4378a659d962d96d31b0f5a503dbb6318c764855
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143                                     i915_reg_t reg)
144 {
145         u32 val = I915_READ(reg);
146
147         if (val == 0)
148                 return;
149
150         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151              i915_mmio_reg_offset(reg), val);
152         I915_WRITE(reg, 0xffffffff);
153         POSTING_READ(reg);
154         I915_WRITE(reg, 0xffffffff);
155         POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159         gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162         POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166         gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167         I915_WRITE(type##IER, (ier_val)); \
168         I915_WRITE(type##IMR, (imr_val)); \
169         POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177                                      uint32_t mask,
178                                      uint32_t bits)
179 {
180         uint32_t val;
181
182         assert_spin_locked(&dev_priv->irq_lock);
183         WARN_ON(bits & ~mask);
184
185         val = I915_READ(PORT_HOTPLUG_EN);
186         val &= ~mask;
187         val |= bits;
188         I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192  * i915_hotplug_interrupt_update - update hotplug interrupt enable
193  * @dev_priv: driver private
194  * @mask: bits to update
195  * @bits: bits to enable
196  * NOTE: the HPD enable bits are modified both inside and outside
197  * of an interrupt context. To avoid that read-modify-write cycles
198  * interfer, these bits are protected by a spinlock. Since this
199  * function is usually not called from a context where the lock is
200  * held already, this function acquires the lock itself. A non-locking
201  * version is also available.
202  */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204                                    uint32_t mask,
205                                    uint32_t bits)
206 {
207         spin_lock_irq(&dev_priv->irq_lock);
208         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209         spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213  * ilk_update_display_irq - update DEIMR
214  * @dev_priv: driver private
215  * @interrupt_mask: mask of interrupt bits to update
216  * @enabled_irq_mask: mask of interrupt bits to enable
217  */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219                             uint32_t interrupt_mask,
220                             uint32_t enabled_irq_mask)
221 {
222         uint32_t new_val;
223
224         assert_spin_locked(&dev_priv->irq_lock);
225
226         WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229                 return;
230
231         new_val = dev_priv->irq_mask;
232         new_val &= ~interrupt_mask;
233         new_val |= (~enabled_irq_mask & interrupt_mask);
234
235         if (new_val != dev_priv->irq_mask) {
236                 dev_priv->irq_mask = new_val;
237                 I915_WRITE(DEIMR, dev_priv->irq_mask);
238                 POSTING_READ(DEIMR);
239         }
240 }
241
242 /**
243  * ilk_update_gt_irq - update GTIMR
244  * @dev_priv: driver private
245  * @interrupt_mask: mask of interrupt bits to update
246  * @enabled_irq_mask: mask of interrupt bits to enable
247  */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249                               uint32_t interrupt_mask,
250                               uint32_t enabled_irq_mask)
251 {
252         assert_spin_locked(&dev_priv->irq_lock);
253
254         WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257                 return;
258
259         dev_priv->gt_irq_mask &= ~interrupt_mask;
260         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262         POSTING_READ(GTIMR);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267         ilk_update_gt_irq(dev_priv, mask, mask);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272         ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291  * snb_update_pm_irq - update GEN6_PMIMR
292  * @dev_priv: driver private
293  * @interrupt_mask: mask of interrupt bits to update
294  * @enabled_irq_mask: mask of interrupt bits to enable
295  */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297                               uint32_t interrupt_mask,
298                               uint32_t enabled_irq_mask)
299 {
300         uint32_t new_val;
301
302         WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304         assert_spin_locked(&dev_priv->irq_lock);
305
306         new_val = dev_priv->pm_irq_mask;
307         new_val &= ~interrupt_mask;
308         new_val |= (~enabled_irq_mask & interrupt_mask);
309
310         if (new_val != dev_priv->pm_irq_mask) {
311                 dev_priv->pm_irq_mask = new_val;
312                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313                 POSTING_READ(gen6_pm_imr(dev_priv));
314         }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320                 return;
321
322         snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326                                   uint32_t mask)
327 {
328         snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334                 return;
335
336         __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
340 {
341         i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343         spin_lock_irq(&dev_priv->irq_lock);
344         I915_WRITE(reg, dev_priv->pm_rps_events);
345         I915_WRITE(reg, dev_priv->pm_rps_events);
346         POSTING_READ(reg);
347         dev_priv->rps.pm_iir = 0;
348         spin_unlock_irq(&dev_priv->irq_lock);
349 }
350
351 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
352 {
353         spin_lock_irq(&dev_priv->irq_lock);
354
355         WARN_ON(dev_priv->rps.pm_iir);
356         WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
357         dev_priv->rps.interrupts_enabled = true;
358         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
359                                 dev_priv->pm_rps_events);
360         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
361
362         spin_unlock_irq(&dev_priv->irq_lock);
363 }
364
365 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
366 {
367         return (mask & ~dev_priv->rps.pm_intr_keep);
368 }
369
370 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372         spin_lock_irq(&dev_priv->irq_lock);
373         dev_priv->rps.interrupts_enabled = false;
374         spin_unlock_irq(&dev_priv->irq_lock);
375
376         cancel_work_sync(&dev_priv->rps.work);
377
378         spin_lock_irq(&dev_priv->irq_lock);
379
380         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
381
382         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
383         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
384                                 ~dev_priv->pm_rps_events);
385
386         spin_unlock_irq(&dev_priv->irq_lock);
387
388         synchronize_irq(dev_priv->dev->irq);
389 }
390
391 /**
392  * bdw_update_port_irq - update DE port interrupt
393  * @dev_priv: driver private
394  * @interrupt_mask: mask of interrupt bits to update
395  * @enabled_irq_mask: mask of interrupt bits to enable
396  */
397 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
398                                 uint32_t interrupt_mask,
399                                 uint32_t enabled_irq_mask)
400 {
401         uint32_t new_val;
402         uint32_t old_val;
403
404         assert_spin_locked(&dev_priv->irq_lock);
405
406         WARN_ON(enabled_irq_mask & ~interrupt_mask);
407
408         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
409                 return;
410
411         old_val = I915_READ(GEN8_DE_PORT_IMR);
412
413         new_val = old_val;
414         new_val &= ~interrupt_mask;
415         new_val |= (~enabled_irq_mask & interrupt_mask);
416
417         if (new_val != old_val) {
418                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
419                 POSTING_READ(GEN8_DE_PORT_IMR);
420         }
421 }
422
423 /**
424  * bdw_update_pipe_irq - update DE pipe interrupt
425  * @dev_priv: driver private
426  * @pipe: pipe whose interrupt to update
427  * @interrupt_mask: mask of interrupt bits to update
428  * @enabled_irq_mask: mask of interrupt bits to enable
429  */
430 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
431                          enum pipe pipe,
432                          uint32_t interrupt_mask,
433                          uint32_t enabled_irq_mask)
434 {
435         uint32_t new_val;
436
437         assert_spin_locked(&dev_priv->irq_lock);
438
439         WARN_ON(enabled_irq_mask & ~interrupt_mask);
440
441         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
442                 return;
443
444         new_val = dev_priv->de_irq_mask[pipe];
445         new_val &= ~interrupt_mask;
446         new_val |= (~enabled_irq_mask & interrupt_mask);
447
448         if (new_val != dev_priv->de_irq_mask[pipe]) {
449                 dev_priv->de_irq_mask[pipe] = new_val;
450                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
451                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
452         }
453 }
454
455 /**
456  * ibx_display_interrupt_update - update SDEIMR
457  * @dev_priv: driver private
458  * @interrupt_mask: mask of interrupt bits to update
459  * @enabled_irq_mask: mask of interrupt bits to enable
460  */
461 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
462                                   uint32_t interrupt_mask,
463                                   uint32_t enabled_irq_mask)
464 {
465         uint32_t sdeimr = I915_READ(SDEIMR);
466         sdeimr &= ~interrupt_mask;
467         sdeimr |= (~enabled_irq_mask & interrupt_mask);
468
469         WARN_ON(enabled_irq_mask & ~interrupt_mask);
470
471         assert_spin_locked(&dev_priv->irq_lock);
472
473         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
474                 return;
475
476         I915_WRITE(SDEIMR, sdeimr);
477         POSTING_READ(SDEIMR);
478 }
479
480 static void
481 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
482                        u32 enable_mask, u32 status_mask)
483 {
484         i915_reg_t reg = PIPESTAT(pipe);
485         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
486
487         assert_spin_locked(&dev_priv->irq_lock);
488         WARN_ON(!intel_irqs_enabled(dev_priv));
489
490         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
491                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
492                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
493                       pipe_name(pipe), enable_mask, status_mask))
494                 return;
495
496         if ((pipestat & enable_mask) == enable_mask)
497                 return;
498
499         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
500
501         /* Enable the interrupt, clear any pending status */
502         pipestat |= enable_mask | status_mask;
503         I915_WRITE(reg, pipestat);
504         POSTING_READ(reg);
505 }
506
507 static void
508 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
509                         u32 enable_mask, u32 status_mask)
510 {
511         i915_reg_t reg = PIPESTAT(pipe);
512         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
513
514         assert_spin_locked(&dev_priv->irq_lock);
515         WARN_ON(!intel_irqs_enabled(dev_priv));
516
517         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
518                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
519                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
520                       pipe_name(pipe), enable_mask, status_mask))
521                 return;
522
523         if ((pipestat & enable_mask) == 0)
524                 return;
525
526         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
527
528         pipestat &= ~enable_mask;
529         I915_WRITE(reg, pipestat);
530         POSTING_READ(reg);
531 }
532
533 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
534 {
535         u32 enable_mask = status_mask << 16;
536
537         /*
538          * On pipe A we don't support the PSR interrupt yet,
539          * on pipe B and C the same bit MBZ.
540          */
541         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
542                 return 0;
543         /*
544          * On pipe B and C we don't support the PSR interrupt yet, on pipe
545          * A the same bit is for perf counters which we don't use either.
546          */
547         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
548                 return 0;
549
550         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
551                          SPRITE0_FLIP_DONE_INT_EN_VLV |
552                          SPRITE1_FLIP_DONE_INT_EN_VLV);
553         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
554                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
555         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
556                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
557
558         return enable_mask;
559 }
560
561 void
562 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
563                      u32 status_mask)
564 {
565         u32 enable_mask;
566
567         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
568                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
569                                                            status_mask);
570         else
571                 enable_mask = status_mask << 16;
572         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
573 }
574
575 void
576 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
577                       u32 status_mask)
578 {
579         u32 enable_mask;
580
581         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
582                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
583                                                            status_mask);
584         else
585                 enable_mask = status_mask << 16;
586         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
587 }
588
589 /**
590  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
591  * @dev_priv: i915 device private
592  */
593 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
594 {
595         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
596                 return;
597
598         spin_lock_irq(&dev_priv->irq_lock);
599
600         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
601         if (INTEL_GEN(dev_priv) >= 4)
602                 i915_enable_pipestat(dev_priv, PIPE_A,
603                                      PIPE_LEGACY_BLC_EVENT_STATUS);
604
605         spin_unlock_irq(&dev_priv->irq_lock);
606 }
607
608 /*
609  * This timing diagram depicts the video signal in and
610  * around the vertical blanking period.
611  *
612  * Assumptions about the fictitious mode used in this example:
613  *  vblank_start >= 3
614  *  vsync_start = vblank_start + 1
615  *  vsync_end = vblank_start + 2
616  *  vtotal = vblank_start + 3
617  *
618  *           start of vblank:
619  *           latch double buffered registers
620  *           increment frame counter (ctg+)
621  *           generate start of vblank interrupt (gen4+)
622  *           |
623  *           |          frame start:
624  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
625  *           |          may be shifted forward 1-3 extra lines via PIPECONF
626  *           |          |
627  *           |          |  start of vsync:
628  *           |          |  generate vsync interrupt
629  *           |          |  |
630  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
631  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
632  * ----va---> <-----------------vb--------------------> <--------va-------------
633  *       |          |       <----vs----->                     |
634  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
635  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
636  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
637  *       |          |                                         |
638  *       last visible pixel                                   first visible pixel
639  *                  |                                         increment frame counter (gen3/4)
640  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
641  *
642  * x  = horizontal active
643  * _  = horizontal blanking
644  * hs = horizontal sync
645  * va = vertical active
646  * vb = vertical blanking
647  * vs = vertical sync
648  * vbs = vblank_start (number)
649  *
650  * Summary:
651  * - most events happen at the start of horizontal sync
652  * - frame start happens at the start of horizontal blank, 1-4 lines
653  *   (depending on PIPECONF settings) after the start of vblank
654  * - gen3/4 pixel and frame counter are synchronized with the start
655  *   of horizontal active on the first line of vertical active
656  */
657
658 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
659 {
660         /* Gen2 doesn't have a hardware frame counter */
661         return 0;
662 }
663
664 /* Called from drm generic code, passed a 'crtc', which
665  * we use as a pipe index
666  */
667 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
668 {
669         struct drm_i915_private *dev_priv = dev->dev_private;
670         i915_reg_t high_frame, low_frame;
671         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
672         struct intel_crtc *intel_crtc =
673                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
674         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
675
676         htotal = mode->crtc_htotal;
677         hsync_start = mode->crtc_hsync_start;
678         vbl_start = mode->crtc_vblank_start;
679         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
680                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
681
682         /* Convert to pixel count */
683         vbl_start *= htotal;
684
685         /* Start of vblank event occurs at start of hsync */
686         vbl_start -= htotal - hsync_start;
687
688         high_frame = PIPEFRAME(pipe);
689         low_frame = PIPEFRAMEPIXEL(pipe);
690
691         /*
692          * High & low register fields aren't synchronized, so make sure
693          * we get a low value that's stable across two reads of the high
694          * register.
695          */
696         do {
697                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
698                 low   = I915_READ(low_frame);
699                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
700         } while (high1 != high2);
701
702         high1 >>= PIPE_FRAME_HIGH_SHIFT;
703         pixel = low & PIPE_PIXEL_MASK;
704         low >>= PIPE_FRAME_LOW_SHIFT;
705
706         /*
707          * The frame counter increments at beginning of active.
708          * Cook up a vblank counter by also checking the pixel
709          * counter against vblank start.
710          */
711         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
712 }
713
714 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
715 {
716         struct drm_i915_private *dev_priv = dev->dev_private;
717
718         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
719 }
720
721 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
722 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
723 {
724         struct drm_device *dev = crtc->base.dev;
725         struct drm_i915_private *dev_priv = dev->dev_private;
726         const struct drm_display_mode *mode = &crtc->base.hwmode;
727         enum pipe pipe = crtc->pipe;
728         int position, vtotal;
729
730         vtotal = mode->crtc_vtotal;
731         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
732                 vtotal /= 2;
733
734         if (IS_GEN2(dev_priv))
735                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
736         else
737                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
738
739         /*
740          * On HSW, the DSL reg (0x70000) appears to return 0 if we
741          * read it just before the start of vblank.  So try it again
742          * so we don't accidentally end up spanning a vblank frame
743          * increment, causing the pipe_update_end() code to squak at us.
744          *
745          * The nature of this problem means we can't simply check the ISR
746          * bit and return the vblank start value; nor can we use the scanline
747          * debug register in the transcoder as it appears to have the same
748          * problem.  We may need to extend this to include other platforms,
749          * but so far testing only shows the problem on HSW.
750          */
751         if (HAS_DDI(dev_priv) && !position) {
752                 int i, temp;
753
754                 for (i = 0; i < 100; i++) {
755                         udelay(1);
756                         temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
757                                 DSL_LINEMASK_GEN3;
758                         if (temp != position) {
759                                 position = temp;
760                                 break;
761                         }
762                 }
763         }
764
765         /*
766          * See update_scanline_offset() for the details on the
767          * scanline_offset adjustment.
768          */
769         return (position + crtc->scanline_offset) % vtotal;
770 }
771
772 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
773                                     unsigned int flags, int *vpos, int *hpos,
774                                     ktime_t *stime, ktime_t *etime,
775                                     const struct drm_display_mode *mode)
776 {
777         struct drm_i915_private *dev_priv = dev->dev_private;
778         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
779         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
780         int position;
781         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
782         bool in_vbl = true;
783         int ret = 0;
784         unsigned long irqflags;
785
786         if (WARN_ON(!mode->crtc_clock)) {
787                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
788                                  "pipe %c\n", pipe_name(pipe));
789                 return 0;
790         }
791
792         htotal = mode->crtc_htotal;
793         hsync_start = mode->crtc_hsync_start;
794         vtotal = mode->crtc_vtotal;
795         vbl_start = mode->crtc_vblank_start;
796         vbl_end = mode->crtc_vblank_end;
797
798         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
799                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
800                 vbl_end /= 2;
801                 vtotal /= 2;
802         }
803
804         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
805
806         /*
807          * Lock uncore.lock, as we will do multiple timing critical raw
808          * register reads, potentially with preemption disabled, so the
809          * following code must not block on uncore.lock.
