drm/i915/bdw: Implement PPGTT insert
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30
31 #define GEN6_PPGTT_PD_ENTRIES 512
32 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
33 typedef uint64_t gen8_gtt_pte_t;
34 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
35
36 /* PPGTT stuff */
37 #define GEN6_GTT_ADDR_ENCODE(addr)      ((addr) | (((addr) >> 28) & 0xff0))
38 #define HSW_GTT_ADDR_ENCODE(addr)       ((addr) | (((addr) >> 28) & 0x7f0))
39
40 #define GEN6_PDE_VALID                  (1 << 0)
41 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
42 #define GEN6_PDE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
43
44 #define GEN6_PTE_VALID                  (1 << 0)
45 #define GEN6_PTE_UNCACHED               (1 << 1)
46 #define HSW_PTE_UNCACHED                (0)
47 #define GEN6_PTE_CACHE_LLC              (2 << 1)
48 #define GEN7_PTE_CACHE_L3_LLC           (3 << 1)
49 #define GEN6_PTE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
50 #define HSW_PTE_ADDR_ENCODE(addr)       HSW_GTT_ADDR_ENCODE(addr)
51
52 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
53  * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
54  */
55 #define HSW_CACHEABILITY_CONTROL(bits)  ((((bits) & 0x7) << 1) | \
56                                          (((bits) & 0x8) << (11 - 3)))
57 #define HSW_WB_LLC_AGE3                 HSW_CACHEABILITY_CONTROL(0x2)
58 #define HSW_WB_LLC_AGE0                 HSW_CACHEABILITY_CONTROL(0x3)
59 #define HSW_WB_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0xb)
60 #define HSW_WT_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0x6)
61
62 #define GEN8_PTES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
63 #define GEN8_PDES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
64 #define GEN8_LEGACY_PDPS                4
65
66 #define PPAT_UNCACHED_INDEX             (_PAGE_PWT | _PAGE_PCD)
67 #define PPAT_CACHED_PDE_INDEX           0 /* WB LLC */
68 #define PPAT_CACHED_INDEX               _PAGE_PAT /* WB LLCeLLC */
69 #define PPAT_DISPLAY_ELLC_INDEX         _PAGE_PCD /* WT eLLC */
70
71 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
72                                              enum i915_cache_level level,
73                                              bool valid)
74 {
75         gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
76         pte |= addr;
77         if (level != I915_CACHE_NONE)
78                 pte |= PPAT_CACHED_INDEX;
79         else
80                 pte |= PPAT_UNCACHED_INDEX;
81         return pte;
82 }
83
84 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
85                                              dma_addr_t addr,
86                                              enum i915_cache_level level)
87 {
88         gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
89         pde |= addr;
90         if (level != I915_CACHE_NONE)
91                 pde |= PPAT_CACHED_PDE_INDEX;
92         else
93                 pde |= PPAT_UNCACHED_INDEX;
94         return pde;
95 }
96
97 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
98                                      enum i915_cache_level level,
99                                      bool valid)
100 {
101         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
102         pte |= GEN6_PTE_ADDR_ENCODE(addr);
103
104         switch (level) {
105         case I915_CACHE_L3_LLC:
106         case I915_CACHE_LLC:
107                 pte |= GEN6_PTE_CACHE_LLC;
108                 break;
109         case I915_CACHE_NONE:
110                 pte |= GEN6_PTE_UNCACHED;
111                 break;
112         default:
113                 WARN_ON(1);
114         }
115
116         return pte;
117 }
118
119 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
120                                      enum i915_cache_level level,
121                                      bool valid)
122 {
123         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
124         pte |= GEN6_PTE_ADDR_ENCODE(addr);
125
126         switch (level) {
127         case I915_CACHE_L3_LLC:
128                 pte |= GEN7_PTE_CACHE_L3_LLC;
129                 break;
130         case I915_CACHE_LLC:
131                 pte |= GEN6_PTE_CACHE_LLC;
132                 break;
133         case I915_CACHE_NONE:
134                 pte |= GEN6_PTE_UNCACHED;
135                 break;
136         default:
137                 WARN_ON(1);
138         }
139
140         return pte;
141 }
142
143 #define BYT_PTE_WRITEABLE               (1 << 1)
144 #define BYT_PTE_SNOOPED_BY_CPU_CACHES   (1 << 2)
145
146 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
147                                      enum i915_cache_level level,
148                                      bool valid)
149 {
150         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
151         pte |= GEN6_PTE_ADDR_ENCODE(addr);
152
153         /* Mark the page as writeable.  Other platforms don't have a
154          * setting for read-only/writable, so this matches that behavior.
