drm/i915: Clean up GPU hang message
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143                                     i915_reg_t reg)
144 {
145         u32 val = I915_READ(reg);
146
147         if (val == 0)
148                 return;
149
150         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151              i915_mmio_reg_offset(reg), val);
152         I915_WRITE(reg, 0xffffffff);
153         POSTING_READ(reg);
154         I915_WRITE(reg, 0xffffffff);
155         POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159         gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162         POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166         gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167         I915_WRITE(type##IER, (ier_val)); \
168         I915_WRITE(type##IMR, (imr_val)); \
169         POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177                                      uint32_t mask,
178                                      uint32_t bits)
179 {
180         uint32_t val;
181
182         assert_spin_locked(&dev_priv->irq_lock);
183         WARN_ON(bits & ~mask);
184
185         val = I915_READ(PORT_HOTPLUG_EN);
186         val &= ~mask;
187         val |= bits;
188         I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192  * i915_hotplug_interrupt_update - update hotplug interrupt enable
193  * @dev_priv: driver private
194  * @mask: bits to update
195  * @bits: bits to enable
196  * NOTE: the HPD enable bits are modified both inside and outside
197  * of an interrupt context. To avoid that read-modify-write cycles
198  * interfer, these bits are protected by a spinlock. Since this
199  * function is usually not called from a context where the lock is
200  * held already, this function acquires the lock itself. A non-locking
201  * version is also available.
202  */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204                                    uint32_t mask,
205                                    uint32_t bits)
206 {
207         spin_lock_irq(&dev_priv->irq_lock);
208         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209         spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213  * ilk_update_display_irq - update DEIMR
214  * @dev_priv: driver private
215  * @interrupt_mask: mask of interrupt bits to update
216  * @enabled_irq_mask: mask of interrupt bits to enable
217  */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219                             uint32_t interrupt_mask,
220                             uint32_t enabled_irq_mask)
221 {
222         uint32_t new_val;
223
224         assert_spin_locked(&dev_priv->irq_lock);
225
226         WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229                 return;
230
231         new_val = dev_priv->irq_mask;
232         new_val &= ~interrupt_mask;
233         new_val |= (~enabled_irq_mask & interrupt_mask);
234
235         if (new_val != dev_priv->irq_mask) {
236                 dev_priv->irq_mask = new_val;
237                 I915_WRITE(DEIMR, dev_priv->irq_mask);
238                 POSTING_READ(DEIMR);
239         }
240 }
241
242 /**
243  * ilk_update_gt_irq - update GTIMR
244  * @dev_priv: driver private
245  * @interrupt_mask: mask of interrupt bits to update
246  * @enabled_irq_mask: mask of interrupt bits to enable
247  */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249                               uint32_t interrupt_mask,
250                               uint32_t enabled_irq_mask)
251 {
252         assert_spin_locked(&dev_priv->irq_lock);
253
254         WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257                 return;
258
259         dev_priv->gt_irq_mask &= ~interrupt_mask;
260         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 }
263
264 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
265 {
266         ilk_update_gt_irq(dev_priv, mask, mask);
267         POSTING_READ_FW(GTIMR);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272         ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291  * snb_update_pm_irq - update GEN6_PMIMR
292  * @dev_priv: driver private
293  * @interrupt_mask: mask of interrupt bits to update
294  * @enabled_irq_mask: mask of interrupt bits to enable
295  */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297                               uint32_t interrupt_mask,
298                               uint32_t enabled_irq_mask)
299 {
300         uint32_t new_val;
301
302         WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304         assert_spin_locked(&dev_priv->irq_lock);
305
306         new_val = dev_priv->pm_irq_mask;
307         new_val &= ~interrupt_mask;
308         new_val |= (~enabled_irq_mask & interrupt_mask);
309
310         if (new_val != dev_priv->pm_irq_mask) {
311                 dev_priv->pm_irq_mask = new_val;
312                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313                 POSTING_READ(gen6_pm_imr(dev_priv));
314         }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320                 return;
321
322         snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326                                   uint32_t mask)
327 {
328         snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334                 return;
335
336         __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
340 {
341         i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343         spin_lock_irq(&dev_priv->irq_lock);
344         I915_WRITE(reg, dev_priv->pm_rps_events);
345         I915_WRITE(reg, dev_priv->pm_rps_events);
346         POSTING_READ(reg);
347         dev_priv->rps.pm_iir = 0;
348         spin_unlock_irq(&dev_priv->irq_lock);
349 }
350
351 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
352 {
353         spin_lock_irq(&dev_priv->irq_lock);
354         WARN_ON_ONCE(dev_priv->rps.pm_iir);
355         WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
356         dev_priv->rps.interrupts_enabled = true;
357         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
358                                 dev_priv->pm_rps_events);
359         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
360
361         spin_unlock_irq(&dev_priv->irq_lock);
362 }
363
364 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
365 {
366         return (mask & ~dev_priv->rps.pm_intr_keep);
367 }
368
369 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
370 {
371         spin_lock_irq(&dev_priv->irq_lock);
372         dev_priv->rps.interrupts_enabled = false;
373
374         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
375
376         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
377         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
378                                 ~dev_priv->pm_rps_events);
379
380         spin_unlock_irq(&dev_priv->irq_lock);
381         synchronize_irq(dev_priv->dev->irq);
382
383         /* Now that we will not be generating any more work, flush any
384          * outsanding tasks. As we are called on the RPS idle path,
385          * we will reset the GPU to minimum frequencies, so the current
386          * state of the worker can be discarded.
387          */
388         cancel_work_sync(&dev_priv->rps.work);
389         gen6_reset_rps_interrupts(dev_priv);
390 }
391
392 /**
393  * bdw_update_port_irq - update DE port interrupt
394  * @dev_priv: driver private
395  * @interrupt_mask: mask of interrupt bits to update
396  * @enabled_irq_mask: mask of interrupt bits to enable
397  */
398 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
399                                 uint32_t interrupt_mask,
400                                 uint32_t enabled_irq_mask)
401 {
402         uint32_t new_val;
403         uint32_t old_val;
404
405         assert_spin_locked(&dev_priv->irq_lock);
406
407         WARN_ON(enabled_irq_mask & ~interrupt_mask);
408
409         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
410                 return;
411
412         old_val = I915_READ(GEN8_DE_PORT_IMR);
413
414         new_val = old_val;
415         new_val &= ~interrupt_mask;
416         new_val |= (~enabled_irq_mask & interrupt_mask);
417
418         if (new_val != old_val) {
419                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
420                 POSTING_READ(GEN8_DE_PORT_IMR);
421         }
422 }
423
424 /**
425  * bdw_update_pipe_irq - update DE pipe interrupt
426  * @dev_priv: driver private
427  * @pipe: pipe whose interrupt to update
428  * @interrupt_mask: mask of interrupt bits to update
429  * @enabled_irq_mask: mask of interrupt bits to enable
430  */
431 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
432                          enum pipe pipe,
433                          uint32_t interrupt_mask,
434                          uint32_t enabled_irq_mask)
435 {
436         uint32_t new_val;
437
438         assert_spin_locked(&dev_priv->irq_lock);
439
440         WARN_ON(enabled_irq_mask & ~interrupt_mask);
441
442         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
443                 return;
444
445         new_val = dev_priv->de_irq_mask[pipe];
446         new_val &= ~interrupt_mask;
447         new_val |= (~enabled_irq_mask & interrupt_mask);
448
449         if (new_val != dev_priv->de_irq_mask[pipe]) {
450                 dev_priv->de_irq_mask[pipe] = new_val;
451                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
452                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
453         }
454 }
455
456 /**
457  * ibx_display_interrupt_update - update SDEIMR
458  * @dev_priv: driver private
459  * @interrupt_mask: mask of interrupt bits to update
460  * @enabled_irq_mask: mask of interrupt bits to enable
461  */
462 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
463                                   uint32_t interrupt_mask,
464                                   uint32_t enabled_irq_mask)
465 {
466         uint32_t sdeimr = I915_READ(SDEIMR);
467         sdeimr &= ~interrupt_mask;
468         sdeimr |= (~enabled_irq_mask & interrupt_mask);
469
470         WARN_ON(enabled_irq_mask & ~interrupt_mask);
471
472         assert_spin_locked(&dev_priv->irq_lock);
473
474         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
475                 return;
476
477         I915_WRITE(SDEIMR, sdeimr);
478         POSTING_READ(SDEIMR);
479 }
480
481 static void
482 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
483                        u32 enable_mask, u32 status_mask)
484 {
485         i915_reg_t reg = PIPESTAT(pipe);
486         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
487
488         assert_spin_locked(&dev_priv->irq_lock);
489         WARN_ON(!intel_irqs_enabled(dev_priv));
490
491         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
492                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
493                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
494                       pipe_name(pipe), enable_mask, status_mask))
495                 return;
496
497         if ((pipestat & enable_mask) == enable_mask)
498                 return;
499
500         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
501
502         /* Enable the interrupt, clear any pending status */
503         pipestat |= enable_mask | status_mask;
504         I915_WRITE(reg, pipestat);
505         POSTING_READ(reg);
506 }
507
508 static void
509 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
510                         u32 enable_mask, u32 status_mask)
511 {
512         i915_reg_t reg = PIPESTAT(pipe);
513         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
514
515         assert_spin_locked(&dev_priv->irq_lock);
516         WARN_ON(!intel_irqs_enabled(dev_priv));
517
518         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
519                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
520                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
521                       pipe_name(pipe), enable_mask, status_mask))
522                 return;
523
524         if ((pipestat & enable_mask) == 0)
525                 return;
526
527         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
528
529         pipestat &= ~enable_mask;
530         I915_WRITE(reg, pipestat);
531         POSTING_READ(reg);
532 }
533
534 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
535 {
536         u32 enable_mask = status_mask << 16;
537
538         /*
539          * On pipe A we don't support the PSR interrupt yet,
540          * on pipe B and C the same bit MBZ.
541          */
542         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
543                 return 0;
544         /*
545          * On pipe B and C we don't support the PSR interrupt yet, on pipe
546          * A the same bit is for perf counters which we don't use either.
547          */
548         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
549                 return 0;
550
551         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
552                          SPRITE0_FLIP_DONE_INT_EN_VLV |
553                          SPRITE1_FLIP_DONE_INT_EN_VLV);
554         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
555                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
556         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
557                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
558
559         return enable_mask;
560 }
561
562 void
563 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
564                      u32 status_mask)
565 {
566         u32 enable_mask;
567
568         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
569                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
570                                                            status_mask);
571         else
572                 enable_mask = status_mask << 16;
573         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
574 }
575
576 void
577 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
578                       u32 status_mask)
579 {
580         u32 enable_mask;
581
582         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
583                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
584                                                            status_mask);
585         else
586                 enable_mask = status_mask << 16;
587         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
588 }
589
590 /**
591  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
592  * @dev_priv: i915 device private
593  */
594 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
595 {
596         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
597                 return;
598
599         spin_lock_irq(&dev_priv->irq_lock);
600
601         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
602         if (INTEL_GEN(dev_priv) >= 4)
603                 i915_enable_pipestat(dev_priv, PIPE_A,
604                                      PIPE_LEGACY_BLC_EVENT_STATUS);
605
606         spin_unlock_irq(&dev_priv->irq_lock);
607 }
608
609 /*
610  * This timing diagram depicts the video signal in and
611  * around the vertical blanking period.
612  *
613  * Assumptions about the fictitious mode used in this example:
614  *  vblank_start >= 3
615  *  vsync_start = vblank_start + 1
616  *  vsync_end = vblank_start + 2
617  *  vtotal = vblank_start + 3
618  *
619  *           start of vblank:
620  *           latch double buffered registers
621  *           increment frame counter (ctg+)
622  *           generate start of vblank interrupt (gen4+)
623  *           |
624  *           |          frame start:
625  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
626  *           |          may be shifted forward 1-3 extra lines via PIPECONF
627  *           |          |
628  *           |          |  start of vsync:
629  *           |          |  generate vsync interrupt
630  *           |          |  |
631  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
632  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
633  * ----va---> <-----------------vb--------------------> <--------va-------------
634  *       |          |       <----vs----->                     |
635  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
636  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
637  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
638  *       |          |                                         |
639  *       last visible pixel                                   first visible pixel
640  *                  |                                         increment frame counter (gen3/4)
641  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
642  *
643  * x  = horizontal active
644  * _  = horizontal blanking
645  * hs = horizontal sync
646  * va = vertical active
647  * vb = vertical blanking
648  * vs = vertical sync
649  * vbs = vblank_start (number)
650  *
651  * Summary:
652  * - most events happen at the start of horizontal sync
653  * - frame start happens at the start of horizontal blank, 1-4 lines
654  *   (depending on PIPECONF settings) after the start of vblank
655  * - gen3/4 pixel and frame counter are synchronized with the start
656  *   of horizontal active on the first line of vertical active
657  */
658
659 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
660 {
661         /* Gen2 doesn't have a hardware frame counter */
662         return 0;
663 }
664
665 /* Called from drm generic code, passed a 'crtc', which
666  * we use as a pipe index
667  */
668 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
669 {
670         struct drm_i915_private *dev_priv = to_i915(dev);
671         i915_reg_t high_frame, low_frame;
672         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
673         struct intel_crtc *intel_crtc =
674                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
675         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
676
677         htotal = mode->crtc_htotal;
678         hsync_start = mode->crtc_hsync_start;
679         vbl_start = mode->crtc_vblank_start;
680         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
681                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
682
683         /* Convert to pixel count */
684         vbl_start *= htotal;
685
686         /* Start of vblank event occurs at start of hsync */
687         vbl_start -= htotal - hsync_start;
688
689         high_frame = PIPEFRAME(pipe);
690         low_frame = PIPEFRAMEPIXEL(pipe);
691
692         /*
693          * High & low register fields aren't synchronized, so make sure
694          * we get a low value that's stable across two reads of the high
695          * register.
696          */
697         do {
698                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
699                 low   = I915_READ(low_frame);
700                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
701         } while (high1 != high2);
702
703         high1 >>= PIPE_FRAME_HIGH_SHIFT;
704         pixel = low & PIPE_PIXEL_MASK;
705         low >>= PIPE_FRAME_LOW_SHIFT;
706
707         /*
708          * The frame counter increments at beginning of active.
709          * Cook up a vblank counter by also checking the pixel
710          * counter against vblank start.
711          */
712         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
713 }
714
715 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
716 {
717         struct drm_i915_private *dev_priv = to_i915(dev);
718
719         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
720 }
721
722 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
723 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
724 {
725         struct drm_device *dev = crtc->base.dev;
726         struct drm_i915_private *dev_priv = to_i915(dev);
727         const struct drm_display_mode *mode = &crtc->base.hwmode;
728         enum pipe pipe = crtc->pipe;
729         int position, vtotal;
730
731         vtotal = mode->crtc_vtotal;
732         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
733                 vtotal /= 2;
734
735         if (IS_GEN2(dev_priv))
736                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
737         else
738                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
739
740         /*
741          * On HSW, the DSL reg (0x70000) appears to return 0 if we
742          * read it just before the start of vblank.  So try it again
743          * so we don't accidentally end up spanning a vblank frame
744          * increment, causing the pipe_update_end() code to squak at us.
745          *
746          * The nature of this problem means we can't simply check the ISR
747          * bit and return the vblank start value; nor can we use the scanline
748          * debug register in the transcoder as it appears to have the same
749          * problem.  We may need to extend this to include other platforms,
750          * but so far testing only shows the problem on HSW.
751          */
752         if (HAS_DDI(dev_priv) && !position) {
753                 int i, temp;
754
755                 for (i = 0; i < 100; i++) {
756                         udelay(1);
757                         temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
758                                 DSL_LINEMASK_GEN3;
759                         if (temp != position) {
760                                 position = temp;
761                                 break;
762                         }
763                 }
764         }
765
766         /*
767          * See update_scanline_offset() for the details on the
768          * scanline_offset adjustment.
769          */
770         return (position + crtc->scanline_offset) % vtotal;
771 }
772
773 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
774                                     unsigned int flags, int *vpos, int *hpos,
775                                     ktime_t *stime, ktime_t *etime,
776                                     const struct drm_display_mode *mode)
777 {
778         struct drm_i915_private *dev_priv = to_i915(dev);
779         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
780         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
781         int position;
782         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
783         bool in_vbl = true;
784         int ret = 0;
785         unsigned long irqflags;
786
787         if (WARN_ON(!mode->crtc_clock)) {
788                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
789                                  "pipe %c\n", pipe_name(pipe));
790                 return 0;
791         }
792
793         htotal = mode->crtc_htotal;
794         hsync_start = mode->crtc_hsync_start;
795         vtotal = mode->crtc_vtotal;
796         vbl_start = mode->crtc_vblank_start;
797         vbl_end = mode->crtc_vblank_end;
798
799         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
800                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
801                 vbl_end /= 2;
802                 vtotal /= 2;
803         }
804
805         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
806
807         /*
808          * Lock uncore.lock, as we will do multiple timing critical raw
809          * register reads, potentially with preemption disabled, so the
810          * following code must not block on uncore.lock.
