 size = min(vma->size, vma->node.size);
2662
2663         if (vma->flags & I915_VMA_GLOBAL_BIND)
2664                 vma->vm->clear_range(vma->vm,
2665                                      vma->node.start, size,
2666                                      true);
2667
2668         if (vma->flags & I915_VMA_LOCAL_BIND && appgtt)
2669                 appgtt->base.clear_range(&appgtt->base,
2670                                          vma->node.start, size,
2671                                          true);
2672 }
2673
2674 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2675 {
2676         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2677         struct device *kdev = &dev_priv->drm.pdev->dev;
2678         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2679
2680         if (unlikely(ggtt->do_idle_maps)) {
2681                 if (i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED)) {
2682                         DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2683                         /* Wait a bit, in hopes it avoids the hang */
2684                         udelay(10);
2685                 }
2686         }
2687
2688         dma_unmap_sg(kdev, obj->pages->sgl, obj->pages->nents,
2689                      PCI_DMA_BIDIRECTIONAL);
2690 }
2691
2692 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2693                                   unsigned long color,
2694                                   u64 *start,
2695                                   u64 *end)
2696 {
2697         if (node->color != color)
2698                 *start += 4096;
2699
2700         node = list_first_entry_or_null(&node->node_list,
2701                                         struct drm_mm_node,
2702                                         node_list);
2703         if (node && node->allocated && node->color != color)
2704                 *end -= 4096;
2705 }
2706
2707 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2708 {
2709         /* Let GEM Manage all of the aperture.
2710          *
2711          * However, leave one page at the end still bound to the scratch page.
2712          * There are a number of places where the hardware apparently prefetches
2713          * past the end of the object, and we've seen multiple hangs with the
2714          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2715          * aperture.  One page should be enough to keep any prefetching inside
2716          * of the aperture.
2717          */
2718         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2719         unsigned long hole_start, hole_end;
2720         struct drm_mm_node *entry;
2721         int ret;
2722
2723         ret = intel_vgt_balloon(dev_priv);
2724         if (ret)
2725                 return ret;
2726
2727         /* Clear any non-preallocated blocks */
2728         drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2729                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2730                               hole_start, hole_end);
2731                 ggtt->base.clear_range(&ggtt->base, hole_start,
2732                                      hole_end - hole_start, true);
2733         }
2734
2735         /* And finally clear the reserved guard page */
2736         ggtt->base.clear_range(&ggtt->base,
2737                                ggtt->base.total - PAGE_SIZE, PAGE_SIZE,
2738                                true);
2739
2740         if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2741                 struct i915_hw_ppgtt *ppgtt;
2742
2743                 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2744                 if (!ppgtt)
2745                         return -ENOMEM;
2746
2747                 ret = __hw_ppgtt_init(ppgtt, dev_priv);
2748                 if (ret) {
2749                         kfree(ppgtt);
2750                         return ret;
2751                 }
2752
2753                 if (ppgtt->base.allocate_va_range)
2754                         ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2755                                                             ppgtt->base.total);
2756                 if (ret) {
2757                         ppgtt->base.cleanup(&ppgtt->base);
2758                         kfree(ppgtt);
2759                         return ret;
2760                 }
2761
2762                 ppgtt->base.clear_range(&ppgtt->base,
2763                                         ppgtt->base.start,
2764                                         ppgtt->base.total,
2765                                         true);
2766
2767                 dev_priv->mm.aliasing_ppgtt = ppgtt;
2768                 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2769                 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2770         }
2771
2772         return 0;
2773 }
2774
2775 /**
2776  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2777  * @dev_priv: i915 device
2778  */
2779 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2780 {
2781         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2782
2783         if (dev_priv->mm.aliasing_ppgtt) {
2784                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2785                 ppgtt->base.cleanup(&ppgtt->base);
2786                 kfree(ppgtt);
2787         }
2788
2789         i915_gem_cleanup_stolen(&dev_priv->drm);
2790
2791         if (drm_mm_initialized(&ggtt->base.mm)) {
2792                 intel_vgt_deballoon(dev_priv);
2793
2794                 drm_mm_takedown(&ggtt->base.mm);
2795                 list_del(&ggtt->base.global_link);
2796         }
2797
2798         ggtt->base.cleanup(&ggtt->base);
2799