810          */
811         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
812
813         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
814
815         /* Get optional system timestamp before query. */
816         if (stime)
817                 *stime = ktime_get();
818
819         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
820                 /* No obvious pixelcount register. Only query vertical
821                  * scanout position from Display scan line register.
822                  */
823                 position = __intel_get_crtc_scanline(intel_crtc);
824         } else {
825                 /* Have access to pixelcount since start of frame.
826                  * We can split this into vertical and horizontal
827                  * scanout position.
828                  */
829                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
830
831                 /* convert to pixel counts */
832                 vbl_start *= htotal;
833                 vbl_end *= htotal;
834                 vtotal *= htotal;
835
836                 /*
837                  * In interlaced modes, the pixel counter counts all pixels,
838                  * so one field will have htotal more pixels. In order to avoid
839                  * the reported position from jumping backwards when the pixel
840                  * counter is beyond the length of the shorter field, just
841                  * clamp the position the length of the shorter field. This
842                  * matches how the scanline counter based position works since
843                  * the scanline counter doesn't count the two half lines.
844                  */
845                 if (position >= vtotal)
846                         position = vtotal - 1;
847
848                 /*
849                  * Start of vblank interrupt is triggered at start of hsync,
850                  * just prior to the first active line of vblank. However we
851                  * consider lines to start at the leading edge of horizontal
852                  * active. So, should we get here before we've crossed into
853                  * the horizontal active of the first line in vblank, we would
854                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
855                  * always add htotal-hsync_start to the current pixel position.
856                  */
857                 position = (position + htotal - hsync_start) % vtotal;
858         }
859
860         /* Get optional system timestamp after query. */
861         if (etime)
862                 *etime = ktime_get();
863
864         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
865
866         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
867
868         in_vbl = position >= vbl_start && position < vbl_end;
869
870         /*
871          * While in vblank, position will be negative
872          * counting up towards 0 at vbl_end. And outside
873          * vblank, position will be positive counting
874          * up since vbl_end.
875          */
876         if (position >= vbl_start)
877                 position -= vbl_end;
878         else
879                 position += vtotal - vbl_end;
880
881         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
882                 *vpos = position;
883                 *hpos = 0;
884         } else {
885                 *vpos = position / htotal;
886                 *hpos = position - (*vpos * htotal);
887         }
888
889         /* In vblank? */
890         if (in_vbl)
891                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
892
893         return ret;
894 }
895
896 int intel_get_crtc_scanline(struct intel_crtc *crtc)
897 {
898         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
899         unsigned long irqflags;
900         int position;
901
902         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
903         position = __intel_get_crtc_scanline(crtc);
904         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
905
906         return position;
907 }
908
909 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
910                               int *max_error,
911                               struct timeval *vblank_time,
912                               unsigned flags)
913 {
914         struct drm_crtc *crtc;
915
916         if (pipe >= INTEL_INFO(dev)->num_pipes) {
917                 DRM_ERROR("Invalid crtc %u\n", pipe);
918                 return -EINVAL;
919         }
920
921         /* Get drm_crtc to timestamp: */
922         crtc = intel_get_crtc_for_pipe(dev, pipe);
923         if (crtc == NULL) {
924                 DRM_ERROR("Invalid crtc %u\n", pipe);
925                 return -EINVAL;
926         }
927
928         if (!crtc->hwmode.crtc_clock) {
929                 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
930                 return -EBUSY;
931         }
932
933         /* Helper routine in DRM core does all the work: */
934         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
935                                                      vblank_time, flags,
936                                                      &crtc->hwmode);
937 }
938
939 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
940 {
941         u32 busy_up, busy_down, max_avg, min_avg;
942         u8 new_delay;
943
944         spin_lock(&mchdev_lock);
945
946         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
947
948         new_delay = dev_priv->ips.cur_delay;
949
950         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
951         busy_up = I915_READ(RCPREVBSYTUPAVG);
952         busy_down = I915_READ(RCPREVBSYTDNAVG);
953         max_avg = I915_READ(RCBMAXAVG);
954         min_avg = I915_READ(RCBMINAVG);
955
956         /* Handle RCS change request from hw */
957         if (busy_up > max_avg) {
958                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
959                         new_delay = dev_priv->ips.cur_delay - 1;
960                 if (new_delay < dev_priv->ips.max_delay)
961                         new_delay = dev_priv->ips.max_delay;
962         } else if (busy_down < min_avg) {
963                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
964                         new_delay = dev_priv->ips.cur_delay + 1;
965                 if (new_delay > dev_priv->ips.min_delay)
966                         new_delay = dev_priv->ips.min_delay;
967         }
968
969         if (ironlake_set_drps(dev_priv, new_delay))
970                 dev_priv->ips.cur_delay = new_delay;
971
972         spin_unlock(&mchdev_lock);
973
974         return;
975 }
976
977 static void notify_ring(struct intel_engine_cs *engine)
978 {
979         if (!intel_engine_initialized(engine))
980                 return;
981
982         trace_i915_gem_request_notify(engine);
983         engine->user_interrupts++;
984
985         wake_up_all(&engine->irq_queue);
986 }
987
988 static void vlv_c0_read(struct drm_i915_private *dev_priv,
989                         struct intel_rps_ei *ei)
990 {
991         ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
992         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
993         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
994 }
995
996 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
997                          const struct intel_rps_ei *old,
998                          const struct intel_rps_ei *now,
999                          int threshold)
1000 {
1001         u64 time, c0;
1002         unsigned int mul = 100;
1003
1004         if (old->cz_clock == 0)
1005                 return false;
1006
1007         if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1008                 mul <<= 8;
1009
1010         time = now->cz_clock - old->cz_clock;
1011         time *= threshold * dev_priv->czclk_freq;
1012
1013         /* Workload can be split between render + media, e.g. SwapBuffers
1014          * being blitted in X after being rendered in mesa. To account for
1015          * this we need to combine both engines into our activity counter.
1016          */
1017         c0 = now->render_c0 - old->render_c0;
1018         c0 += now->media_c0 - old->media_c0;
1019         c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1020
1021         return c0 >= time;
1022 }
1023
1024 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1025 {
1026         vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1027         dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1028 }
1029
1030 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1031 {
1032         struct intel_rps_ei now;
1033         u32 events = 0;
1034
1035         if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1036                 return 0;
1037
1038         vlv_c0_read(dev_priv, &now);
1039         if (now.cz_clock == 0)
1040                 return 0;
1041
1042         if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1043                 if (!vlv_c0_above(dev_priv,
1044                                   &dev_priv->rps.down_ei, &now,
1045                                   dev_priv->rps.down_threshold))
1046                         events |= GEN6_PM_RP_DOWN_THRESHOLD;
1047                 dev_priv->rps.down_ei = now;
1048         }
1049
1050         if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1051                 if (vlv_c0_above(dev_priv,
1052                                  &dev_priv->rps.up_ei, &now,
1053                                  dev_priv->rps.up_threshold))
1054                         events |= GEN6_PM_RP_UP_THRESHOLD;
1055                 dev_priv->rps.up_ei = now;
1056         }
1057
1058         return events;
1059 }
1060
1061 static bool any_waiters(struct drm_i915_private *dev_priv)
1062 {
1063         struct intel_engine_cs *engine;
1064
1065         for_each_engine(engine, dev_priv)
1066                 if (engine->irq_refcount)
1067                         return true;
1068
1069         return false;
1070 }
1071
1072 static void gen6_pm_rps_work(struct work_struct *work)
1073 {
1074         struct drm_i915_private *dev_priv =
1075                 container_of(work, struct drm_i915_private, rps.work);
1076         bool client_boost;
1077         int new_delay, adj, min, max;
1078         u32 pm_iir;
1079
1080         spin_lock_irq(&dev_priv->irq_lock);
1081         /* Speed up work cancelation during disabling rps interrupts. */
1082         if (!dev_priv->rps.interrupts_enabled) {
1083                 spin_unlock_irq(&dev_priv->irq_lock);
1084                 return;
1085         }
1086
1087         /*
1088          * The RPS work is synced during runtime suspend, we don't require a
1089          * wakeref. TODO: instead of disabling the asserts make sure that we
1090          * always hold an RPM reference while the work is running.
1091          */
1092         DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1093
1094         pm_iir = dev_priv->rps.pm_iir;
1095         dev_priv->rps.pm_iir = 0;
1096         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1097         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1098         client_boost = dev_priv->rps.client_boost;
1099         dev_priv->rps.client_boost = false;
1100         spin_unlock_irq(&dev_priv->irq_lock);
1101
1102         /* Make sure we didn't queue anything we're not going to process. */
1103         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1104
1105         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1106                 goto out;
1107
1108         mutex_lock(&dev_priv->rps.hw_lock);
1109
1110         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1111
1112         adj = dev_priv->rps.last_adj;
1113         new_delay = dev_priv->rps.cur_freq;
1114         min = dev_priv->rps.min_freq_softlimit;
1115         max = dev_priv->rps.max_freq_softlimit;
1116
1117         if (client_boost) {
1118                 new_delay = dev_priv->rps.max_freq_softlimit;
1119                 adj = 0;
1120         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1121                 if (adj > 0)
1122                         adj *= 2;
1123                 else /* CHV needs even encode values */
1124                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1125                 /*
1126                  * For better performance, jump directly
1127                  * to RPe if we're below it.
1128                  */
1129                 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1130                         new_delay = dev_priv->rps.efficient_freq;
1131                         adj = 0;
1132                 }
1133         } else if (any_waiters(dev_priv)) {
1134                 adj = 0;
1135         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1136                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1137                         new_delay = dev_priv->rps.efficient_freq;
1138                 else
1139                         new_delay = dev_priv->rps.min_freq_softlimit;
1140                 adj = 0;
1141         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1142                 if (adj < 0)
1143                         adj *= 2;
1144                 else /* CHV needs even encode values */
1145                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1146         } else { /* unknown event */
1147                 adj = 0;
1148         }
1149
1150         dev_priv->rps.last_adj = adj;
1151
1152         /* sysfs frequency interfaces may have snuck in while servicing the
1153          * interrupt
1154          */
1155         new_delay += adj;
1156         new_delay = clamp_t(int, new_delay, min, max);
1157
1158         intel_set_rps(dev_priv, new_delay);
1159
1160         mutex_unlock(&dev_priv->rps.hw_lock);
1161 out:
1162         ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1163 }
1164
1165
1166 /**
1167  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1168  * occurred.
1169  * @work: workqueue struct
1170  *
1171  * Doesn't actually do anything except notify userspace. As a consequence of
1172  * this event, userspace should try to remap the bad rows since statistically
1173  * it is likely the same row is more likely to go bad again.
1174  */
1175 static void ivybridge_parity_work(struct work_struct *work)
1176 {
1177         struct drm_i915_private *dev_priv =
1178                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1179         u32 error_status, row, bank, subbank;
1180         char *parity_event[6];
1181         uint32_t misccpctl;
1182         uint8_t slice = 0;
1183
1184         /* We must turn off DOP level clock gating to access the L3 registers.
1185          * In order to prevent a get/put style interface, acquire struct mutex
1186          * any time we access those registers.
1187          */
1188         mutex_lock(&dev_priv->dev->struct_mutex);
1189
1190         /* If we've screwed up tracking, just let the interrupt fire again */
1191         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1192                 goto out;
1193
1194         misccpctl = I915_READ(GEN7_MISCCPCTL);
1195         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1196         POSTING_READ(GEN7_MISCCPCTL);
1197
1198         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1199                 i915_reg_t reg;
1200
1201                 slice--;
1202                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1203                         break;
1204
1205                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1206
1207                 reg = GEN7_L3CDERRST1(slice);
1208
1209                 error_status = I915_READ(reg);
1210                 row = GEN7_PARITY_ERROR_ROW(error_status);
1211                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1212                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1213
1214                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1215                 POSTING_READ(reg);
1216
1217                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1218                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1219                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1220                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1221                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1222                 parity_event[5] = NULL;
1223
1224                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1225                                    KOBJ_CHANGE, parity_event);
1226
1227                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1228                           slice, row, bank, subbank);
1229
1230                 kfree(parity_event[4]);
1231                 kfree(parity_event[3]);
1232                 kfree(parity_event[2]);
1233                 kfree(parity_event[1]);
1234         }
1235
1236         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1237
1238 out:
1239         WARN_ON(dev_priv->l3_parity.which_slice);
1240         spin_lock_irq(&dev_priv->irq_lock);
1241         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1242         spin_unlock_irq(&dev_priv->irq_lock);
1243
1244         mutex_unlock(&dev_priv->dev->struct_mutex);
1245 }
1246
1247 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1248                                                u32 iir)
1249 {
1250         if (!HAS_L3_DPF(dev_priv))
1251                 return;
1252
1253         spin_lock(&dev_priv->irq_lock);
1254         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1255         spin_unlock(&dev_priv->irq_lock);
1256
1257         iir &= GT_PARITY_ERROR(dev_priv);
1258         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1259                 dev_priv->l3_parity.which_slice |= 1 << 1;
1260
1261         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1262                 dev_priv->l3_parity.which_slice |= 1 << 0;
1263
1264         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1265 }
1266
1267 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1268                                u32 gt_iir)
1269 {
1270         if (gt_iir &
1271             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1272                 notify_ring(&dev_priv->engine[RCS]);
1273         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1274                 notify_ring(&dev_priv->engine[VCS]);
1275 }
1276
1277 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1278                                u32 gt_iir)
1279 {
1280
1281         if (gt_iir &
1282             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1283                 notify_ring(&dev_priv->engine[RCS]);
1284         if (gt_iir & GT_BSD_USER_INTERRUPT)
1285                 notify_ring(&dev_priv->engine[VCS]);
1286         if (gt_iir & GT_BLT_USER_INTERRUPT)
1287                 notify_ring(&dev_priv->engine[BCS]);
1288
1289         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1290                       GT_BSD_CS_ERROR_INTERRUPT |
1291                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1292                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1293
1294         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1295                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1296 }
1297
1298 static __always_inline void
1299 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1300 {
1301         if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1302                 notify_ring(engine);
1303         if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1304                 tasklet_schedule(&engine->irq_tasklet);
1305 }
1306
1307 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1308                                    u32 master_ctl,
1309                                    u32 gt_iir[4])
1310 {
1311         irqreturn_t ret = IRQ_NONE;
1312
1313         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1314                 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1315                 if (gt_iir[0]) {
1316                         I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1317                         ret = IRQ_HANDLED;
1318                 } else
1319                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1320         }
1321
1322         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1323                 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1324                 if (gt_iir[1]) {
1325                         I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1326                         ret = IRQ_HANDLED;
1327                 } else
1328                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1329         }
1330
1331         if (master_ctl & GEN8_GT_VECS_IRQ) {
1332                 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1333                 if (gt_iir[3]) {
1334                         I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1335                         ret = IRQ_HANDLED;
1336                 } else
1337                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1338         }
1339
1340         if (master_ctl & GEN8_GT_PM_IRQ) {
1341                 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1342                 if (gt_iir[2] & dev_priv->pm_rps_events) {
1343                         I915_WRITE_FW(GEN8_GT_IIR(2),
1344                                       gt_iir[2] & dev_priv->pm_rps_events);
1345                         ret = IRQ_HANDLED;
1346                 } else
1347                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1348         }
1349
1350         return ret;
1351 }
1352
1353 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1354                                 u32 gt_iir[4])
1355 {
1356         if (gt_iir[0]) {
1357                 gen8_cs_irq_handler(&dev_priv->engine[RCS],
1358                                     gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1359                 gen8_cs_irq_handler(&dev_priv->engine[BCS],
1360                                     gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1361         }
1362
1363         if (gt_iir[1]) {
1364                 gen8_cs_irq_handler(&dev_priv->engine[VCS],
1365                                     gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1366                 gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1367                                     gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1368         }
1369
1370         if (gt_iir[3])
1371                 gen8_cs_irq_handler(&dev_priv->engine[VECS],
1372                                     gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1373
1374         if (gt_iir[2] & dev_priv->pm_rps_events)
1375                 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1376 }
1377
1378 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1379 {
1380         switch (port) {
1381         case PORT_A:
1382                 return val & PORTA_HOTPLUG_LONG_DETECT;
1383         case PORT_B:
1384                 return val & PORTB_HOTPLUG_LONG_DETECT;
1385         case PORT_C:
1386                 return val & PORTC_HOTPLUG_LONG_DETECT;
1387         default:
1388                 return false;
1389         }
1390 }
1391
1392 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1393 {
1394         switch (port) {
1395         case PORT_E:
1396                 return val & PORTE_HOTPLUG_LONG_DETECT;
1397         default:
1398                 return false;
1399         }
1400 }
1401
1402 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1403 {
1404         switch (port) {
1405         case PORT_A:
1406                 return val & PORTA_HOTPLUG_LONG_DETECT;
1407         case PORT_B:
1408                 return val & PORTB_HOTPLUG_LONG_DETECT;
1409         case PORT_C:
1410                 return val & PORTC_HOTPLUG_LONG_DETECT;
1411         case PORT_D:
1412                 return val & PORTD_HOTPLUG_LONG_DETECT;
1413         default:
1414                 return false;
1415         }
1416 }
1417
1418 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1419 {
1420         switch (port) {
1421         case PORT_A:
1422                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1423         default:
1424                 return false;
1425         }
1426 }
1427
1428 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1429 {
1430         switch (port) {
1431         case PORT_B:
1432                 return val & PORTB_HOTPLUG_LONG_DETECT;
1433         case PORT_C:
1434                 return val & PORTC_HOTPLUG_LONG_DETECT;
1435         case PORT_D:
1436                 return val & PORTD_HOTPLUG_LONG_DETECT;
1437         default:
1438                 return false;
1439         }
1440 }
1441
1442 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1443 {
1444         switch (port) {
1445         case PORT_B:
1446                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1447         case PORT_C:
1448                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1449         case PORT_D:
1450                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1451         default:
1452                 return false;
1453         }
1454 }
1455
1456 /*
1457  * Get a bit mask of pins that have triggered, and which ones may be long.