811          */
812         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
813
814         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
815
816         /* Get optional system timestamp before query. */
817         if (stime)
818                 *stime = ktime_get();
819
820         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
821                 /* No obvious pixelcount register. Only query vertical
822                  * scanout position from Display scan line register.
823                  */
824                 position = __intel_get_crtc_scanline(intel_crtc);
825         } else {
826                 /* Have access to pixelcount since start of frame.
827                  * We can split this into vertical and horizontal
828                  * scanout position.
829                  */
830                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
831
832                 /* convert to pixel counts */
833                 vbl_start *= htotal;
834                 vbl_end *= htotal;
835                 vtotal *= htotal;
836
837                 /*
838                  * In interlaced modes, the pixel counter counts all pixels,
839                  * so one field will have htotal more pixels. In order to avoid
840                  * the reported position from jumping backwards when the pixel
841                  * counter is beyond the length of the shorter field, just
842                  * clamp the position the length of the shorter field. This
843                  * matches how the scanline counter based position works since
844                  * the scanline counter doesn't count the two half lines.
845                  */
846                 if (position >= vtotal)
847                         position = vtotal - 1;
848
849                 /*
850                  * Start of vblank interrupt is triggered at start of hsync,
851                  * just prior to the first active line of vblank. However we
852                  * consider lines to start at the leading edge of horizontal
853                  * active. So, should we get here before we've crossed into
854                  * the horizontal active of the first line in vblank, we would
855                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
856                  * always add htotal-hsync_start to the current pixel position.
857                  */
858                 position = (position + htotal - hsync_start) % vtotal;
859         }
860
861         /* Get optional system timestamp after query. */
862         if (etime)
863                 *etime = ktime_get();
864
865         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
866
867         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
868
869         in_vbl = position >= vbl_start && position < vbl_end;
870
871         /*
872          * While in vblank, position will be negative
873          * counting up towards 0 at vbl_end. And outside
874          * vblank, position will be positive counting
875          * up since vbl_end.
876          */
877         if (position >= vbl_start)
878                 position -= vbl_end;
879         else
880                 position += vtotal - vbl_end;
881
882         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
883                 *vpos = position;
884                 *hpos = 0;
885         } else {
886                 *vpos = position / htotal;
887                 *hpos = position - (*vpos * htotal);
888         }
889
890         /* In vblank? */
891         if (in_vbl)
892                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
893
894         return ret;
895 }
896
897 int intel_get_crtc_scanline(struct intel_crtc *crtc)
898 {
899         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
900         unsigned long irqflags;
901         int position;
902
903         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
904         position = __intel_get_crtc_scanline(crtc);
905         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
906
907         return position;
908 }
909
910 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
911                               int *max_error,
912                               struct timeval *vblank_time,
913                               unsigned flags)
914 {
915         struct drm_crtc *crtc;
916
917         if (pipe >= INTEL_INFO(dev)->num_pipes) {
918                 DRM_ERROR("Invalid crtc %u\n", pipe);
919                 return -EINVAL;
920         }
921
922         /* Get drm_crtc to timestamp: */
923         crtc = intel_get_crtc_for_pipe(dev, pipe);
924         if (crtc == NULL) {
925                 DRM_ERROR("Invalid crtc %u\n", pipe);
926                 return -EINVAL;
927         }
928
929         if (!crtc->hwmode.crtc_clock) {
930                 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
931                 return -EBUSY;
932         }
933
934         /* Helper routine in DRM core does all the work: */
935         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
936                                                      vblank_time, flags,
937                                                      &crtc->hwmode);
938 }
939
940 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
941 {
942         u32 busy_up, busy_down, max_avg, min_avg;
943         u8 new_delay;
944
945         spin_lock(&mchdev_lock);
946
947         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
948
949         new_delay = dev_priv->ips.cur_delay;
950
951         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
952         busy_up = I915_READ(RCPREVBSYTUPAVG);
953         busy_down = I915_READ(RCPREVBSYTDNAVG);
954         max_avg = I915_READ(RCBMAXAVG);
955         min_avg = I915_READ(RCBMINAVG);
956
957         /* Handle RCS change request from hw */
958         if (busy_up > max_avg) {
959                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
960                         new_delay = dev_priv->ips.cur_delay - 1;
961                 if (new_delay < dev_priv->ips.max_delay)
962                         new_delay = dev_priv->ips.max_delay;
963         } else if (busy_down < min_avg) {
964                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
965                         new_delay = dev_priv->ips.cur_delay + 1;
966                 if (new_delay > dev_priv->ips.min_delay)
967                         new_delay = dev_priv->ips.min_delay;
968         }
969
970         if (ironlake_set_drps(dev_priv, new_delay))
971                 dev_priv->ips.cur_delay = new_delay;
972
973         spin_unlock(&mchdev_lock);
974
975         return;
976 }
977
978 static void notify_ring(struct intel_engine_cs *engine)
979 {
980         smp_store_mb(engine->irq_posted, true);
981         if (intel_engine_wakeup(engine)) {
982                 trace_i915_gem_request_notify(engine);
983                 engine->user_interrupts++;
984         }
985 }
986
987 static void vlv_c0_read(struct drm_i915_private *dev_priv,
988                         struct intel_rps_ei *ei)
989 {
990         ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
991         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
992         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
993 }
994
995 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
996                          const struct intel_rps_ei *old,
997                          const struct intel_rps_ei *now,
998                          int threshold)
999 {
1000         u64 time, c0;
1001         unsigned int mul = 100;
1002
1003         if (old->cz_clock == 0)
1004                 return false;
1005
1006         if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1007                 mul <<= 8;
1008
1009         time = now->cz_clock - old->cz_clock;
1010         time *= threshold * dev_priv->czclk_freq;
1011
1012         /* Workload can be split between render + media, e.g. SwapBuffers
1013          * being blitted in X after being rendered in mesa. To account for
1014          * this we need to combine both engines into our activity counter.
1015          */
1016         c0 = now->render_c0 - old->render_c0;
1017         c0 += now->media_c0 - old->media_c0;
1018         c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1019
1020         return c0 >= time;
1021 }
1022
1023 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1024 {
1025         vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1026         dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1027 }
1028
1029 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1030 {
1031         struct intel_rps_ei now;
1032         u32 events = 0;
1033
1034         if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1035                 return 0;
1036
1037         vlv_c0_read(dev_priv, &now);
1038         if (now.cz_clock == 0)
1039                 return 0;
1040
1041         if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1042                 if (!vlv_c0_above(dev_priv,
1043                                   &dev_priv->rps.down_ei, &now,
1044                                   dev_priv->rps.down_threshold))
1045                         events |= GEN6_PM_RP_DOWN_THRESHOLD;
1046                 dev_priv->rps.down_ei = now;
1047         }
1048
1049         if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1050                 if (vlv_c0_above(dev_priv,
1051                                  &dev_priv->rps.up_ei, &now,
1052                                  dev_priv->rps.up_threshold))
1053                         events |= GEN6_PM_RP_UP_THRESHOLD;
1054                 dev_priv->rps.up_ei = now;
1055         }
1056
1057         return events;
1058 }
1059
1060 static bool any_waiters(struct drm_i915_private *dev_priv)
1061 {
1062         struct intel_engine_cs *engine;
1063
1064         for_each_engine(engine, dev_priv)
1065                 if (intel_engine_has_waiter(engine))
1066                         return true;
1067
1068         return false;
1069 }
1070
1071 static void gen6_pm_rps_work(struct work_struct *work)
1072 {
1073         struct drm_i915_private *dev_priv =
1074                 container_of(work, struct drm_i915_private, rps.work);
1075         bool client_boost;
1076         int new_delay, adj, min, max;
1077         u32 pm_iir;
1078
1079         spin_lock_irq(&dev_priv->irq_lock);
1080         /* Speed up work cancelation during disabling rps interrupts. */
1081         if (!dev_priv->rps.interrupts_enabled) {
1082                 spin_unlock_irq(&dev_priv->irq_lock);
1083                 return;
1084         }
1085
1086         pm_iir = dev_priv->rps.pm_iir;
1087         dev_priv->rps.pm_iir = 0;
1088         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1089         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1090         client_boost = dev_priv->rps.client_boost;
1091         dev_priv->rps.client_boost = false;
1092         spin_unlock_irq(&dev_priv->irq_lock);
1093
1094         /* Make sure we didn't queue anything we're not going to process. */
1095         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1096
1097         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1098                 return;
1099
1100         mutex_lock(&dev_priv->rps.hw_lock);
1101
1102         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1103
1104         adj = dev_priv->rps.last_adj;
1105         new_delay = dev_priv->rps.cur_freq;
1106         min = dev_priv->rps.min_freq_softlimit;
1107         max = dev_priv->rps.max_freq_softlimit;
1108
1109         if (client_boost) {
1110                 new_delay = dev_priv->rps.max_freq_softlimit;
1111                 adj = 0;
1112         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1113                 if (adj > 0)
1114                         adj *= 2;
1115                 else /* CHV needs even encode values */
1116                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1117                 /*
1118                  * For better performance, jump directly
1119                  * to RPe if we're below it.
1120                  */
1121                 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1122                         new_delay = dev_priv->rps.efficient_freq;
1123                         adj = 0;
1124                 }
1125         } else if (any_waiters(dev_priv)) {
1126                 adj = 0;
1127         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1128                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1129                         new_delay = dev_priv->rps.efficient_freq;
1130                 else
1131                         new_delay = dev_priv->rps.min_freq_softlimit;
1132                 adj = 0;
1133         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1134                 if (adj < 0)
1135                         adj *= 2;
1136                 else /* CHV needs even encode values */
1137                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1138         } else { /* unknown event */
1139                 adj = 0;
1140         }
1141
1142         dev_priv->rps.last_adj = adj;
1143
1144         /* sysfs frequency interfaces may have snuck in while servicing the
1145          * interrupt
1146          */
1147         new_delay += adj;
1148         new_delay = clamp_t(int, new_delay, min, max);
1149
1150         intel_set_rps(dev_priv, new_delay);
1151
1152         mutex_unlock(&dev_priv->rps.hw_lock);
1153 }
1154
1155
1156 /**
1157  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1158  * occurred.
1159  * @work: workqueue struct
1160  *
1161  * Doesn't actually do anything except notify userspace. As a consequence of
1162  * this event, userspace should try to remap the bad rows since statistically
1163  * it is likely the same row is more likely to go bad again.
1164  */
1165 static void ivybridge_parity_work(struct work_struct *work)
1166 {
1167         struct drm_i915_private *dev_priv =
1168                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1169         u32 error_status, row, bank, subbank;
1170         char *parity_event[6];
1171         uint32_t misccpctl;
1172         uint8_t slice = 0;
1173
1174         /* We must turn off DOP level clock gating to access the L3 registers.
1175          * In order to prevent a get/put style interface, acquire struct mutex
1176          * any time we access those registers.
1177          */
1178         mutex_lock(&dev_priv->dev->struct_mutex);
1179
1180         /* If we've screwed up tracking, just let the interrupt fire again */
1181         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1182                 goto out;
1183
1184         misccpctl = I915_READ(GEN7_MISCCPCTL);
1185         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1186         POSTING_READ(GEN7_MISCCPCTL);
1187
1188         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1189                 i915_reg_t reg;
1190
1191                 slice--;
1192                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1193                         break;
1194
1195                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1196
1197                 reg = GEN7_L3CDERRST1(slice);
1198
1199                 error_status = I915_READ(reg);
1200                 row = GEN7_PARITY_ERROR_ROW(error_status);
1201                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1202                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1203
1204                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1205                 POSTING_READ(reg);
1206
1207                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1208                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1209                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1210                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1211                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1212                 parity_event[5] = NULL;
1213
1214                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1215                                    KOBJ_CHANGE, parity_event);
1216
1217                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1218                           slice, row, bank, subbank);
1219
1220                 kfree(parity_event[4]);
1221                 kfree(parity_event[3]);
1222                 kfree(parity_event[2]);
1223                 kfree(parity_event[1]);
1224         }
1225
1226         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1227
1228 out:
1229         WARN_ON(dev_priv->l3_parity.which_slice);
1230         spin_lock_irq(&dev_priv->irq_lock);
1231         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1232         spin_unlock_irq(&dev_priv->irq_lock);
1233
1234         mutex_unlock(&dev_priv->dev->struct_mutex);
1235 }
1236
1237 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1238                                                u32 iir)
1239 {
1240         if (!HAS_L3_DPF(dev_priv))
1241                 return;
1242
1243         spin_lock(&dev_priv->irq_lock);
1244         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1245         spin_unlock(&dev_priv->irq_lock);
1246
1247         iir &= GT_PARITY_ERROR(dev_priv);
1248         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1249                 dev_priv->l3_parity.which_slice |= 1 << 1;
1250
1251         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1252                 dev_priv->l3_parity.which_slice |= 1 << 0;
1253
1254         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1255 }
1256
1257 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1258                                u32 gt_iir)
1259 {
1260         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1261                 notify_ring(&dev_priv->engine[RCS]);
1262         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1263                 notify_ring(&dev_priv->engine[VCS]);
1264 }
1265
1266 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1267                                u32 gt_iir)
1268 {
1269         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1270                 notify_ring(&dev_priv->engine[RCS]);
1271         if (gt_iir & GT_BSD_USER_INTERRUPT)
1272                 notify_ring(&dev_priv->engine[VCS]);
1273         if (gt_iir & GT_BLT_USER_INTERRUPT)
1274                 notify_ring(&dev_priv->engine[BCS]);
1275
1276         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1277                       GT_BSD_CS_ERROR_INTERRUPT |
1278                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1279                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1280
1281         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1282                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1283 }
1284
1285 static __always_inline void
1286 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1287 {
1288         if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1289                 notify_ring(engine);
1290         if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1291                 tasklet_schedule(&engine->irq_tasklet);
1292 }
1293
1294 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1295                                    u32 master_ctl,
1296                                    u32 gt_iir[4])
1297 {
1298         irqreturn_t ret = IRQ_NONE;
1299
1300         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1301                 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1302                 if (gt_iir[0]) {
1303                         I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1304                         ret = IRQ_HANDLED;
1305                 } else
1306                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1307         }
1308
1309         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1310                 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1311                 if (gt_iir[1]) {
1312                         I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1313                         ret = IRQ_HANDLED;
1314                 } else
1315                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1316         }
1317
1318         if (master_ctl & GEN8_GT_VECS_IRQ) {
1319                 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1320                 if (gt_iir[3]) {
1321                         I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1322                         ret = IRQ_HANDLED;
1323                 } else
1324                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1325         }
1326
1327         if (master_ctl & GEN8_GT_PM_IRQ) {
1328                 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1329                 if (gt_iir[2] & dev_priv->pm_rps_events) {
1330                         I915_WRITE_FW(GEN8_GT_IIR(2),
1331                                       gt_iir[2] & dev_priv->pm_rps_events);
1332                         ret = IRQ_HANDLED;
1333                 } else
1334                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1335         }
1336
1337         return ret;
1338 }
1339
1340 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1341                                 u32 gt_iir[4])
1342 {
1343         if (gt_iir[0]) {
1344                 gen8_cs_irq_handler(&dev_priv->engine[RCS],
1345                                     gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1346                 gen8_cs_irq_handler(&dev_priv->engine[BCS],
1347                                     gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1348         }
1349
1350         if (gt_iir[1]) {
1351                 gen8_cs_irq_handler(&dev_priv->engine[VCS],
1352                                     gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1353                 gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1354                                     gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1355         }
1356
1357         if (gt_iir[3])
1358                 gen8_cs_irq_handler(&dev_priv->engine[VECS],
1359                                     gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1360
1361         if (gt_iir[2] & dev_priv->pm_rps_events)
1362                 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1363 }
1364
1365 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1366 {
1367         switch (port) {
1368         case PORT_A:
1369                 return val & PORTA_HOTPLUG_LONG_DETECT;
1370         case PORT_B:
1371                 return val & PORTB_HOTPLUG_LONG_DETECT;
1372         case PORT_C:
1373                 return val & PORTC_HOTPLUG_LONG_DETECT;
1374         default:
1375                 return false;
1376         }
1377 }
1378
1379 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1380 {
1381         switch (port) {
1382         case PORT_E:
1383                 return val & PORTE_HOTPLUG_LONG_DETECT;
1384         default:
1385                 return false;
1386         }
1387 }
1388
1389 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1390 {
1391         switch (port) {
1392         case PORT_A:
1393                 return val & PORTA_HOTPLUG_LONG_DETECT;
1394         case PORT_B:
1395                 return val & PORTB_HOTPLUG_LONG_DETECT;
1396         case PORT_C:
1397                 return val & PORTC_HOTPLUG_LONG_DETECT;
1398         case PORT_D:
1399                 return val & PORTD_HOTPLUG_LONG_DETECT;
1400         default:
1401                 return false;
1402         }
1403 }
1404
1405 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1406 {
1407         switch (port) {
1408         case PORT_A:
1409                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1410         default:
1411                 return false;
1412         }
1413 }
1414
1415 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417         switch (port) {
1418         case PORT_B:
1419                 return val & PORTB_HOTPLUG_LONG_DETECT;
1420         case PORT_C:
1421                 return val & PORTC_HOTPLUG_LONG_DETECT;
1422         case PORT_D:
1423                 return val & PORTD_HOTPLUG_LONG_DETECT;
1424         default:
1425                 return false;
1426         }
1427 }
1428
1429 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1430 {
1431         switch (port) {
1432         case PORT_B:
1433                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1434         case PORT_C:
1435                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1436         case PORT_D:
1437                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1438         default:
1439                 return false;
1440         }
1441 }
1442
1443 /*
1444  * Get a bit mask of pins that have triggered, and which ones may be long.
