drm/i915/gen8: page directories rework allocation
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33
34 /**
35  * DOC: Global GTT views
36  *
37  * Background and previous state
38  *
39  * Historically objects could exists (be bound) in global GTT space only as
40  * singular instances with a view representing all of the object's backing pages
41  * in a linear fashion. This view will be called a normal view.
42  *
43  * To support multiple views of the same object, where the number of mapped
44  * pages is not equal to the backing store, or where the layout of the pages
45  * is not linear, concept of a GGTT view was added.
46  *
47  * One example of an alternative view is a stereo display driven by a single
48  * image. In this case we would have a framebuffer looking like this
49  * (2x2 pages):
50  *
51  *    12
52  *    34
53  *
54  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55  * rendering. In contrast, fed to the display engine would be an alternative
56  * view which could look something like this:
57  *
58  *   1212
59  *   3434
60  *
61  * In this example both the size and layout of pages in the alternative view is
62  * different from the normal view.
63  *
64  * Implementation and usage
65  *
66  * GGTT views are implemented using VMAs and are distinguished via enum
67  * i915_ggtt_view_type and struct i915_ggtt_view.
68  *
69  * A new flavour of core GEM functions which work with GGTT bound objects were
70  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71  * renaming  in large amounts of code. They take the struct i915_ggtt_view
72  * parameter encapsulating all metadata required to implement a view.
73  *
74  * As a helper for callers which are only interested in the normal view,
75  * globally const i915_ggtt_view_normal singleton instance exists. All old core
76  * GEM API functions, the ones not taking the view parameter, are operating on,
77  * or with the normal GGTT view.
78  *
79  * Code wanting to add or use a new GGTT view needs to:
80  *
81  * 1. Add a new enum with a suitable name.
82  * 2. Extend the metadata in the i915_ggtt_view structure if required.
83  * 3. Add support to i915_get_vma_pages().
84  *
85  * New views are required to build a scatter-gather table from within the
86  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87  * exists for the lifetime of an VMA.
88  *
89  * Core API is designed to have copy semantics which means that passed in
90  * struct i915_ggtt_view does not need to be persistent (left around after
91  * calling the core API functions).
92  *
93  */
94
95 const struct i915_ggtt_view i915_ggtt_view_normal;
96 const struct i915_ggtt_view i915_ggtt_view_rotated = {
97         .type = I915_GGTT_VIEW_ROTATED
98 };
99
100 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
101 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
102
103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104 {
105         bool has_aliasing_ppgtt;
106         bool has_full_ppgtt;
107
108         has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109         has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110
111         if (intel_vgpu_active(dev))
112                 has_full_ppgtt = false; /* emulation is too hard */
113
114         /*
115          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116          * execlists, the sole mechanism available to submit work.
117          */
118         if (INTEL_INFO(dev)->gen < 9 &&
119             (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120                 return 0;
121
122         if (enable_ppgtt == 1)
123                 return 1;
124
125         if (enable_ppgtt == 2 && has_full_ppgtt)
126                 return 2;
127
128 #ifdef CONFIG_INTEL_IOMMU
129         /* Disable ppgtt on SNB if VT-d is on. */
130         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
131                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
132                 return 0;
133         }
134 #endif
135
136         /* Early VLV doesn't have this */
137         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
138             dev->pdev->revision < 0xb) {
139                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
140                 return 0;
141         }
142
143         if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
144                 return 2;
145         else
146                 return has_aliasing_ppgtt ? 1 : 0;
147 }
148
149 static void ppgtt_bind_vma(struct i915_vma *vma,
150                            enum i915_cache_level cache_level,
151                            u32 flags);
152 static void ppgtt_unbind_vma(struct i915_vma *vma);
153
154 static inline gen8_pte_t gen8_pte_encode(dma_addr_t addr,
155                                          enum i915_cache_level level,
156                                          bool valid)
157 {
158         gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
159         pte |= addr;
160
161         switch (level) {
162         case I915_CACHE_NONE:
163                 pte |= PPAT_UNCACHED_INDEX;
164                 break;
165         case I915_CACHE_WT:
166                 pte |= PPAT_DISPLAY_ELLC_INDEX;
167                 break;
168         default:
169                 pte |= PPAT_CACHED_INDEX;
170                 break;
171         }
172
173         return pte;
174 }
175
176 static inline gen8_pde_t gen8_pde_encode(struct drm_device *dev,
177                                           dma_addr_t addr,
178                                           enum i915_cache_level level)
179 {
180         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
181         pde |= addr;
182         if (level != I915_CACHE_NONE)
183                 pde |= PPAT_CACHED_PDE_INDEX;
184         else
185                 pde |= PPAT_UNCACHED_INDEX;
186         return pde;
187 }
188
189 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
190                                  enum i915_cache_level level,
191                                  bool valid, u32 unused)
192 {
193         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
194         pte |= GEN6_PTE_ADDR_ENCODE(addr);
195
196         switch (level) {
197         case I915_CACHE_L3_LLC:
198         case I915_CACHE_LLC:
199                 pte |= GEN6_PTE_CACHE_LLC;
200                 break;
201         case I915_CACHE_NONE:
202                 pte |= GEN6_PTE_UNCACHED;
203                 break;
204         default:
205                 MISSING_CASE(level);
206         }
207
208         return pte;
209 }
210
211 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
212                                  enum i915_cache_level level,
213                                  bool valid, u32 unused)
214 {
215         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
216         pte |= GEN6_PTE_ADDR_ENCODE(addr);
217
218         switch (level) {
219         case I915_CACHE_L3_LLC:
220                 pte |= GEN7_PTE_CACHE_L3_LLC;
221                 break;
222         case I915_CACHE_LLC:
223                 pte |= GEN6_PTE_CACHE_LLC;
224                 break;
225         case I915_CACHE_NONE:
226                 pte |= GEN6_PTE_UNCACHED;
227                 break;
228         default:
229                 MISSING_CASE(level);
230         }
231
232         return pte;
233 }
234
235 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
236                                  enum i915_cache_level level,
237                                  bool valid, u32 flags)
238 {
239         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
240         pte |= GEN6_PTE_ADDR_ENCODE(addr);
241
242         if (!(flags & PTE_READ_ONLY))
243                 pte |= BYT_PTE_WRITEABLE;
244
245         if (level != I915_CACHE_NONE)
246                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
247
248         return pte;
249 }
250
251 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
252                                  enum i915_cache_level level,
253                                  bool valid, u32 unused)
254 {
255         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
256         pte |= HSW_PTE_ADDR_ENCODE(addr);
257
258         if (level != I915_CACHE_NONE)
259                 pte |= HSW_WB_LLC_AGE3;
260
261         return pte;
262 }
263
264 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
265                                   enum i915_cache_level level,
266                                   bool valid, u32 unused)
267 {
268         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
269         pte |= HSW_PTE_ADDR_ENCODE(addr);
270
271         switch (level) {
272         case I915_CACHE_NONE:
273                 break;
274         case I915_CACHE_WT:
275                 pte |= HSW_WT_ELLC_LLC_AGE3;
276                 break;
277         default:
278                 pte |= HSW_WB_ELLC_LLC_AGE3;
279                 break;
280         }
281
282         return pte;
283 }
284
285 #define i915_dma_unmap_single(px, dev) \
286         __i915_dma_unmap_single((px)->daddr, dev)
287
288 static inline void __i915_dma_unmap_single(dma_addr_t daddr,
289                                         struct drm_device *dev)
290 {
291         struct device *device = &dev->pdev->dev;
292
293         dma_unmap_page(device, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
294 }
295
296 /**
297  * i915_dma_map_single() - Create a dma mapping for a page table/dir/etc.
298  * @px: Page table/dir/etc to get a DMA map for
299  * @dev:        drm device
300  *
301  * Page table allocations are unified across all gens. They always require a
302  * single 4k allocation, as well as a DMA mapping. If we keep the structs
303  * symmetric here, the simple macro covers us for every page table type.
304  *
305  * Return: 0 if success.
306  */
307 #define i915_dma_map_single(px, dev) \
308         i915_dma_map_page_single((px)->page, (dev), &(px)->daddr)
309
310 static inline int i915_dma_map_page_single(struct page *page,
311                                            struct drm_device *dev,
312                                            dma_addr_t *daddr)
313 {
314         struct device *device = &dev->pdev->dev;
315
316         *daddr = dma_map_page(device, page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
317         if (dma_mapping_error(device, *daddr))
318                 return -ENOMEM;
319
320         return 0;
321 }
322
323 static void unmap_and_free_pt(struct i915_page_table *pt,
324                                struct drm_device *dev)
325 {
326         if (WARN_ON(!pt->page))
327                 return;
328
329         i915_dma_unmap_single(pt, dev);
330         __free_page(pt->page);
331         kfree(pt->used_ptes);
332         kfree(pt);
333 }
334
335 static void gen8_initialize_pt(struct i915_address_space *vm,
336                                 struct i915_page_table *pt)
337 {
338         gen8_pte_t *pt_vaddr, scratch_pte;
339         int i;
340
341         pt_vaddr = kmap_atomic(pt->page);
342         scratch_pte = gen8_pte_encode(vm->scratch.addr,
343                                       I915_CACHE_LLC, true);
344
345         for (i = 0; i < GEN8_PTES; i++)
346                 pt_vaddr[i] = scratch_pte;
347
348         if (!HAS_LLC(vm->dev))
349                 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
350         kunmap_atomic(pt_vaddr);
351 }
352
353 static struct i915_page_table *alloc_pt_single(struct drm_device *dev)
354 {
355         struct i915_page_table *pt;
356         const size_t count = INTEL_INFO(dev)->gen >= 8 ?
357                 GEN8_PTES : GEN6_PTES;
358         int ret = -ENOMEM;
359
360         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
361         if (!pt)
362                 return ERR_PTR(-ENOMEM);
363
364         pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
365                                 GFP_KERNEL);
366
367         if (!pt->used_ptes)
368                 goto fail_bitmap;
369
370         pt->page = alloc_page(GFP_KERNEL);
371         if (!pt->page)
372                 goto fail_page;
373
374         ret = i915_dma_map_single(pt, dev);
375         if (ret)
376                 goto fail_dma;
377
378         return pt;
379
380 fail_dma:
381         __free_page(pt->page);
382 fail_page:
383         kfree(pt->used_ptes);
384 fail_bitmap:
385         kfree(pt);
386
387         return ERR_PTR(ret);
388 }
389
390 /**
391  * alloc_pt_range() - Allocate a multiple page tables
392  * @pd:         The page directory which will have at least @count entries
393  *              available to point to the allocated page tables.
394  * @pde:        First page directory entry for which we are allocating.
395  * @count:      Number of pages to allocate.
396  * @dev:        DRM device.
