Merge remote-tracking branch 'airlied/drm-next' into drm-intel-next
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50         DRM_FORMAT_C8,
51         DRM_FORMAT_RGB565,
52         DRM_FORMAT_XRGB1555,
53         DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB8888,
61         DRM_FORMAT_XBGR8888,
62         DRM_FORMAT_XRGB2101010,
63         DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_ARGB8888,
72         DRM_FORMAT_ABGR8888,
73         DRM_FORMAT_XRGB2101010,
74         DRM_FORMAT_XBGR2101010,
75         DRM_FORMAT_YUYV,
76         DRM_FORMAT_YVYU,
77         DRM_FORMAT_UYVY,
78         DRM_FORMAT_VYUY,
79 };
80
81 /* Cursor formats */
82 static const uint32_t intel_cursor_formats[] = {
83         DRM_FORMAT_ARGB8888,
84 };
85
86 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
87
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89                                 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91                                    struct intel_crtc_state *pipe_config);
92
93 static int intel_framebuffer_init(struct drm_device *dev,
94                                   struct intel_framebuffer *ifb,
95                                   struct drm_mode_fb_cmd2 *mode_cmd,
96                                   struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100                                          struct intel_link_m_n *m_n,
101                                          struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106                             const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108                             const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112         struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114                            int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119
120 typedef struct {
121         int     min, max;
122 } intel_range_t;
123
124 typedef struct {
125         int     dot_limit;
126         int     p2_slow, p2_fast;
127 } intel_p2_t;
128
129 typedef struct intel_limit intel_limit_t;
130 struct intel_limit {
131         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
132         intel_p2_t          p2;
133 };
134
135 int
136 intel_pch_rawclk(struct drm_device *dev)
137 {
138         struct drm_i915_private *dev_priv = dev->dev_private;
139
140         WARN_ON(!HAS_PCH_SPLIT(dev));
141
142         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
143 }
144
145 /* hrawclock is 1/4 the FSB frequency */
146 int intel_hrawclk(struct drm_device *dev)
147 {
148         struct drm_i915_private *dev_priv = dev->dev_private;
149         uint32_t clkcfg;
150
151         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
152         if (IS_VALLEYVIEW(dev))
153                 return 200;
154
155         clkcfg = I915_READ(CLKCFG);
156         switch (clkcfg & CLKCFG_FSB_MASK) {
157         case CLKCFG_FSB_400:
158                 return 100;
159         case CLKCFG_FSB_533:
160                 return 133;
161         case CLKCFG_FSB_667:
162                 return 166;
163         case CLKCFG_FSB_800:
164                 return 200;
165         case CLKCFG_FSB_1067:
166                 return 266;
167         case CLKCFG_FSB_1333:
168                 return 333;
169         /* these two are just a guess; one of them might be right */
170         case CLKCFG_FSB_1600:
171         case CLKCFG_FSB_1600_ALT:
172                 return 400;
173         default:
174                 return 133;
175         }
176 }
177
178 static inline u32 /* units of 100MHz */
179 intel_fdi_link_freq(struct drm_device *dev)
180 {
181         if (IS_GEN5(dev)) {
182                 struct drm_i915_private *dev_priv = dev->dev_private;
183                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
184         } else
185                 return 27;
186 }
187
188 static const intel_limit_t intel_limits_i8xx_dac = {
189         .dot = { .min = 25000, .max = 350000 },
190         .vco = { .min = 908000, .max = 1512000 },
191         .n = { .min = 2, .max = 16 },
192         .m = { .min = 96, .max = 140 },
193         .m1 = { .min = 18, .max = 26 },
194         .m2 = { .min = 6, .max = 16 },
195         .p = { .min = 4, .max = 128 },
196         .p1 = { .min = 2, .max = 33 },
197         .p2 = { .dot_limit = 165000,
198                 .p2_slow = 4, .p2_fast = 2 },
199 };
200
201 static const intel_limit_t intel_limits_i8xx_dvo = {
202         .dot = { .min = 25000, .max = 350000 },
203         .vco = { .min = 908000, .max = 1512000 },
204         .n = { .min = 2, .max = 16 },
205         .m = { .min = 96, .max = 140 },
206         .m1 = { .min = 18, .max = 26 },
207         .m2 = { .min = 6, .max = 16 },
208         .p = { .min = 4, .max = 128 },
209         .p1 = { .min = 2, .max = 33 },
210         .p2 = { .dot_limit = 165000,
211                 .p2_slow = 4, .p2_fast = 4 },
212 };
213
214 static const intel_limit_t intel_limits_i8xx_lvds = {
215         .dot = { .min = 25000, .max = 350000 },
216         .vco = { .min = 908000, .max = 1512000 },
217         .n = { .min = 2, .max = 16 },
218         .m = { .min = 96, .max = 140 },
219         .m1 = { .min = 18, .max = 26 },
220         .m2 = { .min = 6, .max = 16 },
221         .p = { .min = 4, .max = 128 },
222         .p1 = { .min = 1, .max = 6 },
223         .p2 = { .dot_limit = 165000,
224                 .p2_slow = 14, .p2_fast = 7 },
225 };
226
227 static const intel_limit_t intel_limits_i9xx_sdvo = {
228         .dot = { .min = 20000, .max = 400000 },
229         .vco = { .min = 1400000, .max = 2800000 },
230         .n = { .min = 1, .max = 6 },
231         .m = { .min = 70, .max = 120 },
232         .m1 = { .min = 8, .max = 18 },
233         .m2 = { .min = 3, .max = 7 },
234         .p = { .min = 5, .max = 80 },
235         .p1 = { .min = 1, .max = 8 },
236         .p2 = { .dot_limit = 200000,
237                 .p2_slow = 10, .p2_fast = 5 },
238 };
239
240 static const intel_limit_t intel_limits_i9xx_lvds = {
241         .dot = { .min = 20000, .max = 400000 },
242         .vco = { .min = 1400000, .max = 2800000 },
243         .n = { .min = 1, .max = 6 },
244         .m = { .min = 70, .max = 120 },
245         .m1 = { .min = 8, .max = 18 },
246         .m2 = { .min = 3, .max = 7 },
247         .p = { .min = 7, .max = 98 },
248         .p1 = { .min = 1, .max = 8 },
249         .p2 = { .dot_limit = 112000,
250                 .p2_slow = 14, .p2_fast = 7 },
251 };
252
253
254 static const intel_limit_t intel_limits_g4x_sdvo = {
255         .dot = { .min = 25000, .max = 270000 },
256         .vco = { .min = 1750000, .max = 3500000},
257         .n = { .min = 1, .max = 4 },
258         .m = { .min = 104, .max = 138 },
259         .m1 = { .min = 17, .max = 23 },
260         .m2 = { .min = 5, .max = 11 },
261         .p = { .min = 10, .max = 30 },
262         .p1 = { .min = 1, .max = 3},
263         .p2 = { .dot_limit = 270000,
264                 .p2_slow = 10,
265                 .p2_fast = 10
266         },
267 };
268
269 static const intel_limit_t intel_limits_g4x_hdmi = {
270         .dot = { .min = 22000, .max = 400000 },
271         .vco = { .min = 1750000, .max = 3500000},
272         .n = { .min = 1, .max = 4 },
273         .m = { .min = 104, .max = 138 },
274         .m1 = { .min = 16, .max = 23 },
275         .m2 = { .min = 5, .max = 11 },
276         .p = { .min = 5, .max = 80 },
277         .p1 = { .min = 1, .max = 8},
278         .p2 = { .dot_limit = 165000,
279                 .p2_slow = 10, .p2_fast = 5 },
280 };
281
282 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
283         .dot = { .min = 20000, .max = 115000 },
284         .vco = { .min = 1750000, .max = 3500000 },
285         .n = { .min = 1, .max = 3 },
286         .m = { .min = 104, .max = 138 },
287         .m1 = { .min = 17, .max = 23 },
288         .m2 = { .min = 5, .max = 11 },
289         .p = { .min = 28, .max = 112 },
290         .p1 = { .min = 2, .max = 8 },
291         .p2 = { .dot_limit = 0,
292                 .p2_slow = 14, .p2_fast = 14
293         },
294 };
295
296 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
297         .dot = { .min = 80000, .max = 224000 },
298         .vco = { .min = 1750000, .max = 3500000 },
299         .n = { .min = 1, .max = 3 },
300         .m = { .min = 104, .max = 138 },
301         .m1 = { .min = 17, .max = 23 },
302         .m2 = { .min = 5, .max = 11 },
303         .p = { .min = 14, .max = 42 },
304         .p1 = { .min = 2, .max = 6 },
305         .p2 = { .dot_limit = 0,
306                 .p2_slow = 7, .p2_fast = 7
307         },
308 };
309
310 static const intel_limit_t intel_limits_pineview_sdvo = {
311         .dot = { .min = 20000, .max = 400000},
312         .vco = { .min = 1700000, .max = 3500000 },
313         /* Pineview's Ncounter is a ring counter */
314         .n = { .min = 3, .max = 6 },
315         .m = { .min = 2, .max = 256 },
316         /* Pineview only has one combined m divider, which we treat as m2. */
317         .m1 = { .min = 0, .max = 0 },
318         .m2 = { .min = 0, .max = 254 },
319         .p = { .min = 5, .max = 80 },
320         .p1 = { .min = 1, .max = 8 },
321         .p2 = { .dot_limit = 200000,
322                 .p2_slow = 10, .p2_fast = 5 },
323 };
324
325 static const intel_limit_t intel_limits_pineview_lvds = {
326         .dot = { .min = 20000, .max = 400000 },
327         .vco = { .min = 1700000, .max = 3500000 },
328         .n = { .min = 3, .max = 6 },
329         .m = { .min = 2, .max = 256 },
330         .m1 = { .min = 0, .max = 0 },
331         .m2 = { .min = 0, .max = 254 },
332         .p = { .min = 7, .max = 112 },
333         .p1 = { .min = 1, .max = 8 },
334         .p2 = { .dot_limit = 112000,
335                 .p2_slow = 14, .p2_fast = 14 },
336 };
337
338 /* Ironlake / Sandybridge
339  *
340  * We calculate clock using (register_value + 2) for N/M1/M2, so here
341  * the range value for them is (actual_value - 2).
342  */
343 static const intel_limit_t intel_limits_ironlake_dac = {
344         .dot = { .min = 25000, .max = 350000 },
345         .vco = { .min = 1760000, .max = 3510000 },
346         .n = { .min = 1, .max = 5 },
347         .m = { .min = 79, .max = 127 },
348         .m1 = { .min = 12, .max = 22 },
349         .m2 = { .min = 5, .max = 9 },
350         .p = { .min = 5, .max = 80 },
351         .p1 = { .min = 1, .max = 8 },
352         .p2 = { .dot_limit = 225000,
353                 .p2_slow = 10, .p2_fast = 5 },
354 };
355
356 static const intel_limit_t intel_limits_ironlake_single_lvds = {
357         .dot = { .min = 25000, .max = 350000 },
358         .vco = { .min = 1760000, .max = 3510000 },
359         .n = { .min = 1, .max = 3 },
360         .m = { .min = 79, .max = 118 },
361         .m1 = { .min = 12, .max = 22 },
362         .m2 = { .min = 5, .max = 9 },
363         .p = { .min = 28, .max = 112 },
364         .p1 = { .min = 2, .max = 8 },
365         .p2 = { .dot_limit = 225000,
366                 .p2_slow = 14, .p2_fast = 14 },
367 };
368
369 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
370         .dot = { .min = 25000, .max = 350000 },
371         .vco = { .min = 1760000, .max = 3510000 },
372         .n = { .min = 1, .max = 3 },
373         .m = { .min = 79, .max = 127 },
374         .m1 = { .min = 12, .max = 22 },
375         .m2 = { .min = 5, .max = 9 },
376         .p = { .min = 14, .max = 56 },
377         .p1 = { .min = 2, .max = 8 },
378         .p2 = { .dot_limit = 225000,
379                 .p2_slow = 7, .p2_fast = 7 },
380 };
381
382 /* LVDS 100mhz refclk limits. */
383 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
384         .dot = { .min = 25000, .max = 350000 },
385         .vco = { .min = 1760000, .max = 3510000 },
386         .n = { .min = 1, .max = 2 },
387         .m = { .min = 79, .max = 126 },
388         .m1 = { .min = 12, .max = 22 },
389         .m2 = { .min = 5, .max = 9 },
390         .p = { .min = 28, .max = 112 },
391         .p1 = { .min = 2, .max = 8 },
392         .p2 = { .dot_limit = 225000,
393                 .p2_slow = 14, .p2_fast = 14 },
394 };
395
396 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
397         .dot = { .min = 25000, .max = 350000 },
398         .vco = { .min = 1760000, .max = 3510000 },
399         .n = { .min = 1, .max = 3 },
400         .m = { .min = 79, .max = 126 },
401         .m1 = { .min = 12, .max = 22 },
402         .m2 = { .min = 5, .max = 9 },
403         .p = { .min = 14, .max = 42 },
404         .p1 = { .min = 2, .max = 6 },
405         .p2 = { .dot_limit = 225000,
406                 .p2_slow = 7, .p2_fast = 7 },
407 };
408
409 static const intel_limit_t intel_limits_vlv = {
410          /*
411           * These are the data rate limits (measured in fast clocks)
412           * since those are the strictest limits we have. The fast
413           * clock and actual rate limits are more relaxed, so checking
414           * them would make no difference.
415           */
416         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
417         .vco = { .min = 4000000, .max = 6000000 },
418         .n = { .min = 1, .max = 7 },
419         .m1 = { .min = 2, .max = 3 },
420         .m2 = { .min = 11, .max = 156 },
421         .p1 = { .min = 2, .max = 3 },
422         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
423 };
424
425 static const intel_limit_t intel_limits_chv = {
426         /*
427          * These are the data rate limits (measured in fast clocks)
428          * since those are the strictest limits we have.  The fast
429          * clock and actual rate limits are more relaxed, so checking
430          * them would make no difference.
431          */
432         .dot = { .min = 25000 * 5, .max = 540000 * 5},
433         .vco = { .min = 4800000, .max = 6480000 },
434         .n = { .min = 1, .max = 1 },
435         .m1 = { .min = 2, .max = 2 },
436         .m2 = { .min = 24 << 22, .max = 175 << 22 },
437         .p1 = { .min = 2, .max = 4 },
438         .p2 = { .p2_slow = 1, .p2_fast = 14 },
439 };
440
441 static const intel_limit_t intel_limits_bxt = {
442         /* FIXME: find real dot limits */
443         .dot = { .min = 0, .max = INT_MAX },
444         .vco = { .min = 4800000, .max = 6700000 },
445         .n = { .min = 1, .max = 1 },
446         .m1 = { .min = 2, .max = 2 },
447         /* FIXME: find real m2 limits */
448         .m2 = { .min = 2 << 22, .max = 255 << 22 },
449         .p1 = { .min = 2, .max = 4 },
450         .p2 = { .p2_slow = 1, .p2_fast = 20 },
451 };
452
453 static bool
454 needs_modeset(struct drm_crtc_state *state)
455 {
456         return drm_atomic_crtc_needs_modeset(state);
457 }
458
459 /**
460  * Returns whether any output on the specified pipe is of the specified type
461  */
462 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
463 {
464         struct drm_device *dev = crtc->base.dev;
465         struct intel_encoder *encoder;
466
467         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
468                 if (encoder->type == type)
469                         return true;
470
471         return false;
472 }
473
474 /**
475  * Returns whether any output on the specified pipe will have the specified
476  * type after a staged modeset is complete, i.e., the same as
477  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
478  * encoder->crtc.
479  */
480 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
481                                       int type)
482 {
483         struct drm_atomic_state *state = crtc_state->base.state;
484         struct drm_connector *connector;
485         struct drm_connector_state *connector_state;
486         struct intel_encoder *encoder;
487         int i, num_connectors = 0;
488
489         for_each_connector_in_state(state, connector, connector_state, i) {
490                 if (connector_state->crtc != crtc_state->base.crtc)
491                         continue;
492
493                 num_connectors++;
494
495                 encoder = to_intel_encoder(connector_state->best_encoder);
496                 if (encoder->type == type)
497                         return true;
498         }
499
500         WARN_ON(num_connectors == 0);
501
502         return false;
503 }
504
505 static const intel_limit_t *
506 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
507 {
508         struct drm_device *dev = crtc_state->base.crtc->dev;
509         const intel_limit_t *limit;
510
511         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
512                 if (intel_is_dual_link_lvds(dev)) {
513                         if (refclk == 100000)
514                                 limit = &intel_limits_ironlake_dual_lvds_100m;
515                         else
516                                 limit = &intel_limits_ironlake_dual_lvds;
517                 } else {
518                         if (refclk == 100000)
519                                 limit = &intel_limits_ironlake_single_lvds_100m;
520                         else
521                                 limit = &intel_limits_ironlake_single_lvds;
522                 }
523         } else
524                 limit = &intel_limits_ironlake_dac;
525
526         return limit;
527 }
528
529 static const intel_limit_t *
530 intel_g4x_limit(struct intel_crtc_state *crtc_state)
531 {
532         struct drm_device *dev = crtc_state->base.crtc->dev;
533         const intel_limit_t *limit;
534
535         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
536                 if (intel_is_dual_link_lvds(dev))
537                         limit = &intel_limits_g4x_dual_channel_lvds;
538                 else
539                         limit = &intel_limits_g4x_single_channel_lvds;
540         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
541                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
542                 limit = &intel_limits_g4x_hdmi;
543         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
544                 limit = &intel_limits_g4x_sdvo;
545         } else /* The option is for other outputs */
546                 limit = &intel_limits_i9xx_sdvo;
547
548         return limit;
549 }
550
551 static const intel_limit_t *
552 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
553 {
554         struct drm_device *dev = crtc_state->base.crtc->dev;
555         const intel_limit_t *limit;
556
557         if (IS_BROXTON(dev))
558                 limit = &intel_limits_bxt;
559         else if (HAS_PCH_SPLIT(dev))
560                 limit = intel_ironlake_limit(crtc_state, refclk);
561         else if (IS_G4X(dev)) {
562                 limit = intel_g4x_limit(crtc_state);
563         } else if (IS_PINEVIEW(dev)) {
564                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
565                         limit = &intel_limits_pineview_lvds;
566                 else
567                         limit = &intel_limits_pineview_sdvo;
568         } else if (IS_CHERRYVIEW(dev)) {
569                 limit = &intel_limits_chv;
570         } else if (IS_VALLEYVIEW(dev)) {
571                 limit = &intel_limits_vlv;
572         } else if (!IS_GEN2(dev)) {
573                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
574                         limit = &intel_limits_i9xx_lvds;
575                 else
576                         limit = &intel_limits_i9xx_sdvo;
577         } else {
578                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
579                         limit = &intel_limits_i8xx_lvds;
580                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
581                         limit = &intel_limits_i8xx_dvo;
582                 else
583                         limit = &intel_limits_i8xx_dac;
584         }
585         return limit;
586 }
587
588 /*
589  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
590  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
591  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
592  * The helpers' return value is the rate of the clock that is fed to the
593  * display engine's pipe which can be the above fast dot clock rate or a
594  * divided-down version of it.
595  */
596 /* m1 is reserved as 0 in Pineview, n is a ring counter */
597 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
598 {
599         clock->m = clock->m2 + 2;
600         clock->p = clock->p1 * clock->p2;
601         if (WARN_ON(clock->n == 0 || clock->p == 0))
602                 return 0;
603         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
604         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
605
606         return clock->dot;
607 }
608
609 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
610 {
611         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
612 }
613
614 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
615 {
616         clock->m = i9xx_dpll_compute_m(clock);
617         clock->p = clock->p1 * clock->p2;
618         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
619                 return 0;
620         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
621         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
622
623         return clock->dot;
624 }
625
626 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
627 {
628         clock->m = clock->m1 * clock->m2;
629         clock->p = clock->p1 * clock->p2;
630         if (WARN_ON(clock->n == 0 || clock->p == 0))
631                 return 0;
632         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
633         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
634
635         return clock->dot / 5;
636 }
637
638 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
639 {
640         clock->m = clock->m1 * clock->m2;
641         clock->p = clock->p1 * clock->p2;
642         if (WARN_ON(clock->n == 0 || clock->p == 0))
643                 return 0;
644         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
645                         clock->n << 22);
646         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
647
648         return clock->dot / 5;
649 }
650
651 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
652 /**
653  * Returns whether the given set of divisors are valid for a given refclk with
654  * the given connectors.
655  */
656
657 static bool intel_PLL_is_valid(struct drm_device *dev,
658                                const intel_limit_t *limit,
659                                const intel_clock_t *clock)
660 {
661         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
662                 INTELPllInvalid("n out of range\n");
663         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
664                 INTELPllInvalid("p1 out of range\n");
665         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
666                 INTELPllInvalid("m2 out of range\n");
667         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
668                 INTELPllInvalid("m1 out of range\n");
669
670         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
671                 if (clock->m1 <= clock->m2)
672                         INTELPllInvalid("m1 <= m2\n");
673
674         if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
675                 if (clock->p < limit->p.min || limit->p.max < clock->p)
676                         INTELPllInvalid("p out of range\n");
677                 if (clock->m < limit->m.min || limit->m.max < clock->m)
678                         INTELPllInvalid("m out of range\n");
679         }
680
681         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
682                 INTELPllInvalid("vco out of range\n");
683         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
684          * connector, etc., rather than just a single range.
685          */
686         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
687                 INTELPllInvalid("dot out of range\n");
688
689         return true;
690 }
691
692 static int
693 i9xx_select_p2_div(const intel_limit_t *limit,
694                    const struct intel_crtc_state *crtc_state,
695                    int target)
696 {
697         struct drm_device *dev = crtc_state->base.crtc->dev;
698
699         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
700                 /*
701                  * For LVDS just rely on its current settings for dual-channel.
702                  * We haven't figured out how to reliably set up different
703                  * single/dual channel state, if we even can.
704                  */
705                 if (intel_is_dual_link_lvds(dev))
706                         return limit->p2.p2_fast;
707                 else
708                         return limit->p2.p2_slow;
709         } else {
710                 if (target < limit->p2.dot_limit)
711                         return limit->p2.p2_slow;
712                 else
713                         return limit->p2.p2_fast;
714         }
715 }
716
717 static bool
718 i9xx_find_best_dpll(const intel_limit_t *limit,
719                     struct intel_crtc_state *crtc_state,
720                     int target, int refclk, intel_clock_t *match_clock,
721                     intel_clock_t *best_clock)
722 {
723         struct drm_device *dev = crtc_state->base.crtc->dev;
724         intel_clock_t clock;
725         int err = target;
726
727         memset(best_clock, 0, sizeof(*best_clock));
728
729         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
730
731         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
732              clock.m1++) {
733                 for (clock.m2 = limit->m2.min;
734                      clock.m2 <= limit->m2.max; clock.m2++) {
735                         if (clock.m2 >= clock.m1)
736                                 break;
737                         for (clock.n = limit->n.min;
738                              clock.n <= limit->n.max; clock.n++) {
739                                 for (clock.p1 = limit->p1.min;
740                                         clock.p1 <= limit->p1.max; clock.p1++) {
741                                         int this_err;
742
743                                         i9xx_calc_dpll_params(refclk, &clock);
744                                         if (!intel_PLL_is_valid(dev, limit,
745                                                                 &clock))
746                                                 continue;
747                                         if (match_clock &&
748                                             clock.p != match_clock->p)
749                                                 continue;
750
751                                         this_err = abs(clock.dot - target);
752                                         if (this_err < err) {
753                                                 *best_clock = clock;
754                                                 err = this_err;
755                                         }
756                                 }
757                         }
758                 }
759         }
760
761         return (err != target);
762 }
763
764 static bool
765 pnv_find_best_dpll(const intel_limit_t *limit,
766                    struct intel_crtc_state *crtc_state,
767                    int target, int refclk, intel_clock_t *match_clock,
768                    intel_clock_t *best_clock)
769 {
770         struct drm_device *dev = crtc_state->base.crtc->dev;
771         intel_clock_t clock;
772         int err = target;
773
774         memset(best_clock, 0, sizeof(*best_clock));
775
776         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
777
778         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
779              clock.m1++) {
780                 for (clock.m2 = limit->m2.min;
781                      clock.m2 <= limit->m2.max; clock.m2++) {
782                         for (clock.n = limit->n.min;
783                              clock.n <= limit->n.max; clock.n++) {
784                                 for (clock.p1 = limit->p1.min;
785                                         clock.p1 <= limit->p1.max; clock.p1++) {
786                                         int this_err;
787
788                                         pnv_calc_dpll_params(refclk, &clock);
789                                         if (!intel_PLL_is_valid(dev, limit,
790                                                                 &clock))
791                                                 continue;
792                                         if (match_clock &&
793                                             clock.p != match_clock->p)
794                                                 continue;
795
796                                         this_err = abs(clock.dot - target);
797                                         if (this_err < err) {
798                                                 *best_clock = clock;
799                                                 err = this_err;
800                                         }
801                                 }
802                         }
803                 }
804         }
805
806         return (err != target);
807 }
808
809 static bool
810 g4x_find_best_dpll(const intel_limit_t *limit,
811                    struct intel_crtc_state *crtc_state,
812                    int target, int refclk, intel_clock_t *match_clock,
813                    intel_clock_t *best_clock)
814 {
815         struct drm_device *dev = crtc_state->base.crtc->dev;
816         intel_clock_t clock;
817         int max_n;
818         bool found = false;
819         /* approximately equals target * 0.00585 */
820         int err_most = (target >> 8) + (target >> 9);
821
822         memset(best_clock, 0, sizeof(*best_clock));
823
824         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
825
826         max_n = limit->n.max;
827         /* based on hardware requirement, prefer smaller n to precision */
828         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
829                 /* based on hardware requirement, prefere larger m1,m2 */
830                 for (clock.m1 = limit->m1.max;
831                      clock.m1 >= limit->m1.min; clock.m1--) {
832                         for (clock.m2 = limit->m2.max;
833                              clock.m2 >= limit->m2.min; clock.m2--) {
834                                 for (clock.p1 = limit->p1.max;
835                                      clock.p1 >= limit->p1.min; clock.p1--) {
836                                         int this_err;
837
838                                         i9xx_calc_dpll_params(refclk, &clock);
839                                         if (!intel_PLL_is_valid(dev, limit,
840                                                                 &clock))
841                                                 continue;
842
843                                         this_err = abs(clock.dot - target);
844                                         if (this_err < err_most) {
845                                                 *best_clock = clock;
846                                                 err_most = this_err;
847                                                 max_n = clock.n;
848                                                 found = true;
849                                         }
850                                 }
851                         }
852                 }
853         }
854         return found;
855 }
856
857 /*
858  * Check if the calculated PLL configuration is more optimal compared to the
859  * best configuration and error found so far. Return the calculated error.
860  */
861 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
862                                const intel_clock_t *calculated_clock,
863                                const intel_clock_t *best_clock,
864                                unsigned int best_error_ppm,
865                                unsigned int *error_ppm)
866 {
867         /*
868          * For CHV ignore the error and consider only the P value.
869          * Prefer a bigger P value based on HW requirements.
870          */
871         if (IS_CHERRYVIEW(dev)) {
872                 *error_ppm = 0;
873
874                 return calculated_clock->p > best_clock->p;
875         }
876
877         if (WARN_ON_ONCE(!target_freq))
878                 return false;
879
880         *error_ppm = div_u64(1000000ULL *
881                                 abs(target_freq - calculated_clock->dot),
882                              target_freq);
883         /*
884          * Prefer a better P value over a better (smaller) error if the error
885          * is small. Ensure this preference for future configurations too by
886          * setting the error to 0.
887          */
888         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
889                 *error_ppm = 0;
890
891                 return true;
892         }
893
894         return *error_ppm + 10 < best_error_ppm;
895 }
896
897 static bool
898 vlv_find_best_dpll(const intel_limit_t *limit,
899                    struct intel_crtc_state *crtc_state,
900                    int target, int refclk, intel_clock_t *match_clock,
901                    intel_clock_t *best_clock)
902 {
903         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
904         struct drm_device *dev = crtc->base.dev;
905         intel_clock_t clock;
906         unsigned int bestppm = 1000000;
907         /* min update 19.2 MHz */
908         int max_n = min(limit->n.max, refclk / 19200);
909         bool found = false;
910
911         target *= 5; /* fast clock */
912
913         memset(best_clock, 0, sizeof(*best_clock));
914
915         /* based on hardware requirement, prefer smaller n to precision */
916         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
917                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
918                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
919                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
920                                 clock.p = clock.p1 * clock.p2;
921                                 /* based on hardware requirement, prefer bigger m1,m2 values */
922                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
923                                         unsigned int ppm;
924
925                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
926                                                                      refclk * clock.m1);
927
928                                         vlv_calc_dpll_params(refclk, &clock);
929
930                                         if (!intel_PLL_is_valid(dev, limit,
931                                                                 &clock))
932                                                 continue;
933
934                                         if (!vlv_PLL_is_optimal(dev, target,
935                                                                 &clock,
936                                                                 best_clock,
937                                                                 bestppm, &ppm))
938                                                 continue;
939
940                                         *best_clock = clock;
941                                         bestppm = ppm;
942                                         found = true;
943                                 }
944                         }
945                 }
946         }
947
948         return found;
949 }
950
951 static bool
952 chv_find_best_dpll(const intel_limit_t *limit,
953                    struct intel_crtc_state *crtc_state,
954                    int target, int refclk, intel_clock_t *match_clock,
955                    intel_clock_t *best_clock)
956 {
957         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
958         struct drm_device *dev = crtc->base.dev;
959         unsigned int best_error_ppm;
960         intel_clock_t clock;
961         uint64_t m2;
962         int found = false;
963
964         memset(best_clock, 0, sizeof(*best_clock));
965         best_error_ppm = 1000000;
966
967         /*
968          * Based on hardware doc, the n always set to 1, and m1 always
969          * set to 2.  If requires to support 200Mhz refclk, we need to
970          * revisit this because n may not 1 anymore.
971          */
972         clock.n = 1, clock.m1 = 2;
973         target *= 5;    /* fast clock */
974
975         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
976                 for (clock.p2 = limit->p2.p2_fast;
977                                 clock.p2 >= limit->p2.p2_slow;
978                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
979                         unsigned int error_ppm;
980
981                         clock.p = clock.p1 * clock.p2;
982
983                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
984                                         clock.n) << 22, refclk * clock.m1);
985
986                         if (m2 > INT_MAX/clock.m1)
987                                 continue;
988
989                         clock.m2 = m2;
990
991                         chv_calc_dpll_params(refclk, &clock);
992
993                         if (!intel_PLL_is_valid(dev, limit, &clock))
994                                 continue;
995
996                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
997                                                 best_error_ppm, &error_ppm))
998                                 continue;
999
1000                         *best_clock = clock;
1001                         best_error_ppm = error_ppm;
1002                         found = true;
1003                 }
1004         }
1005
1006         return found;
1007 }
1008
1009 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1010                         intel_clock_t *best_clock)
1011 {
1012         int refclk = i9xx_get_refclk(crtc_state, 0);
1013
1014         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1015                                   target_clock, refclk, NULL, best_clock);
1016 }
1017
1018 bool intel_crtc_active(struct drm_crtc *crtc)
1019 {
1020         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1021
1022         /* Be paranoid as we can arrive here with only partial
1023          * state retrieved from the hardware during setup.
1024          *
1025          * We can ditch the adjusted_mode.crtc_clock check as soon
1026          * as Haswell has gained clock readout/fastboot support.
1027          *
1028          * We can ditch the crtc->primary->fb check as soon as we can
1029          * properly reconstruct framebuffers.
1030          *
1031          * FIXME: The intel_crtc->active here should be switched to
1032          * crtc->state->active once we have proper CRTC states wired up
1033          * for atomic.
1034          */
1035         return intel_crtc->active && crtc->primary->state->fb &&
1036                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1037 }
1038
1039 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1040                                              enum pipe pipe)
1041 {
1042         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1043         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1044
1045         return intel_crtc->config->cpu_transcoder;
1046 }
1047
1048 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1049 {
1050         struct drm_i915_private *dev_priv = dev->dev_private;
1051         u32 reg = PIPEDSL(pipe);
1052         u32 line1, line2;
1053         u32 line_mask;
1054
1055         if (IS_GEN2(dev))
1056                 line_mask = DSL_LINEMASK_GEN2;
1057         else
1058                 line_mask = DSL_LINEMASK_GEN3;
1059
1060         line1 = I915_READ(reg) & line_mask;
1061         msleep(5);
1062         line2 = I915_READ(reg) & line_mask;
1063
1064         return line1 == line2;
1065 }
1066
1067 /*
1068  * intel_wait_for_pipe_off - wait for pipe to turn off
1069  * @crtc: crtc whose pipe to wait for
1070  *
1071  * After disabling a pipe, we can't wait for vblank in the usual way,
1072  * spinning on the vblank interrupt status bit, since we won't actually
1073  * see an interrupt when the pipe is disabled.
1074  *
1075  * On Gen4 and above:
1076  *   wait for the pipe register state bit to turn off
1077  *
1078  * Otherwise:
1079  *   wait for the display line value to settle (it usually
1080  *   ends up stopping at the start of the next frame).
1081  *
1082  */
1083 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1084 {
1085         struct drm_device *dev = crtc->base.dev;
1086         struct drm_i915_private *dev_priv = dev->dev_private;
1087         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1088         enum pipe pipe = crtc->pipe;
1089
1090         if (INTEL_INFO(dev)->gen >= 4) {
1091                 int reg = PIPECONF(cpu_transcoder);
1092
1093                 /* Wait for the Pipe State to go off */
1094                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1095                              100))
1096                         WARN(1, "pipe_off wait timed out\n");
1097         } else {
1098                 /* Wait for the display line to settle */
1099                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1100                         WARN(1, "pipe_off wait timed out\n");
1101         }
1102 }
1103
1104 static const char *state_string(bool enabled)
1105 {
1106         return enabled ? "on" : "off";
1107 }
1108
1109 /* Only for pre-ILK configs */
1110 void assert_pll(struct drm_i915_private *dev_priv,
1111                 enum pipe pipe, bool state)
1112 {
1113         int reg;
1114         u32 val;
1115         bool cur_state;
1116
1117         reg = DPLL(pipe);
1118         val = I915_READ(reg);
1119         cur_state = !!(val & DPLL_VCO_ENABLE);
1120         I915_STATE_WARN(cur_state != state,
1121              "PLL state assertion failure (expected %s, current %s)\n",
1122              state_string(state), state_string(cur_state));
1123 }
1124
1125 /* XXX: the dsi pll is shared between MIPI DSI ports */
1126 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1127 {
1128         u32 val;
1129         bool cur_state;
1130
1131         mutex_lock(&dev_priv->sb_lock);
1132         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1133         mutex_unlock(&dev_priv->sb_lock);
1134
1135         cur_state = val & DSI_PLL_VCO_EN;
1136         I915_STATE_WARN(cur_state != state,
1137              "DSI PLL state assertion failure (expected %s, current %s)\n",
1138              state_string(state), state_string(cur_state));
1139 }
1140 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1141 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1142
1143 struct intel_shared_dpll *
1144 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1145 {
1146         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1147
1148         if (crtc->config->shared_dpll < 0)
1149                 return NULL;
1150
1151         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1152 }
1153
1154 /* For ILK+ */
1155 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1156                         struct intel_shared_dpll *pll,
1157                         bool state)
1158 {
1159         bool cur_state;
1160         struct intel_dpll_hw_state hw_state;
1161
1162         if (WARN (!pll,
1163                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1164                 return;
1165
1166         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1167         I915_STATE_WARN(cur_state != state,
1168              "%s assertion failure (expected %s, current %s)\n",
1169              pll->name, state_string(state), state_string(cur_state));
1170 }
1171
1172 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1173                           enum pipe pipe, bool state)
1174 {
1175         int reg;
1176         u32 val;
1177         bool cur_state;
1178         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1179                                                                       pipe);
1180
1181         if (HAS_DDI(dev_priv->dev)) {
1182                 /* DDI does not have a specific FDI_TX register */
1183                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1184                 val = I915_READ(reg);
1185                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1186         } else {
1187                 reg = FDI_TX_CTL(pipe);
1188                 val = I915_READ(reg);
1189                 cur_state = !!(val & FDI_TX_ENABLE);
1190         }
1191         I915_STATE_WARN(cur_state != state,
1192              "FDI TX state assertion failure (expected %s, current %s)\n",
1193              state_string(state), state_string(cur_state));
1194 }
1195 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1196 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1197
1198 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1199                           enum pipe pipe, bool state)
1200 {
1201         int reg;
1202         u32 val;
1203         bool cur_state;
1204
1205         reg = FDI_RX_CTL(pipe);
1206         val = I915_READ(reg);
1207         cur_state = !!(val & FDI_RX_ENABLE);
1208         I915_STATE_WARN(cur_state != state,
1209              "FDI RX state assertion failure (expected %s, current %s)\n",
1210              state_string(state), state_string(cur_state));
1211 }
1212 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1213 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1214
1215 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1216                                       enum pipe pipe)
1217 {
1218         int reg;
1219         u32 val;
1220
1221         /* ILK FDI PLL is always enabled */
1222         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1223                 return;
1224
1225         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1226         if (HAS_DDI(dev_priv->dev))
1227                 return;
1228
1229         reg = FDI_TX_CTL(pipe);
1230         val = I915_READ(reg);
1231         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1232 }
1233
1234 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1235                        enum pipe pipe, bool state)
1236 {
1237         int reg;
1238         u32 val;
1239         bool cur_state;
1240
1241         reg = FDI_RX_CTL(pipe);
1242         val = I915_READ(reg);
1243         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1244         I915_STATE_WARN(cur_state != state,
1245              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1246              state_string(state), state_string(cur_state));
1247 }
1248
1249 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1250                            enum pipe pipe)
1251 {
1252         struct drm_device *dev = dev_priv->dev;
1253         int pp_reg;
1254         u32 val;
1255         enum pipe panel_pipe = PIPE_A;
1256         bool locked = true;
1257
1258         if (WARN_ON(HAS_DDI(dev)))
1259                 return;
1260
1261         if (HAS_PCH_SPLIT(dev)) {
1262                 u32 port_sel;
1263
1264                 pp_reg = PCH_PP_CONTROL;
1265                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1266
1267                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1268                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1269                         panel_pipe = PIPE_B;
1270                 /* XXX: else fix for eDP */
1271         } else if (IS_VALLEYVIEW(dev)) {
1272                 /* presumably write lock depends on pipe, not port select */
1273                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1274                 panel_pipe = pipe;
1275         } else {
1276                 pp_reg = PP_CONTROL;
1277                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1278                         panel_pipe = PIPE_B;
1279         }
1280
1281         val = I915_READ(pp_reg);
1282         if (!(val & PANEL_POWER_ON) ||
1283             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1284                 locked = false;
1285
1286         I915_STATE_WARN(panel_pipe == pipe && locked,
1287              "panel assertion failure, pipe %c regs locked\n",
1288              pipe_name(pipe));
1289 }
1290
1291 static void assert_cursor(struct drm_i915_private *dev_priv,
1292                           enum pipe pipe, bool state)
1293 {
1294         struct drm_device *dev = dev_priv->dev;
1295         bool cur_state;
1296
1297         if (IS_845G(dev) || IS_I865G(dev))
1298                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1299         else
1300                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1301
1302         I915_STATE_WARN(cur_state != state,
1303              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1304              pipe_name(pipe), state_string(state), state_string(cur_state));
1305 }
1306 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1307 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1308
1309 void assert_pipe(struct drm_i915_private *dev_priv,
1310                  enum pipe pipe, bool state)
1311 {
1312         int reg;
1313         u32 val;
1314         bool cur_state;
1315         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1316                                                                       pipe);
1317
1318         /* if we need the pipe quirk it must be always on */
1319         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1320             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1321                 state = true;
1322
1323         if (!intel_display_power_is_enabled(dev_priv,
1324                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1325                 cur_state = false;
1326         } else {
1327                 reg = PIPECONF(cpu_transcoder);
1328                 val = I915_READ(reg);
1329                 cur_state = !!(val & PIPECONF_ENABLE);
1330         }
1331
1332         I915_STATE_WARN(cur_state != state,
1333              "pipe %c assertion failure (expected %s, current %s)\n",
1334              pipe_name(pipe), state_string(state), state_string(cur_state));
1335 }
1336
1337 static void assert_plane(struct drm_i915_private *dev_priv,
1338                          enum plane plane, bool state)
1339 {
1340         int reg;
1341         u32 val;
1342         bool cur_state;
1343
1344         reg = DSPCNTR(plane);
1345         val = I915_READ(reg);
1346         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1347         I915_STATE_WARN(cur_state != state,
1348              "plane %c assertion failure (expected %s, current %s)\n",
1349              plane_name(plane), state_string(state), state_string(cur_state));
1350 }
1351
1352 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1353 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1354
1355 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1356                                    enum pipe pipe)
1357 {
1358         struct drm_device *dev = dev_priv->dev;
1359         int reg, i;
1360         u32 val;
1361         int cur_pipe;
1362
1363         /* Primary planes are fixed to pipes on gen4+ */
1364         if (INTEL_INFO(dev)->gen >= 4) {
1365                 reg = DSPCNTR(pipe);
1366                 val = I915_READ(reg);
1367                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1368                      "plane %c assertion failure, should be disabled but not\n",
1369                      plane_name(pipe));
1370                 return;
1371         }
1372
1373         /* Need to check both planes against the pipe */
1374         for_each_pipe(dev_priv, i) {
1375                 reg = DSPCNTR(i);
1376                 val = I915_READ(reg);
1377                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1378                         DISPPLANE_SEL_PIPE_SHIFT;
1379                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1380                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1381                      plane_name(i), pipe_name(pipe));
1382         }
1383 }
1384
1385 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1386                                     enum pipe pipe)
1387 {
1388         struct drm_device *dev = dev_priv->dev;
1389         int reg, sprite;
1390         u32 val;
1391
1392         if (INTEL_INFO(dev)->gen >= 9) {
1393                 for_each_sprite(dev_priv, pipe, sprite) {
1394                         val = I915_READ(PLANE_CTL(pipe, sprite));
1395                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1396                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1397                              sprite, pipe_name(pipe));
1398                 }
1399         } else if (IS_VALLEYVIEW(dev)) {
1400                 for_each_sprite(dev_priv, pipe, sprite) {
1401                         reg = SPCNTR(pipe, sprite);
1402                         val = I915_READ(reg);
1403                         I915_STATE_WARN(val & SP_ENABLE,
1404                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1405                              sprite_name(pipe, sprite), pipe_name(pipe));
1406                 }
1407         } else if (INTEL_INFO(dev)->gen >= 7) {
1408                 reg = SPRCTL(pipe);
1409                 val = I915_READ(reg);
1410                 I915_STATE_WARN(val & SPRITE_ENABLE,
1411                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1412                      plane_name(pipe), pipe_name(pipe));
1413         } else if (INTEL_INFO(dev)->gen >= 5) {
1414                 reg = DVSCNTR(pipe);
1415                 val = I915_READ(reg);
1416                 I915_STATE_WARN(val & DVS_ENABLE,
1417                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1418                      plane_name(pipe), pipe_name(pipe));
1419         }
1420 }
1421
1422 static void assert_vblank_disabled(struct drm_crtc *crtc)
1423 {
1424         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1425                 drm_crtc_vblank_put(crtc);
1426 }
1427
1428 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1429 {
1430         u32 val;
1431         bool enabled;
1432
1433         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1434
1435         val = I915_READ(PCH_DREF_CONTROL);
1436         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1437                             DREF_SUPERSPREAD_SOURCE_MASK));
1438         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1439 }
1440
1441 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1442                                            enum pipe pipe)
1443 {
1444         int reg;
1445         u32 val;
1446         bool enabled;
1447
1448         reg = PCH_TRANSCONF(pipe);
1449         val = I915_READ(reg);
1450         enabled = !!(val & TRANS_ENABLE);
1451         I915_STATE_WARN(enabled,
1452              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1453              pipe_name(pipe));
1454 }
1455
1456 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1457                             enum pipe pipe, u32 port_sel, u32 val)
1458 {
1459         if ((val & DP_PORT_EN) == 0)
1460                 return false;
1461
1462         if (HAS_PCH_CPT(dev_priv->dev)) {
1463                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1464                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1465                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1466                         return false;
1467         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1468                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1469                         return false;
1470         } else {
1471                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1472                         return false;
1473         }
1474         return true;
1475 }
1476
1477 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1478                               enum pipe pipe, u32 val)
1479 {
1480         if ((val & SDVO_ENABLE) == 0)
1481                 return false;
1482
1483         if (HAS_PCH_CPT(dev_priv->dev)) {
1484                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1485                         return false;
1486         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1487                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1488                         return false;
1489         } else {
1490                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1491                         return false;
1492         }
1493         return true;
1494 }
1495
1496 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1497                               enum pipe pipe, u32 val)
1498 {
1499         if ((val & LVDS_PORT_EN) == 0)
1500                 return false;
1501
1502         if (HAS_PCH_CPT(dev_priv->dev)) {
1503                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1504                         return false;
1505         } else {
1506                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1507                         return false;
1508         }
1509         return true;
1510 }
1511
1512 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1513                               enum pipe pipe, u32 val)
1514 {
1515         if ((val & ADPA_DAC_ENABLE) == 0)
1516                 return false;
1517         if (HAS_PCH_CPT(dev_priv->dev)) {
1518                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1519                         return false;
1520         } else {
1521                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1522                         return false;
1523         }
1524         return true;
1525 }
1526
1527 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1528                                    enum pipe pipe, int reg, u32 port_sel)
1529 {
1530         u32 val = I915_READ(reg);
1531         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1532              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1533              reg, pipe_name(pipe));
1534
1535         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1536              && (val & DP_PIPEB_SELECT),
1537              "IBX PCH dp port still using transcoder B\n");
1538 }
1539
1540 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1541                                      enum pipe pipe, int reg)
1542 {
1543         u32 val = I915_READ(reg);
1544         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1545              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1546              reg, pipe_name(pipe));
1547
1548         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1549              && (val & SDVO_PIPE_B_SELECT),
1550              "IBX PCH hdmi port still using transcoder B\n");
1551 }
1552
1553 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1554                                       enum pipe pipe)
1555 {
1556         int reg;
1557         u32 val;
1558
1559         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1560         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1561         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1562
1563         reg = PCH_ADPA;
1564         val = I915_READ(reg);
1565         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1566              "PCH VGA enabled on transcoder %c, should be disabled\n",
1567              pipe_name(pipe));
1568
1569         reg = PCH_LVDS;
1570         val = I915_READ(reg);
1571         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1572              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1573              pipe_name(pipe));
1574
1575         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1576         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1577         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1578 }
1579
1580 static void vlv_enable_pll(struct intel_crtc *crtc,
1581                            const struct intel_crtc_state *pipe_config)
1582 {
1583         struct drm_device *dev = crtc->base.dev;
1584         struct drm_i915_private *dev_priv = dev->dev_private;
1585         int reg = DPLL(crtc->pipe);
1586         u32 dpll = pipe_config->dpll_hw_state.dpll;
1587
1588         assert_pipe_disabled(dev_priv, crtc->pipe);
1589
1590         /* No really, not for ILK+ */
1591         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1592
1593         /* PLL is protected by panel, make sure we can write it */
1594         if (IS_MOBILE(dev_priv->dev))
1595                 assert_panel_unlocked(dev_priv, crtc->pipe);
1596
1597         I915_WRITE(reg, dpll);
1598         POSTING_READ(reg);
1599         udelay(150);
1600
1601         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1602                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1603
1604         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1605         POSTING_READ(DPLL_MD(crtc->pipe));
1606
1607         /* We do this three times for luck */
1608         I915_WRITE(reg, dpll);
1609         POSTING_READ(reg);
1610         udelay(150); /* wait for warmup */
1611         I915_WRITE(reg, dpll);
1612         POSTING_READ(reg);
1613         udelay(150); /* wait for warmup */
1614         I915_WRITE(reg, dpll);
1615         POSTING_READ(reg);
1616         udelay(150); /* wait for warmup */
1617 }
1618
1619 static void chv_enable_pll(struct intel_crtc *crtc,
1620                            const struct intel_crtc_state *pipe_config)
1621 {
1622         struct drm_device *dev = crtc->base.dev;
1623         struct drm_i915_private *dev_priv = dev->dev_private;
1624         int pipe = crtc->pipe;
1625         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1626         u32 tmp;
1627
1628         assert_pipe_disabled(dev_priv, crtc->pipe);
1629
1630         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1631
1632         mutex_lock(&dev_priv->sb_lock);
1633
1634         /* Enable back the 10bit clock to display controller */
1635         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1636         tmp |= DPIO_DCLKP_EN;
1637         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1638
1639         mutex_unlock(&dev_priv->sb_lock);
1640
1641         /*
1642          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1643          */
1644         udelay(1);
1645
1646         /* Enable PLL */
1647         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1648
1649         /* Check PLL is locked */
1650         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1651                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1652
1653         /* not sure when this should be written */
1654         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1655         POSTING_READ(DPLL_MD(pipe));
1656 }
1657
1658 static int intel_num_dvo_pipes(struct drm_device *dev)
1659 {
1660         struct intel_crtc *crtc;
1661         int count = 0;
1662
1663         for_each_intel_crtc(dev, crtc)
1664                 count += crtc->base.state->active &&
1665                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1666
1667         return count;
1668 }
1669
1670 static void i9xx_enable_pll(struct intel_crtc *crtc)
1671 {
1672         struct drm_device *dev = crtc->base.dev;
1673         struct drm_i915_private *dev_priv = dev->dev_private;
1674         int reg = DPLL(crtc->pipe);
1675         u32 dpll = crtc->config->dpll_hw_state.dpll;
1676
1677         assert_pipe_disabled(dev_priv, crtc->pipe);
1678
1679         /* No really, not for ILK+ */
1680         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1681
1682         /* PLL is protected by panel, make sure we can write it */
1683         if (IS_MOBILE(dev) && !IS_I830(dev))
1684                 assert_panel_unlocked(dev_priv, crtc->pipe);
1685
1686         /* Enable DVO 2x clock on both PLLs if necessary */
1687         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1688                 /*
1689                  * It appears to be important that we don't enable this
1690                  * for the current pipe before otherwise configuring the
1691                  * PLL. No idea how this should be handled if multiple
1692                  * DVO outputs are enabled simultaneosly.
1693                  */
1694                 dpll |= DPLL_DVO_2X_MODE;
1695                 I915_WRITE(DPLL(!crtc->pipe),
1696                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1697         }
1698
1699         /* Wait for the clocks to stabilize. */
1700         POSTING_READ(reg);
1701         udelay(150);
1702
1703         if (INTEL_INFO(dev)->gen >= 4) {
1704                 I915_WRITE(DPLL_MD(crtc->pipe),
1705                            crtc->config->dpll_hw_state.dpll_md);
1706         } else {
1707                 /* The pixel multiplier can only be updated once the
1708                  * DPLL is enabled and the clocks are stable.
1709                  *
1710                  * So write it again.
1711                  */
1712                 I915_WRITE(reg, dpll);
1713         }
1714
1715         /* We do this three times for luck */
1716         I915_WRITE(reg, dpll);
1717         POSTING_READ(reg);
1718         udelay(150); /* wait for warmup */
1719         I915_WRITE(reg, dpll);
1720         POSTING_READ(reg);
1721         udelay(150); /* wait for warmup */
1722         I915_WRITE(reg, dpll);
1723         POSTING_READ(reg);
1724         udelay(150); /* wait for warmup */
1725 }
1726
1727 /**
1728  * i9xx_disable_pll - disable a PLL
1729  * @dev_priv: i915 private structure
1730  * @pipe: pipe PLL to disable
1731  *
1732  * Disable the PLL for @pipe, making sure the pipe is off first.
1733  *
1734  * Note!  This is for pre-ILK only.
1735  */
1736 static void i9xx_disable_pll(struct intel_crtc *crtc)
1737 {
1738         struct drm_device *dev = crtc->base.dev;
1739         struct drm_i915_private *dev_priv = dev->dev_private;
1740         enum pipe pipe = crtc->pipe;
1741
1742         /* Disable DVO 2x clock on both PLLs if necessary */
1743         if (IS_I830(dev) &&
1744             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1745             !intel_num_dvo_pipes(dev)) {
1746                 I915_WRITE(DPLL(PIPE_B),
1747                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1748                 I915_WRITE(DPLL(PIPE_A),
1749                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1750         }
1751
1752         /* Don't disable pipe or pipe PLLs if needed */
1753         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1754             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1755                 return;
1756
1757         /* Make sure the pipe isn't still relying on us */
1758         assert_pipe_disabled(dev_priv, pipe);
1759
1760         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1761         POSTING_READ(DPLL(pipe));
1762 }
1763
1764 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1765 {
1766         u32 val;
1767
1768         /* Make sure the pipe isn't still relying on us */
1769         assert_pipe_disabled(dev_priv, pipe);
1770
1771         /*
1772          * Leave integrated clock source and reference clock enabled for pipe B.
1773          * The latter is needed for VGA hotplug / manual detection.
1774          */
1775         val = DPLL_VGA_MODE_DIS;
1776         if (pipe == PIPE_B)
1777                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1778         I915_WRITE(DPLL(pipe), val);
1779         POSTING_READ(DPLL(pipe));
1780
1781 }
1782
1783 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1784 {
1785         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1786         u32 val;
1787
1788         /* Make sure the pipe isn't still relying on us */
1789         assert_pipe_disabled(dev_priv, pipe);
1790
1791         /* Set PLL en = 0 */
1792         val = DPLL_SSC_REF_CLK_CHV |
1793                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1794         if (pipe != PIPE_A)
1795                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1796         I915_WRITE(DPLL(pipe), val);
1797         POSTING_READ(DPLL(pipe));
1798
1799         mutex_lock(&dev_priv->sb_lock);
1800
1801         /* Disable 10bit clock to display controller */
1802         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1803         val &= ~DPIO_DCLKP_EN;
1804         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1805
1806         mutex_unlock(&dev_priv->sb_lock);
1807 }
1808
1809 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1810                          struct intel_digital_port *dport,
1811                          unsigned int expected_mask)
1812 {
1813         u32 port_mask;
1814         int dpll_reg;
1815
1816         switch (dport->port) {
1817         case PORT_B:
1818                 port_mask = DPLL_PORTB_READY_MASK;
1819                 dpll_reg = DPLL(0);
1820                 break;
1821         case PORT_C:
1822                 port_mask = DPLL_PORTC_READY_MASK;
1823                 dpll_reg = DPLL(0);
1824                 expected_mask <<= 4;
1825                 break;
1826         case PORT_D:
1827                 port_mask = DPLL_PORTD_READY_MASK;
1828                 dpll_reg = DPIO_PHY_STATUS;
1829                 break;
1830         default:
1831                 BUG();
1832         }
1833
1834         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1835                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1836                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1837 }
1838
1839 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1840 {
1841         struct drm_device *dev = crtc->base.dev;
1842         struct drm_i915_private *dev_priv = dev->dev_private;
1843         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1844
1845         if (WARN_ON(pll == NULL))
1846                 return;
1847
1848         WARN_ON(!pll->config.crtc_mask);
1849         if (pll->active == 0) {
1850                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1851                 WARN_ON(pll->on);
1852                 assert_shared_dpll_disabled(dev_priv, pll);
1853
1854                 pll->mode_set(dev_priv, pll);
1855         }
1856 }
1857
1858 /**
1859  * intel_enable_shared_dpll - enable PCH PLL
1860  * @dev_priv: i915 private structure
1861  * @pipe: pipe PLL to enable
1862  *
1863  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1864  * drives the transcoder clock.
1865  */
1866 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1867 {
1868         struct drm_device *dev = crtc->base.dev;
1869         struct drm_i915_private *dev_priv = dev->dev_private;
1870         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1871
1872         if (WARN_ON(pll == NULL))
1873                 return;
1874
1875         if (WARN_ON(pll->config.crtc_mask == 0))
1876                 return;
1877
1878         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1879                       pll->name, pll->active, pll->on,
1880                       crtc->base.base.id);
1881
1882         if (pll->active++) {
1883                 WARN_ON(!pll->on);
1884                 assert_shared_dpll_enabled(dev_priv, pll);
1885                 return;
1886         }
1887         WARN_ON(pll->on);
1888
1889         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1890
1891         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1892         pll->enable(dev_priv, pll);
1893         pll->on = true;
1894 }
1895
1896 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1897 {
1898         struct drm_device *dev = crtc->base.dev;
1899         struct drm_i915_private *dev_priv = dev->dev_private;
1900         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1901
1902         /* PCH only available on ILK+ */
1903         if (INTEL_INFO(dev)->gen < 5)
1904                 return;
1905
1906         if (pll == NULL)
1907                 return;
1908
1909         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1910                 return;
1911
1912         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1913                       pll->name, pll->active, pll->on,
1914                       crtc->base.base.id);
1915
1916         if (WARN_ON(pll->active == 0)) {
1917                 assert_shared_dpll_disabled(dev_priv, pll);
1918                 return;
1919         }
1920
1921         assert_shared_dpll_enabled(dev_priv, pll);
1922         WARN_ON(!pll->on);
1923         if (--pll->active)
1924                 return;
1925
1926         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1927         pll->disable(dev_priv, pll);
1928         pll->on = false;
1929
1930         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1931 }
1932
1933 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1934                                            enum pipe pipe)
1935 {
1936         struct drm_device *dev = dev_priv->dev;
1937         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1938         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1939         uint32_t reg, val, pipeconf_val;
1940
1941         /* PCH only available on ILK+ */
1942         BUG_ON(!HAS_PCH_SPLIT(dev));
1943
1944         /* Make sure PCH DPLL is enabled */
1945         assert_shared_dpll_enabled(dev_priv,
1946                                    intel_crtc_to_shared_dpll(intel_crtc));
1947
1948         /* FDI must be feeding us bits for PCH ports */
1949         assert_fdi_tx_enabled(dev_priv, pipe);
1950         assert_fdi_rx_enabled(dev_priv, pipe);
1951
1952         if (HAS_PCH_CPT(dev)) {
1953                 /* Workaround: Set the timing override bit before enabling the
1954                  * pch transcoder. */
1955                 reg = TRANS_CHICKEN2(pipe);
1956                 val = I915_READ(reg);
1957                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1958                 I915_WRITE(reg, val);
1959         }
1960
1961         reg = PCH_TRANSCONF(pipe);
1962         val = I915_READ(reg);
1963         pipeconf_val = I915_READ(PIPECONF(pipe));
1964
1965         if (HAS_PCH_IBX(dev_priv->dev)) {
1966                 /*
1967                  * Make the BPC in transcoder be consistent with
1968                  * that in pipeconf reg. For HDMI we must use 8bpc
1969                  * here for both 8bpc and 12bpc.