2800         arch_phys_wc_del(ggtt->mtrr);
2801         io_mapping_fini(&ggtt->mappable);
2802 }
2803
2804 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2805 {
2806         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2807         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2808         return snb_gmch_ctl << 20;
2809 }
2810
2811 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2812 {
2813         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2814         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2815         if (bdw_gmch_ctl)
2816                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2817
2818 #ifdef CONFIG_X86_32
2819         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2820         if (bdw_gmch_ctl > 4)
2821                 bdw_gmch_ctl = 4;
2822 #endif
2823
2824         return bdw_gmch_ctl << 20;
2825 }
2826
2827 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2828 {
2829         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2830         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2831
2832         if (gmch_ctrl)
2833                 return 1 << (20 + gmch_ctrl);
2834
2835         return 0;
2836 }
2837
2838 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2839 {
2840         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2841         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2842         return snb_gmch_ctl << 25; /* 32 MB units */
2843 }
2844
2845 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2846 {
2847         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2848         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2849         return bdw_gmch_ctl << 25; /* 32 MB units */
2850 }
2851
2852 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2853 {
2854         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2855         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2856
2857         /*
2858          * 0x0  to 0x10: 32MB increments starting at 0MB
2859          * 0x11 to 0x16: 4MB increments starting at 8MB
2860          * 0x17 to 0x1d: 4MB increments start at 36MB
2861          */
2862         if (gmch_ctrl < 0x11)
2863                 return gmch_ctrl << 25;
2864         else if (gmch_ctrl < 0x17)
2865                 return (gmch_ctrl - 0x11 + 2) << 22;
2866         else
2867                 return (gmch_ctrl - 0x17 + 9) << 22;
2868 }
2869
2870 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2871 {
2872         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2873         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2874
2875         if (gen9_gmch_ctl < 0xf0)
2876                 return gen9_gmch_ctl << 25; /* 32 MB units */
2877         else
2878                 /* 4MB increments starting at 0xf0 for 4MB */
2879                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2880 }
2881
2882 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2883 {
2884         struct pci_dev *pdev = ggtt->base.dev->pdev;
2885         phys_addr_t phys_addr;
2886         int ret;
2887
2888         /* For Modern GENs the PTEs and register space are split in the BAR */
2889         phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2890
2891         /*
2892          * On BXT writes larger than 64 bit to the GTT pagetable range will be
2893          * dropped. For WC mappings in general we have 64 byte burst writes
2894          * when the WC buffer is flushed, so we can't use it, but have to
2895          * resort to an uncached mapping. The WC issue is easily caught by the
2896          * readback check when writing GTT PTE entries.
2897          */
2898         if (IS_BROXTON(ggtt->base.dev))
2899                 ggtt->gsm = ioremap_nocache(phys_addr, size);
2900         else
2901                 ggtt->gsm = ioremap_wc(phys_addr, size);
2902         if (!ggtt->gsm) {
2903                 DRM_ERROR("Failed to map the ggtt page table\n");
2904                 return -ENOMEM;
2905         }
2906
2907         ret = setup_scratch_page(ggtt->base.dev,
2908                                  &ggtt->base.scratch_page,
2909                                  GFP_DMA32);
2910         if (ret) {
2911                 DRM_ERROR("Scratch setup failed\n");
2912                 /* iounmap will also get called at remove, but meh */
2913                 iounmap(ggtt->gsm);
2914                 return ret;
2915         }
2916
2917         return 0;
2918 }
2919
2920 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2921  * bits. When using advanced contexts each context stores its own PAT, but
2922  * writing this data shouldn't be harmful even in those cases. */
2923 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2924 {
2925         uint64_t pat;
2926
2927         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2928               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2929               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2930               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2931               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2932               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2933               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2934               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2935
2936         if (!USES_PPGTT(dev_priv))
2937                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2938                  * so RTL will always use the value corresponding to
2939                  * pat_sel = 000".
2940                  * So let's disable cache for GGTT to avoid screen corruptions.