155          */
156         pte |= BYT_PTE_WRITEABLE;
157
158         if (level != I915_CACHE_NONE)
159                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
160
161         return pte;
162 }
163
164 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
165                                      enum i915_cache_level level,
166                                      bool valid)
167 {
168         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
169         pte |= HSW_PTE_ADDR_ENCODE(addr);
170
171         if (level != I915_CACHE_NONE)
172                 pte |= HSW_WB_LLC_AGE3;
173
174         return pte;
175 }
176
177 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
178                                       enum i915_cache_level level,
179                                       bool valid)
180 {
181         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
182         pte |= HSW_PTE_ADDR_ENCODE(addr);
183
184         switch (level) {
185         case I915_CACHE_NONE:
186                 break;
187         case I915_CACHE_WT:
188                 pte |= HSW_WT_ELLC_LLC_AGE0;
189                 break;
190         default:
191                 pte |= HSW_WB_ELLC_LLC_AGE0;
192                 break;
193         }
194
195         return pte;
196 }
197
198 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
199                                    unsigned first_entry,
200                                    unsigned num_entries,
201                                    bool use_scratch)
202 {
203         struct i915_hw_ppgtt *ppgtt =
204                 container_of(vm, struct i915_hw_ppgtt, base);
205         gen8_gtt_pte_t *pt_vaddr, scratch_pte;
206         unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
207         unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
208         unsigned last_pte, i;
209
210         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
211                                       I915_CACHE_LLC, use_scratch);
212
213         while (num_entries) {
214                 struct page *page_table = &ppgtt->gen8_pt_pages[act_pt];
215
216                 last_pte = first_pte + num_entries;
217                 if (last_pte > GEN8_PTES_PER_PAGE)
218                         last_pte = GEN8_PTES_PER_PAGE;
219
220                 pt_vaddr = kmap_atomic(page_table);
221
222                 for (i = first_pte; i < last_pte; i++)
223                         pt_vaddr[i] = scratch_pte;
224
225                 kunmap_atomic(pt_vaddr);
226
227                 num_entries -= last_pte - first_pte;
228                 first_pte = 0;
229                 act_pt++;
230         }
231 }
232
233 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
234                                       struct sg_table *pages,
235                                       unsigned first_entry,
236                                       enum i915_cache_level cache_level)
237 {
238         struct i915_hw_ppgtt *ppgtt =
239                 container_of(vm, struct i915_hw_ppgtt, base);
240         gen8_gtt_pte_t *pt_vaddr;
241         unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
242         unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
243         struct sg_page_iter sg_iter;
244
245         pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
246         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
247                 dma_addr_t page_addr;
248
249                 page_addr = sg_dma_address(sg_iter.sg) +
250                                 (sg_iter.sg_pgoffset << PAGE_SHIFT);
251                 pt_vaddr[act_pte] = gen8_pte_encode(page_addr, cache_level,
252                                                     true);
253                 if (++act_pte == GEN8_PTES_PER_PAGE) {
254                         kunmap_atomic(pt_vaddr);
255                         act_pt++;
256                         pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
257                         act_pte = 0;
258
259                 }
260         }
261         kunmap_atomic(pt_vaddr);
262 }
263
264 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
265 {
266         struct i915_hw_ppgtt *ppgtt =
267                 container_of(vm, struct i915_hw_ppgtt, base);
268         int i, j;
269
270         for (i = 0; i < ppgtt->num_pd_pages ; i++) {
271                 if (ppgtt->pd_dma_addr[i]) {
272                         pci_unmap_page(ppgtt->base.dev->pdev,
273                                        ppgtt->pd_dma_addr[i],
274                                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
275
276                         for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
277                                 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
278                                 if (addr)
279                                         pci_unmap_page(ppgtt->base.dev->pdev,
280                                                        addr,
281                                                        PAGE_SIZE,
282                                                        PCI_DMA_BIDIRECTIONAL);
283
284                         }
285                 }
286                 kfree(ppgtt->gen8_pt_dma_addr[i]);
287         }
288
289         __free_pages(ppgtt->gen8_pt_pages, ppgtt->num_pt_pages << PAGE_SHIFT);
290         __free_pages(ppgtt->pd_pages, ppgtt->num_pd_pages << PAGE_SHIFT);
291 }
292
293 /**
294  * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
295  * net effect resembling a 2-level page table in normal x86 terms. Each PDP
296  * represents 1GB of memory
297  * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
298  *
299  * TODO: Do something with the size parameter
300  **/
301 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
302 {
303         struct page *pt_pages;
304         int i, j, ret = -ENOMEM;
305         const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
306         const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
307
308         if (size % (1<<30))
309                 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
310
311         /* FIXME: split allocation into smaller pieces. For now we only ever do
312          * this once, but with full PPGTT, the multiple contiguous allocations
313          * will be bad.
314          */
315         ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
316         if (!ppgtt->pd_pages)
317                 return -ENOMEM;
318
319         pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
320         if (!pt_pages) {
321                 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
322                 return -ENOMEM;
323         }
324
325         ppgtt->gen8_pt_pages = pt_pages;
326         ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
327         ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
328         ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
329         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
330         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
331         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
332
333         BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
334
335         /*
336          * - Create a mapping for the page directories.
337          * - For each page directory:
338          *      allocate space for page table mappings.