397  *
398  * Allocates multiple page table pages and sets the appropriate entries in the
399  * page table structure within the page directory. Function cleans up after
400  * itself on any failures.
401  *
402  * Return: 0 if allocation succeeded.
403  */
404 static int alloc_pt_range(struct i915_page_directory *pd, uint16_t pde, size_t count,
405                           struct drm_device *dev)
406 {
407         int i, ret;
408
409         /* 512 is the max page tables per page_directory on any platform. */
410         if (WARN_ON(pde + count > I915_PDES))
411                 return -EINVAL;
412
413         for (i = pde; i < pde + count; i++) {
414                 struct i915_page_table *pt = alloc_pt_single(dev);
415
416                 if (IS_ERR(pt)) {
417                         ret = PTR_ERR(pt);
418                         goto err_out;
419                 }
420                 WARN(pd->page_table[i],
421                      "Leaking page directory entry %d (%p)\n",
422                      i, pd->page_table[i]);
423                 pd->page_table[i] = pt;
424         }
425
426         return 0;
427
428 err_out:
429         while (i-- > pde)
430                 unmap_and_free_pt(pd->page_table[i], dev);
431         return ret;
432 }
433
434 static void unmap_and_free_pd(struct i915_page_directory *pd)
435 {
436         if (pd->page) {
437                 __free_page(pd->page);
438                 kfree(pd);
439         }
440 }
441
442 static struct i915_page_directory *alloc_pd_single(void)
443 {
444         struct i915_page_directory *pd;
445
446         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
447         if (!pd)
448                 return ERR_PTR(-ENOMEM);
449
450         pd->page = alloc_page(GFP_KERNEL);
451         if (!pd->page) {
452                 kfree(pd);
453                 return ERR_PTR(-ENOMEM);
454         }
455
456         return pd;
457 }
458
459 /* Broadwell Page Directory Pointer Descriptors */
460 static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
461                            uint64_t val)
462 {
463         int ret;
464
465         BUG_ON(entry >= 4);
466
467         ret = intel_ring_begin(ring, 6);
468         if (ret)
469                 return ret;
470
471         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
472         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
473         intel_ring_emit(ring, (u32)(val >> 32));
474         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
475         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
476         intel_ring_emit(ring, (u32)(val));
477         intel_ring_advance(ring);
478
479         return 0;
480 }
481
482 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
483                           struct intel_engine_cs *ring)
484 {
485         int i, ret;
486
487         /* bit of a hack to find the actual last used pd */
488         int used_pd = ppgtt->num_pd_entries / I915_PDES;
489
490         for (i = used_pd - 1; i >= 0; i--) {
491                 dma_addr_t addr = ppgtt->pdp.page_directory[i]->daddr;
492                 ret = gen8_write_pdp(ring, i, addr);
493                 if (ret)
494                         return ret;
495         }
496
497         return 0;
498 }
499
500 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
501                                    uint64_t start,
502                                    uint64_t length,
503                                    bool use_scratch)
504 {
505         struct i915_hw_ppgtt *ppgtt =
506                 container_of(vm, struct i915_hw_ppgtt, base);
507         gen8_pte_t *pt_vaddr, scratch_pte;
508         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
509         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
510         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
511         unsigned num_entries = length >> PAGE_SHIFT;
512         unsigned last_pte, i;
513
514         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
515                                       I915_CACHE_LLC, use_scratch);
516
517         while (num_entries) {
518                 struct i915_page_directory *pd;
519                 struct i915_page_table *pt;
520                 struct page *page_table;
521
522                 if (WARN_ON(!ppgtt->pdp.page_directory[pdpe]))
523                         continue;
524
525                 pd = ppgtt->pdp.page_directory[pdpe];
526
527                 if (WARN_ON(!pd->page_table[pde]))
528                         continue;
529
530                 pt = pd->page_table[pde];
531
532                 if (WARN_ON(!pt->page))
533                         continue;
534
535                 page_table = pt->page;
536
537                 last_pte = pte + num_entries;
538                 if (last_pte > GEN8_PTES)
539                         last_pte = GEN8_PTES;
540
541                 pt_vaddr = kmap_atomic(page_table);
542
543                 for (i = pte; i < last_pte; i++) {
544                         pt_vaddr[i] = scratch_pte;
545                         num_entries--;
546                 }
547
548                 if (!HAS_LLC(ppgtt->base.dev))
549                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
550                 kunmap_atomic(pt_vaddr);
551
552                 pte = 0;
553                 if (++pde == I915_PDES) {
554                         pdpe++;
555                         pde = 0;
556                 }
557         }
558 }
559
560 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
561                                       struct sg_table *pages,
562                                       uint64_t start,
563                                       enum i915_cache_level cache_level, u32 unused)
564 {
565         struct i915_hw_ppgtt *ppgtt =
566                 container_of(vm, struct i915_hw_ppgtt, base);
567         gen8_pte_t *pt_vaddr;
568         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
569         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
570         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
571         struct sg_page_iter sg_iter;
572
573         pt_vaddr = NULL;
574
575         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
576                 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
577                         break;
578
579                 if (pt_vaddr == NULL) {
580                         struct i915_page_directory *pd = ppgtt->pdp.page_directory[pdpe];
581                         struct i915_page_table *pt = pd->page_table[pde];
582                         struct page *page_table = pt->page;
583
584                         pt_vaddr = kmap_atomic(page_table);
585                 }
586
587                 pt_vaddr[pte] =
588                         gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
589                                         cache_level, true);
590                 if (++pte == GEN8_PTES) {
591                         if (!HAS_LLC(ppgtt->base.dev))
592                                 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
593                         kunmap_atomic(pt_vaddr);
594                         pt_vaddr = NULL;
595                         if (++pde == I915_PDES) {
596                                 pdpe++;
597                                 pde = 0;
598                         }
599                         pte = 0;
600                 }
601         }
602         if (pt_vaddr) {
603                 if (!HAS_LLC(ppgtt->base.dev))
604                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
605                 kunmap_atomic(pt_vaddr);
606         }
607 }
608
609 static void __gen8_do_map_pt(gen8_pde_t * const pde,
610                              struct i915_page_table *pt,
611                              struct drm_device *dev)
612 {
613         gen8_pde_t entry =
614                 gen8_pde_encode(dev, pt->daddr, I915_CACHE_LLC);
615         *pde = entry;
616 }
617
618 static void gen8_initialize_pd(struct i915_address_space *vm,
619                                struct i915_page_directory *pd)
620 {
621         struct i915_hw_ppgtt *ppgtt =
622                         container_of(vm, struct i915_hw_ppgtt, base);
623         gen8_pde_t *page_directory;
624         struct i915_page_table *pt;
625         int i;
626
627         page_directory = kmap_atomic(pd->page);
628         pt = ppgtt->scratch_pt;
629         for (i = 0; i < I915_PDES; i++)
630                 /* Map the PDE to the page table */
631                 __gen8_do_map_pt(page_directory + i, pt, vm->dev);
632
633         if (!HAS_LLC(vm->dev))
634                 drm_clflush_virt_range(page_directory, PAGE_SIZE);
635
636         kunmap_atomic(page_directory);
637 }
638
639 static void gen8_free_page_tables(struct i915_page_directory *pd, struct drm_device *dev)
640 {
641         int i;
642
643         if (!pd->page)
644                 return;
645
646         for (i = 0; i < I915_PDES; i++) {
647                 if (WARN_ON(!pd->page_table[i]))
648                         continue;
649
650                 unmap_and_free_pt(pd->page_table[i], dev);
651                 pd->page_table[i] = NULL;
652         }
653 }
654
655 static void gen8_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
656 {
657         int i;
658
659         for (i = 0; i < ppgtt->num_pd_pages; i++) {
660                 if (WARN_ON(!ppgtt->pdp.page_directory[i]))
661                         continue;
662
663                 gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
664                 unmap_and_free_pd(ppgtt->pdp.page_directory[i]);
665         }
666
667         unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
668 }
669
670 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
671 {
672         struct i915_hw_ppgtt *ppgtt =
673                 container_of(vm, struct i915_hw_ppgtt, base);
674
675         gen8_ppgtt_free(ppgtt);
676 }
677
678 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
679 {
680         int i, ret;
681
682         for (i = 0; i < ppgtt->num_pd_pages; i++) {
683                 ret = alloc_pt_range(ppgtt->pdp.page_directory[i],
684                                      0, I915_PDES, ppgtt->base.dev);
685                 if (ret)
686                         goto unwind_out;
687         }
688
689         return 0;
690
691 unwind_out:
692         while (i--)
693                 gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
694
695         return -ENOMEM;
696 }
697
698 static int gen8_ppgtt_alloc_page_directories(struct i915_page_directory_pointer *pdp,
699                                      uint64_t start,
700                                      uint64_t length)
701 {
702         struct i915_hw_ppgtt *ppgtt =
703                 container_of(pdp, struct i915_hw_ppgtt, pdp);
704         struct i915_page_directory *unused;
705         uint64_t temp;
706         uint32_t pdpe;
707
708         /* FIXME: PPGTT container_of won't work for 64b */
709         WARN_ON((start + length) > 0x800000000ULL);
710
711         gen8_for_each_pdpe(unused, pdp, start, length, temp, pdpe) {
712                 WARN_ON(unused);
713                 pdp->page_directory[pdpe] = alloc_pd_single();
714                 if (IS_ERR(ppgtt->pdp.page_directory[pdpe]))
715                         goto unwind_out;
716
717                 gen8_initialize_pd(&ppgtt->base,
718                                    ppgtt->pdp.page_directory[pdpe]);
719                 ppgtt->num_pd_pages++;
720         }
721
722         /* XXX: Still alloc all page directories in systems with less than
723          * 4GB of memory. This won't be needed after a subsequent patch.