2941                  * MOCS still can be used though.
2942                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2943                  * before this patch, i.e. the same uncached + snooping access
2944                  * like on gen6/7 seems to be in effect.
2945                  * - So this just fixes blitter/render access. Again it looks
2946                  * like it's not just uncached access, but uncached + snooping.
2947                  * So we can still hold onto all our assumptions wrt cpu
2948                  * clflushing on LLC machines.
2949                  */
2950                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2951
2952         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2953          * write would work. */
2954         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2955         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2956 }
2957
2958 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2959 {
2960         uint64_t pat;
2961
2962         /*
2963          * Map WB on BDW to snooped on CHV.
2964          *
2965          * Only the snoop bit has meaning for CHV, the rest is
2966          * ignored.
2967          *
2968          * The hardware will never snoop for certain types of accesses:
2969          * - CPU GTT (GMADR->GGTT->no snoop->memory)
2970          * - PPGTT page tables
2971          * - some other special cycles
2972          *
2973          * As with BDW, we also need to consider the following for GT accesses:
2974          * "For GGTT, there is NO pat_sel[2:0] from the entry,
2975          * so RTL will always use the value corresponding to
2976          * pat_sel = 000".
2977          * Which means we must set the snoop bit in PAT entry 0
2978          * in order to keep the global status page working.
2979          */
2980         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2981               GEN8_PPAT(1, 0) |
2982               GEN8_PPAT(2, 0) |
2983               GEN8_PPAT(3, 0) |
2984               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2985               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2986               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2987               GEN8_PPAT(7, CHV_PPAT_SNOOP);
2988
2989         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2990         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2991 }
2992
2993 static void gen6_gmch_remove(struct i915_address_space *vm)
2994 {
2995         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2996
2997         iounmap(ggtt->gsm);
2998         cleanup_scratch_page(vm->dev, &vm->scratch_page);
2999 }
3000
3001 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3002 {
3003         struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3004         struct pci_dev *pdev = dev_priv->drm.pdev;
3005         unsigned int size;
3006         u16 snb_gmch_ctl;
3007
3008         /* TODO: We're not aware of mappable constraints on gen8 yet */
3009         ggtt->mappable_base = pci_resource_start(pdev, 2);
3010         ggtt->mappable_end = pci_resource_len(pdev, 2);
3011
3012         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
3013                 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3014
3015         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3016
3017         if (INTEL_GEN(dev_priv) >= 9) {
3018                 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3019                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3020         } else if (IS_CHERRYVIEW(dev_priv)) {
3021                 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3022                 size = chv_get_total_gtt_size(snb_gmch_ctl);
3023         } else {
3024                 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3025                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3026         }
3027
3028         ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3029
3030         if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
3031                 chv_setup_private_ppat(dev_priv);
3032         else
3033                 bdw_setup_private_ppat(dev_priv);
3034
3035         ggtt->base.cleanup = gen6_gmch_remove;
3036         ggtt->base.bind_vma = ggtt_bind_vma;
3037         ggtt->base.unbind_vma = ggtt_unbind_vma;
3038         ggtt->base.insert_page = gen8_ggtt_insert_page;
3039         ggtt->base.clear_range = nop_clear_range;
3040         if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3041                 ggtt->base.clear_range = gen8_ggtt_clear_range;
3042
3043         ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3044         if (IS_CHERRYVIEW(dev_priv))
3045                 ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3046
3047         return ggtt_probe_common(ggtt, size);
3048 }
3049
3050 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3051 {
3052         struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3053         struct pci_dev *pdev = dev_priv->drm.pdev;
3054         unsigned int size;
3055         u16 snb_gmch_ctl;
3056
3057         ggtt->mappable_base = pci_resource_start(pdev, 2);
3058         ggtt->mappable_end = pci_resource_len(pdev, 2);
3059
3060         /* 64/512MB is the current min/max we actually know of, but this is just
3061          * a coarse sanity check.