1445  * This can be called multiple times with the same masks to accumulate
1446  * hotplug detection results from several registers.
1447  *
1448  * Note that the caller is expected to zero out the masks initially.
1449  */
1450 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1451                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1452                              const u32 hpd[HPD_NUM_PINS],
1453                              bool long_pulse_detect(enum port port, u32 val))
1454 {
1455         enum port port;
1456         int i;
1457
1458         for_each_hpd_pin(i) {
1459                 if ((hpd[i] & hotplug_trigger) == 0)
1460                         continue;
1461
1462                 *pin_mask |= BIT(i);
1463
1464                 if (!intel_hpd_pin_to_port(i, &port))
1465                         continue;
1466
1467                 if (long_pulse_detect(port, dig_hotplug_reg))
1468                         *long_mask |= BIT(i);
1469         }
1470
1471         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1472                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1473
1474 }
1475
1476 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1477 {
1478         wake_up_all(&dev_priv->gmbus_wait_queue);
1479 }
1480
1481 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1482 {
1483         wake_up_all(&dev_priv->gmbus_wait_queue);
1484 }
1485
1486 #if defined(CONFIG_DEBUG_FS)
1487 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1488                                          enum pipe pipe,
1489                                          uint32_t crc0, uint32_t crc1,
1490                                          uint32_t crc2, uint32_t crc3,
1491                                          uint32_t crc4)
1492 {
1493         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1494         struct intel_pipe_crc_entry *entry;
1495         int head, tail;
1496
1497         spin_lock(&pipe_crc->lock);
1498
1499         if (!pipe_crc->entries) {
1500                 spin_unlock(&pipe_crc->lock);
1501                 DRM_DEBUG_KMS("spurious interrupt\n");
1502                 return;
1503         }
1504
1505         head = pipe_crc->head;
1506         tail = pipe_crc->tail;
1507
1508         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1509                 spin_unlock(&pipe_crc->lock);
1510                 DRM_ERROR("CRC buffer overflowing\n");
1511                 return;
1512         }
1513
1514         entry = &pipe_crc->entries[head];
1515
1516         entry->frame = dev_priv->dev->driver->get_vblank_counter(dev_priv->dev,
1517                                                                  pipe);
1518         entry->crc[0] = crc0;
1519         entry->crc[1] = crc1;
1520         entry->crc[2] = crc2;
1521         entry->crc[3] = crc3;
1522         entry->crc[4] = crc4;
1523
1524         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1525         pipe_crc->head = head;
1526
1527         spin_unlock(&pipe_crc->lock);
1528
1529         wake_up_interruptible(&pipe_crc->wq);
1530 }
1531 #else
1532 static inline void
1533 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1534                              enum pipe pipe,
1535                              uint32_t crc0, uint32_t crc1,
1536                              uint32_t crc2, uint32_t crc3,
1537                              uint32_t crc4) {}
1538 #endif
1539
1540
1541 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1542                                      enum pipe pipe)
1543 {
1544         display_pipe_crc_irq_handler(dev_priv, pipe,
1545                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1546                                      0, 0, 0, 0);
1547 }
1548
1549 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1550                                      enum pipe pipe)
1551 {
1552         display_pipe_crc_irq_handler(dev_priv, pipe,
1553                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1554                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1555                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1556                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1557                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1558 }
1559
1560 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1561                                       enum pipe pipe)
1562 {
1563         uint32_t res1, res2;
1564
1565         if (INTEL_GEN(dev_priv) >= 3)
1566                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1567         else
1568                 res1 = 0;
1569
1570         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1571                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1572         else
1573                 res2 = 0;
1574
1575         display_pipe_crc_irq_handler(dev_priv, pipe,
1576                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1577                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1578                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1579                                      res1, res2);
1580 }
1581
1582 /* The RPS events need forcewake, so we add them to a work queue and mask their
1583  * IMR bits until the work is done. Other interrupts can be processed without
1584  * the work queue. */
1585 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1586 {
1587         if (pm_iir & dev_priv->pm_rps_events) {
1588                 spin_lock(&dev_priv->irq_lock);
1589                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1590                 if (dev_priv->rps.interrupts_enabled) {
1591                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1592                         schedule_work(&dev_priv->rps.work);
1593                 }
1594                 spin_unlock(&dev_priv->irq_lock);
1595         }
1596
1597         if (INTEL_INFO(dev_priv)->gen >= 8)
1598                 return;
1599
1600         if (HAS_VEBOX(dev_priv)) {
1601                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1602                         notify_ring(&dev_priv->engine[VECS]);
1603
1604                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1605                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1606         }
1607 }
1608
1609 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1610                                      enum pipe pipe)
1611 {
1612         bool ret;
1613
1614         ret = drm_handle_vblank(dev_priv->dev, pipe);
1615         if (ret)
1616                 intel_finish_page_flip_mmio(dev_priv, pipe);
1617
1618         return ret;
1619 }
1620
1621 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1622                                         u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1623 {
1624         int pipe;
1625
1626         spin_lock(&dev_priv->irq_lock);
1627
1628         if (!dev_priv->display_irqs_enabled) {
1629                 spin_unlock(&dev_priv->irq_lock);
1630                 return;
1631         }
1632
1633         for_each_pipe(dev_priv, pipe) {
1634                 i915_reg_t reg;
1635                 u32 mask, iir_bit = 0;
1636
1637                 /*
1638                  * PIPESTAT bits get signalled even when the interrupt is
1639                  * disabled with the mask bits, and some of the status bits do
1640                  * not generate interrupts at all (like the underrun bit). Hence
1641                  * we need to be careful that we only handle what we want to
1642                  * handle.
1643                  */
1644
1645                 /* fifo underruns are filterered in the underrun handler. */
1646                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1647
1648                 switch (pipe) {
1649                 case PIPE_A:
1650                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1651                         break;
1652                 case PIPE_B:
1653                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1654                         break;
1655                 case PIPE_C:
1656                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1657                         break;
1658                 }
1659                 if (iir & iir_bit)
1660                         mask |= dev_priv->pipestat_irq_mask[pipe];
1661
1662                 if (!mask)
1663                         continue;
1664
1665                 reg = PIPESTAT(pipe);
1666                 mask |= PIPESTAT_INT_ENABLE_MASK;
1667                 pipe_stats[pipe] = I915_READ(reg) & mask;
1668
1669                 /*
1670                  * Clear the PIPE*STAT regs before the IIR
1671                  */
1672                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1673                                         PIPESTAT_INT_STATUS_MASK))
1674                         I915_WRITE(reg, pipe_stats[pipe]);
1675         }
1676         spin_unlock(&dev_priv->irq_lock);
1677 }
1678
1679 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1680                                             u32 pipe_stats[I915_MAX_PIPES])
1681 {
1682         enum pipe pipe;
1683
1684         for_each_pipe(dev_priv, pipe) {
1685                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1686                     intel_pipe_handle_vblank(dev_priv, pipe))
1687                         intel_check_page_flip(dev_priv, pipe);
1688
1689                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1690                         intel_finish_page_flip_cs(dev_priv, pipe);
1691
1692                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1693                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1694
1695                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1696                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1697         }
1698
1699         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1700                 gmbus_irq_handler(dev_priv);
1701 }
1702
1703 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1704 {
1705         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1706
1707         if (hotplug_status)
1708                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1709
1710         return hotplug_status;
1711 }
1712
1713 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1714                                  u32 hotplug_status)
1715 {
1716         u32 pin_mask = 0, long_mask = 0;
1717
1718         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1719             IS_CHERRYVIEW(dev_priv)) {
1720                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1721
1722                 if (hotplug_trigger) {
1723                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1724                                            hotplug_trigger, hpd_status_g4x,
1725                                            i9xx_port_hotplug_long_detect);
1726
1727                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1728                 }
1729
1730                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1731                         dp_aux_irq_handler(dev_priv);
1732         } else {
1733                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1734
1735                 if (hotplug_trigger) {
1736                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1737                                            hotplug_trigger, hpd_status_i915,
1738                                            i9xx_port_hotplug_long_detect);
1739                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1740                 }
1741         }
1742 }
1743
1744 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1745 {
1746         struct drm_device *dev = arg;
1747         struct drm_i915_private *dev_priv = to_i915(dev);
1748         irqreturn_t ret = IRQ_NONE;
1749
1750         if (!intel_irqs_enabled(dev_priv))
1751                 return IRQ_NONE;
1752
1753         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1754         disable_rpm_wakeref_asserts(dev_priv);
1755
1756         do {
1757                 u32 iir, gt_iir, pm_iir;
1758                 u32 pipe_stats[I915_MAX_PIPES] = {};
1759                 u32 hotplug_status = 0;
1760                 u32 ier = 0;
1761
1762                 gt_iir = I915_READ(GTIIR);
1763                 pm_iir = I915_READ(GEN6_PMIIR);
1764                 iir = I915_READ(VLV_IIR);
1765
1766                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1767                         break;
1768
1769                 ret = IRQ_HANDLED;
1770
1771                 /*
1772                  * Theory on interrupt generation, based on empirical evidence:
1773                  *
1774                  * x = ((VLV_IIR & VLV_IER) ||
1775                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1776                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1777                  *
1778                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1779                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1780                  * guarantee the CPU interrupt will be raised again even if we
1781                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1782                  * bits this time around.
1783                  */
1784                 I915_WRITE(VLV_MASTER_IER, 0);
1785                 ier = I915_READ(VLV_IER);
1786                 I915_WRITE(VLV_IER, 0);
1787
1788                 if (gt_iir)
1789                         I915_WRITE(GTIIR, gt_iir);
1790                 if (pm_iir)
1791                         I915_WRITE(GEN6_PMIIR, pm_iir);
1792
1793                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1794                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1795
1796                 /* Call regardless, as some status bits might not be
1797                  * signalled in iir */
1798                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1799
1800                 /*
1801                  * VLV_IIR is single buffered, and reflects the level
1802                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1803                  */
1804                 if (iir)
1805                         I915_WRITE(VLV_IIR, iir);
1806
1807                 I915_WRITE(VLV_IER, ier);
1808                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1809                 POSTING_READ(VLV_MASTER_IER);
1810
1811                 if (gt_iir)
1812                         snb_gt_irq_handler(dev_priv, gt_iir);
1813                 if (pm_iir)
1814                         gen6_rps_irq_handler(dev_priv, pm_iir);
1815
1816                 if (hotplug_status)
1817                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1818
1819                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1820         } while (0);
1821
1822         enable_rpm_wakeref_asserts(dev_priv);
1823
1824         return ret;
1825 }
1826
1827 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1828 {
1829         struct drm_device *dev = arg;
1830         struct drm_i915_private *dev_priv = to_i915(dev);
1831         irqreturn_t ret = IRQ_NONE;
1832
1833         if (!intel_irqs_enabled(dev_priv))
1834                 return IRQ_NONE;
1835
1836         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1837         disable_rpm_wakeref_asserts(dev_priv);
1838
1839         do {
1840                 u32 master_ctl, iir;
1841                 u32 gt_iir[4] = {};
1842                 u32 pipe_stats[I915_MAX_PIPES] = {};
1843                 u32 hotplug_status = 0;
1844                 u32 ier = 0;
1845
1846                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1847                 iir = I915_READ(VLV_IIR);
1848
1849                 if (master_ctl == 0 && iir == 0)
1850                         break;
1851
1852                 ret = IRQ_HANDLED;
1853
1854                 /*
1855                  * Theory on interrupt generation, based on empirical evidence:
1856                  *
1857                  * x = ((VLV_IIR & VLV_IER) ||
1858                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1859                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1860                  *
1861                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1862                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1863                  * guarantee the CPU interrupt will be raised again even if we
1864                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1865                  * bits this time around.
1866                  */
1867                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1868                 ier = I915_READ(VLV_IER);
1869                 I915_WRITE(VLV_IER, 0);
1870
1871                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1872
1873                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1874                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1875
1876                 /* Call regardless, as some status bits might not be
1877                  * signalled in iir */
1878                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1879
1880                 /*
1881                  * VLV_IIR is single buffered, and reflects the level
1882                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1883                  */
1884                 if (iir)
1885                         I915_WRITE(VLV_IIR, iir);
1886
1887                 I915_WRITE(VLV_IER, ier);
1888                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1889                 POSTING_READ(GEN8_MASTER_IRQ);
1890
1891                 gen8_gt_irq_handler(dev_priv, gt_iir);
1892
1893                 if (hotplug_status)
1894                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1895
1896                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1897         } while (0);
1898
1899         enable_rpm_wakeref_asserts(dev_priv);
1900
1901         return ret;
1902 }
1903
1904 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1905                                 u32 hotplug_trigger,
1906                                 const u32 hpd[HPD_NUM_PINS])
1907 {
1908         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1909
1910         /*
1911          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1912          * unless we touch the hotplug register, even if hotplug_trigger is
1913          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1914          * errors.