724          */
725         while (ppgtt->num_pd_pages < GEN8_LEGACY_PDPES) {
726                 ppgtt->pdp.page_directory[ppgtt->num_pd_pages] = alloc_pd_single();
727                 if (IS_ERR(ppgtt->pdp.page_directory[ppgtt->num_pd_pages]))
728                         goto unwind_out;
729
730                 gen8_initialize_pd(&ppgtt->base,
731                                    ppgtt->pdp.page_directory[ppgtt->num_pd_pages]);
732                 pdpe++;
733                 ppgtt->num_pd_pages++;
734         }
735
736         BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPES);
737
738         return 0;
739
740 unwind_out:
741         while (pdpe--) {
742                 unmap_and_free_pd(ppgtt->pdp.page_directory[pdpe]);
743                 ppgtt->num_pd_pages--;
744         }
745
746         WARN_ON(ppgtt->num_pd_pages);
747
748         return -ENOMEM;
749 }
750
751 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
752                             const int max_pdp)
753 {
754         int ret;
755
756         ret = gen8_ppgtt_alloc_page_directories(&ppgtt->pdp, ppgtt->base.start,
757                                         ppgtt->base.total);
758         if (ret)
759                 return ret;
760
761         ret = gen8_ppgtt_allocate_page_tables(ppgtt);
762         if (ret)
763                 goto err_out;
764
765         ppgtt->num_pd_entries = max_pdp * I915_PDES;
766
767         return 0;
768
769 err_out:
770         gen8_ppgtt_free(ppgtt);
771         return ret;
772 }
773
774 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
775                                              const int pd)
776 {
777         dma_addr_t pd_addr;
778         int ret;
779
780         pd_addr = pci_map_page(ppgtt->base.dev->pdev,
781                                ppgtt->pdp.page_directory[pd]->page, 0,
782                                PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
783
784         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
785         if (ret)
786                 return ret;
787
788         ppgtt->pdp.page_directory[pd]->daddr = pd_addr;
789
790         return 0;
791 }
792
793 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
794                                         const int pd,
795                                         const int pt)
796 {
797         dma_addr_t pt_addr;
798         struct i915_page_directory *pdir = ppgtt->pdp.page_directory[pd];
799         struct i915_page_table *ptab = pdir->page_table[pt];
800         struct page *p = ptab->page;
801         int ret;
802
803         gen8_initialize_pt(&ppgtt->base, ptab);
804
805         pt_addr = pci_map_page(ppgtt->base.dev->pdev,
806                                p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
807         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
808         if (ret)
809                 return ret;
810
811         ptab->daddr = pt_addr;
812
813         return 0;
814 }
815
816 /*
817  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
818  * with a net effect resembling a 2-level page table in normal x86 terms. Each
819  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
820  * space.
821  *
822  * FIXME: split allocation into smaller pieces. For now we only ever do this
823  * once, but with full PPGTT, the multiple contiguous allocations will be bad.
824  * TODO: Do something with the size parameter
825  */
826 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
827 {
828         const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
829         const int min_pt_pages = I915_PDES * max_pdp;
830         int i, j, ret;
831
832         if (size % (1<<30))
833                 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
834
835         ppgtt->base.start = 0;
836         /* This is the area that we advertise as usable for the caller */
837         ppgtt->base.total = max_pdp * I915_PDES * GEN8_PTES * PAGE_SIZE;
838         WARN_ON(ppgtt->base.total == 0);
839
840         ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev);
841         if (IS_ERR(ppgtt->scratch_pt))
842                 return PTR_ERR(ppgtt->scratch_pt);
843
844         gen8_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
845
846         /* 1. Do all our allocations for page directories and page tables.
847          * We allocate more than was asked so that we can point the unused parts
848          * to valid entries that point to scratch page. Dynamic page tables
849          * will fix this eventually.
850          */
851         ret = gen8_ppgtt_alloc(ppgtt, GEN8_LEGACY_PDPES);
852         if (ret)
853                 return ret;
854
855         /*
856          * 2. Create DMA mappings for the page directories and page tables.
857          */
858         for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
859                 ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
860                 if (ret)
861                         goto bail;
862
863                 for (j = 0; j < I915_PDES; j++) {
864                         ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
865                         if (ret)
866                                 goto bail;
867                 }
868         }
869
870         /*
871          * 3. Map all the page directory entries to point to the page tables
872          * we've allocated.
873          *
874          * For now, the PPGTT helper functions all require that the PDEs are
875          * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
876          * will never need to touch the PDEs again.
877          */
878         for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
879                 struct i915_page_directory *pd = ppgtt->pdp.page_directory[i];
880                 gen8_pde_t *pd_vaddr;
881                 pd_vaddr = kmap_atomic(ppgtt->pdp.page_directory[i]->page);
882                 for (j = 0; j < I915_PDES; j++) {
883                         struct i915_page_table *pt = pd->page_table[j];
884                         dma_addr_t addr = pt->daddr;
885                         pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
886                                                       I915_CACHE_LLC);
887                 }
888                 if (!HAS_LLC(ppgtt->base.dev))
889                         drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
890                 kunmap_atomic(pd_vaddr);
891         }
892
893         ppgtt->switch_mm = gen8_mm_switch;
894         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
895         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
896         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
897
898         /* Set all ptes to a valid scratch page. Also above requested space */
899         ppgtt->base.clear_range(&ppgtt->base, 0,
900                                 ppgtt->num_pd_pages * GEN8_PTES * PAGE_SIZE,
901                                 true);
902
903         DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
904                          ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
905         DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
906                          ppgtt->num_pd_entries,
907                          (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
908         return 0;
909
910 bail:
911         gen8_ppgtt_free(ppgtt);
912         return ret;
913 }
914
915 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
916 {
917         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
918         struct i915_address_space *vm = &ppgtt->base;
919         gen6_pte_t __iomem *pd_addr;
920         gen6_pte_t scratch_pte;
921         uint32_t pd_entry;
922         int pte, pde;
923
924         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
925
926         pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
927                 ppgtt->pd.pd_offset / sizeof(gen6_pte_t);
928
929         seq_printf(m, "  VM %p (pd_offset %x-%x):\n", vm,
930                    ppgtt->pd.pd_offset,
931                    ppgtt->pd.pd_offset + ppgtt->num_pd_entries);
932         for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
933                 u32 expected;
934                 gen6_pte_t *pt_vaddr;
935                 dma_addr_t pt_addr = ppgtt->pd.page_table[pde]->daddr;
936                 pd_entry = readl(pd_addr + pde);
937                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
938
939                 if (pd_entry != expected)
940                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
941                                    pde,
942                                    pd_entry,
943                                    expected);
944                 seq_printf(m, "\tPDE: %x\n", pd_entry);
945
946                 pt_vaddr = kmap_atomic(ppgtt->pd.page_table[pde]->page);
947                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
948                         unsigned long va =
949                                 (pde * PAGE_SIZE * GEN6_PTES) +
950                                 (pte * PAGE_SIZE);
951                         int i;
952                         bool found = false;
953                         for (i = 0; i < 4; i++)
954                                 if (pt_vaddr[pte + i] != scratch_pte)
955                                         found = true;
956                         if (!found)
957                                 continue;
958
959                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
960                         for (i = 0; i < 4; i++) {
961                                 if (pt_vaddr[pte + i] != scratch_pte)
962                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
963                                 else
964                                         seq_puts(m, "  SCRATCH ");
965                         }
966                         seq_puts(m, "\n");
967                 }
968                 kunmap_atomic(pt_vaddr);
969         }
970 }
971
972 /* Write pde (index) from the page directory @pd to the page table @pt */
973 static void gen6_write_pde(struct i915_page_directory *pd,
974                             const int pde, struct i915_page_table *pt)
975 {
976         /* Caller needs to make sure the write completes if necessary */
977         struct i915_hw_ppgtt *ppgtt =
978                 container_of(pd, struct i915_hw_ppgtt, pd);
979         u32 pd_entry;
980
981         pd_entry = GEN6_PDE_ADDR_ENCODE(pt->daddr);
982         pd_entry |= GEN6_PDE_VALID;
983
984         writel(pd_entry, ppgtt->pd_addr + pde);
985 }
986
987 /* Write all the page tables found in the ppgtt structure to incrementing page
988  * directories. */
989 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
990                                   struct i915_page_directory *pd,
991                                   uint32_t start, uint32_t length)
992 {
993         struct i915_page_table *pt;
994         uint32_t pde, temp;
995
996         gen6_for_each_pde(pt, pd, start, length, temp, pde)
997                 gen6_write_pde(pd, pde, pt);
998
999         /* Make sure write is complete before other code can use this page
1000          * table. Also require for WC mapped PTEs */
1001         readl(dev_priv->gtt.gsm);
1002 }
1003
1004 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1005 {
1006         BUG_ON(ppgtt->pd.pd_offset & 0x3f);
1007
1008         return (ppgtt->pd.pd_offset / 64) << 16;
1009 }
1010
1011 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1012                          struct intel_engine_cs *ring)
1013 {
1014         int ret;
1015
1016         /* NB: TLBs must be flushed and invalidated before a switch */
1017         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1018         if (ret)
1019                 return ret;
1020
1021         ret = intel_ring_begin(ring, 6);
1022         if (ret)
1023                 return ret;
1024
1025         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1026         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1027         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1028         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1029         intel_ring_emit(ring, get_pd_offset(ppgtt));
1030         intel_ring_emit(ring, MI_NOOP);
1031         intel_ring_advance(ring);
1032
1033         return 0;
1034 }
1035
1036 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1037                           struct intel_engine_cs *ring)
1038 {