339          *      map each page table
340          */
341         for (i = 0; i < max_pdp; i++) {
342                 dma_addr_t temp;
343                 temp = pci_map_page(ppgtt->base.dev->pdev,
344                                     &ppgtt->pd_pages[i], 0,
345                                     PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
346                 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
347                         goto err_out;
348
349                 ppgtt->pd_dma_addr[i] = temp;
350
351                 ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
352                 if (!ppgtt->gen8_pt_dma_addr[i])
353                         goto err_out;
354
355                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
356                         struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
357                         temp = pci_map_page(ppgtt->base.dev->pdev,
358                                             p, 0, PAGE_SIZE,
359                                             PCI_DMA_BIDIRECTIONAL);
360
361                         if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
362                                 goto err_out;
363
364                         ppgtt->gen8_pt_dma_addr[i][j] = temp;
365                 }
366         }
367
368         /* For now, the PPGTT helper functions all require that the PDEs are
369          * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
370          * will never need to touch the PDEs again */
371         for (i = 0; i < max_pdp; i++) {
372                 gen8_ppgtt_pde_t *pd_vaddr;
373                 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
374                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
375                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
376                         pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
377                                                       I915_CACHE_LLC);
378                 }
379                 kunmap_atomic(pd_vaddr);
380         }
381
382         ppgtt->base.clear_range(&ppgtt->base, 0,
383                                 ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
384                                 true);
385
386         DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
387                          ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
388         DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
389                          ppgtt->num_pt_pages,
390                          (ppgtt->num_pt_pages - num_pt_pages) +
391                          size % (1<<30));
392         return -ENOSYS; /* Not ready yet */
393
394 err_out:
395         ppgtt->base.cleanup(&ppgtt->base);
396         return ret;
397 }
398
399 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
400 {
401         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
402         gen6_gtt_pte_t __iomem *pd_addr;
403         uint32_t pd_entry;
404         int i;
405
406         WARN_ON(ppgtt->pd_offset & 0x3f);
407         pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
408                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
409         for (i = 0; i < ppgtt->num_pd_entries; i++) {
410                 dma_addr_t pt_addr;
411
412                 pt_addr = ppgtt->pt_dma_addr[i];
413                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
414                 pd_entry |= GEN6_PDE_VALID;
415
416                 writel(pd_entry, pd_addr + i);
417         }
418         readl(pd_addr);
419 }
420
421 static int gen6_ppgtt_enable(struct drm_device *dev)
422 {
423         drm_i915_private_t *dev_priv = dev->dev_private;
424         uint32_t pd_offset;
425         struct intel_ring_buffer *ring;
426         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
427         int i;
428
429         BUG_ON(ppgtt->pd_offset & 0x3f);
430
431         gen6_write_pdes(ppgtt);
432
433         pd_offset = ppgtt->pd_offset;
434         pd_offset /= 64; /* in cachelines, */
435         pd_offset <<= 16;
436
437         if (INTEL_INFO(dev)->gen == 6) {
438                 uint32_t ecochk, gab_ctl, ecobits;
439
440                 ecobits = I915_READ(GAC_ECO_BITS);
441                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
442                                          ECOBITS_PPGTT_CACHE64B);
443
444                 gab_ctl = I915_READ(GAB_CTL);
445                 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
446
447                 ecochk = I915_READ(GAM_ECOCHK);
448                 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
449                                        ECOCHK_PPGTT_CACHE64B);
450                 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
451         } else if (INTEL_INFO(dev)->gen >= 7) {
452                 uint32_t ecochk, ecobits;
453
454                 ecobits = I915_READ(GAC_ECO_BITS);
455                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
456
457                 ecochk = I915_READ(GAM_ECOCHK);
458                 if (IS_HASWELL(dev)) {
459                         ecochk |= ECOCHK_PPGTT_WB_HSW;
460                 } else {
461                         ecochk |= ECOCHK_PPGTT_LLC_IVB;
462                         ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
463                 }
464                 I915_WRITE(GAM_ECOCHK, ecochk);
465                 /* GFX_MODE is per-ring on gen7+ */
466         }
467
468         for_each_ring(ring, dev_priv, i) {
469                 if (INTEL_INFO(dev)->gen >= 7)
470                         I915_WRITE(RING_MODE_GEN7(ring),
471                                    _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
472
473                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
474                 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
475         }
476         return 0;
477 }
478
479 /* PPGTT support for Sandybdrige/Gen6 and later */
480 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
481                                    unsigned first_entry,
482                                    unsigned num_entries,
483                                    bool use_scratch)
484 {
485         struct i915_hw_ppgtt *ppgtt =
486                 container_of(vm, struct i915_hw_ppgtt, base);
487         gen6_gtt_pte_t *pt_vaddr, scratch_pte;
488         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
489         unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
490         unsigned last_pte, i;
491
492         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
493
494         while (num_entries) {
495                 last_pte = first_pte + num_entries;
496                 if (last_pte > I915_PPGTT_PT_ENTRIES)
497                         last_pte = I915_PPGTT_PT_ENTRIES;
498
499                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
500
501                 for (i = first_pte; i < last_pte; i++)
502                         pt_vaddr[i] = scratch_pte;
503
504                 kunmap_atomic(pt_vaddr);
505
506                 num_entries -= last_pte - first_pte;
507                 first_pte = 0;
508                 act_pt++;
509         }
510 }
511
512 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
513                                       struct sg_table *pages,