3062          */
3063         if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3064                 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3065                 return -ENXIO;
3066         }
3067
3068         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
3069                 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3070         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3071
3072         ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3073
3074         size = gen6_get_total_gtt_size(snb_gmch_ctl);
3075         ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3076
3077         ggtt->base.clear_range = gen6_ggtt_clear_range;
3078         ggtt->base.insert_page = gen6_ggtt_insert_page;
3079         ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3080         ggtt->base.bind_vma = ggtt_bind_vma;
3081         ggtt->base.unbind_vma = ggtt_unbind_vma;
3082         ggtt->base.cleanup = gen6_gmch_remove;
3083
3084         if (HAS_EDRAM(dev_priv))
3085                 ggtt->base.pte_encode = iris_pte_encode;
3086         else if (IS_HASWELL(dev_priv))
3087                 ggtt->base.pte_encode = hsw_pte_encode;
3088         else if (IS_VALLEYVIEW(dev_priv))
3089                 ggtt->base.pte_encode = byt_pte_encode;
3090         else if (INTEL_GEN(dev_priv) >= 7)
3091                 ggtt->base.pte_encode = ivb_pte_encode;
3092         else
3093                 ggtt->base.pte_encode = snb_pte_encode;
3094
3095         return ggtt_probe_common(ggtt, size);
3096 }
3097
3098 static void i915_gmch_remove(struct i915_address_space *vm)
3099 {
3100         intel_gmch_remove();
3101 }
3102
3103 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3104 {
3105         struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3106         int ret;
3107
3108         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3109         if (!ret) {
3110                 DRM_ERROR("failed to set up gmch\n");
3111                 return -EIO;
3112         }
3113
3114         intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3115                       &ggtt->mappable_base, &ggtt->mappable_end);
3116
3117         ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3118         ggtt->base.insert_page = i915_ggtt_insert_page;
3119         ggtt->base.insert_entries = i915_ggtt_insert_entries;
3120         ggtt->base.clear_range = i915_ggtt_clear_range;
3121         ggtt->base.bind_vma = ggtt_bind_vma;
3122         ggtt->base.unbind_vma = ggtt_unbind_vma;
3123         ggtt->base.cleanup = i915_gmch_remove;
3124
3125         if (unlikely(ggtt->do_idle_maps))
3126                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3127
3128         return 0;
3129 }
3130
3131 /**
3132  * i915_ggtt_probe_hw - Probe GGTT hardware location
3133  * @dev_priv: i915 device
3134  */
3135 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3136 {
3137         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3138         int ret;
3139
3140         ggtt->base.dev = &dev_priv->drm;
3141
3142         if (INTEL_GEN(dev_priv) <= 5)
3143                 ret = i915_gmch_probe(ggtt);
3144         else if (INTEL_GEN(dev_priv) < 8)
3145                 ret = gen6_gmch_probe(ggtt);
3146         else
3147                 ret = gen8_gmch_probe(ggtt);
3148         if (ret)
3149                 return ret;
3150
3151         if ((ggtt->base.total - 1) >> 32) {
3152                 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3153                           " of address space! Found %lldM!\n",
3154                           ggtt->base.total >> 20);
3155                 ggtt->base.total = 1ULL << 32;
3156                 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3157         }
3158
3159         if (ggtt->mappable_end > ggtt->base.total) {
3160                 DRM_ERROR("mappable aperture extends past end of GGTT,"
3161                           " aperture=%llx, total=%llx\n",
3162                           ggtt->mappable_end, ggtt->base.total);
3163                 ggtt->mappable_end = ggtt->base.total;
3164         }
3165
3166         /* GMADR is the PCI mmio aperture into the global GTT. */
3167         DRM_INFO("Memory usable by graphics device = %lluM\n",
3168                  ggtt->base.total >> 20);
3169         DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3170         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3171 #ifdef CONFIG_INTEL_IOMMU
3172         if (intel_iommu_gfx_mapped)
3173                 DRM_INFO("VT-d active for gfx access\n");
3174 #endif
3175
3176         return 0;
3177 }
3178
3179 /**
3180  * i915_ggtt_init_hw - Initialize GGTT hardware
3181  * @dev_priv: i915 device
3182  */
3183 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3184 {
3185         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3186         int ret;
3187
3188         INIT_LIST_HEAD(&dev_priv->vm_list);
3189
3190         /* Subtract the guard page before address space initialization to
3191          * shrink the range used by drm_mm.