1039         struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1040
1041         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1042         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1043         return 0;
1044 }
1045
1046 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1047                           struct intel_engine_cs *ring)
1048 {
1049         int ret;
1050
1051         /* NB: TLBs must be flushed and invalidated before a switch */
1052         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1053         if (ret)
1054                 return ret;
1055
1056         ret = intel_ring_begin(ring, 6);
1057         if (ret)
1058                 return ret;
1059
1060         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1061         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1062         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1063         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1064         intel_ring_emit(ring, get_pd_offset(ppgtt));
1065         intel_ring_emit(ring, MI_NOOP);
1066         intel_ring_advance(ring);
1067
1068         /* XXX: RCS is the only one to auto invalidate the TLBs? */
1069         if (ring->id != RCS) {
1070                 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1071                 if (ret)
1072                         return ret;
1073         }
1074
1075         return 0;
1076 }
1077
1078 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1079                           struct intel_engine_cs *ring)
1080 {
1081         struct drm_device *dev = ppgtt->base.dev;
1082         struct drm_i915_private *dev_priv = dev->dev_private;
1083
1084
1085         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1086         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1087
1088         POSTING_READ(RING_PP_DIR_DCLV(ring));
1089
1090         return 0;
1091 }
1092
1093 static void gen8_ppgtt_enable(struct drm_device *dev)
1094 {
1095         struct drm_i915_private *dev_priv = dev->dev_private;
1096         struct intel_engine_cs *ring;
1097         int j;
1098
1099         for_each_ring(ring, dev_priv, j) {
1100                 I915_WRITE(RING_MODE_GEN7(ring),
1101                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1102         }
1103 }
1104
1105 static void gen7_ppgtt_enable(struct drm_device *dev)
1106 {
1107         struct drm_i915_private *dev_priv = dev->dev_private;
1108         struct intel_engine_cs *ring;
1109         uint32_t ecochk, ecobits;
1110         int i;
1111
1112         ecobits = I915_READ(GAC_ECO_BITS);
1113         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1114
1115         ecochk = I915_READ(GAM_ECOCHK);
1116         if (IS_HASWELL(dev)) {
1117                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1118         } else {
1119                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1120                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1121         }
1122         I915_WRITE(GAM_ECOCHK, ecochk);
1123
1124         for_each_ring(ring, dev_priv, i) {
1125                 /* GFX_MODE is per-ring on gen7+ */
1126                 I915_WRITE(RING_MODE_GEN7(ring),
1127                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1128         }
1129 }
1130
1131 static void gen6_ppgtt_enable(struct drm_device *dev)
1132 {
1133         struct drm_i915_private *dev_priv = dev->dev_private;
1134         uint32_t ecochk, gab_ctl, ecobits;
1135
1136         ecobits = I915_READ(GAC_ECO_BITS);
1137         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1138                    ECOBITS_PPGTT_CACHE64B);
1139
1140         gab_ctl = I915_READ(GAB_CTL);
1141         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1142
1143         ecochk = I915_READ(GAM_ECOCHK);
1144         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1145
1146         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1147 }
1148
1149 /* PPGTT support for Sandybdrige/Gen6 and later */
1150 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1151                                    uint64_t start,
1152                                    uint64_t length,
1153                                    bool use_scratch)
1154 {
1155         struct i915_hw_ppgtt *ppgtt =
1156                 container_of(vm, struct i915_hw_ppgtt, base);
1157         gen6_pte_t *pt_vaddr, scratch_pte;
1158         unsigned first_entry = start >> PAGE_SHIFT;
1159         unsigned num_entries = length >> PAGE_SHIFT;
1160         unsigned act_pt = first_entry / GEN6_PTES;
1161         unsigned first_pte = first_entry % GEN6_PTES;
1162         unsigned last_pte, i;
1163
1164         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
1165
1166         while (num_entries) {
1167                 last_pte = first_pte + num_entries;
1168                 if (last_pte > GEN6_PTES)
1169                         last_pte = GEN6_PTES;
1170
1171                 pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1172
1173                 for (i = first_pte; i < last_pte; i++)
1174                         pt_vaddr[i] = scratch_pte;
1175
1176                 kunmap_atomic(pt_vaddr);
1177
1178                 num_entries -= last_pte - first_pte;
1179                 first_pte = 0;
1180                 act_pt++;
1181         }
1182 }
1183
1184 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1185                                       struct sg_table *pages,
1186                                       uint64_t start,
1187                                       enum i915_cache_level cache_level, u32 flags)
1188 {
1189         struct i915_hw_ppgtt *ppgtt =
1190                 container_of(vm, struct i915_hw_ppgtt, base);
1191         gen6_pte_t *pt_vaddr;
1192         unsigned first_entry = start >> PAGE_SHIFT;
1193         unsigned act_pt = first_entry / GEN6_PTES;
1194         unsigned act_pte = first_entry % GEN6_PTES;
1195         struct sg_page_iter sg_iter;
1196
1197         pt_vaddr = NULL;
1198         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1199                 if (pt_vaddr == NULL)
1200                         pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1201
1202                 pt_vaddr[act_pte] =
1203                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1204                                        cache_level, true, flags);
1205
1206                 if (++act_pte == GEN6_PTES) {
1207                         kunmap_atomic(pt_vaddr);
1208                         pt_vaddr = NULL;
1209                         act_pt++;
1210                         act_pte = 0;
1211                 }
1212         }
1213         if (pt_vaddr)
1214                 kunmap_atomic(pt_vaddr);
1215 }
1216
1217 /* PDE TLBs are a pain invalidate pre GEN8. It requires a context reload. If we
1218  * are switching between contexts with the same LRCA, we also must do a force
1219  * restore.
1220  */
1221 static inline void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1222 {
1223         /* If current vm != vm, */
1224         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1225 }
1226
1227 static void gen6_initialize_pt(struct i915_address_space *vm,
1228                 struct i915_page_table *pt)
1229 {
1230         gen6_pte_t *pt_vaddr, scratch_pte;
1231         int i;
1232
1233         WARN_ON(vm->scratch.addr == 0);
1234
1235         scratch_pte = vm->pte_encode(vm->scratch.addr,
1236                         I915_CACHE_LLC, true, 0);
1237
1238         pt_vaddr = kmap_atomic(pt->page);
1239
1240         for (i = 0; i < GEN6_PTES; i++)
1241                 pt_vaddr[i] = scratch_pte;
1242
1243         kunmap_atomic(pt_vaddr);
1244 }
1245
1246 static int gen6_alloc_va_range(struct i915_address_space *vm,
1247                                uint64_t start, uint64_t length)
1248 {
1249         DECLARE_BITMAP(new_page_tables, I915_PDES);
1250         struct drm_device *dev = vm->dev;
1251         struct drm_i915_private *dev_priv = dev->dev_private;
1252         struct i915_hw_ppgtt *ppgtt =
1253                                 container_of(vm, struct i915_hw_ppgtt, base);
1254         struct i915_page_table *pt;
1255         const uint32_t start_save = start, length_save = length;
1256         uint32_t pde, temp;
1257         int ret;
1258
1259         WARN_ON(upper_32_bits(start));
1260
1261         bitmap_zero(new_page_tables, I915_PDES);
1262
1263         /* The allocation is done in two stages so that we can bail out with
1264          * minimal amount of pain. The first stage finds new page tables that
1265          * need allocation. The second stage marks use ptes within the page
1266          * tables.
1267          */
1268         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1269                 if (pt != ppgtt->scratch_pt) {
1270                         WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1271                         continue;
1272                 }
1273
1274                 /* We've already allocated a page table */
1275                 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1276
1277                 pt = alloc_pt_single(dev);
1278                 if (IS_ERR(pt)) {
1279                         ret = PTR_ERR(pt);
1280                         goto unwind_out;
1281                 }
1282
1283                 gen6_initialize_pt(vm, pt);
1284
1285                 ppgtt->pd.page_table[pde] = pt;
1286                 set_bit(pde, new_page_tables);
1287                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1288         }
1289
1290         start = start_save;
1291         length = length_save;
1292
1293         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1294                 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1295
1296                 bitmap_zero(tmp_bitmap, GEN6_PTES);
1297                 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1298                            gen6_pte_count(start, length));
1299
1300                 if (test_and_clear_bit(pde, new_page_tables))
1301                         gen6_write_pde(&ppgtt->pd, pde, pt);
1302
1303                 trace_i915_page_table_entry_map(vm, pde, pt,
1304                                          gen6_pte_index(start),
1305                                          gen6_pte_count(start, length),
1306                                          GEN6_PTES);
1307                 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1308                                 GEN6_PTES);
1309         }
1310
1311         WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1312
1313         /* Make sure write is complete before other code can use this page
1314          * table. Also require for WC mapped PTEs */
1315         readl(dev_priv->gtt.gsm);
1316
1317         mark_tlbs_dirty(ppgtt);
1318         return 0;
1319
1320 unwind_out:
1321         for_each_set_bit(pde, new_page_tables, I915_PDES) {
1322                 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1323
1324                 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1325                 unmap_and_free_pt(pt, vm->dev);
1326         }
1327
1328         mark_tlbs_dirty(ppgtt);
1329         return ret;
1330 }
1331
1332 static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
1333 {
1334         int i;
1335
1336         for (i = 0; i < ppgtt->num_pd_entries; i++) {
1337                 struct i915_page_table *pt = ppgtt->pd.page_table[i];
1338
1339                 if (pt != ppgtt->scratch_pt)
1340                         unmap_and_free_pt(ppgtt->pd.page_table[i], ppgtt->base.dev);
1341         }
1342
1343         unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1344         unmap_and_free_pd(&ppgtt->pd);
1345 }
1346
1347 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1348 {
1349         struct i915_hw_ppgtt *ppgtt =
1350                 container_of(vm, struct i915_hw_ppgtt, base);
1351
1352         drm_mm_remove_node(&ppgtt->node);
1353
1354         gen6_ppgtt_free(ppgtt);
1355 }
1356
1357 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1358 {
1359         struct drm_device *dev = ppgtt->base.dev;
1360         struct drm_i915_private *dev_priv = dev->dev_private;
1361         bool retried = false;
1362         int ret;
1363
1364         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1365          * allocator works in address space sizes, so it's multiplied by page
1366          * size. We allocate at the top of the GTT to avoid fragmentation.