514                                       unsigned first_entry,
515                                       enum i915_cache_level cache_level)
516 {
517         struct i915_hw_ppgtt *ppgtt =
518                 container_of(vm, struct i915_hw_ppgtt, base);
519         gen6_gtt_pte_t *pt_vaddr;
520         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
521         unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
522         struct sg_page_iter sg_iter;
523
524         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
525         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
526                 dma_addr_t page_addr;
527
528                 page_addr = sg_page_iter_dma_address(&sg_iter);
529                 pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level, true);
530                 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
531                         kunmap_atomic(pt_vaddr);
532                         act_pt++;
533                         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
534                         act_pte = 0;
535
536                 }
537         }
538         kunmap_atomic(pt_vaddr);
539 }
540
541 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
542 {
543         struct i915_hw_ppgtt *ppgtt =
544                 container_of(vm, struct i915_hw_ppgtt, base);
545         int i;
546
547         drm_mm_takedown(&ppgtt->base.mm);
548
549         if (ppgtt->pt_dma_addr) {
550                 for (i = 0; i < ppgtt->num_pd_entries; i++)
551                         pci_unmap_page(ppgtt->base.dev->pdev,
552                                        ppgtt->pt_dma_addr[i],
553                                        4096, PCI_DMA_BIDIRECTIONAL);
554         }
555
556         kfree(ppgtt->pt_dma_addr);
557         for (i = 0; i < ppgtt->num_pd_entries; i++)
558                 __free_page(ppgtt->pt_pages[i]);
559         kfree(ppgtt->pt_pages);
560         kfree(ppgtt);
561 }
562
563 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
564 {
565         struct drm_device *dev = ppgtt->base.dev;
566         struct drm_i915_private *dev_priv = dev->dev_private;
567         unsigned first_pd_entry_in_global_pt;
568         int i;
569         int ret = -ENOMEM;
570
571         /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
572          * entries. For aliasing ppgtt support we just steal them at the end for
573          * now. */
574         first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
575
576         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
577         ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
578         ppgtt->enable = gen6_ppgtt_enable;
579         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
580         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
581         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
582         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
583         ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
584                                   GFP_KERNEL);
585         if (!ppgtt->pt_pages)
586                 return -ENOMEM;
587
588         for (i = 0; i < ppgtt->num_pd_entries; i++) {
589                 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
590                 if (!ppgtt->pt_pages[i])
591                         goto err_pt_alloc;
592         }
593
594         ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
595                                      GFP_KERNEL);
596         if (!ppgtt->pt_dma_addr)
597                 goto err_pt_alloc;
598
599         for (i = 0; i < ppgtt->num_pd_entries; i++) {
600                 dma_addr_t pt_addr;
601
602                 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
603                                        PCI_DMA_BIDIRECTIONAL);
604
605                 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
606                         ret = -EIO;
607                         goto err_pd_pin;
608
609                 }
610                 ppgtt->pt_dma_addr[i] = pt_addr;
611         }
612
613         ppgtt->base.clear_range(&ppgtt->base, 0,
614                                 ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
615
616         ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
617
618         return 0;
619
620 err_pd_pin:
621         if (ppgtt->pt_dma_addr) {
622                 for (i--; i >= 0; i--)
623                         pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
624                                        4096, PCI_DMA_BIDIRECTIONAL);
625         }
626 err_pt_alloc:
627         kfree(ppgtt->pt_dma_addr);
628         for (i = 0; i < ppgtt->num_pd_entries; i++) {
629                 if (ppgtt->pt_pages[i])
630                         __free_page(ppgtt->pt_pages[i]);
631         }
632         kfree(ppgtt->pt_pages);
633
634         return ret;
635 }
636
637 static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
638 {
639         struct drm_i915_private *dev_priv = dev->dev_private;
640         struct i915_hw_ppgtt *ppgtt;
641         int ret;
642
643         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
644         if (!ppgtt)
645                 return -ENOMEM;
646
647         ppgtt->base.dev = dev;
648
649         if (INTEL_INFO(dev)->gen < 8)
650                 ret = gen6_ppgtt_init(ppgtt);
651         else if (IS_GEN8(dev))
652                 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
653         else
654                 BUG();
655
656         if (ret)
657                 kfree(ppgtt);
658         else {
659                 dev_priv->mm.aliasing_ppgtt = ppgtt;
660                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
661                             ppgtt->base.total);
662         }
663
664         return ret;
665 }
666
667 void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
668 {
669         struct drm_i915_private *dev_priv = dev->dev_private;
670         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
671
672         if (!ppgtt)
673                 return;
674
675         ppgtt->base.cleanup(&ppgtt->base);
676         dev_priv->mm.aliasing_ppgtt = NULL;
677 }
678
679 void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
680                             struct drm_i915_gem_object *obj,
681                             enum i915_cache_level cache_level)
682 {
683         ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
684                                    i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
685                                    cache_level);
686 }
687
688 void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
689                               struct drm_i915_gem_object *obj)
690 {
691         ppgtt->base.clear_range(&ppgtt->base,
692                                 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
693                                 obj->base.size >> PAGE_SHIFT,
694                                 true);
695 }
696
697 extern int intel_iommu_gfx_mapped;
698 /* Certain Gen5 chipsets require require idling the GPU before
699  * unmapping anything from the GTT when VT-d is enabled.
700  */
701 static inline bool needs_idle_maps(struct drm_device *dev)
702 {
703 #ifdef CONFIG_INTEL_IOMMU
704         /* Query intel_iommu to see if we need the workaround. Presumably that
705          * was loaded first.