1915          */
1916         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1917         if (!hotplug_trigger) {
1918                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1919                         PORTD_HOTPLUG_STATUS_MASK |
1920                         PORTC_HOTPLUG_STATUS_MASK |
1921                         PORTB_HOTPLUG_STATUS_MASK;
1922                 dig_hotplug_reg &= ~mask;
1923         }
1924
1925         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1926         if (!hotplug_trigger)
1927                 return;
1928
1929         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1930                            dig_hotplug_reg, hpd,
1931                            pch_port_hotplug_long_detect);
1932
1933         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1934 }
1935
1936 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1937 {
1938         int pipe;
1939         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1940
1941         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
1942
1943         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1944                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1945                                SDE_AUDIO_POWER_SHIFT);
1946                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1947                                  port_name(port));
1948         }
1949
1950         if (pch_iir & SDE_AUX_MASK)
1951                 dp_aux_irq_handler(dev_priv);
1952
1953         if (pch_iir & SDE_GMBUS)
1954                 gmbus_irq_handler(dev_priv);
1955
1956         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1957                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1958
1959         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1960                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1961
1962         if (pch_iir & SDE_POISON)
1963                 DRM_ERROR("PCH poison interrupt\n");
1964
1965         if (pch_iir & SDE_FDI_MASK)
1966                 for_each_pipe(dev_priv, pipe)
1967                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1968                                          pipe_name(pipe),
1969                                          I915_READ(FDI_RX_IIR(pipe)));
1970
1971         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1972                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1973
1974         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1975                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1976
1977         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1978                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1979
1980         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1981                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1982 }
1983
1984 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1985 {
1986         u32 err_int = I915_READ(GEN7_ERR_INT);
1987         enum pipe pipe;
1988
1989         if (err_int & ERR_INT_POISON)
1990                 DRM_ERROR("Poison interrupt\n");
1991
1992         for_each_pipe(dev_priv, pipe) {
1993                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1994                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1995
1996                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1997                         if (IS_IVYBRIDGE(dev_priv))
1998                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
1999                         else
2000                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2001                 }
2002         }
2003
2004         I915_WRITE(GEN7_ERR_INT, err_int);
2005 }
2006
2007 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2008 {
2009         u32 serr_int = I915_READ(SERR_INT);
2010
2011         if (serr_int & SERR_INT_POISON)
2012                 DRM_ERROR("PCH poison interrupt\n");
2013
2014         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2015                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2016
2017         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2018                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2019
2020         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2021                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2022
2023         I915_WRITE(SERR_INT, serr_int);
2024 }
2025
2026 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2027 {
2028         int pipe;
2029         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2030
2031         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2032
2033         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2034                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2035                                SDE_AUDIO_POWER_SHIFT_CPT);
2036                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2037                                  port_name(port));
2038         }
2039
2040         if (pch_iir & SDE_AUX_MASK_CPT)
2041                 dp_aux_irq_handler(dev_priv);
2042
2043         if (pch_iir & SDE_GMBUS_CPT)
2044                 gmbus_irq_handler(dev_priv);
2045
2046         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2047                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2048
2049         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2050                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2051
2052         if (pch_iir & SDE_FDI_MASK_CPT)
2053                 for_each_pipe(dev_priv, pipe)
2054                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2055                                          pipe_name(pipe),
2056                                          I915_READ(FDI_RX_IIR(pipe)));
2057
2058         if (pch_iir & SDE_ERROR_CPT)
2059                 cpt_serr_int_handler(dev_priv);
2060 }
2061
2062 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2063 {
2064         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2065                 ~SDE_PORTE_HOTPLUG_SPT;
2066         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2067         u32 pin_mask = 0, long_mask = 0;
2068
2069         if (hotplug_trigger) {
2070                 u32 dig_hotplug_reg;
2071
2072                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2073                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2074
2075                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2076                                    dig_hotplug_reg, hpd_spt,
2077                                    spt_port_hotplug_long_detect);
2078         }
2079
2080         if (hotplug2_trigger) {
2081                 u32 dig_hotplug_reg;
2082
2083                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2084                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2085
2086                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2087                                    dig_hotplug_reg, hpd_spt,
2088                                    spt_port_hotplug2_long_detect);
2089         }
2090
2091         if (pin_mask)
2092                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2093
2094         if (pch_iir & SDE_GMBUS_CPT)
2095                 gmbus_irq_handler(dev_priv);
2096 }
2097
2098 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2099                                 u32 hotplug_trigger,
2100                                 const u32 hpd[HPD_NUM_PINS])
2101 {
2102         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2103
2104         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2105         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2106
2107         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2108                            dig_hotplug_reg, hpd,
2109                            ilk_port_hotplug_long_detect);
2110
2111         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2112 }
2113
2114 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2115                                     u32 de_iir)
2116 {
2117         enum pipe pipe;
2118         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2119
2120         if (hotplug_trigger)
2121                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2122
2123         if (de_iir & DE_AUX_CHANNEL_A)
2124                 dp_aux_irq_handler(dev_priv);
2125
2126         if (de_iir & DE_GSE)
2127                 intel_opregion_asle_intr(dev_priv);
2128
2129         if (de_iir & DE_POISON)
2130                 DRM_ERROR("Poison interrupt\n");
2131
2132         for_each_pipe(dev_priv, pipe) {
2133                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2134                     intel_pipe_handle_vblank(dev_priv, pipe))
2135                         intel_check_page_flip(dev_priv, pipe);
2136
2137                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2138                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2139
2140                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2141                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2142
2143                 /* plane/pipes map 1:1 on ilk+ */
2144                 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2145                         intel_finish_page_flip_cs(dev_priv, pipe);
2146         }
2147
2148         /* check event from PCH */
2149         if (de_iir & DE_PCH_EVENT) {
2150                 u32 pch_iir = I915_READ(SDEIIR);
2151
2152                 if (HAS_PCH_CPT(dev_priv))
2153                         cpt_irq_handler(dev_priv, pch_iir);
2154                 else
2155                         ibx_irq_handler(dev_priv, pch_iir);
2156
2157                 /* should clear PCH hotplug event before clear CPU irq */
2158                 I915_WRITE(SDEIIR, pch_iir);
2159         }
2160
2161         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2162                 ironlake_rps_change_irq_handler(dev_priv);
2163 }
2164
2165 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2166                                     u32 de_iir)
2167 {
2168         enum pipe pipe;
2169         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2170
2171         if (hotplug_trigger)
2172                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2173
2174         if (de_iir & DE_ERR_INT_IVB)
2175                 ivb_err_int_handler(dev_priv);
2176
2177         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2178                 dp_aux_irq_handler(dev_priv);
2179
2180         if (de_iir & DE_GSE_IVB)
2181                 intel_opregion_asle_intr(dev_priv);
2182
2183         for_each_pipe(dev_priv, pipe) {
2184                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2185                     intel_pipe_handle_vblank(dev_priv, pipe))
2186                         intel_check_page_flip(dev_priv, pipe);
2187
2188                 /* plane/pipes map 1:1 on ilk+ */
2189                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2190                         intel_finish_page_flip_cs(dev_priv, pipe);
2191         }
2192
2193         /* check event from PCH */
2194         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2195                 u32 pch_iir = I915_READ(SDEIIR);
2196
2197                 cpt_irq_handler(dev_priv, pch_iir);
2198
2199                 /* clear PCH hotplug event before clear CPU irq */
2200                 I915_WRITE(SDEIIR, pch_iir);
2201         }
2202 }
2203
2204 /*
2205  * To handle irqs with the minimum potential races with fresh interrupts, we:
2206  * 1 - Disable Master Interrupt Control.
2207  * 2 - Find the source(s) of the interrupt.
2208  * 3 - Clear the Interrupt Identity bits (IIR).
2209  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2210  * 5 - Re-enable Master Interrupt Control.
2211  */
2212 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2213 {
2214         struct drm_device *dev = arg;
2215         struct drm_i915_private *dev_priv = to_i915(dev);
2216         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2217         irqreturn_t ret = IRQ_NONE;
2218
2219         if (!intel_irqs_enabled(dev_priv))
2220                 return IRQ_NONE;
2221
2222         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2223         disable_rpm_wakeref_asserts(dev_priv);
2224
2225         /* disable master interrupt before clearing iir  */
2226         de_ier = I915_READ(DEIER);
2227         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2228         POSTING_READ(DEIER);
2229
2230         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2231          * interrupts will will be stored on its back queue, and then we'll be
2232          * able to process them after we restore SDEIER (as soon as we restore
2233          * it, we'll get an interrupt if SDEIIR still has something to process
2234          * due to its back queue). */
2235         if (!HAS_PCH_NOP(dev_priv)) {
2236                 sde_ier = I915_READ(SDEIER);
2237                 I915_WRITE(SDEIER, 0);
2238                 POSTING_READ(SDEIER);
2239         }
2240
2241         /* Find, clear, then process each source of interrupt */
2242
2243         gt_iir = I915_READ(GTIIR);
2244         if (gt_iir) {
2245                 I915_WRITE(GTIIR, gt_iir);
2246                 ret = IRQ_HANDLED;
2247                 if (INTEL_GEN(dev_priv) >= 6)
2248                         snb_gt_irq_handler(dev_priv, gt_iir);
2249                 else
2250                         ilk_gt_irq_handler(dev_priv, gt_iir);
2251         }
2252
2253         de_iir = I915_READ(DEIIR);
2254         if (de_iir) {
2255                 I915_WRITE(DEIIR, de_iir);
2256                 ret = IRQ_HANDLED;
2257                 if (INTEL_GEN(dev_priv) >= 7)
2258                         ivb_display_irq_handler(dev_priv, de_iir);
2259                 else
2260                         ilk_display_irq_handler(dev_priv, de_iir);
2261         }
2262
2263         if (INTEL_GEN(dev_priv) >= 6) {
2264                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2265                 if (pm_iir) {
2266                         I915_WRITE(GEN6_PMIIR, pm_iir);
2267                         ret = IRQ_HANDLED;
2268                         gen6_rps_irq_handler(dev_priv, pm_iir);
2269                 }
2270         }
2271
2272         I915_WRITE(DEIER, de_ier);
2273         POSTING_READ(DEIER);
2274         if (!HAS_PCH_NOP(dev_priv)) {
2275                 I915_WRITE(SDEIER, sde_ier);
2276                 POSTING_READ(SDEIER);
2277         }
2278
2279         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2280         enable_rpm_wakeref_asserts(dev_priv);
2281
2282         return ret;
2283 }
2284
2285 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2286                                 u32 hotplug_trigger,
2287                                 const u32 hpd[HPD_NUM_PINS])
2288 {
2289         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2290
2291         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2292         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2293
2294         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2295                            dig_hotplug_reg, hpd,
2296                            bxt_port_hotplug_long_detect);
2297
2298         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2299 }
2300
2301 static irqreturn_t
2302 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2303 {
2304         irqreturn_t ret = IRQ_NONE;
2305         u32 iir;
2306         enum pipe pipe;
2307
2308         if (master_ctl & GEN8_DE_MISC_IRQ) {
2309                 iir = I915_READ(GEN8_DE_MISC_IIR);
2310                 if (iir) {
2311                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2312                         ret = IRQ_HANDLED;
2313                         if (iir & GEN8_DE_MISC_GSE)
2314                                 intel_opregion_asle_intr(dev_priv);
2315                         else
2316                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2317                 }
2318                 else
2319                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2320         }
2321
2322         if (master_ctl & GEN8_DE_PORT_IRQ) {
2323                 iir = I915_READ(GEN8_DE_PORT_IIR);
2324                 if (iir) {
2325                         u32 tmp_mask;
2326                         bool found = false;
2327
2328                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2329                         ret = IRQ_HANDLED;
2330
2331                         tmp_mask = GEN8_AUX_CHANNEL_A;
2332                         if (INTEL_INFO(dev_priv)->gen >= 9)
2333                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2334                                             GEN9_AUX_CHANNEL_C |
2335                                             GEN9_AUX_CHANNEL_D;
2336
2337                         if (iir & tmp_mask) {
2338                                 dp_aux_irq_handler(dev_priv);
2339                                 found = true;
2340                         }
2341
2342                         if (IS_BROXTON(dev_priv)) {
2343                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2344                                 if (tmp_mask) {
2345                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2346                                                             hpd_bxt);
2347                                         found = true;
2348                                 }
2349                         } else if (IS_BROADWELL(dev_priv)) {
2350                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2351                                 if (tmp_mask) {
2352                                         ilk_hpd_irq_handler(dev_priv,
2353                                                             tmp_mask, hpd_bdw);
2354                                         found = true;
2355                                 }
2356                         }
2357
2358                         if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2359                                 gmbus_irq_handler(dev_priv);
2360                                 found = true;
2361                         }
2362
2363                         if (!found)
2364                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2365                 }
2366                 else
2367                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2368         }
2369
2370         for_each_pipe(dev_priv, pipe) {
2371                 u32 flip_done, fault_errors;
2372
2373                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2374                         continue;
2375
2376                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2377                 if (!iir) {
2378                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2379                         continue;
2380                 }
2381
2382                 ret = IRQ_HANDLED;
2383                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2384
2385                 if (iir & GEN8_PIPE_VBLANK &&
2386                     intel_pipe_handle_vblank(dev_priv, pipe))
2387                         intel_check_page_flip(dev_priv, pipe);
2388
2389                 flip_done = iir;
2390                 if (INTEL_INFO(dev_priv)->gen >= 9)
2391                         flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2392                 else
2393                         flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2394
2395                 if (flip_done)
2396                         intel_finish_page_flip_cs(dev_priv, pipe);
2397
2398                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2399                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2400
2401                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2402                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2403
2404                 fault_errors = iir;
2405                 if (INTEL_INFO(dev_priv)->gen >= 9)
2406                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2407                 else
2408                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2409
2410                 if (fault_errors)
2411                         DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2412                                   pipe_name(pipe),
2413                                   fault_errors);
2414         }
2415
2416         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2417             master_ctl & GEN8_DE_PCH_IRQ) {
2418                 /*
2419                  * FIXME(BDW): Assume for now that the new interrupt handling
2420                  * scheme also closed the SDE interrupt handling race we've seen
2421                  * on older pch-split platforms. But this needs testing.
2422                  */
2423                 iir = I915_READ(SDEIIR);
2424                 if (iir) {
2425                         I915_WRITE(SDEIIR, iir);
2426                         ret = IRQ_HANDLED;
2427
2428                         if (HAS_PCH_SPT(dev_priv))
2429                                 spt_irq_handler(dev_priv, iir);
2430                         else
2431                                 cpt_irq_handler(dev_priv, iir);
2432                 } else {
2433                         /*
2434                          * Like on previous PCH there seems to be something
2435                          * fishy going on with forwarding PCH interrupts.
2436                          */
2437                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2438                 }
2439         }
2440
2441         return ret;
2442 }
2443
2444 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2445 {
2446         struct drm_device *dev = arg;
2447         struct drm_i915_private *dev_priv = to_i915(dev);
2448         u32 master_ctl;
2449         u32 gt_iir[4] = {};
2450         irqreturn_t ret;
2451
2452         if (!intel_irqs_enabled(dev_priv))
2453                 return IRQ_NONE;
2454
2455         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2456         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2457         if (!master_ctl)
2458                 return IRQ_NONE;
2459
2460         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2461
2462         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2463         disable_rpm_wakeref_asserts(dev_priv);
2464
2465         /* Find, clear, then process each source of interrupt */
2466         ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2467         gen8_gt_irq_handler(dev_priv, gt_iir);
2468         ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2469
2470         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2471         POSTING_READ_FW(GEN8_MASTER_IRQ);
2472
2473         enable_rpm_wakeref_asserts(dev_priv);
2474
2475         return ret;
2476 }
2477
2478 static void i915_error_wake_up(struct drm_i915_private *dev_priv)
2479 {
2480         /*
2481          * Notify all waiters for GPU completion events that reset state has
2482          * been changed, and that they need to restart their wait after
2483          * checking for potential errors (and bail out to drop locks if there is
2484          * a gpu reset pending so that i915_error_work_func can acquire them).
2485          */
2486
2487         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2488         wake_up_all(&dev_priv->gpu_error.wait_queue);
2489
2490         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2491         wake_up_all(&dev_priv->pending_flip_queue);
2492 }
2493
2494 /**
2495  * i915_reset_and_wakeup - do process context error handling work
2496  * @dev_priv: i915 device private
2497  *
2498  * Fire an error uevent so userspace can see that a hang or error
2499  * was detected.
2500  */
2501 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2502 {
2503         struct kobject *kobj = &dev_priv->dev->primary->kdev->kobj;
2504         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2505         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2506         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2507         int ret;
2508
2509         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2510
2511         /*
2512          * Note that there's only one work item which does gpu resets, so we
2513          * need not worry about concurrent gpu resets potentially incrementing
2514          * error->reset_counter twice. We only need to take care of another
2515          * racing irq/hangcheck declaring the gpu dead for a second time. A
2516          * quick check for that is good enough: schedule_work ensures the
2517          * correct ordering between hang detection and this work item, and since
2518          * the reset in-progress bit is only ever set by code outside of this
2519          * work we don't need to worry about any other races.
2520          */
2521         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2522                 DRM_DEBUG_DRIVER("resetting chip\n");
2523                 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2524
2525                 /*
2526                  * In most cases it's guaranteed that we get here with an RPM
2527                  * reference held, for example because there is a pending GPU
2528                  * request that won't finish until the reset is done. This
2529                  * isn't the case at least when we get here by doing a
2530                  * simulated reset via debugs, so get an RPM reference.
2531                  */
2532                 intel_runtime_pm_get(dev_priv);
2533
2534                 intel_prepare_reset(dev_priv);
2535
2536                 /*
2537                  * All state reset _must_ be completed before we update the
2538                  * reset counter, for otherwise waiters might miss the reset
2539                  * pending state and not properly drop locks, resulting in
2540                  * deadlocks with the reset work.
2541                  */
2542                 ret = i915_reset(dev_priv);
2543
2544                 intel_finish_reset(dev_priv);
2545
2546                 intel_runtime_pm_put(dev_priv);
2547
2548                 if (ret == 0)
2549                         kobject_uevent_env(kobj,
2550                                            KOBJ_CHANGE, reset_done_event);
2551
2552                 /*
2553                  * Note: The wake_up also serves as a memory barrier so that
2554                  * waiters see the update value of the reset counter atomic_t.