1458  * This can be called multiple times with the same masks to accumulate
1459  * hotplug detection results from several registers.
1460  *
1461  * Note that the caller is expected to zero out the masks initially.
1462  */
1463 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1464                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1465                              const u32 hpd[HPD_NUM_PINS],
1466                              bool long_pulse_detect(enum port port, u32 val))
1467 {
1468         enum port port;
1469         int i;
1470
1471         for_each_hpd_pin(i) {
1472                 if ((hpd[i] & hotplug_trigger) == 0)
1473                         continue;
1474
1475                 *pin_mask |= BIT(i);
1476
1477                 if (!intel_hpd_pin_to_port(i, &port))
1478                         continue;
1479
1480                 if (long_pulse_detect(port, dig_hotplug_reg))
1481                         *long_mask |= BIT(i);
1482         }
1483
1484         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1485                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1486
1487 }
1488
1489 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1490 {
1491         wake_up_all(&dev_priv->gmbus_wait_queue);
1492 }
1493
1494 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1495 {
1496         wake_up_all(&dev_priv->gmbus_wait_queue);
1497 }
1498
1499 #if defined(CONFIG_DEBUG_FS)
1500 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1501                                          enum pipe pipe,
1502                                          uint32_t crc0, uint32_t crc1,
1503                                          uint32_t crc2, uint32_t crc3,
1504                                          uint32_t crc4)
1505 {
1506         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1507         struct intel_pipe_crc_entry *entry;
1508         int head, tail;
1509
1510         spin_lock(&pipe_crc->lock);
1511
1512         if (!pipe_crc->entries) {
1513                 spin_unlock(&pipe_crc->lock);
1514                 DRM_DEBUG_KMS("spurious interrupt\n");
1515                 return;
1516         }
1517
1518         head = pipe_crc->head;
1519         tail = pipe_crc->tail;
1520
1521         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1522                 spin_unlock(&pipe_crc->lock);
1523                 DRM_ERROR("CRC buffer overflowing\n");
1524                 return;
1525         }
1526
1527         entry = &pipe_crc->entries[head];
1528
1529         entry->frame = dev_priv->dev->driver->get_vblank_counter(dev_priv->dev,
1530                                                                  pipe);
1531         entry->crc[0] = crc0;
1532         entry->crc[1] = crc1;
1533         entry->crc[2] = crc2;
1534         entry->crc[3] = crc3;
1535         entry->crc[4] = crc4;
1536
1537         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1538         pipe_crc->head = head;
1539
1540         spin_unlock(&pipe_crc->lock);
1541
1542         wake_up_interruptible(&pipe_crc->wq);
1543 }
1544 #else
1545 static inline void
1546 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1547                              enum pipe pipe,
1548                              uint32_t crc0, uint32_t crc1,
1549                              uint32_t crc2, uint32_t crc3,
1550                              uint32_t crc4) {}
1551 #endif
1552
1553
1554 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1555                                      enum pipe pipe)
1556 {
1557         display_pipe_crc_irq_handler(dev_priv, pipe,
1558                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1559                                      0, 0, 0, 0);
1560 }
1561
1562 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1563                                      enum pipe pipe)
1564 {
1565         display_pipe_crc_irq_handler(dev_priv, pipe,
1566                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1567                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1568                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1569                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1570                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1571 }
1572
1573 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1574                                       enum pipe pipe)
1575 {
1576         uint32_t res1, res2;
1577
1578         if (INTEL_GEN(dev_priv) >= 3)
1579                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1580         else
1581                 res1 = 0;
1582
1583         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1584                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1585         else
1586                 res2 = 0;
1587
1588         display_pipe_crc_irq_handler(dev_priv, pipe,
1589                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1590                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1591                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1592                                      res1, res2);
1593 }
1594
1595 /* The RPS events need forcewake, so we add them to a work queue and mask their
1596  * IMR bits until the work is done. Other interrupts can be processed without
1597  * the work queue. */
1598 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1599 {
1600         if (pm_iir & dev_priv->pm_rps_events) {
1601                 spin_lock(&dev_priv->irq_lock);
1602                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1603                 if (dev_priv->rps.interrupts_enabled) {
1604                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1605                         queue_work(dev_priv->wq, &dev_priv->rps.work);
1606                 }
1607                 spin_unlock(&dev_priv->irq_lock);
1608         }
1609
1610         if (INTEL_INFO(dev_priv)->gen >= 8)
1611                 return;
1612
1613         if (HAS_VEBOX(dev_priv)) {
1614                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1615                         notify_ring(&dev_priv->engine[VECS]);
1616
1617                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1618                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1619         }
1620 }
1621
1622 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1623                                      enum pipe pipe)
1624 {
1625         bool ret;
1626
1627         ret = drm_handle_vblank(dev_priv->dev, pipe);
1628         if (ret)
1629                 intel_finish_page_flip_mmio(dev_priv, pipe);
1630
1631         return ret;
1632 }
1633
1634 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1635                                         u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1636 {
1637         int pipe;
1638
1639         spin_lock(&dev_priv->irq_lock);
1640
1641         if (!dev_priv->display_irqs_enabled) {
1642                 spin_unlock(&dev_priv->irq_lock);
1643                 return;
1644         }
1645
1646         for_each_pipe(dev_priv, pipe) {
1647                 i915_reg_t reg;
1648                 u32 mask, iir_bit = 0;
1649
1650                 /*
1651                  * PIPESTAT bits get signalled even when the interrupt is
1652                  * disabled with the mask bits, and some of the status bits do
1653                  * not generate interrupts at all (like the underrun bit). Hence
1654                  * we need to be careful that we only handle what we want to
1655                  * handle.
1656                  */
1657
1658                 /* fifo underruns are filterered in the underrun handler. */
1659                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1660
1661                 switch (pipe) {
1662                 case PIPE_A:
1663                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1664                         break;
1665                 case PIPE_B:
1666                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1667                         break;
1668                 case PIPE_C:
1669                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1670                         break;
1671                 }
1672                 if (iir & iir_bit)
1673                         mask |= dev_priv->pipestat_irq_mask[pipe];
1674
1675                 if (!mask)
1676                         continue;
1677
1678                 reg = PIPESTAT(pipe);
1679                 mask |= PIPESTAT_INT_ENABLE_MASK;
1680                 pipe_stats[pipe] = I915_READ(reg) & mask;
1681
1682                 /*
1683                  * Clear the PIPE*STAT regs before the IIR
1684                  */
1685                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1686                                         PIPESTAT_INT_STATUS_MASK))
1687                         I915_WRITE(reg, pipe_stats[pipe]);
1688         }
1689         spin_unlock(&dev_priv->irq_lock);
1690 }
1691
1692 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1693                                             u32 pipe_stats[I915_MAX_PIPES])
1694 {
1695         enum pipe pipe;
1696
1697         for_each_pipe(dev_priv, pipe) {
1698                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1699                     intel_pipe_handle_vblank(dev_priv, pipe))
1700                         intel_check_page_flip(dev_priv, pipe);
1701
1702                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1703                         intel_finish_page_flip_cs(dev_priv, pipe);
1704
1705                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1706                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1707
1708                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1709                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1710         }
1711
1712         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1713                 gmbus_irq_handler(dev_priv);
1714 }
1715
1716 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1717 {
1718         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1719
1720         if (hotplug_status)
1721                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1722
1723         return hotplug_status;
1724 }
1725
1726 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1727                                  u32 hotplug_status)
1728 {
1729         u32 pin_mask = 0, long_mask = 0;
1730
1731         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1732             IS_CHERRYVIEW(dev_priv)) {
1733                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1734
1735                 if (hotplug_trigger) {
1736                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1737                                            hotplug_trigger, hpd_status_g4x,
1738                                            i9xx_port_hotplug_long_detect);
1739
1740                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1741                 }
1742
1743                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1744                         dp_aux_irq_handler(dev_priv);
1745         } else {
1746                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1747
1748                 if (hotplug_trigger) {
1749                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1750                                            hotplug_trigger, hpd_status_i915,
1751                                            i9xx_port_hotplug_long_detect);
1752                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1753                 }
1754         }
1755 }
1756
1757 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1758 {
1759         struct drm_device *dev = arg;
1760         struct drm_i915_private *dev_priv = dev->dev_private;
1761         irqreturn_t ret = IRQ_NONE;
1762
1763         if (!intel_irqs_enabled(dev_priv))
1764                 return IRQ_NONE;
1765
1766         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1767         disable_rpm_wakeref_asserts(dev_priv);
1768
1769         do {
1770                 u32 iir, gt_iir, pm_iir;
1771                 u32 pipe_stats[I915_MAX_PIPES] = {};
1772                 u32 hotplug_status = 0;
1773                 u32 ier = 0;
1774
1775                 gt_iir = I915_READ(GTIIR);
1776                 pm_iir = I915_READ(GEN6_PMIIR);
1777                 iir = I915_READ(VLV_IIR);
1778
1779                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1780                         break;
1781
1782                 ret = IRQ_HANDLED;
1783
1784                 /*
1785                  * Theory on interrupt generation, based on empirical evidence:
1786                  *
1787                  * x = ((VLV_IIR & VLV_IER) ||
1788                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1789                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1790                  *
1791                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1792                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1793                  * guarantee the CPU interrupt will be raised again even if we
1794                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1795                  * bits this time around.
1796                  */
1797                 I915_WRITE(VLV_MASTER_IER, 0);
1798                 ier = I915_READ(VLV_IER);
1799                 I915_WRITE(VLV_IER, 0);
1800
1801                 if (gt_iir)
1802                         I915_WRITE(GTIIR, gt_iir);
1803                 if (pm_iir)
1804                         I915_WRITE(GEN6_PMIIR, pm_iir);
1805
1806                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1807                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1808
1809                 /* Call regardless, as some status bits might not be
1810                  * signalled in iir */
1811                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1812
1813                 /*
1814                  * VLV_IIR is single buffered, and reflects the level
1815                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1816                  */
1817                 if (iir)
1818                         I915_WRITE(VLV_IIR, iir);
1819
1820                 I915_WRITE(VLV_IER, ier);
1821                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1822                 POSTING_READ(VLV_MASTER_IER);
1823
1824                 if (gt_iir)
1825                         snb_gt_irq_handler(dev_priv, gt_iir);
1826                 if (pm_iir)
1827                         gen6_rps_irq_handler(dev_priv, pm_iir);
1828
1829                 if (hotplug_status)
1830                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1831
1832                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1833         } while (0);
1834
1835         enable_rpm_wakeref_asserts(dev_priv);
1836
1837         return ret;
1838 }
1839
1840 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1841 {
1842         struct drm_device *dev = arg;
1843         struct drm_i915_private *dev_priv = dev->dev_private;
1844         irqreturn_t ret = IRQ_NONE;
1845
1846         if (!intel_irqs_enabled(dev_priv))
1847                 return IRQ_NONE;
1848
1849         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1850         disable_rpm_wakeref_asserts(dev_priv);
1851
1852         do {
1853                 u32 master_ctl, iir;
1854                 u32 gt_iir[4] = {};
1855                 u32 pipe_stats[I915_MAX_PIPES] = {};
1856                 u32 hotplug_status = 0;
1857                 u32 ier = 0;
1858
1859                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1860                 iir = I915_READ(VLV_IIR);
1861
1862                 if (master_ctl == 0 && iir == 0)
1863                         break;
1864
1865                 ret = IRQ_HANDLED;
1866
1867                 /*
1868                  * Theory on interrupt generation, based on empirical evidence:
1869                  *
1870                  * x = ((VLV_IIR & VLV_IER) ||
1871                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1872                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1873                  *
1874                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1875                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1876                  * guarantee the CPU interrupt will be raised again even if we
1877                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1878                  * bits this time around.
1879                  */
1880                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1881                 ier = I915_READ(VLV_IER);
1882                 I915_WRITE(VLV_IER, 0);
1883
1884                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1885
1886                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1887                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1888
1889                 /* Call regardless, as some status bits might not be
1890                  * signalled in iir */
1891                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1892
1893                 /*
1894                  * VLV_IIR is single buffered, and reflects the level
1895                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1896                  */
1897                 if (iir)
1898                         I915_WRITE(VLV_IIR, iir);
1899
1900                 I915_WRITE(VLV_IER, ier);
1901                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1902                 POSTING_READ(GEN8_MASTER_IRQ);
1903
1904                 gen8_gt_irq_handler(dev_priv, gt_iir);
1905
1906                 if (hotplug_status)
1907                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1908
1909                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1910         } while (0);
1911
1912         enable_rpm_wakeref_asserts(dev_priv);
1913
1914         return ret;
1915 }
1916
1917 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1918                                 u32 hotplug_trigger,
1919                                 const u32 hpd[HPD_NUM_PINS])
1920 {
1921         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1922
1923         /*
1924          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1925          * unless we touch the hotplug register, even if hotplug_trigger is
1926          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1927          * errors.