706          */
707         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
708                 return true;
709 #endif
710         return false;
711 }
712
713 static bool do_idling(struct drm_i915_private *dev_priv)
714 {
715         bool ret = dev_priv->mm.interruptible;
716
717         if (unlikely(dev_priv->gtt.do_idle_maps)) {
718                 dev_priv->mm.interruptible = false;
719                 if (i915_gpu_idle(dev_priv->dev)) {
720                         DRM_ERROR("Couldn't idle GPU\n");
721                         /* Wait a bit, in hopes it avoids the hang */
722                         udelay(10);
723                 }
724         }
725
726         return ret;
727 }
728
729 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
730 {
731         if (unlikely(dev_priv->gtt.do_idle_maps))
732                 dev_priv->mm.interruptible = interruptible;
733 }
734
735 void i915_check_and_clear_faults(struct drm_device *dev)
736 {
737         struct drm_i915_private *dev_priv = dev->dev_private;
738         struct intel_ring_buffer *ring;
739         int i;
740
741         if (INTEL_INFO(dev)->gen < 6)
742                 return;
743
744         for_each_ring(ring, dev_priv, i) {
745                 u32 fault_reg;
746                 fault_reg = I915_READ(RING_FAULT_REG(ring));
747                 if (fault_reg & RING_FAULT_VALID) {
748                         DRM_DEBUG_DRIVER("Unexpected fault\n"
749                                          "\tAddr: 0x%08lx\\n"
750                                          "\tAddress space: %s\n"
751                                          "\tSource ID: %d\n"
752                                          "\tType: %d\n",
753                                          fault_reg & PAGE_MASK,
754                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
755                                          RING_FAULT_SRCID(fault_reg),
756                                          RING_FAULT_FAULT_TYPE(fault_reg));
757                         I915_WRITE(RING_FAULT_REG(ring),
758                                    fault_reg & ~RING_FAULT_VALID);
759                 }
760         }
761         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
762 }
763
764 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
765 {
766         struct drm_i915_private *dev_priv = dev->dev_private;
767
768         /* Don't bother messing with faults pre GEN6 as we have little
769          * documentation supporting that it's a good idea.
770          */
771         if (INTEL_INFO(dev)->gen < 6)
772                 return;
773
774         i915_check_and_clear_faults(dev);
775
776         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
777                                        dev_priv->gtt.base.start / PAGE_SIZE,
778                                        dev_priv->gtt.base.total / PAGE_SIZE,
779                                        false);
780 }
781
782 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
783 {
784         struct drm_i915_private *dev_priv = dev->dev_private;
785         struct drm_i915_gem_object *obj;
786
787         i915_check_and_clear_faults(dev);
788
789         /* First fill our portion of the GTT with scratch pages */
790         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
791                                        dev_priv->gtt.base.start / PAGE_SIZE,
792                                        dev_priv->gtt.base.total / PAGE_SIZE,
793                                        true);
794
795         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
796                 i915_gem_clflush_object(obj, obj->pin_display);
797                 i915_gem_gtt_bind_object(obj, obj->cache_level);
798         }
799
800         i915_gem_chipset_flush(dev);
801 }
802
803 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
804 {
805         if (obj->has_dma_mapping)
806                 return 0;
807
808         if (!dma_map_sg(&obj->base.dev->pdev->dev,
809                         obj->pages->sgl, obj->pages->nents,
810                         PCI_DMA_BIDIRECTIONAL))
811                 return -ENOSPC;
812
813         return 0;
814 }
815
816 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
817 {
818 #ifdef writeq
819         writeq(pte, addr);
820 #else
821         iowrite32((u32)pte, addr);
822         iowrite32(pte >> 32, addr + 4);
823 #endif
824 }
825
826 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
827                                      struct sg_table *st,
828                                      unsigned int first_entry,
829                                      enum i915_cache_level level)
830 {
831         struct drm_i915_private *dev_priv = vm->dev->dev_private;
832         gen8_gtt_pte_t __iomem *gtt_entries =
833                 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
834         int i = 0;
835         struct sg_page_iter sg_iter;
836         dma_addr_t addr;
837
838         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
839                 addr = sg_dma_address(sg_iter.sg) +
840                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
841                 gen8_set_pte(&gtt_entries[i],
842                              gen8_pte_encode(addr, level, true));
843                 i++;
844         }
845
846         /*
847          * XXX: This serves as a posting read to make sure that the PTE has
848          * actually been updated. There is some concern that even though
849          * registers and PTEs are within the same BAR that they are potentially
850          * of NUMA access patterns. Therefore, even with the way we assume
851          * hardware should work, we must keep this posting read for paranoia.
852          */
853         if (i != 0)
854                 WARN_ON(readq(&gtt_entries[i-1])
855                         != gen8_pte_encode(addr, level, true));
856
857 #if 0 /* TODO: Still needed on GEN8? */
858         /* This next bit makes the above posting read even more important. We
859          * want to flush the TLBs only after we're certain all the PTE updates
860          * have finished.
861          */
862         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
863         POSTING_READ(GFX_FLSH_CNTL_GEN6);
864 #endif
865 }
866
867 /*
868  * Binds an object into the global gtt with the specified cache level. The object
869  * will be accessible to the GPU via commands whose operands reference offsets
870  * within the global GTT as well as accessible by the GPU through the GMADR
871  * mapped BAR (dev_priv->mm.gtt->gtt).
872  */
873 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
874                                      struct sg_table *st,
875                                      unsigned int first_entry,
876                                      enum i915_cache_level level)
877 {
878         struct drm_i915_private *dev_priv = vm->dev->dev_private;
879         gen6_gtt_pte_t __iomem *gtt_entries =
880                 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
881         int i = 0;
882         struct sg_page_iter sg_iter;
883         dma_addr_t addr;
884
885         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
886                 addr = sg_page_iter_dma_address(&sg_iter);
887                 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
888                 i++;
889         }
890
891         /* XXX: This serves as a posting read to make sure that the PTE has
892          * actually been updated. There is some concern that even though
893          * registers and PTEs are within the same BAR that they are potentially
894          * of NUMA access patterns. Therefore, even with the way we assume
895          * hardware should work, we must keep this posting read for paranoia.