2555                  */
2556                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2557         }
2558 }
2559
2560 static void i915_report_and_clear_eir(struct drm_i915_private *dev_priv)
2561 {
2562         uint32_t instdone[I915_NUM_INSTDONE_REG];
2563         u32 eir = I915_READ(EIR);
2564         int pipe, i;
2565
2566         if (!eir)
2567                 return;
2568
2569         pr_err("render error detected, EIR: 0x%08x\n", eir);
2570
2571         i915_get_extra_instdone(dev_priv, instdone);
2572
2573         if (IS_G4X(dev_priv)) {
2574                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2575                         u32 ipeir = I915_READ(IPEIR_I965);
2576
2577                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2578                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2579                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2580                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2581                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2582                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2583                         I915_WRITE(IPEIR_I965, ipeir);
2584                         POSTING_READ(IPEIR_I965);
2585                 }
2586                 if (eir & GM45_ERROR_PAGE_TABLE) {
2587                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2588                         pr_err("page table error\n");
2589                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2590                         I915_WRITE(PGTBL_ER, pgtbl_err);
2591                         POSTING_READ(PGTBL_ER);
2592                 }
2593         }
2594
2595         if (!IS_GEN2(dev_priv)) {
2596                 if (eir & I915_ERROR_PAGE_TABLE) {
2597                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2598                         pr_err("page table error\n");
2599                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2600                         I915_WRITE(PGTBL_ER, pgtbl_err);
2601                         POSTING_READ(PGTBL_ER);
2602                 }
2603         }
2604
2605         if (eir & I915_ERROR_MEMORY_REFRESH) {
2606                 pr_err("memory refresh error:\n");
2607                 for_each_pipe(dev_priv, pipe)
2608                         pr_err("pipe %c stat: 0x%08x\n",
2609                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2610                 /* pipestat has already been acked */
2611         }
2612         if (eir & I915_ERROR_INSTRUCTION) {
2613                 pr_err("instruction error\n");
2614                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2615                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2616                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2617                 if (INTEL_GEN(dev_priv) < 4) {
2618                         u32 ipeir = I915_READ(IPEIR);
2619
2620                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2621                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2622                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2623                         I915_WRITE(IPEIR, ipeir);
2624                         POSTING_READ(IPEIR);
2625                 } else {
2626                         u32 ipeir = I915_READ(IPEIR_I965);
2627
2628                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2629                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2630                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2631                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2632                         I915_WRITE(IPEIR_I965, ipeir);
2633                         POSTING_READ(IPEIR_I965);
2634                 }
2635         }
2636
2637         I915_WRITE(EIR, eir);
2638         POSTING_READ(EIR);
2639         eir = I915_READ(EIR);
2640         if (eir) {
2641                 /*
2642                  * some errors might have become stuck,
2643                  * mask them.
2644                  */
2645                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2646                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2647                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2648         }
2649 }
2650
2651 /**
2652  * i915_handle_error - handle a gpu error
2653  * @dev_priv: i915 device private
2654  * @engine_mask: mask representing engines that are hung
2655  * Do some basic checking of register state at error time and
2656  * dump it to the syslog.  Also call i915_capture_error_state() to make
2657  * sure we get a record and make it available in debugfs.  Fire a uevent
2658  * so userspace knows something bad happened (should trigger collection
2659  * of a ring dump etc.).
2660  * @fmt: Error message format string
2661  */
2662 void i915_handle_error(struct drm_i915_private *dev_priv,
2663                        u32 engine_mask,
2664                        const char *fmt, ...)
2665 {
2666         va_list args;
2667         char error_msg[80];
2668
2669         va_start(args, fmt);
2670         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2671         va_end(args);
2672
2673         i915_capture_error_state(dev_priv, engine_mask, error_msg);
2674         i915_report_and_clear_eir(dev_priv);
2675
2676         if (engine_mask) {
2677                 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2678                                 &dev_priv->gpu_error.reset_counter);
2679
2680                 /*
2681                  * Wakeup waiting processes so that the reset function
2682                  * i915_reset_and_wakeup doesn't deadlock trying to grab
2683                  * various locks. By bumping the reset counter first, the woken
2684                  * processes will see a reset in progress and back off,
2685                  * releasing their locks and then wait for the reset completion.
2686                  * We must do this for _all_ gpu waiters that might hold locks
2687                  * that the reset work needs to acquire.
2688                  *
2689                  * Note: The wake_up serves as the required memory barrier to
2690                  * ensure that the waiters see the updated value of the reset
2691                  * counter atomic_t.
2692                  */
2693                 i915_error_wake_up(dev_priv);
2694         }
2695
2696         i915_reset_and_wakeup(dev_priv);
2697 }
2698
2699 /* Called from drm generic code, passed 'crtc' which
2700  * we use as a pipe index
2701  */
2702 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2703 {
2704         struct drm_i915_private *dev_priv = to_i915(dev);
2705         unsigned long irqflags;
2706
2707         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2708         if (INTEL_INFO(dev)->gen >= 4)
2709                 i915_enable_pipestat(dev_priv, pipe,
2710                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2711         else
2712                 i915_enable_pipestat(dev_priv, pipe,
2713                                      PIPE_VBLANK_INTERRUPT_STATUS);
2714         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2715
2716         return 0;
2717 }
2718
2719 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2720 {
2721         struct drm_i915_private *dev_priv = to_i915(dev);
2722         unsigned long irqflags;
2723         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2724                                                      DE_PIPE_VBLANK(pipe);
2725
2726         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2727         ilk_enable_display_irq(dev_priv, bit);
2728         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2729
2730         return 0;
2731 }
2732
2733 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2734 {
2735         struct drm_i915_private *dev_priv = to_i915(dev);
2736         unsigned long irqflags;
2737
2738         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2739         i915_enable_pipestat(dev_priv, pipe,
2740                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2741         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2742
2743         return 0;
2744 }
2745
2746 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2747 {
2748         struct drm_i915_private *dev_priv = to_i915(dev);
2749         unsigned long irqflags;
2750
2751         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2752         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2753         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2754
2755         return 0;
2756 }
2757
2758 /* Called from drm generic code, passed 'crtc' which
2759  * we use as a pipe index
2760  */
2761 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2762 {
2763         struct drm_i915_private *dev_priv = to_i915(dev);
2764         unsigned long irqflags;
2765
2766         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2767         i915_disable_pipestat(dev_priv, pipe,
2768                               PIPE_VBLANK_INTERRUPT_STATUS |
2769                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2770         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2771 }
2772
2773 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2774 {
2775         struct drm_i915_private *dev_priv = to_i915(dev);
2776         unsigned long irqflags;
2777         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2778                                                      DE_PIPE_VBLANK(pipe);
2779
2780         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2781         ilk_disable_display_irq(dev_priv, bit);
2782         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2783 }
2784
2785 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2786 {
2787         struct drm_i915_private *dev_priv = to_i915(dev);
2788         unsigned long irqflags;
2789
2790         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2791         i915_disable_pipestat(dev_priv, pipe,
2792                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2793         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2794 }
2795
2796 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2797 {
2798         struct drm_i915_private *dev_priv = to_i915(dev);
2799         unsigned long irqflags;
2800
2801         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2802         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2803         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2804 }
2805
2806 static bool
2807 ring_idle(struct intel_engine_cs *engine, u32 seqno)
2808 {
2809         return i915_seqno_passed(seqno,
2810                                  READ_ONCE(engine->last_submitted_seqno));
2811 }
2812
2813 static bool
2814 ipehr_is_semaphore_wait(struct intel_engine_cs *engine, u32 ipehr)
2815 {
2816         if (INTEL_GEN(engine->i915) >= 8) {
2817                 return (ipehr >> 23) == 0x1c;
2818         } else {
2819                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2820                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2821                                  MI_SEMAPHORE_REGISTER);
2822         }
2823 }
2824
2825 static struct intel_engine_cs *
2826 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2827                                  u64 offset)
2828 {
2829         struct drm_i915_private *dev_priv = engine->i915;
2830         struct intel_engine_cs *signaller;
2831
2832         if (INTEL_GEN(dev_priv) >= 8) {
2833                 for_each_engine(signaller, dev_priv) {
2834                         if (engine == signaller)
2835                                 continue;
2836
2837                         if (offset == signaller->semaphore.signal_ggtt[engine->id])
2838                                 return signaller;
2839                 }
2840         } else {
2841                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2842
2843                 for_each_engine(signaller, dev_priv) {
2844                         if(engine == signaller)
2845                                 continue;
2846
2847                         if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
2848                                 return signaller;
2849                 }
2850         }
2851
2852         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2853                   engine->id, ipehr, offset);
2854
2855         return NULL;
2856 }
2857
2858 static struct intel_engine_cs *
2859 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2860 {
2861         struct drm_i915_private *dev_priv = engine->i915;
2862         u32 cmd, ipehr, head;
2863         u64 offset = 0;
2864         int i, backwards;
2865
2866         /*
2867          * This function does not support execlist mode - any attempt to
2868          * proceed further into this function will result in a kernel panic
2869          * when dereferencing ring->buffer, which is not set up in execlist
2870          * mode.
2871          *
2872          * The correct way of doing it would be to derive the currently
2873          * executing ring buffer from the current context, which is derived
2874          * from the currently running request. Unfortunately, to get the
2875          * current request we would have to grab the struct_mutex before doing
2876          * anything else, which would be ill-advised since some other thread
2877          * might have grabbed it already and managed to hang itself, causing
2878          * the hang checker to deadlock.
2879          *
2880          * Therefore, this function does not support execlist mode in its
2881          * current form. Just return NULL and move on.
2882          */
2883         if (engine->buffer == NULL)
2884                 return NULL;
2885
2886         ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2887         if (!ipehr_is_semaphore_wait(engine, ipehr))
2888                 return NULL;
2889
2890         /*
2891          * HEAD is likely pointing to the dword after the actual command,
2892          * so scan backwards until we find the MBOX. But limit it to just 3
2893          * or 4 dwords depending on the semaphore wait command size.
2894          * Note that we don't care about ACTHD here since that might
2895          * point at at batch, and semaphores are always emitted into the
2896          * ringbuffer itself.
2897          */
2898         head = I915_READ_HEAD(engine) & HEAD_ADDR;
2899         backwards = (INTEL_GEN(dev_priv) >= 8) ? 5 : 4;
2900
2901         for (i = backwards; i; --i) {
2902                 /*
2903                  * Be paranoid and presume the hw has gone off into the wild -
2904                  * our ring is smaller than what the hardware (and hence
2905                  * HEAD_ADDR) allows. Also handles wrap-around.
2906                  */
2907                 head &= engine->buffer->size - 1;
2908
2909                 /* This here seems to blow up */
2910                 cmd = ioread32(engine->buffer->virtual_start + head);
2911                 if (cmd == ipehr)
2912                         break;
2913
2914                 head -= 4;
2915         }
2916
2917         if (!i)
2918                 return NULL;
2919
2920         *seqno = ioread32(engine->buffer->virtual_start + head + 4) + 1;
2921         if (INTEL_GEN(dev_priv) >= 8) {
2922                 offset = ioread32(engine->buffer->virtual_start + head + 12);
2923                 offset <<= 32;
2924                 offset = ioread32(engine->buffer->virtual_start + head + 8);
2925         }
2926         return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2927 }
2928
2929 static int semaphore_passed(struct intel_engine_cs *engine)
2930 {
2931         struct drm_i915_private *dev_priv = engine->i915;
2932         struct intel_engine_cs *signaller;
2933         u32 seqno;
2934
2935         engine->hangcheck.deadlock++;
2936
2937         signaller = semaphore_waits_for(engine, &seqno);
2938         if (signaller == NULL)
2939                 return -1;
2940
2941         /* Prevent pathological recursion due to driver bugs */
2942         if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
2943                 return -1;
2944
2945         if (i915_seqno_passed(intel_engine_get_seqno(signaller), seqno))
2946                 return 1;
2947
2948         /* cursory check for an unkickable deadlock */
2949         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2950             semaphore_passed(signaller) < 0)
2951                 return -1;
2952
2953         return 0;
2954 }
2955
2956 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2957 {
2958         struct intel_engine_cs *engine;
2959
2960         for_each_engine(engine, dev_priv)
2961                 engine->hangcheck.deadlock = 0;
2962 }
2963
2964 static bool subunits_stuck(struct intel_engine_cs *engine)
2965 {
2966         u32 instdone[I915_NUM_INSTDONE_REG];
2967         bool stuck;
2968         int i;
2969
2970         if (engine->id != RCS)
2971                 return true;
2972
2973         i915_get_extra_instdone(engine->i915, instdone);
2974
2975         /* There might be unstable subunit states even when
2976          * actual head is not moving. Filter out the unstable ones by
2977          * accumulating the undone -> done transitions and only
2978          * consider those as progress.
2979          */
2980         stuck = true;
2981         for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
2982                 const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
2983
2984                 if (tmp != engine->hangcheck.instdone[i])
2985                         stuck = false;
2986
2987                 engine->hangcheck.instdone[i] |= tmp;
2988         }
2989
2990         return stuck;
2991 }
2992
2993 static enum intel_ring_hangcheck_action
2994 head_stuck(struct intel_engine_cs *engine, u64 acthd)
2995 {
2996         if (acthd != engine->hangcheck.acthd) {
2997
2998                 /* Clear subunit states on head movement */
2999                 memset(engine->hangcheck.instdone, 0,
3000                        sizeof(engine->hangcheck.instdone));
3001
3002                 return HANGCHECK_ACTIVE;
3003         }
3004
3005         if (!subunits_stuck(engine))
3006                 return HANGCHECK_ACTIVE;
3007
3008         return HANGCHECK_HUNG;
3009 }
3010
3011 static enum intel_ring_hangcheck_action
3012 ring_stuck(struct intel_engine_cs *engine, u64 acthd)
3013 {
3014         struct drm_i915_private *dev_priv = engine->i915;
3015         enum intel_ring_hangcheck_action ha;
3016         u32 tmp;
3017
3018         ha = head_stuck(engine, acthd);
3019         if (ha != HANGCHECK_HUNG)
3020                 return ha;
3021
3022         if (IS_GEN2(dev_priv))
3023                 return HANGCHECK_HUNG;
3024
3025         /* Is the chip hanging on a WAIT_FOR_EVENT?
3026          * If so we can simply poke the RB_WAIT bit
3027          * and break the hang. This should work on
3028          * all but the second generation chipsets.
3029          */
3030         tmp = I915_READ_CTL(engine);
3031         if (tmp & RING_WAIT) {
3032                 i915_handle_error(dev_priv, 0,
3033                                   "Kicking stuck wait on %s",
3034                                   engine->name);
3035                 I915_WRITE_CTL(engine, tmp);
3036                 return HANGCHECK_KICK;
3037         }
3038
3039         if (INTEL_GEN(dev_priv) >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3040                 switch (semaphore_passed(engine)) {
3041                 default:
3042                         return HANGCHECK_HUNG;
3043                 case 1:
3044                         i915_handle_error(dev_priv, 0,
3045                                           "Kicking stuck semaphore on %s",
3046                                           engine->name);
3047                         I915_WRITE_CTL(engine, tmp);
3048                         return HANGCHECK_KICK;
3049                 case 0:
3050                         return HANGCHECK_WAIT;
3051                 }
3052         }
3053
3054         return HANGCHECK_HUNG;
3055 }
3056
3057 static unsigned kick_waiters(struct intel_engine_cs *engine)
3058 {
3059         struct drm_i915_private *i915 = engine->i915;
3060         unsigned user_interrupts = READ_ONCE(engine->user_interrupts);
3061
3062         if (engine->hangcheck.user_interrupts == user_interrupts &&
3063             !test_and_set_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
3064                 if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
3065                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3066                                   engine->name);
3067
3068                 intel_engine_enable_fake_irq(engine);
3069         }
3070
3071         return user_interrupts;
3072 }
3073 /*
3074  * This is called when the chip hasn't reported back with completed
3075  * batchbuffers in a long time. We keep track per ring seqno progress and
3076  * if there are no progress, hangcheck score for that ring is increased.
3077  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3078  * we kick the ring. If we see no progress on three subsequent calls
3079  * we assume chip is wedged and try to fix it by resetting the chip.
3080  */
3081 static void i915_hangcheck_elapsed(struct work_struct *work)
3082 {
3083         struct drm_i915_private *dev_priv =
3084                 container_of(work, typeof(*dev_priv),
3085                              gpu_error.hangcheck_work.work);
3086         struct intel_engine_cs *engine;
3087         unsigned int hung = 0, stuck = 0;
3088         int busy_count = 0;
3089 #define BUSY 1
3090 #define KICK 5
3091 #define HUNG 20
3092 #define ACTIVE_DECAY 15
3093
3094         if (!i915.enable_hangcheck)
3095                 return;
3096
3097         if (!READ_ONCE(dev_priv->gt.awake))
3098                 return;
3099
3100         /* As enabling the GPU requires fairly extensive mmio access,
3101          * periodically arm the mmio checker to see if we are triggering
3102          * any invalid access.
