a3bbf2d90dce2d7739a285d42b14102ef328e680
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_breadcrumbs.c
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include "i915_drv.h"
26
27 static void intel_breadcrumbs_fake_irq(unsigned long data)
28 {
29         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
30
31         /*
32          * The timer persists in case we cannot enable interrupts,
33          * or if we have previously seen seqno/interrupt incoherency
34          * ("missed interrupt" syndrome). Here the worker will wake up
35          * every jiffie in order to kick the oldest waiter to do the
36          * coherent seqno check.
37          */
38         rcu_read_lock();
39         if (intel_engine_wakeup(engine))
40                 mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
41         rcu_read_unlock();
42 }
43
44 static void irq_enable(struct intel_engine_cs *engine)
45 {
46         WARN_ON(!engine->irq_get(engine));
47 }
48
49 static void irq_disable(struct intel_engine_cs *engine)
50 {
51         engine->irq_put(engine);
52 }
53
54 static bool __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
55 {
56         struct intel_engine_cs *engine =
57                 container_of(b, struct intel_engine_cs, breadcrumbs);
58         struct drm_i915_private *i915 = engine->i915;
59         bool irq_posted = false;
60
61         assert_spin_locked(&b->lock);
62         if (b->rpm_wakelock)
63                 return false;
64
65         /* Since we are waiting on a request, the GPU should be busy
66          * and should have its own rpm reference. For completeness,
67          * record an rpm reference for ourselves to cover the
68          * interrupt we unmask.
69          */
70         intel_runtime_pm_get_noresume(i915);
71         b->rpm_wakelock = true;
72
73         /* No interrupts? Kick the waiter every jiffie! */
74         if (intel_irqs_enabled(i915)) {
75                 if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings)) {
76                         irq_enable(engine);
77                         irq_posted = true;
78                 }
79                 b->irq_enabled = true;
80         }
81
82         if (!b->irq_enabled ||
83             test_bit(engine->id, &i915->gpu_error.missed_irq_rings))
84                 mod_timer(&b->fake_irq, jiffies + 1);
85
86         return irq_posted;
87 }
88
89 static void __intel_breadcrumbs_disable_irq(struct intel_breadcrumbs *b)
90 {
91         struct intel_engine_cs *engine =
92                 container_of(b, struct intel_engine_cs, breadcrumbs);
93
94         assert_spin_locked(&b->lock);
95         if (!b->rpm_wakelock)
96                 return;
97
98         if (b->irq_enabled) {
99                 irq_disable(engine);
100                 b->irq_enabled = false;
101         }
102
103         intel_runtime_pm_put(engine->i915);
104         b->rpm_wakelock = false;
105 }
106
107 static inline struct intel_wait *to_wait(struct rb_node *node)
108 {
109         return container_of(node, struct intel_wait, node);
110 }
111
112 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
113                                               struct intel_wait *wait)
114 {
115         assert_spin_locked(&b->lock);
116
117         /* This request is completed, so remove it from the tree, mark it as
118          * complete, and *then* wake up the associated task.
119          */
120         rb_erase(&wait->node, &b->waiters);
121         RB_CLEAR_NODE(&wait->node);
122
123         wake_up_process(wait->tsk); /* implicit smp_wmb() */
124 }
125
126 static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
127                                     struct intel_wait *wait)
128 {
129         struct intel_breadcrumbs *b = &engine->breadcrumbs;
130         struct rb_node **p, *parent, *completed;
131         bool first;
132         u32 seqno;
133
134         /* Insert the request into the retirement ordered list
135          * of waiters by walking the rbtree. If we are the oldest
136          * seqno in the tree (the first to be retired), then
137          * set ourselves as the bottom-half.
138          *
139          * As we descend the tree, prune completed branches since we hold the
140          * spinlock we know that the first_waiter must be delayed and can
141          * reduce some of the sequential wake up latency if we take action
142          * ourselves and wake up the completed tasks in parallel. Also, by
143          * removing stale elements in the tree, we may be able to reduce the
144          * ping-pong between the old bottom-half and ourselves as first-waiter.