1928          */
1929         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1930         if (!hotplug_trigger) {
1931                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1932                         PORTD_HOTPLUG_STATUS_MASK |
1933                         PORTC_HOTPLUG_STATUS_MASK |
1934                         PORTB_HOTPLUG_STATUS_MASK;
1935                 dig_hotplug_reg &= ~mask;
1936         }
1937
1938         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1939         if (!hotplug_trigger)
1940                 return;
1941
1942         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1943                            dig_hotplug_reg, hpd,
1944                            pch_port_hotplug_long_detect);
1945
1946         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1947 }
1948
1949 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1950 {
1951         int pipe;
1952         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1953
1954         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
1955
1956         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1957                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1958                                SDE_AUDIO_POWER_SHIFT);
1959                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1960                                  port_name(port));
1961         }
1962
1963         if (pch_iir & SDE_AUX_MASK)
1964                 dp_aux_irq_handler(dev_priv);
1965
1966         if (pch_iir & SDE_GMBUS)
1967                 gmbus_irq_handler(dev_priv);
1968
1969         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1970                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1971
1972         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1973                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1974
1975         if (pch_iir & SDE_POISON)
1976                 DRM_ERROR("PCH poison interrupt\n");
1977
1978         if (pch_iir & SDE_FDI_MASK)
1979                 for_each_pipe(dev_priv, pipe)
1980                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1981                                          pipe_name(pipe),
1982                                          I915_READ(FDI_RX_IIR(pipe)));
1983
1984         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1985                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1986
1987         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1988                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1989
1990         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1991                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1992
1993         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1994                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1995 }
1996
1997 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1998 {
1999         u32 err_int = I915_READ(GEN7_ERR_INT);
2000         enum pipe pipe;
2001
2002         if (err_int & ERR_INT_POISON)
2003                 DRM_ERROR("Poison interrupt\n");
2004
2005         for_each_pipe(dev_priv, pipe) {
2006                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2007                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2008
2009                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2010                         if (IS_IVYBRIDGE(dev_priv))
2011                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2012                         else
2013                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2014                 }
2015         }
2016
2017         I915_WRITE(GEN7_ERR_INT, err_int);
2018 }
2019
2020 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2021 {
2022         u32 serr_int = I915_READ(SERR_INT);
2023
2024         if (serr_int & SERR_INT_POISON)
2025                 DRM_ERROR("PCH poison interrupt\n");
2026
2027         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2028                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2029
2030         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2031                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2032
2033         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2034                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2035
2036         I915_WRITE(SERR_INT, serr_int);
2037 }
2038
2039 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2040 {
2041         int pipe;
2042         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2043
2044         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2045
2046         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2047                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2048                                SDE_AUDIO_POWER_SHIFT_CPT);
2049                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2050                                  port_name(port));
2051         }
2052
2053         if (pch_iir & SDE_AUX_MASK_CPT)
2054                 dp_aux_irq_handler(dev_priv);
2055
2056         if (pch_iir & SDE_GMBUS_CPT)
2057                 gmbus_irq_handler(dev_priv);
2058
2059         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2060                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2061
2062         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2063                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2064
2065         if (pch_iir & SDE_FDI_MASK_CPT)
2066                 for_each_pipe(dev_priv, pipe)
2067                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2068                                          pipe_name(pipe),
2069                                          I915_READ(FDI_RX_IIR(pipe)));
2070
2071         if (pch_iir & SDE_ERROR_CPT)
2072                 cpt_serr_int_handler(dev_priv);
2073 }
2074
2075 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2076 {
2077         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2078                 ~SDE_PORTE_HOTPLUG_SPT;
2079         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2080         u32 pin_mask = 0, long_mask = 0;
2081
2082         if (hotplug_trigger) {
2083                 u32 dig_hotplug_reg;
2084
2085                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2086                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2087
2088                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2089                                    dig_hotplug_reg, hpd_spt,
2090                                    spt_port_hotplug_long_detect);
2091         }
2092
2093         if (hotplug2_trigger) {
2094                 u32 dig_hotplug_reg;
2095
2096                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2097                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2098
2099                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2100                                    dig_hotplug_reg, hpd_spt,
2101                                    spt_port_hotplug2_long_detect);
2102         }
2103
2104         if (pin_mask)
2105                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2106
2107         if (pch_iir & SDE_GMBUS_CPT)
2108                 gmbus_irq_handler(dev_priv);
2109 }
2110
2111 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2112                                 u32 hotplug_trigger,
2113                                 const u32 hpd[HPD_NUM_PINS])
2114 {
2115         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2116
2117         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2118         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2119
2120         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2121                            dig_hotplug_reg, hpd,
2122                            ilk_port_hotplug_long_detect);
2123
2124         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2125 }
2126
2127 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2128                                     u32 de_iir)
2129 {
2130         enum pipe pipe;
2131         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2132
2133         if (hotplug_trigger)
2134                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2135
2136         if (de_iir & DE_AUX_CHANNEL_A)
2137                 dp_aux_irq_handler(dev_priv);
2138
2139         if (de_iir & DE_GSE)
2140                 intel_opregion_asle_intr(dev_priv);
2141
2142         if (de_iir & DE_POISON)
2143                 DRM_ERROR("Poison interrupt\n");
2144
2145         for_each_pipe(dev_priv, pipe) {
2146                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2147                     intel_pipe_handle_vblank(dev_priv, pipe))
2148                         intel_check_page_flip(dev_priv, pipe);
2149
2150                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2151                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2152
2153                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2154                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2155
2156                 /* plane/pipes map 1:1 on ilk+ */
2157                 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2158                         intel_finish_page_flip_cs(dev_priv, pipe);
2159         }
2160
2161         /* check event from PCH */
2162         if (de_iir & DE_PCH_EVENT) {
2163                 u32 pch_iir = I915_READ(SDEIIR);
2164
2165                 if (HAS_PCH_CPT(dev_priv))
2166                         cpt_irq_handler(dev_priv, pch_iir);
2167                 else
2168                         ibx_irq_handler(dev_priv, pch_iir);
2169
2170                 /* should clear PCH hotplug event before clear CPU irq */
2171                 I915_WRITE(SDEIIR, pch_iir);
2172         }
2173
2174         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2175                 ironlake_rps_change_irq_handler(dev_priv);
2176 }
2177
2178 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2179                                     u32 de_iir)
2180 {
2181         enum pipe pipe;
2182         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2183
2184         if (hotplug_trigger)
2185                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2186
2187         if (de_iir & DE_ERR_INT_IVB)
2188                 ivb_err_int_handler(dev_priv);
2189
2190         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2191                 dp_aux_irq_handler(dev_priv);
2192
2193         if (de_iir & DE_GSE_IVB)
2194                 intel_opregion_asle_intr(dev_priv);
2195
2196         for_each_pipe(dev_priv, pipe) {
2197                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2198                     intel_pipe_handle_vblank(dev_priv, pipe))
2199                         intel_check_page_flip(dev_priv, pipe);
2200
2201                 /* plane/pipes map 1:1 on ilk+ */
2202                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2203                         intel_finish_page_flip_cs(dev_priv, pipe);
2204         }
2205
2206         /* check event from PCH */
2207         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2208                 u32 pch_iir = I915_READ(SDEIIR);
2209
2210                 cpt_irq_handler(dev_priv, pch_iir);
2211
2212                 /* clear PCH hotplug event before clear CPU irq */
2213                 I915_WRITE(SDEIIR, pch_iir);
2214         }
2215 }
2216
2217 /*
2218  * To handle irqs with the minimum potential races with fresh interrupts, we:
2219  * 1 - Disable Master Interrupt Control.
2220  * 2 - Find the source(s) of the interrupt.
2221  * 3 - Clear the Interrupt Identity bits (IIR).
2222  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2223  * 5 - Re-enable Master Interrupt Control.
2224  */
2225 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2226 {
2227         struct drm_device *dev = arg;
2228         struct drm_i915_private *dev_priv = dev->dev_private;
2229         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2230         irqreturn_t ret = IRQ_NONE;
2231
2232         if (!intel_irqs_enabled(dev_priv))
2233                 return IRQ_NONE;
2234
2235         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2236         disable_rpm_wakeref_asserts(dev_priv);
2237
2238         /* disable master interrupt before clearing iir  */
2239         de_ier = I915_READ(DEIER);
2240         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2241         POSTING_READ(DEIER);
2242
2243         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2244          * interrupts will will be stored on its back queue, and then we'll be
2245          * able to process them after we restore SDEIER (as soon as we restore
2246          * it, we'll get an interrupt if SDEIIR still has something to process
2247          * due to its back queue). */
2248         if (!HAS_PCH_NOP(dev_priv)) {
2249                 sde_ier = I915_READ(SDEIER);
2250                 I915_WRITE(SDEIER, 0);
2251                 POSTING_READ(SDEIER);
2252         }
2253
2254         /* Find, clear, then process each source of interrupt */
2255
2256         gt_iir = I915_READ(GTIIR);
2257         if (gt_iir) {
2258                 I915_WRITE(GTIIR, gt_iir);
2259                 ret = IRQ_HANDLED;
2260                 if (INTEL_GEN(dev_priv) >= 6)
2261                         snb_gt_irq_handler(dev_priv, gt_iir);
2262                 else
2263                         ilk_gt_irq_handler(dev_priv, gt_iir);
2264         }
2265
2266         de_iir = I915_READ(DEIIR);
2267         if (de_iir) {
2268                 I915_WRITE(DEIIR, de_iir);
2269                 ret = IRQ_HANDLED;
2270                 if (INTEL_GEN(dev_priv) >= 7)
2271                         ivb_display_irq_handler(dev_priv, de_iir);
2272                 else
2273                         ilk_display_irq_handler(dev_priv, de_iir);
2274         }
2275
2276         if (INTEL_GEN(dev_priv) >= 6) {
2277                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2278                 if (pm_iir) {
2279                         I915_WRITE(GEN6_PMIIR, pm_iir);
2280                         ret = IRQ_HANDLED;
2281                         gen6_rps_irq_handler(dev_priv, pm_iir);
2282                 }
2283         }
2284
2285         I915_WRITE(DEIER, de_ier);
2286         POSTING_READ(DEIER);
2287         if (!HAS_PCH_NOP(dev_priv)) {
2288                 I915_WRITE(SDEIER, sde_ier);
2289                 POSTING_READ(SDEIER);
2290         }
2291
2292         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2293         enable_rpm_wakeref_asserts(dev_priv);
2294
2295         return ret;
2296 }
2297
2298 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2299                                 u32 hotplug_trigger,
2300                                 const u32 hpd[HPD_NUM_PINS])
2301 {
2302         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2303
2304         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2305         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2306
2307         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2308                            dig_hotplug_reg, hpd,
2309                            bxt_port_hotplug_long_detect);
2310
2311         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2312 }
2313
2314 static irqreturn_t
2315 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2316 {
2317         irqreturn_t ret = IRQ_NONE;
2318         u32 iir;
2319         enum pipe pipe;
2320
2321         if (master_ctl & GEN8_DE_MISC_IRQ) {
2322                 iir = I915_READ(GEN8_DE_MISC_IIR);
2323                 if (iir) {
2324                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2325                         ret = IRQ_HANDLED;
2326                         if (iir & GEN8_DE_MISC_GSE)
2327                                 intel_opregion_asle_intr(dev_priv);
2328                         else
2329                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2330                 }
2331                 else
2332                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2333         }
2334
2335         if (master_ctl & GEN8_DE_PORT_IRQ) {
2336                 iir = I915_READ(GEN8_DE_PORT_IIR);
2337                 if (iir) {
2338                         u32 tmp_mask;
2339                         bool found = false;
2340
2341                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2342                         ret = IRQ_HANDLED;
2343
2344                         tmp_mask = GEN8_AUX_CHANNEL_A;
2345                         if (INTEL_INFO(dev_priv)->gen >= 9)
2346                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2347                                             GEN9_AUX_CHANNEL_C |
2348                                             GEN9_AUX_CHANNEL_D;
2349
2350                         if (iir & tmp_mask) {
2351                                 dp_aux_irq_handler(dev_priv);
2352                                 found = true;
2353                         }
2354
2355                         if (IS_BROXTON(dev_priv)) {
2356                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2357                                 if (tmp_mask) {
2358                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2359                                                             hpd_bxt);
2360                                         found = true;
2361                                 }
2362                         } else if (IS_BROADWELL(dev_priv)) {
2363                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2364                                 if (tmp_mask) {
2365                                         ilk_hpd_irq_handler(dev_priv,
2366                                                             tmp_mask, hpd_bdw);
2367                                         found = true;
2368                                 }
2369                         }
2370
2371                         if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2372                                 gmbus_irq_handler(dev_priv);
2373                                 found = true;
2374                         }
2375
2376                         if (!found)
2377                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2378                 }
2379                 else
2380                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2381         }
2382
2383         for_each_pipe(dev_priv, pipe) {
2384                 u32 flip_done, fault_errors;
2385
2386                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2387                         continue;
2388
2389                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2390                 if (!iir) {
2391                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2392                         continue;
2393                 }
2394
2395                 ret = IRQ_HANDLED;
2396                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2397
2398                 if (iir & GEN8_PIPE_VBLANK &&
2399                     intel_pipe_handle_vblank(dev_priv, pipe))
2400                         intel_check_page_flip(dev_priv, pipe);
2401
2402                 flip_done = iir;
2403                 if (INTEL_INFO(dev_priv)->gen >= 9)
2404                         flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2405                 else
2406                         flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2407
2408                 if (flip_done)
2409                         intel_finish_page_flip_cs(dev_priv, pipe);
2410
2411                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2412                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2413
2414                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2415                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2416
2417                 fault_errors = iir;
2418                 if (INTEL_INFO(dev_priv)->gen >= 9)
2419                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2420                 else
2421                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2422
2423                 if (fault_errors)
2424                         DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2425                                   pipe_name(pipe),
2426                                   fault_errors);
2427         }
2428
2429         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2430             master_ctl & GEN8_DE_PCH_IRQ) {
2431                 /*
2432                  * FIXME(BDW): Assume for now that the new interrupt handling
2433                  * scheme also closed the SDE interrupt handling race we've seen
2434                  * on older pch-split platforms. But this needs testing.
2435                  */
2436                 iir = I915_READ(SDEIIR);
2437                 if (iir) {
2438                         I915_WRITE(SDEIIR, iir);
2439                         ret = IRQ_HANDLED;
2440
2441                         if (HAS_PCH_SPT(dev_priv))
2442                                 spt_irq_handler(dev_priv, iir);
2443                         else
2444                                 cpt_irq_handler(dev_priv, iir);
2445                 } else {
2446                         /*
2447                          * Like on previous PCH there seems to be something
2448                          * fishy going on with forwarding PCH interrupts.
2449                          */
2450                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2451                 }
2452         }
2453
2454         return ret;
2455 }
2456
2457 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2458 {
2459         struct drm_device *dev = arg;
2460         struct drm_i915_private *dev_priv = dev->dev_private;
2461         u32 master_ctl;
2462         u32 gt_iir[4] = {};
2463         irqreturn_t ret;
2464
2465         if (!intel_irqs_enabled(dev_priv))
2466                 return IRQ_NONE;
2467
2468         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2469         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2470         if (!master_ctl)
2471                 return IRQ_NONE;
2472
2473         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2474
2475         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2476         disable_rpm_wakeref_asserts(dev_priv);
2477
2478         /* Find, clear, then process each source of interrupt */
2479         ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2480         gen8_gt_irq_handler(dev_priv, gt_iir);
2481         ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2482
2483         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2484         POSTING_READ_FW(GEN8_MASTER_IRQ);
2485
2486         enable_rpm_wakeref_asserts(dev_priv);
2487
2488         return ret;
2489 }
2490
2491 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2492                                bool reset_completed)
2493 {
2494         struct intel_engine_cs *engine;
2495
2496         /*
2497          * Notify all waiters for GPU completion events that reset state has
2498          * been changed, and that they need to restart their wait after
2499          * checking for potential errors (and bail out to drop locks if there is
2500          * a gpu reset pending so that i915_error_work_func can acquire them).
2501          */
2502
2503         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2504         for_each_engine(engine, dev_priv)
2505                 wake_up_all(&engine->irq_queue);
2506
2507         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2508         wake_up_all(&dev_priv->pending_flip_queue);
2509
2510         /*
2511          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2512          * reset state is cleared.
2513          */
2514         if (reset_completed)
2515                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2516 }
2517
2518 /**
2519  * i915_reset_and_wakeup - do process context error handling work
2520  * @dev_priv: i915 device private
2521  *
2522  * Fire an error uevent so userspace can see that a hang or error
2523  * was detected.
2524  */
2525 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2526 {
2527         struct kobject *kobj = &dev_priv->dev->primary->kdev->kobj;
2528         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2529         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2530         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2531         int ret;
2532
2533         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2534
2535         /*
2536          * Note that there's only one work item which does gpu resets, so we
2537          * need not worry about concurrent gpu resets potentially incrementing
2538          * error->reset_counter twice. We only need to take care of another
2539          * racing irq/hangcheck declaring the gpu dead for a second time. A
2540          * quick check for that is good enough: schedule_work ensures the
2541          * correct ordering between hang detection and this work item, and since
2542          * the reset in-progress bit is only ever set by code outside of this
2543          * work we don't need to worry about any other races.
2544          */
2545         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2546                 DRM_DEBUG_DRIVER("resetting chip\n");
2547                 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2548
2549                 /*
2550                  * In most cases it's guaranteed that we get here with an RPM
2551                  * reference held, for example because there is a pending GPU
2552                  * request that won't finish until the reset is done. This
2553                  * isn't the case at least when we get here by doing a
2554                  * simulated reset via debugs, so get an RPM reference.
2555                  */
2556                 intel_runtime_pm_get(dev_priv);
2557
2558                 intel_prepare_reset(dev_priv);
2559
2560                 /*
2561                  * All state reset _must_ be completed before we update the
2562                  * reset counter, for otherwise waiters might miss the reset
2563                  * pending state and not properly drop locks, resulting in
2564                  * deadlocks with the reset work.
2565                  */
2566                 ret = i915_reset(dev_priv);
2567
2568                 intel_finish_reset(dev_priv);
2569
2570                 intel_runtime_pm_put(dev_priv);
2571
2572                 if (ret == 0)
2573                         kobject_uevent_env(kobj,
2574                                            KOBJ_CHANGE, reset_done_event);
2575
2576                 /*
2577                  * Note: The wake_up also serves as a memory barrier so that
2578                  * waiters see the update value of the reset counter atomic_t.