896          */
897         if (i != 0)
898                 WARN_ON(readl(&gtt_entries[i-1]) !=
899                         vm->pte_encode(addr, level, true));
900
901         /* This next bit makes the above posting read even more important. We
902          * want to flush the TLBs only after we're certain all the PTE updates
903          * have finished.
904          */
905         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
906         POSTING_READ(GFX_FLSH_CNTL_GEN6);
907 }
908
909 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
910                                   unsigned int first_entry,
911                                   unsigned int num_entries,
912                                   bool use_scratch)
913 {
914         struct drm_i915_private *dev_priv = vm->dev->dev_private;
915         gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
916                 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
917         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
918         int i;
919
920         if (WARN(num_entries > max_entries,
921                  "First entry = %d; Num entries = %d (max=%d)\n",
922                  first_entry, num_entries, max_entries))
923                 num_entries = max_entries;
924
925         scratch_pte = gen8_pte_encode(vm->scratch.addr,
926                                       I915_CACHE_LLC,
927                                       use_scratch);
928         for (i = 0; i < num_entries; i++)
929                 gen8_set_pte(&gtt_base[i], scratch_pte);
930         readl(gtt_base);
931 }
932
933 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
934                                   unsigned int first_entry,
935                                   unsigned int num_entries,
936                                   bool use_scratch)
937 {
938         struct drm_i915_private *dev_priv = vm->dev->dev_private;
939         gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
940                 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
941         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
942         int i;
943
944         if (WARN(num_entries > max_entries,
945                  "First entry = %d; Num entries = %d (max=%d)\n",
946                  first_entry, num_entries, max_entries))
947                 num_entries = max_entries;
948
949         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
950
951         for (i = 0; i < num_entries; i++)
952                 iowrite32(scratch_pte, &gtt_base[i]);
953         readl(gtt_base);
954 }
955
956 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
957                                      struct sg_table *st,
958                                      unsigned int pg_start,
959                                      enum i915_cache_level cache_level)
960 {
961         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
962                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
963
964         intel_gtt_insert_sg_entries(st, pg_start, flags);
965
966 }
967
968 static void i915_ggtt_clear_range(struct i915_address_space *vm,
969                                   unsigned int first_entry,
970                                   unsigned int num_entries,
971                                   bool unused)
972 {
973         intel_gtt_clear_range(first_entry, num_entries);
974 }
975
976
977 void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
978                               enum i915_cache_level cache_level)
979 {
980         struct drm_device *dev = obj->base.dev;
981         struct drm_i915_private *dev_priv = dev->dev_private;
982         const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
983
984         dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
985                                           entry,
986                                           cache_level);
987
988         obj->has_global_gtt_mapping = 1;
989 }
990
991 void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
992 {
993         struct drm_device *dev = obj->base.dev;
994         struct drm_i915_private *dev_priv = dev->dev_private;
995         const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
996
997         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
998                                        entry,
999                                        obj->base.size >> PAGE_SHIFT,
1000                                        true);
1001
1002         obj->has_global_gtt_mapping = 0;
1003 }
1004
1005 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1006 {
1007         struct drm_device *dev = obj->base.dev;
1008         struct drm_i915_private *dev_priv = dev->dev_private;
1009         bool interruptible;
1010
1011         interruptible = do_idling(dev_priv);
1012
1013         if (!obj->has_dma_mapping)
1014                 dma_unmap_sg(&dev->pdev->dev,
1015                              obj->pages->sgl, obj->pages->nents,
1016                              PCI_DMA_BIDIRECTIONAL);
1017
1018         undo_idling(dev_priv, interruptible);
1019 }
1020
1021 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1022                                   unsigned long color,
1023                                   unsigned long *start,
1024                                   unsigned long *end)
1025 {
1026         if (node->color != color)
1027                 *start += 4096;
1028
1029         if (!list_empty(&node->node_list)) {
1030                 node = list_entry(node->node_list.next,
1031                                   struct drm_mm_node,
1032                                   node_list);
1033                 if (node->allocated && node->color != color)
1034                         *end -= 4096;
1035         }
1036 }
1037
1038 void i915_gem_setup_global_gtt(struct drm_device *dev,
1039                                unsigned long start,
1040                                unsigned long mappable_end,
1041                                unsigned long end)
1042 {
1043         /* Let GEM Manage all of the aperture.
1044          *
1045          * However, leave one page at the end still bound to the scratch page.
1046          * There are a number of places where the hardware apparently prefetches
1047          * past the end of the object, and we've seen multiple hangs with the
1048          * GPU head pointer stuck in a batchbuffer bound at the last page of the
1049          * aperture.  One page should be enough to keep any prefetching inside
1050          * of the aperture.