1367          */
1368         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1369         ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev);
1370         if (IS_ERR(ppgtt->scratch_pt))
1371                 return PTR_ERR(ppgtt->scratch_pt);
1372
1373         gen6_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
1374
1375 alloc:
1376         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1377                                                   &ppgtt->node, GEN6_PD_SIZE,
1378                                                   GEN6_PD_ALIGN, 0,
1379                                                   0, dev_priv->gtt.base.total,
1380                                                   DRM_MM_TOPDOWN);
1381         if (ret == -ENOSPC && !retried) {
1382                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1383                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
1384                                                I915_CACHE_NONE,
1385                                                0, dev_priv->gtt.base.total,
1386                                                0);
1387                 if (ret)
1388                         goto err_out;
1389
1390                 retried = true;
1391                 goto alloc;
1392         }
1393
1394         if (ret)
1395                 goto err_out;
1396
1397
1398         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1399                 DRM_DEBUG("Forced to use aperture for PDEs\n");
1400
1401         ppgtt->num_pd_entries = I915_PDES;
1402         return 0;
1403
1404 err_out:
1405         unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1406         return ret;
1407 }
1408
1409 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1410 {
1411         return gen6_ppgtt_allocate_page_directories(ppgtt);
1412 }
1413
1414 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1415                                   uint64_t start, uint64_t length)
1416 {
1417         struct i915_page_table *unused;
1418         uint32_t pde, temp;
1419
1420         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
1421                 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1422 }
1423
1424 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt, bool aliasing)
1425 {
1426         struct drm_device *dev = ppgtt->base.dev;
1427         struct drm_i915_private *dev_priv = dev->dev_private;
1428         int ret;
1429
1430         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1431         if (IS_GEN6(dev)) {
1432                 ppgtt->switch_mm = gen6_mm_switch;
1433         } else if (IS_HASWELL(dev)) {
1434                 ppgtt->switch_mm = hsw_mm_switch;
1435         } else if (IS_GEN7(dev)) {
1436                 ppgtt->switch_mm = gen7_mm_switch;
1437         } else
1438                 BUG();
1439
1440         if (intel_vgpu_active(dev))
1441                 ppgtt->switch_mm = vgpu_mm_switch;
1442
1443         ret = gen6_ppgtt_alloc(ppgtt);
1444         if (ret)
1445                 return ret;
1446
1447         if (aliasing) {
1448                 /* preallocate all pts */
1449                 ret = alloc_pt_range(&ppgtt->pd, 0, ppgtt->num_pd_entries,
1450                                 ppgtt->base.dev);
1451
1452                 if (ret) {
1453                         gen6_ppgtt_cleanup(&ppgtt->base);
1454                         return ret;
1455                 }
1456         }
1457
1458         ppgtt->base.allocate_va_range = gen6_alloc_va_range;
1459         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1460         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1461         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1462         ppgtt->base.start = 0;
1463         ppgtt->base.total = ppgtt->num_pd_entries * GEN6_PTES * PAGE_SIZE;
1464         ppgtt->debug_dump = gen6_dump_ppgtt;
1465
1466         ppgtt->pd.pd_offset =
1467                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1468
1469         ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
1470                 ppgtt->pd.pd_offset / sizeof(gen6_pte_t);
1471
1472         if (aliasing)
1473                 ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1474         else
1475                 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1476
1477         gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
1478
1479         DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1480                          ppgtt->node.size >> 20,
1481                          ppgtt->node.start / PAGE_SIZE);
1482
1483         DRM_DEBUG("Adding PPGTT at offset %x\n",
1484                   ppgtt->pd.pd_offset << 10);
1485
1486         return 0;
1487 }
1488
1489 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt,
1490                 bool aliasing)
1491 {
1492         struct drm_i915_private *dev_priv = dev->dev_private;
1493
1494         ppgtt->base.dev = dev;
1495         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1496
1497         if (INTEL_INFO(dev)->gen < 8)
1498                 return gen6_ppgtt_init(ppgtt, aliasing);
1499         else
1500                 return gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1501 }
1502 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1503 {
1504         struct drm_i915_private *dev_priv = dev->dev_private;
1505         int ret = 0;
1506
1507         ret = __hw_ppgtt_init(dev, ppgtt, false);
1508         if (ret == 0) {
1509                 kref_init(&ppgtt->ref);
1510                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1511                             ppgtt->base.total);
1512                 i915_init_vm(dev_priv, &ppgtt->base);
1513         }
1514
1515         return ret;
1516 }
1517
1518 int i915_ppgtt_init_hw(struct drm_device *dev)
1519 {
1520         struct drm_i915_private *dev_priv = dev->dev_private;
1521         struct intel_engine_cs *ring;
1522         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1523         int i, ret = 0;
1524
1525         /* In the case of execlists, PPGTT is enabled by the context descriptor
1526          * and the PDPs are contained within the context itself.  We don't
1527          * need to do anything here. */
1528         if (i915.enable_execlists)
1529                 return 0;
1530
1531         if (!USES_PPGTT(dev))
1532                 return 0;
1533
1534         if (IS_GEN6(dev))
1535                 gen6_ppgtt_enable(dev);
1536         else if (IS_GEN7(dev))
1537                 gen7_ppgtt_enable(dev);
1538         else if (INTEL_INFO(dev)->gen >= 8)
1539                 gen8_ppgtt_enable(dev);
1540         else
1541                 MISSING_CASE(INTEL_INFO(dev)->gen);
1542
1543         if (ppgtt) {
1544                 for_each_ring(ring, dev_priv, i) {
1545                         ret = ppgtt->switch_mm(ppgtt, ring);
1546                         if (ret != 0)
1547                                 return ret;
1548                 }
1549         }
1550
1551         return ret;
1552 }
1553 struct i915_hw_ppgtt *
1554 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1555 {
1556         struct i915_hw_ppgtt *ppgtt;
1557         int ret;
1558
1559         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1560         if (!ppgtt)
1561                 return ERR_PTR(-ENOMEM);
1562
1563         ret = i915_ppgtt_init(dev, ppgtt);
1564         if (ret) {
1565                 kfree(ppgtt);
1566                 return ERR_PTR(ret);
1567         }
1568
1569         ppgtt->file_priv = fpriv;
1570
1571         trace_i915_ppgtt_create(&ppgtt->base);
1572
1573         return ppgtt;
1574 }
1575
1576 void  i915_ppgtt_release(struct kref *kref)
1577 {
1578         struct i915_hw_ppgtt *ppgtt =
1579                 container_of(kref, struct i915_hw_ppgtt, ref);
1580
1581         trace_i915_ppgtt_release(&ppgtt->base);
1582
1583         /* vmas should already be unbound */
1584         WARN_ON(!list_empty(&ppgtt->base.active_list));
1585         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1586
1587         list_del(&ppgtt->base.global_link);
1588         drm_mm_takedown(&ppgtt->base.mm);
1589
1590         ppgtt->base.cleanup(&ppgtt->base);
1591         kfree(ppgtt);
1592 }
1593
1594 static void
1595 ppgtt_bind_vma(struct i915_vma *vma,
1596                enum i915_cache_level cache_level,
1597                u32 flags)
1598 {
1599         /* Currently applicable only to VLV */
1600         if (vma->obj->gt_ro)
1601                 flags |= PTE_READ_ONLY;
1602
1603         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1604                                 cache_level, flags);
1605 }
1606
1607 static void ppgtt_unbind_vma(struct i915_vma *vma)
1608 {
1609         vma->vm->clear_range(vma->vm,
1610                              vma->node.start,
1611                              vma->obj->base.size,
1612                              true);
1613 }
1614
1615 extern int intel_iommu_gfx_mapped;
1616 /* Certain Gen5 chipsets require require idling the GPU before
1617  * unmapping anything from the GTT when VT-d is enabled.
1618  */
1619 static inline bool needs_idle_maps(struct drm_device *dev)
1620 {
1621 #ifdef CONFIG_INTEL_IOMMU
1622         /* Query intel_iommu to see if we need the workaround. Presumably that
1623          * was loaded first.
1624          */
1625         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1626                 return true;
1627 #endif
1628         return false;
1629 }
1630
1631 static bool do_idling(struct drm_i915_private *dev_priv)
1632 {
1633         bool ret = dev_priv->mm.interruptible;
1634
1635         if (unlikely(dev_priv->gtt.do_idle_maps)) {
1636                 dev_priv->mm.interruptible = false;
1637                 if (i915_gpu_idle(dev_priv->dev)) {
1638                         DRM_ERROR("Couldn't idle GPU\n");
1639                         /* Wait a bit, in hopes it avoids the hang */
1640                         udelay(10);
1641                 }
1642         }
1643
1644         return ret;
1645 }
1646
1647 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1648 {
1649         if (unlikely(dev_priv->gtt.do_idle_maps))
1650                 dev_priv->mm.interruptible = interruptible;
1651 }
1652
1653 void i915_check_and_clear_faults(struct drm_device *dev)
1654 {
1655         struct drm_i915_private *dev_priv = dev->dev_private;
1656         struct intel_engine_cs *ring;
1657         int i;
1658
1659         if (INTEL_INFO(dev)->gen < 6)
1660                 return;
1661
1662         for_each_ring(ring, dev_priv, i) {
1663                 u32 fault_reg;
1664                 fault_reg = I915_READ(RING_FAULT_REG(ring));
1665                 if (fault_reg & RING_FAULT_VALID) {
1666                         DRM_DEBUG_DRIVER("Unexpected fault\n"
1667                                          "\tAddr: 0x%08lx\n"
1668                                          "\tAddress space: %s\n"
1669                                          "\tSource ID: %d\n"
1670                                          "\tType: %d\n",
1671                                          fault_reg & PAGE_MASK,
1672                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1673                                          RING_FAULT_SRCID(fault_reg),
1674                                          RING_FAULT_FAULT_TYPE(fault_reg));
1675                         I915_WRITE(RING_FAULT_REG(ring),
1676                                    fault_reg & ~RING_FAULT_VALID);
1677                 }
1678         }
1679         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1680 }
1681
1682 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1683 {
1684         if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1685                 intel_gtt_chipset_flush();
1686         } else {
1687                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1688                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1689         }
1690 }
1691
1692 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1693 {
1694         struct drm_i915_private *dev_priv = dev->dev_private;
1695
1696         /* Don't bother messing with faults pre GEN6 as we have little
1697          * documentation supporting that it's a good idea.
1698          */
1699         if (INTEL_INFO(dev)->gen < 6)
1700                 return;
1701
1702         i915_check_and_clear_faults(dev);
1703
1704         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1705                                        dev_priv->gtt.base.start,
1706                                        dev_priv->gtt.base.total,
1707                                        true);
1708
1709         i915_ggtt_flush(dev_priv);
1710 }
1711
1712 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1713 {
1714         struct drm_i915_private *dev_priv = dev->dev_private;
1715         struct drm_i915_gem_object *obj;
1716         struct i915_address_space *vm;
1717
1718         i915_check_and_clear_faults(dev);
1719
1720         /* First fill our portion of the GTT with scratch pages */
1721         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1722                                        dev_priv->gtt.base.start,
1723                                        dev_priv->gtt.base.total,
1724                                        true);
1725
1726         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1727                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1728                                                            &dev_priv->gtt.base);
1729                 if (!vma)
1730                         continue;
1731
1732                 i915_gem_clflush_object(obj, obj->pin_display);
1733                 /* The bind_vma code tries to be smart about tracking mappings.
1734                  * Unfortunately above, we've just wiped out the mappings
1735                  * without telling our object about it. So we need to fake it.
1736                  *
1737                  * Bind is not expected to fail since this is only called on
1738                  * resume and assumption is all requirements exist already.
1739                  */
1740                 vma->bound &= ~GLOBAL_BIND;
1741                 WARN_ON(i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND));
1742         }
1743
1744
1745         if (INTEL_INFO(dev)->gen >= 8) {
1746                 if (IS_CHERRYVIEW(dev))
1747                         chv_setup_private_ppat(dev_priv);
1748                 else
1749                         bdw_setup_private_ppat(dev_priv);
1750
1751                 return;
1752         }
1753
1754         if (USES_PPGTT(dev)) {
1755                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1756                         /* TODO: Perhaps it shouldn't be gen6 specific */
1757
1758                         struct i915_hw_ppgtt *ppgtt =
1759                                         container_of(vm, struct i915_hw_ppgtt,
1760                                                      base);
1761
1762                         if (i915_is_ggtt(vm))
1763                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
1764
1765                         gen6_write_page_range(dev_priv, &ppgtt->pd,
1766                                               0, ppgtt->base.total);
1767                 }
1768         }
1769
1770         i915_ggtt_flush(dev_priv);
1771 }
1772
1773 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1774 {
1775         if (obj->has_dma_mapping)
1776                 return 0;
1777
1778         if (!dma_map_sg(&obj->base.dev->pdev->dev,
1779                         obj->pages->sgl, obj->pages->nents,
1780                         PCI_DMA_BIDIRECTIONAL))
1781                 return -ENOSPC;
1782
1783         return 0;
1784 }
1785
1786 static inline void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
1787 {
1788 #ifdef writeq
1789         writeq(pte, addr);
1790 #else
1791         iowrite32((u32)pte, addr);
1792         iowrite32(pte >> 32, addr + 4);
1793 #endif
1794 }
1795
1796 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1797                                      struct sg_table *st,
1798                                      uint64_t start,
1799                                      enum i915_cache_level level, u32 unused)
1800 {
1801         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1802         unsigned first_entry = start >> PAGE_SHIFT;
1803         gen8_pte_t __iomem *gtt_entries =
1804                 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1805         int i = 0;
1806         struct sg_page_iter sg_iter;
1807         dma_addr_t addr = 0; /* shut up gcc */
1808
1809         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1810                 addr = sg_dma_address(sg_iter.sg) +
1811                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
1812                 gen8_set_pte(&gtt_entries[i],
1813                              gen8_pte_encode(addr, level, true));
1814                 i++;
1815         }
1816
1817         /*
1818          * XXX: This serves as a posting read to make sure that the PTE has
1819          * actually been updated. There is some concern that even though
1820          * registers and PTEs are within the same BAR that they are potentially
1821          * of NUMA access patterns. Therefore, even with the way we assume
1822          * hardware should work, we must keep this posting read for paranoia.