2579                  */
2580                 i915_error_wake_up(dev_priv, true);
2581         }
2582 }
2583
2584 static void i915_report_and_clear_eir(struct drm_i915_private *dev_priv)
2585 {
2586         uint32_t instdone[I915_NUM_INSTDONE_REG];
2587         u32 eir = I915_READ(EIR);
2588         int pipe, i;
2589
2590         if (!eir)
2591                 return;
2592
2593         pr_err("render error detected, EIR: 0x%08x\n", eir);
2594
2595         i915_get_extra_instdone(dev_priv, instdone);
2596
2597         if (IS_G4X(dev_priv)) {
2598                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2599                         u32 ipeir = I915_READ(IPEIR_I965);
2600
2601                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2602                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2603                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2604                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2605                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2606                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2607                         I915_WRITE(IPEIR_I965, ipeir);
2608                         POSTING_READ(IPEIR_I965);
2609                 }
2610                 if (eir & GM45_ERROR_PAGE_TABLE) {
2611                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2612                         pr_err("page table error\n");
2613                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2614                         I915_WRITE(PGTBL_ER, pgtbl_err);
2615                         POSTING_READ(PGTBL_ER);
2616                 }
2617         }
2618
2619         if (!IS_GEN2(dev_priv)) {
2620                 if (eir & I915_ERROR_PAGE_TABLE) {
2621                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2622                         pr_err("page table error\n");
2623                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2624                         I915_WRITE(PGTBL_ER, pgtbl_err);
2625                         POSTING_READ(PGTBL_ER);
2626                 }
2627         }
2628
2629         if (eir & I915_ERROR_MEMORY_REFRESH) {
2630                 pr_err("memory refresh error:\n");
2631                 for_each_pipe(dev_priv, pipe)
2632                         pr_err("pipe %c stat: 0x%08x\n",
2633                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2634                 /* pipestat has already been acked */
2635         }
2636         if (eir & I915_ERROR_INSTRUCTION) {
2637                 pr_err("instruction error\n");
2638                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2639                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2640                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2641                 if (INTEL_GEN(dev_priv) < 4) {
2642                         u32 ipeir = I915_READ(IPEIR);
2643
2644                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2645                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2646                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2647                         I915_WRITE(IPEIR, ipeir);
2648                         POSTING_READ(IPEIR);
2649                 } else {
2650                         u32 ipeir = I915_READ(IPEIR_I965);
2651
2652                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2653                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2654                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2655                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2656                         I915_WRITE(IPEIR_I965, ipeir);
2657                         POSTING_READ(IPEIR_I965);
2658                 }
2659         }
2660
2661         I915_WRITE(EIR, eir);
2662         POSTING_READ(EIR);
2663         eir = I915_READ(EIR);
2664         if (eir) {
2665                 /*
2666                  * some errors might have become stuck,
2667                  * mask them.
2668                  */
2669                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2670                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2671                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2672         }
2673 }
2674
2675 /**
2676  * i915_handle_error - handle a gpu error
2677  * @dev_priv: i915 device private
2678  * @engine_mask: mask representing engines that are hung
2679  * Do some basic checking of register state at error time and
2680  * dump it to the syslog.  Also call i915_capture_error_state() to make
2681  * sure we get a record and make it available in debugfs.  Fire a uevent
2682  * so userspace knows something bad happened (should trigger collection
2683  * of a ring dump etc.).
2684  * @fmt: Error message format string
2685  */
2686 void i915_handle_error(struct drm_i915_private *dev_priv,
2687                        u32 engine_mask,
2688                        const char *fmt, ...)
2689 {
2690         va_list args;
2691         char error_msg[80];
2692
2693         va_start(args, fmt);
2694         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2695         va_end(args);
2696
2697         i915_capture_error_state(dev_priv, engine_mask, error_msg);
2698         i915_report_and_clear_eir(dev_priv);
2699
2700         if (engine_mask) {
2701                 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2702                                 &dev_priv->gpu_error.reset_counter);
2703
2704                 /*
2705                  * Wakeup waiting processes so that the reset function
2706                  * i915_reset_and_wakeup doesn't deadlock trying to grab
2707                  * various locks. By bumping the reset counter first, the woken
2708                  * processes will see a reset in progress and back off,
2709                  * releasing their locks and then wait for the reset completion.
2710                  * We must do this for _all_ gpu waiters that might hold locks
2711                  * that the reset work needs to acquire.
2712                  *
2713                  * Note: The wake_up serves as the required memory barrier to
2714                  * ensure that the waiters see the updated value of the reset
2715                  * counter atomic_t.
2716                  */
2717                 i915_error_wake_up(dev_priv, false);
2718         }
2719
2720         i915_reset_and_wakeup(dev_priv);
2721 }
2722
2723 /* Called from drm generic code, passed 'crtc' which
2724  * we use as a pipe index
2725  */
2726 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2727 {
2728         struct drm_i915_private *dev_priv = dev->dev_private;
2729         unsigned long irqflags;
2730
2731         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2732         if (INTEL_INFO(dev)->gen >= 4)
2733                 i915_enable_pipestat(dev_priv, pipe,
2734                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2735         else
2736                 i915_enable_pipestat(dev_priv, pipe,
2737                                      PIPE_VBLANK_INTERRUPT_STATUS);
2738         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2739
2740         return 0;
2741 }
2742
2743 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2744 {
2745         struct drm_i915_private *dev_priv = dev->dev_private;
2746         unsigned long irqflags;
2747         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2748                                                      DE_PIPE_VBLANK(pipe);
2749
2750         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2751         ilk_enable_display_irq(dev_priv, bit);
2752         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2753
2754         return 0;
2755 }
2756
2757 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2758 {
2759         struct drm_i915_private *dev_priv = dev->dev_private;
2760         unsigned long irqflags;
2761
2762         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2763         i915_enable_pipestat(dev_priv, pipe,
2764                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2765         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2766
2767         return 0;
2768 }
2769
2770 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2771 {
2772         struct drm_i915_private *dev_priv = dev->dev_private;
2773         unsigned long irqflags;
2774
2775         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2776         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2777         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2778
2779         return 0;
2780 }
2781
2782 /* Called from drm generic code, passed 'crtc' which
2783  * we use as a pipe index
2784  */
2785 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2786 {
2787         struct drm_i915_private *dev_priv = dev->dev_private;
2788         unsigned long irqflags;
2789
2790         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2791         i915_disable_pipestat(dev_priv, pipe,
2792                               PIPE_VBLANK_INTERRUPT_STATUS |
2793                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2794         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2795 }
2796
2797 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2798 {
2799         struct drm_i915_private *dev_priv = dev->dev_private;
2800         unsigned long irqflags;
2801         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2802                                                      DE_PIPE_VBLANK(pipe);
2803
2804         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2805         ilk_disable_display_irq(dev_priv, bit);
2806         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2807 }
2808
2809 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2810 {
2811         struct drm_i915_private *dev_priv = dev->dev_private;
2812         unsigned long irqflags;
2813
2814         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2815         i915_disable_pipestat(dev_priv, pipe,
2816                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2817         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2818 }
2819
2820 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2821 {
2822         struct drm_i915_private *dev_priv = dev->dev_private;
2823         unsigned long irqflags;
2824
2825         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2826         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2827         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2828 }
2829
2830 static bool
2831 ring_idle(struct intel_engine_cs *engine, u32 seqno)
2832 {
2833         return i915_seqno_passed(seqno,
2834                                  READ_ONCE(engine->last_submitted_seqno));
2835 }
2836
2837 static bool
2838 ipehr_is_semaphore_wait(struct drm_i915_private *dev_priv, u32 ipehr)
2839 {
2840         if (INTEL_GEN(dev_priv) >= 8) {
2841                 return (ipehr >> 23) == 0x1c;
2842         } else {
2843                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2844                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2845                                  MI_SEMAPHORE_REGISTER);
2846         }
2847 }
2848
2849 static struct intel_engine_cs *
2850 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2851                                  u64 offset)
2852 {
2853         struct drm_i915_private *dev_priv = engine->i915;
2854         struct intel_engine_cs *signaller;
2855
2856         if (INTEL_GEN(dev_priv) >= 8) {
2857                 for_each_engine(signaller, dev_priv) {
2858                         if (engine == signaller)
2859                                 continue;
2860
2861                         if (offset == signaller->semaphore.signal_ggtt[engine->id])
2862                                 return signaller;
2863                 }
2864         } else {
2865                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2866
2867                 for_each_engine(signaller, dev_priv) {
2868                         if(engine == signaller)
2869                                 continue;
2870
2871                         if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
2872                                 return signaller;
2873                 }
2874         }
2875
2876         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2877                   engine->id, ipehr, offset);
2878
2879         return NULL;
2880 }
2881
2882 static struct intel_engine_cs *
2883 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2884 {
2885         struct drm_i915_private *dev_priv = engine->i915;
2886         u32 cmd, ipehr, head;
2887         u64 offset = 0;
2888         int i, backwards;
2889
2890         /*
2891          * This function does not support execlist mode - any attempt to
2892          * proceed further into this function will result in a kernel panic
2893          * when dereferencing ring->buffer, which is not set up in execlist
2894          * mode.
2895          *
2896          * The correct way of doing it would be to derive the currently
2897          * executing ring buffer from the current context, which is derived
2898          * from the currently running request. Unfortunately, to get the
2899          * current request we would have to grab the struct_mutex before doing
2900          * anything else, which would be ill-advised since some other thread
2901          * might have grabbed it already and managed to hang itself, causing
2902          * the hang checker to deadlock.
2903          *
2904          * Therefore, this function does not support execlist mode in its
2905          * current form. Just return NULL and move on.
2906          */
2907         if (engine->buffer == NULL)
2908                 return NULL;
2909
2910         ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2911         if (!ipehr_is_semaphore_wait(engine->i915, ipehr))
2912                 return NULL;
2913
2914         /*
2915          * HEAD is likely pointing to the dword after the actual command,
2916          * so scan backwards until we find the MBOX. But limit it to just 3
2917          * or 4 dwords depending on the semaphore wait command size.
2918          * Note that we don't care about ACTHD here since that might
2919          * point at at batch, and semaphores are always emitted into the
2920          * ringbuffer itself.
2921          */
2922         head = I915_READ_HEAD(engine) & HEAD_ADDR;
2923         backwards = (INTEL_GEN(dev_priv) >= 8) ? 5 : 4;
2924
2925         for (i = backwards; i; --i) {
2926                 /*
2927                  * Be paranoid and presume the hw has gone off into the wild -
2928                  * our ring is smaller than what the hardware (and hence
2929                  * HEAD_ADDR) allows. Also handles wrap-around.
2930                  */
2931                 head &= engine->buffer->size - 1;
2932
2933                 /* This here seems to blow up */
2934                 cmd = ioread32(engine->buffer->virtual_start + head);
2935                 if (cmd == ipehr)
2936                         break;
2937
2938                 head -= 4;
2939         }
2940
2941         if (!i)
2942                 return NULL;
2943
2944         *seqno = ioread32(engine->buffer->virtual_start + head + 4) + 1;
2945         if (INTEL_GEN(dev_priv) >= 8) {
2946                 offset = ioread32(engine->buffer->virtual_start + head + 12);
2947                 offset <<= 32;
2948                 offset = ioread32(engine->buffer->virtual_start + head + 8);
2949         }
2950         return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2951 }
2952
2953 static int semaphore_passed(struct intel_engine_cs *engine)
2954 {
2955         struct drm_i915_private *dev_priv = engine->i915;
2956         struct intel_engine_cs *signaller;
2957         u32 seqno;
2958
2959         engine->hangcheck.deadlock++;
2960
2961         signaller = semaphore_waits_for(engine, &seqno);
2962         if (signaller == NULL)
2963                 return -1;
2964
2965         /* Prevent pathological recursion due to driver bugs */
2966         if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
2967                 return -1;
2968
2969         if (i915_seqno_passed(signaller->get_seqno(signaller), seqno))
2970                 return 1;
2971
2972         /* cursory check for an unkickable deadlock */
2973         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2974             semaphore_passed(signaller) < 0)
2975                 return -1;
2976
2977         return 0;
2978 }
2979
2980 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2981 {
2982         struct intel_engine_cs *engine;
2983
2984         for_each_engine(engine, dev_priv)
2985                 engine->hangcheck.deadlock = 0;
2986 }
2987
2988 static bool subunits_stuck(struct intel_engine_cs *engine)
2989 {
2990         u32 instdone[I915_NUM_INSTDONE_REG];
2991         bool stuck;
2992         int i;
2993
2994         if (engine->id != RCS)
2995                 return true;
2996
2997         i915_get_extra_instdone(engine->i915, instdone);
2998
2999         /* There might be unstable subunit states even when
3000          * actual head is not moving. Filter out the unstable ones by
3001          * accumulating the undone -> done transitions and only
3002          * consider those as progress.
3003          */
3004         stuck = true;
3005         for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
3006                 const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
3007
3008                 if (tmp != engine->hangcheck.instdone[i])
3009                         stuck = false;
3010
3011                 engine->hangcheck.instdone[i] |= tmp;
3012         }
3013
3014         return stuck;
3015 }
3016
3017 static enum intel_ring_hangcheck_action
3018 head_stuck(struct intel_engine_cs *engine, u64 acthd)
3019 {
3020         if (acthd != engine->hangcheck.acthd) {
3021
3022                 /* Clear subunit states on head movement */
3023                 memset(engine->hangcheck.instdone, 0,
3024                        sizeof(engine->hangcheck.instdone));
3025
3026                 return HANGCHECK_ACTIVE;
3027         }
3028
3029         if (!subunits_stuck(engine))
3030                 return HANGCHECK_ACTIVE;
3031
3032         return HANGCHECK_HUNG;
3033 }
3034
3035 static enum intel_ring_hangcheck_action
3036 ring_stuck(struct intel_engine_cs *engine, u64 acthd)
3037 {
3038         struct drm_i915_private *dev_priv = engine->i915;
3039         enum intel_ring_hangcheck_action ha;
3040         u32 tmp;
3041
3042         ha = head_stuck(engine, acthd);
3043         if (ha != HANGCHECK_HUNG)
3044                 return ha;
3045
3046         if (IS_GEN2(dev_priv))
3047                 return HANGCHECK_HUNG;
3048
3049         /* Is the chip hanging on a WAIT_FOR_EVENT?
3050          * If so we can simply poke the RB_WAIT bit
3051          * and break the hang. This should work on
3052          * all but the second generation chipsets.
3053          */
3054         tmp = I915_READ_CTL(engine);
3055         if (tmp & RING_WAIT) {
3056                 i915_handle_error(dev_priv, 0,
3057                                   "Kicking stuck wait on %s",
3058                                   engine->name);
3059                 I915_WRITE_CTL(engine, tmp);
3060                 return HANGCHECK_KICK;
3061         }
3062
3063         if (INTEL_GEN(dev_priv) >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3064                 switch (semaphore_passed(engine)) {
3065                 default:
3066                         return HANGCHECK_HUNG;
3067                 case 1:
3068                         i915_handle_error(dev_priv, 0,
3069                                           "Kicking stuck semaphore on %s",
3070                                           engine->name);
3071                         I915_WRITE_CTL(engine, tmp);
3072                         return HANGCHECK_KICK;
3073                 case 0:
3074                         return HANGCHECK_WAIT;
3075                 }
3076         }
3077
3078         return HANGCHECK_HUNG;
3079 }
3080
3081 static unsigned kick_waiters(struct intel_engine_cs *engine)
3082 {
3083         struct drm_i915_private *i915 = engine->i915;
3084         unsigned user_interrupts = READ_ONCE(engine->user_interrupts);
3085
3086         if (engine->hangcheck.user_interrupts == user_interrupts &&
3087             !test_and_set_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
3088                 if (!(i915->gpu_error.test_irq_rings & intel_engine_flag(engine)))
3089                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3090                                   engine->name);
3091                 else
3092                         DRM_INFO("Fake missed irq on %s\n",
3093                                  engine->name);
3094                 wake_up_all(&engine->irq_queue);
3095         }
3096
3097         return user_interrupts;
3098 }
3099 /*
3100  * This is called when the chip hasn't reported back with completed
3101  * batchbuffers in a long time. We keep track per ring seqno progress and
3102  * if there are no progress, hangcheck score for that ring is increased.
3103  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3104  * we kick the ring. If we see no progress on three subsequent calls
3105  * we assume chip is wedged and try to fix it by resetting the chip.
3106  */
3107 static void i915_hangcheck_elapsed(struct work_struct *work)
3108 {
3109         struct drm_i915_private *dev_priv =
3110                 container_of(work, typeof(*dev_priv),
3111                              gpu_error.hangcheck_work.work);
3112         struct intel_engine_cs *engine;
3113         enum intel_engine_id id;
3114         int busy_count = 0, rings_hung = 0;
3115         bool stuck[I915_NUM_ENGINES] = { 0 };
3116 #define BUSY 1
3117 #define KICK 5
3118 #define HUNG 20
3119 #define ACTIVE_DECAY 15
3120
3121         if (!i915.enable_hangcheck)
3122                 return;
3123
3124         /*
3125          * The hangcheck work is synced during runtime suspend, we don't
3126          * require a wakeref. TODO: instead of disabling the asserts make
3127          * sure that we hold a reference when this work is running.