3192          */
3193         ggtt->base.total -= PAGE_SIZE;
3194         i915_address_space_init(&ggtt->base, dev_priv);
3195         ggtt->base.total += PAGE_SIZE;
3196         if (!HAS_LLC(dev_priv))
3197                 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3198
3199         if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3200                                 dev_priv->ggtt.mappable_base,
3201                                 dev_priv->ggtt.mappable_end)) {
3202                 ret = -EIO;
3203                 goto out_gtt_cleanup;
3204         }
3205
3206         ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3207
3208         /*
3209          * Initialise stolen early so that we may reserve preallocated
3210          * objects for the BIOS to KMS transition.
3211          */
3212         ret = i915_gem_init_stolen(&dev_priv->drm);
3213         if (ret)
3214                 goto out_gtt_cleanup;
3215
3216         return 0;
3217
3218 out_gtt_cleanup:
3219         ggtt->base.cleanup(&ggtt->base);
3220         return ret;
3221 }
3222
3223 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3224 {
3225         if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3226                 return -EIO;
3227
3228         return 0;
3229 }
3230
3231 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3232 {
3233         struct drm_i915_private *dev_priv = to_i915(dev);
3234         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3235         struct drm_i915_gem_object *obj, *on;
3236
3237         i915_check_and_clear_faults(dev_priv);
3238
3239         /* First fill our portion of the GTT with scratch pages */
3240         ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
3241                                true);
3242
3243         ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3244
3245         /* clflush objects bound into the GGTT and rebind them. */
3246         list_for_each_entry_safe(obj, on,
3247                                  &dev_priv->mm.bound_list, global_list) {
3248                 bool ggtt_bound = false;
3249                 struct i915_vma *vma;
3250
3251                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3252                         if (vma->vm != &ggtt->base)
3253                                 continue;
3254
3255                         if (!i915_vma_unbind(vma))
3256                                 continue;
3257
3258                         WARN_ON(i915_vma_bind(vma, obj->cache_level,
3259                                               PIN_UPDATE));
3260                         ggtt_bound = true;
3261                 }
3262
3263                 if (ggtt_bound)
3264                         WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3265         }
3266
3267         ggtt->base.closed = false;
3268
3269         if (INTEL_INFO(dev)->gen >= 8) {
3270                 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3271                         chv_setup_private_ppat(dev_priv);
3272                 else
3273                         bdw_setup_private_ppat(dev_priv);
3274
3275                 return;
3276         }
3277
3278         if (USES_PPGTT(dev)) {
3279                 struct i915_address_space *vm;
3280
3281                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3282                         /* TODO: Perhaps it shouldn't be gen6 specific */
3283
3284                         struct i915_hw_ppgtt *ppgtt;
3285
3286                         if (i915_is_ggtt(vm))
3287                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
3288                         else
3289                                 ppgtt = i915_vm_to_ppgtt(vm);
3290
3291                         gen6_write_page_range(dev_priv, &ppgtt->pd,
3292                                               0, ppgtt->base.total);
3293                 }
3294         }
3295
3296         i915_ggtt_flush(dev_priv);
3297 }
3298
3299 static void
3300 i915_vma_retire(struct i915_gem_active *active,
3301                 struct drm_i915_gem_request *rq)
3302 {
3303         const unsigned int idx = rq->engine->id;
3304         struct i915_vma *vma =
3305                 container_of(active, struct i915_vma, last_read[idx]);
3306
3307         GEM_BUG_ON(!i915_vma_has_active_engine(vma, idx));
3308
3309         i915_vma_clear_active(vma, idx);
3310         if (i915_vma_is_active(vma))
3311                 return;
3312
3313         list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3314         if (unlikely(i915_vma_is_closed(vma) && !i915_vma_is_pinned(vma)))
3315                 WARN_ON(i915_vma_unbind(vma));
3316 }
3317
3318 void i915_vma_destroy(struct i915_vma *vma)
3319 {
3320         GEM_BUG_ON(vma->node.allocated);
3321         GEM_BUG_ON(i915_vma_is_active(vma));
3322         GEM_BUG_ON(!i915_vma_is_closed(vma));
3323         GEM_BUG_ON(vma->fence);
3324
3325         list_del(&vma->vm_link);
3326         if (!i915_vma_is_ggtt(vma))