1970                  */
1971                 val &= ~PIPECONF_BPC_MASK;
1972                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1973                         val |= PIPECONF_8BPC;
1974                 else
1975                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1976         }
1977
1978         val &= ~TRANS_INTERLACE_MASK;
1979         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1980                 if (HAS_PCH_IBX(dev_priv->dev) &&
1981                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1982                         val |= TRANS_LEGACY_INTERLACED_ILK;
1983                 else
1984                         val |= TRANS_INTERLACED;
1985         else
1986                 val |= TRANS_PROGRESSIVE;
1987
1988         I915_WRITE(reg, val | TRANS_ENABLE);
1989         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1990                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1991 }
1992
1993 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1994                                       enum transcoder cpu_transcoder)
1995 {
1996         u32 val, pipeconf_val;
1997
1998         /* PCH only available on ILK+ */
1999         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2000
2001         /* FDI must be feeding us bits for PCH ports */
2002         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2003         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2004
2005         /* Workaround: set timing override bit. */
2006         val = I915_READ(_TRANSA_CHICKEN2);
2007         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2008         I915_WRITE(_TRANSA_CHICKEN2, val);
2009
2010         val = TRANS_ENABLE;
2011         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2012
2013         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2014             PIPECONF_INTERLACED_ILK)
2015                 val |= TRANS_INTERLACED;
2016         else
2017                 val |= TRANS_PROGRESSIVE;
2018
2019         I915_WRITE(LPT_TRANSCONF, val);
2020         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2021                 DRM_ERROR("Failed to enable PCH transcoder\n");
2022 }
2023
2024 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2025                                             enum pipe pipe)
2026 {
2027         struct drm_device *dev = dev_priv->dev;
2028         uint32_t reg, val;
2029
2030         /* FDI relies on the transcoder */
2031         assert_fdi_tx_disabled(dev_priv, pipe);
2032         assert_fdi_rx_disabled(dev_priv, pipe);
2033
2034         /* Ports must be off as well */
2035         assert_pch_ports_disabled(dev_priv, pipe);
2036
2037         reg = PCH_TRANSCONF(pipe);
2038         val = I915_READ(reg);
2039         val &= ~TRANS_ENABLE;
2040         I915_WRITE(reg, val);
2041         /* wait for PCH transcoder off, transcoder state */
2042         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2043                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2044
2045         if (!HAS_PCH_IBX(dev)) {
2046                 /* Workaround: Clear the timing override chicken bit again. */
2047                 reg = TRANS_CHICKEN2(pipe);
2048                 val = I915_READ(reg);
2049                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2050                 I915_WRITE(reg, val);
2051         }
2052 }
2053
2054 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2055 {
2056         u32 val;
2057
2058         val = I915_READ(LPT_TRANSCONF);
2059         val &= ~TRANS_ENABLE;
2060         I915_WRITE(LPT_TRANSCONF, val);
2061         /* wait for PCH transcoder off, transcoder state */
2062         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2063                 DRM_ERROR("Failed to disable PCH transcoder\n");
2064
2065         /* Workaround: clear timing override bit. */
2066         val = I915_READ(_TRANSA_CHICKEN2);
2067         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2068         I915_WRITE(_TRANSA_CHICKEN2, val);
2069 }
2070
2071 /**
2072  * intel_enable_pipe - enable a pipe, asserting requirements
2073  * @crtc: crtc responsible for the pipe
2074  *
2075  * Enable @crtc's pipe, making sure that various hardware specific requirements
2076  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2077  */
2078 static void intel_enable_pipe(struct intel_crtc *crtc)
2079 {
2080         struct drm_device *dev = crtc->base.dev;
2081         struct drm_i915_private *dev_priv = dev->dev_private;
2082         enum pipe pipe = crtc->pipe;
2083         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2084                                                                       pipe);
2085         enum pipe pch_transcoder;
2086         int reg;
2087         u32 val;
2088
2089         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2090
2091         assert_planes_disabled(dev_priv, pipe);
2092         assert_cursor_disabled(dev_priv, pipe);
2093         assert_sprites_disabled(dev_priv, pipe);
2094
2095         if (HAS_PCH_LPT(dev_priv->dev))
2096                 pch_transcoder = TRANSCODER_A;
2097         else
2098                 pch_transcoder = pipe;
2099
2100         /*
2101          * A pipe without a PLL won't actually be able to drive bits from
2102          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2103          * need the check.
2104          */
2105         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2106                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2107                         assert_dsi_pll_enabled(dev_priv);
2108                 else
2109                         assert_pll_enabled(dev_priv, pipe);
2110         else {
2111                 if (crtc->config->has_pch_encoder) {
2112                         /* if driving the PCH, we need FDI enabled */
2113                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2114                         assert_fdi_tx_pll_enabled(dev_priv,
2115                                                   (enum pipe) cpu_transcoder);
2116                 }
2117                 /* FIXME: assert CPU port conditions for SNB+ */
2118         }
2119
2120         reg = PIPECONF(cpu_transcoder);
2121         val = I915_READ(reg);
2122         if (val & PIPECONF_ENABLE) {
2123                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2124                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2125                 return;
2126         }
2127
2128         I915_WRITE(reg, val | PIPECONF_ENABLE);
2129         POSTING_READ(reg);
2130 }
2131
2132 /**
2133  * intel_disable_pipe - disable a pipe, asserting requirements
2134  * @crtc: crtc whose pipes is to be disabled
2135  *
2136  * Disable the pipe of @crtc, making sure that various hardware
2137  * specific requirements are met, if applicable, e.g. plane
2138  * disabled, panel fitter off, etc.
2139  *
2140  * Will wait until the pipe has shut down before returning.
2141  */
2142 static void intel_disable_pipe(struct intel_crtc *crtc)
2143 {
2144         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2145         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2146         enum pipe pipe = crtc->pipe;
2147         int reg;
2148         u32 val;
2149
2150         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2151
2152         /*
2153          * Make sure planes won't keep trying to pump pixels to us,
2154          * or we might hang the display.
2155          */
2156         assert_planes_disabled(dev_priv, pipe);
2157         assert_cursor_disabled(dev_priv, pipe);
2158         assert_sprites_disabled(dev_priv, pipe);
2159
2160         reg = PIPECONF(cpu_transcoder);
2161         val = I915_READ(reg);
2162         if ((val & PIPECONF_ENABLE) == 0)
2163                 return;
2164
2165         /*
2166          * Double wide has implications for planes
2167          * so best keep it disabled when not needed.
2168          */
2169         if (crtc->config->double_wide)
2170                 val &= ~PIPECONF_DOUBLE_WIDE;
2171
2172         /* Don't disable pipe or pipe PLLs if needed */
2173         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2174             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2175                 val &= ~PIPECONF_ENABLE;
2176
2177         I915_WRITE(reg, val);
2178         if ((val & PIPECONF_ENABLE) == 0)
2179                 intel_wait_for_pipe_off(crtc);
2180 }
2181
2182 static bool need_vtd_wa(struct drm_device *dev)
2183 {
2184 #ifdef CONFIG_INTEL_IOMMU
2185         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2186                 return true;
2187 #endif
2188         return false;
2189 }
2190
2191 unsigned int
2192 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2193                   uint64_t fb_format_modifier, unsigned int plane)
2194 {
2195         unsigned int tile_height;
2196         uint32_t pixel_bytes;
2197
2198         switch (fb_format_modifier) {
2199         case DRM_FORMAT_MOD_NONE:
2200                 tile_height = 1;
2201                 break;
2202         case I915_FORMAT_MOD_X_TILED:
2203                 tile_height = IS_GEN2(dev) ? 16 : 8;
2204                 break;
2205         case I915_FORMAT_MOD_Y_TILED:
2206                 tile_height = 32;
2207                 break;
2208         case I915_FORMAT_MOD_Yf_TILED:
2209                 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
2210                 switch (pixel_bytes) {
2211                 default:
2212                 case 1:
2213                         tile_height = 64;
2214                         break;
2215                 case 2:
2216                 case 4:
2217                         tile_height = 32;
2218                         break;
2219                 case 8:
2220                         tile_height = 16;
2221                         break;
2222                 case 16:
2223                         WARN_ONCE(1,
2224                                   "128-bit pixels are not supported for display!");
2225                         tile_height = 16;
2226                         break;
2227                 }
2228                 break;
2229         default:
2230                 MISSING_CASE(fb_format_modifier);
2231                 tile_height = 1;
2232                 break;
2233         }
2234
2235         return tile_height;
2236 }
2237
2238 unsigned int
2239 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2240                       uint32_t pixel_format, uint64_t fb_format_modifier)
2241 {
2242         return ALIGN(height, intel_tile_height(dev, pixel_format,
2243                                                fb_format_modifier, 0));
2244 }
2245
2246 static int
2247 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2248                         const struct drm_plane_state *plane_state)
2249 {
2250         struct intel_rotation_info *info = &view->rotation_info;
2251         unsigned int tile_height, tile_pitch;
2252
2253         *view = i915_ggtt_view_normal;
2254
2255         if (!plane_state)
2256                 return 0;
2257
2258         if (!intel_rotation_90_or_270(plane_state->rotation))
2259                 return 0;
2260
2261         *view = i915_ggtt_view_rotated;
2262
2263         info->height = fb->height;
2264         info->pixel_format = fb->pixel_format;
2265         info->pitch = fb->pitches[0];
2266         info->uv_offset = fb->offsets[1];
2267         info->fb_modifier = fb->modifier[0];
2268
2269         tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2270                                         fb->modifier[0], 0);
2271         tile_pitch = PAGE_SIZE / tile_height;
2272         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2273         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2274         info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2275
2276         if (info->pixel_format == DRM_FORMAT_NV12) {
2277                 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2278                                                 fb->modifier[0], 1);
2279                 tile_pitch = PAGE_SIZE / tile_height;
2280                 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2281                 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2282                                                      tile_height);
2283                 info->size_uv = info->width_pages_uv * info->height_pages_uv *
2284                                 PAGE_SIZE;
2285         }
2286
2287         return 0;
2288 }
2289
2290 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2291 {
2292         if (INTEL_INFO(dev_priv)->gen >= 9)
2293                 return 256 * 1024;
2294         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2295                  IS_VALLEYVIEW(dev_priv))
2296                 return 128 * 1024;
2297         else if (INTEL_INFO(dev_priv)->gen >= 4)
2298                 return 4 * 1024;
2299         else
2300                 return 0;
2301 }
2302
2303 int
2304 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2305                            struct drm_framebuffer *fb,
2306                            const struct drm_plane_state *plane_state,
2307                            struct intel_engine_cs *pipelined,
2308                            struct drm_i915_gem_request **pipelined_request)
2309 {
2310         struct drm_device *dev = fb->dev;
2311         struct drm_i915_private *dev_priv = dev->dev_private;
2312         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2313         struct i915_ggtt_view view;
2314         u32 alignment;
2315         int ret;
2316
2317         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2318
2319         switch (fb->modifier[0]) {
2320         case DRM_FORMAT_MOD_NONE:
2321                 alignment = intel_linear_alignment(dev_priv);
2322                 break;
2323         case I915_FORMAT_MOD_X_TILED:
2324                 if (INTEL_INFO(dev)->gen >= 9)
2325                         alignment = 256 * 1024;
2326                 else {
2327                         /* pin() will align the object as required by fence */
2328                         alignment = 0;
2329                 }
2330                 break;
2331         case I915_FORMAT_MOD_Y_TILED:
2332         case I915_FORMAT_MOD_Yf_TILED:
2333                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2334                           "Y tiling bo slipped through, driver bug!\n"))
2335                         return -EINVAL;
2336                 alignment = 1 * 1024 * 1024;
2337                 break;
2338         default:
2339                 MISSING_CASE(fb->modifier[0]);
2340                 return -EINVAL;
2341         }
2342
2343         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2344         if (ret)
2345                 return ret;
2346
2347         /* Note that the w/a also requires 64 PTE of padding following the
2348          * bo. We currently fill all unused PTE with the shadow page and so
2349          * we should always have valid PTE following the scanout preventing
2350          * the VT-d warning.
2351          */
2352         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2353                 alignment = 256 * 1024;
2354
2355         /*
2356          * Global gtt pte registers are special registers which actually forward
2357          * writes to a chunk of system memory. Which means that there is no risk
2358          * that the register values disappear as soon as we call
2359          * intel_runtime_pm_put(), so it is correct to wrap only the
2360          * pin/unpin/fence and not more.
2361          */
2362         intel_runtime_pm_get(dev_priv);
2363
2364         dev_priv->mm.interruptible = false;
2365         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2366                                                    pipelined_request, &view);
2367         if (ret)
2368                 goto err_interruptible;
2369
2370         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2371          * fence, whereas 965+ only requires a fence if using
2372          * framebuffer compression.  For simplicity, we always install
2373          * a fence as the cost is not that onerous.
2374          */
2375         ret = i915_gem_object_get_fence(obj);
2376         if (ret == -EDEADLK) {
2377                 /*
2378                  * -EDEADLK means there are no free fences
2379                  * no pending flips.
2380                  *
2381                  * This is propagated to atomic, but it uses
2382                  * -EDEADLK to force a locking recovery, so
2383                  * change the returned error to -EBUSY.
2384                  */
2385                 ret = -EBUSY;
2386                 goto err_unpin;
2387         } else if (ret)
2388                 goto err_unpin;
2389
2390         i915_gem_object_pin_fence(obj);
2391
2392         dev_priv->mm.interruptible = true;
2393         intel_runtime_pm_put(dev_priv);
2394         return 0;
2395
2396 err_unpin:
2397         i915_gem_object_unpin_from_display_plane(obj, &view);
2398 err_interruptible:
2399         dev_priv->mm.interruptible = true;
2400         intel_runtime_pm_put(dev_priv);
2401         return ret;
2402 }
2403
2404 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2405                                const struct drm_plane_state *plane_state)
2406 {
2407         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2408         struct i915_ggtt_view view;
2409         int ret;
2410
2411         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2412
2413         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2414         WARN_ONCE(ret, "Couldn't get view from plane state!");
2415
2416         i915_gem_object_unpin_fence(obj);
2417         i915_gem_object_unpin_from_display_plane(obj, &view);
2418 }
2419
2420 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2421  * is assumed to be a power-of-two. */
2422 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2423                                              int *x, int *y,
2424                                              unsigned int tiling_mode,
2425                                              unsigned int cpp,
2426                                              unsigned int pitch)
2427 {
2428         if (tiling_mode != I915_TILING_NONE) {
2429                 unsigned int tile_rows, tiles;
2430
2431                 tile_rows = *y / 8;
2432                 *y %= 8;
2433
2434                 tiles = *x / (512/cpp);
2435                 *x %= 512/cpp;
2436
2437                 return tile_rows * pitch * 8 + tiles * 4096;
2438         } else {
2439                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2440                 unsigned int offset;
2441
2442                 offset = *y * pitch + *x * cpp;
2443                 *y = (offset & alignment) / pitch;
2444                 *x = ((offset & alignment) - *y * pitch) / cpp;
2445                 return offset & ~alignment;
2446         }
2447 }
2448
2449 static int i9xx_format_to_fourcc(int format)
2450 {
2451         switch (format) {
2452         case DISPPLANE_8BPP:
2453                 return DRM_FORMAT_C8;
2454         case DISPPLANE_BGRX555:
2455                 return DRM_FORMAT_XRGB1555;
2456         case DISPPLANE_BGRX565:
2457                 return DRM_FORMAT_RGB565;
2458         default:
2459         case DISPPLANE_BGRX888:
2460                 return DRM_FORMAT_XRGB8888;
2461         case DISPPLANE_RGBX888:
2462                 return DRM_FORMAT_XBGR8888;
2463         case DISPPLANE_BGRX101010:
2464                 return DRM_FORMAT_XRGB2101010;
2465         case DISPPLANE_RGBX101010:
2466                 return DRM_FORMAT_XBGR2101010;
2467         }
2468 }
2469
2470 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2471 {
2472         switch (format) {
2473         case PLANE_CTL_FORMAT_RGB_565:
2474                 return DRM_FORMAT_RGB565;
2475         default:
2476         case PLANE_CTL_FORMAT_XRGB_8888:
2477                 if (rgb_order) {
2478                         if (alpha)
2479                                 return DRM_FORMAT_ABGR8888;
2480                         else
2481                                 return DRM_FORMAT_XBGR8888;
2482                 } else {
2483                         if (alpha)
2484                                 return DRM_FORMAT_ARGB8888;
2485                         else
2486                                 return DRM_FORMAT_XRGB8888;
2487                 }
2488         case PLANE_CTL_FORMAT_XRGB_2101010:
2489                 if (rgb_order)
2490                         return DRM_FORMAT_XBGR2101010;
2491                 else
2492                         return DRM_FORMAT_XRGB2101010;
2493         }
2494 }
2495
2496 static bool
2497 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2498                               struct intel_initial_plane_config *plane_config)
2499 {
2500         struct drm_device *dev = crtc->base.dev;
2501         struct drm_i915_gem_object *obj = NULL;
2502         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2503         struct drm_framebuffer *fb = &plane_config->fb->base;
2504         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2505         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2506                                     PAGE_SIZE);
2507
2508         size_aligned -= base_aligned;
2509
2510         if (plane_config->size == 0)
2511                 return false;
2512
2513         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2514                                                              base_aligned,
2515                                                              base_aligned,
2516                                                              size_aligned);
2517         if (!obj)
2518                 return false;
2519
2520         obj->tiling_mode = plane_config->tiling;
2521         if (obj->tiling_mode == I915_TILING_X)
2522                 obj->stride = fb->pitches[0];
2523
2524         mode_cmd.pixel_format = fb->pixel_format;
2525         mode_cmd.width = fb->width;
2526         mode_cmd.height = fb->height;
2527         mode_cmd.pitches[0] = fb->pitches[0];
2528         mode_cmd.modifier[0] = fb->modifier[0];
2529         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2530
2531         mutex_lock(&dev->struct_mutex);
2532         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2533                                    &mode_cmd, obj)) {
2534                 DRM_DEBUG_KMS("intel fb init failed\n");
2535                 goto out_unref_obj;
2536         }
2537         mutex_unlock(&dev->struct_mutex);
2538
2539         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2540         return true;
2541
2542 out_unref_obj:
2543         drm_gem_object_unreference(&obj->base);
2544         mutex_unlock(&dev->struct_mutex);
2545         return false;
2546 }
2547
2548 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2549 static void
2550 update_state_fb(struct drm_plane *plane)
2551 {
2552         if (plane->fb == plane->state->fb)
2553                 return;
2554
2555         if (plane->state->fb)
2556                 drm_framebuffer_unreference(plane->state->fb);
2557         plane->state->fb = plane->fb;
2558         if (plane->state->fb)
2559                 drm_framebuffer_reference(plane->state->fb);
2560 }
2561
2562 static void
2563 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2564                              struct intel_initial_plane_config *plane_config)
2565 {
2566         struct drm_device *dev = intel_crtc->base.dev;
2567         struct drm_i915_private *dev_priv = dev->dev_private;
2568         struct drm_crtc *c;
2569         struct intel_crtc *i;
2570         struct drm_i915_gem_object *obj;
2571         struct drm_plane *primary = intel_crtc->base.primary;
2572         struct drm_plane_state *plane_state = primary->state;
2573         struct drm_framebuffer *fb;
2574
2575         if (!plane_config->fb)
2576                 return;
2577
2578         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2579                 fb = &plane_config->fb->base;
2580                 goto valid_fb;
2581         }
2582
2583         kfree(plane_config->fb);
2584
2585         /*
2586          * Failed to alloc the obj, check to see if we should share
2587          * an fb with another CRTC instead
2588          */
2589         for_each_crtc(dev, c) {
2590                 i = to_intel_crtc(c);
2591
2592                 if (c == &intel_crtc->base)
2593                         continue;
2594
2595                 if (!i->active)
2596                         continue;
2597
2598                 fb = c->primary->fb;
2599                 if (!fb)
2600                         continue;
2601
2602                 obj = intel_fb_obj(fb);
2603                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2604                         drm_framebuffer_reference(fb);
2605                         goto valid_fb;
2606                 }
2607         }
2608
2609         return;
2610
2611 valid_fb:
2612         plane_state->src_x = plane_state->src_y = 0;
2613         plane_state->src_w = fb->width << 16;
2614         plane_state->src_h = fb->height << 16;
2615
2616         plane_state->crtc_x = plane_state->src_y = 0;
2617         plane_state->crtc_w = fb->width;
2618         plane_state->crtc_h = fb->height;
2619
2620         obj = intel_fb_obj(fb);
2621         if (obj->tiling_mode != I915_TILING_NONE)
2622                 dev_priv->preserve_bios_swizzle = true;
2623
2624         drm_framebuffer_reference(fb);
2625         primary->fb = primary->state->fb = fb;
2626         primary->crtc = primary->state->crtc = &intel_crtc->base;
2627         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2628         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2629 }
2630
2631 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2632                                       struct drm_framebuffer *fb,
2633                                       int x, int y)
2634 {
2635         struct drm_device *dev = crtc->dev;
2636         struct drm_i915_private *dev_priv = dev->dev_private;
2637         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2638         struct drm_plane *primary = crtc->primary;
2639         bool visible = to_intel_plane_state(primary->state)->visible;
2640         struct drm_i915_gem_object *obj;
2641         int plane = intel_crtc->plane;
2642         unsigned long linear_offset;
2643         u32 dspcntr;
2644         u32 reg = DSPCNTR(plane);
2645         int pixel_size;
2646
2647         if (!visible || !fb) {
2648                 I915_WRITE(reg, 0);
2649                 if (INTEL_INFO(dev)->gen >= 4)
2650                         I915_WRITE(DSPSURF(plane), 0);
2651                 else
2652                         I915_WRITE(DSPADDR(plane), 0);
2653                 POSTING_READ(reg);
2654                 return;
2655         }
2656
2657         obj = intel_fb_obj(fb);
2658         if (WARN_ON(obj == NULL))
2659                 return;
2660
2661         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2662
2663         dspcntr = DISPPLANE_GAMMA_ENABLE;
2664
2665         dspcntr |= DISPLAY_PLANE_ENABLE;
2666
2667         if (INTEL_INFO(dev)->gen < 4) {
2668                 if (intel_crtc->pipe == PIPE_B)
2669                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2670
2671                 /* pipesrc and dspsize control the size that is scaled from,
2672                  * which should always be the user's requested size.
2673                  */
2674                 I915_WRITE(DSPSIZE(plane),
2675                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2676                            (intel_crtc->config->pipe_src_w - 1));
2677                 I915_WRITE(DSPPOS(plane), 0);
2678         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2679                 I915_WRITE(PRIMSIZE(plane),
2680                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2681                            (intel_crtc->config->pipe_src_w - 1));
2682                 I915_WRITE(PRIMPOS(plane), 0);
2683                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2684         }
2685
2686         switch (fb->pixel_format) {
2687         case DRM_FORMAT_C8:
2688                 dspcntr |= DISPPLANE_8BPP;
2689                 break;
2690         case DRM_FORMAT_XRGB1555:
2691                 dspcntr |= DISPPLANE_BGRX555;
2692                 break;
2693         case DRM_FORMAT_RGB565:
2694                 dspcntr |= DISPPLANE_BGRX565;
2695                 break;
2696         case DRM_FORMAT_XRGB8888:
2697                 dspcntr |= DISPPLANE_BGRX888;
2698                 break;
2699         case DRM_FORMAT_XBGR8888:
2700                 dspcntr |= DISPPLANE_RGBX888;
2701                 break;
2702         case DRM_FORMAT_XRGB2101010:
2703                 dspcntr |= DISPPLANE_BGRX101010;
2704                 break;
2705         case DRM_FORMAT_XBGR2101010:
2706                 dspcntr |= DISPPLANE_RGBX101010;
2707                 break;
2708         default:
2709                 BUG();
2710         }
2711
2712         if (INTEL_INFO(dev)->gen >= 4 &&
2713             obj->tiling_mode != I915_TILING_NONE)
2714                 dspcntr |= DISPPLANE_TILED;
2715
2716         if (IS_G4X(dev))
2717                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2718
2719         linear_offset = y * fb->pitches[0] + x * pixel_size;
2720
2721         if (INTEL_INFO(dev)->gen >= 4) {
2722                 intel_crtc->dspaddr_offset =
2723                         intel_gen4_compute_page_offset(dev_priv,
2724                                                        &x, &y, obj->tiling_mode,
2725                                                        pixel_size,
2726                                                        fb->pitches[0]);
2727                 linear_offset -= intel_crtc->dspaddr_offset;
2728         } else {
2729                 intel_crtc->dspaddr_offset = linear_offset;
2730         }
2731
2732         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2733                 dspcntr |= DISPPLANE_ROTATE_180;
2734
2735                 x += (intel_crtc->config->pipe_src_w - 1);
2736                 y += (intel_crtc->config->pipe_src_h - 1);
2737
2738                 /* Finding the last pixel of the last line of the display
2739                 data and adding to linear_offset*/
2740                 linear_offset +=
2741                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2742                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2743         }
2744
2745         intel_crtc->adjusted_x = x;
2746         intel_crtc->adjusted_y = y;
2747
2748         I915_WRITE(reg, dspcntr);
2749
2750         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2751         if (INTEL_INFO(dev)->gen >= 4) {
2752                 I915_WRITE(DSPSURF(plane),
2753                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2754                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2755                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2756         } else
2757                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2758         POSTING_READ(reg);
2759 }
2760
2761 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2762                                           struct drm_framebuffer *fb,
2763                                           int x, int y)
2764 {
2765         struct drm_device *dev = crtc->dev;
2766         struct drm_i915_private *dev_priv = dev->dev_private;
2767         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2768         struct drm_plane *primary = crtc->primary;
2769         bool visible = to_intel_plane_state(primary->state)->visible;
2770         struct drm_i915_gem_object *obj;
2771         int plane = intel_crtc->plane;
2772         unsigned long linear_offset;
2773         u32 dspcntr;
2774         u32 reg = DSPCNTR(plane);
2775         int pixel_size;
2776
2777         if (!visible || !fb) {
2778                 I915_WRITE(reg, 0);
2779                 I915_WRITE(DSPSURF(plane), 0);
2780                 POSTING_READ(reg);
2781                 return;
2782         }
2783
2784         obj = intel_fb_obj(fb);
2785         if (WARN_ON(obj == NULL))
2786                 return;
2787
2788         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2789
2790         dspcntr = DISPPLANE_GAMMA_ENABLE;
2791
2792         dspcntr |= DISPLAY_PLANE_ENABLE;
2793
2794         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2795                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2796
2797         switch (fb->pixel_format) {
2798         case DRM_FORMAT_C8:
2799                 dspcntr |= DISPPLANE_8BPP;
2800                 break;
2801         case DRM_FORMAT_RGB565:
2802                 dspcntr |= DISPPLANE_BGRX565;
2803                 break;
2804         case DRM_FORMAT_XRGB8888:
2805                 dspcntr |= DISPPLANE_BGRX888;
2806                 break;
2807         case DRM_FORMAT_XBGR8888:
2808                 dspcntr |= DISPPLANE_RGBX888;
2809                 break;
2810         case DRM_FORMAT_XRGB2101010:
2811                 dspcntr |= DISPPLANE_BGRX101010;
2812                 break;
2813         case DRM_FORMAT_XBGR2101010:
2814                 dspcntr |= DISPPLANE_RGBX101010;
2815                 break;
2816         default:
2817                 BUG();
2818         }
2819
2820         if (obj->tiling_mode != I915_TILING_NONE)
2821                 dspcntr |= DISPPLANE_TILED;
2822
2823         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2824                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2825
2826         linear_offset = y * fb->pitches[0] + x * pixel_size;
2827         intel_crtc->dspaddr_offset =
2828                 intel_gen4_compute_page_offset(dev_priv,
2829                                                &x, &y, obj->tiling_mode,
2830                                                pixel_size,
2831                                                fb->pitches[0]);
2832         linear_offset -= intel_crtc->dspaddr_offset;
2833         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2834                 dspcntr |= DISPPLANE_ROTATE_180;
2835
2836                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2837                         x += (intel_crtc->config->pipe_src_w - 1);
2838                         y += (intel_crtc->config->pipe_src_h - 1);
2839
2840                         /* Finding the last pixel of the last line of the display
2841                         data and adding to linear_offset*/
2842                         linear_offset +=
2843                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2844                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2845                 }
2846         }
2847
2848         intel_crtc->adjusted_x = x;
2849         intel_crtc->adjusted_y = y;
2850
2851         I915_WRITE(reg, dspcntr);
2852
2853         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2854         I915_WRITE(DSPSURF(plane),
2855                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2856         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2857                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2858         } else {
2859                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2860                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2861         }
2862         POSTING_READ(reg);
2863 }
2864
2865 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2866                               uint32_t pixel_format)
2867 {
2868         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2869
2870         /*
2871          * The stride is either expressed as a multiple of 64 bytes
2872          * chunks for linear buffers or in number of tiles for tiled
2873          * buffers.
2874          */
2875         switch (fb_modifier) {
2876         case DRM_FORMAT_MOD_NONE:
2877                 return 64;
2878         case I915_FORMAT_MOD_X_TILED:
2879                 if (INTEL_INFO(dev)->gen == 2)
2880                         return 128;
2881                 return 512;
2882         case I915_FORMAT_MOD_Y_TILED:
2883                 /* No need to check for old gens and Y tiling since this is
2884                  * about the display engine and those will be blocked before
2885                  * we get here.
2886                  */
2887                 return 128;
2888         case I915_FORMAT_MOD_Yf_TILED:
2889                 if (bits_per_pixel == 8)
2890                         return 64;
2891                 else
2892                         return 128;
2893         default:
2894                 MISSING_CASE(fb_modifier);
2895                 return 64;
2896         }
2897 }
2898
2899 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2900                                      struct drm_i915_gem_object *obj,
2901                                      unsigned int plane)
2902 {
2903         const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2904         struct i915_vma *vma;
2905         unsigned char *offset;
2906
2907         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2908                 view = &i915_ggtt_view_rotated;
2909
2910         vma = i915_gem_obj_to_ggtt_view(obj, view);
2911         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2912                 view->type))
2913                 return -1;
2914
2915         offset = (unsigned char *)vma->node.start;
2916
2917         if (plane == 1) {
2918                 offset += vma->ggtt_view.rotation_info.uv_start_page *
2919                           PAGE_SIZE;
2920         }
2921
2922         return (unsigned long)offset;
2923 }
2924
2925 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2926 {
2927         struct drm_device *dev = intel_crtc->base.dev;
2928         struct drm_i915_private *dev_priv = dev->dev_private;
2929
2930         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2931         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2932         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2933 }
2934
2935 /*
2936  * This function detaches (aka. unbinds) unused scalers in hardware
2937  */
2938 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2939 {
2940         struct intel_crtc_scaler_state *scaler_state;
2941         int i;
2942
2943         scaler_state = &intel_crtc->config->scaler_state;
2944
2945         /* loop through and disable scalers that aren't in use */
2946         for (i = 0; i < intel_crtc->num_scalers; i++) {
2947                 if (!scaler_state->scalers[i].in_use)
2948                         skl_detach_scaler(intel_crtc, i);
2949         }
2950 }
2951
2952 u32 skl_plane_ctl_format(uint32_t pixel_format)
2953 {
2954         switch (pixel_format) {
2955         case DRM_FORMAT_C8:
2956                 return PLANE_CTL_FORMAT_INDEXED;
2957         case DRM_FORMAT_RGB565:
2958                 return PLANE_CTL_FORMAT_RGB_565;
2959         case DRM_FORMAT_XBGR8888:
2960                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2961         case DRM_FORMAT_XRGB8888:
2962                 return PLANE_CTL_FORMAT_XRGB_8888;
2963         /*
2964          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2965          * to be already pre-multiplied. We need to add a knob (or a different
2966          * DRM_FORMAT) for user-space to configure that.
2967          */
2968         case DRM_FORMAT_ABGR8888:
2969                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2970                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2971         case DRM_FORMAT_ARGB8888:
2972                 return PLANE_CTL_FORMAT_XRGB_8888 |
2973                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2974         case DRM_FORMAT_XRGB2101010:
2975                 return PLANE_CTL_FORMAT_XRGB_2101010;
2976         case DRM_FORMAT_XBGR2101010:
2977                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2978         case DRM_FORMAT_YUYV:
2979                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2980         case DRM_FORMAT_YVYU:
2981                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2982         case DRM_FORMAT_UYVY:
2983                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2984         case DRM_FORMAT_VYUY:
2985                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2986         default:
2987                 MISSING_CASE(pixel_format);
2988         }
2989
2990         return 0;
2991 }
2992
2993 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2994 {
2995         switch (fb_modifier) {
2996         case DRM_FORMAT_MOD_NONE:
2997                 break;
2998         case I915_FORMAT_MOD_X_TILED:
2999                 return PLANE_CTL_TILED_X;
3000         case I915_FORMAT_MOD_Y_TILED:
3001                 return PLANE_CTL_TILED_Y;
3002         case I915_FORMAT_MOD_Yf_TILED:
3003                 return PLANE_CTL_TILED_YF;
3004         default:
3005                 MISSING_CASE(fb_modifier);
3006         }
3007
3008         return 0;
3009 }
3010
3011 u32 skl_plane_ctl_rotation(unsigned int rotation)
3012 {
3013         switch (rotation) {
3014         case BIT(DRM_ROTATE_0):
3015                 break;
3016         /*
3017          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3018          * while i915 HW rotation is clockwise, thats why this swapping.
3019          */
3020         case BIT(DRM_ROTATE_90):
3021                 return PLANE_CTL_ROTATE_270;
3022         case BIT(DRM_ROTATE_180):
3023                 return PLANE_CTL_ROTATE_180;
3024         case BIT(DRM_ROTATE_270):
3025                 return PLANE_CTL_ROTATE_90;
3026         default:
3027                 MISSING_CASE(rotation);
3028         }
3029
3030         return 0;
3031 }
3032
3033 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3034                                          struct drm_framebuffer *fb,
3035                                          int x, int y)
3036 {
3037         struct drm_device *dev = crtc->dev;
3038         struct drm_i915_private *dev_priv = dev->dev_private;
3039         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3040         struct drm_plane *plane = crtc->primary;
3041         bool visible = to_intel_plane_state(plane->state)->visible;
3042         struct drm_i915_gem_object *obj;
3043         int pipe = intel_crtc->pipe;
3044         u32 plane_ctl, stride_div, stride;
3045         u32 tile_height, plane_offset, plane_size;
3046         unsigned int rotation;
3047         int x_offset, y_offset;
3048         unsigned long surf_addr;
3049         struct intel_crtc_state *crtc_state = intel_crtc->config;
3050         struct intel_plane_state *plane_state;
3051         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3052         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3053         int scaler_id = -1;
3054
3055         plane_state = to_intel_plane_state(plane->state);
3056
3057         if (!visible || !fb) {
3058                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3059                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3060                 POSTING_READ(PLANE_CTL(pipe, 0));
3061                 return;
3062         }
3063
3064         plane_ctl = PLANE_CTL_ENABLE |
3065                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3066                     PLANE_CTL_PIPE_CSC_ENABLE;
3067
3068         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3069         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3070         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3071
3072         rotation = plane->state->rotation;
3073         plane_ctl |= skl_plane_ctl_rotation(rotation);
3074
3075         obj = intel_fb_obj(fb);
3076         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3077                                                fb->pixel_format);
3078         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3079
3080         /*
3081          * FIXME: intel_plane_state->src, dst aren't set when transitional
3082          * update_plane helpers are called from legacy paths.
3083          * Once full atomic crtc is available, below check can be avoided.
3084          */
3085         if (drm_rect_width(&plane_state->src)) {
3086                 scaler_id = plane_state->scaler_id;
3087                 src_x = plane_state->src.x1 >> 16;
3088                 src_y = plane_state->src.y1 >> 16;
3089                 src_w = drm_rect_width(&plane_state->src) >> 16;
3090                 src_h = drm_rect_height(&plane_state->src) >> 16;
3091                 dst_x = plane_state->dst.x1;
3092                 dst_y = plane_state->dst.y1;
3093                 dst_w = drm_rect_width(&plane_state->dst);
3094                 dst_h = drm_rect_height(&plane_state->dst);
3095
3096                 WARN_ON(x != src_x || y != src_y);
3097         } else {
3098                 src_w = intel_crtc->config->pipe_src_w;
3099                 src_h = intel_crtc->config->pipe_src_h;
3100         }
3101
3102         if (intel_rotation_90_or_270(rotation)) {
3103                 /* stride = Surface height in tiles */
3104                 tile_height = intel_tile_height(dev, fb->pixel_format,
3105                                                 fb->modifier[0], 0);
3106                 stride = DIV_ROUND_UP(fb->height, tile_height);
3107                 x_offset = stride * tile_height - y - src_h;
3108                 y_offset = x;
3109                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3110         } else {
3111                 stride = fb->pitches[0] / stride_div;
3112                 x_offset = x;
3113                 y_offset = y;
3114                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3115         }
3116         plane_offset = y_offset << 16 | x_offset;
3117
3118         intel_crtc->adjusted_x = x_offset;
3119         intel_crtc->adjusted_y = y_offset;
3120
3121         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3122         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3123         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3124         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3125
3126         if (scaler_id >= 0) {
3127                 uint32_t ps_ctrl = 0;
3128
3129                 WARN_ON(!dst_w || !dst_h);
3130                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3131                         crtc_state->scaler_state.scalers[scaler_id].mode;
3132                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3133                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3134                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3135                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3136                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3137         } else {
3138                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3139         }
3140
3141         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3142
3143         POSTING_READ(PLANE_SURF(pipe, 0));
3144 }
3145
3146 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3147 static int
3148 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3149                            int x, int y, enum mode_set_atomic state)
3150 {
3151         struct drm_device *dev = crtc->dev;
3152         struct drm_i915_private *dev_priv = dev->dev_private;
3153
3154         if (dev_priv->fbc.disable_fbc)
3155                 dev_priv->fbc.disable_fbc(dev_priv);
3156
3157         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3158
3159         return 0;
3160 }
3161
3162 static void intel_complete_page_flips(struct drm_device *dev)
3163 {
3164         struct drm_crtc *crtc;
3165
3166         for_each_crtc(dev, crtc) {
3167                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3168                 enum plane plane = intel_crtc->plane;
3169
3170                 intel_prepare_page_flip(dev, plane);
3171                 intel_finish_page_flip_plane(dev, plane);
3172         }
3173 }
3174
3175 static void intel_update_primary_planes(struct drm_device *dev)
3176 {
3177         struct drm_crtc *crtc;
3178
3179         for_each_crtc(dev, crtc) {
3180                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3181                 struct intel_plane_state *plane_state;
3182
3183                 drm_modeset_lock_crtc(crtc, &plane->base);
3184
3185                 plane_state = to_intel_plane_state(plane->base.state);
3186
3187                 if (plane_state->base.fb)
3188                         plane->commit_plane(&plane->base, plane_state);
3189
3190                 drm_modeset_unlock_crtc(crtc);
3191         }
3192 }
3193
3194 void intel_prepare_reset(struct drm_device *dev)
3195 {
3196         /* no reset support for gen2 */
3197         if (IS_GEN2(dev))
3198                 return;
3199
3200         /* reset doesn't touch the display */
3201         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3202                 return;
3203
3204         drm_modeset_lock_all(dev);
3205         /*
3206          * Disabling the crtcs gracefully seems nicer. Also the
3207          * g33 docs say we should at least disable all the planes.
3208          */
3209         intel_display_suspend(dev);
3210 }
3211
3212 void intel_finish_reset(struct drm_device *dev)
3213 {
3214         struct drm_i915_private *dev_priv = to_i915(dev);
3215
3216         /*
3217          * Flips in the rings will be nuked by the reset,
3218          * so complete all pending flips so that user space
3219          * will get its events and not get stuck.
3220          */
3221         intel_complete_page_flips(dev);
3222
3223         /* no reset support for gen2 */
3224         if (IS_GEN2(dev))
3225                 return;
3226
3227         /* reset doesn't touch the display */
3228         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3229                 /*
3230                  * Flips in the rings have been nuked by the reset,
3231                  * so update the base address of all primary
3232                  * planes to the the last fb to make sure we're
3233                  * showing the correct fb after a reset.
3234                  *
3235                  * FIXME: Atomic will make this obsolete since we won't schedule
3236                  * CS-based flips (which might get lost in gpu resets) any more.
3237                  */
3238                 intel_update_primary_planes(dev);
3239                 return;
3240         }
3241
3242         /*
3243          * The display has been reset as well,
3244          * so need a full re-initialization.
3245          */
3246         intel_runtime_pm_disable_interrupts(dev_priv);
3247         intel_runtime_pm_enable_interrupts(dev_priv);
3248
3249         intel_modeset_init_hw(dev);
3250
3251         spin_lock_irq(&dev_priv->irq_lock);
3252         if (dev_priv->display.hpd_irq_setup)
3253                 dev_priv->display.hpd_irq_setup(dev);
3254         spin_unlock_irq(&dev_priv->irq_lock);
3255
3256         intel_display_resume(dev);
3257
3258         intel_hpd_init(dev_priv);
3259
3260         drm_modeset_unlock_all(dev);
3261 }
3262
3263 static void
3264 intel_finish_fb(struct drm_framebuffer *old_fb)
3265 {
3266         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3267         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3268         bool was_interruptible = dev_priv->mm.interruptible;
3269         int ret;
3270
3271         /* Big Hammer, we also need to ensure that any pending
3272          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3273          * current scanout is retired before unpinning the old
3274          * framebuffer. Note that we rely on userspace rendering
3275          * into the buffer attached to the pipe they are waiting
3276          * on. If not, userspace generates a GPU hang with IPEHR
3277          * point to the MI_WAIT_FOR_EVENT.
3278          *
3279          * This should only fail upon a hung GPU, in which case we
3280          * can safely continue.
3281          */
3282         dev_priv->mm.interruptible = false;
3283         ret = i915_gem_object_wait_rendering(obj, true);
3284         dev_priv->mm.interruptible = was_interruptible;
3285
3286         WARN_ON(ret);
3287 }
3288
3289 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3290 {
3291         struct drm_device *dev = crtc->dev;
3292         struct drm_i915_private *dev_priv = dev->dev_private;
3293         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3294         bool pending;
3295
3296         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3297             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3298                 return false;
3299
3300         spin_lock_irq(&dev->event_lock);
3301         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3302         spin_unlock_irq(&dev->event_lock);
3303
3304         return pending;
3305 }
3306
3307 static void intel_update_pipe_config(struct intel_crtc *crtc,
3308                                      struct intel_crtc_state *old_crtc_state)
3309 {
3310         struct drm_device *dev = crtc->base.dev;
3311         struct drm_i915_private *dev_priv = dev->dev_private;
3312         struct intel_crtc_state *pipe_config =
3313                 to_intel_crtc_state(crtc->base.state);
3314
3315         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3316         crtc->base.mode = crtc->base.state->mode;
3317
3318         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3319                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3320                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3321
3322         if (HAS_DDI(dev))
3323                 intel_set_pipe_csc(&crtc->base);
3324
3325         /*
3326          * Update pipe size and adjust fitter if needed: the reason for this is
3327          * that in compute_mode_changes we check the native mode (not the pfit
3328          * mode) to see if we can flip rather than do a full mode set. In the
3329          * fastboot case, we'll flip, but if we don't update the pipesrc and
3330          * pfit state, we'll end up with a big fb scanned out into the wrong
3331          * sized surface.
3332          */
3333
3334         I915_WRITE(PIPESRC(crtc->pipe),
3335                    ((pipe_config->pipe_src_w - 1) << 16) |
3336                    (pipe_config->pipe_src_h - 1));
3337
3338         /* on skylake this is done by detaching scalers */
3339         if (INTEL_INFO(dev)->gen >= 9) {
3340                 skl_detach_scalers(crtc);
3341
3342                 if (pipe_config->pch_pfit.enabled)
3343                         skylake_pfit_enable(crtc);
3344         } else if (HAS_PCH_SPLIT(dev)) {
3345                 if (pipe_config->pch_pfit.enabled)
3346                         ironlake_pfit_enable(crtc);
3347                 else if (old_crtc_state->pch_pfit.enabled)
3348                         ironlake_pfit_disable(crtc, true);
3349         }
3350 }
3351
3352 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3353 {
3354         struct drm_device *dev = crtc->dev;
3355         struct drm_i915_private *dev_priv = dev->dev_private;
3356         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3357         int pipe = intel_crtc->pipe;
3358         u32 reg, temp;
3359
3360         /* enable normal train */
3361         reg = FDI_TX_CTL(pipe);
3362         temp = I915_READ(reg);
3363         if (IS_IVYBRIDGE(dev)) {
3364                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3365                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3366         } else {
3367                 temp &= ~FDI_LINK_TRAIN_NONE;
3368                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3369         }
3370         I915_WRITE(reg, temp);
3371
3372         reg = FDI_RX_CTL(pipe);
3373         temp = I915_READ(reg);
3374         if (HAS_PCH_CPT(dev)) {
3375                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3376                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3377         } else {
3378                 temp &= ~FDI_LINK_TRAIN_NONE;
3379                 temp |= FDI_LINK_TRAIN_NONE;
3380         }
3381         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3382
3383         /* wait one idle pattern time */
3384         POSTING_READ(reg);
3385         udelay(1000);
3386
3387         /* IVB wants error correction enabled */
3388         if (IS_IVYBRIDGE(dev))
3389                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3390                            FDI_FE_ERRC_ENABLE);
3391 }
3392
3393 /* The FDI link training functions for ILK/Ibexpeak. */
3394 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3395 {
3396         struct drm_device *dev = crtc->dev;
3397         struct drm_i915_private *dev_priv = dev->dev_private;
3398         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3399         int pipe = intel_crtc->pipe;
3400         u32 reg, temp, tries;
3401
3402         /* FDI needs bits from pipe first */
3403         assert_pipe_enabled(dev_priv, pipe);
3404
3405         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3406            for train result */
3407         reg = FDI_RX_IMR(pipe);
3408         temp = I915_READ(reg);
3409         temp &= ~FDI_RX_SYMBOL_LOCK;
3410         temp &= ~FDI_RX_BIT_LOCK;
3411         I915_WRITE(reg, temp);
3412         I915_READ(reg);
3413         udelay(150);
3414
3415         /* enable CPU FDI TX and PCH FDI RX */
3416         reg = FDI_TX_CTL(pipe);
3417         temp = I915_READ(reg);
3418         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3419         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3420         temp &= ~FDI_LINK_TRAIN_NONE;
3421         temp |= FDI_LINK_TRAIN_PATTERN_1;
3422         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3423
3424         reg = FDI_RX_CTL(pipe);
3425         temp = I915_READ(reg);
3426         temp &= ~FDI_LINK_TRAIN_NONE;
3427         temp |= FDI_LINK_TRAIN_PATTERN_1;
3428         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3429
3430         POSTING_READ(reg);
3431         udelay(150);
3432
3433         /* Ironlake workaround, enable clock pointer after FDI enable*/
3434         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3435         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3436                    FDI_RX_PHASE_SYNC_POINTER_EN);
3437
3438         reg = FDI_RX_IIR(pipe);
3439         for (tries = 0; tries < 5; tries++) {
3440                 temp = I915_READ(reg);
3441                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3442
3443                 if ((temp & FDI_RX_BIT_LOCK)) {
3444                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3445                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3446                         break;
3447                 }
3448         }
3449         if (tries == 5)
3450                 DRM_ERROR("FDI train 1 fail!\n");
3451
3452         /* Train 2 */
3453         reg = FDI_TX_CTL(pipe);
3454         temp = I915_READ(reg);
3455         temp &= ~FDI_LINK_TRAIN_NONE;
3456         temp |= FDI_LINK_TRAIN_PATTERN_2;
3457         I915_WRITE(reg, temp);
3458
3459         reg = FDI_RX_CTL(pipe);
3460         temp = I915_READ(reg);
3461         temp &= ~FDI_LINK_TRAIN_NONE;
3462         temp |= FDI_LINK_TRAIN_PATTERN_2;
3463         I915_WRITE(reg, temp);
3464
3465         POSTING_READ(reg);
3466         udelay(150);
3467
3468         reg = FDI_RX_IIR(pipe);
3469         for (tries = 0; tries < 5; tries++) {
3470                 temp = I915_READ(reg);
3471                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3472
3473                 if (temp & FDI_RX_SYMBOL_LOCK) {
3474                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3475                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3476                         break;
3477                 }
3478         }
3479         if (tries == 5)
3480                 DRM_ERROR("FDI train 2 fail!\n");
3481
3482         DRM_DEBUG_KMS("FDI train done\n");
3483
3484 }
3485
3486 static const int snb_b_fdi_train_param[] = {
3487         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3488         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3489         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3490         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3491 };
3492
3493 /* The FDI link training functions for SNB/Cougarpoint. */
3494 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3495 {
3496         struct drm_device *dev = crtc->dev;
3497         struct drm_i915_private *dev_priv = dev->dev_private;
3498         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3499         int pipe = intel_crtc->pipe;
3500         u32 reg, temp, i, retry;
3501
3502         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3503            for train result */
3504         reg = FDI_RX_IMR(pipe);
3505         temp = I915_READ(reg);
3506         temp &= ~FDI_RX_SYMBOL_LOCK;
3507         temp &= ~FDI_RX_BIT_LOCK;
3508         I915_WRITE(reg, temp);
3509
3510         POSTING_READ(reg);
3511         udelay(150);
3512
3513         /* enable CPU FDI TX and PCH FDI RX */
3514         reg = FDI_TX_CTL(pipe);
3515         temp = I915_READ(reg);
3516         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3517         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3518         temp &= ~FDI_LINK_TRAIN_NONE;
3519         temp |= FDI_LINK_TRAIN_PATTERN_1;
3520         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3521         /* SNB-B */
3522         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3523         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3524
3525         I915_WRITE(FDI_RX_MISC(pipe),
3526                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3527
3528         reg = FDI_RX_CTL(pipe);
3529         temp = I915_READ(reg);
3530         if (HAS_PCH_CPT(dev)) {
3531                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3532                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3533         } else {
3534                 temp &= ~FDI_LINK_TRAIN_NONE;
3535                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3536         }
3537         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3538
3539         POSTING_READ(reg);
3540         udelay(150);
3541
3542         for (i = 0; i < 4; i++) {
3543                 reg = FDI_TX_CTL(pipe);
3544                 temp = I915_READ(reg);
3545                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3546                 temp |= snb_b_fdi_train_param[i];
3547                 I915_WRITE(reg, temp);
3548
3549                 POSTING_READ(reg);
3550                 udelay(500);
3551
3552                 for (retry = 0; retry < 5; retry++) {
3553                         reg = FDI_RX_IIR(pipe);
3554                         temp = I915_READ(reg);
3555                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3556                         if (temp & FDI_RX_BIT_LOCK) {
3557                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3558                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3559                                 break;
3560                         }
3561                         udelay(50);
3562                 }
3563                 if (retry < 5)
3564                         break;
3565         }
3566         if (i == 4)
3567                 DRM_ERROR("FDI train 1 fail!\n");
3568
3569         /* Train 2 */
3570         reg = FDI_TX_CTL(pipe);
3571         temp = I915_READ(reg);
3572         temp &= ~FDI_LINK_TRAIN_NONE;
3573         temp |= FDI_LINK_TRAIN_PATTERN_2;
3574         if (IS_GEN6(dev)) {
3575                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3576                 /* SNB-B */
3577                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3578         }
3579         I915_WRITE(reg, temp);
3580
3581         reg = FDI_RX_CTL(pipe);
3582         temp = I915_READ(reg);
3583         if (HAS_PCH_CPT(dev)) {
3584                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3585                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3586         } else {
3587                 temp &= ~FDI_LINK_TRAIN_NONE;
3588                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3589         }
3590         I915_WRITE(reg, temp);
3591
3592         POSTING_READ(reg);
3593         udelay(150);
3594
3595         for (i = 0; i < 4; i++) {
3596                 reg = FDI_TX_CTL(pipe);
3597                 temp = I915_READ(reg);
3598                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3599                 temp |= snb_b_fdi_train_param[i];
3600                 I915_WRITE(reg, temp);
3601
3602                 POSTING_READ(reg);
3603                 udelay(500);
3604
3605                 for (retry = 0; retry < 5; retry++) {
3606                         reg = FDI_RX_IIR(pipe);
3607                         temp = I915_READ(reg);
3608                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3609                         if (temp & FDI_RX_SYMBOL_LOCK) {
3610                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3611                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3612                                 break;
3613                         }
3614                         udelay(50);
3615                 }
3616                 if (retry < 5)
3617                         break;
3618         }
3619         if (i == 4)
3620                 DRM_ERROR("FDI train 2 fail!\n");
3621
3622         DRM_DEBUG_KMS("FDI train done.\n");
3623 }
3624
3625 /* Manual link training for Ivy Bridge A0 parts */
3626 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3627 {
3628         struct drm_device *dev = crtc->dev;
3629         struct drm_i915_private *dev_priv = dev->dev_private;
3630         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3631         int pipe = intel_crtc->pipe;
3632         u32 reg, temp, i, j;
3633
3634         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3635            for train result */
3636         reg = FDI_RX_IMR(pipe);
3637         temp = I915_READ(reg);
3638         temp &= ~FDI_RX_SYMBOL_LOCK;
3639         temp &= ~FDI_RX_BIT_LOCK;
3640         I915_WRITE(reg, temp);
3641
3642         POSTING_READ(reg);
3643         udelay(150);
3644
3645         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3646                       I915_READ(FDI_RX_IIR(pipe)));
3647
3648         /* Try each vswing and preemphasis setting twice before moving on */
3649         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3650                 /* disable first in case we need to retry */
3651                 reg = FDI_TX_CTL(pipe);
3652                 temp = I915_READ(reg);
3653                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3654                 temp &= ~FDI_TX_ENABLE;
3655                 I915_WRITE(reg, temp);
3656
3657                 reg = FDI_RX_CTL(pipe);
3658                 temp = I915_READ(reg);
3659                 temp &= ~FDI_LINK_TRAIN_AUTO;
3660                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3661                 temp &= ~FDI_RX_ENABLE;
3662                 I915_WRITE(reg, temp);
3663
3664                 /* enable CPU FDI TX and PCH FDI RX */
3665                 reg = FDI_TX_CTL(pipe);
3666                 temp = I915_READ(reg);
3667                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3668                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3669                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3670                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3671                 temp |= snb_b_fdi_train_param[j/2];
3672                 temp |= FDI_COMPOSITE_SYNC;
3673                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3674
3675                 I915_WRITE(FDI_RX_MISC(pipe),
3676                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3677
3678                 reg = FDI_RX_CTL(pipe);
3679                 temp = I915_READ(reg);
3680                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3681                 temp |= FDI_COMPOSITE_SYNC;
3682                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3683
3684                 POSTING_READ(reg);
3685                 udelay(1); /* should be 0.5us */
3686
3687                 for (i = 0; i < 4; i++) {
3688                         reg = FDI_RX_IIR(pipe);
3689                         temp = I915_READ(reg);
3690                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3691
3692                         if (temp & FDI_RX_BIT_LOCK ||
3693                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3694                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3695                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3696                                               i);
3697                                 break;
3698                         }
3699                         udelay(1); /* should be 0.5us */
3700                 }
3701                 if (i == 4) {
3702                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3703                         continue;
3704                 }
3705
3706                 /* Train 2 */
3707                 reg = FDI_TX_CTL(pipe);
3708                 temp = I915_READ(reg);
3709                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3710                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3711                 I915_WRITE(reg, temp);
3712
3713                 reg = FDI_RX_CTL(pipe);
3714                 temp = I915_READ(reg);
3715                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3716                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3717                 I915_WRITE(reg, temp);
3718
3719                 POSTING_READ(reg);
3720                 udelay(2); /* should be 1.5us */
3721
3722                 for (i = 0; i < 4; i++) {
3723                         reg = FDI_RX_IIR(pipe);
3724                         temp = I915_READ(reg);
3725                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3726
3727                         if (temp & FDI_RX_SYMBOL_LOCK ||
3728                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3729                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3730                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3731                                               i);
3732                                 goto train_done;
3733                         }
3734                         udelay(2); /* should be 1.5us */
3735                 }
3736                 if (i == 4)
3737                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3738         }
3739
3740 train_done:
3741         DRM_DEBUG_KMS("FDI train done.\n");
3742 }
3743
3744 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3745 {
3746         struct drm_device *dev = intel_crtc->base.dev;
3747         struct drm_i915_private *dev_priv = dev->dev_private;
3748         int pipe = intel_crtc->pipe;
3749         u32 reg, temp;
3750
3751
3752         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3753         reg = FDI_RX_CTL(pipe);
3754         temp = I915_READ(reg);
3755         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3756         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3757         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3758         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3759
3760         POSTING_READ(reg);
3761         udelay(200);
3762
3763         /* Switch from Rawclk to PCDclk */
3764         temp = I915_READ(reg);
3765         I915_WRITE(reg, temp | FDI_PCDCLK);
3766
3767         POSTING_READ(reg);
3768         udelay(200);
3769
3770         /* Enable CPU FDI TX PLL, always on for Ironlake */
3771         reg = FDI_TX_CTL(pipe);
3772         temp = I915_READ(reg);
3773         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3774                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3775
3776                 POSTING_READ(reg);
3777                 udelay(100);
3778         }
3779 }
3780
3781 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3782 {
3783         struct drm_device *dev = intel_crtc->base.dev;
3784         struct drm_i915_private *dev_priv = dev->dev_private;
3785         int pipe = intel_crtc->pipe;
3786         u32 reg, temp;
3787
3788         /* Switch from PCDclk to Rawclk */
3789         reg = FDI_RX_CTL(pipe);
3790         temp = I915_READ(reg);
3791         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3792
3793         /* Disable CPU FDI TX PLL */
3794         reg = FDI_TX_CTL(pipe);
3795         temp = I915_READ(reg);
3796         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3797
3798         POSTING_READ(reg);
3799         udelay(100);
3800
3801         reg = FDI_RX_CTL(pipe);
3802         temp = I915_READ(reg);
3803         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3804
3805         /* Wait for the clocks to turn off. */
3806         POSTING_READ(reg);
3807         udelay(100);
3808 }
3809
3810 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3811 {
3812         struct drm_device *dev = crtc->dev;
3813         struct drm_i915_private *dev_priv = dev->dev_private;
3814         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3815         int pipe = intel_crtc->pipe;
3816         u32 reg, temp;
3817
3818         /* disable CPU FDI tx and PCH FDI rx */
3819         reg = FDI_TX_CTL(pipe);
3820         temp = I915_READ(reg);
3821         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3822         POSTING_READ(reg);
3823
3824         reg = FDI_RX_CTL(pipe);
3825         temp = I915_READ(reg);
3826         temp &= ~(0x7 << 16);
3827         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3828         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3829
3830         POSTING_READ(reg);
3831         udelay(100);
3832
3833         /* Ironlake workaround, disable clock pointer after downing FDI */
3834         if (HAS_PCH_IBX(dev))
3835                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3836
3837         /* still set train pattern 1 */
3838         reg = FDI_TX_CTL(pipe);
3839         temp = I915_READ(reg);
3840         temp &= ~FDI_LINK_TRAIN_NONE;
3841         temp |= FDI_LINK_TRAIN_PATTERN_1;
3842         I915_WRITE(reg, temp);
3843
3844         reg = FDI_RX_CTL(pipe);
3845         temp = I915_READ(reg);
3846         if (HAS_PCH_CPT(dev)) {
3847                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3848                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3849         } else {
3850                 temp &= ~FDI_LINK_TRAIN_NONE;
3851                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3852         }
3853         /* BPC in FDI rx is consistent with that in PIPECONF */
3854         temp &= ~(0x07 << 16);
3855         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3856         I915_WRITE(reg, temp);
3857
3858         POSTING_READ(reg);
3859         udelay(100);
3860 }
3861
3862 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3863 {
3864         struct intel_crtc *crtc;
3865
3866         /* Note that we don't need to be called with mode_config.lock here
3867          * as our list of CRTC objects is static for the lifetime of the
3868          * device and so cannot disappear as we iterate. Similarly, we can
3869          * happily treat the predicates as racy, atomic checks as userspace
3870          * cannot claim and pin a new fb without at least acquring the
3871          * struct_mutex and so serialising with us.