3103          */
3104         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3105
3106         for_each_engine(engine, dev_priv) {
3107                 bool busy = intel_engine_has_waiter(engine);
3108                 u64 acthd;
3109                 u32 seqno;
3110                 unsigned user_interrupts;
3111
3112                 semaphore_clear_deadlocks(dev_priv);
3113
3114                 /* We don't strictly need an irq-barrier here, as we are not
3115                  * serving an interrupt request, be paranoid in case the
3116                  * barrier has side-effects (such as preventing a broken
3117                  * cacheline snoop) and so be sure that we can see the seqno
3118                  * advance. If the seqno should stick, due to a stale
3119                  * cacheline, we would erroneously declare the GPU hung.
3120                  */
3121                 if (engine->irq_seqno_barrier)
3122                         engine->irq_seqno_barrier(engine);
3123
3124                 acthd = intel_ring_get_active_head(engine);
3125                 seqno = intel_engine_get_seqno(engine);
3126
3127                 /* Reset stuck interrupts between batch advances */
3128                 user_interrupts = 0;
3129
3130                 if (engine->hangcheck.seqno == seqno) {
3131                         if (ring_idle(engine, seqno)) {
3132                                 engine->hangcheck.action = HANGCHECK_IDLE;
3133                                 if (busy) {
3134                                         /* Safeguard against driver failure */
3135                                         user_interrupts = kick_waiters(engine);
3136                                         engine->hangcheck.score += BUSY;
3137                                 }
3138                         } else {
3139                                 /* We always increment the hangcheck score
3140                                  * if the ring is busy and still processing
3141                                  * the same request, so that no single request
3142                                  * can run indefinitely (such as a chain of
3143                                  * batches). The only time we do not increment
3144                                  * the hangcheck score on this ring, if this
3145                                  * ring is in a legitimate wait for another
3146                                  * ring. In that case the waiting ring is a
3147                                  * victim and we want to be sure we catch the
3148                                  * right culprit. Then every time we do kick
3149                                  * the ring, add a small increment to the
3150                                  * score so that we can catch a batch that is
3151                                  * being repeatedly kicked and so responsible
3152                                  * for stalling the machine.
3153                                  */
3154                                 engine->hangcheck.action = ring_stuck(engine,
3155                                                                       acthd);
3156
3157                                 switch (engine->hangcheck.action) {
3158                                 case HANGCHECK_IDLE:
3159                                 case HANGCHECK_WAIT:
3160                                         break;
3161                                 case HANGCHECK_ACTIVE:
3162                                         engine->hangcheck.score += BUSY;
3163                                         break;
3164                                 case HANGCHECK_KICK:
3165                                         engine->hangcheck.score += KICK;
3166                                         break;
3167                                 case HANGCHECK_HUNG:
3168                                         engine->hangcheck.score += HUNG;
3169                                         break;
3170                                 }
3171                         }
3172
3173                         if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3174                                 hung |= intel_engine_flag(engine);
3175                                 if (engine->hangcheck.action != HANGCHECK_HUNG)
3176                                         stuck |= intel_engine_flag(engine);
3177                         }
3178                 } else {
3179                         engine->hangcheck.action = HANGCHECK_ACTIVE;
3180
3181                         /* Gradually reduce the count so that we catch DoS
3182                          * attempts across multiple batches.
3183                          */
3184                         if (engine->hangcheck.score > 0)
3185                                 engine->hangcheck.score -= ACTIVE_DECAY;
3186                         if (engine->hangcheck.score < 0)
3187                                 engine->hangcheck.score = 0;
3188
3189                         /* Clear head and subunit states on seqno movement */
3190                         acthd = 0;
3191
3192                         memset(engine->hangcheck.instdone, 0,
3193                                sizeof(engine->hangcheck.instdone));
3194                 }
3195
3196                 engine->hangcheck.seqno = seqno;
3197                 engine->hangcheck.acthd = acthd;
3198                 engine->hangcheck.user_interrupts = user_interrupts;
3199                 busy_count += busy;
3200         }
3201
3202         if (hung) {
3203                 char msg[80];
3204                 int len;
3205
3206                 /* If some rings hung but others were still busy, only
3207                  * blame the hanging rings in the synopsis.
3208                  */
3209                 if (stuck != hung)
3210                         hung &= ~stuck;
3211                 len = scnprintf(msg, sizeof(msg),
3212                                 "%s on ", stuck == hung ? "No progress" : "Hang");
3213                 for_each_engine_masked(engine, dev_priv, hung)
3214                         len += scnprintf(msg + len, sizeof(msg) - len,
3215                                          "%s, ", engine->name);
3216                 msg[len-2] = '\0';
3217
3218                 return i915_handle_error(dev_priv, hung, msg);
3219         }
3220
3221         /* Reset timer in case GPU hangs without another request being added */
3222         if (busy_count)
3223                 i915_queue_hangcheck(dev_priv);
3224 }
3225
3226 static void ibx_irq_reset(struct drm_device *dev)
3227 {
3228         struct drm_i915_private *dev_priv = to_i915(dev);
3229
3230         if (HAS_PCH_NOP(dev))
3231                 return;
3232
3233         GEN5_IRQ_RESET(SDE);
3234
3235         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3236                 I915_WRITE(SERR_INT, 0xffffffff);
3237 }
3238
3239 /*
3240  * SDEIER is also touched by the interrupt handler to work around missed PCH
3241  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3242  * instead we unconditionally enable all PCH interrupt sources here, but then
3243  * only unmask them as needed with SDEIMR.
3244  *
3245  * This function needs to be called before interrupts are enabled.
3246  */
3247 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3248 {
3249         struct drm_i915_private *dev_priv = to_i915(dev);
3250
3251         if (HAS_PCH_NOP(dev))
3252                 return;
3253
3254         WARN_ON(I915_READ(SDEIER) != 0);
3255         I915_WRITE(SDEIER, 0xffffffff);
3256         POSTING_READ(SDEIER);
3257 }
3258
3259 static void gen5_gt_irq_reset(struct drm_device *dev)
3260 {
3261         struct drm_i915_private *dev_priv = to_i915(dev);
3262
3263         GEN5_IRQ_RESET(GT);
3264         if (INTEL_INFO(dev)->gen >= 6)
3265                 GEN5_IRQ_RESET(GEN6_PM);
3266 }
3267
3268 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3269 {
3270         enum pipe pipe;
3271
3272         if (IS_CHERRYVIEW(dev_priv))
3273                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3274         else
3275                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3276
3277         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3278         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3279
3280         for_each_pipe(dev_priv, pipe) {
3281                 I915_WRITE(PIPESTAT(pipe),
3282                            PIPE_FIFO_UNDERRUN_STATUS |
3283                            PIPESTAT_INT_STATUS_MASK);
3284                 dev_priv->pipestat_irq_mask[pipe] = 0;
3285         }
3286
3287         GEN5_IRQ_RESET(VLV_);
3288         dev_priv->irq_mask = ~0;
3289 }
3290
3291 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3292 {
3293         u32 pipestat_mask;
3294         u32 enable_mask;
3295         enum pipe pipe;
3296
3297         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3298                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3299
3300         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3301         for_each_pipe(dev_priv, pipe)
3302                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3303
3304         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3305                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3306                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3307         if (IS_CHERRYVIEW(dev_priv))
3308                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3309
3310         WARN_ON(dev_priv->irq_mask != ~0);
3311
3312         dev_priv->irq_mask = ~enable_mask;
3313
3314         GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3315 }
3316
3317 /* drm_dma.h hooks
3318 */
3319 static void ironlake_irq_reset(struct drm_device *dev)
3320 {
3321         struct drm_i915_private *dev_priv = to_i915(dev);
3322
3323         I915_WRITE(HWSTAM, 0xffffffff);
3324
3325         GEN5_IRQ_RESET(DE);
3326         if (IS_GEN7(dev))
3327                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3328
3329         gen5_gt_irq_reset(dev);
3330
3331         ibx_irq_reset(dev);
3332 }
3333
3334 static void valleyview_irq_preinstall(struct drm_device *dev)
3335 {
3336         struct drm_i915_private *dev_priv = to_i915(dev);
3337
3338         I915_WRITE(VLV_MASTER_IER, 0);
3339         POSTING_READ(VLV_MASTER_IER);
3340
3341         gen5_gt_irq_reset(dev);
3342
3343         spin_lock_irq(&dev_priv->irq_lock);
3344         if (dev_priv->display_irqs_enabled)
3345                 vlv_display_irq_reset(dev_priv);
3346         spin_unlock_irq(&dev_priv->irq_lock);
3347 }
3348
3349 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3350 {
3351         GEN8_IRQ_RESET_NDX(GT, 0);
3352         GEN8_IRQ_RESET_NDX(GT, 1);
3353         GEN8_IRQ_RESET_NDX(GT, 2);
3354         GEN8_IRQ_RESET_NDX(GT, 3);
3355 }
3356
3357 static void gen8_irq_reset(struct drm_device *dev)
3358 {
3359         struct drm_i915_private *dev_priv = to_i915(dev);
3360         int pipe;
3361
3362         I915_WRITE(GEN8_MASTER_IRQ, 0);
3363         POSTING_READ(GEN8_MASTER_IRQ);
3364
3365         gen8_gt_irq_reset(dev_priv);
3366
3367         for_each_pipe(dev_priv, pipe)
3368                 if (intel_display_power_is_enabled(dev_priv,
3369                                                    POWER_DOMAIN_PIPE(pipe)))
3370                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3371
3372         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3373         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3374         GEN5_IRQ_RESET(GEN8_PCU_);
3375
3376         if (HAS_PCH_SPLIT(dev))
3377                 ibx_irq_reset(dev);
3378 }
3379
3380 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3381                                      unsigned int pipe_mask)
3382 {
3383         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3384         enum pipe pipe;
3385
3386         spin_lock_irq(&dev_priv->irq_lock);
3387         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3388                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3389                                   dev_priv->de_irq_mask[pipe],
3390                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3391         spin_unlock_irq(&dev_priv->irq_lock);
3392 }
3393
3394 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3395                                      unsigned int pipe_mask)
3396 {
3397         enum pipe pipe;
3398
3399         spin_lock_irq(&dev_priv->irq_lock);
3400         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3401                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3402         spin_unlock_irq(&dev_priv->irq_lock);
3403
3404         /* make sure we're done processing display irqs */
3405         synchronize_irq(dev_priv->dev->irq);
3406 }
3407
3408 static void cherryview_irq_preinstall(struct drm_device *dev)
3409 {
3410         struct drm_i915_private *dev_priv = to_i915(dev);
3411
3412         I915_WRITE(GEN8_MASTER_IRQ, 0);
3413         POSTING_READ(GEN8_MASTER_IRQ);
3414
3415         gen8_gt_irq_reset(dev_priv);
3416
3417         GEN5_IRQ_RESET(GEN8_PCU_);
3418
3419         spin_lock_irq(&dev_priv->irq_lock);
3420         if (dev_priv->display_irqs_enabled)
3421                 vlv_display_irq_reset(dev_priv);
3422         spin_unlock_irq(&dev_priv->irq_lock);
3423 }
3424
3425 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3426                                   const u32 hpd[HPD_NUM_PINS])
3427 {
3428         struct intel_encoder *encoder;
3429         u32 enabled_irqs = 0;
3430
3431         for_each_intel_encoder(dev_priv->dev, encoder)
3432                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3433                         enabled_irqs |= hpd[encoder->hpd_pin];
3434
3435         return enabled_irqs;
3436 }
3437
3438 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3439 {
3440         u32 hotplug_irqs, hotplug, enabled_irqs;
3441
3442         if (HAS_PCH_IBX(dev_priv)) {
3443                 hotplug_irqs = SDE_HOTPLUG_MASK;
3444                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3445         } else {
3446                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3447                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3448         }
3449
3450         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3451
3452         /*
3453          * Enable digital hotplug on the PCH, and configure the DP short pulse
3454          * duration to 2ms (which is the minimum in the Display Port spec).
3455          * The pulse duration bits are reserved on LPT+.
3456          */
3457         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3458         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3459         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3460         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3461         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3462         /*
3463          * When CPU and PCH are on the same package, port A
3464          * HPD must be enabled in both north and south.
3465          */
3466         if (HAS_PCH_LPT_LP(dev_priv))
3467                 hotplug |= PORTA_HOTPLUG_ENABLE;
3468         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3469 }
3470
3471 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3472 {
3473         u32 hotplug_irqs, hotplug, enabled_irqs;
3474
3475         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3476         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3477
3478         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3479
3480         /* Enable digital hotplug on the PCH */
3481         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3482         hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3483                 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3484         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3485
3486         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3487         hotplug |= PORTE_HOTPLUG_ENABLE;
3488         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3489 }
3490
3491 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3492 {
3493         u32 hotplug_irqs, hotplug, enabled_irqs;
3494
3495         if (INTEL_GEN(dev_priv) >= 8) {
3496                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3497                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3498
3499                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3500         } else if (INTEL_GEN(dev_priv) >= 7) {
3501                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3502                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3503
3504                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3505         } else {
3506                 hotplug_irqs = DE_DP_A_HOTPLUG;
3507                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3508
3509                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3510         }
3511
3512         /*
3513          * Enable digital hotplug on the CPU, and configure the DP short pulse
3514          * duration to 2ms (which is the minimum in the Display Port spec)
3515          * The pulse duration bits are reserved on HSW+.
3516          */
3517         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3518         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3519         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3520         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3521
3522         ibx_hpd_irq_setup(dev_priv);
3523 }
3524
3525 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3526 {
3527         u32 hotplug_irqs, hotplug, enabled_irqs;
3528
3529         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3530         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3531
3532         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3533
3534         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3535         hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3536                 PORTA_HOTPLUG_ENABLE;
3537
3538         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3539                       hotplug, enabled_irqs);
3540         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3541
3542         /*
3543          * For BXT invert bit has to be set based on AOB design
3544          * for HPD detection logic, update it based on VBT fields.
3545          */
3546
3547         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3548             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3549                 hotplug |= BXT_DDIA_HPD_INVERT;
3550         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3551             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3552                 hotplug |= BXT_DDIB_HPD_INVERT;
3553         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3554             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3555                 hotplug |= BXT_DDIC_HPD_INVERT;
3556
3557         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3558 }
3559
3560 static void ibx_irq_postinstall(struct drm_device *dev)
3561 {
3562         struct drm_i915_private *dev_priv = to_i915(dev);
3563         u32 mask;
3564
3565         if (HAS_PCH_NOP(dev))
3566                 return;
3567
3568         if (HAS_PCH_IBX(dev))
3569                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3570         else
3571                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3572
3573         gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3574         I915_WRITE(SDEIMR, ~mask);
3575 }
3576
3577 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3578 {
3579         struct drm_i915_private *dev_priv = to_i915(dev);
3580         u32 pm_irqs, gt_irqs;
3581
3582         pm_irqs = gt_irqs = 0;
3583
3584         dev_priv->gt_irq_mask = ~0;
3585         if (HAS_L3_DPF(dev)) {
3586                 /* L3 parity interrupt is always unmasked. */
3587                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3588                 gt_irqs |= GT_PARITY_ERROR(dev);
3589         }
3590
3591         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3592         if (IS_GEN5(dev)) {
3593                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3594         } else {
3595                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3596         }
3597
3598         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3599
3600         if (INTEL_INFO(dev)->gen >= 6) {
3601                 /*
3602                  * RPS interrupts will get enabled/disabled on demand when RPS
3603                  * itself is enabled/disabled.