3128          */
3129         DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3130
3131         /* As enabling the GPU requires fairly extensive mmio access,
3132          * periodically arm the mmio checker to see if we are triggering
3133          * any invalid access.
3134          */
3135         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3136
3137         for_each_engine_id(engine, dev_priv, id) {
3138                 u64 acthd;
3139                 u32 seqno;
3140                 unsigned user_interrupts;
3141                 bool busy = true;
3142
3143                 semaphore_clear_deadlocks(dev_priv);
3144
3145                 /* We don't strictly need an irq-barrier here, as we are not
3146                  * serving an interrupt request, be paranoid in case the
3147                  * barrier has side-effects (such as preventing a broken
3148                  * cacheline snoop) and so be sure that we can see the seqno
3149                  * advance. If the seqno should stick, due to a stale
3150                  * cacheline, we would erroneously declare the GPU hung.
3151                  */
3152                 if (engine->irq_seqno_barrier)
3153                         engine->irq_seqno_barrier(engine);
3154
3155                 acthd = intel_ring_get_active_head(engine);
3156                 seqno = engine->get_seqno(engine);
3157
3158                 /* Reset stuck interrupts between batch advances */
3159                 user_interrupts = 0;
3160
3161                 if (engine->hangcheck.seqno == seqno) {
3162                         if (ring_idle(engine, seqno)) {
3163                                 engine->hangcheck.action = HANGCHECK_IDLE;
3164                                 if (waitqueue_active(&engine->irq_queue)) {
3165                                         /* Safeguard against driver failure */
3166                                         user_interrupts = kick_waiters(engine);
3167                                         engine->hangcheck.score += BUSY;
3168                                 } else
3169                                         busy = false;
3170                         } else {
3171                                 /* We always increment the hangcheck score
3172                                  * if the ring is busy and still processing
3173                                  * the same request, so that no single request
3174                                  * can run indefinitely (such as a chain of
3175                                  * batches). The only time we do not increment
3176                                  * the hangcheck score on this ring, if this
3177                                  * ring is in a legitimate wait for another
3178                                  * ring. In that case the waiting ring is a
3179                                  * victim and we want to be sure we catch the
3180                                  * right culprit. Then every time we do kick
3181                                  * the ring, add a small increment to the
3182                                  * score so that we can catch a batch that is
3183                                  * being repeatedly kicked and so responsible
3184                                  * for stalling the machine.
3185                                  */
3186                                 engine->hangcheck.action = ring_stuck(engine,
3187                                                                       acthd);
3188
3189                                 switch (engine->hangcheck.action) {
3190                                 case HANGCHECK_IDLE:
3191                                 case HANGCHECK_WAIT:
3192                                         break;
3193                                 case HANGCHECK_ACTIVE:
3194                                         engine->hangcheck.score += BUSY;
3195                                         break;
3196                                 case HANGCHECK_KICK:
3197                                         engine->hangcheck.score += KICK;
3198                                         break;
3199                                 case HANGCHECK_HUNG:
3200                                         engine->hangcheck.score += HUNG;
3201                                         stuck[id] = true;
3202                                         break;
3203                                 }
3204                         }
3205                 } else {
3206                         engine->hangcheck.action = HANGCHECK_ACTIVE;
3207
3208                         /* Gradually reduce the count so that we catch DoS
3209                          * attempts across multiple batches.
3210                          */
3211                         if (engine->hangcheck.score > 0)
3212                                 engine->hangcheck.score -= ACTIVE_DECAY;
3213                         if (engine->hangcheck.score < 0)
3214                                 engine->hangcheck.score = 0;
3215
3216                         /* Clear head and subunit states on seqno movement */
3217                         acthd = 0;
3218
3219                         memset(engine->hangcheck.instdone, 0,
3220                                sizeof(engine->hangcheck.instdone));
3221                 }
3222
3223                 engine->hangcheck.seqno = seqno;
3224                 engine->hangcheck.acthd = acthd;
3225                 engine->hangcheck.user_interrupts = user_interrupts;
3226                 busy_count += busy;
3227         }
3228
3229         for_each_engine_id(engine, dev_priv, id) {
3230                 if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3231                         DRM_INFO("%s on %s\n",
3232                                  stuck[id] ? "stuck" : "no progress",
3233                                  engine->name);
3234                         rings_hung |= intel_engine_flag(engine);
3235                 }
3236         }
3237
3238         if (rings_hung) {
3239                 i915_handle_error(dev_priv, rings_hung, "Engine(s) hung");
3240                 goto out;
3241         }
3242
3243         if (busy_count)
3244                 /* Reset timer case chip hangs without another request
3245                  * being added */
3246                 i915_queue_hangcheck(dev_priv);
3247
3248 out:
3249         ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3250 }
3251
3252 void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3253 {
3254         struct i915_gpu_error *e = &dev_priv->gpu_error;
3255
3256         if (!i915.enable_hangcheck)
3257                 return;
3258
3259         /* Don't continually defer the hangcheck so that it is always run at
3260          * least once after work has been scheduled on any ring. Otherwise,
3261          * we will ignore a hung ring if a second ring is kept busy.
3262          */
3263
3264         queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3265                            round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3266 }
3267
3268 static void ibx_irq_reset(struct drm_device *dev)
3269 {
3270         struct drm_i915_private *dev_priv = dev->dev_private;
3271
3272         if (HAS_PCH_NOP(dev))
3273                 return;
3274
3275         GEN5_IRQ_RESET(SDE);
3276
3277         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3278                 I915_WRITE(SERR_INT, 0xffffffff);
3279 }
3280
3281 /*
3282  * SDEIER is also touched by the interrupt handler to work around missed PCH
3283  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3284  * instead we unconditionally enable all PCH interrupt sources here, but then
3285  * only unmask them as needed with SDEIMR.
3286  *
3287  * This function needs to be called before interrupts are enabled.
3288  */
3289 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3290 {
3291         struct drm_i915_private *dev_priv = dev->dev_private;
3292
3293         if (HAS_PCH_NOP(dev))
3294                 return;
3295
3296         WARN_ON(I915_READ(SDEIER) != 0);
3297         I915_WRITE(SDEIER, 0xffffffff);
3298         POSTING_READ(SDEIER);
3299 }
3300
3301 static void gen5_gt_irq_reset(struct drm_device *dev)
3302 {
3303         struct drm_i915_private *dev_priv = dev->dev_private;
3304
3305         GEN5_IRQ_RESET(GT);
3306         if (INTEL_INFO(dev)->gen >= 6)
3307                 GEN5_IRQ_RESET(GEN6_PM);
3308 }
3309
3310 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3311 {
3312         enum pipe pipe;
3313
3314         if (IS_CHERRYVIEW(dev_priv))
3315                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3316         else
3317                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3318
3319         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3320         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3321
3322         for_each_pipe(dev_priv, pipe) {
3323                 I915_WRITE(PIPESTAT(pipe),
3324                            PIPE_FIFO_UNDERRUN_STATUS |
3325                            PIPESTAT_INT_STATUS_MASK);
3326                 dev_priv->pipestat_irq_mask[pipe] = 0;
3327         }
3328
3329         GEN5_IRQ_RESET(VLV_);
3330         dev_priv->irq_mask = ~0;
3331 }
3332
3333 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3334 {
3335         u32 pipestat_mask;
3336         u32 enable_mask;
3337         enum pipe pipe;
3338
3339         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3340                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3341
3342         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3343         for_each_pipe(dev_priv, pipe)
3344                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3345
3346         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3347                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3348                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3349         if (IS_CHERRYVIEW(dev_priv))
3350                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3351
3352         WARN_ON(dev_priv->irq_mask != ~0);
3353
3354         dev_priv->irq_mask = ~enable_mask;
3355
3356         GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3357 }
3358
3359 /* drm_dma.h hooks
3360 */
3361 static void ironlake_irq_reset(struct drm_device *dev)
3362 {
3363         struct drm_i915_private *dev_priv = dev->dev_private;
3364
3365         I915_WRITE(HWSTAM, 0xffffffff);
3366
3367         GEN5_IRQ_RESET(DE);
3368         if (IS_GEN7(dev))
3369                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3370
3371         gen5_gt_irq_reset(dev);
3372
3373         ibx_irq_reset(dev);
3374 }
3375
3376 static void valleyview_irq_preinstall(struct drm_device *dev)
3377 {
3378         struct drm_i915_private *dev_priv = dev->dev_private;
3379
3380         I915_WRITE(VLV_MASTER_IER, 0);
3381         POSTING_READ(VLV_MASTER_IER);
3382
3383         gen5_gt_irq_reset(dev);
3384
3385         spin_lock_irq(&dev_priv->irq_lock);
3386         if (dev_priv->display_irqs_enabled)
3387                 vlv_display_irq_reset(dev_priv);
3388         spin_unlock_irq(&dev_priv->irq_lock);
3389 }
3390
3391 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3392 {
3393         GEN8_IRQ_RESET_NDX(GT, 0);
3394         GEN8_IRQ_RESET_NDX(GT, 1);
3395         GEN8_IRQ_RESET_NDX(GT, 2);
3396         GEN8_IRQ_RESET_NDX(GT, 3);
3397 }
3398
3399 static void gen8_irq_reset(struct drm_device *dev)
3400 {
3401         struct drm_i915_private *dev_priv = dev->dev_private;
3402         int pipe;
3403
3404         I915_WRITE(GEN8_MASTER_IRQ, 0);
3405         POSTING_READ(GEN8_MASTER_IRQ);
3406
3407         gen8_gt_irq_reset(dev_priv);
3408
3409         for_each_pipe(dev_priv, pipe)
3410                 if (intel_display_power_is_enabled(dev_priv,
3411                                                    POWER_DOMAIN_PIPE(pipe)))
3412                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3413
3414         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3415         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3416         GEN5_IRQ_RESET(GEN8_PCU_);
3417
3418         if (HAS_PCH_SPLIT(dev))
3419                 ibx_irq_reset(dev);
3420 }
3421
3422 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3423                                      unsigned int pipe_mask)
3424 {
3425         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3426         enum pipe pipe;
3427
3428         spin_lock_irq(&dev_priv->irq_lock);
3429         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3430                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3431                                   dev_priv->de_irq_mask[pipe],
3432                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3433         spin_unlock_irq(&dev_priv->irq_lock);
3434 }
3435
3436 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3437                                      unsigned int pipe_mask)
3438 {
3439         enum pipe pipe;
3440
3441         spin_lock_irq(&dev_priv->irq_lock);
3442         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3443                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3444         spin_unlock_irq(&dev_priv->irq_lock);
3445
3446         /* make sure we're done processing display irqs */
3447         synchronize_irq(dev_priv->dev->irq);
3448 }
3449
3450 static void cherryview_irq_preinstall(struct drm_device *dev)
3451 {
3452         struct drm_i915_private *dev_priv = dev->dev_private;
3453
3454         I915_WRITE(GEN8_MASTER_IRQ, 0);
3455         POSTING_READ(GEN8_MASTER_IRQ);
3456
3457         gen8_gt_irq_reset(dev_priv);
3458
3459         GEN5_IRQ_RESET(GEN8_PCU_);
3460
3461         spin_lock_irq(&dev_priv->irq_lock);
3462         if (dev_priv->display_irqs_enabled)
3463                 vlv_display_irq_reset(dev_priv);
3464         spin_unlock_irq(&dev_priv->irq_lock);
3465 }
3466
3467 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3468                                   const u32 hpd[HPD_NUM_PINS])
3469 {
3470         struct intel_encoder *encoder;
3471         u32 enabled_irqs = 0;
3472
3473         for_each_intel_encoder(dev_priv->dev, encoder)
3474                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3475                         enabled_irqs |= hpd[encoder->hpd_pin];
3476
3477         return enabled_irqs;
3478 }
3479
3480 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3481 {
3482         u32 hotplug_irqs, hotplug, enabled_irqs;
3483
3484         if (HAS_PCH_IBX(dev_priv)) {
3485                 hotplug_irqs = SDE_HOTPLUG_MASK;
3486                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3487         } else {
3488                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3489                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3490         }
3491
3492         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3493
3494         /*
3495          * Enable digital hotplug on the PCH, and configure the DP short pulse
3496          * duration to 2ms (which is the minimum in the Display Port spec).
3497          * The pulse duration bits are reserved on LPT+.
3498          */
3499         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3500         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3501         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3502         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3503         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3504         /*
3505          * When CPU and PCH are on the same package, port A
3506          * HPD must be enabled in both north and south.
3507          */
3508         if (HAS_PCH_LPT_LP(dev_priv))
3509                 hotplug |= PORTA_HOTPLUG_ENABLE;
3510         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3511 }
3512
3513 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3514 {
3515         u32 hotplug_irqs, hotplug, enabled_irqs;
3516
3517         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3518         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3519
3520         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3521
3522         /* Enable digital hotplug on the PCH */
3523         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3524         hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3525                 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3526         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3527
3528         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3529         hotplug |= PORTE_HOTPLUG_ENABLE;
3530         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3531 }
3532
3533 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3534 {
3535         u32 hotplug_irqs, hotplug, enabled_irqs;
3536
3537         if (INTEL_GEN(dev_priv) >= 8) {
3538                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3539                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3540
3541                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3542         } else if (INTEL_GEN(dev_priv) >= 7) {
3543                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3544                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3545
3546                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3547         } else {
3548                 hotplug_irqs = DE_DP_A_HOTPLUG;
3549                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3550
3551                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3552         }
3553
3554         /*
3555          * Enable digital hotplug on the CPU, and configure the DP short pulse
3556          * duration to 2ms (which is the minimum in the Display Port spec)
3557          * The pulse duration bits are reserved on HSW+.
3558          */
3559         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3560         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3561         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3562         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3563
3564         ibx_hpd_irq_setup(dev_priv);
3565 }
3566
3567 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3568 {
3569         u32 hotplug_irqs, hotplug, enabled_irqs;
3570
3571         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3572         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3573
3574         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3575
3576         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3577         hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3578                 PORTA_HOTPLUG_ENABLE;
3579
3580         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3581                       hotplug, enabled_irqs);
3582         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3583
3584         /*
3585          * For BXT invert bit has to be set based on AOB design
3586          * for HPD detection logic, update it based on VBT fields.
3587          */
3588
3589         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3590             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3591                 hotplug |= BXT_DDIA_HPD_INVERT;
3592         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3593             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3594                 hotplug |= BXT_DDIB_HPD_INVERT;
3595         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3596             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3597                 hotplug |= BXT_DDIC_HPD_INVERT;
3598
3599         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3600 }
3601
3602 static void ibx_irq_postinstall(struct drm_device *dev)
3603 {
3604         struct drm_i915_private *dev_priv = dev->dev_private;
3605         u32 mask;
3606
3607         if (HAS_PCH_NOP(dev))
3608                 return;
3609
3610         if (HAS_PCH_IBX(dev))
3611                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3612         else
3613                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3614
3615         gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3616         I915_WRITE(SDEIMR, ~mask);
3617 }
3618
3619 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3620 {
3621         struct drm_i915_private *dev_priv = dev->dev_private;
3622         u32 pm_irqs, gt_irqs;
3623
3624         pm_irqs = gt_irqs = 0;
3625
3626         dev_priv->gt_irq_mask = ~0;
3627         if (HAS_L3_DPF(dev)) {
3628                 /* L3 parity interrupt is always unmasked. */
3629                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3630                 gt_irqs |= GT_PARITY_ERROR(dev);
3631         }
3632
3633         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3634         if (IS_GEN5(dev)) {
3635                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3636                            ILK_BSD_USER_INTERRUPT;
3637         } else {
3638                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3639         }
3640
3641         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3642
3643         if (INTEL_INFO(dev)->gen >= 6) {
3644                 /*
3645                  * RPS interrupts will get enabled/disabled on demand when RPS
3646                  * itself is enabled/disabled.