3872          */
3873         for_each_intel_crtc(dev, crtc) {
3874                 if (atomic_read(&crtc->unpin_work_count) == 0)
3875                         continue;
3876
3877                 if (crtc->unpin_work)
3878                         intel_wait_for_vblank(dev, crtc->pipe);
3879
3880                 return true;
3881         }
3882
3883         return false;
3884 }
3885
3886 static void page_flip_completed(struct intel_crtc *intel_crtc)
3887 {
3888         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3889         struct intel_unpin_work *work = intel_crtc->unpin_work;
3890
3891         /* ensure that the unpin work is consistent wrt ->pending. */
3892         smp_rmb();
3893         intel_crtc->unpin_work = NULL;
3894
3895         if (work->event)
3896                 drm_send_vblank_event(intel_crtc->base.dev,
3897                                       intel_crtc->pipe,
3898                                       work->event);
3899
3900         drm_crtc_vblank_put(&intel_crtc->base);
3901
3902         wake_up_all(&dev_priv->pending_flip_queue);
3903         queue_work(dev_priv->wq, &work->work);
3904
3905         trace_i915_flip_complete(intel_crtc->plane,
3906                                  work->pending_flip_obj);
3907 }
3908
3909 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3910 {
3911         struct drm_device *dev = crtc->dev;
3912         struct drm_i915_private *dev_priv = dev->dev_private;
3913
3914         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3915         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3916                                        !intel_crtc_has_pending_flip(crtc),
3917                                        60*HZ) == 0)) {
3918                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3919
3920                 spin_lock_irq(&dev->event_lock);
3921                 if (intel_crtc->unpin_work) {
3922                         WARN_ONCE(1, "Removing stuck page flip\n");
3923                         page_flip_completed(intel_crtc);
3924                 }
3925                 spin_unlock_irq(&dev->event_lock);
3926         }
3927
3928         if (crtc->primary->fb) {
3929                 mutex_lock(&dev->struct_mutex);
3930                 intel_finish_fb(crtc->primary->fb);
3931                 mutex_unlock(&dev->struct_mutex);
3932         }
3933 }
3934
3935 /* Program iCLKIP clock to the desired frequency */
3936 static void lpt_program_iclkip(struct drm_crtc *crtc)
3937 {
3938         struct drm_device *dev = crtc->dev;
3939         struct drm_i915_private *dev_priv = dev->dev_private;
3940         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3941         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3942         u32 temp;
3943
3944         mutex_lock(&dev_priv->sb_lock);
3945
3946         /* It is necessary to ungate the pixclk gate prior to programming
3947          * the divisors, and gate it back when it is done.
3948          */
3949         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3950
3951         /* Disable SSCCTL */
3952         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3953                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3954                                 SBI_SSCCTL_DISABLE,
3955                         SBI_ICLK);
3956
3957         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3958         if (clock == 20000) {
3959                 auxdiv = 1;
3960                 divsel = 0x41;
3961                 phaseinc = 0x20;
3962         } else {
3963                 /* The iCLK virtual clock root frequency is in MHz,
3964                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3965                  * divisors, it is necessary to divide one by another, so we
3966                  * convert the virtual clock precision to KHz here for higher
3967                  * precision.
3968                  */
3969                 u32 iclk_virtual_root_freq = 172800 * 1000;
3970                 u32 iclk_pi_range = 64;
3971                 u32 desired_divisor, msb_divisor_value, pi_value;
3972
3973                 desired_divisor = (iclk_virtual_root_freq / clock);
3974                 msb_divisor_value = desired_divisor / iclk_pi_range;
3975                 pi_value = desired_divisor % iclk_pi_range;
3976
3977                 auxdiv = 0;
3978                 divsel = msb_divisor_value - 2;
3979                 phaseinc = pi_value;
3980         }
3981
3982         /* This should not happen with any sane values */
3983         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3984                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3985         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3986                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3987
3988         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3989                         clock,
3990                         auxdiv,
3991                         divsel,
3992                         phasedir,
3993                         phaseinc);
3994
3995         /* Program SSCDIVINTPHASE6 */
3996         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3997         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3998         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3999         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4000         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4001         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4002         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4003         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4004
4005         /* Program SSCAUXDIV */
4006         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4007         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4008         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4009         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4010
4011         /* Enable modulator and associated divider */
4012         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4013         temp &= ~SBI_SSCCTL_DISABLE;
4014         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4015
4016         /* Wait for initialization time */
4017         udelay(24);
4018
4019         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4020
4021         mutex_unlock(&dev_priv->sb_lock);
4022 }
4023
4024 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4025                                                 enum pipe pch_transcoder)
4026 {
4027         struct drm_device *dev = crtc->base.dev;
4028         struct drm_i915_private *dev_priv = dev->dev_private;
4029         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4030
4031         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4032                    I915_READ(HTOTAL(cpu_transcoder)));
4033         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4034                    I915_READ(HBLANK(cpu_transcoder)));
4035         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4036                    I915_READ(HSYNC(cpu_transcoder)));
4037
4038         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4039                    I915_READ(VTOTAL(cpu_transcoder)));
4040         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4041                    I915_READ(VBLANK(cpu_transcoder)));
4042         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4043                    I915_READ(VSYNC(cpu_transcoder)));
4044         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4045                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4046 }
4047
4048 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4049 {
4050         struct drm_i915_private *dev_priv = dev->dev_private;
4051         uint32_t temp;
4052
4053         temp = I915_READ(SOUTH_CHICKEN1);
4054         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4055                 return;
4056
4057         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4058         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4059
4060         temp &= ~FDI_BC_BIFURCATION_SELECT;
4061         if (enable)
4062                 temp |= FDI_BC_BIFURCATION_SELECT;
4063
4064         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4065         I915_WRITE(SOUTH_CHICKEN1, temp);
4066         POSTING_READ(SOUTH_CHICKEN1);
4067 }
4068
4069 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4070 {
4071         struct drm_device *dev = intel_crtc->base.dev;
4072
4073         switch (intel_crtc->pipe) {
4074         case PIPE_A:
4075                 break;
4076         case PIPE_B:
4077                 if (intel_crtc->config->fdi_lanes > 2)
4078                         cpt_set_fdi_bc_bifurcation(dev, false);
4079                 else
4080                         cpt_set_fdi_bc_bifurcation(dev, true);
4081
4082                 break;
4083         case PIPE_C:
4084                 cpt_set_fdi_bc_bifurcation(dev, true);
4085
4086                 break;
4087         default:
4088                 BUG();
4089         }
4090 }
4091
4092 /*
4093  * Enable PCH resources required for PCH ports:
4094  *   - PCH PLLs
4095  *   - FDI training & RX/TX
4096  *   - update transcoder timings
4097  *   - DP transcoding bits
4098  *   - transcoder
4099  */
4100 static void ironlake_pch_enable(struct drm_crtc *crtc)
4101 {
4102         struct drm_device *dev = crtc->dev;
4103         struct drm_i915_private *dev_priv = dev->dev_private;
4104         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4105         int pipe = intel_crtc->pipe;
4106         u32 reg, temp;
4107
4108         assert_pch_transcoder_disabled(dev_priv, pipe);
4109
4110         if (IS_IVYBRIDGE(dev))
4111                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4112
4113         /* Write the TU size bits before fdi link training, so that error
4114          * detection works. */
4115         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4116                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4117
4118         /* For PCH output, training FDI link */
4119         dev_priv->display.fdi_link_train(crtc);
4120
4121         /* We need to program the right clock selection before writing the pixel
4122          * mutliplier into the DPLL. */
4123         if (HAS_PCH_CPT(dev)) {
4124                 u32 sel;
4125
4126                 temp = I915_READ(PCH_DPLL_SEL);
4127                 temp |= TRANS_DPLL_ENABLE(pipe);
4128                 sel = TRANS_DPLLB_SEL(pipe);
4129                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4130                         temp |= sel;
4131                 else
4132                         temp &= ~sel;
4133                 I915_WRITE(PCH_DPLL_SEL, temp);
4134         }
4135
4136         /* XXX: pch pll's can be enabled any time before we enable the PCH
4137          * transcoder, and we actually should do this to not upset any PCH
4138          * transcoder that already use the clock when we share it.
4139          *
4140          * Note that enable_shared_dpll tries to do the right thing, but
4141          * get_shared_dpll unconditionally resets the pll - we need that to have
4142          * the right LVDS enable sequence. */
4143         intel_enable_shared_dpll(intel_crtc);
4144
4145         /* set transcoder timing, panel must allow it */
4146         assert_panel_unlocked(dev_priv, pipe);
4147         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4148
4149         intel_fdi_normal_train(crtc);
4150
4151         /* For PCH DP, enable TRANS_DP_CTL */
4152         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4153                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4154                 reg = TRANS_DP_CTL(pipe);
4155                 temp = I915_READ(reg);
4156                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4157                           TRANS_DP_SYNC_MASK |
4158                           TRANS_DP_BPC_MASK);
4159                 temp |= TRANS_DP_OUTPUT_ENABLE;
4160                 temp |= bpc << 9; /* same format but at 11:9 */
4161
4162                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4163                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4164                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4165                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4166
4167                 switch (intel_trans_dp_port_sel(crtc)) {
4168                 case PCH_DP_B:
4169                         temp |= TRANS_DP_PORT_SEL_B;
4170                         break;
4171                 case PCH_DP_C:
4172                         temp |= TRANS_DP_PORT_SEL_C;
4173                         break;
4174                 case PCH_DP_D:
4175                         temp |= TRANS_DP_PORT_SEL_D;
4176                         break;
4177                 default:
4178                         BUG();
4179                 }
4180
4181                 I915_WRITE(reg, temp);
4182         }
4183
4184         ironlake_enable_pch_transcoder(dev_priv, pipe);
4185 }
4186
4187 static void lpt_pch_enable(struct drm_crtc *crtc)
4188 {
4189         struct drm_device *dev = crtc->dev;
4190         struct drm_i915_private *dev_priv = dev->dev_private;
4191         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4192         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4193
4194         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4195
4196         lpt_program_iclkip(crtc);
4197
4198         /* Set transcoder timing. */
4199         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4200
4201         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4202 }
4203
4204 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4205                                                 struct intel_crtc_state *crtc_state)
4206 {
4207         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4208         struct intel_shared_dpll *pll;
4209         struct intel_shared_dpll_config *shared_dpll;
4210         enum intel_dpll_id i;
4211
4212         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4213
4214         if (HAS_PCH_IBX(dev_priv->dev)) {
4215                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4216                 i = (enum intel_dpll_id) crtc->pipe;
4217                 pll = &dev_priv->shared_dplls[i];
4218
4219                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4220                               crtc->base.base.id, pll->name);
4221
4222                 WARN_ON(shared_dpll[i].crtc_mask);
4223
4224                 goto found;
4225         }
4226
4227         if (IS_BROXTON(dev_priv->dev)) {
4228                 /* PLL is attached to port in bxt */
4229                 struct intel_encoder *encoder;
4230                 struct intel_digital_port *intel_dig_port;
4231
4232                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4233                 if (WARN_ON(!encoder))
4234                         return NULL;
4235
4236                 intel_dig_port = enc_to_dig_port(&encoder->base);
4237                 /* 1:1 mapping between ports and PLLs */
4238                 i = (enum intel_dpll_id)intel_dig_port->port;
4239                 pll = &dev_priv->shared_dplls[i];
4240                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4241                         crtc->base.base.id, pll->name);
4242                 WARN_ON(shared_dpll[i].crtc_mask);
4243
4244                 goto found;
4245         }
4246
4247         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4248                 pll = &dev_priv->shared_dplls[i];
4249
4250                 /* Only want to check enabled timings first */
4251                 if (shared_dpll[i].crtc_mask == 0)
4252                         continue;
4253
4254                 if (memcmp(&crtc_state->dpll_hw_state,
4255                            &shared_dpll[i].hw_state,
4256                            sizeof(crtc_state->dpll_hw_state)) == 0) {
4257                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4258                                       crtc->base.base.id, pll->name,
4259                                       shared_dpll[i].crtc_mask,
4260                                       pll->active);
4261                         goto found;
4262                 }
4263         }
4264
4265         /* Ok no matching timings, maybe there's a free one? */
4266         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4267                 pll = &dev_priv->shared_dplls[i];
4268                 if (shared_dpll[i].crtc_mask == 0) {
4269                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4270                                       crtc->base.base.id, pll->name);
4271                         goto found;
4272                 }
4273         }
4274
4275         return NULL;
4276
4277 found:
4278         if (shared_dpll[i].crtc_mask == 0)
4279                 shared_dpll[i].hw_state =
4280                         crtc_state->dpll_hw_state;
4281
4282         crtc_state->shared_dpll = i;
4283         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4284                          pipe_name(crtc->pipe));
4285
4286         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4287
4288         return pll;
4289 }
4290
4291 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4292 {
4293         struct drm_i915_private *dev_priv = to_i915(state->dev);
4294         struct intel_shared_dpll_config *shared_dpll;
4295         struct intel_shared_dpll *pll;
4296         enum intel_dpll_id i;
4297
4298         if (!to_intel_atomic_state(state)->dpll_set)
4299                 return;
4300
4301         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4302         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4303                 pll = &dev_priv->shared_dplls[i];
4304                 pll->config = shared_dpll[i];
4305         }
4306 }
4307
4308 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4309 {
4310         struct drm_i915_private *dev_priv = dev->dev_private;
4311         int dslreg = PIPEDSL(pipe);
4312         u32 temp;
4313
4314         temp = I915_READ(dslreg);
4315         udelay(500);
4316         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4317                 if (wait_for(I915_READ(dslreg) != temp, 5))
4318                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4319         }
4320 }
4321
4322 static int
4323 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4324                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4325                   int src_w, int src_h, int dst_w, int dst_h)
4326 {
4327         struct intel_crtc_scaler_state *scaler_state =
4328                 &crtc_state->scaler_state;
4329         struct intel_crtc *intel_crtc =
4330                 to_intel_crtc(crtc_state->base.crtc);
4331         int need_scaling;
4332
4333         need_scaling = intel_rotation_90_or_270(rotation) ?
4334                 (src_h != dst_w || src_w != dst_h):
4335                 (src_w != dst_w || src_h != dst_h);
4336
4337         /*
4338          * if plane is being disabled or scaler is no more required or force detach
4339          *  - free scaler binded to this plane/crtc
4340          *  - in order to do this, update crtc->scaler_usage
4341          *
4342          * Here scaler state in crtc_state is set free so that
4343          * scaler can be assigned to other user. Actual register
4344          * update to free the scaler is done in plane/panel-fit programming.
4345          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4346          */
4347         if (force_detach || !need_scaling) {
4348                 if (*scaler_id >= 0) {
4349                         scaler_state->scaler_users &= ~(1 << scaler_user);
4350                         scaler_state->scalers[*scaler_id].in_use = 0;
4351
4352                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4353                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4354                                 intel_crtc->pipe, scaler_user, *scaler_id,
4355                                 scaler_state->scaler_users);
4356                         *scaler_id = -1;
4357                 }
4358                 return 0;
4359         }
4360
4361         /* range checks */
4362         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4363                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4364
4365                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4366                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4367                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4368                         "size is out of scaler range\n",
4369                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4370                 return -EINVAL;
4371         }
4372
4373         /* mark this plane as a scaler user in crtc_state */
4374         scaler_state->scaler_users |= (1 << scaler_user);
4375         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4376                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4377                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4378                 scaler_state->scaler_users);
4379
4380         return 0;
4381 }
4382
4383 /**
4384  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4385  *
4386  * @state: crtc's scaler state
4387  *
4388  * Return
4389  *     0 - scaler_usage updated successfully
4390  *    error - requested scaling cannot be supported or other error condition
4391  */
4392 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4393 {
4394         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4395         struct drm_display_mode *adjusted_mode =
4396                 &state->base.adjusted_mode;
4397
4398         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4399                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4400
4401         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4402                 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4403                 state->pipe_src_w, state->pipe_src_h,
4404                 adjusted_mode->hdisplay, adjusted_mode->vdisplay);
4405 }
4406
4407 /**
4408  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4409  *
4410  * @state: crtc's scaler state
4411  * @plane_state: atomic plane state to update
4412  *
4413  * Return
4414  *     0 - scaler_usage updated successfully
4415  *    error - requested scaling cannot be supported or other error condition
4416  */
4417 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4418                                    struct intel_plane_state *plane_state)
4419 {
4420
4421         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4422         struct intel_plane *intel_plane =
4423                 to_intel_plane(plane_state->base.plane);
4424         struct drm_framebuffer *fb = plane_state->base.fb;
4425         int ret;
4426
4427         bool force_detach = !fb || !plane_state->visible;
4428
4429         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4430                       intel_plane->base.base.id, intel_crtc->pipe,
4431                       drm_plane_index(&intel_plane->base));
4432
4433         ret = skl_update_scaler(crtc_state, force_detach,
4434                                 drm_plane_index(&intel_plane->base),
4435                                 &plane_state->scaler_id,
4436                                 plane_state->base.rotation,
4437                                 drm_rect_width(&plane_state->src) >> 16,
4438                                 drm_rect_height(&plane_state->src) >> 16,
4439                                 drm_rect_width(&plane_state->dst),
4440                                 drm_rect_height(&plane_state->dst));
4441
4442         if (ret || plane_state->scaler_id < 0)
4443                 return ret;
4444
4445         /* check colorkey */
4446         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4447                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4448                               intel_plane->base.base.id);
4449                 return -EINVAL;
4450         }
4451
4452         /* Check src format */
4453         switch (fb->pixel_format) {
4454         case DRM_FORMAT_RGB565:
4455         case DRM_FORMAT_XBGR8888:
4456         case DRM_FORMAT_XRGB8888:
4457         case DRM_FORMAT_ABGR8888:
4458         case DRM_FORMAT_ARGB8888:
4459         case DRM_FORMAT_XRGB2101010:
4460         case DRM_FORMAT_XBGR2101010:
4461         case DRM_FORMAT_YUYV:
4462         case DRM_FORMAT_YVYU:
4463         case DRM_FORMAT_UYVY:
4464         case DRM_FORMAT_VYUY:
4465                 break;
4466         default:
4467                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4468                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4469                 return -EINVAL;
4470         }
4471
4472         return 0;
4473 }
4474
4475 static void skylake_scaler_disable(struct intel_crtc *crtc)
4476 {
4477         int i;
4478
4479         for (i = 0; i < crtc->num_scalers; i++)
4480                 skl_detach_scaler(crtc, i);
4481 }
4482
4483 static void skylake_pfit_enable(struct intel_crtc *crtc)
4484 {
4485         struct drm_device *dev = crtc->base.dev;
4486         struct drm_i915_private *dev_priv = dev->dev_private;
4487         int pipe = crtc->pipe;
4488         struct intel_crtc_scaler_state *scaler_state =
4489                 &crtc->config->scaler_state;
4490
4491         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4492
4493         if (crtc->config->pch_pfit.enabled) {
4494                 int id;
4495
4496                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4497                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4498                         return;
4499                 }
4500
4501                 id = scaler_state->scaler_id;
4502                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4503                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4504                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4505                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4506
4507                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4508         }
4509 }
4510
4511 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4512 {
4513         struct drm_device *dev = crtc->base.dev;
4514         struct drm_i915_private *dev_priv = dev->dev_private;
4515         int pipe = crtc->pipe;
4516
4517         if (crtc->config->pch_pfit.enabled) {
4518                 /* Force use of hard-coded filter coefficients
4519                  * as some pre-programmed values are broken,
4520                  * e.g. x201.
4521                  */
4522                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4523                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4524                                                  PF_PIPE_SEL_IVB(pipe));
4525                 else
4526                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4527                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4528                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4529         }
4530 }
4531
4532 void hsw_enable_ips(struct intel_crtc *crtc)
4533 {
4534         struct drm_device *dev = crtc->base.dev;
4535         struct drm_i915_private *dev_priv = dev->dev_private;
4536
4537         if (!crtc->config->ips_enabled)
4538                 return;
4539
4540         /* We can only enable IPS after we enable a plane and wait for a vblank */
4541         intel_wait_for_vblank(dev, crtc->pipe);
4542
4543         assert_plane_enabled(dev_priv, crtc->plane);
4544         if (IS_BROADWELL(dev)) {
4545                 mutex_lock(&dev_priv->rps.hw_lock);
4546                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4547                 mutex_unlock(&dev_priv->rps.hw_lock);
4548                 /* Quoting Art Runyan: "its not safe to expect any particular
4549                  * value in IPS_CTL bit 31 after enabling IPS through the
4550                  * mailbox." Moreover, the mailbox may return a bogus state,
4551                  * so we need to just enable it and continue on.
4552                  */
4553         } else {
4554                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4555                 /* The bit only becomes 1 in the next vblank, so this wait here
4556                  * is essentially intel_wait_for_vblank. If we don't have this
4557                  * and don't wait for vblanks until the end of crtc_enable, then
4558                  * the HW state readout code will complain that the expected
4559                  * IPS_CTL value is not the one we read. */
4560                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4561                         DRM_ERROR("Timed out waiting for IPS enable\n");
4562         }
4563 }
4564
4565 void hsw_disable_ips(struct intel_crtc *crtc)
4566 {
4567         struct drm_device *dev = crtc->base.dev;
4568         struct drm_i915_private *dev_priv = dev->dev_private;
4569
4570         if (!crtc->config->ips_enabled)
4571                 return;
4572
4573         assert_plane_enabled(dev_priv, crtc->plane);
4574         if (IS_BROADWELL(dev)) {
4575                 mutex_lock(&dev_priv->rps.hw_lock);
4576                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4577                 mutex_unlock(&dev_priv->rps.hw_lock);
4578                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4579                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4580                         DRM_ERROR("Timed out waiting for IPS disable\n");
4581         } else {
4582                 I915_WRITE(IPS_CTL, 0);
4583                 POSTING_READ(IPS_CTL);
4584         }
4585
4586         /* We need to wait for a vblank before we can disable the plane. */
4587         intel_wait_for_vblank(dev, crtc->pipe);
4588 }
4589
4590 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4591 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4592 {
4593         struct drm_device *dev = crtc->dev;
4594         struct drm_i915_private *dev_priv = dev->dev_private;
4595         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4596         enum pipe pipe = intel_crtc->pipe;
4597         int palreg = PALETTE(pipe);
4598         int i;
4599         bool reenable_ips = false;
4600
4601         /* The clocks have to be on to load the palette. */
4602         if (!crtc->state->active)
4603                 return;
4604
4605         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4606                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4607                         assert_dsi_pll_enabled(dev_priv);
4608                 else
4609                         assert_pll_enabled(dev_priv, pipe);
4610         }
4611
4612         /* use legacy palette for Ironlake */
4613         if (!HAS_GMCH_DISPLAY(dev))
4614                 palreg = LGC_PALETTE(pipe);
4615
4616         /* Workaround : Do not read or write the pipe palette/gamma data while
4617          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4618          */
4619         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4620             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4621              GAMMA_MODE_MODE_SPLIT)) {
4622                 hsw_disable_ips(intel_crtc);
4623                 reenable_ips = true;
4624         }
4625
4626         for (i = 0; i < 256; i++) {
4627                 I915_WRITE(palreg + 4 * i,
4628                            (intel_crtc->lut_r[i] << 16) |
4629                            (intel_crtc->lut_g[i] << 8) |
4630                            intel_crtc->lut_b[i]);
4631         }
4632
4633         if (reenable_ips)
4634                 hsw_enable_ips(intel_crtc);
4635 }
4636
4637 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4638 {
4639         if (intel_crtc->overlay) {
4640                 struct drm_device *dev = intel_crtc->base.dev;
4641                 struct drm_i915_private *dev_priv = dev->dev_private;
4642
4643                 mutex_lock(&dev->struct_mutex);
4644                 dev_priv->mm.interruptible = false;
4645                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4646                 dev_priv->mm.interruptible = true;
4647                 mutex_unlock(&dev->struct_mutex);
4648         }
4649
4650         /* Let userspace switch the overlay on again. In most cases userspace
4651          * has to recompute where to put it anyway.
4652          */
4653 }
4654
4655 /**
4656  * intel_post_enable_primary - Perform operations after enabling primary plane
4657  * @crtc: the CRTC whose primary plane was just enabled
4658  *
4659  * Performs potentially sleeping operations that must be done after the primary
4660  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4661  * called due to an explicit primary plane update, or due to an implicit
4662  * re-enable that is caused when a sprite plane is updated to no longer
4663  * completely hide the primary plane.
4664  */
4665 static void
4666 intel_post_enable_primary(struct drm_crtc *crtc)
4667 {
4668         struct drm_device *dev = crtc->dev;
4669         struct drm_i915_private *dev_priv = dev->dev_private;
4670         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4671         int pipe = intel_crtc->pipe;
4672
4673         /*
4674          * BDW signals flip done immediately if the plane
4675          * is disabled, even if the plane enable is already
4676          * armed to occur at the next vblank :(
4677          */
4678         if (IS_BROADWELL(dev))
4679                 intel_wait_for_vblank(dev, pipe);
4680
4681         /*
4682          * FIXME IPS should be fine as long as one plane is
4683          * enabled, but in practice it seems to have problems
4684          * when going from primary only to sprite only and vice
4685          * versa.
4686          */
4687         hsw_enable_ips(intel_crtc);
4688
4689         /*
4690          * Gen2 reports pipe underruns whenever all planes are disabled.
4691          * So don't enable underrun reporting before at least some planes
4692          * are enabled.
4693          * FIXME: Need to fix the logic to work when we turn off all planes
4694          * but leave the pipe running.
4695          */
4696         if (IS_GEN2(dev))
4697                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4698
4699         /* Underruns don't raise interrupts, so check manually. */
4700         if (HAS_GMCH_DISPLAY(dev))
4701                 i9xx_check_fifo_underruns(dev_priv);
4702 }
4703
4704 /**
4705  * intel_pre_disable_primary - Perform operations before disabling primary plane
4706  * @crtc: the CRTC whose primary plane is to be disabled
4707  *
4708  * Performs potentially sleeping operations that must be done before the
4709  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4710  * be called due to an explicit primary plane update, or due to an implicit
4711  * disable that is caused when a sprite plane completely hides the primary
4712  * plane.
4713  */
4714 static void
4715 intel_pre_disable_primary(struct drm_crtc *crtc)
4716 {
4717         struct drm_device *dev = crtc->dev;
4718         struct drm_i915_private *dev_priv = dev->dev_private;
4719         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4720         int pipe = intel_crtc->pipe;
4721
4722         /*
4723          * Gen2 reports pipe underruns whenever all planes are disabled.
4724          * So diasble underrun reporting before all the planes get disabled.
4725          * FIXME: Need to fix the logic to work when we turn off all planes
4726          * but leave the pipe running.
4727          */
4728         if (IS_GEN2(dev))
4729                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4730
4731         /*
4732          * Vblank time updates from the shadow to live plane control register
4733          * are blocked if the memory self-refresh mode is active at that
4734          * moment. So to make sure the plane gets truly disabled, disable
4735          * first the self-refresh mode. The self-refresh enable bit in turn
4736          * will be checked/applied by the HW only at the next frame start
4737          * event which is after the vblank start event, so we need to have a
4738          * wait-for-vblank between disabling the plane and the pipe.
4739          */
4740         if (HAS_GMCH_DISPLAY(dev)) {
4741                 intel_set_memory_cxsr(dev_priv, false);
4742                 dev_priv->wm.vlv.cxsr = false;
4743                 intel_wait_for_vblank(dev, pipe);
4744         }
4745
4746         /*
4747          * FIXME IPS should be fine as long as one plane is
4748          * enabled, but in practice it seems to have problems
4749          * when going from primary only to sprite only and vice
4750          * versa.
4751          */
4752         hsw_disable_ips(intel_crtc);
4753 }
4754
4755 static void intel_post_plane_update(struct intel_crtc *crtc)
4756 {
4757         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4758         struct drm_device *dev = crtc->base.dev;
4759         struct drm_i915_private *dev_priv = dev->dev_private;
4760         struct drm_plane *plane;
4761
4762         if (atomic->wait_vblank)
4763                 intel_wait_for_vblank(dev, crtc->pipe);
4764
4765         intel_frontbuffer_flip(dev, atomic->fb_bits);
4766
4767         if (atomic->disable_cxsr)
4768                 crtc->wm.cxsr_allowed = true;
4769
4770         if (crtc->atomic.update_wm_post)
4771                 intel_update_watermarks(&crtc->base);
4772
4773         if (atomic->update_fbc)
4774                 intel_fbc_update(dev_priv);
4775
4776         if (atomic->post_enable_primary)
4777                 intel_post_enable_primary(&crtc->base);
4778
4779         drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4780                 intel_update_sprite_watermarks(plane, &crtc->base,
4781                                                0, 0, 0, false, false);
4782
4783         memset(atomic, 0, sizeof(*atomic));
4784 }
4785
4786 static void intel_pre_plane_update(struct intel_crtc *crtc)
4787 {
4788         struct drm_device *dev = crtc->base.dev;
4789         struct drm_i915_private *dev_priv = dev->dev_private;
4790         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4791         struct drm_plane *p;
4792
4793         /* Track fb's for any planes being disabled */
4794         drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4795                 struct intel_plane *plane = to_intel_plane(p);
4796
4797                 mutex_lock(&dev->struct_mutex);
4798                 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4799                                   plane->frontbuffer_bit);
4800                 mutex_unlock(&dev->struct_mutex);
4801         }
4802
4803         if (atomic->wait_for_flips)
4804                 intel_crtc_wait_for_pending_flips(&crtc->base);
4805
4806         if (atomic->disable_fbc)
4807                 intel_fbc_disable_crtc(crtc);
4808
4809         if (crtc->atomic.disable_ips)
4810                 hsw_disable_ips(crtc);
4811
4812         if (atomic->pre_disable_primary)
4813                 intel_pre_disable_primary(&crtc->base);
4814
4815         if (atomic->disable_cxsr) {
4816                 crtc->wm.cxsr_allowed = false;
4817                 intel_set_memory_cxsr(dev_priv, false);
4818         }
4819 }
4820
4821 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4822 {
4823         struct drm_device *dev = crtc->dev;
4824         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4825         struct drm_plane *p;
4826         int pipe = intel_crtc->pipe;
4827
4828         intel_crtc_dpms_overlay_disable(intel_crtc);
4829
4830         drm_for_each_plane_mask(p, dev, plane_mask)
4831                 to_intel_plane(p)->disable_plane(p, crtc);
4832
4833         /*
4834          * FIXME: Once we grow proper nuclear flip support out of this we need
4835          * to compute the mask of flip planes precisely. For the time being
4836          * consider this a flip to a NULL plane.
4837          */
4838         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4839 }
4840
4841 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4842 {
4843         struct drm_device *dev = crtc->dev;
4844         struct drm_i915_private *dev_priv = dev->dev_private;
4845         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4846         struct intel_encoder *encoder;
4847         int pipe = intel_crtc->pipe;
4848
4849         if (WARN_ON(intel_crtc->active))
4850                 return;
4851
4852         if (intel_crtc->config->has_pch_encoder)
4853                 intel_prepare_shared_dpll(intel_crtc);
4854
4855         if (intel_crtc->config->has_dp_encoder)
4856                 intel_dp_set_m_n(intel_crtc, M1_N1);
4857
4858         intel_set_pipe_timings(intel_crtc);
4859
4860         if (intel_crtc->config->has_pch_encoder) {
4861                 intel_cpu_transcoder_set_m_n(intel_crtc,
4862                                      &intel_crtc->config->fdi_m_n, NULL);
4863         }
4864
4865         ironlake_set_pipeconf(crtc);
4866
4867         intel_crtc->active = true;
4868
4869         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4870         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4871
4872         for_each_encoder_on_crtc(dev, crtc, encoder)
4873                 if (encoder->pre_enable)
4874                         encoder->pre_enable(encoder);
4875
4876         if (intel_crtc->config->has_pch_encoder) {
4877                 /* Note: FDI PLL enabling _must_ be done before we enable the
4878                  * cpu pipes, hence this is separate from all the other fdi/pch
4879                  * enabling. */
4880                 ironlake_fdi_pll_enable(intel_crtc);
4881         } else {
4882                 assert_fdi_tx_disabled(dev_priv, pipe);
4883                 assert_fdi_rx_disabled(dev_priv, pipe);
4884         }
4885
4886         ironlake_pfit_enable(intel_crtc);
4887
4888         /*
4889          * On ILK+ LUT must be loaded before the pipe is running but with
4890          * clocks enabled
4891          */
4892         intel_crtc_load_lut(crtc);
4893
4894         intel_update_watermarks(crtc);
4895         intel_enable_pipe(intel_crtc);
4896
4897         if (intel_crtc->config->has_pch_encoder)
4898                 ironlake_pch_enable(crtc);
4899
4900         assert_vblank_disabled(crtc);
4901         drm_crtc_vblank_on(crtc);
4902
4903         for_each_encoder_on_crtc(dev, crtc, encoder)
4904                 encoder->enable(encoder);
4905
4906         if (HAS_PCH_CPT(dev))
4907                 cpt_verify_modeset(dev, intel_crtc->pipe);
4908 }
4909
4910 /* IPS only exists on ULT machines and is tied to pipe A. */
4911 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4912 {
4913         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4914 }
4915
4916 static void haswell_crtc_enable(struct drm_crtc *crtc)
4917 {
4918         struct drm_device *dev = crtc->dev;
4919         struct drm_i915_private *dev_priv = dev->dev_private;
4920         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4921         struct intel_encoder *encoder;
4922         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4923         struct intel_crtc_state *pipe_config =
4924                 to_intel_crtc_state(crtc->state);
4925
4926         if (WARN_ON(intel_crtc->active))
4927                 return;
4928
4929         if (intel_crtc_to_shared_dpll(intel_crtc))
4930                 intel_enable_shared_dpll(intel_crtc);
4931
4932         if (intel_crtc->config->has_dp_encoder)
4933                 intel_dp_set_m_n(intel_crtc, M1_N1);
4934
4935         intel_set_pipe_timings(intel_crtc);
4936
4937         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4938                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4939                            intel_crtc->config->pixel_multiplier - 1);
4940         }
4941
4942         if (intel_crtc->config->has_pch_encoder) {
4943                 intel_cpu_transcoder_set_m_n(intel_crtc,
4944                                      &intel_crtc->config->fdi_m_n, NULL);
4945         }
4946
4947         haswell_set_pipeconf(crtc);
4948
4949         intel_set_pipe_csc(crtc);
4950
4951         intel_crtc->active = true;
4952
4953         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4954         for_each_encoder_on_crtc(dev, crtc, encoder)
4955                 if (encoder->pre_enable)
4956                         encoder->pre_enable(encoder);
4957
4958         if (intel_crtc->config->has_pch_encoder) {
4959                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4960                                                       true);
4961                 dev_priv->display.fdi_link_train(crtc);
4962         }
4963
4964         intel_ddi_enable_pipe_clock(intel_crtc);
4965
4966         if (INTEL_INFO(dev)->gen >= 9)
4967                 skylake_pfit_enable(intel_crtc);
4968         else
4969                 ironlake_pfit_enable(intel_crtc);
4970
4971         /*
4972          * On ILK+ LUT must be loaded before the pipe is running but with
4973          * clocks enabled
4974          */
4975         intel_crtc_load_lut(crtc);
4976
4977         intel_ddi_set_pipe_settings(crtc);
4978         intel_ddi_enable_transcoder_func(crtc);
4979
4980         intel_update_watermarks(crtc);
4981         intel_enable_pipe(intel_crtc);
4982
4983         if (intel_crtc->config->has_pch_encoder)
4984                 lpt_pch_enable(crtc);
4985
4986         if (intel_crtc->config->dp_encoder_is_mst)
4987                 intel_ddi_set_vc_payload_alloc(crtc, true);
4988
4989         assert_vblank_disabled(crtc);
4990         drm_crtc_vblank_on(crtc);
4991
4992         for_each_encoder_on_crtc(dev, crtc, encoder) {
4993                 encoder->enable(encoder);
4994                 intel_opregion_notify_encoder(encoder, true);
4995         }
4996
4997         /* If we change the relative order between pipe/planes enabling, we need
4998          * to change the workaround. */
4999         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5000         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5001                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5002                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5003         }
5004 }
5005
5006 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5007 {
5008         struct drm_device *dev = crtc->base.dev;
5009         struct drm_i915_private *dev_priv = dev->dev_private;
5010         int pipe = crtc->pipe;
5011
5012         /* To avoid upsetting the power well on haswell only disable the pfit if
5013          * it's in use. The hw state code will make sure we get this right. */
5014         if (force || crtc->config->pch_pfit.enabled) {
5015                 I915_WRITE(PF_CTL(pipe), 0);
5016                 I915_WRITE(PF_WIN_POS(pipe), 0);
5017                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5018         }
5019 }
5020
5021 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5022 {
5023         struct drm_device *dev = crtc->dev;
5024         struct drm_i915_private *dev_priv = dev->dev_private;
5025         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5026         struct intel_encoder *encoder;
5027         int pipe = intel_crtc->pipe;
5028         u32 reg, temp;
5029
5030         for_each_encoder_on_crtc(dev, crtc, encoder)
5031                 encoder->disable(encoder);
5032
5033         drm_crtc_vblank_off(crtc);
5034         assert_vblank_disabled(crtc);
5035
5036         if (intel_crtc->config->has_pch_encoder)
5037                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5038
5039         intel_disable_pipe(intel_crtc);
5040
5041         ironlake_pfit_disable(intel_crtc, false);
5042
5043         if (intel_crtc->config->has_pch_encoder)
5044                 ironlake_fdi_disable(crtc);
5045
5046         for_each_encoder_on_crtc(dev, crtc, encoder)
5047                 if (encoder->post_disable)
5048                         encoder->post_disable(encoder);
5049
5050         if (intel_crtc->config->has_pch_encoder) {
5051                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5052
5053                 if (HAS_PCH_CPT(dev)) {
5054                         /* disable TRANS_DP_CTL */
5055                         reg = TRANS_DP_CTL(pipe);
5056                         temp = I915_READ(reg);
5057                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5058                                   TRANS_DP_PORT_SEL_MASK);
5059                         temp |= TRANS_DP_PORT_SEL_NONE;
5060                         I915_WRITE(reg, temp);
5061
5062                         /* disable DPLL_SEL */
5063                         temp = I915_READ(PCH_DPLL_SEL);
5064                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5065                         I915_WRITE(PCH_DPLL_SEL, temp);
5066                 }
5067
5068                 ironlake_fdi_pll_disable(intel_crtc);
5069         }
5070
5071         intel_crtc->active = false;
5072         intel_update_watermarks(crtc);
5073 }
5074
5075 static void haswell_crtc_disable(struct drm_crtc *crtc)
5076 {
5077         struct drm_device *dev = crtc->dev;
5078         struct drm_i915_private *dev_priv = dev->dev_private;
5079         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5080         struct intel_encoder *encoder;
5081         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5082
5083         for_each_encoder_on_crtc(dev, crtc, encoder) {
5084                 intel_opregion_notify_encoder(encoder, false);
5085                 encoder->disable(encoder);
5086         }
5087
5088         drm_crtc_vblank_off(crtc);
5089         assert_vblank_disabled(crtc);
5090
5091         if (intel_crtc->config->has_pch_encoder)
5092                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5093                                                       false);
5094         intel_disable_pipe(intel_crtc);
5095
5096         if (intel_crtc->config->dp_encoder_is_mst)
5097                 intel_ddi_set_vc_payload_alloc(crtc, false);
5098
5099         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5100
5101         if (INTEL_INFO(dev)->gen >= 9)
5102                 skylake_scaler_disable(intel_crtc);
5103         else
5104                 ironlake_pfit_disable(intel_crtc, false);
5105
5106         intel_ddi_disable_pipe_clock(intel_crtc);
5107
5108         if (intel_crtc->config->has_pch_encoder) {
5109                 lpt_disable_pch_transcoder(dev_priv);
5110                 intel_ddi_fdi_disable(crtc);
5111         }
5112
5113         for_each_encoder_on_crtc(dev, crtc, encoder)
5114                 if (encoder->post_disable)
5115                         encoder->post_disable(encoder);
5116
5117         intel_crtc->active = false;
5118         intel_update_watermarks(crtc);
5119 }
5120
5121 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5122 {
5123         struct drm_device *dev = crtc->base.dev;
5124         struct drm_i915_private *dev_priv = dev->dev_private;
5125         struct intel_crtc_state *pipe_config = crtc->config;
5126
5127         if (!pipe_config->gmch_pfit.control)
5128                 return;
5129
5130         /*
5131          * The panel fitter should only be adjusted whilst the pipe is disabled,
5132          * according to register description and PRM.
5133          */
5134         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5135         assert_pipe_disabled(dev_priv, crtc->pipe);
5136
5137         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5138         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5139
5140         /* Border color in case we don't scale up to the full screen. Black by
5141          * default, change to something else for debugging. */
5142         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5143 }
5144
5145 static enum intel_display_power_domain port_to_power_domain(enum port port)
5146 {
5147         switch (port) {
5148         case PORT_A:
5149                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5150         case PORT_B:
5151                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5152         case PORT_C:
5153                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5154         case PORT_D:
5155                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5156         case PORT_E:
5157                 return POWER_DOMAIN_PORT_DDI_E_2_LANES;
5158         default:
5159                 WARN_ON_ONCE(1);
5160                 return POWER_DOMAIN_PORT_OTHER;
5161         }
5162 }
5163
5164 #define for_each_power_domain(domain, mask)                             \
5165         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
5166                 if ((1 << (domain)) & (mask))
5167
5168 enum intel_display_power_domain
5169 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5170 {
5171         struct drm_device *dev = intel_encoder->base.dev;
5172         struct intel_digital_port *intel_dig_port;
5173
5174         switch (intel_encoder->type) {
5175         case INTEL_OUTPUT_UNKNOWN:
5176                 /* Only DDI platforms should ever use this output type */
5177                 WARN_ON_ONCE(!HAS_DDI(dev));
5178         case INTEL_OUTPUT_DISPLAYPORT:
5179         case INTEL_OUTPUT_HDMI:
5180         case INTEL_OUTPUT_EDP:
5181                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5182                 return port_to_power_domain(intel_dig_port->port);
5183         case INTEL_OUTPUT_DP_MST:
5184                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5185                 return port_to_power_domain(intel_dig_port->port);
5186         case INTEL_OUTPUT_ANALOG:
5187                 return POWER_DOMAIN_PORT_CRT;
5188         case INTEL_OUTPUT_DSI:
5189                 return POWER_DOMAIN_PORT_DSI;
5190         default:
5191                 return POWER_DOMAIN_PORT_OTHER;
5192         }
5193 }
5194
5195 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5196 {
5197         struct drm_device *dev = crtc->dev;
5198         struct intel_encoder *intel_encoder;
5199         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5200         enum pipe pipe = intel_crtc->pipe;
5201         unsigned long mask;
5202         enum transcoder transcoder;
5203
5204         if (!crtc->state->active)
5205                 return 0;
5206
5207         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5208
5209         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5210         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5211         if (intel_crtc->config->pch_pfit.enabled ||
5212             intel_crtc->config->pch_pfit.force_thru)
5213                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5214
5215         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5216                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5217
5218         return mask;
5219 }
5220
5221 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5222 {
5223         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5224         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5225         enum intel_display_power_domain domain;
5226         unsigned long domains, new_domains, old_domains;
5227
5228         old_domains = intel_crtc->enabled_power_domains;
5229         intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5230
5231         domains = new_domains & ~old_domains;
5232
5233         for_each_power_domain(domain, domains)
5234                 intel_display_power_get(dev_priv, domain);
5235
5236         return old_domains & ~new_domains;
5237 }
5238
5239 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5240                                       unsigned long domains)
5241 {
5242         enum intel_display_power_domain domain;
5243
5244         for_each_power_domain(domain, domains)
5245                 intel_display_power_put(dev_priv, domain);
5246 }
5247
5248 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5249 {
5250         struct drm_device *dev = state->dev;
5251         struct drm_i915_private *dev_priv = dev->dev_private;
5252         unsigned long put_domains[I915_MAX_PIPES] = {};
5253         struct drm_crtc_state *crtc_state;
5254         struct drm_crtc *crtc;
5255         int i;
5256
5257         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5258                 if (needs_modeset(crtc->state))
5259                         put_domains[to_intel_crtc(crtc)->pipe] =
5260                                 modeset_get_crtc_power_domains(crtc);
5261         }
5262
5263         if (dev_priv->display.modeset_commit_cdclk) {
5264                 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5265
5266                 if (cdclk != dev_priv->cdclk_freq &&
5267                     !WARN_ON(!state->allow_modeset))
5268                         dev_priv->display.modeset_commit_cdclk(state);
5269         }
5270
5271         for (i = 0; i < I915_MAX_PIPES; i++)
5272                 if (put_domains[i])
5273                         modeset_put_power_domains(dev_priv, put_domains[i]);
5274 }
5275
5276 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5277 {
5278         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5279
5280         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5281             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5282                 return max_cdclk_freq;
5283         else if (IS_CHERRYVIEW(dev_priv))
5284                 return max_cdclk_freq*95/100;
5285         else if (INTEL_INFO(dev_priv)->gen < 4)
5286                 return 2*max_cdclk_freq*90/100;
5287         else
5288                 return max_cdclk_freq*90/100;
5289 }
5290
5291 static void intel_update_max_cdclk(struct drm_device *dev)
5292 {
5293         struct drm_i915_private *dev_priv = dev->dev_private;
5294
5295         if (IS_SKYLAKE(dev)) {
5296                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5297
5298                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5299                         dev_priv->max_cdclk_freq = 675000;
5300                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5301                         dev_priv->max_cdclk_freq = 540000;
5302                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5303                         dev_priv->max_cdclk_freq = 450000;
5304                 else
5305                         dev_priv->max_cdclk_freq = 337500;
5306         } else if (IS_BROADWELL(dev))  {
5307                 /*
5308                  * FIXME with extra cooling we can allow
5309                  * 540 MHz for ULX and 675 Mhz for ULT.
5310                  * How can we know if extra cooling is
5311                  * available? PCI ID, VTB, something else?
5312                  */
5313                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5314                         dev_priv->max_cdclk_freq = 450000;
5315                 else if (IS_BDW_ULX(dev))
5316                         dev_priv->max_cdclk_freq = 450000;
5317                 else if (IS_BDW_ULT(dev))
5318                         dev_priv->max_cdclk_freq = 540000;
5319                 else
5320                         dev_priv->max_cdclk_freq = 675000;
5321         } else if (IS_CHERRYVIEW(dev)) {
5322                 dev_priv->max_cdclk_freq = 320000;
5323         } else if (IS_VALLEYVIEW(dev)) {
5324                 dev_priv->max_cdclk_freq = 400000;
5325         } else {
5326                 /* otherwise assume cdclk is fixed */
5327                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5328         }
5329
5330         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5331
5332         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5333                          dev_priv->max_cdclk_freq);
5334
5335         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5336                          dev_priv->max_dotclk_freq);
5337 }
5338
5339 static void intel_update_cdclk(struct drm_device *dev)
5340 {
5341         struct drm_i915_private *dev_priv = dev->dev_private;
5342
5343         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5344         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5345                          dev_priv->cdclk_freq);
5346
5347         /*
5348          * Program the gmbus_freq based on the cdclk frequency.
5349          * BSpec erroneously claims we should aim for 4MHz, but
5350          * in fact 1MHz is the correct frequency.
5351          */
5352         if (IS_VALLEYVIEW(dev)) {
5353                 /*
5354                  * Program the gmbus_freq based on the cdclk frequency.
5355                  * BSpec erroneously claims we should aim for 4MHz, but
5356                  * in fact 1MHz is the correct frequency.
5357                  */
5358                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5359         }
5360
5361         if (dev_priv->max_cdclk_freq == 0)
5362                 intel_update_max_cdclk(dev);
5363 }
5364
5365 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5366 {
5367         struct drm_i915_private *dev_priv = dev->dev_private;
5368         uint32_t divider;
5369         uint32_t ratio;
5370         uint32_t current_freq;
5371         int ret;
5372
5373         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5374         switch (frequency) {
5375         case 144000:
5376                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5377                 ratio = BXT_DE_PLL_RATIO(60);
5378                 break;
5379         case 288000:
5380                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5381                 ratio = BXT_DE_PLL_RATIO(60);
5382                 break;
5383         case 384000:
5384                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5385                 ratio = BXT_DE_PLL_RATIO(60);
5386                 break;
5387         case 576000:
5388                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5389                 ratio = BXT_DE_PLL_RATIO(60);
5390                 break;
5391         case 624000:
5392                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5393                 ratio = BXT_DE_PLL_RATIO(65);
5394                 break;
5395         case 19200:
5396                 /*
5397                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5398                  * to suppress GCC warning.
5399                  */
5400                 ratio = 0;
5401                 divider = 0;
5402                 break;
5403         default:
5404                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5405
5406                 return;
5407         }
5408
5409         mutex_lock(&dev_priv->rps.hw_lock);
5410         /* Inform power controller of upcoming frequency change */
5411         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5412                                       0x80000000);
5413         mutex_unlock(&dev_priv->rps.hw_lock);
5414
5415         if (ret) {
5416                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5417                           ret, frequency);
5418                 return;
5419         }
5420
5421         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5422         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5423         current_freq = current_freq * 500 + 1000;
5424
5425         /*
5426          * DE PLL has to be disabled when
5427          * - setting to 19.2MHz (bypass, PLL isn't used)
5428          * - before setting to 624MHz (PLL needs toggling)
5429          * - before setting to any frequency from 624MHz (PLL needs toggling)
5430          */
5431         if (frequency == 19200 || frequency == 624000 ||
5432             current_freq == 624000) {
5433                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5434                 /* Timeout 200us */
5435                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5436                              1))
5437                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5438         }
5439
5440         if (frequency != 19200) {
5441                 uint32_t val;
5442
5443                 val = I915_READ(BXT_DE_PLL_CTL);
5444                 val &= ~BXT_DE_PLL_RATIO_MASK;
5445                 val |= ratio;
5446                 I915_WRITE(BXT_DE_PLL_CTL, val);
5447
5448                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5449                 /* Timeout 200us */
5450                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5451                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5452
5453                 val = I915_READ(CDCLK_CTL);
5454                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5455                 val |= divider;
5456                 /*
5457                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5458                  * enable otherwise.
5459                  */
5460                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5461                 if (frequency >= 500000)
5462                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5463
5464                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5465                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5466                 val |= (frequency - 1000) / 500;
5467                 I915_WRITE(CDCLK_CTL, val);
5468         }
5469
5470         mutex_lock(&dev_priv->rps.hw_lock);
5471         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5472                                       DIV_ROUND_UP(frequency, 25000));
5473         mutex_unlock(&dev_priv->rps.hw_lock);
5474
5475         if (ret) {
5476                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5477                           ret, frequency);
5478                 return;
5479         }
5480
5481         intel_update_cdclk(dev);
5482 }
5483
5484 void broxton_init_cdclk(struct drm_device *dev)
5485 {
5486         struct drm_i915_private *dev_priv = dev->dev_private;
5487         uint32_t val;
5488
5489         /*
5490          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5491          * or else the reset will hang because there is no PCH to respond.
5492          * Move the handshake programming to initialization sequence.
5493          * Previously was left up to BIOS.
5494          */
5495         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5496         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5497         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5498
5499         /* Enable PG1 for cdclk */
5500         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5501
5502         /* check if cd clock is enabled */
5503         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5504                 DRM_DEBUG_KMS("Display already initialized\n");
5505                 return;
5506         }
5507
5508         /*
5509          * FIXME:
5510          * - The initial CDCLK needs to be read from VBT.
5511          *   Need to make this change after VBT has changes for BXT.
5512          * - check if setting the max (or any) cdclk freq is really necessary
5513          *   here, it belongs to modeset time
5514          */
5515         broxton_set_cdclk(dev, 624000);
5516
5517         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5518         POSTING_READ(DBUF_CTL);
5519
5520         udelay(10);
5521
5522         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5523                 DRM_ERROR("DBuf power enable timeout!\n");
5524 }
5525
5526 void broxton_uninit_cdclk(struct drm_device *dev)
5527 {
5528         struct drm_i915_private *dev_priv = dev->dev_private;
5529
5530         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5531         POSTING_READ(DBUF_CTL);
5532
5533         udelay(10);
5534
5535         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5536                 DRM_ERROR("DBuf power disable timeout!\n");
5537
5538         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5539         broxton_set_cdclk(dev, 19200);
5540
5541         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5542 }
5543
5544 static const struct skl_cdclk_entry {
5545         unsigned int freq;
5546         unsigned int vco;
5547 } skl_cdclk_frequencies[] = {
5548         { .freq = 308570, .vco = 8640 },
5549         { .freq = 337500, .vco = 8100 },
5550         { .freq = 432000, .vco = 8640 },
5551         { .freq = 450000, .vco = 8100 },
5552         { .freq = 540000, .vco = 8100 },
5553         { .freq = 617140, .vco = 8640 },
5554         { .freq = 675000, .vco = 8100 },
5555 };
5556
5557 static unsigned int skl_cdclk_decimal(unsigned int freq)
5558 {
5559         return (freq - 1000) / 500;
5560 }
5561
5562 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5563 {
5564         unsigned int i;
5565
5566         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5567                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5568
5569                 if (e->freq == freq)
5570                         return e->vco;
5571         }
5572
5573         return 8100;
5574 }
5575
5576 static void
5577 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5578 {
5579         unsigned int min_freq;
5580         u32 val;
5581
5582         /* select the minimum CDCLK before enabling DPLL 0 */
5583         val = I915_READ(CDCLK_CTL);
5584         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5585         val |= CDCLK_FREQ_337_308;
5586
5587         if (required_vco == 8640)
5588                 min_freq = 308570;
5589         else
5590                 min_freq = 337500;
5591
5592         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5593
5594         I915_WRITE(CDCLK_CTL, val);
5595         POSTING_READ(CDCLK_CTL);
5596
5597         /*
5598          * We always enable DPLL0 with the lowest link rate possible, but still
5599          * taking into account the VCO required to operate the eDP panel at the
5600          * desired frequency. The usual DP link rates operate with a VCO of
5601          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5602          * The modeset code is responsible for the selection of the exact link
5603          * rate later on, with the constraint of choosing a frequency that
5604          * works with required_vco.