1823          */
1824         if (i != 0)
1825                 WARN_ON(readq(&gtt_entries[i-1])
1826                         != gen8_pte_encode(addr, level, true));
1827
1828         /* This next bit makes the above posting read even more important. We
1829          * want to flush the TLBs only after we're certain all the PTE updates
1830          * have finished.
1831          */
1832         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1833         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1834 }
1835
1836 /*
1837  * Binds an object into the global gtt with the specified cache level. The object
1838  * will be accessible to the GPU via commands whose operands reference offsets
1839  * within the global GTT as well as accessible by the GPU through the GMADR
1840  * mapped BAR (dev_priv->mm.gtt->gtt).
1841  */
1842 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1843                                      struct sg_table *st,
1844                                      uint64_t start,
1845                                      enum i915_cache_level level, u32 flags)
1846 {
1847         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1848         unsigned first_entry = start >> PAGE_SHIFT;
1849         gen6_pte_t __iomem *gtt_entries =
1850                 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1851         int i = 0;
1852         struct sg_page_iter sg_iter;
1853         dma_addr_t addr = 0;
1854
1855         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1856                 addr = sg_page_iter_dma_address(&sg_iter);
1857                 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1858                 i++;
1859         }
1860
1861         /* XXX: This serves as a posting read to make sure that the PTE has
1862          * actually been updated. There is some concern that even though
1863          * registers and PTEs are within the same BAR that they are potentially
1864          * of NUMA access patterns. Therefore, even with the way we assume
1865          * hardware should work, we must keep this posting read for paranoia.
1866          */
1867         if (i != 0) {
1868                 unsigned long gtt = readl(&gtt_entries[i-1]);
1869                 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1870         }
1871
1872         /* This next bit makes the above posting read even more important. We
1873          * want to flush the TLBs only after we're certain all the PTE updates
1874          * have finished.
1875          */
1876         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1877         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1878 }
1879
1880 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1881                                   uint64_t start,
1882                                   uint64_t length,
1883                                   bool use_scratch)
1884 {
1885         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1886         unsigned first_entry = start >> PAGE_SHIFT;
1887         unsigned num_entries = length >> PAGE_SHIFT;
1888         gen8_pte_t scratch_pte, __iomem *gtt_base =
1889                 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1890         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1891         int i;
1892
1893         if (WARN(num_entries > max_entries,
1894                  "First entry = %d; Num entries = %d (max=%d)\n",
1895                  first_entry, num_entries, max_entries))
1896                 num_entries = max_entries;
1897
1898         scratch_pte = gen8_pte_encode(vm->scratch.addr,
1899                                       I915_CACHE_LLC,
1900                                       use_scratch);
1901         for (i = 0; i < num_entries; i++)
1902                 gen8_set_pte(&gtt_base[i], scratch_pte);
1903         readl(gtt_base);
1904 }
1905
1906 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1907                                   uint64_t start,
1908                                   uint64_t length,
1909                                   bool use_scratch)
1910 {
1911         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1912         unsigned first_entry = start >> PAGE_SHIFT;
1913         unsigned num_entries = length >> PAGE_SHIFT;
1914         gen6_pte_t scratch_pte, __iomem *gtt_base =
1915                 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1916         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1917         int i;
1918
1919         if (WARN(num_entries > max_entries,
1920                  "First entry = %d; Num entries = %d (max=%d)\n",
1921                  first_entry, num_entries, max_entries))
1922                 num_entries = max_entries;
1923
1924         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
1925
1926         for (i = 0; i < num_entries; i++)
1927                 iowrite32(scratch_pte, &gtt_base[i]);
1928         readl(gtt_base);
1929 }
1930
1931
1932 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1933                                enum i915_cache_level cache_level,
1934                                u32 unused)
1935 {
1936         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1937         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1938                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1939
1940         BUG_ON(!i915_is_ggtt(vma->vm));
1941         intel_gtt_insert_sg_entries(vma->ggtt_view.pages, entry, flags);
1942         vma->bound = GLOBAL_BIND;
1943 }
1944
1945 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1946                                   uint64_t start,
1947                                   uint64_t length,
1948                                   bool unused)
1949 {
1950         unsigned first_entry = start >> PAGE_SHIFT;
1951         unsigned num_entries = length >> PAGE_SHIFT;
1952         intel_gtt_clear_range(first_entry, num_entries);
1953 }
1954
1955 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1956 {
1957         const unsigned int first = vma->node.start >> PAGE_SHIFT;
1958         const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1959
1960         BUG_ON(!i915_is_ggtt(vma->vm));
1961         vma->bound = 0;
1962         intel_gtt_clear_range(first, size);
1963 }
1964
1965 static void ggtt_bind_vma(struct i915_vma *vma,
1966                           enum i915_cache_level cache_level,
1967                           u32 flags)
1968 {
1969         struct drm_device *dev = vma->vm->dev;
1970         struct drm_i915_private *dev_priv = dev->dev_private;
1971         struct drm_i915_gem_object *obj = vma->obj;
1972         struct sg_table *pages = obj->pages;
1973
1974         /* Currently applicable only to VLV */
1975         if (obj->gt_ro)
1976                 flags |= PTE_READ_ONLY;
1977
1978         if (i915_is_ggtt(vma->vm))
1979                 pages = vma->ggtt_view.pages;
1980
1981         /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1982          * or we have a global mapping already but the cacheability flags have
1983          * changed, set the global PTEs.
1984          *
1985          * If there is an aliasing PPGTT it is anecdotally faster, so use that
1986          * instead if none of the above hold true.
1987          *
1988          * NB: A global mapping should only be needed for special regions like
1989          * "gtt mappable", SNB errata, or if specified via special execbuf
1990          * flags. At all other times, the GPU will use the aliasing PPGTT.
1991          */
1992         if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1993                 if (!(vma->bound & GLOBAL_BIND) ||
1994                     (cache_level != obj->cache_level)) {
1995                         vma->vm->insert_entries(vma->vm, pages,
1996                                                 vma->node.start,
1997                                                 cache_level, flags);
1998                         vma->bound |= GLOBAL_BIND;
1999                 }
2000         }
2001
2002         if (dev_priv->mm.aliasing_ppgtt &&
2003             (!(vma->bound & LOCAL_BIND) ||
2004              (cache_level != obj->cache_level))) {
2005                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2006                 appgtt->base.insert_entries(&appgtt->base, pages,
2007                                             vma->node.start,
2008                                             cache_level, flags);
2009                 vma->bound |= LOCAL_BIND;
2010         }
2011 }
2012
2013 static void ggtt_unbind_vma(struct i915_vma *vma)
2014 {
2015         struct drm_device *dev = vma->vm->dev;
2016         struct drm_i915_private *dev_priv = dev->dev_private;
2017         struct drm_i915_gem_object *obj = vma->obj;
2018
2019         if (vma->bound & GLOBAL_BIND) {
2020                 vma->vm->clear_range(vma->vm,
2021                                      vma->node.start,
2022                                      obj->base.size,
2023                                      true);
2024                 vma->bound &= ~GLOBAL_BIND;
2025         }
2026
2027         if (vma->bound & LOCAL_BIND) {
2028                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2029                 appgtt->base.clear_range(&appgtt->base,
2030                                          vma->node.start,
2031                                          obj->base.size,
2032                                          true);
2033                 vma->bound &= ~LOCAL_BIND;
2034         }
2035 }
2036
2037 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2038 {
2039         struct drm_device *dev = obj->base.dev;
2040         struct drm_i915_private *dev_priv = dev->dev_private;
2041         bool interruptible;
2042
2043         interruptible = do_idling(dev_priv);
2044
2045         if (!obj->has_dma_mapping)
2046                 dma_unmap_sg(&dev->pdev->dev,
2047                              obj->pages->sgl, obj->pages->nents,
2048                              PCI_DMA_BIDIRECTIONAL);
2049
2050         undo_idling(dev_priv, interruptible);
2051 }
2052
2053 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2054                                   unsigned long color,
2055                                   u64 *start,
2056                                   u64 *end)
2057 {
2058         if (node->color != color)
2059                 *start += 4096;
2060
2061         if (!list_empty(&node->node_list)) {
2062                 node = list_entry(node->node_list.next,
2063                                   struct drm_mm_node,
2064                                   node_list);
2065                 if (node->allocated && node->color != color)
2066                         *end -= 4096;
2067         }
2068 }
2069
2070 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2071                                      unsigned long start,
2072                                      unsigned long mappable_end,
2073                                      unsigned long end)
2074 {
2075         /* Let GEM Manage all of the aperture.
2076          *
2077          * However, leave one page at the end still bound to the scratch page.
2078          * There are a number of places where the hardware apparently prefetches
2079          * past the end of the object, and we've seen multiple hangs with the
2080          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2081          * aperture.  One page should be enough to keep any prefetching inside
2082          * of the aperture.