3327                 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
3328
3329         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
3330 }
3331
3332 void i915_vma_close(struct i915_vma *vma)
3333 {
3334         GEM_BUG_ON(i915_vma_is_closed(vma));
3335         vma->flags |= I915_VMA_CLOSED;
3336
3337         list_del_init(&vma->obj_link);
3338         if (!i915_vma_is_active(vma) && !i915_vma_is_pinned(vma))
3339                 WARN_ON(i915_vma_unbind(vma));
3340 }
3341
3342 static struct i915_vma *
3343 __i915_vma_create(struct drm_i915_gem_object *obj,
3344                   struct i915_address_space *vm,
3345                   const struct i915_ggtt_view *view)
3346 {
3347         struct i915_vma *vma;
3348         int i;
3349
3350         GEM_BUG_ON(vm->closed);
3351
3352         vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3353         if (vma == NULL)
3354                 return ERR_PTR(-ENOMEM);
3355
3356         INIT_LIST_HEAD(&vma->exec_list);
3357         for (i = 0; i < ARRAY_SIZE(vma->last_read); i++)
3358                 init_request_active(&vma->last_read[i], i915_vma_retire);
3359         init_request_active(&vma->last_fence, NULL);
3360         list_add(&vma->vm_link, &vm->unbound_list);
3361         vma->vm = vm;
3362         vma->obj = obj;
3363         vma->size = obj->base.size;
3364
3365         if (view) {
3366                 vma->ggtt_view = *view;
3367                 if (view->type == I915_GGTT_VIEW_PARTIAL) {
3368                         vma->size = view->params.partial.size;
3369                         vma->size <<= PAGE_SHIFT;
3370                 } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3371                         vma->size =
3372                                 intel_rotation_info_size(&view->params.rotated);
3373                         vma->size <<= PAGE_SHIFT;
3374                 }
3375         }
3376
3377         if (i915_is_ggtt(vm)) {
3378                 vma->flags |= I915_VMA_GGTT;
3379         } else {
3380                 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3381         }
3382
3383         list_add_tail(&vma->obj_link, &obj->vma_list);
3384         return vma;
3385 }
3386
3387 static inline bool vma_matches(struct i915_vma *vma,
3388                                struct i915_address_space *vm,
3389                                const struct i915_ggtt_view *view)
3390 {
3391         if (vma->vm != vm)
3392                 return false;
3393
3394         if (!i915_vma_is_ggtt(vma))
3395                 return true;
3396
3397         if (!view)
3398                 return vma->ggtt_view.type == 0;
3399
3400         if (vma->ggtt_view.type != view->type)
3401                 return false;
3402
3403         return memcmp(&vma->ggtt_view.params,
3404                       &view->params,
3405                       sizeof(view->params)) == 0;
3406 }
3407
3408 struct i915_vma *
3409 i915_vma_create(struct drm_i915_gem_object *obj,
3410                 struct i915_address_space *vm,
3411                 const struct i915_ggtt_view *view)
3412 {
3413         GEM_BUG_ON(view && !i915_is_ggtt(vm));
3414         GEM_BUG_ON(i915_gem_obj_to_vma(obj, vm, view));
3415
3416         return __i915_vma_create(obj, vm, view);
3417 }
3418
3419 struct i915_vma *
3420 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3421                     struct i915_address_space *vm,
3422                     const struct i915_ggtt_view *view)
3423 {
3424         struct i915_vma *vma;
3425
3426         list_for_each_entry_reverse(vma, &obj->vma_list, obj_link)
3427                 if (vma_matches(vma, vm, view))
3428                         return vma;
3429
3430         return NULL;
3431 }
3432
3433 struct i915_vma *
3434 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3435                                   struct i915_address_space *vm,
3436                                   const struct i915_ggtt_view *view)
3437 {
3438         struct i915_vma *vma;
3439
3440         GEM_BUG_ON(view && !i915_is_ggtt(vm));
3441
3442         vma = i915_gem_obj_to_vma(obj, vm, view);
3443         if (!vma)
3444                 vma = __i915_vma_create(obj, vm, view);
3445
3446         GEM_BUG_ON(i915_vma_is_closed(vma));
3447         return vma;
3448 }
3449
3450 static struct scatterlist *
3451 rotate_pages(const dma_addr_t *in, unsigned int offset,
3452              unsigned int width, unsigned int height,
3453              unsigned int stride,
3454              struct sg_table *st, struct scatterlist *sg)
3455 {
3456         unsigned int column, row;
3457         unsigned int src_idx;
3458
3459         for (column = 0; column < width; column++) {
3460                 src_idx = stride * (height - 1) + column;
3461                 for (row = 0; row < height; row++) {
3462                         st->nents++;
3463                         /* We don't need the pages, but need to initialize
3464                          * the entries so the sg list can be happily traversed.