5605          */
5606         val = I915_READ(DPLL_CTRL1);
5607
5608         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5609                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5610         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5611         if (required_vco == 8640)
5612                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5613                                             SKL_DPLL0);
5614         else
5615                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5616                                             SKL_DPLL0);
5617
5618         I915_WRITE(DPLL_CTRL1, val);
5619         POSTING_READ(DPLL_CTRL1);
5620
5621         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5622
5623         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5624                 DRM_ERROR("DPLL0 not locked\n");
5625 }
5626
5627 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5628 {
5629         int ret;
5630         u32 val;
5631
5632         /* inform PCU we want to change CDCLK */
5633         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5634         mutex_lock(&dev_priv->rps.hw_lock);
5635         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5636         mutex_unlock(&dev_priv->rps.hw_lock);
5637
5638         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5639 }
5640
5641 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5642 {
5643         unsigned int i;
5644
5645         for (i = 0; i < 15; i++) {
5646                 if (skl_cdclk_pcu_ready(dev_priv))
5647                         return true;
5648                 udelay(10);
5649         }
5650
5651         return false;
5652 }
5653
5654 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5655 {
5656         struct drm_device *dev = dev_priv->dev;
5657         u32 freq_select, pcu_ack;
5658
5659         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5660
5661         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5662                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5663                 return;
5664         }
5665
5666         /* set CDCLK_CTL */
5667         switch(freq) {
5668         case 450000:
5669         case 432000:
5670                 freq_select = CDCLK_FREQ_450_432;
5671                 pcu_ack = 1;
5672                 break;
5673         case 540000:
5674                 freq_select = CDCLK_FREQ_540;
5675                 pcu_ack = 2;
5676                 break;
5677         case 308570:
5678         case 337500:
5679         default:
5680                 freq_select = CDCLK_FREQ_337_308;
5681                 pcu_ack = 0;
5682                 break;
5683         case 617140:
5684         case 675000:
5685                 freq_select = CDCLK_FREQ_675_617;
5686                 pcu_ack = 3;
5687                 break;
5688         }
5689
5690         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5691         POSTING_READ(CDCLK_CTL);
5692
5693         /* inform PCU of the change */
5694         mutex_lock(&dev_priv->rps.hw_lock);
5695         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5696         mutex_unlock(&dev_priv->rps.hw_lock);
5697
5698         intel_update_cdclk(dev);
5699 }
5700
5701 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5702 {
5703         /* disable DBUF power */
5704         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5705         POSTING_READ(DBUF_CTL);
5706
5707         udelay(10);
5708
5709         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5710                 DRM_ERROR("DBuf power disable timeout\n");
5711
5712         /* disable DPLL0 */
5713         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5714         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5715                 DRM_ERROR("Couldn't disable DPLL0\n");
5716
5717         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5718 }
5719
5720 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5721 {
5722         u32 val;
5723         unsigned int required_vco;
5724
5725         /* enable PCH reset handshake */
5726         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5727         I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5728
5729         /* enable PG1 and Misc I/O */
5730         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5731
5732         /* DPLL0 not enabled (happens on early BIOS versions) */
5733         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5734                 /* enable DPLL0 */
5735                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5736                 skl_dpll0_enable(dev_priv, required_vco);
5737         }
5738
5739         /* set CDCLK to the frequency the BIOS chose */
5740         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5741
5742         /* enable DBUF power */
5743         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5744         POSTING_READ(DBUF_CTL);
5745
5746         udelay(10);
5747
5748         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5749                 DRM_ERROR("DBuf power enable timeout\n");
5750 }
5751
5752 /* returns HPLL frequency in kHz */
5753 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5754 {
5755         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5756
5757         /* Obtain SKU information */
5758         mutex_lock(&dev_priv->sb_lock);
5759         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5760                 CCK_FUSE_HPLL_FREQ_MASK;
5761         mutex_unlock(&dev_priv->sb_lock);
5762
5763         return vco_freq[hpll_freq] * 1000;
5764 }
5765
5766 /* Adjust CDclk dividers to allow high res or save power if possible */
5767 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5768 {
5769         struct drm_i915_private *dev_priv = dev->dev_private;
5770         u32 val, cmd;
5771
5772         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5773                                         != dev_priv->cdclk_freq);
5774
5775         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5776                 cmd = 2;
5777         else if (cdclk == 266667)
5778                 cmd = 1;
5779         else
5780                 cmd = 0;
5781
5782         mutex_lock(&dev_priv->rps.hw_lock);
5783         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5784         val &= ~DSPFREQGUAR_MASK;
5785         val |= (cmd << DSPFREQGUAR_SHIFT);
5786         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5787         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5788                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5789                      50)) {
5790                 DRM_ERROR("timed out waiting for CDclk change\n");
5791         }
5792         mutex_unlock(&dev_priv->rps.hw_lock);
5793
5794         mutex_lock(&dev_priv->sb_lock);
5795
5796         if (cdclk == 400000) {
5797                 u32 divider;
5798
5799                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5800
5801                 /* adjust cdclk divider */
5802                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5803                 val &= ~DISPLAY_FREQUENCY_VALUES;
5804                 val |= divider;
5805                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5806
5807                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5808                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5809                              50))
5810                         DRM_ERROR("timed out waiting for CDclk change\n");
5811         }
5812
5813         /* adjust self-refresh exit latency value */
5814         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5815         val &= ~0x7f;
5816
5817         /*
5818          * For high bandwidth configs, we set a higher latency in the bunit
5819          * so that the core display fetch happens in time to avoid underruns.
5820          */
5821         if (cdclk == 400000)
5822                 val |= 4500 / 250; /* 4.5 usec */
5823         else
5824                 val |= 3000 / 250; /* 3.0 usec */
5825         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5826
5827         mutex_unlock(&dev_priv->sb_lock);
5828
5829         intel_update_cdclk(dev);
5830 }
5831
5832 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5833 {
5834         struct drm_i915_private *dev_priv = dev->dev_private;
5835         u32 val, cmd;
5836
5837         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5838                                                 != dev_priv->cdclk_freq);
5839
5840         switch (cdclk) {
5841         case 333333:
5842         case 320000:
5843         case 266667:
5844         case 200000:
5845                 break;
5846         default:
5847                 MISSING_CASE(cdclk);
5848                 return;
5849         }
5850
5851         /*
5852          * Specs are full of misinformation, but testing on actual
5853          * hardware has shown that we just need to write the desired
5854          * CCK divider into the Punit register.
5855          */
5856         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5857
5858         mutex_lock(&dev_priv->rps.hw_lock);
5859         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5860         val &= ~DSPFREQGUAR_MASK_CHV;
5861         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5862         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5863         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5864                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5865                      50)) {
5866                 DRM_ERROR("timed out waiting for CDclk change\n");
5867         }
5868         mutex_unlock(&dev_priv->rps.hw_lock);
5869
5870         intel_update_cdclk(dev);
5871 }
5872
5873 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5874                                  int max_pixclk)
5875 {
5876         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5877         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5878
5879         /*
5880          * Really only a few cases to deal with, as only 4 CDclks are supported:
5881          *   200MHz
5882          *   267MHz
5883          *   320/333MHz (depends on HPLL freq)
5884          *   400MHz (VLV only)
5885          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5886          * of the lower bin and adjust if needed.
5887          *
5888          * We seem to get an unstable or solid color picture at 200MHz.
5889          * Not sure what's wrong. For now use 200MHz only when all pipes
5890          * are off.
5891          */
5892         if (!IS_CHERRYVIEW(dev_priv) &&
5893             max_pixclk > freq_320*limit/100)
5894                 return 400000;
5895         else if (max_pixclk > 266667*limit/100)
5896                 return freq_320;
5897         else if (max_pixclk > 0)
5898                 return 266667;
5899         else
5900                 return 200000;
5901 }
5902
5903 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5904                               int max_pixclk)
5905 {
5906         /*
5907          * FIXME:
5908          * - remove the guardband, it's not needed on BXT
5909          * - set 19.2MHz bypass frequency if there are no active pipes
5910          */
5911         if (max_pixclk > 576000*9/10)
5912                 return 624000;
5913         else if (max_pixclk > 384000*9/10)
5914                 return 576000;
5915         else if (max_pixclk > 288000*9/10)
5916                 return 384000;
5917         else if (max_pixclk > 144000*9/10)
5918                 return 288000;
5919         else
5920                 return 144000;
5921 }
5922
5923 /* Compute the max pixel clock for new configuration. Uses atomic state if
5924  * that's non-NULL, look at current state otherwise. */
5925 static int intel_mode_max_pixclk(struct drm_device *dev,
5926                                  struct drm_atomic_state *state)
5927 {
5928         struct intel_crtc *intel_crtc;
5929         struct intel_crtc_state *crtc_state;
5930         int max_pixclk = 0;
5931
5932         for_each_intel_crtc(dev, intel_crtc) {
5933                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5934                 if (IS_ERR(crtc_state))
5935                         return PTR_ERR(crtc_state);
5936
5937                 if (!crtc_state->base.enable)
5938                         continue;
5939
5940                 max_pixclk = max(max_pixclk,
5941                                  crtc_state->base.adjusted_mode.crtc_clock);
5942         }
5943
5944         return max_pixclk;
5945 }
5946
5947 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5948 {
5949         struct drm_device *dev = state->dev;
5950         struct drm_i915_private *dev_priv = dev->dev_private;
5951         int max_pixclk = intel_mode_max_pixclk(dev, state);
5952
5953         if (max_pixclk < 0)
5954                 return max_pixclk;
5955
5956         to_intel_atomic_state(state)->cdclk =
5957                 valleyview_calc_cdclk(dev_priv, max_pixclk);
5958
5959         return 0;
5960 }
5961
5962 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5963 {
5964         struct drm_device *dev = state->dev;
5965         struct drm_i915_private *dev_priv = dev->dev_private;
5966         int max_pixclk = intel_mode_max_pixclk(dev, state);
5967
5968         if (max_pixclk < 0)
5969                 return max_pixclk;
5970
5971         to_intel_atomic_state(state)->cdclk =
5972                 broxton_calc_cdclk(dev_priv, max_pixclk);
5973
5974         return 0;
5975 }
5976
5977 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5978 {
5979         unsigned int credits, default_credits;
5980
5981         if (IS_CHERRYVIEW(dev_priv))
5982                 default_credits = PFI_CREDIT(12);
5983         else
5984                 default_credits = PFI_CREDIT(8);
5985
5986         if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5987                 /* CHV suggested value is 31 or 63 */
5988                 if (IS_CHERRYVIEW(dev_priv))
5989                         credits = PFI_CREDIT_63;
5990                 else
5991                         credits = PFI_CREDIT(15);
5992         } else {
5993                 credits = default_credits;
5994         }
5995
5996         /*
5997          * WA - write default credits before re-programming
5998          * FIXME: should we also set the resend bit here?
5999          */
6000         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6001                    default_credits);
6002
6003         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6004                    credits | PFI_CREDIT_RESEND);
6005
6006         /*
6007          * FIXME is this guaranteed to clear
6008          * immediately or should we poll for it?
6009          */
6010         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6011 }
6012
6013 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6014 {
6015         struct drm_device *dev = old_state->dev;
6016         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6017         struct drm_i915_private *dev_priv = dev->dev_private;
6018
6019         /*
6020          * FIXME: We can end up here with all power domains off, yet
6021          * with a CDCLK frequency other than the minimum. To account
6022          * for this take the PIPE-A power domain, which covers the HW
6023          * blocks needed for the following programming. This can be
6024          * removed once it's guaranteed that we get here either with
6025          * the minimum CDCLK set, or the required power domains
6026          * enabled.
6027          */
6028         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6029
6030         if (IS_CHERRYVIEW(dev))
6031                 cherryview_set_cdclk(dev, req_cdclk);
6032         else
6033                 valleyview_set_cdclk(dev, req_cdclk);
6034
6035         vlv_program_pfi_credits(dev_priv);
6036
6037         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6038 }
6039
6040 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6041 {
6042         struct drm_device *dev = crtc->dev;
6043         struct drm_i915_private *dev_priv = to_i915(dev);
6044         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6045         struct intel_encoder *encoder;
6046         int pipe = intel_crtc->pipe;
6047         bool is_dsi;
6048
6049         if (WARN_ON(intel_crtc->active))
6050                 return;
6051
6052         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6053
6054         if (intel_crtc->config->has_dp_encoder)
6055                 intel_dp_set_m_n(intel_crtc, M1_N1);
6056
6057         intel_set_pipe_timings(intel_crtc);
6058
6059         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6060                 struct drm_i915_private *dev_priv = dev->dev_private;
6061
6062                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6063                 I915_WRITE(CHV_CANVAS(pipe), 0);
6064         }
6065
6066         i9xx_set_pipeconf(intel_crtc);
6067
6068         intel_crtc->active = true;
6069
6070         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6071
6072         for_each_encoder_on_crtc(dev, crtc, encoder)
6073                 if (encoder->pre_pll_enable)
6074                         encoder->pre_pll_enable(encoder);
6075
6076         if (!is_dsi) {
6077                 if (IS_CHERRYVIEW(dev)) {
6078                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6079                         chv_enable_pll(intel_crtc, intel_crtc->config);
6080                 } else {
6081                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6082                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6083                 }
6084         }
6085
6086         for_each_encoder_on_crtc(dev, crtc, encoder)
6087                 if (encoder->pre_enable)
6088                         encoder->pre_enable(encoder);
6089
6090         i9xx_pfit_enable(intel_crtc);
6091
6092         intel_crtc_load_lut(crtc);
6093
6094         intel_enable_pipe(intel_crtc);
6095
6096         assert_vblank_disabled(crtc);
6097         drm_crtc_vblank_on(crtc);
6098
6099         for_each_encoder_on_crtc(dev, crtc, encoder)
6100                 encoder->enable(encoder);
6101 }
6102
6103 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6104 {
6105         struct drm_device *dev = crtc->base.dev;
6106         struct drm_i915_private *dev_priv = dev->dev_private;
6107
6108         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6109         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6110 }
6111
6112 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6113 {
6114         struct drm_device *dev = crtc->dev;
6115         struct drm_i915_private *dev_priv = to_i915(dev);
6116         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6117         struct intel_encoder *encoder;
6118         int pipe = intel_crtc->pipe;
6119
6120         if (WARN_ON(intel_crtc->active))
6121                 return;
6122
6123         i9xx_set_pll_dividers(intel_crtc);
6124
6125         if (intel_crtc->config->has_dp_encoder)
6126                 intel_dp_set_m_n(intel_crtc, M1_N1);
6127
6128         intel_set_pipe_timings(intel_crtc);
6129
6130         i9xx_set_pipeconf(intel_crtc);
6131
6132         intel_crtc->active = true;
6133
6134         if (!IS_GEN2(dev))
6135                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6136
6137         for_each_encoder_on_crtc(dev, crtc, encoder)
6138                 if (encoder->pre_enable)
6139                         encoder->pre_enable(encoder);
6140
6141         i9xx_enable_pll(intel_crtc);
6142
6143         i9xx_pfit_enable(intel_crtc);
6144
6145         intel_crtc_load_lut(crtc);
6146
6147         intel_update_watermarks(crtc);
6148         intel_enable_pipe(intel_crtc);
6149
6150         assert_vblank_disabled(crtc);
6151         drm_crtc_vblank_on(crtc);
6152
6153         for_each_encoder_on_crtc(dev, crtc, encoder)
6154                 encoder->enable(encoder);
6155 }
6156
6157 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6158 {
6159         struct drm_device *dev = crtc->base.dev;
6160         struct drm_i915_private *dev_priv = dev->dev_private;
6161
6162         if (!crtc->config->gmch_pfit.control)
6163                 return;
6164
6165         assert_pipe_disabled(dev_priv, crtc->pipe);
6166
6167         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6168                          I915_READ(PFIT_CONTROL));
6169         I915_WRITE(PFIT_CONTROL, 0);
6170 }
6171
6172 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6173 {
6174         struct drm_device *dev = crtc->dev;
6175         struct drm_i915_private *dev_priv = dev->dev_private;
6176         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6177         struct intel_encoder *encoder;
6178         int pipe = intel_crtc->pipe;
6179
6180         /*
6181          * On gen2 planes are double buffered but the pipe isn't, so we must
6182          * wait for planes to fully turn off before disabling the pipe.
6183          * We also need to wait on all gmch platforms because of the
6184          * self-refresh mode constraint explained above.
6185          */
6186         intel_wait_for_vblank(dev, pipe);
6187
6188         for_each_encoder_on_crtc(dev, crtc, encoder)
6189                 encoder->disable(encoder);
6190
6191         drm_crtc_vblank_off(crtc);
6192         assert_vblank_disabled(crtc);
6193
6194         intel_disable_pipe(intel_crtc);
6195
6196         i9xx_pfit_disable(intel_crtc);
6197
6198         for_each_encoder_on_crtc(dev, crtc, encoder)
6199                 if (encoder->post_disable)
6200                         encoder->post_disable(encoder);
6201
6202         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6203                 if (IS_CHERRYVIEW(dev))
6204                         chv_disable_pll(dev_priv, pipe);
6205                 else if (IS_VALLEYVIEW(dev))
6206                         vlv_disable_pll(dev_priv, pipe);
6207                 else
6208                         i9xx_disable_pll(intel_crtc);
6209         }
6210
6211         for_each_encoder_on_crtc(dev, crtc, encoder)
6212                 if (encoder->post_pll_disable)
6213                         encoder->post_pll_disable(encoder);
6214
6215         if (!IS_GEN2(dev))
6216                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6217
6218         intel_crtc->active = false;
6219         intel_update_watermarks(crtc);
6220 }
6221
6222 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6223 {
6224         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6225         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6226         enum intel_display_power_domain domain;
6227         unsigned long domains;
6228
6229         if (!intel_crtc->active)
6230                 return;
6231
6232         if (to_intel_plane_state(crtc->primary->state)->visible) {
6233                 intel_crtc_wait_for_pending_flips(crtc);
6234                 intel_pre_disable_primary(crtc);
6235         }
6236
6237         intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
6238         dev_priv->display.crtc_disable(crtc);
6239         intel_disable_shared_dpll(intel_crtc);
6240
6241         domains = intel_crtc->enabled_power_domains;
6242         for_each_power_domain(domain, domains)
6243                 intel_display_power_put(dev_priv, domain);
6244         intel_crtc->enabled_power_domains = 0;
6245 }
6246
6247 /*
6248  * turn all crtc's off, but do not adjust state
6249  * This has to be paired with a call to intel_modeset_setup_hw_state.
6250  */
6251 int intel_display_suspend(struct drm_device *dev)
6252 {
6253         struct drm_mode_config *config = &dev->mode_config;
6254         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6255         struct drm_atomic_state *state;
6256         struct drm_crtc *crtc;
6257         unsigned crtc_mask = 0;
6258         int ret = 0;
6259
6260         if (WARN_ON(!ctx))
6261                 return 0;
6262
6263         lockdep_assert_held(&ctx->ww_ctx);
6264         state = drm_atomic_state_alloc(dev);
6265         if (WARN_ON(!state))
6266                 return -ENOMEM;
6267
6268         state->acquire_ctx = ctx;
6269         state->allow_modeset = true;
6270
6271         for_each_crtc(dev, crtc) {
6272                 struct drm_crtc_state *crtc_state =
6273                         drm_atomic_get_crtc_state(state, crtc);
6274
6275                 ret = PTR_ERR_OR_ZERO(crtc_state);
6276                 if (ret)
6277                         goto free;
6278
6279                 if (!crtc_state->active)
6280                         continue;
6281
6282                 crtc_state->active = false;
6283                 crtc_mask |= 1 << drm_crtc_index(crtc);
6284         }
6285
6286         if (crtc_mask) {
6287                 ret = drm_atomic_commit(state);
6288
6289                 if (!ret) {
6290                         for_each_crtc(dev, crtc)
6291                                 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6292                                         crtc->state->active = true;
6293
6294                         return ret;
6295                 }
6296         }
6297
6298 free:
6299         if (ret)
6300                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6301         drm_atomic_state_free(state);
6302         return ret;
6303 }
6304
6305 void intel_encoder_destroy(struct drm_encoder *encoder)
6306 {
6307         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6308
6309         drm_encoder_cleanup(encoder);
6310         kfree(intel_encoder);
6311 }
6312
6313 /* Cross check the actual hw state with our own modeset state tracking (and it's
6314  * internal consistency). */
6315 static void intel_connector_check_state(struct intel_connector *connector)
6316 {
6317         struct drm_crtc *crtc = connector->base.state->crtc;
6318
6319         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6320                       connector->base.base.id,
6321                       connector->base.name);
6322
6323         if (connector->get_hw_state(connector)) {
6324                 struct intel_encoder *encoder = connector->encoder;
6325                 struct drm_connector_state *conn_state = connector->base.state;
6326
6327                 I915_STATE_WARN(!crtc,
6328                          "connector enabled without attached crtc\n");
6329
6330                 if (!crtc)
6331                         return;
6332
6333                 I915_STATE_WARN(!crtc->state->active,
6334                       "connector is active, but attached crtc isn't\n");
6335
6336                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6337                         return;
6338
6339                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6340                         "atomic encoder doesn't match attached encoder\n");
6341
6342                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6343                         "attached encoder crtc differs from connector crtc\n");
6344         } else {
6345                 I915_STATE_WARN(crtc && crtc->state->active,
6346                         "attached crtc is active, but connector isn't\n");
6347                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6348                         "best encoder set without crtc!\n");
6349         }
6350 }
6351
6352 int intel_connector_init(struct intel_connector *connector)
6353 {
6354         struct drm_connector_state *connector_state;
6355
6356         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6357         if (!connector_state)
6358                 return -ENOMEM;
6359
6360         connector->base.state = connector_state;
6361         return 0;
6362 }
6363
6364 struct intel_connector *intel_connector_alloc(void)
6365 {
6366         struct intel_connector *connector;
6367
6368         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6369         if (!connector)
6370                 return NULL;
6371
6372         if (intel_connector_init(connector) < 0) {
6373                 kfree(connector);
6374                 return NULL;
6375         }
6376
6377         return connector;
6378 }
6379
6380 /* Simple connector->get_hw_state implementation for encoders that support only
6381  * one connector and no cloning and hence the encoder state determines the state
6382  * of the connector. */
6383 bool intel_connector_get_hw_state(struct intel_connector *connector)
6384 {
6385         enum pipe pipe = 0;
6386         struct intel_encoder *encoder = connector->encoder;
6387
6388         return encoder->get_hw_state(encoder, &pipe);
6389 }
6390
6391 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6392 {
6393         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6394                 return crtc_state->fdi_lanes;
6395
6396         return 0;
6397 }
6398
6399 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6400                                      struct intel_crtc_state *pipe_config)
6401 {
6402         struct drm_atomic_state *state = pipe_config->base.state;
6403         struct intel_crtc *other_crtc;
6404         struct intel_crtc_state *other_crtc_state;
6405
6406         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6407                       pipe_name(pipe), pipe_config->fdi_lanes);
6408         if (pipe_config->fdi_lanes > 4) {
6409                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6410                               pipe_name(pipe), pipe_config->fdi_lanes);
6411                 return -EINVAL;
6412         }
6413
6414         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6415                 if (pipe_config->fdi_lanes > 2) {
6416                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6417                                       pipe_config->fdi_lanes);
6418                         return -EINVAL;
6419                 } else {
6420                         return 0;
6421                 }
6422         }
6423
6424         if (INTEL_INFO(dev)->num_pipes == 2)
6425                 return 0;
6426
6427         /* Ivybridge 3 pipe is really complicated */
6428         switch (pipe) {
6429         case PIPE_A:
6430                 return 0;
6431         case PIPE_B:
6432                 if (pipe_config->fdi_lanes <= 2)
6433                         return 0;
6434
6435                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6436                 other_crtc_state =
6437                         intel_atomic_get_crtc_state(state, other_crtc);
6438                 if (IS_ERR(other_crtc_state))
6439                         return PTR_ERR(other_crtc_state);
6440
6441                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6442                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6443                                       pipe_name(pipe), pipe_config->fdi_lanes);
6444                         return -EINVAL;
6445                 }
6446                 return 0;
6447         case PIPE_C:
6448                 if (pipe_config->fdi_lanes > 2) {
6449                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6450                                       pipe_name(pipe), pipe_config->fdi_lanes);
6451                         return -EINVAL;
6452                 }
6453
6454                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6455                 other_crtc_state =
6456                         intel_atomic_get_crtc_state(state, other_crtc);
6457                 if (IS_ERR(other_crtc_state))
6458                         return PTR_ERR(other_crtc_state);
6459
6460                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6461                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6462                         return -EINVAL;
6463                 }
6464                 return 0;
6465         default:
6466                 BUG();
6467         }
6468 }
6469
6470 #define RETRY 1
6471 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6472                                        struct intel_crtc_state *pipe_config)
6473 {
6474         struct drm_device *dev = intel_crtc->base.dev;
6475         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6476         int lane, link_bw, fdi_dotclock, ret;
6477         bool needs_recompute = false;
6478
6479 retry:
6480         /* FDI is a binary signal running at ~2.7GHz, encoding
6481          * each output octet as 10 bits. The actual frequency
6482          * is stored as a divider into a 100MHz clock, and the
6483          * mode pixel clock is stored in units of 1KHz.
6484          * Hence the bw of each lane in terms of the mode signal
6485          * is:
6486          */
6487         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6488
6489         fdi_dotclock = adjusted_mode->crtc_clock;
6490
6491         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6492                                            pipe_config->pipe_bpp);
6493
6494         pipe_config->fdi_lanes = lane;
6495
6496         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6497                                link_bw, &pipe_config->fdi_m_n);
6498
6499         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6500                                        intel_crtc->pipe, pipe_config);
6501         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6502                 pipe_config->pipe_bpp -= 2*3;
6503                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6504                               pipe_config->pipe_bpp);
6505                 needs_recompute = true;
6506                 pipe_config->bw_constrained = true;
6507
6508                 goto retry;
6509         }
6510
6511         if (needs_recompute)
6512                 return RETRY;
6513
6514         return ret;
6515 }
6516
6517 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6518                                      struct intel_crtc_state *pipe_config)
6519 {
6520         if (pipe_config->pipe_bpp > 24)
6521                 return false;
6522
6523         /* HSW can handle pixel rate up to cdclk? */
6524         if (IS_HASWELL(dev_priv->dev))
6525                 return true;
6526
6527         /*
6528          * We compare against max which means we must take
6529          * the increased cdclk requirement into account when
6530          * calculating the new cdclk.
6531          *
6532          * Should measure whether using a lower cdclk w/o IPS
6533          */
6534         return ilk_pipe_pixel_rate(pipe_config) <=
6535                 dev_priv->max_cdclk_freq * 95 / 100;
6536 }
6537
6538 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6539                                    struct intel_crtc_state *pipe_config)
6540 {
6541         struct drm_device *dev = crtc->base.dev;
6542         struct drm_i915_private *dev_priv = dev->dev_private;
6543
6544         pipe_config->ips_enabled = i915.enable_ips &&
6545                 hsw_crtc_supports_ips(crtc) &&
6546                 pipe_config_supports_ips(dev_priv, pipe_config);
6547 }
6548
6549 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6550                                      struct intel_crtc_state *pipe_config)
6551 {
6552         struct drm_device *dev = crtc->base.dev;
6553         struct drm_i915_private *dev_priv = dev->dev_private;
6554         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6555
6556         /* FIXME should check pixel clock limits on all platforms */
6557         if (INTEL_INFO(dev)->gen < 4) {
6558                 int clock_limit = dev_priv->max_cdclk_freq;
6559
6560                 /*
6561                  * Enable pixel doubling when the dot clock
6562                  * is > 90% of the (display) core speed.
6563                  *
6564                  * GDG double wide on either pipe,
6565                  * otherwise pipe A only.
6566                  */
6567                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6568                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6569                         clock_limit *= 2;
6570                         pipe_config->double_wide = true;
6571                 }
6572
6573                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6574                         return -EINVAL;
6575         }
6576
6577         /*
6578          * Pipe horizontal size must be even in:
6579          * - DVO ganged mode
6580          * - LVDS dual channel mode
6581          * - Double wide pipe
6582          */
6583         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6584              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6585                 pipe_config->pipe_src_w &= ~1;
6586
6587         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6588          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6589          */
6590         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6591                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6592                 return -EINVAL;
6593
6594         if (HAS_IPS(dev))
6595                 hsw_compute_ips_config(crtc, pipe_config);
6596
6597         if (pipe_config->has_pch_encoder)
6598                 return ironlake_fdi_compute_config(crtc, pipe_config);
6599
6600         return 0;
6601 }
6602
6603 static int skylake_get_display_clock_speed(struct drm_device *dev)
6604 {
6605         struct drm_i915_private *dev_priv = to_i915(dev);
6606         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6607         uint32_t cdctl = I915_READ(CDCLK_CTL);
6608         uint32_t linkrate;
6609
6610         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6611                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6612
6613         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6614                 return 540000;
6615
6616         linkrate = (I915_READ(DPLL_CTRL1) &
6617                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6618
6619         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6620             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6621                 /* vco 8640 */
6622                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6623                 case CDCLK_FREQ_450_432:
6624                         return 432000;
6625                 case CDCLK_FREQ_337_308:
6626                         return 308570;
6627                 case CDCLK_FREQ_675_617:
6628                         return 617140;
6629                 default:
6630                         WARN(1, "Unknown cd freq selection\n");
6631                 }
6632         } else {
6633                 /* vco 8100 */
6634                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6635                 case CDCLK_FREQ_450_432:
6636                         return 450000;
6637                 case CDCLK_FREQ_337_308:
6638                         return 337500;
6639                 case CDCLK_FREQ_675_617:
6640                         return 675000;
6641                 default:
6642                         WARN(1, "Unknown cd freq selection\n");
6643                 }
6644         }
6645
6646         /* error case, do as if DPLL0 isn't enabled */
6647         return 24000;
6648 }
6649
6650 static int broxton_get_display_clock_speed(struct drm_device *dev)
6651 {
6652         struct drm_i915_private *dev_priv = to_i915(dev);
6653         uint32_t cdctl = I915_READ(CDCLK_CTL);
6654         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6655         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6656         int cdclk;
6657
6658         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6659                 return 19200;
6660
6661         cdclk = 19200 * pll_ratio / 2;
6662
6663         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6664         case BXT_CDCLK_CD2X_DIV_SEL_1:
6665                 return cdclk;  /* 576MHz or 624MHz */
6666         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6667                 return cdclk * 2 / 3; /* 384MHz */
6668         case BXT_CDCLK_CD2X_DIV_SEL_2:
6669                 return cdclk / 2; /* 288MHz */
6670         case BXT_CDCLK_CD2X_DIV_SEL_4:
6671                 return cdclk / 4; /* 144MHz */
6672         }
6673
6674         /* error case, do as if DE PLL isn't enabled */
6675         return 19200;
6676 }
6677
6678 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6679 {
6680         struct drm_i915_private *dev_priv = dev->dev_private;
6681         uint32_t lcpll = I915_READ(LCPLL_CTL);
6682         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6683
6684         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6685                 return 800000;
6686         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6687                 return 450000;
6688         else if (freq == LCPLL_CLK_FREQ_450)
6689                 return 450000;
6690         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6691                 return 540000;
6692         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6693                 return 337500;
6694         else
6695                 return 675000;
6696 }
6697
6698 static int haswell_get_display_clock_speed(struct drm_device *dev)
6699 {
6700         struct drm_i915_private *dev_priv = dev->dev_private;
6701         uint32_t lcpll = I915_READ(LCPLL_CTL);
6702         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6703
6704         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6705                 return 800000;
6706         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6707                 return 450000;
6708         else if (freq == LCPLL_CLK_FREQ_450)
6709                 return 450000;
6710         else if (IS_HSW_ULT(dev))
6711                 return 337500;
6712         else
6713                 return 540000;
6714 }
6715
6716 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6717 {
6718         struct drm_i915_private *dev_priv = dev->dev_private;
6719         u32 val;
6720         int divider;
6721
6722         if (dev_priv->hpll_freq == 0)
6723                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6724
6725         mutex_lock(&dev_priv->sb_lock);
6726         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6727         mutex_unlock(&dev_priv->sb_lock);
6728
6729         divider = val & DISPLAY_FREQUENCY_VALUES;
6730
6731         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6732              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6733              "cdclk change in progress\n");
6734
6735         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6736 }
6737
6738 static int ilk_get_display_clock_speed(struct drm_device *dev)
6739 {
6740         return 450000;
6741 }
6742
6743 static int i945_get_display_clock_speed(struct drm_device *dev)
6744 {
6745         return 400000;
6746 }
6747
6748 static int i915_get_display_clock_speed(struct drm_device *dev)
6749 {
6750         return 333333;
6751 }
6752
6753 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6754 {
6755         return 200000;
6756 }
6757
6758 static int pnv_get_display_clock_speed(struct drm_device *dev)
6759 {
6760         u16 gcfgc = 0;
6761
6762         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6763
6764         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6765         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6766                 return 266667;
6767         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6768                 return 333333;
6769         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6770                 return 444444;
6771         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6772                 return 200000;
6773         default:
6774                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6775         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6776                 return 133333;
6777         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6778                 return 166667;
6779         }
6780 }
6781
6782 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6783 {
6784         u16 gcfgc = 0;
6785
6786         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6787
6788         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6789                 return 133333;
6790         else {
6791                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6792                 case GC_DISPLAY_CLOCK_333_MHZ:
6793                         return 333333;
6794                 default:
6795                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6796                         return 190000;
6797                 }
6798         }
6799 }
6800
6801 static int i865_get_display_clock_speed(struct drm_device *dev)
6802 {
6803         return 266667;
6804 }
6805
6806 static int i85x_get_display_clock_speed(struct drm_device *dev)
6807 {
6808         u16 hpllcc = 0;
6809
6810         /*
6811          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6812          * encoding is different :(
6813          * FIXME is this the right way to detect 852GM/852GMV?
6814          */
6815         if (dev->pdev->revision == 0x1)
6816                 return 133333;
6817
6818         pci_bus_read_config_word(dev->pdev->bus,
6819                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6820
6821         /* Assume that the hardware is in the high speed state.  This
6822          * should be the default.
6823          */
6824         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6825         case GC_CLOCK_133_200:
6826         case GC_CLOCK_133_200_2:
6827         case GC_CLOCK_100_200:
6828                 return 200000;
6829         case GC_CLOCK_166_250:
6830                 return 250000;
6831         case GC_CLOCK_100_133:
6832                 return 133333;
6833         case GC_CLOCK_133_266:
6834         case GC_CLOCK_133_266_2:
6835         case GC_CLOCK_166_266:
6836                 return 266667;
6837         }
6838
6839         /* Shouldn't happen */
6840         return 0;
6841 }
6842
6843 static int i830_get_display_clock_speed(struct drm_device *dev)
6844 {
6845         return 133333;
6846 }
6847
6848 static unsigned int intel_hpll_vco(struct drm_device *dev)
6849 {
6850         struct drm_i915_private *dev_priv = dev->dev_private;
6851         static const unsigned int blb_vco[8] = {
6852                 [0] = 3200000,
6853                 [1] = 4000000,
6854                 [2] = 5333333,
6855                 [3] = 4800000,
6856                 [4] = 6400000,
6857         };
6858         static const unsigned int pnv_vco[8] = {
6859                 [0] = 3200000,
6860                 [1] = 4000000,
6861                 [2] = 5333333,
6862                 [3] = 4800000,
6863                 [4] = 2666667,
6864         };
6865         static const unsigned int cl_vco[8] = {
6866                 [0] = 3200000,
6867                 [1] = 4000000,
6868                 [2] = 5333333,
6869                 [3] = 6400000,
6870                 [4] = 3333333,
6871                 [5] = 3566667,
6872                 [6] = 4266667,
6873         };
6874         static const unsigned int elk_vco[8] = {
6875                 [0] = 3200000,
6876                 [1] = 4000000,
6877                 [2] = 5333333,
6878                 [3] = 4800000,
6879         };
6880         static const unsigned int ctg_vco[8] = {
6881                 [0] = 3200000,
6882                 [1] = 4000000,
6883                 [2] = 5333333,
6884                 [3] = 6400000,
6885                 [4] = 2666667,
6886                 [5] = 4266667,
6887         };
6888         const unsigned int *vco_table;
6889         unsigned int vco;
6890         uint8_t tmp = 0;
6891
6892         /* FIXME other chipsets? */
6893         if (IS_GM45(dev))
6894                 vco_table = ctg_vco;
6895         else if (IS_G4X(dev))
6896                 vco_table = elk_vco;
6897         else if (IS_CRESTLINE(dev))
6898                 vco_table = cl_vco;
6899         else if (IS_PINEVIEW(dev))
6900                 vco_table = pnv_vco;
6901         else if (IS_G33(dev))
6902                 vco_table = blb_vco;
6903         else
6904                 return 0;
6905
6906         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6907
6908         vco = vco_table[tmp & 0x7];
6909         if (vco == 0)
6910                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6911         else
6912                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6913
6914         return vco;
6915 }
6916
6917 static int gm45_get_display_clock_speed(struct drm_device *dev)
6918 {
6919         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6920         uint16_t tmp = 0;
6921
6922         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6923
6924         cdclk_sel = (tmp >> 12) & 0x1;
6925
6926         switch (vco) {
6927         case 2666667:
6928         case 4000000:
6929         case 5333333:
6930                 return cdclk_sel ? 333333 : 222222;
6931         case 3200000:
6932                 return cdclk_sel ? 320000 : 228571;
6933         default:
6934                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6935                 return 222222;
6936         }
6937 }
6938
6939 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6940 {
6941         static const uint8_t div_3200[] = { 16, 10,  8 };
6942         static const uint8_t div_4000[] = { 20, 12, 10 };
6943         static const uint8_t div_5333[] = { 24, 16, 14 };
6944         const uint8_t *div_table;
6945         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6946         uint16_t tmp = 0;
6947
6948         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6949
6950         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6951
6952         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6953                 goto fail;
6954
6955         switch (vco) {
6956         case 3200000:
6957                 div_table = div_3200;
6958                 break;
6959         case 4000000:
6960                 div_table = div_4000;
6961                 break;
6962         case 5333333:
6963                 div_table = div_5333;
6964                 break;
6965         default:
6966                 goto fail;
6967         }
6968
6969         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6970
6971 fail:
6972         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6973         return 200000;
6974 }
6975
6976 static int g33_get_display_clock_speed(struct drm_device *dev)
6977 {
6978         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
6979         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
6980         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6981         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6982         const uint8_t *div_table;
6983         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6984         uint16_t tmp = 0;
6985
6986         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6987
6988         cdclk_sel = (tmp >> 4) & 0x7;
6989
6990         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6991                 goto fail;
6992
6993         switch (vco) {
6994         case 3200000:
6995                 div_table = div_3200;
6996                 break;
6997         case 4000000:
6998                 div_table = div_4000;
6999                 break;
7000         case 4800000:
7001                 div_table = div_4800;
7002                 break;
7003         case 5333333:
7004                 div_table = div_5333;
7005                 break;
7006         default:
7007                 goto fail;
7008         }
7009
7010         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7011
7012 fail:
7013         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7014         return 190476;
7015 }
7016
7017 static void
7018 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7019 {
7020         while (*num > DATA_LINK_M_N_MASK ||
7021                *den > DATA_LINK_M_N_MASK) {
7022                 *num >>= 1;
7023                 *den >>= 1;
7024         }
7025 }
7026
7027 static void compute_m_n(unsigned int m, unsigned int n,
7028                         uint32_t *ret_m, uint32_t *ret_n)
7029 {
7030         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7031         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7032         intel_reduce_m_n_ratio(ret_m, ret_n);
7033 }
7034
7035 void
7036 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7037                        int pixel_clock, int link_clock,
7038                        struct intel_link_m_n *m_n)
7039 {
7040         m_n->tu = 64;
7041
7042         compute_m_n(bits_per_pixel * pixel_clock,
7043                     link_clock * nlanes * 8,
7044                     &m_n->gmch_m, &m_n->gmch_n);
7045
7046         compute_m_n(pixel_clock, link_clock,
7047                     &m_n->link_m, &m_n->link_n);
7048 }
7049
7050 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7051 {
7052         if (i915.panel_use_ssc >= 0)
7053                 return i915.panel_use_ssc != 0;
7054         return dev_priv->vbt.lvds_use_ssc
7055                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7056 }
7057
7058 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7059                            int num_connectors)
7060 {
7061         struct drm_device *dev = crtc_state->base.crtc->dev;
7062         struct drm_i915_private *dev_priv = dev->dev_private;
7063         int refclk;
7064
7065         WARN_ON(!crtc_state->base.state);
7066
7067         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7068                 refclk = 100000;
7069         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7070             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7071                 refclk = dev_priv->vbt.lvds_ssc_freq;
7072                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7073         } else if (!IS_GEN2(dev)) {
7074                 refclk = 96000;
7075         } else {
7076                 refclk = 48000;
7077         }
7078
7079         return refclk;
7080 }
7081
7082 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7083 {
7084         return (1 << dpll->n) << 16 | dpll->m2;
7085 }
7086
7087 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7088 {
7089         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7090 }
7091
7092 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7093                                      struct intel_crtc_state *crtc_state,
7094                                      intel_clock_t *reduced_clock)
7095 {
7096         struct drm_device *dev = crtc->base.dev;
7097         u32 fp, fp2 = 0;
7098
7099         if (IS_PINEVIEW(dev)) {
7100                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7101                 if (reduced_clock)
7102                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7103         } else {
7104                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7105                 if (reduced_clock)
7106                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7107         }
7108
7109         crtc_state->dpll_hw_state.fp0 = fp;
7110
7111         crtc->lowfreq_avail = false;
7112         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7113             reduced_clock) {
7114                 crtc_state->dpll_hw_state.fp1 = fp2;
7115                 crtc->lowfreq_avail = true;
7116         } else {
7117                 crtc_state->dpll_hw_state.fp1 = fp;
7118         }
7119 }
7120
7121 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7122                 pipe)
7123 {
7124         u32 reg_val;
7125
7126         /*
7127          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7128          * and set it to a reasonable value instead.
7129          */
7130         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7131         reg_val &= 0xffffff00;
7132         reg_val |= 0x00000030;
7133         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7134
7135         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7136         reg_val &= 0x8cffffff;
7137         reg_val = 0x8c000000;
7138         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7139
7140         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7141         reg_val &= 0xffffff00;
7142         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7143
7144         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7145         reg_val &= 0x00ffffff;
7146         reg_val |= 0xb0000000;
7147         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7148 }
7149
7150 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7151                                          struct intel_link_m_n *m_n)
7152 {
7153         struct drm_device *dev = crtc->base.dev;
7154         struct drm_i915_private *dev_priv = dev->dev_private;
7155         int pipe = crtc->pipe;
7156
7157         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7158         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7159         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7160         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7161 }
7162
7163 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7164                                          struct intel_link_m_n *m_n,
7165                                          struct intel_link_m_n *m2_n2)
7166 {
7167         struct drm_device *dev = crtc->base.dev;
7168         struct drm_i915_private *dev_priv = dev->dev_private;
7169         int pipe = crtc->pipe;
7170         enum transcoder transcoder = crtc->config->cpu_transcoder;
7171
7172         if (INTEL_INFO(dev)->gen >= 5) {
7173                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7174                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7175                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7176                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7177                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7178                  * for gen < 8) and if DRRS is supported (to make sure the
7179                  * registers are not unnecessarily accessed).
7180                  */
7181                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7182                         crtc->config->has_drrs) {
7183                         I915_WRITE(PIPE_DATA_M2(transcoder),
7184                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7185                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7186                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7187                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7188                 }
7189         } else {
7190                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7191                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7192                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7193                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7194         }
7195 }
7196
7197 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7198 {
7199         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7200
7201         if (m_n == M1_N1) {
7202                 dp_m_n = &crtc->config->dp_m_n;
7203                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7204         } else if (m_n == M2_N2) {
7205
7206                 /*
7207                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7208                  * needs to be programmed into M1_N1.
7209                  */
7210                 dp_m_n = &crtc->config->dp_m2_n2;
7211         } else {
7212                 DRM_ERROR("Unsupported divider value\n");
7213                 return;
7214         }
7215
7216         if (crtc->config->has_pch_encoder)
7217                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7218         else
7219                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7220 }
7221
7222 static void vlv_compute_dpll(struct intel_crtc *crtc,
7223                              struct intel_crtc_state *pipe_config)
7224 {
7225         u32 dpll, dpll_md;
7226
7227         /*
7228          * Enable DPIO clock input. We should never disable the reference
7229          * clock for pipe B, since VGA hotplug / manual detection depends
7230          * on it.
7231          */
7232         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7233                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7234         /* We should never disable this, set it here for state tracking */
7235         if (crtc->pipe == PIPE_B)
7236                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7237         dpll |= DPLL_VCO_ENABLE;
7238         pipe_config->dpll_hw_state.dpll = dpll;
7239
7240         dpll_md = (pipe_config->pixel_multiplier - 1)
7241                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7242         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7243 }
7244
7245 static void vlv_prepare_pll(struct intel_crtc *crtc,
7246                             const struct intel_crtc_state *pipe_config)
7247 {
7248         struct drm_device *dev = crtc->base.dev;
7249         struct drm_i915_private *dev_priv = dev->dev_private;
7250         int pipe = crtc->pipe;
7251         u32 mdiv;
7252         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7253         u32 coreclk, reg_val;
7254
7255         mutex_lock(&dev_priv->sb_lock);
7256
7257         bestn = pipe_config->dpll.n;
7258         bestm1 = pipe_config->dpll.m1;
7259         bestm2 = pipe_config->dpll.m2;
7260         bestp1 = pipe_config->dpll.p1;
7261         bestp2 = pipe_config->dpll.p2;
7262
7263         /* See eDP HDMI DPIO driver vbios notes doc */
7264
7265         /* PLL B needs special handling */
7266         if (pipe == PIPE_B)
7267                 vlv_pllb_recal_opamp(dev_priv, pipe);
7268
7269         /* Set up Tx target for periodic Rcomp update */
7270         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7271
7272         /* Disable target IRef on PLL */
7273         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7274         reg_val &= 0x00ffffff;
7275         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7276
7277         /* Disable fast lock */
7278         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7279
7280         /* Set idtafcrecal before PLL is enabled */
7281         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7282         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7283         mdiv |= ((bestn << DPIO_N_SHIFT));
7284         mdiv |= (1 << DPIO_K_SHIFT);
7285
7286         /*
7287          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7288          * but we don't support that).
7289          * Note: don't use the DAC post divider as it seems unstable.
7290          */
7291         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7292         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7293
7294         mdiv |= DPIO_ENABLE_CALIBRATION;
7295         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7296
7297         /* Set HBR and RBR LPF coefficients */
7298         if (pipe_config->port_clock == 162000 ||
7299             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7300             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7301                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7302                                  0x009f0003);
7303         else
7304                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7305                                  0x00d0000f);
7306
7307         if (pipe_config->has_dp_encoder) {
7308                 /* Use SSC source */
7309                 if (pipe == PIPE_A)
7310                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7311                                          0x0df40000);
7312                 else
7313                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7314                                          0x0df70000);
7315         } else { /* HDMI or VGA */
7316                 /* Use bend source */
7317                 if (pipe == PIPE_A)
7318                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7319                                          0x0df70000);
7320                 else
7321                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7322                                          0x0df40000);
7323         }
7324
7325         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7326         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7327         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7328             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7329                 coreclk |= 0x01000000;
7330         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7331
7332         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7333         mutex_unlock(&dev_priv->sb_lock);
7334 }
7335
7336 static void chv_compute_dpll(struct intel_crtc *crtc,
7337                              struct intel_crtc_state *pipe_config)
7338 {
7339         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7340                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7341                 DPLL_VCO_ENABLE;
7342         if (crtc->pipe != PIPE_A)
7343                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7344
7345         pipe_config->dpll_hw_state.dpll_md =
7346                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7347 }
7348
7349 static void chv_prepare_pll(struct intel_crtc *crtc,
7350                             const struct intel_crtc_state *pipe_config)
7351 {
7352         struct drm_device *dev = crtc->base.dev;
7353         struct drm_i915_private *dev_priv = dev->dev_private;
7354         int pipe = crtc->pipe;
7355         int dpll_reg = DPLL(crtc->pipe);
7356         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7357         u32 loopfilter, tribuf_calcntr;
7358         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7359         u32 dpio_val;
7360         int vco;
7361
7362         bestn = pipe_config->dpll.n;
7363         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7364         bestm1 = pipe_config->dpll.m1;
7365         bestm2 = pipe_config->dpll.m2 >> 22;
7366         bestp1 = pipe_config->dpll.p1;
7367         bestp2 = pipe_config->dpll.p2;
7368         vco = pipe_config->dpll.vco;
7369         dpio_val = 0;
7370         loopfilter = 0;
7371
7372         /*
7373          * Enable Refclk and SSC
7374          */
7375         I915_WRITE(dpll_reg,
7376                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7377
7378         mutex_lock(&dev_priv->sb_lock);
7379
7380         /* p1 and p2 divider */
7381         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7382                         5 << DPIO_CHV_S1_DIV_SHIFT |
7383                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7384                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7385                         1 << DPIO_CHV_K_DIV_SHIFT);
7386
7387         /* Feedback post-divider - m2 */
7388         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7389
7390         /* Feedback refclk divider - n and m1 */
7391         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7392                         DPIO_CHV_M1_DIV_BY_2 |
7393                         1 << DPIO_CHV_N_DIV_SHIFT);
7394
7395         /* M2 fraction division */
7396         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7397
7398         /* M2 fraction division enable */
7399         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7400         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7401         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7402         if (bestm2_frac)
7403                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7404         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7405
7406         /* Program digital lock detect threshold */
7407         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7408         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7409                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7410         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7411         if (!bestm2_frac)
7412                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7413         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7414
7415         /* Loop filter */
7416         if (vco == 5400000) {
7417                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7418                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7419                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7420                 tribuf_calcntr = 0x9;
7421         } else if (vco <= 6200000) {
7422                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7423                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7424                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7425                 tribuf_calcntr = 0x9;
7426         } else if (vco <= 6480000) {
7427                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7428                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7429                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7430                 tribuf_calcntr = 0x8;
7431         } else {
7432                 /* Not supported. Apply the same limits as in the max case */
7433                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7434                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7435                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7436                 tribuf_calcntr = 0;
7437         }
7438         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7439
7440         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7441         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7442         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7443         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7444
7445         /* AFC Recal */
7446         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7447                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7448                         DPIO_AFC_RECAL);
7449
7450         mutex_unlock(&dev_priv->sb_lock);
7451 }
7452
7453 /**
7454  * vlv_force_pll_on - forcibly enable just the PLL
7455  * @dev_priv: i915 private structure
7456  * @pipe: pipe PLL to enable
7457  * @dpll: PLL configuration
7458  *
7459  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7460  * in cases where we need the PLL enabled even when @pipe is not going to
7461  * be enabled.
7462  */
7463 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7464                       const struct dpll *dpll)
7465 {
7466         struct intel_crtc *crtc =
7467                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7468         struct intel_crtc_state pipe_config = {
7469                 .base.crtc = &crtc->base,
7470                 .pixel_multiplier = 1,
7471                 .dpll = *dpll,
7472         };
7473
7474         if (IS_CHERRYVIEW(dev)) {
7475                 chv_compute_dpll(crtc, &pipe_config);
7476                 chv_prepare_pll(crtc, &pipe_config);
7477                 chv_enable_pll(crtc, &pipe_config);
7478         } else {
7479                 vlv_compute_dpll(crtc, &pipe_config);
7480                 vlv_prepare_pll(crtc, &pipe_config);
7481                 vlv_enable_pll(crtc, &pipe_config);
7482         }
7483 }
7484
7485 /**
7486  * vlv_force_pll_off - forcibly disable just the PLL
7487  * @dev_priv: i915 private structure
7488  * @pipe: pipe PLL to disable
7489  *
7490  * Disable the PLL for @pipe. To be used in cases where we need
7491  * the PLL enabled even when @pipe is not going to be enabled.
7492  */
7493 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7494 {
7495         if (IS_CHERRYVIEW(dev))
7496                 chv_disable_pll(to_i915(dev), pipe);
7497         else
7498                 vlv_disable_pll(to_i915(dev), pipe);
7499 }
7500
7501 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7502                               struct intel_crtc_state *crtc_state,
7503                               intel_clock_t *reduced_clock,
7504                               int num_connectors)
7505 {
7506         struct drm_device *dev = crtc->base.dev;
7507         struct drm_i915_private *dev_priv = dev->dev_private;
7508         u32 dpll;
7509         bool is_sdvo;
7510         struct dpll *clock = &crtc_state->dpll;
7511
7512         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7513
7514         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7515                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7516
7517         dpll = DPLL_VGA_MODE_DIS;
7518
7519         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7520                 dpll |= DPLLB_MODE_LVDS;
7521         else
7522                 dpll |= DPLLB_MODE_DAC_SERIAL;
7523
7524         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7525                 dpll |= (crtc_state->pixel_multiplier - 1)
7526                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7527         }
7528
7529         if (is_sdvo)
7530                 dpll |= DPLL_SDVO_HIGH_SPEED;
7531
7532         if (crtc_state->has_dp_encoder)
7533                 dpll |= DPLL_SDVO_HIGH_SPEED;
7534
7535         /* compute bitmask from p1 value */
7536         if (IS_PINEVIEW(dev))
7537                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7538         else {
7539                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7540                 if (IS_G4X(dev) && reduced_clock)
7541                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7542         }
7543         switch (clock->p2) {
7544         case 5:
7545                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7546                 break;
7547         case 7:
7548                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7549                 break;
7550         case 10:
7551                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7552                 break;
7553         case 14:
7554                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7555                 break;
7556         }
7557         if (INTEL_INFO(dev)->gen >= 4)
7558                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7559
7560         if (crtc_state->sdvo_tv_clock)
7561                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7562         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7563                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7564                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7565         else
7566                 dpll |= PLL_REF_INPUT_DREFCLK;
7567
7568         dpll |= DPLL_VCO_ENABLE;
7569         crtc_state->dpll_hw_state.dpll = dpll;
7570
7571         if (INTEL_INFO(dev)->gen >= 4) {
7572                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7573                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7574                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7575         }
7576 }
7577
7578 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7579                               struct intel_crtc_state *crtc_state,
7580                               intel_clock_t *reduced_clock,
7581                               int num_connectors)
7582 {
7583         struct drm_device *dev = crtc->base.dev;
7584         struct drm_i915_private *dev_priv = dev->dev_private;
7585         u32 dpll;
7586         struct dpll *clock = &crtc_state->dpll;
7587
7588         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7589
7590         dpll = DPLL_VGA_MODE_DIS;
7591
7592         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7593                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7594         } else {
7595                 if (clock->p1 == 2)
7596                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7597                 else
7598                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7599                 if (clock->p2 == 4)
7600                         dpll |= PLL_P2_DIVIDE_BY_4;
7601         }
7602
7603         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7604                 dpll |= DPLL_DVO_2X_MODE;
7605
7606         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7607                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7608                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7609         else
7610                 dpll |= PLL_REF_INPUT_DREFCLK;
7611
7612         dpll |= DPLL_VCO_ENABLE;
7613         crtc_state->dpll_hw_state.dpll = dpll;
7614 }
7615
7616 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7617 {
7618         struct drm_device *dev = intel_crtc->base.dev;
7619         struct drm_i915_private *dev_priv = dev->dev_private;
7620         enum pipe pipe = intel_crtc->pipe;
7621         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7622         struct drm_display_mode *adjusted_mode =
7623                 &intel_crtc->config->base.adjusted_mode;
7624         uint32_t crtc_vtotal, crtc_vblank_end;
7625         int vsyncshift = 0;
7626
7627         /* We need to be careful not to changed the adjusted mode, for otherwise
7628          * the hw state checker will get angry at the mismatch. */
7629         crtc_vtotal = adjusted_mode->crtc_vtotal;
7630         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7631
7632         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7633                 /* the chip adds 2 halflines automatically */
7634                 crtc_vtotal -= 1;
7635                 crtc_vblank_end -= 1;
7636
7637                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7638                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7639                 else
7640                         vsyncshift = adjusted_mode->crtc_hsync_start -
7641                                 adjusted_mode->crtc_htotal / 2;
7642                 if (vsyncshift < 0)
7643                         vsyncshift += adjusted_mode->crtc_htotal;
7644         }
7645
7646         if (INTEL_INFO(dev)->gen > 3)
7647                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7648
7649         I915_WRITE(HTOTAL(cpu_transcoder),
7650                    (adjusted_mode->crtc_hdisplay - 1) |
7651                    ((adjusted_mode->crtc_htotal - 1) << 16));
7652         I915_WRITE(HBLANK(cpu_transcoder),
7653                    (adjusted_mode->crtc_hblank_start - 1) |
7654                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7655         I915_WRITE(HSYNC(cpu_transcoder),
7656                    (adjusted_mode->crtc_hsync_start - 1) |
7657                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7658
7659         I915_WRITE(VTOTAL(cpu_transcoder),
7660                    (adjusted_mode->crtc_vdisplay - 1) |
7661                    ((crtc_vtotal - 1) << 16));
7662         I915_WRITE(VBLANK(cpu_transcoder),
7663                    (adjusted_mode->crtc_vblank_start - 1) |
7664                    ((crtc_vblank_end - 1) << 16));
7665         I915_WRITE(VSYNC(cpu_transcoder),
7666                    (adjusted_mode->crtc_vsync_start - 1) |
7667                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7668
7669         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7670          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7671          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7672          * bits. */
7673         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7674             (pipe == PIPE_B || pipe == PIPE_C))
7675                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7676
7677         /* pipesrc controls the size that is scaled from, which should
7678          * always be the user's requested size.
7679          */
7680         I915_WRITE(PIPESRC(pipe),
7681                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7682                    (intel_crtc->config->pipe_src_h - 1));
7683 }
7684
7685 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7686                                    struct intel_crtc_state *pipe_config)
7687 {
7688         struct drm_device *dev = crtc->base.dev;
7689         struct drm_i915_private *dev_priv = dev->dev_private;
7690         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7691         uint32_t tmp;
7692
7693         tmp = I915_READ(HTOTAL(cpu_transcoder));
7694         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7695         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7696         tmp = I915_READ(HBLANK(cpu_transcoder));
7697         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7698         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7699         tmp = I915_READ(HSYNC(cpu_transcoder));
7700         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7701         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7702
7703         tmp = I915_READ(VTOTAL(cpu_transcoder));
7704         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7705         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7706         tmp = I915_READ(VBLANK(cpu_transcoder));
7707         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7708         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7709         tmp = I915_READ(VSYNC(cpu_transcoder));
7710         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7711         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7712
7713         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7714                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7715                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7716                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7717         }
7718
7719         tmp = I915_READ(PIPESRC(crtc->pipe));
7720         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7721         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7722
7723         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7724         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7725 }
7726
7727 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7728                                  struct intel_crtc_state *pipe_config)
7729 {
7730         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7731         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7732         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7733         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7734
7735         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7736         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7737         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7738         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7739
7740         mode->flags = pipe_config->base.adjusted_mode.flags;
7741         mode->type = DRM_MODE_TYPE_DRIVER;
7742
7743         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7744         mode->flags |= pipe_config->base.adjusted_mode.flags;
7745
7746         mode->hsync = drm_mode_hsync(mode);
7747         mode->vrefresh = drm_mode_vrefresh(mode);
7748         drm_mode_set_name(mode);
7749 }
7750
7751 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7752 {
7753         struct drm_device *dev = intel_crtc->base.dev;
7754         struct drm_i915_private *dev_priv = dev->dev_private;
7755         uint32_t pipeconf;
7756
7757         pipeconf = 0;
7758
7759         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7760             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7761                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7762
7763         if (intel_crtc->config->double_wide)
7764                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7765
7766         /* only g4x and later have fancy bpc/dither controls */
7767         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7768                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7769                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7770                         pipeconf |= PIPECONF_DITHER_EN |
7771                                     PIPECONF_DITHER_TYPE_SP;
7772
7773                 switch (intel_crtc->config->pipe_bpp) {
7774                 case 18:
7775                         pipeconf |= PIPECONF_6BPC;
7776                         break;
7777                 case 24:
7778                         pipeconf |= PIPECONF_8BPC;
7779                         break;
7780                 case 30:
7781                         pipeconf |= PIPECONF_10BPC;
7782                         break;
7783                 default:
7784                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7785                         BUG();
7786                 }
7787         }
7788
7789         if (HAS_PIPE_CXSR(dev)) {
7790                 if (intel_crtc->lowfreq_avail) {
7791                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7792                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7793                 } else {
7794                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7795                 }
7796         }
7797
7798         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7799                 if (INTEL_INFO(dev)->gen < 4 ||
7800                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7801                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7802                 else
7803                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7804         } else
7805                 pipeconf |= PIPECONF_PROGRESSIVE;
7806
7807         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7808                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7809
7810         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7811         POSTING_READ(PIPECONF(intel_crtc->pipe));
7812 }
7813
7814 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7815                                    struct intel_crtc_state *crtc_state)
7816 {
7817         struct drm_device *dev = crtc->base.dev;
7818         struct drm_i915_private *dev_priv = dev->dev_private;
7819         int refclk, num_connectors = 0;
7820         intel_clock_t clock;
7821         bool ok;
7822         bool is_dsi = false;
7823         struct intel_encoder *encoder;
7824         const intel_limit_t *limit;
7825         struct drm_atomic_state *state = crtc_state->base.state;
7826         struct drm_connector *connector;
7827         struct drm_connector_state *connector_state;
7828         int i;
7829
7830         memset(&crtc_state->dpll_hw_state, 0,
7831                sizeof(crtc_state->dpll_hw_state));
7832
7833         for_each_connector_in_state(state, connector, connector_state, i) {
7834                 if (connector_state->crtc != &crtc->base)
7835                         continue;
7836
7837                 encoder = to_intel_encoder(connector_state->best_encoder);
7838
7839                 switch (encoder->type) {
7840                 case INTEL_OUTPUT_DSI:
7841                         is_dsi = true;
7842                         break;
7843                 default:
7844                         break;
7845                 }
7846
7847                 num_connectors++;
7848         }
7849
7850         if (is_dsi)
7851                 return 0;
7852
7853         if (!crtc_state->clock_set) {
7854                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7855
7856                 /*
7857                  * Returns a set of divisors for the desired target clock with
7858                  * the given refclk, or FALSE.  The returned values represent
7859                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7860                  * 2) / p1 / p2.