3604                  */
3605                 if (HAS_VEBOX(dev))
3606                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3607
3608                 dev_priv->pm_irq_mask = 0xffffffff;
3609                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3610         }
3611 }
3612
3613 static int ironlake_irq_postinstall(struct drm_device *dev)
3614 {
3615         struct drm_i915_private *dev_priv = to_i915(dev);
3616         u32 display_mask, extra_mask;
3617
3618         if (INTEL_INFO(dev)->gen >= 7) {
3619                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3620                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3621                                 DE_PLANEB_FLIP_DONE_IVB |
3622                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3623                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3624                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3625                               DE_DP_A_HOTPLUG_IVB);
3626         } else {
3627                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3628                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3629                                 DE_AUX_CHANNEL_A |
3630                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3631                                 DE_POISON);
3632                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3633                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3634                               DE_DP_A_HOTPLUG);
3635         }
3636
3637         dev_priv->irq_mask = ~display_mask;
3638
3639         I915_WRITE(HWSTAM, 0xeffe);
3640
3641         ibx_irq_pre_postinstall(dev);
3642
3643         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3644
3645         gen5_gt_irq_postinstall(dev);
3646
3647         ibx_irq_postinstall(dev);
3648
3649         if (IS_IRONLAKE_M(dev)) {
3650                 /* Enable PCU event interrupts
3651                  *
3652                  * spinlocking not required here for correctness since interrupt
3653                  * setup is guaranteed to run in single-threaded context. But we
3654                  * need it to make the assert_spin_locked happy. */
3655                 spin_lock_irq(&dev_priv->irq_lock);
3656                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3657                 spin_unlock_irq(&dev_priv->irq_lock);
3658         }
3659
3660         return 0;
3661 }
3662
3663 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3664 {
3665         assert_spin_locked(&dev_priv->irq_lock);
3666
3667         if (dev_priv->display_irqs_enabled)
3668                 return;
3669
3670         dev_priv->display_irqs_enabled = true;
3671
3672         if (intel_irqs_enabled(dev_priv)) {
3673                 vlv_display_irq_reset(dev_priv);
3674                 vlv_display_irq_postinstall(dev_priv);
3675         }
3676 }
3677
3678 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3679 {
3680         assert_spin_locked(&dev_priv->irq_lock);
3681
3682         if (!dev_priv->display_irqs_enabled)
3683                 return;
3684
3685         dev_priv->display_irqs_enabled = false;
3686
3687         if (intel_irqs_enabled(dev_priv))
3688                 vlv_display_irq_reset(dev_priv);
3689 }
3690
3691
3692 static int valleyview_irq_postinstall(struct drm_device *dev)
3693 {
3694         struct drm_i915_private *dev_priv = to_i915(dev);
3695
3696         gen5_gt_irq_postinstall(dev);
3697
3698         spin_lock_irq(&dev_priv->irq_lock);
3699         if (dev_priv->display_irqs_enabled)
3700                 vlv_display_irq_postinstall(dev_priv);
3701         spin_unlock_irq(&dev_priv->irq_lock);
3702
3703         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3704         POSTING_READ(VLV_MASTER_IER);
3705
3706         return 0;
3707 }
3708
3709 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3710 {
3711         /* These are interrupts we'll toggle with the ring mask register */
3712         uint32_t gt_interrupts[] = {
3713                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3714                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3715                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3716                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3717                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3718                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3719                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3720                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3721                 0,
3722                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3723                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3724                 };
3725
3726         if (HAS_L3_DPF(dev_priv))
3727                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3728
3729         dev_priv->pm_irq_mask = 0xffffffff;
3730         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3731         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3732         /*
3733          * RPS interrupts will get enabled/disabled on demand when RPS itself
3734          * is enabled/disabled.
3735          */
3736         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3737         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3738 }
3739
3740 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3741 {
3742         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3743         uint32_t de_pipe_enables;
3744         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3745         u32 de_port_enables;
3746         u32 de_misc_masked = GEN8_DE_MISC_GSE;
3747         enum pipe pipe;
3748
3749         if (INTEL_INFO(dev_priv)->gen >= 9) {
3750                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3751                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3752                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3753                                   GEN9_AUX_CHANNEL_D;
3754                 if (IS_BROXTON(dev_priv))
3755                         de_port_masked |= BXT_DE_PORT_GMBUS;
3756         } else {
3757                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3758                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3759         }
3760
3761         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3762                                            GEN8_PIPE_FIFO_UNDERRUN;
3763
3764         de_port_enables = de_port_masked;
3765         if (IS_BROXTON(dev_priv))
3766                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3767         else if (IS_BROADWELL(dev_priv))
3768                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3769
3770         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3771         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3772         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3773
3774         for_each_pipe(dev_priv, pipe)
3775                 if (intel_display_power_is_enabled(dev_priv,
3776                                 POWER_DOMAIN_PIPE(pipe)))
3777                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3778                                           dev_priv->de_irq_mask[pipe],
3779                                           de_pipe_enables);
3780
3781         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3782         GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3783 }
3784
3785 static int gen8_irq_postinstall(struct drm_device *dev)
3786 {
3787         struct drm_i915_private *dev_priv = to_i915(dev);
3788
3789         if (HAS_PCH_SPLIT(dev))
3790                 ibx_irq_pre_postinstall(dev);
3791
3792         gen8_gt_irq_postinstall(dev_priv);
3793         gen8_de_irq_postinstall(dev_priv);
3794
3795         if (HAS_PCH_SPLIT(dev))
3796                 ibx_irq_postinstall(dev);
3797
3798         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3799         POSTING_READ(GEN8_MASTER_IRQ);
3800
3801         return 0;
3802 }
3803
3804 static int cherryview_irq_postinstall(struct drm_device *dev)
3805 {
3806         struct drm_i915_private *dev_priv = to_i915(dev);
3807
3808         gen8_gt_irq_postinstall(dev_priv);
3809
3810         spin_lock_irq(&dev_priv->irq_lock);
3811         if (dev_priv->display_irqs_enabled)
3812                 vlv_display_irq_postinstall(dev_priv);
3813         spin_unlock_irq(&dev_priv->irq_lock);
3814
3815         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3816         POSTING_READ(GEN8_MASTER_IRQ);
3817
3818         return 0;
3819 }
3820
3821 static void gen8_irq_uninstall(struct drm_device *dev)
3822 {
3823         struct drm_i915_private *dev_priv = to_i915(dev);
3824
3825         if (!dev_priv)
3826                 return;
3827
3828         gen8_irq_reset(dev);
3829 }
3830
3831 static void valleyview_irq_uninstall(struct drm_device *dev)
3832 {
3833         struct drm_i915_private *dev_priv = to_i915(dev);
3834
3835         if (!dev_priv)
3836                 return;
3837
3838         I915_WRITE(VLV_MASTER_IER, 0);
3839         POSTING_READ(VLV_MASTER_IER);
3840
3841         gen5_gt_irq_reset(dev);
3842
3843         I915_WRITE(HWSTAM, 0xffffffff);
3844
3845         spin_lock_irq(&dev_priv->irq_lock);
3846         if (dev_priv->display_irqs_enabled)
3847                 vlv_display_irq_reset(dev_priv);
3848         spin_unlock_irq(&dev_priv->irq_lock);
3849 }
3850
3851 static void cherryview_irq_uninstall(struct drm_device *dev)
3852 {
3853         struct drm_i915_private *dev_priv = to_i915(dev);
3854
3855         if (!dev_priv)
3856                 return;
3857
3858         I915_WRITE(GEN8_MASTER_IRQ, 0);
3859         POSTING_READ(GEN8_MASTER_IRQ);
3860
3861         gen8_gt_irq_reset(dev_priv);
3862
3863         GEN5_IRQ_RESET(GEN8_PCU_);
3864
3865         spin_lock_irq(&dev_priv->irq_lock);
3866         if (dev_priv->display_irqs_enabled)
3867                 vlv_display_irq_reset(dev_priv);
3868         spin_unlock_irq(&dev_priv->irq_lock);
3869 }
3870
3871 static void ironlake_irq_uninstall(struct drm_device *dev)
3872 {
3873         struct drm_i915_private *dev_priv = to_i915(dev);
3874
3875         if (!dev_priv)
3876                 return;
3877
3878         ironlake_irq_reset(dev);
3879 }
3880
3881 static void i8xx_irq_preinstall(struct drm_device * dev)
3882 {
3883         struct drm_i915_private *dev_priv = to_i915(dev);
3884         int pipe;
3885
3886         for_each_pipe(dev_priv, pipe)
3887                 I915_WRITE(PIPESTAT(pipe), 0);
3888         I915_WRITE16(IMR, 0xffff);
3889         I915_WRITE16(IER, 0x0);
3890         POSTING_READ16(IER);
3891 }
3892
3893 static int i8xx_irq_postinstall(struct drm_device *dev)
3894 {
3895         struct drm_i915_private *dev_priv = to_i915(dev);
3896
3897         I915_WRITE16(EMR,
3898                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3899
3900         /* Unmask the interrupts that we always want on. */
3901         dev_priv->irq_mask =
3902                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3903                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3904                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3905                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3906         I915_WRITE16(IMR, dev_priv->irq_mask);
3907
3908         I915_WRITE16(IER,
3909                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3910                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3911                      I915_USER_INTERRUPT);
3912         POSTING_READ16(IER);
3913
3914         /* Interrupt setup is already guaranteed to be single-threaded, this is
3915          * just to make the assert_spin_locked check happy. */
3916         spin_lock_irq(&dev_priv->irq_lock);
3917         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3918         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3919         spin_unlock_irq(&dev_priv->irq_lock);
3920
3921         return 0;
3922 }
3923
3924 /*
3925  * Returns true when a page flip has completed.
3926  */
3927 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3928                                int plane, int pipe, u32 iir)
3929 {
3930         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3931
3932         if (!intel_pipe_handle_vblank(dev_priv, pipe))
3933                 return false;
3934
3935         if ((iir & flip_pending) == 0)
3936                 goto check_page_flip;
3937
3938         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3939          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3940          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3941          * the flip is completed (no longer pending). Since this doesn't raise
3942          * an interrupt per se, we watch for the change at vblank.
3943          */
3944         if (I915_READ16(ISR) & flip_pending)
3945                 goto check_page_flip;
3946
3947         intel_finish_page_flip_cs(dev_priv, pipe);
3948         return true;
3949
3950 check_page_flip:
3951         intel_check_page_flip(dev_priv, pipe);
3952         return false;
3953 }
3954
3955 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3956 {
3957         struct drm_device *dev = arg;
3958         struct drm_i915_private *dev_priv = to_i915(dev);
3959         u16 iir, new_iir;
3960         u32 pipe_stats[2];
3961         int pipe;
3962         u16 flip_mask =
3963                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3964                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3965         irqreturn_t ret;
3966
3967         if (!intel_irqs_enabled(dev_priv))
3968                 return IRQ_NONE;
3969
3970         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3971         disable_rpm_wakeref_asserts(dev_priv);
3972
3973         ret = IRQ_NONE;
3974         iir = I915_READ16(IIR);
3975         if (iir == 0)
3976                 goto out;
3977
3978         while (iir & ~flip_mask) {
3979                 /* Can't rely on pipestat interrupt bit in iir as it might
3980                  * have been cleared after the pipestat interrupt was received.
3981                  * It doesn't set the bit in iir again, but it still produces
3982                  * interrupts (for non-MSI).
3983                  */
3984                 spin_lock(&dev_priv->irq_lock);
3985                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3986                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3987
3988                 for_each_pipe(dev_priv, pipe) {
3989                         i915_reg_t reg = PIPESTAT(pipe);
3990                         pipe_stats[pipe] = I915_READ(reg);
3991
3992                         /*
3993                          * Clear the PIPE*STAT regs before the IIR
3994                          */
3995                         if (pipe_stats[pipe] & 0x8000ffff)
3996                                 I915_WRITE(reg, pipe_stats[pipe]);
3997                 }
3998                 spin_unlock(&dev_priv->irq_lock);
3999
4000                 I915_WRITE16(IIR, iir & ~flip_mask);
4001                 new_iir = I915_READ16(IIR); /* Flush posted writes */
4002
4003                 if (iir & I915_USER_INTERRUPT)
4004                         notify_ring(&dev_priv->engine[RCS]);
4005
4006                 for_each_pipe(dev_priv, pipe) {
4007                         int plane = pipe;
4008                         if (HAS_FBC(dev_priv))
4009                                 plane = !plane;
4010
4011                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4012                             i8xx_handle_vblank(dev_priv, plane, pipe, iir))
4013                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4014
4015                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4016                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4017
4018                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4019                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4020                                                                     pipe);
4021                 }
4022
4023                 iir = new_iir;
4024         }
4025         ret = IRQ_HANDLED;
4026
4027 out:
4028         enable_rpm_wakeref_asserts(dev_priv);
4029
4030         return ret;
4031 }
4032
4033 static void i8xx_irq_uninstall(struct drm_device * dev)
4034 {
4035         struct drm_i915_private *dev_priv = to_i915(dev);
4036         int pipe;
4037
4038         for_each_pipe(dev_priv, pipe) {
4039                 /* Clear enable bits; then clear status bits */
4040                 I915_WRITE(PIPESTAT(pipe), 0);
4041                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4042         }
4043         I915_WRITE16(IMR, 0xffff);
4044         I915_WRITE16(IER, 0x0);
4045         I915_WRITE16(IIR, I915_READ16(IIR));
4046 }
4047
4048 static void i915_irq_preinstall(struct drm_device * dev)
4049 {
4050         struct drm_i915_private *dev_priv = to_i915(dev);
4051         int pipe;
4052
4053         if (I915_HAS_HOTPLUG(dev)) {
4054                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4055                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4056         }
4057
4058         I915_WRITE16(HWSTAM, 0xeffe);
4059         for_each_pipe(dev_priv, pipe)
4060                 I915_WRITE(PIPESTAT(pipe), 0);
4061         I915_WRITE(IMR, 0xffffffff);
4062         I915_WRITE(IER, 0x0);
4063         POSTING_READ(IER);
4064 }
4065
4066 static int i915_irq_postinstall(struct drm_device *dev)
4067 {
4068         struct drm_i915_private *dev_priv = to_i915(dev);
4069         u32 enable_mask;
4070
4071         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4072
4073         /* Unmask the interrupts that we always want on. */
4074         dev_priv->irq_mask =
4075                 ~(I915_ASLE_INTERRUPT |
4076                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4077                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4078                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4079                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4080
4081         enable_mask =
4082                 I915_ASLE_INTERRUPT |
4083                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4084                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4085                 I915_USER_INTERRUPT;
4086
4087         if (I915_HAS_HOTPLUG(dev)) {
4088                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4089                 POSTING_READ(PORT_HOTPLUG_EN);
4090
4091                 /* Enable in IER... */
4092                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4093                 /* and unmask in IMR */
4094                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4095         }
4096
4097         I915_WRITE(IMR, dev_priv->irq_mask);
4098         I915_WRITE(IER, enable_mask);
4099         POSTING_READ(IER);
4100
4101         i915_enable_asle_pipestat(dev_priv);
4102
4103         /* Interrupt setup is already guaranteed to be single-threaded, this is
4104          * just to make the assert_spin_locked check happy. */
4105         spin_lock_irq(&dev_priv->irq_lock);
4106         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4107         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4108         spin_unlock_irq(&dev_priv->irq_lock);
4109
4110         return 0;
4111 }
4112
4113 /*
4114  * Returns true when a page flip has completed.
4115  */
4116 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
4117                                int plane, int pipe, u32 iir)
4118 {
4119         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4120
4121         if (!intel_pipe_handle_vblank(dev_priv, pipe))
4122                 return false;
4123
4124         if ((iir & flip_pending) == 0)
4125                 goto check_page_flip;
4126
4127         /* We detect FlipDone by looking for the change in PendingFlip from '1'
4128          * to '0' on the following vblank, i.e. IIR has the Pendingflip
4129          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4130          * the flip is completed (no longer pending). Since this doesn't raise
4131          * an interrupt per se, we watch for the change at vblank.
4132          */
4133         if (I915_READ(ISR) & flip_pending)
4134                 goto check_page_flip;
4135
4136         intel_finish_page_flip_cs(dev_priv, pipe);
4137         return true;
4138
4139 check_page_flip:
4140         intel_check_page_flip(dev_priv, pipe);
4141         return false;
4142 }
4143
4144 static irqreturn_t i915_irq_handler(int irq, void *arg)
4145 {
4146         struct drm_device *dev = arg;
4147         struct drm_i915_private *dev_priv = to_i915(dev);
4148         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4149         u32 flip_mask =
4150                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4151                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4152         int pipe, ret = IRQ_NONE;
4153
4154         if (!intel_irqs_enabled(dev_priv))
4155                 return IRQ_NONE;
4156
4157         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4158         disable_rpm_wakeref_asserts(dev_priv);
4159
4160         iir = I915_READ(IIR);
4161         do {
4162                 bool irq_received = (iir & ~flip_mask) != 0;
4163                 bool blc_event = false;
4164
4165                 /* Can't rely on pipestat interrupt bit in iir as it might
4166                  * have been cleared after the pipestat interrupt was received.
4167                  * It doesn't set the bit in iir again, but it still produces
4168                  * interrupts (for non-MSI).