3465                          * The only thing we need are DMA addresses.
3466                          */
3467                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
3468                         sg_dma_address(sg) = in[offset + src_idx];
3469                         sg_dma_len(sg) = PAGE_SIZE;
3470                         sg = sg_next(sg);
3471                         src_idx -= stride;
3472                 }
3473         }
3474
3475         return sg;
3476 }
3477
3478 static struct sg_table *
3479 intel_rotate_fb_obj_pages(const struct intel_rotation_info *rot_info,
3480                           struct drm_i915_gem_object *obj)
3481 {
3482         const size_t n_pages = obj->base.size / PAGE_SIZE;
3483         unsigned int size = intel_rotation_info_size(rot_info);
3484         struct sgt_iter sgt_iter;
3485         dma_addr_t dma_addr;
3486         unsigned long i;
3487         dma_addr_t *page_addr_list;
3488         struct sg_table *st;
3489         struct scatterlist *sg;
3490         int ret = -ENOMEM;
3491
3492         /* Allocate a temporary list of source pages for random access. */
3493         page_addr_list = drm_malloc_gfp(n_pages,
3494                                         sizeof(dma_addr_t),
3495                                         GFP_TEMPORARY);
3496         if (!page_addr_list)
3497                 return ERR_PTR(ret);
3498
3499         /* Allocate target SG list. */
3500         st = kmalloc(sizeof(*st), GFP_KERNEL);
3501         if (!st)
3502                 goto err_st_alloc;
3503
3504         ret = sg_alloc_table(st, size, GFP_KERNEL);
3505         if (ret)
3506                 goto err_sg_alloc;
3507
3508         /* Populate source page list from the object. */
3509         i = 0;
3510         for_each_sgt_dma(dma_addr, sgt_iter, obj->pages)
3511                 page_addr_list[i++] = dma_addr;
3512
3513         GEM_BUG_ON(i != n_pages);
3514         st->nents = 0;
3515         sg = st->sgl;
3516
3517         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3518                 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3519                                   rot_info->plane[i].width, rot_info->plane[i].height,
3520                                   rot_info->plane[i].stride, st, sg);
3521         }
3522
3523         DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3524                       obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3525
3526         drm_free_large(page_addr_list);
3527
3528         return st;
3529
3530 err_sg_alloc:
3531         kfree(st);
3532 err_st_alloc:
3533         drm_free_large(page_addr_list);
3534
3535         DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3536                       obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3537
3538         return ERR_PTR(ret);
3539 }
3540
3541 static struct sg_table *
3542 intel_partial_pages(const struct i915_ggtt_view *view,
3543                     struct drm_i915_gem_object *obj)
3544 {
3545         struct sg_table *st;
3546         struct scatterlist *sg;
3547         struct sg_page_iter obj_sg_iter;
3548         int ret = -ENOMEM;
3549
3550         st = kmalloc(sizeof(*st), GFP_KERNEL);
3551         if (!st)
3552                 goto err_st_alloc;
3553
3554         ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3555         if (ret)
3556                 goto err_sg_alloc;
3557
3558         sg = st->sgl;
3559         st->nents = 0;
3560         for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3561                 view->params.partial.offset)
3562         {
3563                 if (st->nents >= view->params.partial.size)
3564                         break;
3565
3566                 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3567                 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3568                 sg_dma_len(sg) = PAGE_SIZE;
3569
3570                 sg = sg_next(sg);
3571                 st->nents++;
3572         }
3573
3574         return st;
3575
3576 err_sg_alloc:
3577         kfree(st);
3578 err_st_alloc:
3579         return ERR_PTR(ret);
3580 }
3581
3582 static int
3583 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3584 {
3585         int ret = 0;
3586
3587         if (vma->pages)
3588                 return 0;