7861                  */
7862                 limit = intel_limit(crtc_state, refclk);
7863                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7864                                                  crtc_state->port_clock,
7865                                                  refclk, NULL, &clock);
7866                 if (!ok) {
7867                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7868                         return -EINVAL;
7869                 }
7870
7871                 /* Compat-code for transition, will disappear. */
7872                 crtc_state->dpll.n = clock.n;
7873                 crtc_state->dpll.m1 = clock.m1;
7874                 crtc_state->dpll.m2 = clock.m2;
7875                 crtc_state->dpll.p1 = clock.p1;
7876                 crtc_state->dpll.p2 = clock.p2;
7877         }
7878
7879         if (IS_GEN2(dev)) {
7880                 i8xx_compute_dpll(crtc, crtc_state, NULL,
7881                                   num_connectors);
7882         } else if (IS_CHERRYVIEW(dev)) {
7883                 chv_compute_dpll(crtc, crtc_state);
7884         } else if (IS_VALLEYVIEW(dev)) {
7885                 vlv_compute_dpll(crtc, crtc_state);
7886         } else {
7887                 i9xx_compute_dpll(crtc, crtc_state, NULL,
7888                                   num_connectors);
7889         }
7890
7891         return 0;
7892 }
7893
7894 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7895                                  struct intel_crtc_state *pipe_config)
7896 {
7897         struct drm_device *dev = crtc->base.dev;
7898         struct drm_i915_private *dev_priv = dev->dev_private;
7899         uint32_t tmp;
7900
7901         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7902                 return;
7903
7904         tmp = I915_READ(PFIT_CONTROL);
7905         if (!(tmp & PFIT_ENABLE))
7906                 return;
7907
7908         /* Check whether the pfit is attached to our pipe. */
7909         if (INTEL_INFO(dev)->gen < 4) {
7910                 if (crtc->pipe != PIPE_B)
7911                         return;
7912         } else {
7913                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7914                         return;
7915         }
7916
7917         pipe_config->gmch_pfit.control = tmp;
7918         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7919         if (INTEL_INFO(dev)->gen < 5)
7920                 pipe_config->gmch_pfit.lvds_border_bits =
7921                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7922 }
7923
7924 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7925                                struct intel_crtc_state *pipe_config)
7926 {
7927         struct drm_device *dev = crtc->base.dev;
7928         struct drm_i915_private *dev_priv = dev->dev_private;
7929         int pipe = pipe_config->cpu_transcoder;
7930         intel_clock_t clock;
7931         u32 mdiv;
7932         int refclk = 100000;
7933
7934         /* In case of MIPI DPLL will not even be used */
7935         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7936                 return;
7937
7938         mutex_lock(&dev_priv->sb_lock);
7939         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7940         mutex_unlock(&dev_priv->sb_lock);
7941
7942         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7943         clock.m2 = mdiv & DPIO_M2DIV_MASK;
7944         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7945         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7946         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7947
7948         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7949 }
7950
7951 static void
7952 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7953                               struct intel_initial_plane_config *plane_config)
7954 {
7955         struct drm_device *dev = crtc->base.dev;
7956         struct drm_i915_private *dev_priv = dev->dev_private;
7957         u32 val, base, offset;
7958         int pipe = crtc->pipe, plane = crtc->plane;
7959         int fourcc, pixel_format;
7960         unsigned int aligned_height;
7961         struct drm_framebuffer *fb;
7962         struct intel_framebuffer *intel_fb;
7963
7964         val = I915_READ(DSPCNTR(plane));
7965         if (!(val & DISPLAY_PLANE_ENABLE))
7966                 return;
7967
7968         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7969         if (!intel_fb) {
7970                 DRM_DEBUG_KMS("failed to alloc fb\n");
7971                 return;
7972         }
7973
7974         fb = &intel_fb->base;
7975
7976         if (INTEL_INFO(dev)->gen >= 4) {
7977                 if (val & DISPPLANE_TILED) {
7978                         plane_config->tiling = I915_TILING_X;
7979                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7980                 }
7981         }
7982
7983         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7984         fourcc = i9xx_format_to_fourcc(pixel_format);
7985         fb->pixel_format = fourcc;
7986         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7987
7988         if (INTEL_INFO(dev)->gen >= 4) {
7989                 if (plane_config->tiling)
7990                         offset = I915_READ(DSPTILEOFF(plane));
7991                 else
7992                         offset = I915_READ(DSPLINOFF(plane));
7993                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7994         } else {
7995                 base = I915_READ(DSPADDR(plane));
7996         }
7997         plane_config->base = base;
7998
7999         val = I915_READ(PIPESRC(pipe));
8000         fb->width = ((val >> 16) & 0xfff) + 1;
8001         fb->height = ((val >> 0) & 0xfff) + 1;
8002
8003         val = I915_READ(DSPSTRIDE(pipe));
8004         fb->pitches[0] = val & 0xffffffc0;
8005
8006         aligned_height = intel_fb_align_height(dev, fb->height,
8007                                                fb->pixel_format,
8008                                                fb->modifier[0]);
8009
8010         plane_config->size = fb->pitches[0] * aligned_height;
8011
8012         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8013                       pipe_name(pipe), plane, fb->width, fb->height,
8014                       fb->bits_per_pixel, base, fb->pitches[0],
8015                       plane_config->size);
8016
8017         plane_config->fb = intel_fb;
8018 }
8019
8020 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8021                                struct intel_crtc_state *pipe_config)
8022 {
8023         struct drm_device *dev = crtc->base.dev;
8024         struct drm_i915_private *dev_priv = dev->dev_private;
8025         int pipe = pipe_config->cpu_transcoder;
8026         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8027         intel_clock_t clock;
8028         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8029         int refclk = 100000;
8030
8031         mutex_lock(&dev_priv->sb_lock);
8032         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8033         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8034         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8035         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8036         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8037         mutex_unlock(&dev_priv->sb_lock);
8038
8039         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8040         clock.m2 = (pll_dw0 & 0xff) << 22;
8041         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8042                 clock.m2 |= pll_dw2 & 0x3fffff;
8043         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8044         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8045         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8046
8047         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8048 }
8049
8050 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8051                                  struct intel_crtc_state *pipe_config)
8052 {
8053         struct drm_device *dev = crtc->base.dev;
8054         struct drm_i915_private *dev_priv = dev->dev_private;
8055         uint32_t tmp;
8056
8057         if (!intel_display_power_is_enabled(dev_priv,
8058                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8059                 return false;
8060
8061         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8062         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8063
8064         tmp = I915_READ(PIPECONF(crtc->pipe));
8065         if (!(tmp & PIPECONF_ENABLE))
8066                 return false;
8067
8068         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8069                 switch (tmp & PIPECONF_BPC_MASK) {
8070                 case PIPECONF_6BPC:
8071                         pipe_config->pipe_bpp = 18;
8072                         break;
8073                 case PIPECONF_8BPC:
8074                         pipe_config->pipe_bpp = 24;
8075                         break;
8076                 case PIPECONF_10BPC:
8077                         pipe_config->pipe_bpp = 30;
8078                         break;
8079                 default:
8080                         break;
8081                 }
8082         }
8083
8084         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8085                 pipe_config->limited_color_range = true;
8086
8087         if (INTEL_INFO(dev)->gen < 4)
8088                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8089
8090         intel_get_pipe_timings(crtc, pipe_config);
8091
8092         i9xx_get_pfit_config(crtc, pipe_config);
8093
8094         if (INTEL_INFO(dev)->gen >= 4) {
8095                 tmp = I915_READ(DPLL_MD(crtc->pipe));
8096                 pipe_config->pixel_multiplier =
8097                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8098                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8099                 pipe_config->dpll_hw_state.dpll_md = tmp;
8100         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8101                 tmp = I915_READ(DPLL(crtc->pipe));
8102                 pipe_config->pixel_multiplier =
8103                         ((tmp & SDVO_MULTIPLIER_MASK)
8104                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8105         } else {
8106                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8107                  * port and will be fixed up in the encoder->get_config
8108                  * function. */
8109                 pipe_config->pixel_multiplier = 1;
8110         }
8111         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8112         if (!IS_VALLEYVIEW(dev)) {
8113                 /*
8114                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8115                  * on 830. Filter it out here so that we don't
8116                  * report errors due to that.
8117                  */
8118                 if (IS_I830(dev))
8119                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8120
8121                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8122                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8123         } else {
8124                 /* Mask out read-only status bits. */
8125                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8126                                                      DPLL_PORTC_READY_MASK |
8127                                                      DPLL_PORTB_READY_MASK);
8128         }
8129
8130         if (IS_CHERRYVIEW(dev))
8131                 chv_crtc_clock_get(crtc, pipe_config);
8132         else if (IS_VALLEYVIEW(dev))
8133                 vlv_crtc_clock_get(crtc, pipe_config);
8134         else
8135                 i9xx_crtc_clock_get(crtc, pipe_config);
8136
8137         /*
8138          * Normally the dotclock is filled in by the encoder .get_config()
8139          * but in case the pipe is enabled w/o any ports we need a sane
8140          * default.
8141          */
8142         pipe_config->base.adjusted_mode.crtc_clock =
8143                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8144
8145         return true;
8146 }
8147
8148 static void ironlake_init_pch_refclk(struct drm_device *dev)
8149 {
8150         struct drm_i915_private *dev_priv = dev->dev_private;
8151         struct intel_encoder *encoder;
8152         u32 val, final;
8153         bool has_lvds = false;
8154         bool has_cpu_edp = false;
8155         bool has_panel = false;
8156         bool has_ck505 = false;
8157         bool can_ssc = false;
8158
8159         /* We need to take the global config into account */
8160         for_each_intel_encoder(dev, encoder) {
8161                 switch (encoder->type) {
8162                 case INTEL_OUTPUT_LVDS:
8163                         has_panel = true;
8164                         has_lvds = true;
8165                         break;
8166                 case INTEL_OUTPUT_EDP:
8167                         has_panel = true;
8168                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8169                                 has_cpu_edp = true;
8170                         break;
8171                 default:
8172                         break;
8173                 }
8174         }
8175
8176         if (HAS_PCH_IBX(dev)) {
8177                 has_ck505 = dev_priv->vbt.display_clock_mode;
8178                 can_ssc = has_ck505;
8179         } else {
8180                 has_ck505 = false;
8181                 can_ssc = true;
8182         }
8183
8184         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8185                       has_panel, has_lvds, has_ck505);
8186
8187         /* Ironlake: try to setup display ref clock before DPLL
8188          * enabling. This is only under driver's control after
8189          * PCH B stepping, previous chipset stepping should be
8190          * ignoring this setting.
8191          */
8192         val = I915_READ(PCH_DREF_CONTROL);
8193
8194         /* As we must carefully and slowly disable/enable each source in turn,
8195          * compute the final state we want first and check if we need to
8196          * make any changes at all.
8197          */
8198         final = val;
8199         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8200         if (has_ck505)
8201                 final |= DREF_NONSPREAD_CK505_ENABLE;
8202         else
8203                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8204
8205         final &= ~DREF_SSC_SOURCE_MASK;
8206         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8207         final &= ~DREF_SSC1_ENABLE;
8208
8209         if (has_panel) {
8210                 final |= DREF_SSC_SOURCE_ENABLE;
8211
8212                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8213                         final |= DREF_SSC1_ENABLE;
8214
8215                 if (has_cpu_edp) {
8216                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8217                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8218                         else
8219                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8220                 } else
8221                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8222         } else {
8223                 final |= DREF_SSC_SOURCE_DISABLE;
8224                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8225         }
8226
8227         if (final == val)
8228                 return;
8229
8230         /* Always enable nonspread source */
8231         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8232
8233         if (has_ck505)
8234                 val |= DREF_NONSPREAD_CK505_ENABLE;
8235         else
8236                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8237
8238         if (has_panel) {
8239                 val &= ~DREF_SSC_SOURCE_MASK;
8240                 val |= DREF_SSC_SOURCE_ENABLE;
8241
8242                 /* SSC must be turned on before enabling the CPU output  */
8243                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8244                         DRM_DEBUG_KMS("Using SSC on panel\n");
8245                         val |= DREF_SSC1_ENABLE;
8246                 } else
8247                         val &= ~DREF_SSC1_ENABLE;
8248
8249                 /* Get SSC going before enabling the outputs */
8250                 I915_WRITE(PCH_DREF_CONTROL, val);
8251                 POSTING_READ(PCH_DREF_CONTROL);
8252                 udelay(200);
8253
8254                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8255
8256                 /* Enable CPU source on CPU attached eDP */
8257                 if (has_cpu_edp) {
8258                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8259                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8260                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8261                         } else
8262                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8263                 } else
8264                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8265
8266                 I915_WRITE(PCH_DREF_CONTROL, val);
8267                 POSTING_READ(PCH_DREF_CONTROL);
8268                 udelay(200);
8269         } else {
8270                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8271
8272                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8273
8274                 /* Turn off CPU output */
8275                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8276
8277                 I915_WRITE(PCH_DREF_CONTROL, val);
8278                 POSTING_READ(PCH_DREF_CONTROL);
8279                 udelay(200);
8280
8281                 /* Turn off the SSC source */
8282                 val &= ~DREF_SSC_SOURCE_MASK;
8283                 val |= DREF_SSC_SOURCE_DISABLE;
8284
8285                 /* Turn off SSC1 */
8286                 val &= ~DREF_SSC1_ENABLE;
8287
8288                 I915_WRITE(PCH_DREF_CONTROL, val);
8289                 POSTING_READ(PCH_DREF_CONTROL);
8290                 udelay(200);
8291         }
8292
8293         BUG_ON(val != final);
8294 }
8295
8296 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8297 {
8298         uint32_t tmp;
8299
8300         tmp = I915_READ(SOUTH_CHICKEN2);
8301         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8302         I915_WRITE(SOUTH_CHICKEN2, tmp);
8303
8304         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8305                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8306                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8307
8308         tmp = I915_READ(SOUTH_CHICKEN2);
8309         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8310         I915_WRITE(SOUTH_CHICKEN2, tmp);
8311
8312         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8313                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8314                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8315 }
8316
8317 /* WaMPhyProgramming:hsw */
8318 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8319 {
8320         uint32_t tmp;
8321
8322         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8323         tmp &= ~(0xFF << 24);
8324         tmp |= (0x12 << 24);
8325         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8326
8327         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8328         tmp |= (1 << 11);
8329         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8330
8331         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8332         tmp |= (1 << 11);
8333         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8334
8335         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8336         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8337         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8338
8339         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8340         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8341         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8342
8343         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8344         tmp &= ~(7 << 13);
8345         tmp |= (5 << 13);
8346         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8347
8348         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8349         tmp &= ~(7 << 13);
8350         tmp |= (5 << 13);
8351         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8352
8353         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8354         tmp &= ~0xFF;
8355         tmp |= 0x1C;
8356         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8357
8358         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8359         tmp &= ~0xFF;
8360         tmp |= 0x1C;
8361         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8362
8363         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8364         tmp &= ~(0xFF << 16);
8365         tmp |= (0x1C << 16);
8366         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8367
8368         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8369         tmp &= ~(0xFF << 16);
8370         tmp |= (0x1C << 16);
8371         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8372
8373         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8374         tmp |= (1 << 27);
8375         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8376
8377         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8378         tmp |= (1 << 27);
8379         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8380
8381         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8382         tmp &= ~(0xF << 28);
8383         tmp |= (4 << 28);
8384         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8385
8386         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8387         tmp &= ~(0xF << 28);
8388         tmp |= (4 << 28);
8389         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8390 }
8391
8392 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8393  * Programming" based on the parameters passed:
8394  * - Sequence to enable CLKOUT_DP
8395  * - Sequence to enable CLKOUT_DP without spread
8396  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8397  */
8398 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8399                                  bool with_fdi)
8400 {
8401         struct drm_i915_private *dev_priv = dev->dev_private;
8402         uint32_t reg, tmp;
8403
8404         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8405                 with_spread = true;
8406         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8407                 with_fdi = false;
8408
8409         mutex_lock(&dev_priv->sb_lock);
8410
8411         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8412         tmp &= ~SBI_SSCCTL_DISABLE;
8413         tmp |= SBI_SSCCTL_PATHALT;
8414         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8415
8416         udelay(24);
8417
8418         if (with_spread) {
8419                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8420                 tmp &= ~SBI_SSCCTL_PATHALT;
8421                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8422
8423                 if (with_fdi) {
8424                         lpt_reset_fdi_mphy(dev_priv);
8425                         lpt_program_fdi_mphy(dev_priv);
8426                 }
8427         }
8428
8429         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8430         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8431         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8432         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8433
8434         mutex_unlock(&dev_priv->sb_lock);
8435 }
8436
8437 /* Sequence to disable CLKOUT_DP */
8438 static void lpt_disable_clkout_dp(struct drm_device *dev)
8439 {
8440         struct drm_i915_private *dev_priv = dev->dev_private;
8441         uint32_t reg, tmp;
8442
8443         mutex_lock(&dev_priv->sb_lock);
8444
8445         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8446         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8447         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8448         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8449
8450         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8451         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8452                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8453                         tmp |= SBI_SSCCTL_PATHALT;
8454                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8455                         udelay(32);
8456                 }
8457                 tmp |= SBI_SSCCTL_DISABLE;
8458                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8459         }
8460
8461         mutex_unlock(&dev_priv->sb_lock);
8462 }
8463
8464 static void lpt_init_pch_refclk(struct drm_device *dev)
8465 {
8466         struct intel_encoder *encoder;
8467         bool has_vga = false;
8468
8469         for_each_intel_encoder(dev, encoder) {
8470                 switch (encoder->type) {
8471                 case INTEL_OUTPUT_ANALOG:
8472                         has_vga = true;
8473                         break;
8474                 default:
8475                         break;
8476                 }
8477         }
8478
8479         if (has_vga)
8480                 lpt_enable_clkout_dp(dev, true, true);
8481         else
8482                 lpt_disable_clkout_dp(dev);
8483 }
8484
8485 /*
8486  * Initialize reference clocks when the driver loads
8487  */
8488 void intel_init_pch_refclk(struct drm_device *dev)
8489 {
8490         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8491                 ironlake_init_pch_refclk(dev);
8492         else if (HAS_PCH_LPT(dev))
8493                 lpt_init_pch_refclk(dev);
8494 }
8495
8496 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8497 {
8498         struct drm_device *dev = crtc_state->base.crtc->dev;
8499         struct drm_i915_private *dev_priv = dev->dev_private;
8500         struct drm_atomic_state *state = crtc_state->base.state;
8501         struct drm_connector *connector;
8502         struct drm_connector_state *connector_state;
8503         struct intel_encoder *encoder;
8504         int num_connectors = 0, i;
8505         bool is_lvds = false;
8506
8507         for_each_connector_in_state(state, connector, connector_state, i) {
8508                 if (connector_state->crtc != crtc_state->base.crtc)
8509                         continue;
8510
8511                 encoder = to_intel_encoder(connector_state->best_encoder);
8512
8513                 switch (encoder->type) {
8514                 case INTEL_OUTPUT_LVDS:
8515                         is_lvds = true;
8516                         break;
8517                 default:
8518                         break;
8519                 }
8520                 num_connectors++;
8521         }
8522
8523         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8524                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8525                               dev_priv->vbt.lvds_ssc_freq);
8526                 return dev_priv->vbt.lvds_ssc_freq;
8527         }
8528
8529         return 120000;
8530 }
8531
8532 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8533 {
8534         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8535         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8536         int pipe = intel_crtc->pipe;
8537         uint32_t val;
8538
8539         val = 0;
8540
8541         switch (intel_crtc->config->pipe_bpp) {
8542         case 18:
8543                 val |= PIPECONF_6BPC;
8544                 break;
8545         case 24:
8546                 val |= PIPECONF_8BPC;
8547                 break;
8548         case 30:
8549                 val |= PIPECONF_10BPC;
8550                 break;
8551         case 36:
8552                 val |= PIPECONF_12BPC;
8553                 break;
8554         default:
8555                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8556                 BUG();
8557         }
8558
8559         if (intel_crtc->config->dither)
8560                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8561
8562         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8563                 val |= PIPECONF_INTERLACED_ILK;
8564         else
8565                 val |= PIPECONF_PROGRESSIVE;
8566
8567         if (intel_crtc->config->limited_color_range)
8568                 val |= PIPECONF_COLOR_RANGE_SELECT;
8569
8570         I915_WRITE(PIPECONF(pipe), val);
8571         POSTING_READ(PIPECONF(pipe));
8572 }
8573
8574 /*
8575  * Set up the pipe CSC unit.
8576  *
8577  * Currently only full range RGB to limited range RGB conversion
8578  * is supported, but eventually this should handle various
8579  * RGB<->YCbCr scenarios as well.
8580  */
8581 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8582 {
8583         struct drm_device *dev = crtc->dev;
8584         struct drm_i915_private *dev_priv = dev->dev_private;
8585         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8586         int pipe = intel_crtc->pipe;
8587         uint16_t coeff = 0x7800; /* 1.0 */
8588
8589         /*
8590          * TODO: Check what kind of values actually come out of the pipe
8591          * with these coeff/postoff values and adjust to get the best
8592          * accuracy. Perhaps we even need to take the bpc value into
8593          * consideration.
8594          */
8595
8596         if (intel_crtc->config->limited_color_range)
8597                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8598
8599         /*
8600          * GY/GU and RY/RU should be the other way around according
8601          * to BSpec, but reality doesn't agree. Just set them up in
8602          * a way that results in the correct picture.
8603          */
8604         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8605         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8606
8607         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8608         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8609
8610         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8611         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8612
8613         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8614         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8615         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8616
8617         if (INTEL_INFO(dev)->gen > 6) {
8618                 uint16_t postoff = 0;
8619
8620                 if (intel_crtc->config->limited_color_range)
8621                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8622
8623                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8624                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8625                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8626
8627                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8628         } else {
8629                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8630
8631                 if (intel_crtc->config->limited_color_range)
8632                         mode |= CSC_BLACK_SCREEN_OFFSET;
8633
8634                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8635         }
8636 }
8637
8638 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8639 {
8640         struct drm_device *dev = crtc->dev;
8641         struct drm_i915_private *dev_priv = dev->dev_private;
8642         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8643         enum pipe pipe = intel_crtc->pipe;
8644         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8645         uint32_t val;
8646
8647         val = 0;
8648
8649         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8650                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8651
8652         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8653                 val |= PIPECONF_INTERLACED_ILK;
8654         else
8655                 val |= PIPECONF_PROGRESSIVE;
8656
8657         I915_WRITE(PIPECONF(cpu_transcoder), val);
8658         POSTING_READ(PIPECONF(cpu_transcoder));
8659
8660         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8661         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8662
8663         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8664                 val = 0;
8665
8666                 switch (intel_crtc->config->pipe_bpp) {
8667                 case 18:
8668                         val |= PIPEMISC_DITHER_6_BPC;
8669                         break;
8670                 case 24:
8671                         val |= PIPEMISC_DITHER_8_BPC;
8672                         break;
8673                 case 30:
8674                         val |= PIPEMISC_DITHER_10_BPC;
8675                         break;
8676                 case 36:
8677                         val |= PIPEMISC_DITHER_12_BPC;
8678                         break;
8679                 default:
8680                         /* Case prevented by pipe_config_set_bpp. */
8681                         BUG();
8682                 }
8683
8684                 if (intel_crtc->config->dither)
8685                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8686
8687                 I915_WRITE(PIPEMISC(pipe), val);
8688         }
8689 }
8690
8691 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8692                                     struct intel_crtc_state *crtc_state,
8693                                     intel_clock_t *clock,
8694                                     bool *has_reduced_clock,
8695                                     intel_clock_t *reduced_clock)
8696 {
8697         struct drm_device *dev = crtc->dev;
8698         struct drm_i915_private *dev_priv = dev->dev_private;
8699         int refclk;
8700         const intel_limit_t *limit;
8701         bool ret;
8702
8703         refclk = ironlake_get_refclk(crtc_state);
8704
8705         /*
8706          * Returns a set of divisors for the desired target clock with the given
8707          * refclk, or FALSE.  The returned values represent the clock equation:
8708          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8709          */
8710         limit = intel_limit(crtc_state, refclk);
8711         ret = dev_priv->display.find_dpll(limit, crtc_state,
8712                                           crtc_state->port_clock,
8713                                           refclk, NULL, clock);
8714         if (!ret)
8715                 return false;
8716
8717         return true;
8718 }
8719
8720 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8721 {
8722         /*
8723          * Account for spread spectrum to avoid
8724          * oversubscribing the link. Max center spread
8725          * is 2.5%; use 5% for safety's sake.
8726          */
8727         u32 bps = target_clock * bpp * 21 / 20;
8728         return DIV_ROUND_UP(bps, link_bw * 8);
8729 }
8730
8731 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8732 {
8733         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8734 }
8735
8736 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8737                                       struct intel_crtc_state *crtc_state,
8738                                       u32 *fp,
8739                                       intel_clock_t *reduced_clock, u32 *fp2)
8740 {
8741         struct drm_crtc *crtc = &intel_crtc->base;
8742         struct drm_device *dev = crtc->dev;
8743         struct drm_i915_private *dev_priv = dev->dev_private;
8744         struct drm_atomic_state *state = crtc_state->base.state;
8745         struct drm_connector *connector;
8746         struct drm_connector_state *connector_state;
8747         struct intel_encoder *encoder;
8748         uint32_t dpll;
8749         int factor, num_connectors = 0, i;
8750         bool is_lvds = false, is_sdvo = false;
8751
8752         for_each_connector_in_state(state, connector, connector_state, i) {
8753                 if (connector_state->crtc != crtc_state->base.crtc)
8754                         continue;
8755
8756                 encoder = to_intel_encoder(connector_state->best_encoder);
8757
8758                 switch (encoder->type) {
8759                 case INTEL_OUTPUT_LVDS:
8760                         is_lvds = true;
8761                         break;
8762                 case INTEL_OUTPUT_SDVO:
8763                 case INTEL_OUTPUT_HDMI:
8764                         is_sdvo = true;
8765                         break;
8766                 default:
8767                         break;
8768                 }
8769
8770                 num_connectors++;
8771         }
8772
8773         /* Enable autotuning of the PLL clock (if permissible) */
8774         factor = 21;
8775         if (is_lvds) {
8776                 if ((intel_panel_use_ssc(dev_priv) &&
8777                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8778                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8779                         factor = 25;
8780         } else if (crtc_state->sdvo_tv_clock)
8781                 factor = 20;
8782
8783         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8784                 *fp |= FP_CB_TUNE;
8785
8786         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8787                 *fp2 |= FP_CB_TUNE;
8788
8789         dpll = 0;
8790
8791         if (is_lvds)
8792                 dpll |= DPLLB_MODE_LVDS;
8793         else
8794                 dpll |= DPLLB_MODE_DAC_SERIAL;
8795
8796         dpll |= (crtc_state->pixel_multiplier - 1)
8797                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8798
8799         if (is_sdvo)
8800                 dpll |= DPLL_SDVO_HIGH_SPEED;
8801         if (crtc_state->has_dp_encoder)
8802                 dpll |= DPLL_SDVO_HIGH_SPEED;
8803
8804         /* compute bitmask from p1 value */
8805         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8806         /* also FPA1 */
8807         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8808
8809         switch (crtc_state->dpll.p2) {
8810         case 5:
8811                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8812                 break;
8813         case 7:
8814                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8815                 break;
8816         case 10:
8817                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8818                 break;
8819         case 14:
8820                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8821                 break;
8822         }
8823
8824         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8825                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8826         else
8827                 dpll |= PLL_REF_INPUT_DREFCLK;
8828
8829         return dpll | DPLL_VCO_ENABLE;
8830 }
8831
8832 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8833                                        struct intel_crtc_state *crtc_state)
8834 {
8835         struct drm_device *dev = crtc->base.dev;
8836         intel_clock_t clock, reduced_clock;
8837         u32 dpll = 0, fp = 0, fp2 = 0;
8838         bool ok, has_reduced_clock = false;
8839         bool is_lvds = false;
8840         struct intel_shared_dpll *pll;
8841
8842         memset(&crtc_state->dpll_hw_state, 0,
8843                sizeof(crtc_state->dpll_hw_state));
8844
8845         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8846
8847         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8848              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8849
8850         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8851                                      &has_reduced_clock, &reduced_clock);
8852         if (!ok && !crtc_state->clock_set) {
8853                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8854                 return -EINVAL;
8855         }
8856         /* Compat-code for transition, will disappear. */
8857         if (!crtc_state->clock_set) {
8858                 crtc_state->dpll.n = clock.n;
8859                 crtc_state->dpll.m1 = clock.m1;
8860                 crtc_state->dpll.m2 = clock.m2;
8861                 crtc_state->dpll.p1 = clock.p1;
8862                 crtc_state->dpll.p2 = clock.p2;
8863         }
8864
8865         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8866         if (crtc_state->has_pch_encoder) {
8867                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8868                 if (has_reduced_clock)
8869                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8870
8871                 dpll = ironlake_compute_dpll(crtc, crtc_state,
8872                                              &fp, &reduced_clock,
8873                                              has_reduced_clock ? &fp2 : NULL);
8874
8875                 crtc_state->dpll_hw_state.dpll = dpll;
8876                 crtc_state->dpll_hw_state.fp0 = fp;
8877                 if (has_reduced_clock)
8878                         crtc_state->dpll_hw_state.fp1 = fp2;
8879                 else
8880                         crtc_state->dpll_hw_state.fp1 = fp;
8881
8882                 pll = intel_get_shared_dpll(crtc, crtc_state);
8883                 if (pll == NULL) {
8884                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8885                                          pipe_name(crtc->pipe));
8886                         return -EINVAL;
8887                 }
8888         }
8889
8890         if (is_lvds && has_reduced_clock)
8891                 crtc->lowfreq_avail = true;
8892         else
8893                 crtc->lowfreq_avail = false;
8894
8895         return 0;
8896 }
8897
8898 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8899                                          struct intel_link_m_n *m_n)
8900 {
8901         struct drm_device *dev = crtc->base.dev;
8902         struct drm_i915_private *dev_priv = dev->dev_private;
8903         enum pipe pipe = crtc->pipe;
8904
8905         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8906         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8907         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8908                 & ~TU_SIZE_MASK;
8909         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8910         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8911                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8912 }
8913
8914 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8915                                          enum transcoder transcoder,
8916                                          struct intel_link_m_n *m_n,
8917                                          struct intel_link_m_n *m2_n2)
8918 {
8919         struct drm_device *dev = crtc->base.dev;
8920         struct drm_i915_private *dev_priv = dev->dev_private;
8921         enum pipe pipe = crtc->pipe;
8922
8923         if (INTEL_INFO(dev)->gen >= 5) {
8924                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8925                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8926                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8927                         & ~TU_SIZE_MASK;
8928                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8929                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8930                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8931                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8932                  * gen < 8) and if DRRS is supported (to make sure the
8933                  * registers are not unnecessarily read).
8934                  */
8935                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8936                         crtc->config->has_drrs) {
8937                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8938                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8939                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8940                                         & ~TU_SIZE_MASK;
8941                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8942                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8943                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8944                 }
8945         } else {
8946                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8947                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8948                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8949                         & ~TU_SIZE_MASK;
8950                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8951                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8952                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8953         }
8954 }
8955
8956 void intel_dp_get_m_n(struct intel_crtc *crtc,
8957                       struct intel_crtc_state *pipe_config)
8958 {
8959         if (pipe_config->has_pch_encoder)
8960                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8961         else
8962                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8963                                              &pipe_config->dp_m_n,
8964                                              &pipe_config->dp_m2_n2);
8965 }
8966
8967 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8968                                         struct intel_crtc_state *pipe_config)
8969 {
8970         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8971                                      &pipe_config->fdi_m_n, NULL);
8972 }
8973
8974 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8975                                     struct intel_crtc_state *pipe_config)
8976 {
8977         struct drm_device *dev = crtc->base.dev;
8978         struct drm_i915_private *dev_priv = dev->dev_private;
8979         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8980         uint32_t ps_ctrl = 0;
8981         int id = -1;
8982         int i;
8983
8984         /* find scaler attached to this pipe */
8985         for (i = 0; i < crtc->num_scalers; i++) {
8986                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8987                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8988                         id = i;
8989                         pipe_config->pch_pfit.enabled = true;
8990                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8991                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8992                         break;
8993                 }
8994         }
8995
8996         scaler_state->scaler_id = id;
8997         if (id >= 0) {
8998                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8999         } else {
9000                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9001         }
9002 }
9003
9004 static void
9005 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9006                                  struct intel_initial_plane_config *plane_config)
9007 {
9008         struct drm_device *dev = crtc->base.dev;
9009         struct drm_i915_private *dev_priv = dev->dev_private;
9010         u32 val, base, offset, stride_mult, tiling;
9011         int pipe = crtc->pipe;
9012         int fourcc, pixel_format;
9013         unsigned int aligned_height;
9014         struct drm_framebuffer *fb;
9015         struct intel_framebuffer *intel_fb;
9016
9017         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9018         if (!intel_fb) {
9019                 DRM_DEBUG_KMS("failed to alloc fb\n");
9020                 return;
9021         }
9022
9023         fb = &intel_fb->base;
9024
9025         val = I915_READ(PLANE_CTL(pipe, 0));
9026         if (!(val & PLANE_CTL_ENABLE))
9027                 goto error;
9028
9029         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9030         fourcc = skl_format_to_fourcc(pixel_format,
9031                                       val & PLANE_CTL_ORDER_RGBX,
9032                                       val & PLANE_CTL_ALPHA_MASK);
9033         fb->pixel_format = fourcc;
9034         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9035
9036         tiling = val & PLANE_CTL_TILED_MASK;
9037         switch (tiling) {
9038         case PLANE_CTL_TILED_LINEAR:
9039                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9040                 break;
9041         case PLANE_CTL_TILED_X:
9042                 plane_config->tiling = I915_TILING_X;
9043                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9044                 break;
9045         case PLANE_CTL_TILED_Y:
9046                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9047                 break;
9048         case PLANE_CTL_TILED_YF:
9049                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9050                 break;
9051         default:
9052                 MISSING_CASE(tiling);
9053                 goto error;
9054         }
9055
9056         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9057         plane_config->base = base;
9058
9059         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9060
9061         val = I915_READ(PLANE_SIZE(pipe, 0));
9062         fb->height = ((val >> 16) & 0xfff) + 1;
9063         fb->width = ((val >> 0) & 0x1fff) + 1;
9064
9065         val = I915_READ(PLANE_STRIDE(pipe, 0));
9066         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9067                                                 fb->pixel_format);
9068         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9069
9070         aligned_height = intel_fb_align_height(dev, fb->height,
9071                                                fb->pixel_format,
9072                                                fb->modifier[0]);
9073
9074         plane_config->size = fb->pitches[0] * aligned_height;
9075
9076         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9077                       pipe_name(pipe), fb->width, fb->height,
9078                       fb->bits_per_pixel, base, fb->pitches[0],
9079                       plane_config->size);
9080
9081         plane_config->fb = intel_fb;
9082         return;
9083
9084 error:
9085         kfree(fb);
9086 }
9087
9088 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9089                                      struct intel_crtc_state *pipe_config)
9090 {
9091         struct drm_device *dev = crtc->base.dev;
9092         struct drm_i915_private *dev_priv = dev->dev_private;
9093         uint32_t tmp;
9094
9095         tmp = I915_READ(PF_CTL(crtc->pipe));
9096
9097         if (tmp & PF_ENABLE) {
9098                 pipe_config->pch_pfit.enabled = true;
9099                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9100                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9101
9102                 /* We currently do not free assignements of panel fitters on
9103                  * ivb/hsw (since we don't use the higher upscaling modes which
9104                  * differentiates them) so just WARN about this case for now. */
9105                 if (IS_GEN7(dev)) {
9106                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9107                                 PF_PIPE_SEL_IVB(crtc->pipe));
9108                 }
9109         }
9110 }
9111
9112 static void
9113 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9114                                   struct intel_initial_plane_config *plane_config)
9115 {
9116         struct drm_device *dev = crtc->base.dev;
9117         struct drm_i915_private *dev_priv = dev->dev_private;
9118         u32 val, base, offset;
9119         int pipe = crtc->pipe;
9120         int fourcc, pixel_format;
9121         unsigned int aligned_height;
9122         struct drm_framebuffer *fb;
9123         struct intel_framebuffer *intel_fb;
9124
9125         val = I915_READ(DSPCNTR(pipe));
9126         if (!(val & DISPLAY_PLANE_ENABLE))
9127                 return;
9128
9129         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9130         if (!intel_fb) {
9131                 DRM_DEBUG_KMS("failed to alloc fb\n");
9132                 return;
9133         }
9134
9135         fb = &intel_fb->base;
9136
9137         if (INTEL_INFO(dev)->gen >= 4) {
9138                 if (val & DISPPLANE_TILED) {
9139                         plane_config->tiling = I915_TILING_X;
9140                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9141                 }
9142         }
9143
9144         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9145         fourcc = i9xx_format_to_fourcc(pixel_format);
9146         fb->pixel_format = fourcc;
9147         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9148
9149         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9150         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9151                 offset = I915_READ(DSPOFFSET(pipe));
9152         } else {
9153                 if (plane_config->tiling)
9154                         offset = I915_READ(DSPTILEOFF(pipe));
9155                 else
9156                         offset = I915_READ(DSPLINOFF(pipe));
9157         }
9158         plane_config->base = base;
9159
9160         val = I915_READ(PIPESRC(pipe));
9161         fb->width = ((val >> 16) & 0xfff) + 1;
9162         fb->height = ((val >> 0) & 0xfff) + 1;
9163
9164         val = I915_READ(DSPSTRIDE(pipe));
9165         fb->pitches[0] = val & 0xffffffc0;
9166
9167         aligned_height = intel_fb_align_height(dev, fb->height,
9168                                                fb->pixel_format,
9169                                                fb->modifier[0]);
9170
9171         plane_config->size = fb->pitches[0] * aligned_height;
9172
9173         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9174                       pipe_name(pipe), fb->width, fb->height,
9175                       fb->bits_per_pixel, base, fb->pitches[0],
9176                       plane_config->size);
9177
9178         plane_config->fb = intel_fb;
9179 }
9180
9181 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9182                                      struct intel_crtc_state *pipe_config)
9183 {
9184         struct drm_device *dev = crtc->base.dev;
9185         struct drm_i915_private *dev_priv = dev->dev_private;
9186         uint32_t tmp;
9187
9188         if (!intel_display_power_is_enabled(dev_priv,
9189                                             POWER_DOMAIN_PIPE(crtc->pipe)))
9190                 return false;
9191
9192         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9193         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9194
9195         tmp = I915_READ(PIPECONF(crtc->pipe));
9196         if (!(tmp & PIPECONF_ENABLE))
9197                 return false;
9198
9199         switch (tmp & PIPECONF_BPC_MASK) {
9200         case PIPECONF_6BPC:
9201                 pipe_config->pipe_bpp = 18;
9202                 break;
9203         case PIPECONF_8BPC:
9204                 pipe_config->pipe_bpp = 24;
9205                 break;
9206         case PIPECONF_10BPC:
9207                 pipe_config->pipe_bpp = 30;
9208                 break;
9209         case PIPECONF_12BPC:
9210                 pipe_config->pipe_bpp = 36;
9211                 break;
9212         default:
9213                 break;
9214         }
9215
9216         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9217                 pipe_config->limited_color_range = true;
9218
9219         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9220                 struct intel_shared_dpll *pll;
9221
9222                 pipe_config->has_pch_encoder = true;
9223
9224                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9225                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9226                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9227
9228                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9229
9230                 if (HAS_PCH_IBX(dev_priv->dev)) {
9231                         pipe_config->shared_dpll =
9232                                 (enum intel_dpll_id) crtc->pipe;
9233                 } else {
9234                         tmp = I915_READ(PCH_DPLL_SEL);
9235                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9236                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9237                         else
9238                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9239                 }
9240
9241                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9242
9243                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9244                                            &pipe_config->dpll_hw_state));
9245
9246                 tmp = pipe_config->dpll_hw_state.dpll;
9247                 pipe_config->pixel_multiplier =
9248                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9249                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9250
9251                 ironlake_pch_clock_get(crtc, pipe_config);
9252         } else {
9253                 pipe_config->pixel_multiplier = 1;
9254         }
9255
9256         intel_get_pipe_timings(crtc, pipe_config);
9257
9258         ironlake_get_pfit_config(crtc, pipe_config);
9259
9260         return true;
9261 }
9262
9263 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9264 {
9265         struct drm_device *dev = dev_priv->dev;
9266         struct intel_crtc *crtc;
9267
9268         for_each_intel_crtc(dev, crtc)
9269                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9270                      pipe_name(crtc->pipe));
9271
9272         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9273         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9274         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9275         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9276         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9277         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9278              "CPU PWM1 enabled\n");
9279         if (IS_HASWELL(dev))
9280                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9281                      "CPU PWM2 enabled\n");
9282         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9283              "PCH PWM1 enabled\n");
9284         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9285              "Utility pin enabled\n");
9286         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9287
9288         /*
9289          * In theory we can still leave IRQs enabled, as long as only the HPD
9290          * interrupts remain enabled. We used to check for that, but since it's
9291          * gen-specific and since we only disable LCPLL after we fully disable
9292          * the interrupts, the check below should be enough.
9293          */
9294         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9295 }
9296
9297 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9298 {
9299         struct drm_device *dev = dev_priv->dev;
9300
9301         if (IS_HASWELL(dev))
9302                 return I915_READ(D_COMP_HSW);
9303         else
9304                 return I915_READ(D_COMP_BDW);
9305 }
9306
9307 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9308 {
9309         struct drm_device *dev = dev_priv->dev;
9310
9311         if (IS_HASWELL(dev)) {
9312                 mutex_lock(&dev_priv->rps.hw_lock);
9313                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9314                                             val))
9315                         DRM_ERROR("Failed to write to D_COMP\n");
9316                 mutex_unlock(&dev_priv->rps.hw_lock);
9317         } else {
9318                 I915_WRITE(D_COMP_BDW, val);
9319                 POSTING_READ(D_COMP_BDW);
9320         }
9321 }
9322
9323 /*
9324  * This function implements pieces of two sequences from BSpec:
9325  * - Sequence for display software to disable LCPLL
9326  * - Sequence for display software to allow package C8+
9327  * The steps implemented here are just the steps that actually touch the LCPLL
9328  * register. Callers should take care of disabling all the display engine
9329  * functions, doing the mode unset, fixing interrupts, etc.
9330  */
9331 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9332                               bool switch_to_fclk, bool allow_power_down)
9333 {
9334         uint32_t val;
9335
9336         assert_can_disable_lcpll(dev_priv);
9337
9338         val = I915_READ(LCPLL_CTL);
9339
9340         if (switch_to_fclk) {
9341                 val |= LCPLL_CD_SOURCE_FCLK;
9342                 I915_WRITE(LCPLL_CTL, val);
9343
9344                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9345                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9346                         DRM_ERROR("Switching to FCLK failed\n");
9347
9348                 val = I915_READ(LCPLL_CTL);
9349         }
9350
9351         val |= LCPLL_PLL_DISABLE;
9352         I915_WRITE(LCPLL_CTL, val);
9353         POSTING_READ(LCPLL_CTL);
9354
9355         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9356                 DRM_ERROR("LCPLL still locked\n");
9357
9358         val = hsw_read_dcomp(dev_priv);
9359         val |= D_COMP_COMP_DISABLE;
9360         hsw_write_dcomp(dev_priv, val);
9361         ndelay(100);
9362
9363         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9364                      1))
9365                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9366
9367         if (allow_power_down) {
9368                 val = I915_READ(LCPLL_CTL);
9369                 val |= LCPLL_POWER_DOWN_ALLOW;
9370                 I915_WRITE(LCPLL_CTL, val);
9371                 POSTING_READ(LCPLL_CTL);
9372         }
9373 }
9374
9375 /*
9376  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9377  * source.
9378  */
9379 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9380 {
9381         uint32_t val;
9382
9383         val = I915_READ(LCPLL_CTL);
9384
9385         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9386                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9387                 return;
9388
9389         /*
9390          * Make sure we're not on PC8 state before disabling PC8, otherwise
9391          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9392          */
9393         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9394
9395         if (val & LCPLL_POWER_DOWN_ALLOW) {
9396                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9397                 I915_WRITE(LCPLL_CTL, val);
9398                 POSTING_READ(LCPLL_CTL);
9399         }
9400
9401         val = hsw_read_dcomp(dev_priv);
9402         val |= D_COMP_COMP_FORCE;
9403         val &= ~D_COMP_COMP_DISABLE;
9404         hsw_write_dcomp(dev_priv, val);
9405
9406         val = I915_READ(LCPLL_CTL);
9407         val &= ~LCPLL_PLL_DISABLE;
9408         I915_WRITE(LCPLL_CTL, val);
9409
9410         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9411                 DRM_ERROR("LCPLL not locked yet\n");
9412
9413         if (val & LCPLL_CD_SOURCE_FCLK) {
9414                 val = I915_READ(LCPLL_CTL);
9415                 val &= ~LCPLL_CD_SOURCE_FCLK;
9416                 I915_WRITE(LCPLL_CTL, val);
9417
9418                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9419                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9420                         DRM_ERROR("Switching back to LCPLL failed\n");
9421         }
9422
9423         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9424         intel_update_cdclk(dev_priv->dev);
9425 }
9426
9427 /*
9428  * Package states C8 and deeper are really deep PC states that can only be
9429  * reached when all the devices on the system allow it, so even if the graphics
9430  * device allows PC8+, it doesn't mean the system will actually get to these
9431  * states. Our driver only allows PC8+ when going into runtime PM.
9432  *
9433  * The requirements for PC8+ are that all the outputs are disabled, the power
9434  * well is disabled and most interrupts are disabled, and these are also
9435  * requirements for runtime PM. When these conditions are met, we manually do
9436  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9437  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9438  * hang the machine.
9439  *
9440  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9441  * the state of some registers, so when we come back from PC8+ we need to
9442  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9443  * need to take care of the registers kept by RC6. Notice that this happens even
9444  * if we don't put the device in PCI D3 state (which is what currently happens
9445  * because of the runtime PM support).
9446  *
9447  * For more, read "Display Sequences for Package C8" on the hardware
9448  * documentation.
9449  */
9450 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9451 {
9452         struct drm_device *dev = dev_priv->dev;
9453         uint32_t val;
9454
9455         DRM_DEBUG_KMS("Enabling package C8+\n");
9456
9457         if (HAS_PCH_LPT_LP(dev)) {
9458                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9459                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9460                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9461         }
9462
9463         lpt_disable_clkout_dp(dev);
9464         hsw_disable_lcpll(dev_priv, true, true);
9465 }
9466
9467 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9468 {
9469         struct drm_device *dev = dev_priv->dev;
9470         uint32_t val;
9471
9472         DRM_DEBUG_KMS("Disabling package C8+\n");
9473
9474         hsw_restore_lcpll(dev_priv);
9475         lpt_init_pch_refclk(dev);
9476
9477         if (HAS_PCH_LPT_LP(dev)) {
9478                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9479                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9480                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9481         }
9482
9483         intel_prepare_ddi(dev);
9484 }
9485
9486 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9487 {
9488         struct drm_device *dev = old_state->dev;
9489         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9490
9491         broxton_set_cdclk(dev, req_cdclk);
9492 }
9493
9494 /* compute the max rate for new configuration */
9495 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9496 {
9497         struct intel_crtc *intel_crtc;
9498         struct intel_crtc_state *crtc_state;
9499         int max_pixel_rate = 0;
9500
9501         for_each_intel_crtc(state->dev, intel_crtc) {
9502                 int pixel_rate;
9503
9504                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9505                 if (IS_ERR(crtc_state))
9506                         return PTR_ERR(crtc_state);
9507
9508                 if (!crtc_state->base.enable)
9509                         continue;
9510
9511                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9512
9513                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9514                 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9515                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9516
9517                 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9518         }
9519
9520         return max_pixel_rate;
9521 }
9522
9523 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9524 {
9525         struct drm_i915_private *dev_priv = dev->dev_private;
9526         uint32_t val, data;
9527         int ret;
9528
9529         if (WARN((I915_READ(LCPLL_CTL) &
9530                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9531                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9532                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9533                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9534                  "trying to change cdclk frequency with cdclk not enabled\n"))
9535                 return;
9536
9537         mutex_lock(&dev_priv->rps.hw_lock);
9538         ret = sandybridge_pcode_write(dev_priv,
9539                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9540         mutex_unlock(&dev_priv->rps.hw_lock);
9541         if (ret) {
9542                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9543                 return;
9544         }
9545
9546         val = I915_READ(LCPLL_CTL);
9547         val |= LCPLL_CD_SOURCE_FCLK;
9548         I915_WRITE(LCPLL_CTL, val);
9549
9550         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9551                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
9552                 DRM_ERROR("Switching to FCLK failed\n");
9553
9554         val = I915_READ(LCPLL_CTL);
9555         val &= ~LCPLL_CLK_FREQ_MASK;
9556
9557         switch (cdclk) {
9558         case 450000:
9559                 val |= LCPLL_CLK_FREQ_450;
9560                 data = 0;
9561                 break;
9562         case 540000:
9563                 val |= LCPLL_CLK_FREQ_54O_BDW;
9564                 data = 1;
9565                 break;
9566         case 337500:
9567                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9568                 data = 2;
9569                 break;
9570         case 675000:
9571                 val |= LCPLL_CLK_FREQ_675_BDW;
9572                 data = 3;
9573                 break;
9574         default:
9575                 WARN(1, "invalid cdclk frequency\n");
9576                 return;
9577         }
9578
9579         I915_WRITE(LCPLL_CTL, val);
9580
9581         val = I915_READ(LCPLL_CTL);
9582         val &= ~LCPLL_CD_SOURCE_FCLK;
9583         I915_WRITE(LCPLL_CTL, val);
9584
9585         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9586                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9587                 DRM_ERROR("Switching back to LCPLL failed\n");
9588
9589         mutex_lock(&dev_priv->rps.hw_lock);
9590         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9591         mutex_unlock(&dev_priv->rps.hw_lock);
9592
9593         intel_update_cdclk(dev);
9594
9595         WARN(cdclk != dev_priv->cdclk_freq,
9596              "cdclk requested %d kHz but got %d kHz\n",
9597              cdclk, dev_priv->cdclk_freq);
9598 }
9599
9600 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9601 {
9602         struct drm_i915_private *dev_priv = to_i915(state->dev);
9603         int max_pixclk = ilk_max_pixel_rate(state);
9604         int cdclk;
9605
9606         /*
9607          * FIXME should also account for plane ratio
9608          * once 64bpp pixel formats are supported.
9609          */
9610         if (max_pixclk > 540000)
9611                 cdclk = 675000;
9612         else if (max_pixclk > 450000)
9613                 cdclk = 540000;
9614         else if (max_pixclk > 337500)
9615                 cdclk = 450000;
9616         else
9617                 cdclk = 337500;
9618
9619         /*
9620          * FIXME move the cdclk caclulation to
9621          * compute_config() so we can fail gracegully.
9622          */
9623         if (cdclk > dev_priv->max_cdclk_freq) {
9624                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9625                           cdclk, dev_priv->max_cdclk_freq);
9626                 cdclk = dev_priv->max_cdclk_freq;
9627         }
9628
9629         to_intel_atomic_state(state)->cdclk = cdclk;
9630
9631         return 0;
9632 }
9633
9634 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9635 {
9636         struct drm_device *dev = old_state->dev;
9637         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9638
9639         broadwell_set_cdclk(dev, req_cdclk);
9640 }
9641
9642 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9643                                       struct intel_crtc_state *crtc_state)
9644 {
9645         if (!intel_ddi_pll_select(crtc, crtc_state))
9646                 return -EINVAL;
9647
9648         crtc->lowfreq_avail = false;
9649
9650         return 0;
9651 }
9652
9653 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9654                                 enum port port,
9655                                 struct intel_crtc_state *pipe_config)
9656 {
9657         switch (port) {
9658         case PORT_A:
9659                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9660                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9661                 break;
9662         case PORT_B:
9663                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9664                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9665                 break;
9666         case PORT_C:
9667                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9668                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9669                 break;
9670         default:
9671                 DRM_ERROR("Incorrect port type\n");
9672         }
9673 }
9674
9675 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9676                                 enum port port,
9677                                 struct intel_crtc_state *pipe_config)
9678 {
9679         u32 temp, dpll_ctl1;
9680
9681         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9682         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9683
9684         switch (pipe_config->ddi_pll_sel) {
9685         case SKL_DPLL0:
9686                 /*
9687                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9688                  * of the shared DPLL framework and thus needs to be read out
9689                  * separately
9690                  */
9691                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9692                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9693                 break;
9694         case SKL_DPLL1:
9695                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9696                 break;
9697         case SKL_DPLL2:
9698                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9699                 break;
9700         case SKL_DPLL3:
9701                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9702                 break;
9703         }
9704 }
9705
9706 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9707                                 enum port port,
9708                                 struct intel_crtc_state *pipe_config)
9709 {
9710         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9711
9712         switch (pipe_config->ddi_pll_sel) {
9713         case PORT_CLK_SEL_WRPLL1:
9714                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9715                 break;
9716         case PORT_CLK_SEL_WRPLL2:
9717                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9718                 break;
9719         }
9720 }
9721
9722 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9723                                        struct intel_crtc_state *pipe_config)
9724 {
9725         struct drm_device *dev = crtc->base.dev;
9726         struct drm_i915_private *dev_priv = dev->dev_private;
9727         struct intel_shared_dpll *pll;
9728         enum port port;
9729         uint32_t tmp;
9730
9731         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9732
9733         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9734
9735         if (IS_SKYLAKE(dev))
9736                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9737         else if (IS_BROXTON(dev))
9738                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9739         else
9740                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9741
9742         if (pipe_config->shared_dpll >= 0) {
9743                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9744
9745                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9746                                            &pipe_config->dpll_hw_state));
9747         }
9748
9749         /*
9750          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9751          * DDI E. So just check whether this pipe is wired to DDI E and whether
9752          * the PCH transcoder is on.
9753          */
9754         if (INTEL_INFO(dev)->gen < 9 &&
9755             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9756                 pipe_config->has_pch_encoder = true;
9757
9758                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9759                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9760                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9761
9762                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9763         }
9764 }
9765
9766 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9767                                     struct intel_crtc_state *pipe_config)
9768 {
9769         struct drm_device *dev = crtc->base.dev;
9770         struct drm_i915_private *dev_priv = dev->dev_private;
9771         enum intel_display_power_domain pfit_domain;
9772         uint32_t tmp;
9773
9774         if (!intel_display_power_is_enabled(dev_priv,
9775                                          POWER_DOMAIN_PIPE(crtc->pipe)))
9776                 return false;
9777
9778         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9779         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9780
9781         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9782         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9783                 enum pipe trans_edp_pipe;
9784                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9785                 default:
9786                         WARN(1, "unknown pipe linked to edp transcoder\n");
9787                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9788                 case TRANS_DDI_EDP_INPUT_A_ON:
9789                         trans_edp_pipe = PIPE_A;
9790                         break;
9791                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9792                         trans_edp_pipe = PIPE_B;
9793                         break;
9794                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9795                         trans_edp_pipe = PIPE_C;
9796                         break;
9797                 }
9798
9799                 if (trans_edp_pipe == crtc->pipe)
9800                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9801         }
9802
9803         if (!intel_display_power_is_enabled(dev_priv,
9804                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9805                 return false;
9806
9807         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9808         if (!(tmp & PIPECONF_ENABLE))
9809                 return false;
9810
9811         haswell_get_ddi_port_state(crtc, pipe_config);
9812
9813         intel_get_pipe_timings(crtc, pipe_config);
9814
9815         if (INTEL_INFO(dev)->gen >= 9) {
9816                 skl_init_scalers(dev, crtc, pipe_config);
9817         }
9818
9819         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9820
9821         if (INTEL_INFO(dev)->gen >= 9) {
9822                 pipe_config->scaler_state.scaler_id = -1;
9823                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9824         }
9825
9826         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9827                 if (INTEL_INFO(dev)->gen >= 9)
9828                         skylake_get_pfit_config(crtc, pipe_config);
9829                 else
9830                         ironlake_get_pfit_config(crtc, pipe_config);
9831         }
9832
9833         if (IS_HASWELL(dev))
9834                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9835                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9836
9837         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9838                 pipe_config->pixel_multiplier =
9839                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9840         } else {
9841                 pipe_config->pixel_multiplier = 1;
9842         }
9843
9844         return true;
9845 }
9846
9847 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9848 {
9849         struct drm_device *dev = crtc->dev;
9850         struct drm_i915_private *dev_priv = dev->dev_private;
9851         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9852         uint32_t cntl = 0, size = 0;
9853
9854         if (base) {
9855                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9856                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9857                 unsigned int stride = roundup_pow_of_two(width) * 4;
9858
9859                 switch (stride) {
9860                 default:
9861                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9862                                   width, stride);
9863                         stride = 256;
9864                         /* fallthrough */
9865                 case 256:
9866                 case 512:
9867                 case 1024:
9868                 case 2048:
9869                         break;
9870                 }
9871
9872                 cntl |= CURSOR_ENABLE |
9873                         CURSOR_GAMMA_ENABLE |
9874                         CURSOR_FORMAT_ARGB |
9875                         CURSOR_STRIDE(stride);
9876
9877                 size = (height << 12) | width;
9878         }
9879
9880         if (intel_crtc->cursor_cntl != 0 &&
9881             (intel_crtc->cursor_base != base ||
9882              intel_crtc->cursor_size != size ||
9883              intel_crtc->cursor_cntl != cntl)) {
9884                 /* On these chipsets we can only modify the base/size/stride
9885                  * whilst the cursor is disabled.