145          */
146         first = true;
147         parent = NULL;
148         completed = NULL;
149         seqno = engine->get_seqno(engine);
150
151          /* If the request completed before we managed to grab the spinlock,
152           * return now before adding ourselves to the rbtree. We let the
153           * current bottom-half handle any pending wakeups and instead
154           * try and get out of the way quickly.
155           */
156         if (i915_seqno_passed(seqno, wait->seqno)) {
157                 RB_CLEAR_NODE(&wait->node);
158                 return first;
159         }
160
161         p = &b->waiters.rb_node;
162         while (*p) {
163                 parent = *p;
164                 if (wait->seqno == to_wait(parent)->seqno) {
165                         /* We have multiple waiters on the same seqno, select
166                          * the highest priority task (that with the smallest
167                          * task->prio) to serve as the bottom-half for this
168                          * group.
169                          */
170                         if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
171                                 p = &parent->rb_right;
172                                 first = false;
173                         } else {
174                                 p = &parent->rb_left;
175                         }
176                 } else if (i915_seqno_passed(wait->seqno,
177                                              to_wait(parent)->seqno)) {
178                         p = &parent->rb_right;
179                         if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
180                                 completed = parent;
181                         else
182                                 first = false;
183                 } else {
184                         p = &parent->rb_left;
185                 }
186         }
187         rb_link_node(&wait->node, parent, p);
188         rb_insert_color(&wait->node, &b->waiters);
189         GEM_BUG_ON(!first && !b->tasklet);
190
191         if (completed) {
192                 struct rb_node *next = rb_next(completed);
193
194                 GEM_BUG_ON(!next && !first);
195                 if (next && next != &wait->node) {
196                         GEM_BUG_ON(first);
197                         b->first_wait = to_wait(next);
198                         smp_store_mb(b->tasklet, b->first_wait->tsk);
199                         /* As there is a delay between reading the current
200                          * seqno, processing the completed tasks and selecting
201                          * the next waiter, we may have missed the interrupt
202                          * and so need for the next bottom-half to wakeup.
203                          *
204                          * Also as we enable the IRQ, we may miss the
205                          * interrupt for that seqno, so we have to wake up
206                          * the next bottom-half in order to do a coherent check
207                          * in case the seqno passed.
208                          */
209                         __intel_breadcrumbs_enable_irq(b);
210                         wake_up_process(to_wait(next)->tsk);
211                 }
212
213                 do {
214                         struct intel_wait *crumb = to_wait(completed);
215                         completed = rb_prev(completed);
216                         __intel_breadcrumbs_finish(b, crumb);
217                 } while (completed);
218         }
219
220         if (first) {
221                 GEM_BUG_ON(rb_first(&b->waiters) != &wait->node);
222                 b->first_wait = wait;
223                 smp_store_mb(b->tasklet, wait->tsk);
224                 first = __intel_breadcrumbs_enable_irq(b);
225         }
226         GEM_BUG_ON(!b->tasklet);
227         GEM_BUG_ON(!b->first_wait);
228         GEM_BUG_ON(rb_first(&b->waiters) != &b->first_wait->node);
229
230         return first;
231 }
232
233 bool intel_engine_add_wait(struct intel_engine_cs *engine,
234                            struct intel_wait *wait)
235 {
236         struct intel_breadcrumbs *b = &engine->breadcrumbs;
237         bool first;
238
239         spin_lock(&b->lock);
240         first = __intel_engine_add_wait(engine, wait);
241         spin_unlock(&b->lock);
242
243         return first;
244 }
245
246 void intel_engine_enable_fake_irq(struct intel_engine_cs *engine)
247 {
248         mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
249 }
250
251 static inline bool chain_wakeup(struct rb_node *rb, int priority)
252 {
253         return rb && to_wait(rb)->tsk->prio <= priority;
254 }
255
256 void intel_engine_remove_wait(struct intel_engine_cs *engine,
257                               struct intel_wait *wait)
258 {
259         struct intel_breadcrumbs *b = &engine->breadcrumbs;
260
261         /* Quick check to see if this waiter was already decoupled from
262          * the tree by the bottom-half to avoid contention on the spinlock
263          * by the herd.