3589
3590         if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3591                 vma->pages = vma->obj->pages;
3592         else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3593                 vma->pages =
3594                         intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3595         else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3596                 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3597         else
3598                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3599                           vma->ggtt_view.type);
3600
3601         if (!vma->pages) {
3602                 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3603                           vma->ggtt_view.type);
3604                 ret = -EINVAL;
3605         } else if (IS_ERR(vma->pages)) {
3606                 ret = PTR_ERR(vma->pages);
3607                 vma->pages = NULL;
3608                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3609                           vma->ggtt_view.type, ret);
3610         }
3611
3612         return ret;
3613 }
3614
3615 /**
3616  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3617  * @vma: VMA to map
3618  * @cache_level: mapping cache level
3619  * @flags: flags like global or local mapping
3620  *
3621  * DMA addresses are taken from the scatter-gather table of this object (or of
3622  * this VMA in case of non-default GGTT views) and PTE entries set up.
3623  * Note that DMA addresses are also the only part of the SG table we care about.
3624  */
3625 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3626                   u32 flags)
3627 {
3628         u32 bind_flags;
3629         u32 vma_flags;
3630         int ret;
3631
3632         if (WARN_ON(flags == 0))
3633                 return -EINVAL;
3634
3635         bind_flags = 0;
3636         if (flags & PIN_GLOBAL)
3637                 bind_flags |= I915_VMA_GLOBAL_BIND;
3638         if (flags & PIN_USER)
3639                 bind_flags |= I915_VMA_LOCAL_BIND;
3640
3641         vma_flags = vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
3642         if (flags & PIN_UPDATE)
3643                 bind_flags |= vma_flags;
3644         else
3645                 bind_flags &= ~vma_flags;
3646         if (bind_flags == 0)
3647                 return 0;
3648
3649         if (vma_flags == 0 && vma->vm->allocate_va_range) {
3650                 trace_i915_va_alloc(vma);
3651                 ret = vma->vm->allocate_va_range(vma->vm,
3652                                                  vma->node.start,
3653                                                  vma->node.size);
3654                 if (ret)
3655                         return ret;
3656         }
3657
3658         ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3659         if (ret)
3660                 return ret;
3661
3662         vma->flags |= bind_flags;
3663         return 0;
3664 }
3665
3666 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
3667 {
3668         void __iomem *ptr;
3669
3670         /* Access through the GTT requires the device to be awake. */
3671         assert_rpm_wakelock_held(to_i915(vma->vm->dev));
3672
3673         lockdep_assert_held(&vma->vm->dev->struct_mutex);
3674         if (WARN_ON(!i915_vma_is_map_and_fenceable(vma)))
3675                 return IO_ERR_PTR(-ENODEV);
3676
3677         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
3678         GEM_BUG_ON((vma->flags & I915_VMA_GLOBAL_BIND) == 0);
3679
3680         ptr = vma->iomap;
3681         if (ptr == NULL) {
3682                 ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->mappable,
3683                                         vma->node.start,
3684                                         vma->node.size);
3685                 if (ptr == NULL)
3686                         return IO_ERR_PTR(-ENOMEM);
3687
3688                 vma->iomap = ptr;
3689         }
3690
3691         __i915_vma_pin(vma);
3692         return ptr;
3693 }
3694
3695 void i915_vma_unpin_and_release(struct i915_vma **p_vma)
3696 {
3697         struct i915_vma *vma;
3698
3699         vma = fetch_and_zero(p_vma);
3700         if (!vma)
3701                 return;
3702
3703         i915_vma_unpin(vma);
3704         i915_vma_put(vma);
3705 }