9886                  */
9887                 I915_WRITE(_CURACNTR, 0);
9888                 POSTING_READ(_CURACNTR);
9889                 intel_crtc->cursor_cntl = 0;
9890         }
9891
9892         if (intel_crtc->cursor_base != base) {
9893                 I915_WRITE(_CURABASE, base);
9894                 intel_crtc->cursor_base = base;
9895         }
9896
9897         if (intel_crtc->cursor_size != size) {
9898                 I915_WRITE(CURSIZE, size);
9899                 intel_crtc->cursor_size = size;
9900         }
9901
9902         if (intel_crtc->cursor_cntl != cntl) {
9903                 I915_WRITE(_CURACNTR, cntl);
9904                 POSTING_READ(_CURACNTR);
9905                 intel_crtc->cursor_cntl = cntl;
9906         }
9907 }
9908
9909 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9910 {
9911         struct drm_device *dev = crtc->dev;
9912         struct drm_i915_private *dev_priv = dev->dev_private;
9913         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9914         int pipe = intel_crtc->pipe;
9915         uint32_t cntl;
9916
9917         cntl = 0;
9918         if (base) {
9919                 cntl = MCURSOR_GAMMA_ENABLE;
9920                 switch (intel_crtc->base.cursor->state->crtc_w) {
9921                         case 64:
9922                                 cntl |= CURSOR_MODE_64_ARGB_AX;
9923                                 break;
9924                         case 128:
9925                                 cntl |= CURSOR_MODE_128_ARGB_AX;
9926                                 break;
9927                         case 256:
9928                                 cntl |= CURSOR_MODE_256_ARGB_AX;
9929                                 break;
9930                         default:
9931                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9932                                 return;
9933                 }
9934                 cntl |= pipe << 28; /* Connect to correct pipe */
9935
9936                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9937                         cntl |= CURSOR_PIPE_CSC_ENABLE;
9938         }
9939
9940         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9941                 cntl |= CURSOR_ROTATE_180;
9942
9943         if (intel_crtc->cursor_cntl != cntl) {
9944                 I915_WRITE(CURCNTR(pipe), cntl);
9945                 POSTING_READ(CURCNTR(pipe));
9946                 intel_crtc->cursor_cntl = cntl;
9947         }
9948
9949         /* and commit changes on next vblank */
9950         I915_WRITE(CURBASE(pipe), base);
9951         POSTING_READ(CURBASE(pipe));
9952
9953         intel_crtc->cursor_base = base;
9954 }
9955
9956 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9957 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9958                                      bool on)
9959 {
9960         struct drm_device *dev = crtc->dev;
9961         struct drm_i915_private *dev_priv = dev->dev_private;
9962         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9963         int pipe = intel_crtc->pipe;
9964         struct drm_plane_state *cursor_state = crtc->cursor->state;
9965         int x = cursor_state->crtc_x;
9966         int y = cursor_state->crtc_y;
9967         u32 base = 0, pos = 0;
9968
9969         if (on)
9970                 base = intel_crtc->cursor_addr;
9971
9972         if (x >= intel_crtc->config->pipe_src_w)
9973                 base = 0;
9974
9975         if (y >= intel_crtc->config->pipe_src_h)
9976                 base = 0;
9977
9978         if (x < 0) {
9979                 if (x + cursor_state->crtc_w <= 0)
9980                         base = 0;
9981
9982                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9983                 x = -x;
9984         }
9985         pos |= x << CURSOR_X_SHIFT;
9986
9987         if (y < 0) {
9988                 if (y + cursor_state->crtc_h <= 0)
9989                         base = 0;
9990
9991                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9992                 y = -y;
9993         }
9994         pos |= y << CURSOR_Y_SHIFT;
9995
9996         if (base == 0 && intel_crtc->cursor_base == 0)
9997                 return;
9998
9999         I915_WRITE(CURPOS(pipe), pos);
10000
10001         /* ILK+ do this automagically */
10002         if (HAS_GMCH_DISPLAY(dev) &&
10003             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10004                 base += (cursor_state->crtc_h *
10005                          cursor_state->crtc_w - 1) * 4;
10006         }
10007
10008         if (IS_845G(dev) || IS_I865G(dev))
10009                 i845_update_cursor(crtc, base);
10010         else
10011                 i9xx_update_cursor(crtc, base);
10012 }
10013
10014 static bool cursor_size_ok(struct drm_device *dev,
10015                            uint32_t width, uint32_t height)
10016 {
10017         if (width == 0 || height == 0)
10018                 return false;
10019
10020         /*
10021          * 845g/865g are special in that they are only limited by
10022          * the width of their cursors, the height is arbitrary up to
10023          * the precision of the register. Everything else requires
10024          * square cursors, limited to a few power-of-two sizes.
10025          */
10026         if (IS_845G(dev) || IS_I865G(dev)) {
10027                 if ((width & 63) != 0)
10028                         return false;
10029
10030                 if (width > (IS_845G(dev) ? 64 : 512))
10031                         return false;
10032
10033                 if (height > 1023)
10034                         return false;
10035         } else {
10036                 switch (width | height) {
10037                 case 256:
10038                 case 128:
10039                         if (IS_GEN2(dev))
10040                                 return false;
10041                 case 64:
10042                         break;
10043                 default:
10044                         return false;
10045                 }
10046         }
10047
10048         return true;
10049 }
10050
10051 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10052                                  u16 *blue, uint32_t start, uint32_t size)
10053 {
10054         int end = (start + size > 256) ? 256 : start + size, i;
10055         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10056
10057         for (i = start; i < end; i++) {
10058                 intel_crtc->lut_r[i] = red[i] >> 8;
10059                 intel_crtc->lut_g[i] = green[i] >> 8;
10060                 intel_crtc->lut_b[i] = blue[i] >> 8;
10061         }
10062
10063         intel_crtc_load_lut(crtc);
10064 }
10065
10066 /* VESA 640x480x72Hz mode to set on the pipe */
10067 static struct drm_display_mode load_detect_mode = {
10068         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10069                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10070 };
10071
10072 struct drm_framebuffer *
10073 __intel_framebuffer_create(struct drm_device *dev,
10074                            struct drm_mode_fb_cmd2 *mode_cmd,
10075                            struct drm_i915_gem_object *obj)
10076 {
10077         struct intel_framebuffer *intel_fb;
10078         int ret;
10079
10080         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10081         if (!intel_fb) {
10082                 drm_gem_object_unreference(&obj->base);
10083                 return ERR_PTR(-ENOMEM);
10084         }
10085
10086         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10087         if (ret)
10088                 goto err;
10089
10090         return &intel_fb->base;
10091 err:
10092         drm_gem_object_unreference(&obj->base);
10093         kfree(intel_fb);
10094
10095         return ERR_PTR(ret);
10096 }
10097
10098 static struct drm_framebuffer *
10099 intel_framebuffer_create(struct drm_device *dev,
10100                          struct drm_mode_fb_cmd2 *mode_cmd,
10101                          struct drm_i915_gem_object *obj)
10102 {
10103         struct drm_framebuffer *fb;
10104         int ret;
10105
10106         ret = i915_mutex_lock_interruptible(dev);
10107         if (ret)
10108                 return ERR_PTR(ret);
10109         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10110         mutex_unlock(&dev->struct_mutex);
10111
10112         return fb;
10113 }
10114
10115 static u32
10116 intel_framebuffer_pitch_for_width(int width, int bpp)
10117 {
10118         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10119         return ALIGN(pitch, 64);
10120 }
10121
10122 static u32
10123 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10124 {
10125         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10126         return PAGE_ALIGN(pitch * mode->vdisplay);
10127 }
10128
10129 static struct drm_framebuffer *
10130 intel_framebuffer_create_for_mode(struct drm_device *dev,
10131                                   struct drm_display_mode *mode,
10132                                   int depth, int bpp)
10133 {
10134         struct drm_i915_gem_object *obj;
10135         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10136
10137         obj = i915_gem_alloc_object(dev,
10138                                     intel_framebuffer_size_for_mode(mode, bpp));
10139         if (obj == NULL)
10140                 return ERR_PTR(-ENOMEM);
10141
10142         mode_cmd.width = mode->hdisplay;
10143         mode_cmd.height = mode->vdisplay;
10144         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10145                                                                 bpp);
10146         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10147
10148         return intel_framebuffer_create(dev, &mode_cmd, obj);
10149 }
10150
10151 static struct drm_framebuffer *
10152 mode_fits_in_fbdev(struct drm_device *dev,
10153                    struct drm_display_mode *mode)
10154 {
10155 #ifdef CONFIG_DRM_FBDEV_EMULATION
10156         struct drm_i915_private *dev_priv = dev->dev_private;
10157         struct drm_i915_gem_object *obj;
10158         struct drm_framebuffer *fb;
10159
10160         if (!dev_priv->fbdev)
10161                 return NULL;
10162
10163         if (!dev_priv->fbdev->fb)
10164                 return NULL;
10165
10166         obj = dev_priv->fbdev->fb->obj;
10167         BUG_ON(!obj);
10168
10169         fb = &dev_priv->fbdev->fb->base;
10170         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10171                                                                fb->bits_per_pixel))
10172                 return NULL;
10173
10174         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10175                 return NULL;
10176
10177         return fb;
10178 #else
10179         return NULL;
10180 #endif
10181 }
10182
10183 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10184                                            struct drm_crtc *crtc,
10185                                            struct drm_display_mode *mode,
10186                                            struct drm_framebuffer *fb,
10187                                            int x, int y)
10188 {
10189         struct drm_plane_state *plane_state;
10190         int hdisplay, vdisplay;
10191         int ret;
10192
10193         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10194         if (IS_ERR(plane_state))
10195                 return PTR_ERR(plane_state);
10196
10197         if (mode)
10198                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10199         else
10200                 hdisplay = vdisplay = 0;
10201
10202         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10203         if (ret)
10204                 return ret;
10205         drm_atomic_set_fb_for_plane(plane_state, fb);
10206         plane_state->crtc_x = 0;
10207         plane_state->crtc_y = 0;
10208         plane_state->crtc_w = hdisplay;
10209         plane_state->crtc_h = vdisplay;
10210         plane_state->src_x = x << 16;
10211         plane_state->src_y = y << 16;
10212         plane_state->src_w = hdisplay << 16;
10213         plane_state->src_h = vdisplay << 16;
10214
10215         return 0;
10216 }
10217
10218 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10219                                 struct drm_display_mode *mode,
10220                                 struct intel_load_detect_pipe *old,
10221                                 struct drm_modeset_acquire_ctx *ctx)
10222 {
10223         struct intel_crtc *intel_crtc;
10224         struct intel_encoder *intel_encoder =
10225                 intel_attached_encoder(connector);
10226         struct drm_crtc *possible_crtc;
10227         struct drm_encoder *encoder = &intel_encoder->base;
10228         struct drm_crtc *crtc = NULL;
10229         struct drm_device *dev = encoder->dev;
10230         struct drm_framebuffer *fb;
10231         struct drm_mode_config *config = &dev->mode_config;
10232         struct drm_atomic_state *state = NULL;
10233         struct drm_connector_state *connector_state;
10234         struct intel_crtc_state *crtc_state;
10235         int ret, i = -1;
10236
10237         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10238                       connector->base.id, connector->name,
10239                       encoder->base.id, encoder->name);
10240
10241 retry:
10242         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10243         if (ret)
10244                 goto fail;
10245
10246         /*
10247          * Algorithm gets a little messy:
10248          *
10249          *   - if the connector already has an assigned crtc, use it (but make
10250          *     sure it's on first)
10251          *
10252          *   - try to find the first unused crtc that can drive this connector,
10253          *     and use that if we find one
10254          */
10255
10256         /* See if we already have a CRTC for this connector */
10257         if (encoder->crtc) {
10258                 crtc = encoder->crtc;
10259
10260                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10261                 if (ret)
10262                         goto fail;
10263                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10264                 if (ret)
10265                         goto fail;
10266
10267                 old->dpms_mode = connector->dpms;
10268                 old->load_detect_temp = false;
10269
10270                 /* Make sure the crtc and connector are running */
10271                 if (connector->dpms != DRM_MODE_DPMS_ON)
10272                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10273
10274                 return true;
10275         }
10276
10277         /* Find an unused one (if possible) */
10278         for_each_crtc(dev, possible_crtc) {
10279                 i++;
10280                 if (!(encoder->possible_crtcs & (1 << i)))
10281                         continue;
10282                 if (possible_crtc->state->enable)
10283                         continue;
10284
10285                 crtc = possible_crtc;
10286                 break;
10287         }
10288
10289         /*
10290          * If we didn't find an unused CRTC, don't use any.
10291          */
10292         if (!crtc) {
10293                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10294                 goto fail;
10295         }
10296
10297         ret = drm_modeset_lock(&crtc->mutex, ctx);
10298         if (ret)
10299                 goto fail;
10300         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10301         if (ret)
10302                 goto fail;
10303
10304         intel_crtc = to_intel_crtc(crtc);
10305         old->dpms_mode = connector->dpms;
10306         old->load_detect_temp = true;
10307         old->release_fb = NULL;
10308
10309         state = drm_atomic_state_alloc(dev);
10310         if (!state)
10311                 return false;
10312
10313         state->acquire_ctx = ctx;
10314
10315         connector_state = drm_atomic_get_connector_state(state, connector);
10316         if (IS_ERR(connector_state)) {
10317                 ret = PTR_ERR(connector_state);
10318                 goto fail;
10319         }
10320
10321         connector_state->crtc = crtc;
10322         connector_state->best_encoder = &intel_encoder->base;
10323
10324         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10325         if (IS_ERR(crtc_state)) {
10326                 ret = PTR_ERR(crtc_state);
10327                 goto fail;
10328         }
10329
10330         crtc_state->base.active = crtc_state->base.enable = true;
10331
10332         if (!mode)
10333                 mode = &load_detect_mode;
10334
10335         /* We need a framebuffer large enough to accommodate all accesses
10336          * that the plane may generate whilst we perform load detection.
10337          * We can not rely on the fbcon either being present (we get called
10338          * during its initialisation to detect all boot displays, or it may
10339          * not even exist) or that it is large enough to satisfy the
10340          * requested mode.
10341          */
10342         fb = mode_fits_in_fbdev(dev, mode);
10343         if (fb == NULL) {
10344                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10345                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10346                 old->release_fb = fb;
10347         } else
10348                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10349         if (IS_ERR(fb)) {
10350                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10351                 goto fail;
10352         }
10353
10354         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10355         if (ret)
10356                 goto fail;
10357
10358         drm_mode_copy(&crtc_state->base.mode, mode);
10359
10360         if (drm_atomic_commit(state)) {
10361                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10362                 if (old->release_fb)
10363                         old->release_fb->funcs->destroy(old->release_fb);
10364                 goto fail;
10365         }
10366         crtc->primary->crtc = crtc;
10367
10368         /* let the connector get through one full cycle before testing */
10369         intel_wait_for_vblank(dev, intel_crtc->pipe);
10370         return true;
10371
10372 fail:
10373         drm_atomic_state_free(state);
10374         state = NULL;
10375
10376         if (ret == -EDEADLK) {
10377                 drm_modeset_backoff(ctx);
10378                 goto retry;
10379         }
10380
10381         return false;
10382 }
10383
10384 void intel_release_load_detect_pipe(struct drm_connector *connector,
10385                                     struct intel_load_detect_pipe *old,
10386                                     struct drm_modeset_acquire_ctx *ctx)
10387 {
10388         struct drm_device *dev = connector->dev;
10389         struct intel_encoder *intel_encoder =
10390                 intel_attached_encoder(connector);
10391         struct drm_encoder *encoder = &intel_encoder->base;
10392         struct drm_crtc *crtc = encoder->crtc;
10393         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10394         struct drm_atomic_state *state;
10395         struct drm_connector_state *connector_state;
10396         struct intel_crtc_state *crtc_state;
10397         int ret;
10398
10399         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10400                       connector->base.id, connector->name,
10401                       encoder->base.id, encoder->name);
10402
10403         if (old->load_detect_temp) {
10404                 state = drm_atomic_state_alloc(dev);
10405                 if (!state)
10406                         goto fail;
10407
10408                 state->acquire_ctx = ctx;
10409
10410                 connector_state = drm_atomic_get_connector_state(state, connector);
10411                 if (IS_ERR(connector_state))
10412                         goto fail;
10413
10414                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10415                 if (IS_ERR(crtc_state))
10416                         goto fail;
10417
10418                 connector_state->best_encoder = NULL;
10419                 connector_state->crtc = NULL;
10420
10421                 crtc_state->base.enable = crtc_state->base.active = false;
10422
10423                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10424                                                       0, 0);
10425                 if (ret)
10426                         goto fail;
10427
10428                 ret = drm_atomic_commit(state);
10429                 if (ret)
10430                         goto fail;
10431
10432                 if (old->release_fb) {
10433                         drm_framebuffer_unregister_private(old->release_fb);
10434                         drm_framebuffer_unreference(old->release_fb);
10435                 }
10436
10437                 return;
10438         }
10439
10440         /* Switch crtc and encoder back off if necessary */
10441         if (old->dpms_mode != DRM_MODE_DPMS_ON)
10442                 connector->funcs->dpms(connector, old->dpms_mode);
10443
10444         return;
10445 fail:
10446         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10447         drm_atomic_state_free(state);
10448 }
10449
10450 static int i9xx_pll_refclk(struct drm_device *dev,
10451                            const struct intel_crtc_state *pipe_config)
10452 {
10453         struct drm_i915_private *dev_priv = dev->dev_private;
10454         u32 dpll = pipe_config->dpll_hw_state.dpll;
10455
10456         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10457                 return dev_priv->vbt.lvds_ssc_freq;
10458         else if (HAS_PCH_SPLIT(dev))
10459                 return 120000;
10460         else if (!IS_GEN2(dev))
10461                 return 96000;
10462         else
10463                 return 48000;
10464 }
10465
10466 /* Returns the clock of the currently programmed mode of the given pipe. */
10467 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10468                                 struct intel_crtc_state *pipe_config)
10469 {
10470         struct drm_device *dev = crtc->base.dev;
10471         struct drm_i915_private *dev_priv = dev->dev_private;
10472         int pipe = pipe_config->cpu_transcoder;
10473         u32 dpll = pipe_config->dpll_hw_state.dpll;
10474         u32 fp;
10475         intel_clock_t clock;
10476         int port_clock;
10477         int refclk = i9xx_pll_refclk(dev, pipe_config);
10478
10479         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10480                 fp = pipe_config->dpll_hw_state.fp0;
10481         else
10482                 fp = pipe_config->dpll_hw_state.fp1;
10483
10484         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10485         if (IS_PINEVIEW(dev)) {
10486                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10487                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10488         } else {
10489                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10490                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10491         }
10492
10493         if (!IS_GEN2(dev)) {
10494                 if (IS_PINEVIEW(dev))
10495                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10496                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10497                 else
10498                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10499                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10500
10501                 switch (dpll & DPLL_MODE_MASK) {
10502                 case DPLLB_MODE_DAC_SERIAL:
10503                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10504                                 5 : 10;
10505                         break;
10506                 case DPLLB_MODE_LVDS:
10507                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10508                                 7 : 14;
10509                         break;
10510                 default:
10511                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10512                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10513                         return;
10514                 }
10515
10516                 if (IS_PINEVIEW(dev))
10517                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10518                 else
10519                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10520         } else {
10521                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10522                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10523
10524                 if (is_lvds) {
10525                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10526                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10527
10528                         if (lvds & LVDS_CLKB_POWER_UP)
10529                                 clock.p2 = 7;
10530                         else
10531                                 clock.p2 = 14;
10532                 } else {
10533                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10534                                 clock.p1 = 2;
10535                         else {
10536                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10537                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10538                         }
10539                         if (dpll & PLL_P2_DIVIDE_BY_4)
10540                                 clock.p2 = 4;
10541                         else
10542                                 clock.p2 = 2;
10543                 }
10544
10545                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10546         }
10547
10548         /*
10549          * This value includes pixel_multiplier. We will use
10550          * port_clock to compute adjusted_mode.crtc_clock in the
10551          * encoder's get_config() function.
10552          */
10553         pipe_config->port_clock = port_clock;
10554 }
10555
10556 int intel_dotclock_calculate(int link_freq,
10557                              const struct intel_link_m_n *m_n)
10558 {
10559         /*
10560          * The calculation for the data clock is:
10561          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10562          * But we want to avoid losing precison if possible, so:
10563          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10564          *
10565          * and the link clock is simpler:
10566          * link_clock = (m * link_clock) / n
10567          */
10568
10569         if (!m_n->link_n)
10570                 return 0;
10571
10572         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10573 }
10574
10575 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10576                                    struct intel_crtc_state *pipe_config)
10577 {
10578         struct drm_device *dev = crtc->base.dev;
10579
10580         /* read out port_clock from the DPLL */
10581         i9xx_crtc_clock_get(crtc, pipe_config);
10582
10583         /*
10584          * This value does not include pixel_multiplier.
10585          * We will check that port_clock and adjusted_mode.crtc_clock
10586          * agree once we know their relationship in the encoder's
10587          * get_config() function.
10588          */
10589         pipe_config->base.adjusted_mode.crtc_clock =
10590                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10591                                          &pipe_config->fdi_m_n);
10592 }
10593
10594 /** Returns the currently programmed mode of the given pipe. */
10595 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10596                                              struct drm_crtc *crtc)
10597 {
10598         struct drm_i915_private *dev_priv = dev->dev_private;
10599         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10600         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10601         struct drm_display_mode *mode;
10602         struct intel_crtc_state pipe_config;
10603         int htot = I915_READ(HTOTAL(cpu_transcoder));
10604         int hsync = I915_READ(HSYNC(cpu_transcoder));
10605         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10606         int vsync = I915_READ(VSYNC(cpu_transcoder));
10607         enum pipe pipe = intel_crtc->pipe;
10608
10609         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10610         if (!mode)
10611                 return NULL;
10612
10613         /*
10614          * Construct a pipe_config sufficient for getting the clock info
10615          * back out of crtc_clock_get.
10616          *
10617          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10618          * to use a real value here instead.
10619          */
10620         pipe_config.cpu_transcoder = (enum transcoder) pipe;
10621         pipe_config.pixel_multiplier = 1;
10622         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10623         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10624         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10625         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10626
10627         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10628         mode->hdisplay = (htot & 0xffff) + 1;
10629         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10630         mode->hsync_start = (hsync & 0xffff) + 1;
10631         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10632         mode->vdisplay = (vtot & 0xffff) + 1;
10633         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10634         mode->vsync_start = (vsync & 0xffff) + 1;
10635         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10636
10637         drm_mode_set_name(mode);
10638
10639         return mode;
10640 }
10641
10642 void intel_mark_busy(struct drm_device *dev)
10643 {
10644         struct drm_i915_private *dev_priv = dev->dev_private;
10645
10646         if (dev_priv->mm.busy)
10647                 return;
10648
10649         intel_runtime_pm_get(dev_priv);
10650         i915_update_gfx_val(dev_priv);
10651         if (INTEL_INFO(dev)->gen >= 6)
10652                 gen6_rps_busy(dev_priv);
10653         dev_priv->mm.busy = true;
10654 }
10655
10656 void intel_mark_idle(struct drm_device *dev)
10657 {
10658         struct drm_i915_private *dev_priv = dev->dev_private;
10659
10660         if (!dev_priv->mm.busy)
10661                 return;
10662
10663         dev_priv->mm.busy = false;
10664
10665         if (INTEL_INFO(dev)->gen >= 6)
10666                 gen6_rps_idle(dev->dev_private);
10667
10668         intel_runtime_pm_put(dev_priv);
10669 }
10670
10671 static void intel_crtc_destroy(struct drm_crtc *crtc)
10672 {
10673         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10674         struct drm_device *dev = crtc->dev;
10675         struct intel_unpin_work *work;
10676
10677         spin_lock_irq(&dev->event_lock);
10678         work = intel_crtc->unpin_work;
10679         intel_crtc->unpin_work = NULL;
10680         spin_unlock_irq(&dev->event_lock);
10681
10682         if (work) {
10683                 cancel_work_sync(&work->work);
10684                 kfree(work);
10685         }
10686
10687         drm_crtc_cleanup(crtc);
10688
10689         kfree(intel_crtc);
10690 }
10691
10692 static void intel_unpin_work_fn(struct work_struct *__work)
10693 {
10694         struct intel_unpin_work *work =
10695                 container_of(__work, struct intel_unpin_work, work);
10696         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10697         struct drm_device *dev = crtc->base.dev;
10698         struct drm_plane *primary = crtc->base.primary;
10699
10700         mutex_lock(&dev->struct_mutex);
10701         intel_unpin_fb_obj(work->old_fb, primary->state);
10702         drm_gem_object_unreference(&work->pending_flip_obj->base);
10703
10704         if (work->flip_queued_req)
10705                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10706         mutex_unlock(&dev->struct_mutex);
10707
10708         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10709         drm_framebuffer_unreference(work->old_fb);
10710
10711         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10712         atomic_dec(&crtc->unpin_work_count);
10713
10714         kfree(work);
10715 }
10716
10717 static void do_intel_finish_page_flip(struct drm_device *dev,
10718                                       struct drm_crtc *crtc)
10719 {
10720         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10721         struct intel_unpin_work *work;
10722         unsigned long flags;
10723
10724         /* Ignore early vblank irqs */
10725         if (intel_crtc == NULL)
10726                 return;
10727
10728         /*
10729          * This is called both by irq handlers and the reset code (to complete
10730          * lost pageflips) so needs the full irqsave spinlocks.
10731          */
10732         spin_lock_irqsave(&dev->event_lock, flags);
10733         work = intel_crtc->unpin_work;
10734
10735         /* Ensure we don't miss a work->pending update ... */
10736         smp_rmb();
10737
10738         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10739                 spin_unlock_irqrestore(&dev->event_lock, flags);
10740                 return;
10741         }
10742
10743         page_flip_completed(intel_crtc);
10744
10745         spin_unlock_irqrestore(&dev->event_lock, flags);
10746 }
10747
10748 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10749 {
10750         struct drm_i915_private *dev_priv = dev->dev_private;
10751         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10752
10753         do_intel_finish_page_flip(dev, crtc);
10754 }
10755
10756 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10757 {
10758         struct drm_i915_private *dev_priv = dev->dev_private;
10759         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10760
10761         do_intel_finish_page_flip(dev, crtc);
10762 }
10763
10764 /* Is 'a' after or equal to 'b'? */
10765 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10766 {
10767         return !((a - b) & 0x80000000);
10768 }
10769
10770 static bool page_flip_finished(struct intel_crtc *crtc)
10771 {
10772         struct drm_device *dev = crtc->base.dev;
10773         struct drm_i915_private *dev_priv = dev->dev_private;
10774
10775         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10776             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10777                 return true;
10778
10779         /*
10780          * The relevant registers doen't exist on pre-ctg.
10781          * As the flip done interrupt doesn't trigger for mmio
10782          * flips on gmch platforms, a flip count check isn't
10783          * really needed there. But since ctg has the registers,
10784          * include it in the check anyway.
10785          */
10786         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10787                 return true;
10788
10789         /*
10790          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10791          * used the same base address. In that case the mmio flip might
10792          * have completed, but the CS hasn't even executed the flip yet.
10793          *
10794          * A flip count check isn't enough as the CS might have updated
10795          * the base address just after start of vblank, but before we
10796          * managed to process the interrupt. This means we'd complete the
10797          * CS flip too soon.
10798          *
10799          * Combining both checks should get us a good enough result. It may
10800          * still happen that the CS flip has been executed, but has not
10801          * yet actually completed. But in case the base address is the same
10802          * anyway, we don't really care.
10803          */
10804         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10805                 crtc->unpin_work->gtt_offset &&
10806                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10807                                     crtc->unpin_work->flip_count);
10808 }
10809
10810 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10811 {
10812         struct drm_i915_private *dev_priv = dev->dev_private;
10813         struct intel_crtc *intel_crtc =
10814                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10815         unsigned long flags;
10816
10817
10818         /*
10819          * This is called both by irq handlers and the reset code (to complete
10820          * lost pageflips) so needs the full irqsave spinlocks.
10821          *
10822          * NB: An MMIO update of the plane base pointer will also
10823          * generate a page-flip completion irq, i.e. every modeset
10824          * is also accompanied by a spurious intel_prepare_page_flip().
10825          */
10826         spin_lock_irqsave(&dev->event_lock, flags);
10827         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10828                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10829         spin_unlock_irqrestore(&dev->event_lock, flags);
10830 }
10831
10832 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10833 {
10834         /* Ensure that the work item is consistent when activating it ... */
10835         smp_wmb();
10836         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10837         /* and that it is marked active as soon as the irq could fire. */
10838         smp_wmb();
10839 }
10840
10841 static int intel_gen2_queue_flip(struct drm_device *dev,
10842                                  struct drm_crtc *crtc,
10843                                  struct drm_framebuffer *fb,
10844                                  struct drm_i915_gem_object *obj,
10845                                  struct drm_i915_gem_request *req,
10846                                  uint32_t flags)
10847 {
10848         struct intel_engine_cs *ring = req->ring;
10849         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10850         u32 flip_mask;
10851         int ret;
10852
10853         ret = intel_ring_begin(req, 6);
10854         if (ret)
10855                 return ret;
10856
10857         /* Can't queue multiple flips, so wait for the previous
10858          * one to finish before executing the next.
10859          */
10860         if (intel_crtc->plane)
10861                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10862         else
10863                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10864         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10865         intel_ring_emit(ring, MI_NOOP);
10866         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10867                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10868         intel_ring_emit(ring, fb->pitches[0]);
10869         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10870         intel_ring_emit(ring, 0); /* aux display base address, unused */
10871
10872         intel_mark_page_flip_active(intel_crtc);
10873         return 0;
10874 }
10875
10876 static int intel_gen3_queue_flip(struct drm_device *dev,
10877                                  struct drm_crtc *crtc,
10878                                  struct drm_framebuffer *fb,
10879                                  struct drm_i915_gem_object *obj,
10880                                  struct drm_i915_gem_request *req,
10881                                  uint32_t flags)
10882 {
10883         struct intel_engine_cs *ring = req->ring;
10884         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10885         u32 flip_mask;
10886         int ret;
10887
10888         ret = intel_ring_begin(req, 6);
10889         if (ret)
10890                 return ret;
10891
10892         if (intel_crtc->plane)
10893                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10894         else
10895                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10896         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10897         intel_ring_emit(ring, MI_NOOP);
10898         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10899                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10900         intel_ring_emit(ring, fb->pitches[0]);
10901         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10902         intel_ring_emit(ring, MI_NOOP);
10903
10904         intel_mark_page_flip_active(intel_crtc);
10905         return 0;
10906 }
10907
10908 static int intel_gen4_queue_flip(struct drm_device *dev,
10909                                  struct drm_crtc *crtc,
10910                                  struct drm_framebuffer *fb,
10911                                  struct drm_i915_gem_object *obj,
10912                                  struct drm_i915_gem_request *req,
10913                                  uint32_t flags)
10914 {
10915         struct intel_engine_cs *ring = req->ring;
10916         struct drm_i915_private *dev_priv = dev->dev_private;
10917         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10918         uint32_t pf, pipesrc;
10919         int ret;
10920
10921         ret = intel_ring_begin(req, 4);
10922         if (ret)
10923                 return ret;
10924
10925         /* i965+ uses the linear or tiled offsets from the
10926          * Display Registers (which do not change across a page-flip)
10927          * so we need only reprogram the base address.
10928          */
10929         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10930                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10931         intel_ring_emit(ring, fb->pitches[0]);
10932         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10933                         obj->tiling_mode);
10934
10935         /* XXX Enabling the panel-fitter across page-flip is so far
10936          * untested on non-native modes, so ignore it for now.
10937          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10938          */
10939         pf = 0;
10940         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10941         intel_ring_emit(ring, pf | pipesrc);
10942
10943         intel_mark_page_flip_active(intel_crtc);
10944         return 0;
10945 }
10946
10947 static int intel_gen6_queue_flip(struct drm_device *dev,
10948                                  struct drm_crtc *crtc,
10949                                  struct drm_framebuffer *fb,
10950                                  struct drm_i915_gem_object *obj,
10951                                  struct drm_i915_gem_request *req,
10952                                  uint32_t flags)
10953 {
10954         struct intel_engine_cs *ring = req->ring;
10955         struct drm_i915_private *dev_priv = dev->dev_private;
10956         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10957         uint32_t pf, pipesrc;
10958         int ret;
10959
10960         ret = intel_ring_begin(req, 4);
10961         if (ret)
10962                 return ret;
10963
10964         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10965                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10966         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10967         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10968
10969         /* Contrary to the suggestions in the documentation,
10970          * "Enable Panel Fitter" does not seem to be required when page
10971          * flipping with a non-native mode, and worse causes a normal
10972          * modeset to fail.
10973          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10974          */
10975         pf = 0;
10976         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10977         intel_ring_emit(ring, pf | pipesrc);
10978
10979         intel_mark_page_flip_active(intel_crtc);
10980         return 0;
10981 }
10982
10983 static int intel_gen7_queue_flip(struct drm_device *dev,
10984                                  struct drm_crtc *crtc,
10985                                  struct drm_framebuffer *fb,
10986                                  struct drm_i915_gem_object *obj,
10987                                  struct drm_i915_gem_request *req,
10988                                  uint32_t flags)
10989 {
10990         struct intel_engine_cs *ring = req->ring;
10991         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10992         uint32_t plane_bit = 0;
10993         int len, ret;
10994
10995         switch (intel_crtc->plane) {
10996         case PLANE_A:
10997                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10998                 break;
10999         case PLANE_B:
11000                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11001                 break;
11002         case PLANE_C:
11003                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11004                 break;
11005         default:
11006                 WARN_ONCE(1, "unknown plane in flip command\n");
11007                 return -ENODEV;
11008         }
11009
11010         len = 4;
11011         if (ring->id == RCS) {
11012                 len += 6;
11013                 /*
11014                  * On Gen 8, SRM is now taking an extra dword to accommodate
11015                  * 48bits addresses, and we need a NOOP for the batch size to
11016                  * stay even.
11017                  */
11018                 if (IS_GEN8(dev))
11019                         len += 2;
11020         }
11021
11022         /*
11023          * BSpec MI_DISPLAY_FLIP for IVB:
11024          * "The full packet must be contained within the same cache line."
11025          *
11026          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11027          * cacheline, if we ever start emitting more commands before
11028          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11029          * then do the cacheline alignment, and finally emit the
11030          * MI_DISPLAY_FLIP.
11031          */
11032         ret = intel_ring_cacheline_align(req);
11033         if (ret)
11034                 return ret;
11035
11036         ret = intel_ring_begin(req, len);
11037         if (ret)
11038                 return ret;
11039
11040         /* Unmask the flip-done completion message. Note that the bspec says that
11041          * we should do this for both the BCS and RCS, and that we must not unmask
11042          * more than one flip event at any time (or ensure that one flip message
11043          * can be sent by waiting for flip-done prior to queueing new flips).
11044          * Experimentation says that BCS works despite DERRMR masking all
11045          * flip-done completion events and that unmasking all planes at once
11046          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11047          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11048          */
11049         if (ring->id == RCS) {
11050                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11051                 intel_ring_emit(ring, DERRMR);
11052                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11053                                         DERRMR_PIPEB_PRI_FLIP_DONE |
11054                                         DERRMR_PIPEC_PRI_FLIP_DONE));
11055                 if (IS_GEN8(dev))
11056                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11057                                               MI_SRM_LRM_GLOBAL_GTT);
11058                 else
11059                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11060                                               MI_SRM_LRM_GLOBAL_GTT);
11061                 intel_ring_emit(ring, DERRMR);
11062                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11063                 if (IS_GEN8(dev)) {
11064                         intel_ring_emit(ring, 0);
11065                         intel_ring_emit(ring, MI_NOOP);
11066                 }
11067         }
11068
11069         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11070         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11071         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11072         intel_ring_emit(ring, (MI_NOOP));
11073
11074         intel_mark_page_flip_active(intel_crtc);
11075         return 0;
11076 }
11077
11078 static bool use_mmio_flip(struct intel_engine_cs *ring,
11079                           struct drm_i915_gem_object *obj)
11080 {
11081         /*
11082          * This is not being used for older platforms, because
11083          * non-availability of flip done interrupt forces us to use
11084          * CS flips. Older platforms derive flip done using some clever
11085          * tricks involving the flip_pending status bits and vblank irqs.
11086          * So using MMIO flips there would disrupt this mechanism.
11087          */
11088
11089         if (ring == NULL)
11090                 return true;
11091
11092         if (INTEL_INFO(ring->dev)->gen < 5)
11093                 return false;
11094
11095         if (i915.use_mmio_flip < 0)
11096                 return false;
11097         else if (i915.use_mmio_flip > 0)
11098                 return true;
11099         else if (i915.enable_execlists)
11100                 return true;
11101         else
11102                 return ring != i915_gem_request_get_ring(obj->last_write_req);
11103 }
11104
11105 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
11106 {
11107         struct drm_device *dev = intel_crtc->base.dev;
11108         struct drm_i915_private *dev_priv = dev->dev_private;
11109         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11110         const enum pipe pipe = intel_crtc->pipe;
11111         u32 ctl, stride;
11112
11113         ctl = I915_READ(PLANE_CTL(pipe, 0));
11114         ctl &= ~PLANE_CTL_TILED_MASK;
11115         switch (fb->modifier[0]) {
11116         case DRM_FORMAT_MOD_NONE:
11117                 break;
11118         case I915_FORMAT_MOD_X_TILED:
11119                 ctl |= PLANE_CTL_TILED_X;
11120                 break;
11121         case I915_FORMAT_MOD_Y_TILED:
11122                 ctl |= PLANE_CTL_TILED_Y;
11123                 break;
11124         case I915_FORMAT_MOD_Yf_TILED:
11125                 ctl |= PLANE_CTL_TILED_YF;
11126                 break;
11127         default:
11128                 MISSING_CASE(fb->modifier[0]);
11129         }
11130
11131         /*
11132          * The stride is either expressed as a multiple of 64 bytes chunks for
11133          * linear buffers or in number of tiles for tiled buffers.
11134          */
11135         stride = fb->pitches[0] /
11136                  intel_fb_stride_alignment(dev, fb->modifier[0],
11137                                            fb->pixel_format);
11138
11139         /*
11140          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11141          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11142          */
11143         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11144         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11145
11146         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
11147         POSTING_READ(PLANE_SURF(pipe, 0));
11148 }
11149
11150 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
11151 {
11152         struct drm_device *dev = intel_crtc->base.dev;
11153         struct drm_i915_private *dev_priv = dev->dev_private;
11154         struct intel_framebuffer *intel_fb =
11155                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11156         struct drm_i915_gem_object *obj = intel_fb->obj;
11157         u32 dspcntr;
11158         u32 reg;
11159
11160         reg = DSPCNTR(intel_crtc->plane);
11161         dspcntr = I915_READ(reg);
11162
11163         if (obj->tiling_mode != I915_TILING_NONE)
11164                 dspcntr |= DISPPLANE_TILED;
11165         else
11166                 dspcntr &= ~DISPPLANE_TILED;
11167
11168         I915_WRITE(reg, dspcntr);
11169
11170         I915_WRITE(DSPSURF(intel_crtc->plane),
11171                    intel_crtc->unpin_work->gtt_offset);
11172         POSTING_READ(DSPSURF(intel_crtc->plane));
11173
11174 }
11175
11176 /*
11177  * XXX: This is the temporary way to update the plane registers until we get
11178  * around to using the usual plane update functions for MMIO flips
11179  */
11180 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
11181 {
11182         struct drm_device *dev = intel_crtc->base.dev;
11183
11184         intel_mark_page_flip_active(intel_crtc);
11185
11186         intel_pipe_update_start(intel_crtc);
11187
11188         if (INTEL_INFO(dev)->gen >= 9)
11189                 skl_do_mmio_flip(intel_crtc);
11190         else
11191                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11192                 ilk_do_mmio_flip(intel_crtc);
11193
11194         intel_pipe_update_end(intel_crtc);
11195 }
11196
11197 static void intel_mmio_flip_work_func(struct work_struct *work)
11198 {
11199         struct intel_mmio_flip *mmio_flip =
11200                 container_of(work, struct intel_mmio_flip, work);
11201
11202         if (mmio_flip->req)
11203                 WARN_ON(__i915_wait_request(mmio_flip->req,
11204                                             mmio_flip->crtc->reset_counter,
11205                                             false, NULL,
11206                                             &mmio_flip->i915->rps.mmioflips));
11207
11208         intel_do_mmio_flip(mmio_flip->crtc);
11209
11210         i915_gem_request_unreference__unlocked(mmio_flip->req);
11211         kfree(mmio_flip);
11212 }
11213
11214 static int intel_queue_mmio_flip(struct drm_device *dev,
11215                                  struct drm_crtc *crtc,
11216                                  struct drm_framebuffer *fb,
11217                                  struct drm_i915_gem_object *obj,
11218                                  struct intel_engine_cs *ring,
11219                                  uint32_t flags)
11220 {
11221         struct intel_mmio_flip *mmio_flip;
11222
11223         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11224         if (mmio_flip == NULL)
11225                 return -ENOMEM;
11226
11227         mmio_flip->i915 = to_i915(dev);
11228         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11229         mmio_flip->crtc = to_intel_crtc(crtc);
11230
11231         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11232         schedule_work(&mmio_flip->work);
11233
11234         return 0;
11235 }
11236
11237 static int intel_default_queue_flip(struct drm_device *dev,
11238                                     struct drm_crtc *crtc,
11239                                     struct drm_framebuffer *fb,
11240                                     struct drm_i915_gem_object *obj,
11241                                     struct drm_i915_gem_request *req,
11242                                     uint32_t flags)
11243 {
11244         return -ENODEV;
11245 }
11246
11247 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11248                                          struct drm_crtc *crtc)
11249 {
11250         struct drm_i915_private *dev_priv = dev->dev_private;
11251         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11252         struct intel_unpin_work *work = intel_crtc->unpin_work;
11253         u32 addr;
11254
11255         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11256                 return true;
11257
11258         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11259                 return false;
11260
11261         if (!work->enable_stall_check)
11262                 return false;
11263
11264         if (work->flip_ready_vblank == 0) {
11265                 if (work->flip_queued_req &&
11266                     !i915_gem_request_completed(work->flip_queued_req, true))
11267                         return false;
11268
11269                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11270         }
11271
11272         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11273                 return false;
11274
11275         /* Potential stall - if we see that the flip has happened,
11276          * assume a missed interrupt. */
11277         if (INTEL_INFO(dev)->gen >= 4)
11278                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11279         else
11280                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11281
11282         /* There is a potential issue here with a false positive after a flip
11283          * to the same address. We could address this by checking for a
11284          * non-incrementing frame counter.
11285          */
11286         return addr == work->gtt_offset;
11287 }
11288
11289 void intel_check_page_flip(struct drm_device *dev, int pipe)
11290 {
11291         struct drm_i915_private *dev_priv = dev->dev_private;
11292         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11293         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11294         struct intel_unpin_work *work;
11295
11296         WARN_ON(!in_interrupt());
11297
11298         if (crtc == NULL)
11299                 return;
11300
11301         spin_lock(&dev->event_lock);
11302         work = intel_crtc->unpin_work;
11303         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11304                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11305                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11306                 page_flip_completed(intel_crtc);
11307                 work = NULL;
11308         }
11309         if (work != NULL &&
11310             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11311                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11312         spin_unlock(&dev->event_lock);
11313 }
11314
11315 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11316                                 struct drm_framebuffer *fb,
11317                                 struct drm_pending_vblank_event *event,
11318                                 uint32_t page_flip_flags)
11319 {
11320         struct drm_device *dev = crtc->dev;
11321         struct drm_i915_private *dev_priv = dev->dev_private;
11322         struct drm_framebuffer *old_fb = crtc->primary->fb;
11323         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11324         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11325         struct drm_plane *primary = crtc->primary;
11326         enum pipe pipe = intel_crtc->pipe;
11327         struct intel_unpin_work *work;
11328         struct intel_engine_cs *ring;
11329         bool mmio_flip;
11330         struct drm_i915_gem_request *request = NULL;
11331         int ret;
11332
11333         /*
11334          * drm_mode_page_flip_ioctl() should already catch this, but double
11335          * check to be safe.  In the future we may enable pageflipping from
11336          * a disabled primary plane.
11337          */
11338         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11339                 return -EBUSY;
11340
11341         /* Can't change pixel format via MI display flips. */
11342         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11343                 return -EINVAL;
11344
11345         /*
11346          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11347          * Note that pitch changes could also affect these register.
11348          */
11349         if (INTEL_INFO(dev)->gen > 3 &&
11350             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11351              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11352                 return -EINVAL;
11353
11354         if (i915_terminally_wedged(&dev_priv->gpu_error))
11355                 goto out_hang;
11356
11357         work = kzalloc(sizeof(*work), GFP_KERNEL);
11358         if (work == NULL)
11359                 return -ENOMEM;
11360
11361         work->event = event;
11362         work->crtc = crtc;
11363         work->old_fb = old_fb;
11364         INIT_WORK(&work->work, intel_unpin_work_fn);
11365
11366         ret = drm_crtc_vblank_get(crtc);
11367         if (ret)
11368                 goto free_work;
11369
11370         /* We borrow the event spin lock for protecting unpin_work */
11371         spin_lock_irq(&dev->event_lock);
11372         if (intel_crtc->unpin_work) {
11373                 /* Before declaring the flip queue wedged, check if
11374                  * the hardware completed the operation behind our backs.
11375                  */
11376                 if (__intel_pageflip_stall_check(dev, crtc)) {
11377                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11378                         page_flip_completed(intel_crtc);
11379                 } else {
11380                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11381                         spin_unlock_irq(&dev->event_lock);
11382
11383                         drm_crtc_vblank_put(crtc);
11384                         kfree(work);
11385                         return -EBUSY;
11386                 }
11387         }
11388         intel_crtc->unpin_work = work;
11389         spin_unlock_irq(&dev->event_lock);
11390
11391         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11392                 flush_workqueue(dev_priv->wq);
11393
11394         /* Reference the objects for the scheduled work. */
11395         drm_framebuffer_reference(work->old_fb);
11396         drm_gem_object_reference(&obj->base);
11397
11398         crtc->primary->fb = fb;
11399         update_state_fb(crtc->primary);
11400
11401         work->pending_flip_obj = obj;
11402
11403         ret = i915_mutex_lock_interruptible(dev);
11404         if (ret)
11405                 goto cleanup;
11406
11407         atomic_inc(&intel_crtc->unpin_work_count);
11408         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11409
11410         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11411                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11412
11413         if (IS_VALLEYVIEW(dev)) {
11414                 ring = &dev_priv->ring[BCS];
11415                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11416                         /* vlv: DISPLAY_FLIP fails to change tiling */
11417                         ring = NULL;
11418         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11419                 ring = &dev_priv->ring[BCS];
11420         } else if (INTEL_INFO(dev)->gen >= 7) {
11421                 ring = i915_gem_request_get_ring(obj->last_write_req);
11422                 if (ring == NULL || ring->id != RCS)
11423                         ring = &dev_priv->ring[BCS];
11424         } else {
11425                 ring = &dev_priv->ring[RCS];
11426         }
11427
11428         mmio_flip = use_mmio_flip(ring, obj);
11429
11430         /* When using CS flips, we want to emit semaphores between rings.
11431          * However, when using mmio flips we will create a task to do the
11432          * synchronisation, so all we want here is to pin the framebuffer
11433          * into the display plane and skip any waits.
11434          */
11435         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11436                                          crtc->primary->state,
11437                                          mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11438         if (ret)
11439                 goto cleanup_pending;
11440
11441         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11442                                                   obj, 0);
11443         work->gtt_offset += intel_crtc->dspaddr_offset;
11444
11445         if (mmio_flip) {
11446                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11447                                             page_flip_flags);
11448                 if (ret)
11449                         goto cleanup_unpin;
11450
11451                 i915_gem_request_assign(&work->flip_queued_req,
11452                                         obj->last_write_req);
11453         } else {
11454                 if (!request) {
11455                         ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11456                         if (ret)
11457                                 goto cleanup_unpin;
11458                 }
11459
11460                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11461                                                    page_flip_flags);
11462                 if (ret)
11463                         goto cleanup_unpin;
11464
11465                 i915_gem_request_assign(&work->flip_queued_req, request);
11466         }
11467
11468         if (request)
11469                 i915_add_request_no_flush(request);
11470
11471         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11472         work->enable_stall_check = true;
11473
11474         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11475                           to_intel_plane(primary)->frontbuffer_bit);
11476         mutex_unlock(&dev->struct_mutex);
11477
11478         intel_fbc_disable_crtc(intel_crtc);
11479         intel_frontbuffer_flip_prepare(dev,
11480                                        to_intel_plane(primary)->frontbuffer_bit);
11481
11482         trace_i915_flip_request(intel_crtc->plane, obj);
11483
11484         return 0;
11485
11486 cleanup_unpin:
11487         intel_unpin_fb_obj(fb, crtc->primary->state);
11488 cleanup_pending:
11489         if (request)
11490                 i915_gem_request_cancel(request);
11491         atomic_dec(&intel_crtc->unpin_work_count);
11492         mutex_unlock(&dev->struct_mutex);
11493 cleanup:
11494         crtc->primary->fb = old_fb;
11495         update_state_fb(crtc->primary);
11496
11497         drm_gem_object_unreference_unlocked(&obj->base);
11498         drm_framebuffer_unreference(work->old_fb);
11499
11500         spin_lock_irq(&dev->event_lock);
11501         intel_crtc->unpin_work = NULL;
11502         spin_unlock_irq(&dev->event_lock);
11503
11504         drm_crtc_vblank_put(crtc);
11505 free_work:
11506         kfree(work);
11507
11508         if (ret == -EIO) {
11509                 struct drm_atomic_state *state;
11510                 struct drm_plane_state *plane_state;
11511
11512 out_hang:
11513                 state = drm_atomic_state_alloc(dev);
11514                 if (!state)
11515                         return -ENOMEM;
11516                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11517
11518 retry:
11519                 plane_state = drm_atomic_get_plane_state(state, primary);
11520                 ret = PTR_ERR_OR_ZERO(plane_state);
11521                 if (!ret) {
11522                         drm_atomic_set_fb_for_plane(plane_state, fb);
11523
11524                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11525                         if (!ret)
11526                                 ret = drm_atomic_commit(state);
11527                 }
11528
11529                 if (ret == -EDEADLK) {
11530                         drm_modeset_backoff(state->acquire_ctx);
11531                         drm_atomic_state_clear(state);
11532                         goto retry;
11533                 }
11534
11535                 if (ret)
11536                         drm_atomic_state_free(state);
11537
11538                 if (ret == 0 && event) {
11539                         spin_lock_irq(&dev->event_lock);
11540                         drm_send_vblank_event(dev, pipe, event);
11541                         spin_unlock_irq(&dev->event_lock);
11542                 }
11543         }
11544         return ret;
11545 }
11546
11547
11548 /**
11549  * intel_wm_need_update - Check whether watermarks need updating
11550  * @plane: drm plane
11551  * @state: new plane state
11552  *
11553  * Check current plane state versus the new one to determine whether
11554  * watermarks need to be recalculated.
11555  *
11556  * Returns true or false.
11557  */
11558 static bool intel_wm_need_update(struct drm_plane *plane,
11559                                  struct drm_plane_state *state)
11560 {
11561         /* Update watermarks on tiling changes. */
11562         if (!plane->state->fb || !state->fb ||
11563             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11564             plane->state->rotation != state->rotation)
11565                 return true;
11566
11567         if (plane->state->crtc_w != state->crtc_w)
11568                 return true;
11569
11570         return false;
11571 }
11572
11573 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11574                                     struct drm_plane_state *plane_state)
11575 {
11576         struct drm_crtc *crtc = crtc_state->crtc;
11577         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11578         struct drm_plane *plane = plane_state->plane;
11579         struct drm_device *dev = crtc->dev;
11580         struct drm_i915_private *dev_priv = dev->dev_private;
11581         struct intel_plane_state *old_plane_state =
11582                 to_intel_plane_state(plane->state);
11583         int idx = intel_crtc->base.base.id, ret;
11584         int i = drm_plane_index(plane);
11585         bool mode_changed = needs_modeset(crtc_state);
11586         bool was_crtc_enabled = crtc->state->active;
11587         bool is_crtc_enabled = crtc_state->active;
11588
11589         bool turn_off, turn_on, visible, was_visible;
11590         struct drm_framebuffer *fb = plane_state->fb;
11591
11592         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11593             plane->type != DRM_PLANE_TYPE_CURSOR) {
11594                 ret = skl_update_scaler_plane(
11595                         to_intel_crtc_state(crtc_state),
11596                         to_intel_plane_state(plane_state));
11597                 if (ret)
11598                         return ret;
11599         }
11600
11601         /*
11602          * Disabling a plane is always okay; we just need to update
11603          * fb tracking in a special way since cleanup_fb() won't
11604          * get called by the plane helpers.
11605          */
11606         if (old_plane_state->base.fb && !fb)
11607                 intel_crtc->atomic.disabled_planes |= 1 << i;
11608
11609         was_visible = old_plane_state->visible;
11610         visible = to_intel_plane_state(plane_state)->visible;
11611
11612         if (!was_crtc_enabled && WARN_ON(was_visible))
11613                 was_visible = false;
11614
11615         if (!is_crtc_enabled && WARN_ON(visible))
11616                 visible = false;
11617
11618         if (!was_visible && !visible)
11619                 return 0;
11620
11621         turn_off = was_visible && (!visible || mode_changed);
11622         turn_on = visible && (!was_visible || mode_changed);
11623
11624         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11625                          plane->base.id, fb ? fb->base.id : -1);
11626
11627         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11628                          plane->base.id, was_visible, visible,
11629                          turn_off, turn_on, mode_changed);
11630
11631         if (turn_on) {
11632                 intel_crtc->atomic.update_wm_pre = true;
11633                 /* must disable cxsr around plane enable/disable */
11634                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11635                         intel_crtc->atomic.disable_cxsr = true;
11636                         /* to potentially re-enable cxsr */
11637                         intel_crtc->atomic.wait_vblank = true;
11638                         intel_crtc->atomic.update_wm_post = true;
11639                 }
11640         } else if (turn_off) {
11641                 intel_crtc->atomic.update_wm_post = true;
11642                 /* must disable cxsr around plane enable/disable */
11643                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11644                         if (is_crtc_enabled)
11645                                 intel_crtc->atomic.wait_vblank = true;
11646                         intel_crtc->atomic.disable_cxsr = true;
11647                 }
11648         } else if (intel_wm_need_update(plane, plane_state)) {
11649                 intel_crtc->atomic.update_wm_pre = true;
11650         }
11651
11652         if (visible || was_visible)
11653                 intel_crtc->atomic.fb_bits |=
11654                         to_intel_plane(plane)->frontbuffer_bit;
11655
11656         switch (plane->type) {
11657         case DRM_PLANE_TYPE_PRIMARY:
11658                 intel_crtc->atomic.wait_for_flips = true;
11659                 intel_crtc->atomic.pre_disable_primary = turn_off;
11660                 intel_crtc->atomic.post_enable_primary = turn_on;
11661
11662                 if (turn_off) {
11663                         /*
11664                          * FIXME: Actually if we will still have any other
11665                          * plane enabled on the pipe we could let IPS enabled
11666                          * still, but for now lets consider that when we make
11667                          * primary invisible by setting DSPCNTR to 0 on
11668                          * update_primary_plane function IPS needs to be
11669                          * disable.
11670                          */
11671                         intel_crtc->atomic.disable_ips = true;
11672
11673                         intel_crtc->atomic.disable_fbc = true;
11674                 }
11675
11676                 /*
11677                  * FBC does not work on some platforms for rotated
11678                  * planes, so disable it when rotation is not 0 and
11679                  * update it when rotation is set back to 0.
11680                  *
11681                  * FIXME: This is redundant with the fbc update done in
11682                  * the primary plane enable function except that that
11683                  * one is done too late. We eventually need to unify
11684                  * this.