2083          */
2084         struct drm_i915_private *dev_priv = dev->dev_private;
2085         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2086         struct drm_mm_node *entry;
2087         struct drm_i915_gem_object *obj;
2088         unsigned long hole_start, hole_end;
2089         int ret;
2090
2091         BUG_ON(mappable_end > end);
2092
2093         /* Subtract the guard page ... */
2094         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2095
2096         dev_priv->gtt.base.start = start;
2097         dev_priv->gtt.base.total = end - start;
2098
2099         if (intel_vgpu_active(dev)) {
2100                 ret = intel_vgt_balloon(dev);
2101                 if (ret)
2102                         return ret;
2103         }
2104
2105         if (!HAS_LLC(dev))
2106                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2107
2108         /* Mark any preallocated objects as occupied */
2109         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2110                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2111
2112                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2113                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
2114
2115                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2116                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2117                 if (ret) {
2118                         DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2119                         return ret;
2120                 }
2121                 vma->bound |= GLOBAL_BIND;
2122         }
2123
2124         /* Clear any non-preallocated blocks */
2125         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2126                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2127                               hole_start, hole_end);
2128                 ggtt_vm->clear_range(ggtt_vm, hole_start,
2129                                      hole_end - hole_start, true);
2130         }
2131
2132         /* And finally clear the reserved guard page */
2133         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2134
2135         if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2136                 struct i915_hw_ppgtt *ppgtt;
2137
2138                 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2139                 if (!ppgtt)
2140                         return -ENOMEM;
2141
2142                 ret = __hw_ppgtt_init(dev, ppgtt, true);
2143                 if (ret) {
2144                         kfree(ppgtt);
2145                         return ret;
2146                 }
2147
2148                 dev_priv->mm.aliasing_ppgtt = ppgtt;
2149         }
2150
2151         return 0;
2152 }
2153
2154 void i915_gem_init_global_gtt(struct drm_device *dev)
2155 {
2156         struct drm_i915_private *dev_priv = dev->dev_private;
2157         unsigned long gtt_size, mappable_size;
2158
2159         gtt_size = dev_priv->gtt.base.total;
2160         mappable_size = dev_priv->gtt.mappable_end;
2161
2162         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2163 }
2164
2165 void i915_global_gtt_cleanup(struct drm_device *dev)
2166 {
2167         struct drm_i915_private *dev_priv = dev->dev_private;
2168         struct i915_address_space *vm = &dev_priv->gtt.base;
2169
2170         if (dev_priv->mm.aliasing_ppgtt) {
2171                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2172
2173                 ppgtt->base.cleanup(&ppgtt->base);
2174         }
2175
2176         if (drm_mm_initialized(&vm->mm)) {
2177                 if (intel_vgpu_active(dev))
2178                         intel_vgt_deballoon();
2179
2180                 drm_mm_takedown(&vm->mm);
2181                 list_del(&vm->global_link);
2182         }
2183
2184         vm->cleanup(vm);
2185 }
2186
2187 static int setup_scratch_page(struct drm_device *dev)
2188 {
2189         struct drm_i915_private *dev_priv = dev->dev_private;
2190         struct page *page;
2191         dma_addr_t dma_addr;
2192
2193         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
2194         if (page == NULL)
2195                 return -ENOMEM;
2196         set_pages_uc(page, 1);
2197
2198 #ifdef CONFIG_INTEL_IOMMU
2199         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
2200                                 PCI_DMA_BIDIRECTIONAL);
2201         if (pci_dma_mapping_error(dev->pdev, dma_addr))
2202                 return -EINVAL;
2203 #else
2204         dma_addr = page_to_phys(page);
2205 #endif
2206         dev_priv->gtt.base.scratch.page = page;
2207         dev_priv->gtt.base.scratch.addr = dma_addr;
2208
2209         return 0;
2210 }
2211
2212 static void teardown_scratch_page(struct drm_device *dev)
2213 {
2214         struct drm_i915_private *dev_priv = dev->dev_private;
2215         struct page *page = dev_priv->gtt.base.scratch.page;
2216
2217         set_pages_wb(page, 1);
2218         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
2219                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
2220         __free_page(page);
2221 }
2222
2223 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2224 {
2225         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2226         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2227         return snb_gmch_ctl << 20;
2228 }
2229
2230 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2231 {
2232         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2233         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2234         if (bdw_gmch_ctl)
2235                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2236
2237 #ifdef CONFIG_X86_32
2238         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2239         if (bdw_gmch_ctl > 4)
2240                 bdw_gmch_ctl = 4;
2241 #endif
2242
2243         return bdw_gmch_ctl << 20;
2244 }
2245
2246 static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2247 {
2248         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2249         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2250
2251         if (gmch_ctrl)
2252                 return 1 << (20 + gmch_ctrl);
2253
2254         return 0;
2255 }
2256
2257 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2258 {
2259         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2260         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2261         return snb_gmch_ctl << 25; /* 32 MB units */
2262 }
2263
2264 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2265 {
2266         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2267         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2268         return bdw_gmch_ctl << 25; /* 32 MB units */
2269 }
2270
2271 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2272 {
2273         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2274         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2275
2276         /*
2277          * 0x0  to 0x10: 32MB increments starting at 0MB
2278          * 0x11 to 0x16: 4MB increments starting at 8MB
2279          * 0x17 to 0x1d: 4MB increments start at 36MB
2280          */
2281         if (gmch_ctrl < 0x11)
2282                 return gmch_ctrl << 25;
2283         else if (gmch_ctrl < 0x17)
2284                 return (gmch_ctrl - 0x11 + 2) << 22;
2285         else
2286                 return (gmch_ctrl - 0x17 + 9) << 22;
2287 }
2288
2289 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2290 {
2291         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2292         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2293
2294         if (gen9_gmch_ctl < 0xf0)
2295                 return gen9_gmch_ctl << 25; /* 32 MB units */
2296         else
2297                 /* 4MB increments starting at 0xf0 for 4MB */
2298                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2299 }
2300
2301 static int ggtt_probe_common(struct drm_device *dev,
2302                              size_t gtt_size)
2303 {
2304         struct drm_i915_private *dev_priv = dev->dev_private;
2305         phys_addr_t gtt_phys_addr;
2306         int ret;
2307
2308         /* For Modern GENs the PTEs and register space are split in the BAR */
2309         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2310                 (pci_resource_len(dev->pdev, 0) / 2);
2311
2312         dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2313         if (!dev_priv->gtt.gsm) {
2314                 DRM_ERROR("Failed to map the gtt page table\n");
2315                 return -ENOMEM;
2316         }
2317
2318         ret = setup_scratch_page(dev);
2319         if (ret) {
2320                 DRM_ERROR("Scratch setup failed\n");
2321                 /* iounmap will also get called at remove, but meh */
2322                 iounmap(dev_priv->gtt.gsm);
2323         }
2324
2325         return ret;
2326 }
2327
2328 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2329  * bits. When using advanced contexts each context stores its own PAT, but
2330  * writing this data shouldn't be harmful even in those cases. */
2331 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2332 {
2333         uint64_t pat;
2334
2335         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2336               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2337               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2338               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2339               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2340               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2341               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2342               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2343
2344         if (!USES_PPGTT(dev_priv->dev))
2345                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2346                  * so RTL will always use the value corresponding to
2347                  * pat_sel = 000".
2348                  * So let's disable cache for GGTT to avoid screen corruptions.
2349                  * MOCS still can be used though.
2350                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2351                  * before this patch, i.e. the same uncached + snooping access
2352                  * like on gen6/7 seems to be in effect.
2353                  * - So this just fixes blitter/render access. Again it looks
2354                  * like it's not just uncached access, but uncached + snooping.
2355                  * So we can still hold onto all our assumptions wrt cpu
2356                  * clflushing on LLC machines.
2357                  */
2358                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2359
2360         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2361          * write would work. */
2362         I915_WRITE(GEN8_PRIVATE_PAT, pat);
2363         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2364 }
2365
2366 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2367 {
2368         uint64_t pat;
2369
2370         /*
2371          * Map WB on BDW to snooped on CHV.
2372          *
2373          * Only the snoop bit has meaning for CHV, the rest is
2374          * ignored.
2375          *
2376          * The hardware will never snoop for certain types of accesses:
2377          * - CPU GTT (GMADR->GGTT->no snoop->memory)
2378          * - PPGTT page tables
2379          * - some other special cycles
2380          *
2381          * As with BDW, we also need to consider the following for GT accesses:
2382          * "For GGTT, there is NO pat_sel[2:0] from the entry,
2383          * so RTL will always use the value corresponding to
2384          * pat_sel = 000".
2385          * Which means we must set the snoop bit in PAT entry 0
2386          * in order to keep the global status page working.
2387          */
2388         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2389               GEN8_PPAT(1, 0) |
2390               GEN8_PPAT(2, 0) |
2391               GEN8_PPAT(3, 0) |
2392               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2393               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2394               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2395               GEN8_PPAT(7, CHV_PPAT_SNOOP);
2396
2397         I915_WRITE(GEN8_PRIVATE_PAT, pat);
2398         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2399 }
2400
2401 static int gen8_gmch_probe(struct drm_device *dev,
2402                            size_t *gtt_total,
2403                            size_t *stolen,
2404                            phys_addr_t *mappable_base,
2405                            unsigned long *mappable_end)
2406 {
2407         struct drm_i915_private *dev_priv = dev->dev_private;
2408         unsigned int gtt_size;
2409         u16 snb_gmch_ctl;
2410         int ret;
2411
2412         /* TODO: We're not aware of mappable constraints on gen8 yet */
2413         *mappable_base = pci_resource_start(dev->pdev, 2);
2414         *mappable_end = pci_resource_len(dev->pdev, 2);
2415
2416         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2417                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2418
2419         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2420
2421         if (INTEL_INFO(dev)->gen >= 9) {
2422                 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
2423                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2424         } else if (IS_CHERRYVIEW(dev)) {
2425                 *stolen = chv_get_stolen_size(snb_gmch_ctl);
2426                 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2427         } else {
2428                 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
2429                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2430         }
2431
2432         *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2433
2434         if (IS_CHERRYVIEW(dev))
2435                 chv_setup_private_ppat(dev_priv);
2436         else
2437                 bdw_setup_private_ppat(dev_priv);
2438
2439         ret = ggtt_probe_common(dev, gtt_size);
2440
2441         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2442         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2443
2444         return ret;
2445 }
2446
2447 static int gen6_gmch_probe(struct drm_device *dev,
2448                            size_t *gtt_total,
2449                            size_t *stolen,
2450                            phys_addr_t *mappable_base,
2451                            unsigned long *mappable_end)
2452 {
2453         struct drm_i915_private *dev_priv = dev->dev_private;
2454         unsigned int gtt_size;
2455         u16 snb_gmch_ctl;
2456         int ret;
2457
2458         *mappable_base = pci_resource_start(dev->pdev, 2);
2459         *mappable_end = pci_resource_len(dev->pdev, 2);
2460
2461         /* 64/512MB is the current min/max we actually know of, but this is just
2462          * a coarse sanity check.