1051          */
1052         struct drm_i915_private *dev_priv = dev->dev_private;
1053         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1054         struct drm_mm_node *entry;
1055         struct drm_i915_gem_object *obj;
1056         unsigned long hole_start, hole_end;
1057
1058         BUG_ON(mappable_end > end);
1059
1060         /* Subtract the guard page ... */
1061         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1062         if (!HAS_LLC(dev))
1063                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1064
1065         /* Mark any preallocated objects as occupied */
1066         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1067                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1068                 int ret;
1069                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1070                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
1071
1072                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1073                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1074                 if (ret)
1075                         DRM_DEBUG_KMS("Reservation failed\n");
1076                 obj->has_global_gtt_mapping = 1;
1077                 list_add(&vma->vma_link, &obj->vma_list);
1078         }
1079
1080         dev_priv->gtt.base.start = start;
1081         dev_priv->gtt.base.total = end - start;
1082
1083         /* Clear any non-preallocated blocks */
1084         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1085                 const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
1086                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1087                               hole_start, hole_end);
1088                 ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
1089         }
1090
1091         /* And finally clear the reserved guard page */
1092         ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
1093 }
1094
1095 static bool
1096 intel_enable_ppgtt(struct drm_device *dev)
1097 {
1098         if (i915_enable_ppgtt >= 0)
1099                 return i915_enable_ppgtt;
1100
1101 #ifdef CONFIG_INTEL_IOMMU
1102         /* Disable ppgtt on SNB if VT-d is on. */
1103         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
1104                 return false;
1105 #endif
1106
1107         return true;
1108 }
1109
1110 void i915_gem_init_global_gtt(struct drm_device *dev)
1111 {
1112         struct drm_i915_private *dev_priv = dev->dev_private;
1113         unsigned long gtt_size, mappable_size;
1114
1115         gtt_size = dev_priv->gtt.base.total;
1116         mappable_size = dev_priv->gtt.mappable_end;
1117
1118         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
1119                 int ret;
1120
1121                 if (INTEL_INFO(dev)->gen <= 7) {
1122                         /* PPGTT pdes are stolen from global gtt ptes, so shrink the
1123                          * aperture accordingly when using aliasing ppgtt. */
1124                         gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
1125                 }
1126
1127                 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1128
1129                 ret = i915_gem_init_aliasing_ppgtt(dev);
1130                 if (!ret)
1131                         return;
1132
1133                 DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
1134                 drm_mm_takedown(&dev_priv->gtt.base.mm);
1135                 gtt_size += GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
1136         }
1137         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1138 }
1139
1140 static int setup_scratch_page(struct drm_device *dev)
1141 {
1142         struct drm_i915_private *dev_priv = dev->dev_private;
1143         struct page *page;
1144         dma_addr_t dma_addr;
1145
1146         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1147         if (page == NULL)
1148                 return -ENOMEM;
1149         get_page(page);
1150         set_pages_uc(page, 1);
1151
1152 #ifdef CONFIG_INTEL_IOMMU
1153         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1154                                 PCI_DMA_BIDIRECTIONAL);
1155         if (pci_dma_mapping_error(dev->pdev, dma_addr))
1156                 return -EINVAL;
1157 #else
1158         dma_addr = page_to_phys(page);
1159 #endif
1160         dev_priv->gtt.base.scratch.page = page;
1161         dev_priv->gtt.base.scratch.addr = dma_addr;
1162
1163         return 0;
1164 }
1165
1166 static void teardown_scratch_page(struct drm_device *dev)
1167 {
1168         struct drm_i915_private *dev_priv = dev->dev_private;
1169         struct page *page = dev_priv->gtt.base.scratch.page;
1170
1171         set_pages_wb(page, 1);
1172         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1173                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1174         put_page(page);
1175         __free_page(page);
1176 }
1177
1178 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1179 {
1180         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1181         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1182         return snb_gmch_ctl << 20;
1183 }
1184
1185 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1186 {
1187         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1188         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1189         if (bdw_gmch_ctl)
1190                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1191         return bdw_gmch_ctl << 20;
1192 }
1193
1194 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1195 {
1196         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1197         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1198         return snb_gmch_ctl << 25; /* 32 MB units */
1199 }
1200
1201 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1202 {
1203         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1204         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1205         return bdw_gmch_ctl << 25; /* 32 MB units */
1206 }
1207
1208 static int ggtt_probe_common(struct drm_device *dev,
1209                              size_t gtt_size)
1210 {
1211         struct drm_i915_private *dev_priv = dev->dev_private;
1212         phys_addr_t gtt_bus_addr;
1213         int ret;
1214
1215         /* For Modern GENs the PTEs and register space are split in the BAR */
1216         gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
1217                 (pci_resource_len(dev->pdev, 0) / 2);
1218
1219         dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
1220         if (!dev_priv->gtt.gsm) {
1221                 DRM_ERROR("Failed to map the gtt page table\n");
1222                 return -ENOMEM;
1223         }
1224
1225         ret = setup_scratch_page(dev);
1226         if (ret) {
1227                 DRM_ERROR("Scratch setup failed\n");
1228                 /* iounmap will also get called at remove, but meh */
1229                 iounmap(dev_priv->gtt.gsm);
1230         }
1231
1232         return ret;
1233 }
1234
1235 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1236  * bits. When using advanced contexts each context stores its own PAT, but
1237  * writing this data shouldn't be harmful even in those cases. */
1238 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1239 {
1240 #define GEN8_PPAT_UC            (0<<0)