11685                  */
11686
11687                 if (visible &&
11688                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11689                     dev_priv->fbc.crtc == intel_crtc &&
11690                     plane_state->rotation != BIT(DRM_ROTATE_0))
11691                         intel_crtc->atomic.disable_fbc = true;
11692
11693                 /*
11694                  * BDW signals flip done immediately if the plane
11695                  * is disabled, even if the plane enable is already
11696                  * armed to occur at the next vblank :(
11697                  */
11698                 if (turn_on && IS_BROADWELL(dev))
11699                         intel_crtc->atomic.wait_vblank = true;
11700
11701                 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11702                 break;
11703         case DRM_PLANE_TYPE_CURSOR:
11704                 break;
11705         case DRM_PLANE_TYPE_OVERLAY:
11706                 if (turn_off && !mode_changed) {
11707                         intel_crtc->atomic.wait_vblank = true;
11708                         intel_crtc->atomic.update_sprite_watermarks |=
11709                                 1 << i;
11710                 }
11711         }
11712         return 0;
11713 }
11714
11715 static bool encoders_cloneable(const struct intel_encoder *a,
11716                                const struct intel_encoder *b)
11717 {
11718         /* masks could be asymmetric, so check both ways */
11719         return a == b || (a->cloneable & (1 << b->type) &&
11720                           b->cloneable & (1 << a->type));
11721 }
11722
11723 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11724                                          struct intel_crtc *crtc,
11725                                          struct intel_encoder *encoder)
11726 {
11727         struct intel_encoder *source_encoder;
11728         struct drm_connector *connector;
11729         struct drm_connector_state *connector_state;
11730         int i;
11731
11732         for_each_connector_in_state(state, connector, connector_state, i) {
11733                 if (connector_state->crtc != &crtc->base)
11734                         continue;
11735
11736                 source_encoder =
11737                         to_intel_encoder(connector_state->best_encoder);
11738                 if (!encoders_cloneable(encoder, source_encoder))
11739                         return false;
11740         }
11741
11742         return true;
11743 }
11744
11745 static bool check_encoder_cloning(struct drm_atomic_state *state,
11746                                   struct intel_crtc *crtc)
11747 {
11748         struct intel_encoder *encoder;
11749         struct drm_connector *connector;
11750         struct drm_connector_state *connector_state;
11751         int i;
11752
11753         for_each_connector_in_state(state, connector, connector_state, i) {
11754                 if (connector_state->crtc != &crtc->base)
11755                         continue;
11756
11757                 encoder = to_intel_encoder(connector_state->best_encoder);
11758                 if (!check_single_encoder_cloning(state, crtc, encoder))
11759                         return false;
11760         }
11761
11762         return true;
11763 }
11764
11765 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11766                                    struct drm_crtc_state *crtc_state)
11767 {
11768         struct drm_device *dev = crtc->dev;
11769         struct drm_i915_private *dev_priv = dev->dev_private;
11770         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11771         struct intel_crtc_state *pipe_config =
11772                 to_intel_crtc_state(crtc_state);
11773         struct drm_atomic_state *state = crtc_state->state;
11774         int ret;
11775         bool mode_changed = needs_modeset(crtc_state);
11776
11777         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11778                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11779                 return -EINVAL;
11780         }
11781
11782         if (mode_changed && !crtc_state->active)
11783                 intel_crtc->atomic.update_wm_post = true;
11784
11785         if (mode_changed && crtc_state->enable &&
11786             dev_priv->display.crtc_compute_clock &&
11787             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11788                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11789                                                            pipe_config);
11790                 if (ret)
11791                         return ret;
11792         }
11793
11794         ret = 0;
11795         if (INTEL_INFO(dev)->gen >= 9) {
11796                 if (mode_changed)
11797                         ret = skl_update_scaler_crtc(pipe_config);
11798
11799                 if (!ret)
11800                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
11801                                                          pipe_config);
11802         }
11803
11804         return ret;
11805 }
11806
11807 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11808         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11809         .load_lut = intel_crtc_load_lut,
11810         .atomic_begin = intel_begin_crtc_commit,
11811         .atomic_flush = intel_finish_crtc_commit,
11812         .atomic_check = intel_crtc_atomic_check,
11813 };
11814
11815 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11816 {
11817         struct intel_connector *connector;
11818
11819         for_each_intel_connector(dev, connector) {
11820                 if (connector->base.encoder) {
11821                         connector->base.state->best_encoder =
11822                                 connector->base.encoder;
11823                         connector->base.state->crtc =
11824                                 connector->base.encoder->crtc;
11825                 } else {
11826                         connector->base.state->best_encoder = NULL;
11827                         connector->base.state->crtc = NULL;
11828                 }
11829         }
11830 }
11831
11832 static void
11833 connected_sink_compute_bpp(struct intel_connector *connector,
11834                            struct intel_crtc_state *pipe_config)
11835 {
11836         int bpp = pipe_config->pipe_bpp;
11837
11838         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11839                 connector->base.base.id,
11840                 connector->base.name);
11841
11842         /* Don't use an invalid EDID bpc value */
11843         if (connector->base.display_info.bpc &&
11844             connector->base.display_info.bpc * 3 < bpp) {
11845                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11846                               bpp, connector->base.display_info.bpc*3);
11847                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11848         }
11849
11850         /* Clamp bpp to 8 on screens without EDID 1.4 */
11851         if (connector->base.display_info.bpc == 0 && bpp > 24) {
11852                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11853                               bpp);
11854                 pipe_config->pipe_bpp = 24;
11855         }
11856 }
11857
11858 static int
11859 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11860                           struct intel_crtc_state *pipe_config)
11861 {
11862         struct drm_device *dev = crtc->base.dev;
11863         struct drm_atomic_state *state;
11864         struct drm_connector *connector;
11865         struct drm_connector_state *connector_state;
11866         int bpp, i;
11867
11868         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11869                 bpp = 10*3;
11870         else if (INTEL_INFO(dev)->gen >= 5)
11871                 bpp = 12*3;
11872         else
11873                 bpp = 8*3;
11874
11875
11876         pipe_config->pipe_bpp = bpp;
11877
11878         state = pipe_config->base.state;
11879
11880         /* Clamp display bpp to EDID value */
11881         for_each_connector_in_state(state, connector, connector_state, i) {
11882                 if (connector_state->crtc != &crtc->base)
11883                         continue;
11884
11885                 connected_sink_compute_bpp(to_intel_connector(connector),
11886                                            pipe_config);
11887         }
11888
11889         return bpp;
11890 }
11891
11892 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11893 {
11894         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11895                         "type: 0x%x flags: 0x%x\n",
11896                 mode->crtc_clock,
11897                 mode->crtc_hdisplay, mode->crtc_hsync_start,
11898                 mode->crtc_hsync_end, mode->crtc_htotal,
11899                 mode->crtc_vdisplay, mode->crtc_vsync_start,
11900                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11901 }
11902
11903 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11904                                    struct intel_crtc_state *pipe_config,
11905                                    const char *context)
11906 {
11907         struct drm_device *dev = crtc->base.dev;
11908         struct drm_plane *plane;
11909         struct intel_plane *intel_plane;
11910         struct intel_plane_state *state;
11911         struct drm_framebuffer *fb;
11912
11913         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11914                       context, pipe_config, pipe_name(crtc->pipe));
11915
11916         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11917         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11918                       pipe_config->pipe_bpp, pipe_config->dither);
11919         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11920                       pipe_config->has_pch_encoder,
11921                       pipe_config->fdi_lanes,
11922                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11923                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11924                       pipe_config->fdi_m_n.tu);
11925         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11926                       pipe_config->has_dp_encoder,
11927                       pipe_config->lane_count,
11928                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11929                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11930                       pipe_config->dp_m_n.tu);
11931
11932         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11933                       pipe_config->has_dp_encoder,
11934                       pipe_config->lane_count,
11935                       pipe_config->dp_m2_n2.gmch_m,
11936                       pipe_config->dp_m2_n2.gmch_n,
11937                       pipe_config->dp_m2_n2.link_m,
11938                       pipe_config->dp_m2_n2.link_n,
11939                       pipe_config->dp_m2_n2.tu);
11940
11941         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11942                       pipe_config->has_audio,
11943                       pipe_config->has_infoframe);
11944
11945         DRM_DEBUG_KMS("requested mode:\n");
11946         drm_mode_debug_printmodeline(&pipe_config->base.mode);
11947         DRM_DEBUG_KMS("adjusted mode:\n");
11948         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11949         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11950         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11951         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11952                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11953         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11954                       crtc->num_scalers,
11955                       pipe_config->scaler_state.scaler_users,
11956                       pipe_config->scaler_state.scaler_id);
11957         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11958                       pipe_config->gmch_pfit.control,
11959                       pipe_config->gmch_pfit.pgm_ratios,
11960                       pipe_config->gmch_pfit.lvds_border_bits);
11961         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11962                       pipe_config->pch_pfit.pos,
11963                       pipe_config->pch_pfit.size,
11964                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11965         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11966         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11967
11968         if (IS_BROXTON(dev)) {
11969                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
11970                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11971                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
11972                               pipe_config->ddi_pll_sel,
11973                               pipe_config->dpll_hw_state.ebb0,
11974                               pipe_config->dpll_hw_state.ebb4,
11975                               pipe_config->dpll_hw_state.pll0,
11976                               pipe_config->dpll_hw_state.pll1,
11977                               pipe_config->dpll_hw_state.pll2,
11978                               pipe_config->dpll_hw_state.pll3,
11979                               pipe_config->dpll_hw_state.pll6,
11980                               pipe_config->dpll_hw_state.pll8,
11981                               pipe_config->dpll_hw_state.pll9,
11982                               pipe_config->dpll_hw_state.pll10,
11983                               pipe_config->dpll_hw_state.pcsdw12);
11984         } else if (IS_SKYLAKE(dev)) {
11985                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
11986                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
11987                               pipe_config->ddi_pll_sel,
11988                               pipe_config->dpll_hw_state.ctrl1,
11989                               pipe_config->dpll_hw_state.cfgcr1,
11990                               pipe_config->dpll_hw_state.cfgcr2);
11991         } else if (HAS_DDI(dev)) {
11992                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
11993                               pipe_config->ddi_pll_sel,
11994                               pipe_config->dpll_hw_state.wrpll);
11995         } else {
11996                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
11997                               "fp0: 0x%x, fp1: 0x%x\n",
11998                               pipe_config->dpll_hw_state.dpll,
11999                               pipe_config->dpll_hw_state.dpll_md,
12000                               pipe_config->dpll_hw_state.fp0,
12001                               pipe_config->dpll_hw_state.fp1);
12002         }
12003
12004         DRM_DEBUG_KMS("planes on this crtc\n");
12005         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12006                 intel_plane = to_intel_plane(plane);
12007                 if (intel_plane->pipe != crtc->pipe)
12008                         continue;
12009
12010                 state = to_intel_plane_state(plane->state);
12011                 fb = state->base.fb;
12012                 if (!fb) {
12013                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12014                                 "disabled, scaler_id = %d\n",
12015                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12016                                 plane->base.id, intel_plane->pipe,
12017                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12018                                 drm_plane_index(plane), state->scaler_id);
12019                         continue;
12020                 }
12021
12022                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12023                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12024                         plane->base.id, intel_plane->pipe,
12025                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12026                         drm_plane_index(plane));
12027                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12028                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12029                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12030                         state->scaler_id,
12031                         state->src.x1 >> 16, state->src.y1 >> 16,
12032                         drm_rect_width(&state->src) >> 16,
12033                         drm_rect_height(&state->src) >> 16,
12034                         state->dst.x1, state->dst.y1,
12035                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12036         }
12037 }
12038
12039 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12040 {
12041         struct drm_device *dev = state->dev;
12042         struct intel_encoder *encoder;
12043         struct drm_connector *connector;
12044         struct drm_connector_state *connector_state;
12045         unsigned int used_ports = 0;
12046         int i;
12047
12048         /*
12049          * Walk the connector list instead of the encoder
12050          * list to detect the problem on ddi platforms
12051          * where there's just one encoder per digital port.
12052          */
12053         for_each_connector_in_state(state, connector, connector_state, i) {
12054                 if (!connector_state->best_encoder)
12055                         continue;
12056
12057                 encoder = to_intel_encoder(connector_state->best_encoder);
12058
12059                 WARN_ON(!connector_state->crtc);
12060
12061                 switch (encoder->type) {
12062                         unsigned int port_mask;
12063                 case INTEL_OUTPUT_UNKNOWN:
12064                         if (WARN_ON(!HAS_DDI(dev)))
12065                                 break;
12066                 case INTEL_OUTPUT_DISPLAYPORT:
12067                 case INTEL_OUTPUT_HDMI:
12068                 case INTEL_OUTPUT_EDP:
12069                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12070
12071                         /* the same port mustn't appear more than once */
12072                         if (used_ports & port_mask)
12073                                 return false;
12074
12075                         used_ports |= port_mask;
12076                 default:
12077                         break;
12078                 }
12079         }
12080
12081         return true;
12082 }
12083
12084 static void
12085 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12086 {
12087         struct drm_crtc_state tmp_state;
12088         struct intel_crtc_scaler_state scaler_state;
12089         struct intel_dpll_hw_state dpll_hw_state;
12090         enum intel_dpll_id shared_dpll;
12091         uint32_t ddi_pll_sel;
12092         bool force_thru;
12093
12094         /* FIXME: before the switch to atomic started, a new pipe_config was
12095          * kzalloc'd. Code that depends on any field being zero should be
12096          * fixed, so that the crtc_state can be safely duplicated. For now,
12097          * only fields that are know to not cause problems are preserved. */
12098
12099         tmp_state = crtc_state->base;
12100         scaler_state = crtc_state->scaler_state;
12101         shared_dpll = crtc_state->shared_dpll;
12102         dpll_hw_state = crtc_state->dpll_hw_state;
12103         ddi_pll_sel = crtc_state->ddi_pll_sel;
12104         force_thru = crtc_state->pch_pfit.force_thru;
12105
12106         memset(crtc_state, 0, sizeof *crtc_state);
12107
12108         crtc_state->base = tmp_state;
12109         crtc_state->scaler_state = scaler_state;
12110         crtc_state->shared_dpll = shared_dpll;
12111         crtc_state->dpll_hw_state = dpll_hw_state;
12112         crtc_state->ddi_pll_sel = ddi_pll_sel;
12113         crtc_state->pch_pfit.force_thru = force_thru;
12114 }
12115
12116 static int
12117 intel_modeset_pipe_config(struct drm_crtc *crtc,
12118                           struct intel_crtc_state *pipe_config)
12119 {
12120         struct drm_atomic_state *state = pipe_config->base.state;
12121         struct intel_encoder *encoder;
12122         struct drm_connector *connector;
12123         struct drm_connector_state *connector_state;
12124         int base_bpp, ret = -EINVAL;
12125         int i;
12126         bool retry = true;
12127
12128         clear_intel_crtc_state(pipe_config);
12129
12130         pipe_config->cpu_transcoder =
12131                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12132
12133         /*
12134          * Sanitize sync polarity flags based on requested ones. If neither
12135          * positive or negative polarity is requested, treat this as meaning
12136          * negative polarity.
12137          */
12138         if (!(pipe_config->base.adjusted_mode.flags &
12139               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12140                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12141
12142         if (!(pipe_config->base.adjusted_mode.flags &
12143               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12144                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12145
12146         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12147                                              pipe_config);
12148         if (base_bpp < 0)
12149                 goto fail;
12150
12151         /*
12152          * Determine the real pipe dimensions. Note that stereo modes can
12153          * increase the actual pipe size due to the frame doubling and
12154          * insertion of additional space for blanks between the frame. This
12155          * is stored in the crtc timings. We use the requested mode to do this
12156          * computation to clearly distinguish it from the adjusted mode, which
12157          * can be changed by the connectors in the below retry loop.
12158          */
12159         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12160                                &pipe_config->pipe_src_w,
12161                                &pipe_config->pipe_src_h);
12162
12163 encoder_retry:
12164         /* Ensure the port clock defaults are reset when retrying. */
12165         pipe_config->port_clock = 0;
12166         pipe_config->pixel_multiplier = 1;
12167
12168         /* Fill in default crtc timings, allow encoders to overwrite them. */
12169         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12170                               CRTC_STEREO_DOUBLE);
12171
12172         /* Pass our mode to the connectors and the CRTC to give them a chance to
12173          * adjust it according to limitations or connector properties, and also
12174          * a chance to reject the mode entirely.
12175          */
12176         for_each_connector_in_state(state, connector, connector_state, i) {
12177                 if (connector_state->crtc != crtc)
12178                         continue;
12179
12180                 encoder = to_intel_encoder(connector_state->best_encoder);
12181
12182                 if (!(encoder->compute_config(encoder, pipe_config))) {
12183                         DRM_DEBUG_KMS("Encoder config failure\n");
12184                         goto fail;
12185                 }
12186         }
12187
12188         /* Set default port clock if not overwritten by the encoder. Needs to be
12189          * done afterwards in case the encoder adjusts the mode. */
12190         if (!pipe_config->port_clock)
12191                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12192                         * pipe_config->pixel_multiplier;
12193
12194         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12195         if (ret < 0) {
12196                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12197                 goto fail;
12198         }
12199
12200         if (ret == RETRY) {
12201                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12202                         ret = -EINVAL;
12203                         goto fail;
12204                 }
12205
12206                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12207                 retry = false;
12208                 goto encoder_retry;
12209         }
12210
12211         /* Dithering seems to not pass-through bits correctly when it should, so
12212          * only enable it on 6bpc panels. */
12213         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12214         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12215                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12216
12217 fail:
12218         return ret;
12219 }
12220
12221 static void
12222 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12223 {
12224         struct drm_crtc *crtc;
12225         struct drm_crtc_state *crtc_state;
12226         int i;
12227
12228         /* Double check state. */
12229         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12230                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12231
12232                 /* Update hwmode for vblank functions */
12233                 if (crtc->state->active)
12234                         crtc->hwmode = crtc->state->adjusted_mode;
12235                 else
12236                         crtc->hwmode.crtc_clock = 0;
12237         }
12238 }
12239
12240 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12241 {
12242         int diff;
12243
12244         if (clock1 == clock2)
12245                 return true;
12246
12247         if (!clock1 || !clock2)
12248                 return false;
12249
12250         diff = abs(clock1 - clock2);
12251
12252         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12253                 return true;
12254
12255         return false;
12256 }
12257
12258 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12259         list_for_each_entry((intel_crtc), \
12260                             &(dev)->mode_config.crtc_list, \
12261                             base.head) \
12262                 if (mask & (1 <<(intel_crtc)->pipe))
12263
12264 static bool
12265 intel_compare_m_n(unsigned int m, unsigned int n,
12266                   unsigned int m2, unsigned int n2,
12267                   bool exact)
12268 {
12269         if (m == m2 && n == n2)
12270                 return true;
12271
12272         if (exact || !m || !n || !m2 || !n2)
12273                 return false;
12274
12275         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12276
12277         if (m > m2) {
12278                 while (m > m2) {
12279                         m2 <<= 1;
12280                         n2 <<= 1;
12281                 }
12282         } else if (m < m2) {
12283                 while (m < m2) {
12284                         m <<= 1;
12285                         n <<= 1;
12286                 }
12287         }
12288
12289         return m == m2 && n == n2;
12290 }
12291
12292 static bool
12293 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12294                        struct intel_link_m_n *m2_n2,
12295                        bool adjust)
12296 {
12297         if (m_n->tu == m2_n2->tu &&
12298             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12299                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12300             intel_compare_m_n(m_n->link_m, m_n->link_n,
12301                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12302                 if (adjust)
12303                         *m2_n2 = *m_n;
12304
12305                 return true;
12306         }
12307
12308         return false;
12309 }
12310
12311 static bool
12312 intel_pipe_config_compare(struct drm_device *dev,
12313                           struct intel_crtc_state *current_config,
12314                           struct intel_crtc_state *pipe_config,
12315                           bool adjust)
12316 {
12317         bool ret = true;
12318
12319 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12320         do { \
12321                 if (!adjust) \
12322                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12323                 else \
12324                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12325         } while (0)
12326
12327 #define PIPE_CONF_CHECK_X(name) \
12328         if (current_config->name != pipe_config->name) { \
12329                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12330                           "(expected 0x%08x, found 0x%08x)\n", \
12331                           current_config->name, \
12332                           pipe_config->name); \
12333                 ret = false; \
12334         }
12335
12336 #define PIPE_CONF_CHECK_I(name) \
12337         if (current_config->name != pipe_config->name) { \
12338                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12339                           "(expected %i, found %i)\n", \
12340                           current_config->name, \
12341                           pipe_config->name); \
12342                 ret = false; \
12343         }
12344
12345 #define PIPE_CONF_CHECK_M_N(name) \
12346         if (!intel_compare_link_m_n(&current_config->name, \
12347                                     &pipe_config->name,\
12348                                     adjust)) { \
12349                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12350                           "(expected tu %i gmch %i/%i link %i/%i, " \
12351                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12352                           current_config->name.tu, \
12353                           current_config->name.gmch_m, \
12354                           current_config->name.gmch_n, \
12355                           current_config->name.link_m, \
12356                           current_config->name.link_n, \
12357                           pipe_config->name.tu, \
12358                           pipe_config->name.gmch_m, \
12359                           pipe_config->name.gmch_n, \
12360                           pipe_config->name.link_m, \
12361                           pipe_config->name.link_n); \
12362                 ret = false; \
12363         }
12364
12365 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12366         if (!intel_compare_link_m_n(&current_config->name, \
12367                                     &pipe_config->name, adjust) && \
12368             !intel_compare_link_m_n(&current_config->alt_name, \
12369                                     &pipe_config->name, adjust)) { \
12370                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12371                           "(expected tu %i gmch %i/%i link %i/%i, " \
12372                           "or tu %i gmch %i/%i link %i/%i, " \
12373                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12374                           current_config->name.tu, \
12375                           current_config->name.gmch_m, \
12376                           current_config->name.gmch_n, \
12377                           current_config->name.link_m, \
12378                           current_config->name.link_n, \
12379                           current_config->alt_name.tu, \
12380                           current_config->alt_name.gmch_m, \
12381                           current_config->alt_name.gmch_n, \
12382                           current_config->alt_name.link_m, \
12383                           current_config->alt_name.link_n, \
12384                           pipe_config->name.tu, \
12385                           pipe_config->name.gmch_m, \
12386                           pipe_config->name.gmch_n, \
12387                           pipe_config->name.link_m, \
12388                           pipe_config->name.link_n); \
12389                 ret = false; \
12390         }
12391
12392 /* This is required for BDW+ where there is only one set of registers for
12393  * switching between high and low RR.
12394  * This macro can be used whenever a comparison has to be made between one
12395  * hw state and multiple sw state variables.
12396  */
12397 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12398         if ((current_config->name != pipe_config->name) && \
12399                 (current_config->alt_name != pipe_config->name)) { \
12400                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12401                                   "(expected %i or %i, found %i)\n", \
12402                                   current_config->name, \
12403                                   current_config->alt_name, \
12404                                   pipe_config->name); \
12405                         ret = false; \
12406         }
12407
12408 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12409         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12410                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12411                           "(expected %i, found %i)\n", \
12412                           current_config->name & (mask), \
12413                           pipe_config->name & (mask)); \
12414                 ret = false; \
12415         }
12416
12417 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12418         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12419                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12420                           "(expected %i, found %i)\n", \
12421                           current_config->name, \
12422                           pipe_config->name); \
12423                 ret = false; \
12424         }
12425
12426 #define PIPE_CONF_QUIRK(quirk)  \
12427         ((current_config->quirks | pipe_config->quirks) & (quirk))
12428
12429         PIPE_CONF_CHECK_I(cpu_transcoder);
12430
12431         PIPE_CONF_CHECK_I(has_pch_encoder);
12432         PIPE_CONF_CHECK_I(fdi_lanes);
12433         PIPE_CONF_CHECK_M_N(fdi_m_n);
12434
12435         PIPE_CONF_CHECK_I(has_dp_encoder);
12436         PIPE_CONF_CHECK_I(lane_count);
12437
12438         if (INTEL_INFO(dev)->gen < 8) {
12439                 PIPE_CONF_CHECK_M_N(dp_m_n);
12440
12441                 PIPE_CONF_CHECK_I(has_drrs);
12442                 if (current_config->has_drrs)
12443                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12444         } else
12445                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12446
12447         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12448         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12449         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12450         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12451         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12452         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12453
12454         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12455         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12456         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12457         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12458         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12459         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12460
12461         PIPE_CONF_CHECK_I(pixel_multiplier);
12462         PIPE_CONF_CHECK_I(has_hdmi_sink);
12463         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12464             IS_VALLEYVIEW(dev))
12465                 PIPE_CONF_CHECK_I(limited_color_range);
12466         PIPE_CONF_CHECK_I(has_infoframe);
12467
12468         PIPE_CONF_CHECK_I(has_audio);
12469
12470         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12471                               DRM_MODE_FLAG_INTERLACE);
12472
12473         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12474                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12475                                       DRM_MODE_FLAG_PHSYNC);
12476                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12477                                       DRM_MODE_FLAG_NHSYNC);
12478                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12479                                       DRM_MODE_FLAG_PVSYNC);
12480                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12481                                       DRM_MODE_FLAG_NVSYNC);
12482         }
12483
12484         PIPE_CONF_CHECK_X(gmch_pfit.control);
12485         /* pfit ratios are autocomputed by the hw on gen4+ */
12486         if (INTEL_INFO(dev)->gen < 4)
12487                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12488         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12489
12490         if (!adjust) {
12491                 PIPE_CONF_CHECK_I(pipe_src_w);
12492                 PIPE_CONF_CHECK_I(pipe_src_h);
12493
12494                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12495                 if (current_config->pch_pfit.enabled) {
12496                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12497                         PIPE_CONF_CHECK_X(pch_pfit.size);
12498                 }
12499
12500                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12501         }
12502
12503         /* BDW+ don't expose a synchronous way to read the state */
12504         if (IS_HASWELL(dev))
12505                 PIPE_CONF_CHECK_I(ips_enabled);
12506
12507         PIPE_CONF_CHECK_I(double_wide);
12508
12509         PIPE_CONF_CHECK_X(ddi_pll_sel);
12510
12511         PIPE_CONF_CHECK_I(shared_dpll);
12512         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12513         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12514         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12515         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12516         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12517         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12518         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12519         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12520
12521         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12522                 PIPE_CONF_CHECK_I(pipe_bpp);
12523
12524         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12525         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12526
12527 #undef PIPE_CONF_CHECK_X
12528 #undef PIPE_CONF_CHECK_I
12529 #undef PIPE_CONF_CHECK_I_ALT
12530 #undef PIPE_CONF_CHECK_FLAGS
12531 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12532 #undef PIPE_CONF_QUIRK
12533 #undef INTEL_ERR_OR_DBG_KMS
12534
12535         return ret;
12536 }
12537
12538 static void check_wm_state(struct drm_device *dev)
12539 {
12540         struct drm_i915_private *dev_priv = dev->dev_private;
12541         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12542         struct intel_crtc *intel_crtc;
12543         int plane;
12544
12545         if (INTEL_INFO(dev)->gen < 9)
12546                 return;
12547
12548         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12549         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12550
12551         for_each_intel_crtc(dev, intel_crtc) {
12552                 struct skl_ddb_entry *hw_entry, *sw_entry;
12553                 const enum pipe pipe = intel_crtc->pipe;
12554
12555                 if (!intel_crtc->active)
12556                         continue;
12557
12558                 /* planes */
12559                 for_each_plane(dev_priv, pipe, plane) {
12560                         hw_entry = &hw_ddb.plane[pipe][plane];
12561                         sw_entry = &sw_ddb->plane[pipe][plane];
12562
12563                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12564                                 continue;
12565
12566                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12567                                   "(expected (%u,%u), found (%u,%u))\n",
12568                                   pipe_name(pipe), plane + 1,
12569                                   sw_entry->start, sw_entry->end,
12570                                   hw_entry->start, hw_entry->end);
12571                 }
12572
12573                 /* cursor */
12574                 hw_entry = &hw_ddb.cursor[pipe];
12575                 sw_entry = &sw_ddb->cursor[pipe];
12576
12577                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12578                         continue;
12579
12580                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12581                           "(expected (%u,%u), found (%u,%u))\n",
12582                           pipe_name(pipe),
12583                           sw_entry->start, sw_entry->end,
12584                           hw_entry->start, hw_entry->end);
12585         }
12586 }
12587
12588 static void
12589 check_connector_state(struct drm_device *dev,
12590                       struct drm_atomic_state *old_state)
12591 {
12592         struct drm_connector_state *old_conn_state;
12593         struct drm_connector *connector;
12594         int i;
12595
12596         for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12597                 struct drm_encoder *encoder = connector->encoder;
12598                 struct drm_connector_state *state = connector->state;
12599
12600                 /* This also checks the encoder/connector hw state with the
12601                  * ->get_hw_state callbacks. */
12602                 intel_connector_check_state(to_intel_connector(connector));
12603
12604                 I915_STATE_WARN(state->best_encoder != encoder,
12605                      "connector's atomic encoder doesn't match legacy encoder\n");
12606         }
12607 }
12608
12609 static void
12610 check_encoder_state(struct drm_device *dev)
12611 {
12612         struct intel_encoder *encoder;
12613         struct intel_connector *connector;
12614
12615         for_each_intel_encoder(dev, encoder) {
12616                 bool enabled = false;
12617                 enum pipe pipe;
12618
12619                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12620                               encoder->base.base.id,
12621                               encoder->base.name);
12622
12623                 for_each_intel_connector(dev, connector) {
12624                         if (connector->base.state->best_encoder != &encoder->base)
12625                                 continue;
12626                         enabled = true;
12627
12628                         I915_STATE_WARN(connector->base.state->crtc !=
12629                                         encoder->base.crtc,
12630                              "connector's crtc doesn't match encoder crtc\n");
12631                 }
12632
12633                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12634                      "encoder's enabled state mismatch "
12635                      "(expected %i, found %i)\n",
12636                      !!encoder->base.crtc, enabled);
12637
12638                 if (!encoder->base.crtc) {
12639                         bool active;
12640
12641                         active = encoder->get_hw_state(encoder, &pipe);
12642                         I915_STATE_WARN(active,
12643                              "encoder detached but still enabled on pipe %c.\n",
12644                              pipe_name(pipe));
12645                 }
12646         }
12647 }
12648
12649 static void
12650 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12651 {
12652         struct drm_i915_private *dev_priv = dev->dev_private;
12653         struct intel_encoder *encoder;
12654         struct drm_crtc_state *old_crtc_state;
12655         struct drm_crtc *crtc;
12656         int i;
12657
12658         for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12659                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12660                 struct intel_crtc_state *pipe_config, *sw_config;
12661                 bool active;
12662
12663                 if (!needs_modeset(crtc->state) &&
12664                     !to_intel_crtc_state(crtc->state)->update_pipe)
12665                         continue;
12666
12667                 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12668                 pipe_config = to_intel_crtc_state(old_crtc_state);
12669                 memset(pipe_config, 0, sizeof(*pipe_config));
12670                 pipe_config->base.crtc = crtc;
12671                 pipe_config->base.state = old_state;
12672
12673                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12674                               crtc->base.id);
12675
12676                 active = dev_priv->display.get_pipe_config(intel_crtc,
12677                                                            pipe_config);
12678
12679                 /* hw state is inconsistent with the pipe quirk */
12680                 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12681                     (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12682                         active = crtc->state->active;
12683
12684                 I915_STATE_WARN(crtc->state->active != active,
12685                      "crtc active state doesn't match with hw state "
12686                      "(expected %i, found %i)\n", crtc->state->active, active);
12687
12688                 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12689                      "transitional active state does not match atomic hw state "
12690                      "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12691
12692                 for_each_encoder_on_crtc(dev, crtc, encoder) {
12693                         enum pipe pipe;
12694
12695                         active = encoder->get_hw_state(encoder, &pipe);
12696                         I915_STATE_WARN(active != crtc->state->active,
12697                                 "[ENCODER:%i] active %i with crtc active %i\n",
12698                                 encoder->base.base.id, active, crtc->state->active);
12699
12700                         I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12701                                         "Encoder connected to wrong pipe %c\n",
12702                                         pipe_name(pipe));
12703
12704                         if (active)
12705                                 encoder->get_config(encoder, pipe_config);
12706                 }
12707
12708                 if (!crtc->state->active)
12709                         continue;
12710
12711                 sw_config = to_intel_crtc_state(crtc->state);
12712                 if (!intel_pipe_config_compare(dev, sw_config,
12713                                                pipe_config, false)) {
12714                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12715                         intel_dump_pipe_config(intel_crtc, pipe_config,
12716                                                "[hw state]");
12717                         intel_dump_pipe_config(intel_crtc, sw_config,
12718                                                "[sw state]");
12719                 }
12720         }
12721 }
12722
12723 static void
12724 check_shared_dpll_state(struct drm_device *dev)
12725 {
12726         struct drm_i915_private *dev_priv = dev->dev_private;
12727         struct intel_crtc *crtc;
12728         struct intel_dpll_hw_state dpll_hw_state;
12729         int i;
12730
12731         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12732                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12733                 int enabled_crtcs = 0, active_crtcs = 0;
12734                 bool active;
12735
12736                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12737
12738                 DRM_DEBUG_KMS("%s\n", pll->name);
12739
12740                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12741
12742                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12743                      "more active pll users than references: %i vs %i\n",
12744                      pll->active, hweight32(pll->config.crtc_mask));
12745                 I915_STATE_WARN(pll->active && !pll->on,
12746                      "pll in active use but not on in sw tracking\n");
12747                 I915_STATE_WARN(pll->on && !pll->active,
12748                      "pll in on but not on in use in sw tracking\n");
12749                 I915_STATE_WARN(pll->on != active,
12750                      "pll on state mismatch (expected %i, found %i)\n",
12751                      pll->on, active);
12752
12753                 for_each_intel_crtc(dev, crtc) {
12754                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12755                                 enabled_crtcs++;
12756                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12757                                 active_crtcs++;
12758                 }
12759                 I915_STATE_WARN(pll->active != active_crtcs,
12760                      "pll active crtcs mismatch (expected %i, found %i)\n",
12761                      pll->active, active_crtcs);
12762                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12763                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
12764                      hweight32(pll->config.crtc_mask), enabled_crtcs);
12765
12766                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12767                                        sizeof(dpll_hw_state)),
12768                      "pll hw state mismatch\n");
12769         }
12770 }
12771
12772 static void
12773 intel_modeset_check_state(struct drm_device *dev,
12774                           struct drm_atomic_state *old_state)
12775 {
12776         check_wm_state(dev);
12777         check_connector_state(dev, old_state);
12778         check_encoder_state(dev);
12779         check_crtc_state(dev, old_state);
12780         check_shared_dpll_state(dev);
12781 }
12782
12783 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12784                                      int dotclock)
12785 {
12786         /*
12787          * FDI already provided one idea for the dotclock.
12788          * Yell if the encoder disagrees.
12789          */
12790         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12791              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12792              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12793 }
12794
12795 static void update_scanline_offset(struct intel_crtc *crtc)
12796 {
12797         struct drm_device *dev = crtc->base.dev;
12798
12799         /*
12800          * The scanline counter increments at the leading edge of hsync.
12801          *
12802          * On most platforms it starts counting from vtotal-1 on the
12803          * first active line. That means the scanline counter value is
12804          * always one less than what we would expect. Ie. just after
12805          * start of vblank, which also occurs at start of hsync (on the
12806          * last active line), the scanline counter will read vblank_start-1.
12807          *
12808          * On gen2 the scanline counter starts counting from 1 instead
12809          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12810          * to keep the value positive), instead of adding one.
12811          *
12812          * On HSW+ the behaviour of the scanline counter depends on the output
12813          * type. For DP ports it behaves like most other platforms, but on HDMI
12814          * there's an extra 1 line difference. So we need to add two instead of
12815          * one to the value.
12816          */
12817         if (IS_GEN2(dev)) {
12818                 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12819                 int vtotal;
12820
12821                 vtotal = mode->crtc_vtotal;
12822                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12823                         vtotal /= 2;
12824
12825                 crtc->scanline_offset = vtotal - 1;
12826         } else if (HAS_DDI(dev) &&
12827                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12828                 crtc->scanline_offset = 2;
12829         } else
12830                 crtc->scanline_offset = 1;
12831 }
12832
12833 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12834 {
12835         struct drm_device *dev = state->dev;
12836         struct drm_i915_private *dev_priv = to_i915(dev);
12837         struct intel_shared_dpll_config *shared_dpll = NULL;
12838         struct intel_crtc *intel_crtc;
12839         struct intel_crtc_state *intel_crtc_state;
12840         struct drm_crtc *crtc;
12841         struct drm_crtc_state *crtc_state;
12842         int i;
12843
12844         if (!dev_priv->display.crtc_compute_clock)
12845                 return;
12846
12847         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12848                 int dpll;
12849
12850                 intel_crtc = to_intel_crtc(crtc);
12851                 intel_crtc_state = to_intel_crtc_state(crtc_state);
12852                 dpll = intel_crtc_state->shared_dpll;
12853
12854                 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12855                         continue;
12856
12857                 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12858
12859                 if (!shared_dpll)
12860                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
12861
12862                 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12863         }
12864 }
12865
12866 /*
12867  * This implements the workaround described in the "notes" section of the mode
12868  * set sequence documentation. When going from no pipes or single pipe to
12869  * multiple pipes, and planes are enabled after the pipe, we need to wait at
12870  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12871  */
12872 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12873 {
12874         struct drm_crtc_state *crtc_state;
12875         struct intel_crtc *intel_crtc;
12876         struct drm_crtc *crtc;
12877         struct intel_crtc_state *first_crtc_state = NULL;
12878         struct intel_crtc_state *other_crtc_state = NULL;
12879         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12880         int i;
12881
12882         /* look at all crtc's that are going to be enabled in during modeset */
12883         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12884                 intel_crtc = to_intel_crtc(crtc);
12885
12886                 if (!crtc_state->active || !needs_modeset(crtc_state))
12887                         continue;
12888
12889                 if (first_crtc_state) {
12890                         other_crtc_state = to_intel_crtc_state(crtc_state);
12891                         break;
12892                 } else {
12893                         first_crtc_state = to_intel_crtc_state(crtc_state);
12894                         first_pipe = intel_crtc->pipe;
12895                 }
12896         }
12897
12898         /* No workaround needed? */
12899         if (!first_crtc_state)
12900                 return 0;
12901
12902         /* w/a possibly needed, check how many crtc's are already enabled. */
12903         for_each_intel_crtc(state->dev, intel_crtc) {
12904                 struct intel_crtc_state *pipe_config;
12905
12906                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12907                 if (IS_ERR(pipe_config))
12908                         return PTR_ERR(pipe_config);
12909
12910                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12911
12912                 if (!pipe_config->base.active ||
12913                     needs_modeset(&pipe_config->base))
12914                         continue;
12915
12916                 /* 2 or more enabled crtcs means no need for w/a */
12917                 if (enabled_pipe != INVALID_PIPE)
12918                         return 0;
12919
12920                 enabled_pipe = intel_crtc->pipe;
12921         }
12922
12923         if (enabled_pipe != INVALID_PIPE)
12924                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12925         else if (other_crtc_state)
12926                 other_crtc_state->hsw_workaround_pipe = first_pipe;
12927
12928         return 0;
12929 }
12930
12931 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12932 {
12933         struct drm_crtc *crtc;
12934         struct drm_crtc_state *crtc_state;
12935         int ret = 0;
12936
12937         /* add all active pipes to the state */
12938         for_each_crtc(state->dev, crtc) {
12939                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12940                 if (IS_ERR(crtc_state))
12941                         return PTR_ERR(crtc_state);
12942
12943                 if (!crtc_state->active || needs_modeset(crtc_state))
12944                         continue;
12945
12946                 crtc_state->mode_changed = true;
12947
12948                 ret = drm_atomic_add_affected_connectors(state, crtc);
12949                 if (ret)
12950                         break;
12951
12952                 ret = drm_atomic_add_affected_planes(state, crtc);
12953                 if (ret)
12954                         break;
12955         }
12956
12957         return ret;
12958 }
12959
12960 static int intel_modeset_checks(struct drm_atomic_state *state)
12961 {
12962         struct drm_device *dev = state->dev;
12963         struct drm_i915_private *dev_priv = dev->dev_private;
12964         int ret;
12965
12966         if (!check_digital_port_conflicts(state)) {
12967                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12968                 return -EINVAL;
12969         }
12970
12971         /*
12972          * See if the config requires any additional preparation, e.g.
12973          * to adjust global state with pipes off.  We need to do this
12974          * here so we can get the modeset_pipe updated config for the new
12975          * mode set on this crtc.  For other crtcs we need to use the
12976          * adjusted_mode bits in the crtc directly.
12977          */
12978         if (dev_priv->display.modeset_calc_cdclk) {
12979                 unsigned int cdclk;
12980
12981                 ret = dev_priv->display.modeset_calc_cdclk(state);
12982
12983                 cdclk = to_intel_atomic_state(state)->cdclk;
12984                 if (!ret && cdclk != dev_priv->cdclk_freq)
12985                         ret = intel_modeset_all_pipes(state);
12986
12987                 if (ret < 0)
12988                         return ret;
12989         } else
12990                 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
12991
12992         intel_modeset_clear_plls(state);
12993
12994         if (IS_HASWELL(dev))
12995                 return haswell_mode_set_planes_workaround(state);
12996
12997         return 0;
12998 }
12999
13000 /**
13001  * intel_atomic_check - validate state object
13002  * @dev: drm device
13003  * @state: state to validate
13004  */
13005 static int intel_atomic_check(struct drm_device *dev,
13006                               struct drm_atomic_state *state)
13007 {
13008         struct drm_crtc *crtc;
13009         struct drm_crtc_state *crtc_state;
13010         int ret, i;
13011         bool any_ms = false;
13012
13013         ret = drm_atomic_helper_check_modeset(dev, state);
13014         if (ret)
13015                 return ret;
13016
13017         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13018                 struct intel_crtc_state *pipe_config =
13019                         to_intel_crtc_state(crtc_state);
13020
13021                 /* Catch I915_MODE_FLAG_INHERITED */
13022                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13023                         crtc_state->mode_changed = true;
13024
13025                 if (!crtc_state->enable) {
13026                         if (needs_modeset(crtc_state))
13027                                 any_ms = true;
13028                         continue;
13029                 }
13030
13031                 if (!needs_modeset(crtc_state))
13032                         continue;
13033
13034                 /* FIXME: For only active_changed we shouldn't need to do any
13035                  * state recomputation at all. */
13036
13037                 ret = drm_atomic_add_affected_connectors(state, crtc);
13038                 if (ret)
13039                         return ret;
13040
13041                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13042                 if (ret)
13043                         return ret;
13044
13045                 if (intel_pipe_config_compare(state->dev,
13046                                         to_intel_crtc_state(crtc->state),
13047                                         pipe_config, true)) {
13048                         crtc_state->mode_changed = false;
13049                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13050                 }
13051
13052                 if (needs_modeset(crtc_state)) {
13053                         any_ms = true;
13054
13055                         ret = drm_atomic_add_affected_planes(state, crtc);
13056                         if (ret)
13057                                 return ret;
13058                 }
13059
13060                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13061                                        needs_modeset(crtc_state) ?
13062                                        "[modeset]" : "[fastset]");
13063         }
13064
13065         if (any_ms) {
13066                 ret = intel_modeset_checks(state);
13067
13068                 if (ret)
13069                         return ret;
13070         } else
13071                 to_intel_atomic_state(state)->cdclk =
13072                         to_i915(state->dev)->cdclk_freq;
13073
13074         return drm_atomic_helper_check_planes(state->dev, state);
13075 }
13076
13077 /**
13078  * intel_atomic_commit - commit validated state object
13079  * @dev: DRM device
13080  * @state: the top-level driver state object
13081  * @async: asynchronous commit
13082  *
13083  * This function commits a top-level state object that has been validated
13084  * with drm_atomic_helper_check().
13085  *
13086  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13087  * we can only handle plane-related operations and do not yet support
13088  * asynchronous commit.
13089  *
13090  * RETURNS
13091  * Zero for success or -errno.
13092  */
13093 static int intel_atomic_commit(struct drm_device *dev,
13094                                struct drm_atomic_state *state,
13095                                bool async)
13096 {
13097         struct drm_i915_private *dev_priv = dev->dev_private;
13098         struct drm_crtc *crtc;
13099         struct drm_crtc_state *crtc_state;
13100         int ret = 0;
13101         int i;
13102         bool any_ms = false;
13103
13104         if (async) {
13105                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13106                 return -EINVAL;
13107         }
13108
13109         ret = drm_atomic_helper_prepare_planes(dev, state);
13110         if (ret)
13111                 return ret;
13112
13113         drm_atomic_helper_swap_state(dev, state);
13114
13115         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13116                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13117
13118                 if (!needs_modeset(crtc->state))
13119                         continue;
13120
13121                 any_ms = true;
13122                 intel_pre_plane_update(intel_crtc);
13123
13124                 if (crtc_state->active) {
13125                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13126                         dev_priv->display.crtc_disable(crtc);
13127                         intel_crtc->active = false;
13128                         intel_disable_shared_dpll(intel_crtc);
13129                 }
13130         }
13131
13132         /* Only after disabling all output pipelines that will be changed can we
13133          * update the the output configuration. */
13134         intel_modeset_update_crtc_state(state);
13135
13136         if (any_ms) {
13137                 intel_shared_dpll_commit(state);
13138
13139                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13140                 modeset_update_crtc_power_domains(state);
13141         }
13142
13143         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13144         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13145                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13146                 bool modeset = needs_modeset(crtc->state);
13147                 bool update_pipe = !modeset &&
13148                         to_intel_crtc_state(crtc->state)->update_pipe;
13149                 unsigned long put_domains = 0;
13150
13151                 if (modeset && crtc->state->active) {
13152                         update_scanline_offset(to_intel_crtc(crtc));
13153                         dev_priv->display.crtc_enable(crtc);
13154                 }
13155
13156                 if (update_pipe) {
13157                         put_domains = modeset_get_crtc_power_domains(crtc);
13158
13159                         /* make sure intel_modeset_check_state runs */
13160                         any_ms = true;
13161                 }
13162
13163                 if (!modeset)
13164                         intel_pre_plane_update(intel_crtc);
13165
13166                 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13167
13168                 if (put_domains)
13169                         modeset_put_power_domains(dev_priv, put_domains);
13170
13171                 intel_post_plane_update(intel_crtc);
13172         }
13173
13174         /* FIXME: add subpixel order */
13175
13176         drm_atomic_helper_wait_for_vblanks(dev, state);
13177         drm_atomic_helper_cleanup_planes(dev, state);
13178
13179         if (any_ms)
13180                 intel_modeset_check_state(dev, state);
13181
13182         drm_atomic_state_free(state);
13183
13184         return 0;
13185 }
13186
13187 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13188 {
13189         struct drm_device *dev = crtc->dev;
13190         struct drm_atomic_state *state;
13191         struct drm_crtc_state *crtc_state;
13192         int ret;
13193
13194         state = drm_atomic_state_alloc(dev);
13195         if (!state) {
13196                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13197                               crtc->base.id);
13198                 return;
13199         }
13200
13201         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13202
13203 retry:
13204         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13205         ret = PTR_ERR_OR_ZERO(crtc_state);
13206         if (!ret) {
13207                 if (!crtc_state->active)
13208                         goto out;
13209
13210                 crtc_state->mode_changed = true;
13211                 ret = drm_atomic_commit(state);
13212         }
13213
13214         if (ret == -EDEADLK) {
13215                 drm_atomic_state_clear(state);
13216                 drm_modeset_backoff(state->acquire_ctx);
13217                 goto retry;
13218         }
13219
13220         if (ret)
13221 out:
13222                 drm_atomic_state_free(state);
13223 }
13224
13225 #undef for_each_intel_crtc_masked
13226
13227 static const struct drm_crtc_funcs intel_crtc_funcs = {
13228         .gamma_set = intel_crtc_gamma_set,
13229         .set_config = drm_atomic_helper_set_config,
13230         .destroy = intel_crtc_destroy,
13231         .page_flip = intel_crtc_page_flip,
13232         .atomic_duplicate_state = intel_crtc_duplicate_state,
13233         .atomic_destroy_state = intel_crtc_destroy_state,
13234 };
13235
13236 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13237                                       struct intel_shared_dpll *pll,
13238                                       struct intel_dpll_hw_state *hw_state)
13239 {
13240         uint32_t val;
13241
13242         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13243                 return false;
13244
13245         val = I915_READ(PCH_DPLL(pll->id));
13246         hw_state->dpll = val;
13247         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13248         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13249
13250         return val & DPLL_VCO_ENABLE;
13251 }
13252
13253 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13254                                   struct intel_shared_dpll *pll)
13255 {
13256         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13257         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13258 }
13259
13260 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13261                                 struct intel_shared_dpll *pll)
13262 {
13263         /* PCH refclock must be enabled first */
13264         ibx_assert_pch_refclk_enabled(dev_priv);
13265
13266         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13267
13268         /* Wait for the clocks to stabilize. */
13269         POSTING_READ(PCH_DPLL(pll->id));
13270         udelay(150);
13271
13272         /* The pixel multiplier can only be updated once the
13273          * DPLL is enabled and the clocks are stable.
13274          *
13275          * So write it again.
13276          */
13277         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13278         POSTING_READ(PCH_DPLL(pll->id));
13279         udelay(200);
13280 }
13281
13282 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13283                                  struct intel_shared_dpll *pll)
13284 {
13285         struct drm_device *dev = dev_priv->dev;
13286         struct intel_crtc *crtc;
13287
13288         /* Make sure no transcoder isn't still depending on us. */
13289         for_each_intel_crtc(dev, crtc) {
13290                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13291                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13292         }
13293
13294         I915_WRITE(PCH_DPLL(pll->id), 0);
13295         POSTING_READ(PCH_DPLL(pll->id));
13296         udelay(200);
13297 }
13298
13299 static char *ibx_pch_dpll_names[] = {
13300         "PCH DPLL A",
13301         "PCH DPLL B",
13302 };
13303
13304 static void ibx_pch_dpll_init(struct drm_device *dev)
13305 {
13306         struct drm_i915_private *dev_priv = dev->dev_private;
13307         int i;
13308
13309         dev_priv->num_shared_dpll = 2;
13310
13311         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13312                 dev_priv->shared_dplls[i].id = i;
13313                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13314                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13315                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13316                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13317                 dev_priv->shared_dplls[i].get_hw_state =
13318                         ibx_pch_dpll_get_hw_state;
13319         }
13320 }
13321
13322 static void intel_shared_dpll_init(struct drm_device *dev)
13323 {
13324         struct drm_i915_private *dev_priv = dev->dev_private;
13325
13326         intel_update_cdclk(dev);
13327
13328         if (HAS_DDI(dev))
13329                 intel_ddi_pll_init(dev);
13330         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13331                 ibx_pch_dpll_init(dev);
13332         else
13333                 dev_priv->num_shared_dpll = 0;
13334
13335         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13336 }
13337
13338 /**
13339  * intel_prepare_plane_fb - Prepare fb for usage on plane
13340  * @plane: drm plane to prepare for
13341  * @fb: framebuffer to prepare for presentation
13342  *
13343  * Prepares a framebuffer for usage on a display plane.  Generally this
13344  * involves pinning the underlying object and updating the frontbuffer tracking
13345  * bits.  Some older platforms need special physical address handling for
13346  * cursor planes.
13347  *
13348  * Returns 0 on success, negative error code on failure.
13349  */
13350 int
13351 intel_prepare_plane_fb(struct drm_plane *plane,
13352                        const struct drm_plane_state *new_state)
13353 {
13354         struct drm_device *dev = plane->dev;
13355         struct drm_framebuffer *fb = new_state->fb;
13356         struct intel_plane *intel_plane = to_intel_plane(plane);
13357         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13358         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13359         int ret = 0;
13360
13361         if (!obj)
13362                 return 0;
13363
13364         mutex_lock(&dev->struct_mutex);
13365
13366         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13367             INTEL_INFO(dev)->cursor_needs_physical) {
13368                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13369                 ret = i915_gem_object_attach_phys(obj, align);
13370                 if (ret)
13371                         DRM_DEBUG_KMS("failed to attach phys object\n");
13372         } else {
13373                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13374         }
13375
13376         if (ret == 0)
13377                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13378
13379         mutex_unlock(&dev->struct_mutex);
13380
13381         return ret;
13382 }
13383
13384 /**
13385  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13386  * @plane: drm plane to clean up for
13387  * @fb: old framebuffer that was on plane
13388  *
13389  * Cleans up a framebuffer that has just been removed from a plane.
13390  */
13391 void
13392 intel_cleanup_plane_fb(struct drm_plane *plane,
13393                        const struct drm_plane_state *old_state)
13394 {
13395         struct drm_device *dev = plane->dev;
13396         struct drm_i915_gem_object *obj = intel_fb_obj(old_state->fb);
13397
13398         if (!obj)
13399                 return;
13400
13401         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13402             !INTEL_INFO(dev)->cursor_needs_physical) {
13403                 mutex_lock(&dev->struct_mutex);
13404                 intel_unpin_fb_obj(old_state->fb, old_state);
13405                 mutex_unlock(&dev->struct_mutex);
13406         }
13407 }
13408
13409 int
13410 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13411 {
13412         int max_scale;
13413         struct drm_device *dev;
13414         struct drm_i915_private *dev_priv;
13415         int crtc_clock, cdclk;
13416
13417         if (!intel_crtc || !crtc_state)
13418                 return DRM_PLANE_HELPER_NO_SCALING;
13419
13420         dev = intel_crtc->base.dev;
13421         dev_priv = dev->dev_private;
13422         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13423         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13424
13425         if (!crtc_clock || !cdclk)
13426                 return DRM_PLANE_HELPER_NO_SCALING;
13427
13428         /*
13429          * skl max scale is lower of:
13430          *    close to 3 but not 3, -1 is for that purpose
13431          *            or
13432          *    cdclk/crtc_clock
13433          */
13434         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13435
13436         return max_scale;
13437 }
13438
13439 static int
13440 intel_check_primary_plane(struct drm_plane *plane,
13441                           struct intel_crtc_state *crtc_state,
13442                           struct intel_plane_state *state)
13443 {
13444         struct drm_crtc *crtc = state->base.crtc;
13445         struct drm_framebuffer *fb = state->base.fb;
13446         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13447         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13448         bool can_position = false;
13449
13450         /* use scaler when colorkey is not required */
13451         if (INTEL_INFO(plane->dev)->gen >= 9 &&
13452             state->ckey.flags == I915_SET_COLORKEY_NONE) {
13453                 min_scale = 1;
13454                 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13455                 can_position = true;
13456         }
13457
13458         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13459                                              &state->dst, &state->clip,
13460                                              min_scale, max_scale,
13461                                              can_position, true,
13462                                              &state->visible);
13463 }
13464
13465 static void
13466 intel_commit_primary_plane(struct drm_plane *plane,
13467                            struct intel_plane_state *state)
13468 {
13469         struct drm_crtc *crtc = state->base.crtc;
13470         struct drm_framebuffer *fb = state->base.fb;
13471         struct drm_device *dev = plane->dev;
13472         struct drm_i915_private *dev_priv = dev->dev_private;
13473         struct intel_crtc *intel_crtc;
13474         struct drm_rect *src = &state->src;
13475
13476         crtc = crtc ? crtc : plane->crtc;
13477         intel_crtc = to_intel_crtc(crtc);
13478
13479         plane->fb = fb;
13480         crtc->x = src->x1 >> 16;
13481         crtc->y = src->y1 >> 16;
13482
13483         if (!crtc->state->active)
13484                 return;
13485
13486         dev_priv->display.update_primary_plane(crtc, fb,
13487                                                state->src.x1 >> 16,
13488                                                state->src.y1 >> 16);
13489 }
13490
13491 static void
13492 intel_disable_primary_plane(struct drm_plane *plane,
13493                             struct drm_crtc *crtc)
13494 {
13495         struct drm_device *dev = plane->dev;
13496         struct drm_i915_private *dev_priv = dev->dev_private;
13497
13498         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13499 }
13500
13501 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13502                                     struct drm_crtc_state *old_crtc_state)
13503 {
13504         struct drm_device *dev = crtc->dev;
13505         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13506         struct intel_crtc_state *old_intel_state =
13507                 to_intel_crtc_state(old_crtc_state);
13508         bool modeset = needs_modeset(crtc->state);
13509
13510         if (intel_crtc->atomic.update_wm_pre)
13511                 intel_update_watermarks(crtc);
13512
13513         /* Perform vblank evasion around commit operation */
13514         if (crtc->state->active)
13515                 intel_pipe_update_start(intel_crtc);
13516
13517         if (modeset)
13518                 return;
13519
13520         if (to_intel_crtc_state(crtc->state)->update_pipe)
13521                 intel_update_pipe_config(intel_crtc, old_intel_state);
13522         else if (INTEL_INFO(dev)->gen >= 9)
13523                 skl_detach_scalers(intel_crtc);
13524 }
13525
13526 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13527                                      struct drm_crtc_state *old_crtc_state)
13528 {
13529         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13530
13531         if (crtc->state->active)
13532                 intel_pipe_update_end(intel_crtc);
13533 }
13534
13535 /**
13536  * intel_plane_destroy - destroy a plane
13537  * @plane: plane to destroy
13538  *
13539  * Common destruction function for all types of planes (primary, cursor,
13540  * sprite).