3647                  */
3648                 if (HAS_VEBOX(dev))
3649                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3650
3651                 dev_priv->pm_irq_mask = 0xffffffff;
3652                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3653         }
3654 }
3655
3656 static int ironlake_irq_postinstall(struct drm_device *dev)
3657 {
3658         struct drm_i915_private *dev_priv = dev->dev_private;
3659         u32 display_mask, extra_mask;
3660
3661         if (INTEL_INFO(dev)->gen >= 7) {
3662                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3663                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3664                                 DE_PLANEB_FLIP_DONE_IVB |
3665                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3666                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3667                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3668                               DE_DP_A_HOTPLUG_IVB);
3669         } else {
3670                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3671                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3672                                 DE_AUX_CHANNEL_A |
3673                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3674                                 DE_POISON);
3675                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3676                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3677                               DE_DP_A_HOTPLUG);
3678         }
3679
3680         dev_priv->irq_mask = ~display_mask;
3681
3682         I915_WRITE(HWSTAM, 0xeffe);
3683
3684         ibx_irq_pre_postinstall(dev);
3685
3686         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3687
3688         gen5_gt_irq_postinstall(dev);
3689
3690         ibx_irq_postinstall(dev);
3691
3692         if (IS_IRONLAKE_M(dev)) {
3693                 /* Enable PCU event interrupts
3694                  *
3695                  * spinlocking not required here for correctness since interrupt
3696                  * setup is guaranteed to run in single-threaded context. But we
3697                  * need it to make the assert_spin_locked happy. */
3698                 spin_lock_irq(&dev_priv->irq_lock);
3699                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3700                 spin_unlock_irq(&dev_priv->irq_lock);
3701         }
3702
3703         return 0;
3704 }
3705
3706 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3707 {
3708         assert_spin_locked(&dev_priv->irq_lock);
3709
3710         if (dev_priv->display_irqs_enabled)
3711                 return;
3712
3713         dev_priv->display_irqs_enabled = true;
3714
3715         if (intel_irqs_enabled(dev_priv)) {
3716                 vlv_display_irq_reset(dev_priv);
3717                 vlv_display_irq_postinstall(dev_priv);
3718         }
3719 }
3720
3721 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3722 {
3723         assert_spin_locked(&dev_priv->irq_lock);
3724
3725         if (!dev_priv->display_irqs_enabled)
3726                 return;
3727
3728         dev_priv->display_irqs_enabled = false;
3729
3730         if (intel_irqs_enabled(dev_priv))
3731                 vlv_display_irq_reset(dev_priv);
3732 }
3733
3734
3735 static int valleyview_irq_postinstall(struct drm_device *dev)
3736 {
3737         struct drm_i915_private *dev_priv = dev->dev_private;
3738
3739         gen5_gt_irq_postinstall(dev);
3740
3741         spin_lock_irq(&dev_priv->irq_lock);
3742         if (dev_priv->display_irqs_enabled)
3743                 vlv_display_irq_postinstall(dev_priv);
3744         spin_unlock_irq(&dev_priv->irq_lock);
3745
3746         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3747         POSTING_READ(VLV_MASTER_IER);
3748
3749         return 0;
3750 }
3751
3752 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3753 {
3754         /* These are interrupts we'll toggle with the ring mask register */
3755         uint32_t gt_interrupts[] = {
3756                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3757                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3758                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3759                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3760                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3761                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3762                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3763                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3764                 0,
3765                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3766                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3767                 };
3768
3769         if (HAS_L3_DPF(dev_priv))
3770                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3771
3772         dev_priv->pm_irq_mask = 0xffffffff;
3773         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3774         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3775         /*
3776          * RPS interrupts will get enabled/disabled on demand when RPS itself
3777          * is enabled/disabled.
3778          */
3779         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3780         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3781 }
3782
3783 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3784 {
3785         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3786         uint32_t de_pipe_enables;
3787         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3788         u32 de_port_enables;
3789         u32 de_misc_masked = GEN8_DE_MISC_GSE;
3790         enum pipe pipe;
3791
3792         if (INTEL_INFO(dev_priv)->gen >= 9) {
3793                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3794                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3795                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3796                                   GEN9_AUX_CHANNEL_D;
3797                 if (IS_BROXTON(dev_priv))
3798                         de_port_masked |= BXT_DE_PORT_GMBUS;
3799         } else {
3800                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3801                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3802         }
3803
3804         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3805                                            GEN8_PIPE_FIFO_UNDERRUN;
3806
3807         de_port_enables = de_port_masked;
3808         if (IS_BROXTON(dev_priv))
3809                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3810         else if (IS_BROADWELL(dev_priv))
3811                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3812
3813         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3814         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3815         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3816
3817         for_each_pipe(dev_priv, pipe)
3818                 if (intel_display_power_is_enabled(dev_priv,
3819                                 POWER_DOMAIN_PIPE(pipe)))
3820                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3821                                           dev_priv->de_irq_mask[pipe],
3822                                           de_pipe_enables);
3823
3824         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3825         GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3826 }
3827
3828 static int gen8_irq_postinstall(struct drm_device *dev)
3829 {
3830         struct drm_i915_private *dev_priv = dev->dev_private;
3831
3832         if (HAS_PCH_SPLIT(dev))
3833                 ibx_irq_pre_postinstall(dev);
3834
3835         gen8_gt_irq_postinstall(dev_priv);
3836         gen8_de_irq_postinstall(dev_priv);
3837
3838         if (HAS_PCH_SPLIT(dev))
3839                 ibx_irq_postinstall(dev);
3840
3841         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3842         POSTING_READ(GEN8_MASTER_IRQ);
3843
3844         return 0;
3845 }
3846
3847 static int cherryview_irq_postinstall(struct drm_device *dev)
3848 {
3849         struct drm_i915_private *dev_priv = dev->dev_private;
3850
3851         gen8_gt_irq_postinstall(dev_priv);
3852
3853         spin_lock_irq(&dev_priv->irq_lock);
3854         if (dev_priv->display_irqs_enabled)
3855                 vlv_display_irq_postinstall(dev_priv);
3856         spin_unlock_irq(&dev_priv->irq_lock);
3857
3858         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3859         POSTING_READ(GEN8_MASTER_IRQ);
3860
3861         return 0;
3862 }
3863
3864 static void gen8_irq_uninstall(struct drm_device *dev)
3865 {
3866         struct drm_i915_private *dev_priv = dev->dev_private;
3867
3868         if (!dev_priv)
3869                 return;
3870
3871         gen8_irq_reset(dev);
3872 }
3873
3874 static void valleyview_irq_uninstall(struct drm_device *dev)
3875 {
3876         struct drm_i915_private *dev_priv = dev->dev_private;
3877
3878         if (!dev_priv)
3879                 return;
3880
3881         I915_WRITE(VLV_MASTER_IER, 0);
3882         POSTING_READ(VLV_MASTER_IER);
3883
3884         gen5_gt_irq_reset(dev);
3885
3886         I915_WRITE(HWSTAM, 0xffffffff);
3887
3888         spin_lock_irq(&dev_priv->irq_lock);
3889         if (dev_priv->display_irqs_enabled)
3890                 vlv_display_irq_reset(dev_priv);
3891         spin_unlock_irq(&dev_priv->irq_lock);
3892 }
3893
3894 static void cherryview_irq_uninstall(struct drm_device *dev)
3895 {
3896         struct drm_i915_private *dev_priv = dev->dev_private;
3897
3898         if (!dev_priv)
3899                 return;
3900
3901         I915_WRITE(GEN8_MASTER_IRQ, 0);
3902         POSTING_READ(GEN8_MASTER_IRQ);
3903
3904         gen8_gt_irq_reset(dev_priv);
3905
3906         GEN5_IRQ_RESET(GEN8_PCU_);
3907
3908         spin_lock_irq(&dev_priv->irq_lock);
3909         if (dev_priv->display_irqs_enabled)
3910                 vlv_display_irq_reset(dev_priv);
3911         spin_unlock_irq(&dev_priv->irq_lock);
3912 }
3913
3914 static void ironlake_irq_uninstall(struct drm_device *dev)
3915 {
3916         struct drm_i915_private *dev_priv = dev->dev_private;
3917
3918         if (!dev_priv)
3919                 return;
3920
3921         ironlake_irq_reset(dev);
3922 }
3923
3924 static void i8xx_irq_preinstall(struct drm_device * dev)
3925 {
3926         struct drm_i915_private *dev_priv = dev->dev_private;
3927         int pipe;
3928
3929         for_each_pipe(dev_priv, pipe)
3930                 I915_WRITE(PIPESTAT(pipe), 0);
3931         I915_WRITE16(IMR, 0xffff);
3932         I915_WRITE16(IER, 0x0);
3933         POSTING_READ16(IER);
3934 }
3935
3936 static int i8xx_irq_postinstall(struct drm_device *dev)
3937 {
3938         struct drm_i915_private *dev_priv = dev->dev_private;
3939
3940         I915_WRITE16(EMR,
3941                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3942
3943         /* Unmask the interrupts that we always want on. */
3944         dev_priv->irq_mask =
3945                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3946                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3947                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3948                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3949         I915_WRITE16(IMR, dev_priv->irq_mask);
3950
3951         I915_WRITE16(IER,
3952                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3953                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3954                      I915_USER_INTERRUPT);
3955         POSTING_READ16(IER);
3956
3957         /* Interrupt setup is already guaranteed to be single-threaded, this is
3958          * just to make the assert_spin_locked check happy. */
3959         spin_lock_irq(&dev_priv->irq_lock);
3960         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3961         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3962         spin_unlock_irq(&dev_priv->irq_lock);
3963
3964         return 0;
3965 }
3966
3967 /*
3968  * Returns true when a page flip has completed.
3969  */
3970 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3971                                int plane, int pipe, u32 iir)
3972 {
3973         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3974
3975         if (!intel_pipe_handle_vblank(dev_priv, pipe))
3976                 return false;
3977
3978         if ((iir & flip_pending) == 0)
3979                 goto check_page_flip;
3980
3981         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3982          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3983          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3984          * the flip is completed (no longer pending). Since this doesn't raise
3985          * an interrupt per se, we watch for the change at vblank.
3986          */
3987         if (I915_READ16(ISR) & flip_pending)
3988                 goto check_page_flip;
3989
3990         intel_finish_page_flip_cs(dev_priv, pipe);
3991         return true;
3992
3993 check_page_flip:
3994         intel_check_page_flip(dev_priv, pipe);
3995         return false;
3996 }
3997
3998 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3999 {
4000         struct drm_device *dev = arg;
4001         struct drm_i915_private *dev_priv = dev->dev_private;
4002         u16 iir, new_iir;
4003         u32 pipe_stats[2];
4004         int pipe;
4005         u16 flip_mask =
4006                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4007                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4008         irqreturn_t ret;
4009
4010         if (!intel_irqs_enabled(dev_priv))
4011                 return IRQ_NONE;
4012
4013         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4014         disable_rpm_wakeref_asserts(dev_priv);
4015
4016         ret = IRQ_NONE;
4017         iir = I915_READ16(IIR);
4018         if (iir == 0)
4019                 goto out;
4020
4021         while (iir & ~flip_mask) {
4022                 /* Can't rely on pipestat interrupt bit in iir as it might
4023                  * have been cleared after the pipestat interrupt was received.
4024                  * It doesn't set the bit in iir again, but it still produces
4025                  * interrupts (for non-MSI).
4026                  */
4027                 spin_lock(&dev_priv->irq_lock);
4028                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4029                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4030
4031                 for_each_pipe(dev_priv, pipe) {
4032                         i915_reg_t reg = PIPESTAT(pipe);
4033                         pipe_stats[pipe] = I915_READ(reg);
4034
4035                         /*
4036                          * Clear the PIPE*STAT regs before the IIR
4037                          */
4038                         if (pipe_stats[pipe] & 0x8000ffff)
4039                                 I915_WRITE(reg, pipe_stats[pipe]);
4040                 }
4041                 spin_unlock(&dev_priv->irq_lock);
4042
4043                 I915_WRITE16(IIR, iir & ~flip_mask);
4044                 new_iir = I915_READ16(IIR); /* Flush posted writes */
4045
4046                 if (iir & I915_USER_INTERRUPT)
4047                         notify_ring(&dev_priv->engine[RCS]);
4048
4049                 for_each_pipe(dev_priv, pipe) {
4050                         int plane = pipe;
4051                         if (HAS_FBC(dev_priv))
4052                                 plane = !plane;
4053
4054                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4055                             i8xx_handle_vblank(dev_priv, plane, pipe, iir))
4056                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4057
4058                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4059                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4060
4061                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4062                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4063                                                                     pipe);
4064                 }
4065
4066                 iir = new_iir;
4067         }
4068         ret = IRQ_HANDLED;
4069
4070 out:
4071         enable_rpm_wakeref_asserts(dev_priv);
4072
4073         return ret;
4074 }
4075
4076 static void i8xx_irq_uninstall(struct drm_device * dev)
4077 {
4078         struct drm_i915_private *dev_priv = dev->dev_private;
4079         int pipe;
4080
4081         for_each_pipe(dev_priv, pipe) {
4082                 /* Clear enable bits; then clear status bits */
4083                 I915_WRITE(PIPESTAT(pipe), 0);
4084                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4085         }
4086         I915_WRITE16(IMR, 0xffff);
4087         I915_WRITE16(IER, 0x0);
4088         I915_WRITE16(IIR, I915_READ16(IIR));
4089 }
4090
4091 static void i915_irq_preinstall(struct drm_device * dev)
4092 {
4093         struct drm_i915_private *dev_priv = dev->dev_private;
4094         int pipe;
4095
4096         if (I915_HAS_HOTPLUG(dev)) {
4097                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4098                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4099         }
4100
4101         I915_WRITE16(HWSTAM, 0xeffe);
4102         for_each_pipe(dev_priv, pipe)
4103                 I915_WRITE(PIPESTAT(pipe), 0);
4104         I915_WRITE(IMR, 0xffffffff);
4105         I915_WRITE(IER, 0x0);
4106         POSTING_READ(IER);
4107 }
4108
4109 static int i915_irq_postinstall(struct drm_device *dev)
4110 {
4111         struct drm_i915_private *dev_priv = dev->dev_private;
4112         u32 enable_mask;
4113
4114         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4115
4116         /* Unmask the interrupts that we always want on. */
4117         dev_priv->irq_mask =
4118                 ~(I915_ASLE_INTERRUPT |
4119                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4120                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4121                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4122                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4123
4124         enable_mask =
4125                 I915_ASLE_INTERRUPT |
4126                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4127                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4128                 I915_USER_INTERRUPT;
4129
4130         if (I915_HAS_HOTPLUG(dev)) {
4131                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4132                 POSTING_READ(PORT_HOTPLUG_EN);
4133
4134                 /* Enable in IER... */
4135                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4136                 /* and unmask in IMR */
4137                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4138         }
4139
4140         I915_WRITE(IMR, dev_priv->irq_mask);
4141         I915_WRITE(IER, enable_mask);
4142         POSTING_READ(IER);
4143
4144         i915_enable_asle_pipestat(dev_priv);
4145
4146         /* Interrupt setup is already guaranteed to be single-threaded, this is
4147          * just to make the assert_spin_locked check happy. */
4148         spin_lock_irq(&dev_priv->irq_lock);
4149         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4150         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4151         spin_unlock_irq(&dev_priv->irq_lock);
4152
4153         return 0;
4154 }
4155
4156 /*
4157  * Returns true when a page flip has completed.
4158  */
4159 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
4160                                int plane, int pipe, u32 iir)
4161 {
4162         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4163
4164         if (!intel_pipe_handle_vblank(dev_priv, pipe))
4165                 return false;
4166
4167         if ((iir & flip_pending) == 0)
4168                 goto check_page_flip;
4169
4170         /* We detect FlipDone by looking for the change in PendingFlip from '1'
4171          * to '0' on the following vblank, i.e. IIR has the Pendingflip
4172          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4173          * the flip is completed (no longer pending). Since this doesn't raise
4174          * an interrupt per se, we watch for the change at vblank.
4175          */
4176         if (I915_READ(ISR) & flip_pending)
4177                 goto check_page_flip;
4178
4179         intel_finish_page_flip_cs(dev_priv, pipe);
4180         return true;
4181
4182 check_page_flip:
4183         intel_check_page_flip(dev_priv, pipe);
4184         return false;
4185 }
4186
4187 static irqreturn_t i915_irq_handler(int irq, void *arg)
4188 {
4189         struct drm_device *dev = arg;
4190         struct drm_i915_private *dev_priv = dev->dev_private;
4191         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4192         u32 flip_mask =
4193                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4194                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4195         int pipe, ret = IRQ_NONE;
4196
4197         if (!intel_irqs_enabled(dev_priv))
4198                 return IRQ_NONE;
4199
4200         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4201         disable_rpm_wakeref_asserts(dev_priv);
4202
4203         iir = I915_READ(IIR);
4204         do {
4205                 bool irq_received = (iir & ~flip_mask) != 0;
4206                 bool blc_event = false;
4207
4208                 /* Can't rely on pipestat interrupt bit in iir as it might
4209                  * have been cleared after the pipestat interrupt was received.
4210                  * It doesn't set the bit in iir again, but it still produces
4211                  * interrupts (for non-MSI).