264          */
265         if (RB_EMPTY_NODE(&wait->node))
266                 return;
267
268         spin_lock(&b->lock);
269
270         if (RB_EMPTY_NODE(&wait->node))
271                 goto out_unlock;
272
273         if (b->first_wait == wait) {
274                 struct rb_node *next;
275                 const int priority = wait->tsk->prio;
276
277                 GEM_BUG_ON(b->tasklet != wait->tsk);
278
279                 /* We are the current bottom-half. Find the next candidate,
280                  * the first waiter in the queue on the remaining oldest
281                  * request. As multiple seqnos may complete in the time it
282                  * takes us to wake up and find the next waiter, we have to
283                  * wake up that waiter for it to perform its own coherent
284                  * completion check.
285                  */
286                 next = rb_next(&wait->node);
287                 if (chain_wakeup(next, priority)) {
288                         /* If the next waiter is already complete,
289                          * wake it up and continue onto the next waiter. So
290                          * if have a small herd, they will wake up in parallel
291                          * rather than sequentially, which should reduce
292                          * the overall latency in waking all the completed
293                          * clients.
294                          *
295                          * However, waking up a chain adds extra latency to
296                          * the first_waiter. This is undesirable if that
297                          * waiter is a high priority task.
298                          */
299                         u32 seqno = engine->get_seqno(engine);
300
301                         while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
302                                 struct rb_node *n = rb_next(next);
303
304                                 __intel_breadcrumbs_finish(b, to_wait(next));
305                                 next = n;
306                                 if (!chain_wakeup(next, priority))
307                                         break;
308                         }
309                 }
310
311                 if (next) {
312                         /* In our haste, we may have completed the first waiter
313                          * before we enabled the interrupt. Do so now as we
314                          * have a second waiter for a future seqno. Afterwards,
315                          * we have to wake up that waiter in case we missed
316                          * the interrupt, or if we have to handle an
317                          * exception rather than a seqno completion.
318                          */
319                         b->first_wait = to_wait(next);
320                         smp_store_mb(b->tasklet, b->first_wait->tsk);
321                         if (b->first_wait->seqno != wait->seqno)
322                                 __intel_breadcrumbs_enable_irq(b);
323                         wake_up_process(b->tasklet);
324                 } else {
325                         b->first_wait = NULL;
326                         WRITE_ONCE(b->tasklet, NULL);
327                         __intel_breadcrumbs_disable_irq(b);
328                 }
329         } else {
330                 GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
331         }
332
333         GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
334         rb_erase(&wait->node, &b->waiters);
335
336 out_unlock:
337         GEM_BUG_ON(b->first_wait == wait);
338         GEM_BUG_ON(rb_first(&b->waiters) !=
339                    (b->first_wait ? &b->first_wait->node : NULL));
340         GEM_BUG_ON(!b->tasklet ^ RB_EMPTY_ROOT(&b->waiters));
341         spin_unlock(&b->lock);
342 }
343
344 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
345 {
346         struct intel_breadcrumbs *b = &engine->breadcrumbs;
347
348         spin_lock_init(&b->lock);
349         setup_timer(&b->fake_irq,
350                     intel_breadcrumbs_fake_irq,
351                     (unsigned long)engine);
352
353         return 0;
354 }
355
356 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
357 {
358         struct intel_breadcrumbs *b = &engine->breadcrumbs;
359
360         del_timer_sync(&b->fake_irq);
361 }
362
363 unsigned int intel_kick_waiters(struct drm_i915_private *i915)
364 {
365         struct intel_engine_cs *engine;
366         unsigned int mask = 0;
367
368         /* To avoid the task_struct disappearing beneath us as we wake up
369          * the process, we must first inspect the task_struct->state under the
370          * RCU lock, i.e. as we call wake_up_process() we must be holding the
371          * rcu_read_lock().
372          */
373         rcu_read_lock();
374         for_each_engine(engine, i915)
375                 if (unlikely(intel_engine_wakeup(engine)))
376                         mask |= intel_engine_flag(engine);
377         rcu_read_unlock();
378
379         return mask;
380 }