1241 #define GEN8_PPAT_WC            (1<<0)
1242 #define GEN8_PPAT_WT            (2<<0)
1243 #define GEN8_PPAT_WB            (3<<0)
1244 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
1245 /* FIXME(BDW): Bspec is completely confused about cache control bits. */
1246 #define GEN8_PPAT_LLC           (1<<2)
1247 #define GEN8_PPAT_LLCELLC       (2<<2)
1248 #define GEN8_PPAT_LLCeLLC       (3<<2)
1249 #define GEN8_PPAT_AGE(x)        (x<<4)
1250 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1251         uint64_t pat;
1252
1253         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1254               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1255               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1256               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1257               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1258               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1259               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1260               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1261
1262         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1263          * write would work. */
1264         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1265         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1266 }
1267
1268 static int gen8_gmch_probe(struct drm_device *dev,
1269                            size_t *gtt_total,
1270                            size_t *stolen,
1271                            phys_addr_t *mappable_base,
1272                            unsigned long *mappable_end)
1273 {
1274         struct drm_i915_private *dev_priv = dev->dev_private;
1275         unsigned int gtt_size;
1276         u16 snb_gmch_ctl;
1277         int ret;
1278
1279         /* TODO: We're not aware of mappable constraints on gen8 yet */
1280         *mappable_base = pci_resource_start(dev->pdev, 2);
1281         *mappable_end = pci_resource_len(dev->pdev, 2);
1282
1283         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1284                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1285
1286         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1287
1288         *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1289
1290         gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1291         *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1292
1293         gen8_setup_private_ppat(dev_priv);
1294
1295         ret = ggtt_probe_common(dev, gtt_size);
1296
1297         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1298         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1299
1300         return ret;
1301 }
1302
1303 static int gen6_gmch_probe(struct drm_device *dev,
1304                            size_t *gtt_total,
1305                            size_t *stolen,
1306                            phys_addr_t *mappable_base,
1307                            unsigned long *mappable_end)
1308 {
1309         struct drm_i915_private *dev_priv = dev->dev_private;
1310         unsigned int gtt_size;
1311         u16 snb_gmch_ctl;
1312         int ret;
1313
1314         *mappable_base = pci_resource_start(dev->pdev, 2);
1315         *mappable_end = pci_resource_len(dev->pdev, 2);
1316
1317         /* 64/512MB is the current min/max we actually know of, but this is just
1318          * a coarse sanity check.
1319          */
1320         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1321                 DRM_ERROR("Unknown GMADR size (%lx)\n",
1322                           dev_priv->gtt.mappable_end);
1323                 return -ENXIO;
1324         }
1325
1326         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1327                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1328         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1329
1330         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1331
1332         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1333         *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1334
1335         ret = ggtt_probe_common(dev, gtt_size);
1336
1337         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1338         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1339
1340         return ret;
1341 }
1342
1343 static void gen6_gmch_remove(struct i915_address_space *vm)
1344 {
1345
1346         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1347         iounmap(gtt->gsm);
1348         teardown_scratch_page(vm->dev);
1349 }
1350
1351 static int i915_gmch_probe(struct drm_device *dev,
1352                            size_t *gtt_total,
1353                            size_t *stolen,
1354                            phys_addr_t *mappable_base,
1355                            unsigned long *mappable_end)
1356 {
1357         struct drm_i915_private *dev_priv = dev->dev_private;
1358         int ret;
1359
1360         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1361         if (!ret) {
1362                 DRM_ERROR("failed to set up gmch\n");
1363                 return -EIO;
1364         }
1365
1366         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
1367
1368         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
1369         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
1370         dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
1371
1372         return 0;
1373 }
1374
1375 static void i915_gmch_remove(struct i915_address_space *vm)
1376 {
1377         intel_gmch_remove();
1378 }
1379
1380 int i915_gem_gtt_init(struct drm_device *dev)
1381 {
1382         struct drm_i915_private *dev_priv = dev->dev_private;
1383         struct i915_gtt *gtt = &dev_priv->gtt;
1384         int ret;
1385
1386         if (INTEL_INFO(dev)->gen <= 5) {
1387                 gtt->gtt_probe = i915_gmch_probe;
1388                 gtt->base.cleanup = i915_gmch_remove;
1389         } else if (INTEL_INFO(dev)->gen < 8) {
1390                 gtt->gtt_probe = gen6_gmch_probe;
1391                 gtt->base.cleanup = gen6_gmch_remove;
1392                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
1393                         gtt->base.pte_encode = iris_pte_encode;
1394                 else if (IS_HASWELL(dev))
1395                         gtt->base.pte_encode = hsw_pte_encode;
1396                 else if (IS_VALLEYVIEW(dev))
1397                         gtt->base.pte_encode = byt_pte_encode;
1398                 else if (INTEL_INFO(dev)->gen >= 7)
1399                         gtt->base.pte_encode = ivb_pte_encode;
1400                 else
1401                         gtt->base.pte_encode = snb_pte_encode;
1402         } else {
1403                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
1404                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
1405         }
1406
1407         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
1408                              &gtt->mappable_base, &gtt->mappable_end);
1409         if (ret)
1410                 return ret;
1411
1412         gtt->base.dev = dev;
1413
1414         /* GMADR is the PCI mmio aperture into the global GTT. */
1415         DRM_INFO("Memory usable by graphics device = %zdM\n",
1416                  gtt->base.total >> 20);
1417         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
1418         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
1419
1420         return 0;
1421 }