2463          */
2464         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2465                 DRM_ERROR("Unknown GMADR size (%lx)\n",
2466                           dev_priv->gtt.mappable_end);
2467                 return -ENXIO;
2468         }
2469
2470         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2471                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2472         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2473
2474         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
2475
2476         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2477         *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2478
2479         ret = ggtt_probe_common(dev, gtt_size);
2480
2481         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2482         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2483
2484         return ret;
2485 }
2486
2487 static void gen6_gmch_remove(struct i915_address_space *vm)
2488 {
2489
2490         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2491
2492         iounmap(gtt->gsm);
2493         teardown_scratch_page(vm->dev);
2494 }
2495
2496 static int i915_gmch_probe(struct drm_device *dev,
2497                            size_t *gtt_total,
2498                            size_t *stolen,
2499                            phys_addr_t *mappable_base,
2500                            unsigned long *mappable_end)
2501 {
2502         struct drm_i915_private *dev_priv = dev->dev_private;
2503         int ret;
2504
2505         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2506         if (!ret) {
2507                 DRM_ERROR("failed to set up gmch\n");
2508                 return -EIO;
2509         }
2510
2511         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2512
2513         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2514         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2515
2516         if (unlikely(dev_priv->gtt.do_idle_maps))
2517                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2518
2519         return 0;
2520 }
2521
2522 static void i915_gmch_remove(struct i915_address_space *vm)
2523 {
2524         intel_gmch_remove();
2525 }
2526
2527 int i915_gem_gtt_init(struct drm_device *dev)
2528 {
2529         struct drm_i915_private *dev_priv = dev->dev_private;
2530         struct i915_gtt *gtt = &dev_priv->gtt;
2531         int ret;
2532
2533         if (INTEL_INFO(dev)->gen <= 5) {
2534                 gtt->gtt_probe = i915_gmch_probe;
2535                 gtt->base.cleanup = i915_gmch_remove;
2536         } else if (INTEL_INFO(dev)->gen < 8) {
2537                 gtt->gtt_probe = gen6_gmch_probe;
2538                 gtt->base.cleanup = gen6_gmch_remove;
2539                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2540                         gtt->base.pte_encode = iris_pte_encode;
2541                 else if (IS_HASWELL(dev))
2542                         gtt->base.pte_encode = hsw_pte_encode;
2543                 else if (IS_VALLEYVIEW(dev))
2544                         gtt->base.pte_encode = byt_pte_encode;
2545                 else if (INTEL_INFO(dev)->gen >= 7)
2546                         gtt->base.pte_encode = ivb_pte_encode;
2547                 else
2548                         gtt->base.pte_encode = snb_pte_encode;
2549         } else {
2550                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2551                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2552         }
2553
2554         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2555                              &gtt->mappable_base, &gtt->mappable_end);
2556         if (ret)
2557                 return ret;
2558
2559         gtt->base.dev = dev;
2560
2561         /* GMADR is the PCI mmio aperture into the global GTT. */
2562         DRM_INFO("Memory usable by graphics device = %zdM\n",
2563                  gtt->base.total >> 20);
2564         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2565         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2566 #ifdef CONFIG_INTEL_IOMMU
2567         if (intel_iommu_gfx_mapped)
2568                 DRM_INFO("VT-d active for gfx access\n");
2569 #endif
2570         /*
2571          * i915.enable_ppgtt is read-only, so do an early pass to validate the
2572          * user's requested state against the hardware/driver capabilities.  We
2573          * do this now so that we can print out any log messages once rather
2574          * than every time we check intel_enable_ppgtt().
2575          */
2576         i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2577         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2578
2579         return 0;
2580 }
2581
2582 static struct i915_vma *
2583 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
2584                       struct i915_address_space *vm,
2585                       const struct i915_ggtt_view *ggtt_view)
2586 {
2587         struct i915_vma *vma;
2588
2589         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
2590                 return ERR_PTR(-EINVAL);
2591         vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2592         if (vma == NULL)
2593                 return ERR_PTR(-ENOMEM);
2594
2595         INIT_LIST_HEAD(&vma->vma_link);
2596         INIT_LIST_HEAD(&vma->mm_list);
2597         INIT_LIST_HEAD(&vma->exec_list);
2598         vma->vm = vm;
2599         vma->obj = obj;
2600
2601         if (INTEL_INFO(vm->dev)->gen >= 6) {
2602                 if (i915_is_ggtt(vm)) {
2603                         vma->ggtt_view = *ggtt_view;
2604
2605                         vma->unbind_vma = ggtt_unbind_vma;
2606                         vma->bind_vma = ggtt_bind_vma;
2607                 } else {
2608                         vma->unbind_vma = ppgtt_unbind_vma;
2609                         vma->bind_vma = ppgtt_bind_vma;
2610                 }
2611         } else {
2612                 BUG_ON(!i915_is_ggtt(vm));
2613                 vma->ggtt_view = *ggtt_view;
2614                 vma->unbind_vma = i915_ggtt_unbind_vma;
2615                 vma->bind_vma = i915_ggtt_bind_vma;
2616         }
2617
2618         list_add_tail(&vma->vma_link, &obj->vma_list);
2619         if (!i915_is_ggtt(vm))
2620                 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2621
2622         return vma;
2623 }
2624
2625 struct i915_vma *
2626 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2627                                   struct i915_address_space *vm)
2628 {
2629         struct i915_vma *vma;
2630
2631         vma = i915_gem_obj_to_vma(obj, vm);
2632         if (!vma)
2633                 vma = __i915_gem_vma_create(obj, vm,
2634                                             i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
2635
2636         return vma;
2637 }
2638
2639 struct i915_vma *
2640 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
2641                                        const struct i915_ggtt_view *view)
2642 {
2643         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
2644         struct i915_vma *vma;
2645
2646         if (WARN_ON(!view))
2647                 return ERR_PTR(-EINVAL);
2648
2649         vma = i915_gem_obj_to_ggtt_view(obj, view);
2650
2651         if (IS_ERR(vma))
2652                 return vma;
2653
2654         if (!vma)
2655                 vma = __i915_gem_vma_create(obj, ggtt, view);
2656
2657         return vma;
2658
2659 }
2660
2661 static void
2662 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
2663              struct sg_table *st)
2664 {
2665         unsigned int column, row;
2666         unsigned int src_idx;
2667         struct scatterlist *sg = st->sgl;
2668
2669         st->nents = 0;
2670
2671         for (column = 0; column < width; column++) {
2672                 src_idx = width * (height - 1) + column;
2673                 for (row = 0; row < height; row++) {
2674                         st->nents++;
2675                         /* We don't need the pages, but need to initialize
2676                          * the entries so the sg list can be happily traversed.
2677                          * The only thing we need are DMA addresses.
2678                          */
2679                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
2680                         sg_dma_address(sg) = in[src_idx];
2681                         sg_dma_len(sg) = PAGE_SIZE;
2682                         sg = sg_next(sg);
2683                         src_idx -= width;
2684                 }
2685         }
2686 }
2687
2688 static struct sg_table *
2689 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
2690                           struct drm_i915_gem_object *obj)
2691 {
2692         struct drm_device *dev = obj->base.dev;
2693         struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
2694         unsigned long size, pages, rot_pages;
2695         struct sg_page_iter sg_iter;
2696         unsigned long i;
2697         dma_addr_t *page_addr_list;
2698         struct sg_table *st;
2699         unsigned int tile_pitch, tile_height;
2700         unsigned int width_pages, height_pages;
2701         int ret = -ENOMEM;
2702
2703         pages = obj->base.size / PAGE_SIZE;
2704
2705         /* Calculate tiling geometry. */
2706         tile_height = intel_tile_height(dev, rot_info->pixel_format,
2707                                         rot_info->fb_modifier);
2708         tile_pitch = PAGE_SIZE / tile_height;
2709         width_pages = DIV_ROUND_UP(rot_info->pitch, tile_pitch);
2710         height_pages = DIV_ROUND_UP(rot_info->height, tile_height);
2711         rot_pages = width_pages * height_pages;
2712         size = rot_pages * PAGE_SIZE;
2713
2714         /* Allocate a temporary list of source pages for random access. */
2715         page_addr_list = drm_malloc_ab(pages, sizeof(dma_addr_t));
2716         if (!page_addr_list)
2717                 return ERR_PTR(ret);
2718
2719         /* Allocate target SG list. */
2720         st = kmalloc(sizeof(*st), GFP_KERNEL);
2721         if (!st)
2722                 goto err_st_alloc;
2723
2724         ret = sg_alloc_table(st, rot_pages, GFP_KERNEL);
2725         if (ret)
2726                 goto err_sg_alloc;
2727
2728         /* Populate source page list from the object. */
2729         i = 0;
2730         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2731                 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
2732                 i++;
2733         }
2734
2735         /* Rotate the pages. */
2736         rotate_pages(page_addr_list, width_pages, height_pages, st);
2737
2738         DRM_DEBUG_KMS(
2739                       "Created rotated page mapping for object size %lu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages).\n",
2740                       size, rot_info->pitch, rot_info->height,
2741                       rot_info->pixel_format, width_pages, height_pages,
2742                       rot_pages);
2743
2744         drm_free_large(page_addr_list);
2745
2746         return st;
2747
2748 err_sg_alloc:
2749         kfree(st);
2750 err_st_alloc:
2751         drm_free_large(page_addr_list);
2752
2753         DRM_DEBUG_KMS(
2754                       "Failed to create rotated mapping for object size %lu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages)\n",
2755                       size, ret, rot_info->pitch, rot_info->height,
2756                       rot_info->pixel_format, width_pages, height_pages,
2757                       rot_pages);
2758         return ERR_PTR(ret);
2759 }
2760
2761 static inline int
2762 i915_get_ggtt_vma_pages(struct i915_vma *vma)
2763 {
2764         int ret = 0;
2765
2766         if (vma->ggtt_view.pages)
2767                 return 0;
2768
2769         if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2770                 vma->ggtt_view.pages = vma->obj->pages;
2771         else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
2772                 vma->ggtt_view.pages =
2773                         intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
2774         else
2775                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
2776                           vma->ggtt_view.type);
2777
2778         if (!vma->ggtt_view.pages) {
2779                 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
2780                           vma->ggtt_view.type);
2781                 ret = -EINVAL;
2782         } else if (IS_ERR(vma->ggtt_view.pages)) {
2783                 ret = PTR_ERR(vma->ggtt_view.pages);
2784                 vma->ggtt_view.pages = NULL;
2785                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
2786                           vma->ggtt_view.type, ret);
2787         }
2788
2789         return ret;
2790 }
2791
2792 /**
2793  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
2794  * @vma: VMA to map
2795  * @cache_level: mapping cache level
2796  * @flags: flags like global or local mapping
2797  *
2798  * DMA addresses are taken from the scatter-gather table of this object (or of
2799  * this VMA in case of non-default GGTT views) and PTE entries set up.
2800  * Note that DMA addresses are also the only part of the SG table we care about.
2801  */
2802 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2803                   u32 flags)
2804 {
2805         if (i915_is_ggtt(vma->vm)) {
2806                 int ret = i915_get_ggtt_vma_pages(vma);
2807
2808                 if (ret)
2809                         return ret;
2810         }
2811
2812         vma->bind_vma(vma, cache_level, flags);
2813
2814         return 0;
2815 }