4212                  */
4213                 spin_lock(&dev_priv->irq_lock);
4214                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4215                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4216
4217                 for_each_pipe(dev_priv, pipe) {
4218                         i915_reg_t reg = PIPESTAT(pipe);
4219                         pipe_stats[pipe] = I915_READ(reg);
4220
4221                         /* Clear the PIPE*STAT regs before the IIR */
4222                         if (pipe_stats[pipe] & 0x8000ffff) {
4223                                 I915_WRITE(reg, pipe_stats[pipe]);
4224                                 irq_received = true;
4225                         }
4226                 }
4227                 spin_unlock(&dev_priv->irq_lock);
4228
4229                 if (!irq_received)
4230                         break;
4231
4232                 /* Consume port.  Then clear IIR or we'll miss events */
4233                 if (I915_HAS_HOTPLUG(dev_priv) &&
4234                     iir & I915_DISPLAY_PORT_INTERRUPT) {
4235                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4236                         if (hotplug_status)
4237                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4238                 }
4239
4240                 I915_WRITE(IIR, iir & ~flip_mask);
4241                 new_iir = I915_READ(IIR); /* Flush posted writes */
4242
4243                 if (iir & I915_USER_INTERRUPT)
4244                         notify_ring(&dev_priv->engine[RCS]);
4245
4246                 for_each_pipe(dev_priv, pipe) {
4247                         int plane = pipe;
4248                         if (HAS_FBC(dev_priv))
4249                                 plane = !plane;
4250
4251                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4252                             i915_handle_vblank(dev_priv, plane, pipe, iir))
4253                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4254
4255                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4256                                 blc_event = true;
4257
4258                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4259                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4260
4261                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4262                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4263                                                                     pipe);
4264                 }
4265
4266                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4267                         intel_opregion_asle_intr(dev_priv);
4268
4269                 /* With MSI, interrupts are only generated when iir
4270                  * transitions from zero to nonzero.  If another bit got
4271                  * set while we were handling the existing iir bits, then
4272                  * we would never get another interrupt.
4273                  *
4274                  * This is fine on non-MSI as well, as if we hit this path
4275                  * we avoid exiting the interrupt handler only to generate
4276                  * another one.
4277                  *
4278                  * Note that for MSI this could cause a stray interrupt report
4279                  * if an interrupt landed in the time between writing IIR and
4280                  * the posting read.  This should be rare enough to never
4281                  * trigger the 99% of 100,000 interrupts test for disabling
4282                  * stray interrupts.
4283                  */
4284                 ret = IRQ_HANDLED;
4285                 iir = new_iir;
4286         } while (iir & ~flip_mask);
4287
4288         enable_rpm_wakeref_asserts(dev_priv);
4289
4290         return ret;
4291 }
4292
4293 static void i915_irq_uninstall(struct drm_device * dev)
4294 {
4295         struct drm_i915_private *dev_priv = dev->dev_private;
4296         int pipe;
4297
4298         if (I915_HAS_HOTPLUG(dev)) {
4299                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4300                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4301         }
4302
4303         I915_WRITE16(HWSTAM, 0xffff);
4304         for_each_pipe(dev_priv, pipe) {
4305                 /* Clear enable bits; then clear status bits */
4306                 I915_WRITE(PIPESTAT(pipe), 0);
4307                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4308         }
4309         I915_WRITE(IMR, 0xffffffff);
4310         I915_WRITE(IER, 0x0);
4311
4312         I915_WRITE(IIR, I915_READ(IIR));
4313 }
4314
4315 static void i965_irq_preinstall(struct drm_device * dev)
4316 {
4317         struct drm_i915_private *dev_priv = dev->dev_private;
4318         int pipe;
4319
4320         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4321         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4322
4323         I915_WRITE(HWSTAM, 0xeffe);
4324         for_each_pipe(dev_priv, pipe)
4325                 I915_WRITE(PIPESTAT(pipe), 0);
4326         I915_WRITE(IMR, 0xffffffff);
4327         I915_WRITE(IER, 0x0);
4328         POSTING_READ(IER);
4329 }
4330
4331 static int i965_irq_postinstall(struct drm_device *dev)
4332 {
4333         struct drm_i915_private *dev_priv = dev->dev_private;
4334         u32 enable_mask;
4335         u32 error_mask;
4336
4337         /* Unmask the interrupts that we always want on. */
4338         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4339                                I915_DISPLAY_PORT_INTERRUPT |
4340                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4341                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4342                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4343                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4344                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4345
4346         enable_mask = ~dev_priv->irq_mask;
4347         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4348                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4349         enable_mask |= I915_USER_INTERRUPT;
4350
4351         if (IS_G4X(dev_priv))
4352                 enable_mask |= I915_BSD_USER_INTERRUPT;
4353
4354         /* Interrupt setup is already guaranteed to be single-threaded, this is
4355          * just to make the assert_spin_locked check happy. */
4356         spin_lock_irq(&dev_priv->irq_lock);
4357         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4358         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4359         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4360         spin_unlock_irq(&dev_priv->irq_lock);
4361
4362         /*
4363          * Enable some error detection, note the instruction error mask
4364          * bit is reserved, so we leave it masked.
4365          */
4366         if (IS_G4X(dev_priv)) {
4367                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4368                                GM45_ERROR_MEM_PRIV |
4369                                GM45_ERROR_CP_PRIV |
4370                                I915_ERROR_MEMORY_REFRESH);
4371         } else {
4372                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4373                                I915_ERROR_MEMORY_REFRESH);
4374         }
4375         I915_WRITE(EMR, error_mask);
4376
4377         I915_WRITE(IMR, dev_priv->irq_mask);
4378         I915_WRITE(IER, enable_mask);
4379         POSTING_READ(IER);
4380
4381         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4382         POSTING_READ(PORT_HOTPLUG_EN);
4383
4384         i915_enable_asle_pipestat(dev_priv);
4385
4386         return 0;
4387 }
4388
4389 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4390 {
4391         u32 hotplug_en;
4392
4393         assert_spin_locked(&dev_priv->irq_lock);
4394
4395         /* Note HDMI and DP share hotplug bits */
4396         /* enable bits are the same for all generations */
4397         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4398         /* Programming the CRT detection parameters tends
4399            to generate a spurious hotplug event about three
4400            seconds later.  So just do it once.
4401         */
4402         if (IS_G4X(dev_priv))
4403                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4404         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4405
4406         /* Ignore TV since it's buggy */
4407         i915_hotplug_interrupt_update_locked(dev_priv,
4408                                              HOTPLUG_INT_EN_MASK |
4409                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4410                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4411                                              hotplug_en);
4412 }
4413
4414 static irqreturn_t i965_irq_handler(int irq, void *arg)
4415 {
4416         struct drm_device *dev = arg;
4417         struct drm_i915_private *dev_priv = dev->dev_private;
4418         u32 iir, new_iir;
4419         u32 pipe_stats[I915_MAX_PIPES];
4420         int ret = IRQ_NONE, pipe;
4421         u32 flip_mask =
4422                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4423                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4424
4425         if (!intel_irqs_enabled(dev_priv))
4426                 return IRQ_NONE;
4427
4428         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4429         disable_rpm_wakeref_asserts(dev_priv);
4430
4431         iir = I915_READ(IIR);
4432
4433         for (;;) {
4434                 bool irq_received = (iir & ~flip_mask) != 0;
4435                 bool blc_event = false;
4436
4437                 /* Can't rely on pipestat interrupt bit in iir as it might
4438                  * have been cleared after the pipestat interrupt was received.
4439                  * It doesn't set the bit in iir again, but it still produces
4440                  * interrupts (for non-MSI).
4441                  */
4442                 spin_lock(&dev_priv->irq_lock);
4443                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4444                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4445
4446                 for_each_pipe(dev_priv, pipe) {
4447                         i915_reg_t reg = PIPESTAT(pipe);
4448                         pipe_stats[pipe] = I915_READ(reg);
4449
4450                         /*
4451                          * Clear the PIPE*STAT regs before the IIR
4452                          */
4453                         if (pipe_stats[pipe] & 0x8000ffff) {
4454                                 I915_WRITE(reg, pipe_stats[pipe]);
4455                                 irq_received = true;
4456                         }
4457                 }
4458                 spin_unlock(&dev_priv->irq_lock);
4459
4460                 if (!irq_received)
4461                         break;
4462
4463                 ret = IRQ_HANDLED;
4464
4465                 /* Consume port.  Then clear IIR or we'll miss events */
4466                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4467                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4468                         if (hotplug_status)
4469                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4470                 }
4471
4472                 I915_WRITE(IIR, iir & ~flip_mask);
4473                 new_iir = I915_READ(IIR); /* Flush posted writes */
4474
4475                 if (iir & I915_USER_INTERRUPT)
4476                         notify_ring(&dev_priv->engine[RCS]);
4477                 if (iir & I915_BSD_USER_INTERRUPT)
4478                         notify_ring(&dev_priv->engine[VCS]);
4479
4480                 for_each_pipe(dev_priv, pipe) {
4481                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4482                             i915_handle_vblank(dev_priv, pipe, pipe, iir))
4483                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4484
4485                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4486                                 blc_event = true;
4487
4488                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4489                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4490
4491                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4492                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4493                 }
4494
4495                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4496                         intel_opregion_asle_intr(dev_priv);
4497
4498                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4499                         gmbus_irq_handler(dev_priv);
4500
4501                 /* With MSI, interrupts are only generated when iir
4502                  * transitions from zero to nonzero.  If another bit got
4503                  * set while we were handling the existing iir bits, then
4504                  * we would never get another interrupt.
4505                  *
4506                  * This is fine on non-MSI as well, as if we hit this path
4507                  * we avoid exiting the interrupt handler only to generate
4508                  * another one.
4509                  *
4510                  * Note that for MSI this could cause a stray interrupt report
4511                  * if an interrupt landed in the time between writing IIR and
4512                  * the posting read.  This should be rare enough to never
4513                  * trigger the 99% of 100,000 interrupts test for disabling
4514                  * stray interrupts.
4515                  */
4516                 iir = new_iir;
4517         }
4518
4519         enable_rpm_wakeref_asserts(dev_priv);
4520
4521         return ret;
4522 }
4523
4524 static void i965_irq_uninstall(struct drm_device * dev)
4525 {
4526         struct drm_i915_private *dev_priv = dev->dev_private;
4527         int pipe;
4528
4529         if (!dev_priv)
4530                 return;
4531
4532         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4533         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4534
4535         I915_WRITE(HWSTAM, 0xffffffff);
4536         for_each_pipe(dev_priv, pipe)
4537                 I915_WRITE(PIPESTAT(pipe), 0);
4538         I915_WRITE(IMR, 0xffffffff);
4539         I915_WRITE(IER, 0x0);
4540
4541         for_each_pipe(dev_priv, pipe)
4542                 I915_WRITE(PIPESTAT(pipe),
4543                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4544         I915_WRITE(IIR, I915_READ(IIR));
4545 }
4546
4547 /**
4548  * intel_irq_init - initializes irq support
4549  * @dev_priv: i915 device instance
4550  *
4551  * This function initializes all the irq support including work items, timers
4552  * and all the vtables. It does not setup the interrupt itself though.
4553  */
4554 void intel_irq_init(struct drm_i915_private *dev_priv)
4555 {
4556         struct drm_device *dev = dev_priv->dev;
4557
4558         intel_hpd_init_work(dev_priv);
4559
4560         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4561         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4562
4563         /* Let's track the enabled rps events */
4564         if (IS_VALLEYVIEW(dev_priv))
4565                 /* WaGsvRC0ResidencyMethod:vlv */
4566                 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4567         else
4568                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4569
4570         dev_priv->rps.pm_intr_keep = 0;
4571
4572         /*
4573          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
4574          * if GEN6_PM_UP_EI_EXPIRED is masked.
4575          *
4576          * TODO: verify if this can be reproduced on VLV,CHV.
4577          */
4578         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
4579                 dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
4580
4581         if (INTEL_INFO(dev_priv)->gen >= 8)
4582                 dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
4583
4584         INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4585                           i915_hangcheck_elapsed);
4586
4587         if (IS_GEN2(dev_priv)) {
4588                 dev->max_vblank_count = 0;
4589                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4590         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4591                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4592                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4593         } else {
4594                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4595                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4596         }
4597
4598         /*
4599          * Opt out of the vblank disable timer on everything except gen2.
4600          * Gen2 doesn't have a hardware frame counter and so depends on
4601          * vblank interrupts to produce sane vblank seuquence numbers.
4602          */
4603         if (!IS_GEN2(dev_priv))
4604                 dev->vblank_disable_immediate = true;
4605
4606         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4607         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4608
4609         if (IS_CHERRYVIEW(dev_priv)) {
4610                 dev->driver->irq_handler = cherryview_irq_handler;
4611                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4612                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4613                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4614                 dev->driver->enable_vblank = valleyview_enable_vblank;
4615                 dev->driver->disable_vblank = valleyview_disable_vblank;
4616                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4617         } else if (IS_VALLEYVIEW(dev_priv)) {
4618                 dev->driver->irq_handler = valleyview_irq_handler;
4619                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4620                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4621                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4622                 dev->driver->enable_vblank = valleyview_enable_vblank;
4623                 dev->driver->disable_vblank = valleyview_disable_vblank;
4624                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4625         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4626                 dev->driver->irq_handler = gen8_irq_handler;
4627                 dev->driver->irq_preinstall = gen8_irq_reset;
4628                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4629                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4630                 dev->driver->enable_vblank = gen8_enable_vblank;
4631                 dev->driver->disable_vblank = gen8_disable_vblank;
4632                 if (IS_BROXTON(dev))
4633                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4634                 else if (HAS_PCH_SPT(dev))
4635                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4636                 else
4637                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4638         } else if (HAS_PCH_SPLIT(dev)) {
4639                 dev->driver->irq_handler = ironlake_irq_handler;
4640                 dev->driver->irq_preinstall = ironlake_irq_reset;
4641                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4642                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4643                 dev->driver->enable_vblank = ironlake_enable_vblank;
4644                 dev->driver->disable_vblank = ironlake_disable_vblank;
4645                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4646         } else {
4647                 if (IS_GEN2(dev_priv)) {
4648                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4649                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4650                         dev->driver->irq_handler = i8xx_irq_handler;
4651                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4652                 } else if (IS_GEN3(dev_priv)) {
4653                         dev->driver->irq_preinstall = i915_irq_preinstall;
4654                         dev->driver->irq_postinstall = i915_irq_postinstall;
4655                         dev->driver->irq_uninstall = i915_irq_uninstall;
4656                         dev->driver->irq_handler = i915_irq_handler;
4657                 } else {
4658                         dev->driver->irq_preinstall = i965_irq_preinstall;
4659                         dev->driver->irq_postinstall = i965_irq_postinstall;
4660                         dev->driver->irq_uninstall = i965_irq_uninstall;
4661                         dev->driver->irq_handler = i965_irq_handler;
4662                 }
4663                 if (I915_HAS_HOTPLUG(dev_priv))
4664                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4665                 dev->driver->enable_vblank = i915_enable_vblank;
4666                 dev->driver->disable_vblank = i915_disable_vblank;
4667         }
4668 }
4669
4670 /**
4671  * intel_irq_install - enables the hardware interrupt
4672  * @dev_priv: i915 device instance
4673  *
4674  * This function enables the hardware interrupt handling, but leaves the hotplug
4675  * handling still disabled. It is called after intel_irq_init().
4676  *
4677  * In the driver load and resume code we need working interrupts in a few places
4678  * but don't want to deal with the hassle of concurrent probe and hotplug
4679  * workers. Hence the split into this two-stage approach.
4680  */
4681 int intel_irq_install(struct drm_i915_private *dev_priv)
4682 {
4683         /*
4684          * We enable some interrupt sources in our postinstall hooks, so mark
4685          * interrupts as enabled _before_ actually enabling them to avoid
4686          * special cases in our ordering checks.
4687          */
4688         dev_priv->pm.irqs_enabled = true;
4689
4690         return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4691 }
4692
4693 /**
4694  * intel_irq_uninstall - finilizes all irq handling
4695  * @dev_priv: i915 device instance
4696  *
4697  * This stops interrupt and hotplug handling and unregisters and frees all
4698  * resources acquired in the init functions.
4699  */
4700 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4701 {
4702         drm_irq_uninstall(dev_priv->dev);
4703         intel_hpd_cancel_work(dev_priv);
4704         dev_priv->pm.irqs_enabled = false;
4705 }
4706
4707 /**
4708  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4709  * @dev_priv: i915 device instance
4710  *
4711  * This function is used to disable interrupts at runtime, both in the runtime
4712  * pm and the system suspend/resume code.
4713  */
4714 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4715 {
4716         dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4717         dev_priv->pm.irqs_enabled = false;
4718         synchronize_irq(dev_priv->dev->irq);
4719 }
4720
4721 /**
4722  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4723  * @dev_priv: i915 device instance
4724  *
4725  * This function is used to enable interrupts at runtime, both in the runtime
4726  * pm and the system suspend/resume code.
4727  */
4728 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4729 {
4730         dev_priv->pm.irqs_enabled = true;
4731         dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4732         dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4733 }