4169                  */
4170                 spin_lock(&dev_priv->irq_lock);
4171                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4172                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4173
4174                 for_each_pipe(dev_priv, pipe) {
4175                         i915_reg_t reg = PIPESTAT(pipe);
4176                         pipe_stats[pipe] = I915_READ(reg);
4177
4178                         /* Clear the PIPE*STAT regs before the IIR */
4179                         if (pipe_stats[pipe] & 0x8000ffff) {
4180                                 I915_WRITE(reg, pipe_stats[pipe]);
4181                                 irq_received = true;
4182                         }
4183                 }
4184                 spin_unlock(&dev_priv->irq_lock);
4185
4186                 if (!irq_received)
4187                         break;
4188
4189                 /* Consume port.  Then clear IIR or we'll miss events */
4190                 if (I915_HAS_HOTPLUG(dev_priv) &&
4191                     iir & I915_DISPLAY_PORT_INTERRUPT) {
4192                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4193                         if (hotplug_status)
4194                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4195                 }
4196
4197                 I915_WRITE(IIR, iir & ~flip_mask);
4198                 new_iir = I915_READ(IIR); /* Flush posted writes */
4199
4200                 if (iir & I915_USER_INTERRUPT)
4201                         notify_ring(&dev_priv->engine[RCS]);
4202
4203                 for_each_pipe(dev_priv, pipe) {
4204                         int plane = pipe;
4205                         if (HAS_FBC(dev_priv))
4206                                 plane = !plane;
4207
4208                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4209                             i915_handle_vblank(dev_priv, plane, pipe, iir))
4210                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4211
4212                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4213                                 blc_event = true;
4214
4215                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4216                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4217
4218                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4219                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4220                                                                     pipe);
4221                 }
4222
4223                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4224                         intel_opregion_asle_intr(dev_priv);
4225
4226                 /* With MSI, interrupts are only generated when iir
4227                  * transitions from zero to nonzero.  If another bit got
4228                  * set while we were handling the existing iir bits, then
4229                  * we would never get another interrupt.
4230                  *
4231                  * This is fine on non-MSI as well, as if we hit this path
4232                  * we avoid exiting the interrupt handler only to generate
4233                  * another one.
4234                  *
4235                  * Note that for MSI this could cause a stray interrupt report
4236                  * if an interrupt landed in the time between writing IIR and
4237                  * the posting read.  This should be rare enough to never
4238                  * trigger the 99% of 100,000 interrupts test for disabling
4239                  * stray interrupts.
4240                  */
4241                 ret = IRQ_HANDLED;
4242                 iir = new_iir;
4243         } while (iir & ~flip_mask);
4244
4245         enable_rpm_wakeref_asserts(dev_priv);
4246
4247         return ret;
4248 }
4249
4250 static void i915_irq_uninstall(struct drm_device * dev)
4251 {
4252         struct drm_i915_private *dev_priv = to_i915(dev);
4253         int pipe;
4254
4255         if (I915_HAS_HOTPLUG(dev)) {
4256                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4257                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4258         }
4259
4260         I915_WRITE16(HWSTAM, 0xffff);
4261         for_each_pipe(dev_priv, pipe) {
4262                 /* Clear enable bits; then clear status bits */
4263                 I915_WRITE(PIPESTAT(pipe), 0);
4264                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4265         }
4266         I915_WRITE(IMR, 0xffffffff);
4267         I915_WRITE(IER, 0x0);
4268
4269         I915_WRITE(IIR, I915_READ(IIR));
4270 }
4271
4272 static void i965_irq_preinstall(struct drm_device * dev)
4273 {
4274         struct drm_i915_private *dev_priv = to_i915(dev);
4275         int pipe;
4276
4277         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4278         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4279
4280         I915_WRITE(HWSTAM, 0xeffe);
4281         for_each_pipe(dev_priv, pipe)
4282                 I915_WRITE(PIPESTAT(pipe), 0);
4283         I915_WRITE(IMR, 0xffffffff);
4284         I915_WRITE(IER, 0x0);
4285         POSTING_READ(IER);
4286 }
4287
4288 static int i965_irq_postinstall(struct drm_device *dev)
4289 {
4290         struct drm_i915_private *dev_priv = to_i915(dev);
4291         u32 enable_mask;
4292         u32 error_mask;
4293
4294         /* Unmask the interrupts that we always want on. */
4295         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4296                                I915_DISPLAY_PORT_INTERRUPT |
4297                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4298                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4299                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4300                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4301                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4302
4303         enable_mask = ~dev_priv->irq_mask;
4304         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4305                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4306         enable_mask |= I915_USER_INTERRUPT;
4307
4308         if (IS_G4X(dev_priv))
4309                 enable_mask |= I915_BSD_USER_INTERRUPT;
4310
4311         /* Interrupt setup is already guaranteed to be single-threaded, this is
4312          * just to make the assert_spin_locked check happy. */
4313         spin_lock_irq(&dev_priv->irq_lock);
4314         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4315         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4316         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4317         spin_unlock_irq(&dev_priv->irq_lock);
4318
4319         /*
4320          * Enable some error detection, note the instruction error mask
4321          * bit is reserved, so we leave it masked.
4322          */
4323         if (IS_G4X(dev_priv)) {
4324                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4325                                GM45_ERROR_MEM_PRIV |
4326                                GM45_ERROR_CP_PRIV |
4327                                I915_ERROR_MEMORY_REFRESH);
4328         } else {
4329                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4330                                I915_ERROR_MEMORY_REFRESH);
4331         }
4332         I915_WRITE(EMR, error_mask);
4333
4334         I915_WRITE(IMR, dev_priv->irq_mask);
4335         I915_WRITE(IER, enable_mask);
4336         POSTING_READ(IER);
4337
4338         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4339         POSTING_READ(PORT_HOTPLUG_EN);
4340
4341         i915_enable_asle_pipestat(dev_priv);
4342
4343         return 0;
4344 }
4345
4346 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4347 {
4348         u32 hotplug_en;
4349
4350         assert_spin_locked(&dev_priv->irq_lock);
4351
4352         /* Note HDMI and DP share hotplug bits */
4353         /* enable bits are the same for all generations */
4354         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4355         /* Programming the CRT detection parameters tends
4356            to generate a spurious hotplug event about three
4357            seconds later.  So just do it once.
4358         */
4359         if (IS_G4X(dev_priv))
4360                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4361         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4362
4363         /* Ignore TV since it's buggy */
4364         i915_hotplug_interrupt_update_locked(dev_priv,
4365                                              HOTPLUG_INT_EN_MASK |
4366                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4367                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4368                                              hotplug_en);
4369 }
4370
4371 static irqreturn_t i965_irq_handler(int irq, void *arg)
4372 {
4373         struct drm_device *dev = arg;
4374         struct drm_i915_private *dev_priv = to_i915(dev);
4375         u32 iir, new_iir;
4376         u32 pipe_stats[I915_MAX_PIPES];
4377         int ret = IRQ_NONE, pipe;
4378         u32 flip_mask =
4379                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4380                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4381
4382         if (!intel_irqs_enabled(dev_priv))
4383                 return IRQ_NONE;
4384
4385         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4386         disable_rpm_wakeref_asserts(dev_priv);
4387
4388         iir = I915_READ(IIR);
4389
4390         for (;;) {
4391                 bool irq_received = (iir & ~flip_mask) != 0;
4392                 bool blc_event = false;
4393
4394                 /* Can't rely on pipestat interrupt bit in iir as it might
4395                  * have been cleared after the pipestat interrupt was received.
4396                  * It doesn't set the bit in iir again, but it still produces
4397                  * interrupts (for non-MSI).
4398                  */
4399                 spin_lock(&dev_priv->irq_lock);
4400                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4401                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4402
4403                 for_each_pipe(dev_priv, pipe) {
4404                         i915_reg_t reg = PIPESTAT(pipe);
4405                         pipe_stats[pipe] = I915_READ(reg);
4406
4407                         /*
4408                          * Clear the PIPE*STAT regs before the IIR
4409                          */
4410                         if (pipe_stats[pipe] & 0x8000ffff) {
4411                                 I915_WRITE(reg, pipe_stats[pipe]);
4412                                 irq_received = true;
4413                         }
4414                 }
4415                 spin_unlock(&dev_priv->irq_lock);
4416
4417                 if (!irq_received)
4418                         break;
4419
4420                 ret = IRQ_HANDLED;
4421
4422                 /* Consume port.  Then clear IIR or we'll miss events */
4423                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4424                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4425                         if (hotplug_status)
4426                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4427                 }
4428
4429                 I915_WRITE(IIR, iir & ~flip_mask);
4430                 new_iir = I915_READ(IIR); /* Flush posted writes */
4431
4432                 if (iir & I915_USER_INTERRUPT)
4433                         notify_ring(&dev_priv->engine[RCS]);
4434                 if (iir & I915_BSD_USER_INTERRUPT)
4435                         notify_ring(&dev_priv->engine[VCS]);
4436
4437                 for_each_pipe(dev_priv, pipe) {
4438                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4439                             i915_handle_vblank(dev_priv, pipe, pipe, iir))
4440                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4441
4442                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4443                                 blc_event = true;
4444
4445                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4446                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4447
4448                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4449                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4450                 }
4451
4452                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4453                         intel_opregion_asle_intr(dev_priv);
4454
4455                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4456                         gmbus_irq_handler(dev_priv);
4457
4458                 /* With MSI, interrupts are only generated when iir
4459                  * transitions from zero to nonzero.  If another bit got
4460                  * set while we were handling the existing iir bits, then
4461                  * we would never get another interrupt.
4462                  *
4463                  * This is fine on non-MSI as well, as if we hit this path
4464                  * we avoid exiting the interrupt handler only to generate
4465                  * another one.
4466                  *
4467                  * Note that for MSI this could cause a stray interrupt report
4468                  * if an interrupt landed in the time between writing IIR and
4469                  * the posting read.  This should be rare enough to never
4470                  * trigger the 99% of 100,000 interrupts test for disabling
4471                  * stray interrupts.
4472                  */
4473                 iir = new_iir;
4474         }
4475
4476         enable_rpm_wakeref_asserts(dev_priv);
4477
4478         return ret;
4479 }
4480
4481 static void i965_irq_uninstall(struct drm_device * dev)
4482 {
4483         struct drm_i915_private *dev_priv = to_i915(dev);
4484         int pipe;
4485
4486         if (!dev_priv)
4487                 return;
4488
4489         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4490         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4491
4492         I915_WRITE(HWSTAM, 0xffffffff);
4493         for_each_pipe(dev_priv, pipe)
4494                 I915_WRITE(PIPESTAT(pipe), 0);
4495         I915_WRITE(IMR, 0xffffffff);
4496         I915_WRITE(IER, 0x0);
4497
4498         for_each_pipe(dev_priv, pipe)
4499                 I915_WRITE(PIPESTAT(pipe),
4500                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4501         I915_WRITE(IIR, I915_READ(IIR));
4502 }
4503
4504 /**
4505  * intel_irq_init - initializes irq support
4506  * @dev_priv: i915 device instance
4507  *
4508  * This function initializes all the irq support including work items, timers
4509  * and all the vtables. It does not setup the interrupt itself though.
4510  */
4511 void intel_irq_init(struct drm_i915_private *dev_priv)
4512 {
4513         struct drm_device *dev = dev_priv->dev;
4514
4515         intel_hpd_init_work(dev_priv);
4516
4517         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4518         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4519
4520         /* Let's track the enabled rps events */
4521         if (IS_VALLEYVIEW(dev_priv))
4522                 /* WaGsvRC0ResidencyMethod:vlv */
4523                 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4524         else
4525                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4526
4527         dev_priv->rps.pm_intr_keep = 0;
4528
4529         /*
4530          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
4531          * if GEN6_PM_UP_EI_EXPIRED is masked.
4532          *
4533          * TODO: verify if this can be reproduced on VLV,CHV.
4534          */
4535         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
4536                 dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
4537
4538         if (INTEL_INFO(dev_priv)->gen >= 8)
4539                 dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
4540
4541         INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4542                           i915_hangcheck_elapsed);
4543
4544         if (IS_GEN2(dev_priv)) {
4545                 dev->max_vblank_count = 0;
4546                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4547         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4548                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4549                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4550         } else {
4551                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4552                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4553         }
4554
4555         /*
4556          * Opt out of the vblank disable timer on everything except gen2.
4557          * Gen2 doesn't have a hardware frame counter and so depends on
4558          * vblank interrupts to produce sane vblank seuquence numbers.
4559          */
4560         if (!IS_GEN2(dev_priv))
4561                 dev->vblank_disable_immediate = true;
4562
4563         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4564         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4565
4566         if (IS_CHERRYVIEW(dev_priv)) {
4567                 dev->driver->irq_handler = cherryview_irq_handler;
4568                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4569                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4570                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4571                 dev->driver->enable_vblank = valleyview_enable_vblank;
4572                 dev->driver->disable_vblank = valleyview_disable_vblank;
4573                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4574         } else if (IS_VALLEYVIEW(dev_priv)) {
4575                 dev->driver->irq_handler = valleyview_irq_handler;
4576                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4577                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4578                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4579                 dev->driver->enable_vblank = valleyview_enable_vblank;
4580                 dev->driver->disable_vblank = valleyview_disable_vblank;
4581                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4582         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4583                 dev->driver->irq_handler = gen8_irq_handler;
4584                 dev->driver->irq_preinstall = gen8_irq_reset;
4585                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4586                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4587                 dev->driver->enable_vblank = gen8_enable_vblank;
4588                 dev->driver->disable_vblank = gen8_disable_vblank;
4589                 if (IS_BROXTON(dev))
4590                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4591                 else if (HAS_PCH_SPT(dev))
4592                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4593                 else
4594                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4595         } else if (HAS_PCH_SPLIT(dev)) {
4596                 dev->driver->irq_handler = ironlake_irq_handler;
4597                 dev->driver->irq_preinstall = ironlake_irq_reset;
4598                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4599                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4600                 dev->driver->enable_vblank = ironlake_enable_vblank;
4601                 dev->driver->disable_vblank = ironlake_disable_vblank;
4602                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4603         } else {
4604                 if (IS_GEN2(dev_priv)) {
4605                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4606                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4607                         dev->driver->irq_handler = i8xx_irq_handler;
4608                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4609                 } else if (IS_GEN3(dev_priv)) {
4610                         dev->driver->irq_preinstall = i915_irq_preinstall;
4611                         dev->driver->irq_postinstall = i915_irq_postinstall;
4612                         dev->driver->irq_uninstall = i915_irq_uninstall;
4613                         dev->driver->irq_handler = i915_irq_handler;
4614                 } else {
4615                         dev->driver->irq_preinstall = i965_irq_preinstall;
4616                         dev->driver->irq_postinstall = i965_irq_postinstall;
4617                         dev->driver->irq_uninstall = i965_irq_uninstall;
4618                         dev->driver->irq_handler = i965_irq_handler;
4619                 }
4620                 if (I915_HAS_HOTPLUG(dev_priv))
4621                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4622                 dev->driver->enable_vblank = i915_enable_vblank;
4623                 dev->driver->disable_vblank = i915_disable_vblank;
4624         }
4625 }
4626
4627 /**
4628  * intel_irq_install - enables the hardware interrupt
4629  * @dev_priv: i915 device instance
4630  *
4631  * This function enables the hardware interrupt handling, but leaves the hotplug
4632  * handling still disabled. It is called after intel_irq_init().
4633  *
4634  * In the driver load and resume code we need working interrupts in a few places
4635  * but don't want to deal with the hassle of concurrent probe and hotplug
4636  * workers. Hence the split into this two-stage approach.
4637  */
4638 int intel_irq_install(struct drm_i915_private *dev_priv)
4639 {
4640         /*
4641          * We enable some interrupt sources in our postinstall hooks, so mark
4642          * interrupts as enabled _before_ actually enabling them to avoid
4643          * special cases in our ordering checks.
4644          */
4645         dev_priv->pm.irqs_enabled = true;
4646
4647         return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4648 }
4649
4650 /**
4651  * intel_irq_uninstall - finilizes all irq handling
4652  * @dev_priv: i915 device instance
4653  *
4654  * This stops interrupt and hotplug handling and unregisters and frees all
4655  * resources acquired in the init functions.
4656  */
4657 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4658 {
4659         drm_irq_uninstall(dev_priv->dev);
4660         intel_hpd_cancel_work(dev_priv);
4661         dev_priv->pm.irqs_enabled = false;
4662 }
4663
4664 /**
4665  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4666  * @dev_priv: i915 device instance
4667  *
4668  * This function is used to disable interrupts at runtime, both in the runtime
4669  * pm and the system suspend/resume code.
4670  */
4671 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4672 {
4673         dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4674         dev_priv->pm.irqs_enabled = false;
4675         synchronize_irq(dev_priv->dev->irq);
4676 }
4677
4678 /**
4679  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4680  * @dev_priv: i915 device instance
4681  *
4682  * This function is used to enable interrupts at runtime, both in the runtime
4683  * pm and the system suspend/resume code.
4684  */
4685 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4686 {
4687         dev_priv->pm.irqs_enabled = true;
4688         dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4689         dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4690 }