13541  */
13542 void intel_plane_destroy(struct drm_plane *plane)
13543 {
13544         struct intel_plane *intel_plane = to_intel_plane(plane);
13545         drm_plane_cleanup(plane);
13546         kfree(intel_plane);
13547 }
13548
13549 const struct drm_plane_funcs intel_plane_funcs = {
13550         .update_plane = drm_atomic_helper_update_plane,
13551         .disable_plane = drm_atomic_helper_disable_plane,
13552         .destroy = intel_plane_destroy,
13553         .set_property = drm_atomic_helper_plane_set_property,
13554         .atomic_get_property = intel_plane_atomic_get_property,
13555         .atomic_set_property = intel_plane_atomic_set_property,
13556         .atomic_duplicate_state = intel_plane_duplicate_state,
13557         .atomic_destroy_state = intel_plane_destroy_state,
13558
13559 };
13560
13561 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13562                                                     int pipe)
13563 {
13564         struct intel_plane *primary;
13565         struct intel_plane_state *state;
13566         const uint32_t *intel_primary_formats;
13567         unsigned int num_formats;
13568
13569         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13570         if (primary == NULL)
13571                 return NULL;
13572
13573         state = intel_create_plane_state(&primary->base);
13574         if (!state) {
13575                 kfree(primary);
13576                 return NULL;
13577         }
13578         primary->base.state = &state->base;
13579
13580         primary->can_scale = false;
13581         primary->max_downscale = 1;
13582         if (INTEL_INFO(dev)->gen >= 9) {
13583                 primary->can_scale = true;
13584                 state->scaler_id = -1;
13585         }
13586         primary->pipe = pipe;
13587         primary->plane = pipe;
13588         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13589         primary->check_plane = intel_check_primary_plane;
13590         primary->commit_plane = intel_commit_primary_plane;
13591         primary->disable_plane = intel_disable_primary_plane;
13592         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13593                 primary->plane = !pipe;
13594
13595         if (INTEL_INFO(dev)->gen >= 9) {
13596                 intel_primary_formats = skl_primary_formats;
13597                 num_formats = ARRAY_SIZE(skl_primary_formats);
13598         } else if (INTEL_INFO(dev)->gen >= 4) {
13599                 intel_primary_formats = i965_primary_formats;
13600                 num_formats = ARRAY_SIZE(i965_primary_formats);
13601         } else {
13602                 intel_primary_formats = i8xx_primary_formats;
13603                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13604         }
13605
13606         drm_universal_plane_init(dev, &primary->base, 0,
13607                                  &intel_plane_funcs,
13608                                  intel_primary_formats, num_formats,
13609                                  DRM_PLANE_TYPE_PRIMARY);
13610
13611         if (INTEL_INFO(dev)->gen >= 4)
13612                 intel_create_rotation_property(dev, primary);
13613
13614         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13615
13616         return &primary->base;
13617 }
13618
13619 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13620 {
13621         if (!dev->mode_config.rotation_property) {
13622                 unsigned long flags = BIT(DRM_ROTATE_0) |
13623                         BIT(DRM_ROTATE_180);
13624
13625                 if (INTEL_INFO(dev)->gen >= 9)
13626                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13627
13628                 dev->mode_config.rotation_property =
13629                         drm_mode_create_rotation_property(dev, flags);
13630         }
13631         if (dev->mode_config.rotation_property)
13632                 drm_object_attach_property(&plane->base.base,
13633                                 dev->mode_config.rotation_property,
13634                                 plane->base.state->rotation);
13635 }
13636
13637 static int
13638 intel_check_cursor_plane(struct drm_plane *plane,
13639                          struct intel_crtc_state *crtc_state,
13640                          struct intel_plane_state *state)
13641 {
13642         struct drm_crtc *crtc = crtc_state->base.crtc;
13643         struct drm_framebuffer *fb = state->base.fb;
13644         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13645         unsigned stride;
13646         int ret;
13647
13648         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13649                                             &state->dst, &state->clip,
13650                                             DRM_PLANE_HELPER_NO_SCALING,
13651                                             DRM_PLANE_HELPER_NO_SCALING,
13652                                             true, true, &state->visible);
13653         if (ret)
13654                 return ret;
13655
13656         /* if we want to turn off the cursor ignore width and height */
13657         if (!obj)
13658                 return 0;
13659
13660         /* Check for which cursor types we support */
13661         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13662                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13663                           state->base.crtc_w, state->base.crtc_h);
13664                 return -EINVAL;
13665         }
13666
13667         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13668         if (obj->base.size < stride * state->base.crtc_h) {
13669                 DRM_DEBUG_KMS("buffer is too small\n");
13670                 return -ENOMEM;
13671         }
13672
13673         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13674                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13675                 return -EINVAL;
13676         }
13677
13678         return 0;
13679 }
13680
13681 static void
13682 intel_disable_cursor_plane(struct drm_plane *plane,
13683                            struct drm_crtc *crtc)
13684 {
13685         intel_crtc_update_cursor(crtc, false);
13686 }
13687
13688 static void
13689 intel_commit_cursor_plane(struct drm_plane *plane,
13690                           struct intel_plane_state *state)
13691 {
13692         struct drm_crtc *crtc = state->base.crtc;
13693         struct drm_device *dev = plane->dev;
13694         struct intel_crtc *intel_crtc;
13695         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13696         uint32_t addr;
13697
13698         crtc = crtc ? crtc : plane->crtc;
13699         intel_crtc = to_intel_crtc(crtc);
13700
13701         if (intel_crtc->cursor_bo == obj)
13702                 goto update;
13703
13704         if (!obj)
13705                 addr = 0;
13706         else if (!INTEL_INFO(dev)->cursor_needs_physical)
13707                 addr = i915_gem_obj_ggtt_offset(obj);
13708         else
13709                 addr = obj->phys_handle->busaddr;
13710
13711         intel_crtc->cursor_addr = addr;
13712         intel_crtc->cursor_bo = obj;
13713
13714 update:
13715         if (crtc->state->active)
13716                 intel_crtc_update_cursor(crtc, state->visible);
13717 }
13718
13719 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13720                                                    int pipe)
13721 {
13722         struct intel_plane *cursor;
13723         struct intel_plane_state *state;
13724
13725         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13726         if (cursor == NULL)
13727                 return NULL;
13728
13729         state = intel_create_plane_state(&cursor->base);
13730         if (!state) {
13731                 kfree(cursor);
13732                 return NULL;
13733         }
13734         cursor->base.state = &state->base;
13735
13736         cursor->can_scale = false;
13737         cursor->max_downscale = 1;
13738         cursor->pipe = pipe;
13739         cursor->plane = pipe;
13740         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13741         cursor->check_plane = intel_check_cursor_plane;
13742         cursor->commit_plane = intel_commit_cursor_plane;
13743         cursor->disable_plane = intel_disable_cursor_plane;
13744
13745         drm_universal_plane_init(dev, &cursor->base, 0,
13746                                  &intel_plane_funcs,
13747                                  intel_cursor_formats,
13748                                  ARRAY_SIZE(intel_cursor_formats),
13749                                  DRM_PLANE_TYPE_CURSOR);
13750
13751         if (INTEL_INFO(dev)->gen >= 4) {
13752                 if (!dev->mode_config.rotation_property)
13753                         dev->mode_config.rotation_property =
13754                                 drm_mode_create_rotation_property(dev,
13755                                                         BIT(DRM_ROTATE_0) |
13756                                                         BIT(DRM_ROTATE_180));
13757                 if (dev->mode_config.rotation_property)
13758                         drm_object_attach_property(&cursor->base.base,
13759                                 dev->mode_config.rotation_property,
13760                                 state->base.rotation);
13761         }
13762
13763         if (INTEL_INFO(dev)->gen >=9)
13764                 state->scaler_id = -1;
13765
13766         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13767
13768         return &cursor->base;
13769 }
13770
13771 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13772         struct intel_crtc_state *crtc_state)
13773 {
13774         int i;
13775         struct intel_scaler *intel_scaler;
13776         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13777
13778         for (i = 0; i < intel_crtc->num_scalers; i++) {
13779                 intel_scaler = &scaler_state->scalers[i];
13780                 intel_scaler->in_use = 0;
13781                 intel_scaler->mode = PS_SCALER_MODE_DYN;
13782         }
13783
13784         scaler_state->scaler_id = -1;
13785 }
13786
13787 static void intel_crtc_init(struct drm_device *dev, int pipe)
13788 {
13789         struct drm_i915_private *dev_priv = dev->dev_private;
13790         struct intel_crtc *intel_crtc;
13791         struct intel_crtc_state *crtc_state = NULL;
13792         struct drm_plane *primary = NULL;
13793         struct drm_plane *cursor = NULL;
13794         int i, ret;
13795
13796         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13797         if (intel_crtc == NULL)
13798                 return;
13799
13800         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13801         if (!crtc_state)
13802                 goto fail;
13803         intel_crtc->config = crtc_state;
13804         intel_crtc->base.state = &crtc_state->base;
13805         crtc_state->base.crtc = &intel_crtc->base;
13806
13807         /* initialize shared scalers */
13808         if (INTEL_INFO(dev)->gen >= 9) {
13809                 if (pipe == PIPE_C)
13810                         intel_crtc->num_scalers = 1;
13811                 else
13812                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
13813
13814                 skl_init_scalers(dev, intel_crtc, crtc_state);
13815         }
13816
13817         primary = intel_primary_plane_create(dev, pipe);
13818         if (!primary)
13819                 goto fail;
13820
13821         cursor = intel_cursor_plane_create(dev, pipe);
13822         if (!cursor)
13823                 goto fail;
13824
13825         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13826                                         cursor, &intel_crtc_funcs);
13827         if (ret)
13828                 goto fail;
13829
13830         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13831         for (i = 0; i < 256; i++) {
13832                 intel_crtc->lut_r[i] = i;
13833                 intel_crtc->lut_g[i] = i;
13834                 intel_crtc->lut_b[i] = i;
13835         }
13836
13837         /*
13838          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13839          * is hooked to pipe B. Hence we want plane A feeding pipe B.
13840          */
13841         intel_crtc->pipe = pipe;
13842         intel_crtc->plane = pipe;
13843         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13844                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13845                 intel_crtc->plane = !pipe;
13846         }
13847
13848         intel_crtc->cursor_base = ~0;
13849         intel_crtc->cursor_cntl = ~0;
13850         intel_crtc->cursor_size = ~0;
13851
13852         intel_crtc->wm.cxsr_allowed = true;
13853
13854         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13855                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13856         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13857         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13858
13859         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13860
13861         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13862         return;
13863
13864 fail:
13865         if (primary)
13866                 drm_plane_cleanup(primary);
13867         if (cursor)
13868                 drm_plane_cleanup(cursor);
13869         kfree(crtc_state);
13870         kfree(intel_crtc);
13871 }
13872
13873 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13874 {
13875         struct drm_encoder *encoder = connector->base.encoder;
13876         struct drm_device *dev = connector->base.dev;
13877
13878         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13879
13880         if (!encoder || WARN_ON(!encoder->crtc))
13881                 return INVALID_PIPE;
13882
13883         return to_intel_crtc(encoder->crtc)->pipe;
13884 }
13885
13886 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13887                                 struct drm_file *file)
13888 {
13889         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13890         struct drm_crtc *drmmode_crtc;
13891         struct intel_crtc *crtc;
13892
13893         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13894
13895         if (!drmmode_crtc) {
13896                 DRM_ERROR("no such CRTC id\n");
13897                 return -ENOENT;
13898         }
13899
13900         crtc = to_intel_crtc(drmmode_crtc);
13901         pipe_from_crtc_id->pipe = crtc->pipe;
13902
13903         return 0;
13904 }
13905
13906 static int intel_encoder_clones(struct intel_encoder *encoder)
13907 {
13908         struct drm_device *dev = encoder->base.dev;
13909         struct intel_encoder *source_encoder;
13910         int index_mask = 0;
13911         int entry = 0;
13912
13913         for_each_intel_encoder(dev, source_encoder) {
13914                 if (encoders_cloneable(encoder, source_encoder))
13915                         index_mask |= (1 << entry);
13916
13917                 entry++;
13918         }
13919
13920         return index_mask;
13921 }
13922
13923 static bool has_edp_a(struct drm_device *dev)
13924 {
13925         struct drm_i915_private *dev_priv = dev->dev_private;
13926
13927         if (!IS_MOBILE(dev))
13928                 return false;
13929
13930         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13931                 return false;
13932
13933         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13934                 return false;
13935
13936         return true;
13937 }
13938
13939 static bool intel_crt_present(struct drm_device *dev)
13940 {
13941         struct drm_i915_private *dev_priv = dev->dev_private;
13942
13943         if (INTEL_INFO(dev)->gen >= 9)
13944                 return false;
13945
13946         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13947                 return false;
13948
13949         if (IS_CHERRYVIEW(dev))
13950                 return false;
13951
13952         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13953                 return false;
13954
13955         return true;
13956 }
13957
13958 static void intel_setup_outputs(struct drm_device *dev)
13959 {
13960         struct drm_i915_private *dev_priv = dev->dev_private;
13961         struct intel_encoder *encoder;
13962         bool dpd_is_edp = false;
13963
13964         intel_lvds_init(dev);
13965
13966         if (intel_crt_present(dev))
13967                 intel_crt_init(dev);
13968
13969         if (IS_BROXTON(dev)) {
13970                 /*
13971                  * FIXME: Broxton doesn't support port detection via the
13972                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13973                  * detect the ports.
13974                  */
13975                 intel_ddi_init(dev, PORT_A);
13976                 intel_ddi_init(dev, PORT_B);
13977                 intel_ddi_init(dev, PORT_C);
13978         } else if (HAS_DDI(dev)) {
13979                 int found;
13980
13981                 /*
13982                  * Haswell uses DDI functions to detect digital outputs.
13983                  * On SKL pre-D0 the strap isn't connected, so we assume
13984                  * it's there.
13985                  */
13986                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
13987                 /* WaIgnoreDDIAStrap: skl */
13988                 if (found || IS_SKYLAKE(dev))
13989                         intel_ddi_init(dev, PORT_A);
13990
13991                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13992                  * register */
13993                 found = I915_READ(SFUSE_STRAP);
13994
13995                 if (found & SFUSE_STRAP_DDIB_DETECTED)
13996                         intel_ddi_init(dev, PORT_B);
13997                 if (found & SFUSE_STRAP_DDIC_DETECTED)
13998                         intel_ddi_init(dev, PORT_C);
13999                 if (found & SFUSE_STRAP_DDID_DETECTED)
14000                         intel_ddi_init(dev, PORT_D);
14001                 /*
14002                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14003                  */
14004                 if (IS_SKYLAKE(dev) &&
14005                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14006                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14007                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14008                         intel_ddi_init(dev, PORT_E);
14009
14010         } else if (HAS_PCH_SPLIT(dev)) {
14011                 int found;
14012                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14013
14014                 if (has_edp_a(dev))
14015                         intel_dp_init(dev, DP_A, PORT_A);
14016
14017                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14018                         /* PCH SDVOB multiplex with HDMIB */
14019                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
14020                         if (!found)
14021                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14022                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14023                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14024                 }
14025
14026                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14027                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14028
14029                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14030                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14031
14032                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14033                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14034
14035                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14036                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14037         } else if (IS_VALLEYVIEW(dev)) {
14038                 /*
14039                  * The DP_DETECTED bit is the latched state of the DDC
14040                  * SDA pin at boot. However since eDP doesn't require DDC
14041                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14042                  * eDP ports may have been muxed to an alternate function.
14043                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14044                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14045                  * detect eDP ports.
14046                  */
14047                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14048                     !intel_dp_is_edp(dev, PORT_B))
14049                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14050                                         PORT_B);
14051                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14052                     intel_dp_is_edp(dev, PORT_B))
14053                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
14054
14055                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14056                     !intel_dp_is_edp(dev, PORT_C))
14057                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14058                                         PORT_C);
14059                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14060                     intel_dp_is_edp(dev, PORT_C))
14061                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
14062
14063                 if (IS_CHERRYVIEW(dev)) {
14064                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
14065                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14066                                                 PORT_D);
14067                         /* eDP not supported on port D, so don't check VBT */
14068                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14069                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14070                 }
14071
14072                 intel_dsi_init(dev);
14073         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14074                 bool found = false;
14075
14076                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14077                         DRM_DEBUG_KMS("probing SDVOB\n");
14078                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14079                         if (!found && IS_G4X(dev)) {
14080                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14081                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14082                         }
14083
14084                         if (!found && IS_G4X(dev))
14085                                 intel_dp_init(dev, DP_B, PORT_B);
14086                 }
14087
14088                 /* Before G4X SDVOC doesn't have its own detect register */
14089
14090                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14091                         DRM_DEBUG_KMS("probing SDVOC\n");
14092                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14093                 }
14094
14095                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14096
14097                         if (IS_G4X(dev)) {
14098                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14099                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14100                         }
14101                         if (IS_G4X(dev))
14102                                 intel_dp_init(dev, DP_C, PORT_C);
14103                 }
14104
14105                 if (IS_G4X(dev) &&
14106                     (I915_READ(DP_D) & DP_DETECTED))
14107                         intel_dp_init(dev, DP_D, PORT_D);
14108         } else if (IS_GEN2(dev))
14109                 intel_dvo_init(dev);
14110
14111         if (SUPPORTS_TV(dev))
14112                 intel_tv_init(dev);
14113
14114         intel_psr_init(dev);
14115
14116         for_each_intel_encoder(dev, encoder) {
14117                 encoder->base.possible_crtcs = encoder->crtc_mask;
14118                 encoder->base.possible_clones =
14119                         intel_encoder_clones(encoder);
14120         }
14121
14122         intel_init_pch_refclk(dev);
14123
14124         drm_helper_move_panel_connectors_to_head(dev);
14125 }
14126
14127 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14128 {
14129         struct drm_device *dev = fb->dev;
14130         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14131
14132         drm_framebuffer_cleanup(fb);
14133         mutex_lock(&dev->struct_mutex);
14134         WARN_ON(!intel_fb->obj->framebuffer_references--);
14135         drm_gem_object_unreference(&intel_fb->obj->base);
14136         mutex_unlock(&dev->struct_mutex);
14137         kfree(intel_fb);
14138 }
14139
14140 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14141                                                 struct drm_file *file,
14142                                                 unsigned int *handle)
14143 {
14144         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14145         struct drm_i915_gem_object *obj = intel_fb->obj;
14146
14147         return drm_gem_handle_create(file, &obj->base, handle);
14148 }
14149
14150 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14151                                         struct drm_file *file,
14152                                         unsigned flags, unsigned color,
14153                                         struct drm_clip_rect *clips,
14154                                         unsigned num_clips)
14155 {
14156         struct drm_device *dev = fb->dev;
14157         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14158         struct drm_i915_gem_object *obj = intel_fb->obj;
14159
14160         mutex_lock(&dev->struct_mutex);
14161         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14162         mutex_unlock(&dev->struct_mutex);
14163
14164         return 0;
14165 }
14166
14167 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14168         .destroy = intel_user_framebuffer_destroy,
14169         .create_handle = intel_user_framebuffer_create_handle,
14170         .dirty = intel_user_framebuffer_dirty,
14171 };
14172
14173 static
14174 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14175                          uint32_t pixel_format)
14176 {
14177         u32 gen = INTEL_INFO(dev)->gen;
14178
14179         if (gen >= 9) {
14180                 /* "The stride in bytes must not exceed the of the size of 8K
14181                  *  pixels and 32K bytes."
14182                  */
14183                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14184         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14185                 return 32*1024;
14186         } else if (gen >= 4) {
14187                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14188                         return 16*1024;
14189                 else
14190                         return 32*1024;
14191         } else if (gen >= 3) {
14192                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14193                         return 8*1024;
14194                 else
14195                         return 16*1024;
14196         } else {
14197                 /* XXX DSPC is limited to 4k tiled */
14198                 return 8*1024;
14199         }
14200 }
14201
14202 static int intel_framebuffer_init(struct drm_device *dev,
14203                                   struct intel_framebuffer *intel_fb,
14204                                   struct drm_mode_fb_cmd2 *mode_cmd,
14205                                   struct drm_i915_gem_object *obj)
14206 {
14207         unsigned int aligned_height;
14208         int ret;
14209         u32 pitch_limit, stride_alignment;
14210
14211         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14212
14213         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14214                 /* Enforce that fb modifier and tiling mode match, but only for
14215                  * X-tiled. This is needed for FBC. */
14216                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14217                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14218                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14219                         return -EINVAL;
14220                 }
14221         } else {
14222                 if (obj->tiling_mode == I915_TILING_X)
14223                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14224                 else if (obj->tiling_mode == I915_TILING_Y) {
14225                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14226                         return -EINVAL;
14227                 }
14228         }
14229
14230         /* Passed in modifier sanity checking. */
14231         switch (mode_cmd->modifier[0]) {
14232         case I915_FORMAT_MOD_Y_TILED:
14233         case I915_FORMAT_MOD_Yf_TILED:
14234                 if (INTEL_INFO(dev)->gen < 9) {
14235                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14236                                   mode_cmd->modifier[0]);
14237                         return -EINVAL;
14238                 }
14239         case DRM_FORMAT_MOD_NONE:
14240         case I915_FORMAT_MOD_X_TILED:
14241                 break;
14242         default:
14243                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14244                           mode_cmd->modifier[0]);
14245                 return -EINVAL;
14246         }
14247
14248         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14249                                                      mode_cmd->pixel_format);
14250         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14251                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14252                           mode_cmd->pitches[0], stride_alignment);
14253                 return -EINVAL;
14254         }
14255
14256         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14257                                            mode_cmd->pixel_format);
14258         if (mode_cmd->pitches[0] > pitch_limit) {
14259                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14260                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14261                           "tiled" : "linear",
14262                           mode_cmd->pitches[0], pitch_limit);
14263                 return -EINVAL;
14264         }
14265
14266         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14267             mode_cmd->pitches[0] != obj->stride) {
14268                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14269                           mode_cmd->pitches[0], obj->stride);
14270                 return -EINVAL;
14271         }
14272
14273         /* Reject formats not supported by any plane early. */
14274         switch (mode_cmd->pixel_format) {
14275         case DRM_FORMAT_C8:
14276         case DRM_FORMAT_RGB565:
14277         case DRM_FORMAT_XRGB8888:
14278         case DRM_FORMAT_ARGB8888:
14279                 break;
14280         case DRM_FORMAT_XRGB1555:
14281                 if (INTEL_INFO(dev)->gen > 3) {
14282                         DRM_DEBUG("unsupported pixel format: %s\n",
14283                                   drm_get_format_name(mode_cmd->pixel_format));
14284                         return -EINVAL;
14285                 }
14286                 break;
14287         case DRM_FORMAT_ABGR8888:
14288                 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14289                         DRM_DEBUG("unsupported pixel format: %s\n",
14290                                   drm_get_format_name(mode_cmd->pixel_format));
14291                         return -EINVAL;
14292                 }
14293                 break;
14294         case DRM_FORMAT_XBGR8888:
14295         case DRM_FORMAT_XRGB2101010:
14296         case DRM_FORMAT_XBGR2101010:
14297                 if (INTEL_INFO(dev)->gen < 4) {
14298                         DRM_DEBUG("unsupported pixel format: %s\n",
14299                                   drm_get_format_name(mode_cmd->pixel_format));
14300                         return -EINVAL;
14301                 }
14302                 break;
14303         case DRM_FORMAT_ABGR2101010:
14304                 if (!IS_VALLEYVIEW(dev)) {
14305                         DRM_DEBUG("unsupported pixel format: %s\n",
14306                                   drm_get_format_name(mode_cmd->pixel_format));
14307                         return -EINVAL;
14308                 }
14309                 break;
14310         case DRM_FORMAT_YUYV:
14311         case DRM_FORMAT_UYVY:
14312         case DRM_FORMAT_YVYU:
14313         case DRM_FORMAT_VYUY:
14314                 if (INTEL_INFO(dev)->gen < 5) {
14315                         DRM_DEBUG("unsupported pixel format: %s\n",
14316                                   drm_get_format_name(mode_cmd->pixel_format));
14317                         return -EINVAL;
14318                 }
14319                 break;
14320         default:
14321                 DRM_DEBUG("unsupported pixel format: %s\n",
14322                           drm_get_format_name(mode_cmd->pixel_format));
14323                 return -EINVAL;
14324         }
14325
14326         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14327         if (mode_cmd->offsets[0] != 0)
14328                 return -EINVAL;
14329
14330         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14331                                                mode_cmd->pixel_format,
14332                                                mode_cmd->modifier[0]);
14333         /* FIXME drm helper for size checks (especially planar formats)? */
14334         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14335                 return -EINVAL;
14336
14337         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14338         intel_fb->obj = obj;
14339         intel_fb->obj->framebuffer_references++;
14340
14341         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14342         if (ret) {
14343                 DRM_ERROR("framebuffer init failed %d\n", ret);
14344                 return ret;
14345         }
14346
14347         return 0;
14348 }
14349
14350 static struct drm_framebuffer *
14351 intel_user_framebuffer_create(struct drm_device *dev,
14352                               struct drm_file *filp,
14353                               struct drm_mode_fb_cmd2 *mode_cmd)
14354 {
14355         struct drm_i915_gem_object *obj;
14356
14357         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14358                                                 mode_cmd->handles[0]));
14359         if (&obj->base == NULL)
14360                 return ERR_PTR(-ENOENT);
14361
14362         return intel_framebuffer_create(dev, mode_cmd, obj);
14363 }
14364
14365 #ifndef CONFIG_DRM_FBDEV_EMULATION
14366 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14367 {
14368 }
14369 #endif
14370
14371 static const struct drm_mode_config_funcs intel_mode_funcs = {
14372         .fb_create = intel_user_framebuffer_create,
14373         .output_poll_changed = intel_fbdev_output_poll_changed,
14374         .atomic_check = intel_atomic_check,
14375         .atomic_commit = intel_atomic_commit,
14376         .atomic_state_alloc = intel_atomic_state_alloc,
14377         .atomic_state_clear = intel_atomic_state_clear,
14378 };
14379
14380 /* Set up chip specific display functions */
14381 static void intel_init_display(struct drm_device *dev)
14382 {
14383         struct drm_i915_private *dev_priv = dev->dev_private;
14384
14385         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14386                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14387         else if (IS_CHERRYVIEW(dev))
14388                 dev_priv->display.find_dpll = chv_find_best_dpll;
14389         else if (IS_VALLEYVIEW(dev))
14390                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14391         else if (IS_PINEVIEW(dev))
14392                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14393         else
14394                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14395
14396         if (INTEL_INFO(dev)->gen >= 9) {
14397                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14398                 dev_priv->display.get_initial_plane_config =
14399                         skylake_get_initial_plane_config;
14400                 dev_priv->display.crtc_compute_clock =
14401                         haswell_crtc_compute_clock;
14402                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14403                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14404                 dev_priv->display.update_primary_plane =
14405                         skylake_update_primary_plane;
14406         } else if (HAS_DDI(dev)) {
14407                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14408                 dev_priv->display.get_initial_plane_config =
14409                         ironlake_get_initial_plane_config;
14410                 dev_priv->display.crtc_compute_clock =
14411                         haswell_crtc_compute_clock;
14412                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14413                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14414                 dev_priv->display.update_primary_plane =
14415                         ironlake_update_primary_plane;
14416         } else if (HAS_PCH_SPLIT(dev)) {
14417                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14418                 dev_priv->display.get_initial_plane_config =
14419                         ironlake_get_initial_plane_config;
14420                 dev_priv->display.crtc_compute_clock =
14421                         ironlake_crtc_compute_clock;
14422                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14423                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14424                 dev_priv->display.update_primary_plane =
14425                         ironlake_update_primary_plane;
14426         } else if (IS_VALLEYVIEW(dev)) {
14427                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14428                 dev_priv->display.get_initial_plane_config =
14429                         i9xx_get_initial_plane_config;
14430                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14431                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14432                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14433                 dev_priv->display.update_primary_plane =
14434                         i9xx_update_primary_plane;
14435         } else {
14436                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14437                 dev_priv->display.get_initial_plane_config =
14438                         i9xx_get_initial_plane_config;
14439                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14440                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14441                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14442                 dev_priv->display.update_primary_plane =
14443                         i9xx_update_primary_plane;
14444         }
14445
14446         /* Returns the core display clock speed */
14447         if (IS_SKYLAKE(dev))
14448                 dev_priv->display.get_display_clock_speed =
14449                         skylake_get_display_clock_speed;
14450         else if (IS_BROXTON(dev))
14451                 dev_priv->display.get_display_clock_speed =
14452                         broxton_get_display_clock_speed;
14453         else if (IS_BROADWELL(dev))
14454                 dev_priv->display.get_display_clock_speed =
14455                         broadwell_get_display_clock_speed;
14456         else if (IS_HASWELL(dev))
14457                 dev_priv->display.get_display_clock_speed =
14458                         haswell_get_display_clock_speed;
14459         else if (IS_VALLEYVIEW(dev))
14460                 dev_priv->display.get_display_clock_speed =
14461                         valleyview_get_display_clock_speed;
14462         else if (IS_GEN5(dev))
14463                 dev_priv->display.get_display_clock_speed =
14464                         ilk_get_display_clock_speed;
14465         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14466                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14467                 dev_priv->display.get_display_clock_speed =
14468                         i945_get_display_clock_speed;
14469         else if (IS_GM45(dev))
14470                 dev_priv->display.get_display_clock_speed =
14471                         gm45_get_display_clock_speed;
14472         else if (IS_CRESTLINE(dev))
14473                 dev_priv->display.get_display_clock_speed =
14474                         i965gm_get_display_clock_speed;
14475         else if (IS_PINEVIEW(dev))
14476                 dev_priv->display.get_display_clock_speed =
14477                         pnv_get_display_clock_speed;
14478         else if (IS_G33(dev) || IS_G4X(dev))
14479                 dev_priv->display.get_display_clock_speed =
14480                         g33_get_display_clock_speed;
14481         else if (IS_I915G(dev))
14482                 dev_priv->display.get_display_clock_speed =
14483                         i915_get_display_clock_speed;
14484         else if (IS_I945GM(dev) || IS_845G(dev))
14485                 dev_priv->display.get_display_clock_speed =
14486                         i9xx_misc_get_display_clock_speed;
14487         else if (IS_PINEVIEW(dev))
14488                 dev_priv->display.get_display_clock_speed =
14489                         pnv_get_display_clock_speed;
14490         else if (IS_I915GM(dev))
14491                 dev_priv->display.get_display_clock_speed =
14492                         i915gm_get_display_clock_speed;
14493         else if (IS_I865G(dev))
14494                 dev_priv->display.get_display_clock_speed =
14495                         i865_get_display_clock_speed;
14496         else if (IS_I85X(dev))
14497                 dev_priv->display.get_display_clock_speed =
14498                         i85x_get_display_clock_speed;
14499         else { /* 830 */
14500                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14501                 dev_priv->display.get_display_clock_speed =
14502                         i830_get_display_clock_speed;
14503         }
14504
14505         if (IS_GEN5(dev)) {
14506                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14507         } else if (IS_GEN6(dev)) {
14508                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14509         } else if (IS_IVYBRIDGE(dev)) {
14510                 /* FIXME: detect B0+ stepping and use auto training */
14511                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14512         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14513                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14514                 if (IS_BROADWELL(dev)) {
14515                         dev_priv->display.modeset_commit_cdclk =
14516                                 broadwell_modeset_commit_cdclk;
14517                         dev_priv->display.modeset_calc_cdclk =
14518                                 broadwell_modeset_calc_cdclk;
14519                 }
14520         } else if (IS_VALLEYVIEW(dev)) {
14521                 dev_priv->display.modeset_commit_cdclk =
14522                         valleyview_modeset_commit_cdclk;
14523                 dev_priv->display.modeset_calc_cdclk =
14524                         valleyview_modeset_calc_cdclk;
14525         } else if (IS_BROXTON(dev)) {
14526                 dev_priv->display.modeset_commit_cdclk =
14527                         broxton_modeset_commit_cdclk;
14528                 dev_priv->display.modeset_calc_cdclk =
14529                         broxton_modeset_calc_cdclk;
14530         }
14531
14532         switch (INTEL_INFO(dev)->gen) {
14533         case 2:
14534                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14535                 break;
14536
14537         case 3:
14538                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14539                 break;
14540
14541         case 4:
14542         case 5:
14543                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14544                 break;
14545
14546         case 6:
14547                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14548                 break;
14549         case 7:
14550         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14551                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14552                 break;
14553         case 9:
14554                 /* Drop through - unsupported since execlist only. */
14555         default:
14556                 /* Default just returns -ENODEV to indicate unsupported */
14557                 dev_priv->display.queue_flip = intel_default_queue_flip;
14558         }
14559
14560         intel_panel_init_backlight_funcs(dev);
14561
14562         mutex_init(&dev_priv->pps_mutex);
14563 }
14564
14565 /*
14566  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14567  * resume, or other times.  This quirk makes sure that's the case for
14568  * affected systems.
14569  */
14570 static void quirk_pipea_force(struct drm_device *dev)
14571 {
14572         struct drm_i915_private *dev_priv = dev->dev_private;
14573
14574         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14575         DRM_INFO("applying pipe a force quirk\n");
14576 }
14577
14578 static void quirk_pipeb_force(struct drm_device *dev)
14579 {
14580         struct drm_i915_private *dev_priv = dev->dev_private;
14581
14582         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14583         DRM_INFO("applying pipe b force quirk\n");
14584 }
14585
14586 /*
14587  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14588  */
14589 static void quirk_ssc_force_disable(struct drm_device *dev)
14590 {
14591         struct drm_i915_private *dev_priv = dev->dev_private;
14592         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14593         DRM_INFO("applying lvds SSC disable quirk\n");
14594 }
14595
14596 /*
14597  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14598  * brightness value
14599  */
14600 static void quirk_invert_brightness(struct drm_device *dev)
14601 {
14602         struct drm_i915_private *dev_priv = dev->dev_private;
14603         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14604         DRM_INFO("applying inverted panel brightness quirk\n");
14605 }
14606
14607 /* Some VBT's incorrectly indicate no backlight is present */
14608 static void quirk_backlight_present(struct drm_device *dev)
14609 {
14610         struct drm_i915_private *dev_priv = dev->dev_private;
14611         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14612         DRM_INFO("applying backlight present quirk\n");
14613 }
14614
14615 struct intel_quirk {
14616         int device;
14617         int subsystem_vendor;
14618         int subsystem_device;
14619         void (*hook)(struct drm_device *dev);
14620 };
14621
14622 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14623 struct intel_dmi_quirk {
14624         void (*hook)(struct drm_device *dev);
14625         const struct dmi_system_id (*dmi_id_list)[];
14626 };
14627
14628 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14629 {
14630         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14631         return 1;
14632 }
14633
14634 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14635         {
14636                 .dmi_id_list = &(const struct dmi_system_id[]) {
14637                         {
14638                                 .callback = intel_dmi_reverse_brightness,
14639                                 .ident = "NCR Corporation",
14640                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14641                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14642                                 },
14643                         },
14644                         { }  /* terminating entry */
14645                 },
14646                 .hook = quirk_invert_brightness,
14647         },
14648 };
14649
14650 static struct intel_quirk intel_quirks[] = {
14651         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14652         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14653
14654         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14655         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14656
14657         /* 830 needs to leave pipe A & dpll A up */
14658         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14659
14660         /* 830 needs to leave pipe B & dpll B up */
14661         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14662
14663         /* Lenovo U160 cannot use SSC on LVDS */
14664         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14665
14666         /* Sony Vaio Y cannot use SSC on LVDS */
14667         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14668
14669         /* Acer Aspire 5734Z must invert backlight brightness */
14670         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14671
14672         /* Acer/eMachines G725 */
14673         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14674
14675         /* Acer/eMachines e725 */
14676         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14677
14678         /* Acer/Packard Bell NCL20 */
14679         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14680
14681         /* Acer Aspire 4736Z */
14682         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14683
14684         /* Acer Aspire 5336 */
14685         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14686
14687         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14688         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14689
14690         /* Acer C720 Chromebook (Core i3 4005U) */
14691         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14692
14693         /* Apple Macbook 2,1 (Core 2 T7400) */
14694         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14695
14696         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14697         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14698
14699         /* HP Chromebook 14 (Celeron 2955U) */
14700         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14701
14702         /* Dell Chromebook 11 */
14703         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14704 };
14705
14706 static void intel_init_quirks(struct drm_device *dev)
14707 {
14708         struct pci_dev *d = dev->pdev;
14709         int i;
14710
14711         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14712                 struct intel_quirk *q = &intel_quirks[i];
14713
14714                 if (d->device == q->device &&
14715                     (d->subsystem_vendor == q->subsystem_vendor ||
14716                      q->subsystem_vendor == PCI_ANY_ID) &&
14717                     (d->subsystem_device == q->subsystem_device ||
14718                      q->subsystem_device == PCI_ANY_ID))
14719                         q->hook(dev);
14720         }
14721         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14722                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14723                         intel_dmi_quirks[i].hook(dev);
14724         }
14725 }
14726
14727 /* Disable the VGA plane that we never use */
14728 static void i915_disable_vga(struct drm_device *dev)
14729 {
14730         struct drm_i915_private *dev_priv = dev->dev_private;
14731         u8 sr1;
14732         u32 vga_reg = i915_vgacntrl_reg(dev);
14733
14734         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14735         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14736         outb(SR01, VGA_SR_INDEX);
14737         sr1 = inb(VGA_SR_DATA);
14738         outb(sr1 | 1<<5, VGA_SR_DATA);
14739         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14740         udelay(300);
14741
14742         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14743         POSTING_READ(vga_reg);
14744 }
14745
14746 void intel_modeset_init_hw(struct drm_device *dev)
14747 {
14748         intel_update_cdclk(dev);
14749         intel_prepare_ddi(dev);
14750         intel_init_clock_gating(dev);
14751         intel_enable_gt_powersave(dev);
14752 }
14753
14754 void intel_modeset_init(struct drm_device *dev)
14755 {
14756         struct drm_i915_private *dev_priv = dev->dev_private;
14757         int sprite, ret;
14758         enum pipe pipe;
14759         struct intel_crtc *crtc;
14760
14761         drm_mode_config_init(dev);
14762
14763         dev->mode_config.min_width = 0;
14764         dev->mode_config.min_height = 0;
14765
14766         dev->mode_config.preferred_depth = 24;
14767         dev->mode_config.prefer_shadow = 1;
14768
14769         dev->mode_config.allow_fb_modifiers = true;
14770
14771         dev->mode_config.funcs = &intel_mode_funcs;
14772
14773         intel_init_quirks(dev);
14774
14775         intel_init_pm(dev);
14776
14777         if (INTEL_INFO(dev)->num_pipes == 0)
14778                 return;
14779
14780         /*
14781          * There may be no VBT; and if the BIOS enabled SSC we can
14782          * just keep using it to avoid unnecessary flicker.  Whereas if the
14783          * BIOS isn't using it, don't assume it will work even if the VBT
14784          * indicates as much.
14785          */
14786         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
14787                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14788                                             DREF_SSC1_ENABLE);
14789
14790                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14791                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14792                                      bios_lvds_use_ssc ? "en" : "dis",
14793                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14794                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14795                 }
14796         }
14797
14798         intel_init_display(dev);
14799         intel_init_audio(dev);
14800
14801         if (IS_GEN2(dev)) {
14802                 dev->mode_config.max_width = 2048;
14803                 dev->mode_config.max_height = 2048;
14804         } else if (IS_GEN3(dev)) {
14805                 dev->mode_config.max_width = 4096;
14806                 dev->mode_config.max_height = 4096;
14807         } else {
14808                 dev->mode_config.max_width = 8192;
14809                 dev->mode_config.max_height = 8192;
14810         }
14811
14812         if (IS_845G(dev) || IS_I865G(dev)) {
14813                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14814                 dev->mode_config.cursor_height = 1023;
14815         } else if (IS_GEN2(dev)) {
14816                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14817                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14818         } else {
14819                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14820                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14821         }
14822
14823         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14824
14825         DRM_DEBUG_KMS("%d display pipe%s available.\n",
14826                       INTEL_INFO(dev)->num_pipes,
14827                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14828
14829         for_each_pipe(dev_priv, pipe) {
14830                 intel_crtc_init(dev, pipe);
14831                 for_each_sprite(dev_priv, pipe, sprite) {
14832                         ret = intel_plane_init(dev, pipe, sprite);
14833                         if (ret)
14834                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14835                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
14836                 }
14837         }
14838
14839         intel_shared_dpll_init(dev);
14840
14841         /* Just disable it once at startup */
14842         i915_disable_vga(dev);
14843         intel_setup_outputs(dev);
14844
14845         /* Just in case the BIOS is doing something questionable. */
14846         intel_fbc_disable(dev_priv);
14847
14848         drm_modeset_lock_all(dev);
14849         intel_modeset_setup_hw_state(dev);
14850         drm_modeset_unlock_all(dev);
14851
14852         for_each_intel_crtc(dev, crtc) {
14853                 struct intel_initial_plane_config plane_config = {};
14854
14855                 if (!crtc->active)
14856                         continue;
14857
14858                 /*
14859                  * Note that reserving the BIOS fb up front prevents us
14860                  * from stuffing other stolen allocations like the ring
14861                  * on top.  This prevents some ugliness at boot time, and
14862                  * can even allow for smooth boot transitions if the BIOS
14863                  * fb is large enough for the active pipe configuration.
14864                  */
14865                 dev_priv->display.get_initial_plane_config(crtc,
14866                                                            &plane_config);
14867
14868                 /*
14869                  * If the fb is shared between multiple heads, we'll
14870                  * just get the first one.
14871                  */
14872                 intel_find_initial_plane_obj(crtc, &plane_config);
14873         }
14874 }
14875
14876 static void intel_enable_pipe_a(struct drm_device *dev)
14877 {
14878         struct intel_connector *connector;
14879         struct drm_connector *crt = NULL;
14880         struct intel_load_detect_pipe load_detect_temp;
14881         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14882
14883         /* We can't just switch on the pipe A, we need to set things up with a
14884          * proper mode and output configuration. As a gross hack, enable pipe A
14885          * by enabling the load detect pipe once. */
14886         for_each_intel_connector(dev, connector) {
14887                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14888                         crt = &connector->base;
14889                         break;
14890                 }
14891         }
14892
14893         if (!crt)
14894                 return;
14895
14896         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14897                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14898 }
14899
14900 static bool
14901 intel_check_plane_mapping(struct intel_crtc *crtc)
14902 {
14903         struct drm_device *dev = crtc->base.dev;
14904         struct drm_i915_private *dev_priv = dev->dev_private;
14905         u32 reg, val;
14906
14907         if (INTEL_INFO(dev)->num_pipes == 1)
14908                 return true;
14909
14910         reg = DSPCNTR(!crtc->plane);
14911         val = I915_READ(reg);
14912
14913         if ((val & DISPLAY_PLANE_ENABLE) &&
14914             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14915                 return false;
14916
14917         return true;
14918 }
14919
14920 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
14921 {
14922         struct drm_device *dev = crtc->base.dev;
14923         struct intel_encoder *encoder;
14924
14925         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
14926                 return true;
14927
14928         return false;
14929 }
14930
14931 static void intel_sanitize_crtc(struct intel_crtc *crtc)
14932 {
14933         struct drm_device *dev = crtc->base.dev;
14934         struct drm_i915_private *dev_priv = dev->dev_private;
14935         u32 reg;
14936
14937         /* Clear any frame start delays used for debugging left by the BIOS */
14938         reg = PIPECONF(crtc->config->cpu_transcoder);
14939         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14940
14941         /* restore vblank interrupts to correct state */
14942         drm_crtc_vblank_reset(&crtc->base);
14943         if (crtc->active) {
14944                 struct intel_plane *plane;
14945
14946                 drm_crtc_vblank_on(&crtc->base);
14947
14948                 /* Disable everything but the primary plane */
14949                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
14950                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
14951                                 continue;
14952
14953                         plane->disable_plane(&plane->base, &crtc->base);
14954                 }
14955         }
14956
14957         /* We need to sanitize the plane -> pipe mapping first because this will
14958          * disable the crtc (and hence change the state) if it is wrong. Note
14959          * that gen4+ has a fixed plane -> pipe mapping.  */
14960         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
14961                 bool plane;
14962
14963                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14964                               crtc->base.base.id);
14965
14966                 /* Pipe has the wrong plane attached and the plane is active.
14967                  * Temporarily change the plane mapping and disable everything
14968                  * ...  */
14969                 plane = crtc->plane;
14970                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
14971                 crtc->plane = !plane;
14972                 intel_crtc_disable_noatomic(&crtc->base);
14973                 crtc->plane = plane;
14974         }
14975
14976         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14977             crtc->pipe == PIPE_A && !crtc->active) {
14978                 /* BIOS forgot to enable pipe A, this mostly happens after
14979                  * resume. Force-enable the pipe to fix this, the update_dpms
14980                  * call below we restore the pipe to the right state, but leave
14981                  * the required bits on. */
14982                 intel_enable_pipe_a(dev);
14983         }
14984
14985         /* Adjust the state of the output pipe according to whether we
14986          * have active connectors/encoders. */
14987         if (!intel_crtc_has_encoders(crtc))
14988                 intel_crtc_disable_noatomic(&crtc->base);
14989
14990         if (crtc->active != crtc->base.state->active) {
14991                 struct intel_encoder *encoder;
14992
14993                 /* This can happen either due to bugs in the get_hw_state
14994                  * functions or because of calls to intel_crtc_disable_noatomic,
14995                  * or because the pipe is force-enabled due to the
14996                  * pipe A quirk. */
14997                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14998                               crtc->base.base.id,
14999                               crtc->base.state->enable ? "enabled" : "disabled",
15000                               crtc->active ? "enabled" : "disabled");
15001
15002                 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15003                 crtc->base.state->active = crtc->active;
15004                 crtc->base.enabled = crtc->active;
15005
15006                 /* Because we only establish the connector -> encoder ->
15007                  * crtc links if something is active, this means the
15008                  * crtc is now deactivated. Break the links. connector
15009                  * -> encoder links are only establish when things are
15010                  *  actually up, hence no need to break them. */
15011                 WARN_ON(crtc->active);
15012
15013                 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15014                         encoder->base.crtc = NULL;
15015         }
15016
15017         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15018                 /*
15019                  * We start out with underrun reporting disabled to avoid races.
15020                  * For correct bookkeeping mark this on active crtcs.
15021                  *
15022                  * Also on gmch platforms we dont have any hardware bits to
15023                  * disable the underrun reporting. Which means we need to start
15024                  * out with underrun reporting disabled also on inactive pipes,
15025                  * since otherwise we'll complain about the garbage we read when
15026                  * e.g. coming up after runtime pm.
15027                  *
15028                  * No protection against concurrent access is required - at
15029                  * worst a fifo underrun happens which also sets this to false.
15030                  */
15031                 crtc->cpu_fifo_underrun_disabled = true;
15032                 crtc->pch_fifo_underrun_disabled = true;
15033         }
15034 }
15035
15036 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15037 {
15038         struct intel_connector *connector;
15039         struct drm_device *dev = encoder->base.dev;
15040         bool active = false;
15041
15042         /* We need to check both for a crtc link (meaning that the
15043          * encoder is active and trying to read from a pipe) and the
15044          * pipe itself being active. */
15045         bool has_active_crtc = encoder->base.crtc &&
15046                 to_intel_crtc(encoder->base.crtc)->active;
15047
15048         for_each_intel_connector(dev, connector) {
15049                 if (connector->base.encoder != &encoder->base)
15050                         continue;
15051
15052                 active = true;
15053                 break;
15054         }
15055
15056         if (active && !has_active_crtc) {
15057                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15058                               encoder->base.base.id,
15059                               encoder->base.name);
15060
15061                 /* Connector is active, but has no active pipe. This is
15062                  * fallout from our resume register restoring. Disable
15063                  * the encoder manually again. */
15064                 if (encoder->base.crtc) {
15065                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15066                                       encoder->base.base.id,
15067                                       encoder->base.name);
15068                         encoder->disable(encoder);
15069                         if (encoder->post_disable)
15070                                 encoder->post_disable(encoder);
15071                 }
15072                 encoder->base.crtc = NULL;
15073
15074                 /* Inconsistent output/port/pipe state happens presumably due to
15075                  * a bug in one of the get_hw_state functions. Or someplace else
15076                  * in our code, like the register restore mess on resume. Clamp
15077                  * things to off as a safer default. */
15078                 for_each_intel_connector(dev, connector) {
15079                         if (connector->encoder != encoder)
15080                                 continue;
15081                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15082                         connector->base.encoder = NULL;
15083                 }
15084         }
15085         /* Enabled encoders without active connectors will be fixed in
15086          * the crtc fixup. */
15087 }
15088
15089 void i915_redisable_vga_power_on(struct drm_device *dev)
15090 {
15091         struct drm_i915_private *dev_priv = dev->dev_private;
15092         u32 vga_reg = i915_vgacntrl_reg(dev);
15093
15094         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15095                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15096                 i915_disable_vga(dev);
15097         }
15098 }
15099
15100 void i915_redisable_vga(struct drm_device *dev)
15101 {
15102         struct drm_i915_private *dev_priv = dev->dev_private;
15103
15104         /* This function can be called both from intel_modeset_setup_hw_state or
15105          * at a very early point in our resume sequence, where the power well
15106          * structures are not yet restored. Since this function is at a very
15107          * paranoid "someone might have enabled VGA while we were not looking"
15108          * level, just check if the power well is enabled instead of trying to
15109          * follow the "don't touch the power well if we don't need it" policy
15110          * the rest of the driver uses. */
15111         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15112                 return;
15113
15114         i915_redisable_vga_power_on(dev);
15115 }
15116
15117 static bool primary_get_hw_state(struct intel_plane *plane)
15118 {
15119         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15120
15121         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15122 }
15123
15124 /* FIXME read out full plane state for all planes */
15125 static void readout_plane_state(struct intel_crtc *crtc)
15126 {
15127         struct intel_plane_state *plane_state =
15128                 to_intel_plane_state(crtc->base.primary->state);
15129
15130         plane_state->visible =
15131                 primary_get_hw_state(to_intel_plane(crtc->base.primary));
15132 }
15133
15134 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15135 {
15136         struct drm_i915_private *dev_priv = dev->dev_private;
15137         enum pipe pipe;
15138         struct intel_crtc *crtc;
15139         struct intel_encoder *encoder;
15140         struct intel_connector *connector;
15141         int i;
15142
15143         for_each_intel_crtc(dev, crtc) {
15144                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15145                 memset(crtc->config, 0, sizeof(*crtc->config));
15146                 crtc->config->base.crtc = &crtc->base;
15147
15148                 crtc->active = dev_priv->display.get_pipe_config(crtc,
15149                                                                  crtc->config);
15150
15151                 crtc->base.state->active = crtc->active;
15152                 crtc->base.enabled = crtc->active;
15153
15154                 readout_plane_state(crtc);
15155
15156                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15157                               crtc->base.base.id,
15158                               crtc->active ? "enabled" : "disabled");
15159         }
15160
15161         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15162                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15163
15164                 pll->on = pll->get_hw_state(dev_priv, pll,
15165                                             &pll->config.hw_state);
15166                 pll->active = 0;
15167                 pll->config.crtc_mask = 0;
15168                 for_each_intel_crtc(dev, crtc) {
15169                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15170                                 pll->active++;
15171                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15172                         }
15173                 }
15174
15175                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15176                               pll->name, pll->config.crtc_mask, pll->on);
15177
15178                 if (pll->config.crtc_mask)
15179                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15180         }
15181
15182         for_each_intel_encoder(dev, encoder) {
15183                 pipe = 0;
15184
15185                 if (encoder->get_hw_state(encoder, &pipe)) {
15186                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15187                         encoder->base.crtc = &crtc->base;
15188                         encoder->get_config(encoder, crtc->config);
15189                 } else {
15190                         encoder->base.crtc = NULL;
15191                 }
15192
15193                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15194                               encoder->base.base.id,
15195                               encoder->base.name,
15196                               encoder->base.crtc ? "enabled" : "disabled",
15197                               pipe_name(pipe));
15198         }
15199
15200         for_each_intel_connector(dev, connector) {
15201                 if (connector->get_hw_state(connector)) {
15202                         connector->base.dpms = DRM_MODE_DPMS_ON;
15203                         connector->base.encoder = &connector->encoder->base;
15204                 } else {
15205                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15206                         connector->base.encoder = NULL;
15207                 }
15208                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15209                               connector->base.base.id,
15210                               connector->base.name,
15211                               connector->base.encoder ? "enabled" : "disabled");
15212         }
15213
15214         for_each_intel_crtc(dev, crtc) {
15215                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15216
15217                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15218                 if (crtc->base.state->active) {
15219                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15220                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15221                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15222
15223                         /*
15224                          * The initial mode needs to be set in order to keep
15225                          * the atomic core happy. It wants a valid mode if the
15226                          * crtc's enabled, so we do the above call.
15227                          *
15228                          * At this point some state updated by the connectors
15229                          * in their ->detect() callback has not run yet, so
15230                          * no recalculation can be done yet.
15231                          *
15232                          * Even if we could do a recalculation and modeset
15233                          * right now it would cause a double modeset if
15234                          * fbdev or userspace chooses a different initial mode.
15235                          *
15236                          * If that happens, someone indicated they wanted a
15237                          * mode change, which means it's safe to do a full
15238                          * recalculation.
15239                          */
15240                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15241
15242                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15243                         update_scanline_offset(crtc);
15244                 }
15245         }
15246 }
15247
15248 /* Scan out the current hw modeset state,
15249  * and sanitizes it to the current state
15250  */
15251 static void
15252 intel_modeset_setup_hw_state(struct drm_device *dev)
15253 {
15254         struct drm_i915_private *dev_priv = dev->dev_private;
15255         enum pipe pipe;
15256         struct intel_crtc *crtc;
15257         struct intel_encoder *encoder;
15258         int i;
15259
15260         intel_modeset_readout_hw_state(dev);
15261
15262         /* HW state is read out, now we need to sanitize this mess. */
15263         for_each_intel_encoder(dev, encoder) {
15264                 intel_sanitize_encoder(encoder);
15265         }
15266
15267         for_each_pipe(dev_priv, pipe) {
15268                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15269                 intel_sanitize_crtc(crtc);
15270                 intel_dump_pipe_config(crtc, crtc->config,
15271                                        "[setup_hw_state]");
15272         }
15273
15274         intel_modeset_update_connector_atomic_state(dev);
15275
15276         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15277                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15278
15279                 if (!pll->on || pll->active)
15280                         continue;
15281
15282                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15283
15284                 pll->disable(dev_priv, pll);
15285                 pll->on = false;
15286         }
15287
15288         if (IS_VALLEYVIEW(dev))
15289                 vlv_wm_get_hw_state(dev);
15290         else if (IS_GEN9(dev))
15291                 skl_wm_get_hw_state(dev);
15292         else if (HAS_PCH_SPLIT(dev))
15293                 ilk_wm_get_hw_state(dev);
15294
15295         for_each_intel_crtc(dev, crtc) {
15296                 unsigned long put_domains;
15297
15298                 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15299                 if (WARN_ON(put_domains))
15300                         modeset_put_power_domains(dev_priv, put_domains);
15301         }
15302         intel_display_set_init_power(dev_priv, false);
15303 }
15304
15305 void intel_display_resume(struct drm_device *dev)
15306 {
15307         struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15308         struct intel_connector *conn;
15309         struct intel_plane *plane;
15310         struct drm_crtc *crtc;
15311         int ret;
15312
15313         if (!state)
15314                 return;
15315
15316         state->acquire_ctx = dev->mode_config.acquire_ctx;
15317
15318         /* preserve complete old state, including dpll */
15319         intel_atomic_get_shared_dpll_state(state);
15320
15321         for_each_crtc(dev, crtc) {
15322                 struct drm_crtc_state *crtc_state =
15323                         drm_atomic_get_crtc_state(state, crtc);
15324
15325                 ret = PTR_ERR_OR_ZERO(crtc_state);
15326                 if (ret)
15327                         goto err;
15328
15329                 /* force a restore */
15330                 crtc_state->mode_changed = true;
15331         }
15332
15333         for_each_intel_plane(dev, plane) {
15334                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15335                 if (ret)
15336                         goto err;
15337         }
15338
15339         for_each_intel_connector(dev, conn) {
15340                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15341                 if (ret)
15342                         goto err;
15343         }
15344
15345         intel_modeset_setup_hw_state(dev);
15346
15347         i915_redisable_vga(dev);
15348         ret = drm_atomic_commit(state);
15349         if (!ret)
15350                 return;
15351
15352 err:
15353         DRM_ERROR("Restoring old state failed with %i\n", ret);
15354         drm_atomic_state_free(state);
15355 }
15356
15357 void intel_modeset_gem_init(struct drm_device *dev)
15358 {
15359         struct drm_crtc *c;
15360         struct drm_i915_gem_object *obj;
15361         int ret;
15362
15363         mutex_lock(&dev->struct_mutex);
15364         intel_init_gt_powersave(dev);
15365         mutex_unlock(&dev->struct_mutex);
15366
15367         intel_modeset_init_hw(dev);
15368
15369         intel_setup_overlay(dev);
15370
15371         /*
15372          * Make sure any fbs we allocated at startup are properly
15373          * pinned & fenced.  When we do the allocation it's too early
15374          * for this.
15375          */
15376         for_each_crtc(dev, c) {
15377                 obj = intel_fb_obj(c->primary->fb);
15378                 if (obj == NULL)
15379                         continue;
15380
15381                 mutex_lock(&dev->struct_mutex);
15382                 ret = intel_pin_and_fence_fb_obj(c->primary,
15383                                                  c->primary->fb,
15384                                                  c->primary->state,
15385                                                  NULL, NULL);
15386                 mutex_unlock(&dev->struct_mutex);
15387                 if (ret) {
15388                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15389                                   to_intel_crtc(c)->pipe);
15390                         drm_framebuffer_unreference(c->primary->fb);
15391                         c->primary->fb = NULL;
15392                         c->primary->crtc = c->primary->state->crtc = NULL;
15393                         update_state_fb(c->primary);
15394                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15395                 }
15396         }
15397
15398         intel_backlight_register(dev);
15399 }
15400
15401 void intel_connector_unregister(struct intel_connector *intel_connector)
15402 {
15403         struct drm_connector *connector = &intel_connector->base;
15404
15405         intel_panel_destroy_backlight(connector);
15406         drm_connector_unregister(connector);
15407 }
15408
15409 void intel_modeset_cleanup(struct drm_device *dev)
15410 {
15411         struct drm_i915_private *dev_priv = dev->dev_private;
15412         struct drm_connector *connector;
15413
15414         intel_disable_gt_powersave(dev);
15415
15416         intel_backlight_unregister(dev);
15417
15418         /*
15419          * Interrupts and polling as the first thing to avoid creating havoc.
15420          * Too much stuff here (turning of connectors, ...) would
15421          * experience fancy races otherwise.
15422          */
15423         intel_irq_uninstall(dev_priv);
15424
15425         /*
15426          * Due to the hpd irq storm handling the hotplug work can re-arm the
15427          * poll handlers. Hence disable polling after hpd handling is shut down.
15428          */
15429         drm_kms_helper_poll_fini(dev);
15430
15431         intel_unregister_dsm_handler();
15432
15433         intel_fbc_disable(dev_priv);
15434
15435         /* flush any delayed tasks or pending work */
15436         flush_scheduled_work();
15437
15438         /* destroy the backlight and sysfs files before encoders/connectors */
15439         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15440                 struct intel_connector *intel_connector;
15441
15442                 intel_connector = to_intel_connector(connector);
15443                 intel_connector->unregister(intel_connector);
15444         }
15445
15446         drm_mode_config_cleanup(dev);
15447
15448         intel_cleanup_overlay(dev);
15449
15450         mutex_lock(&dev->struct_mutex);
15451         intel_cleanup_gt_powersave(dev);
15452         mutex_unlock(&dev->struct_mutex);
15453 }
15454
15455 /*
15456  * Return which encoder is currently attached for connector.
15457  */
15458 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15459 {
15460         return &intel_attached_encoder(connector)->base;
15461 }
15462
15463 void intel_connector_attach_encoder(struct intel_connector *connector,
15464                                     struct intel_encoder *encoder)
15465 {
15466         connector->encoder = encoder;
15467         drm_mode_connector_attach_encoder(&connector->base,
15468                                           &encoder->base);
15469 }
15470
15471 /*
15472  * set vga decode state - true == enable VGA decode
15473  */
15474 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15475 {
15476         struct drm_i915_private *dev_priv = dev->dev_private;
15477         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15478         u16 gmch_ctrl;
15479
15480         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15481                 DRM_ERROR("failed to read control word\n");
15482                 return -EIO;
15483         }
15484
15485         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15486                 return 0;
15487
15488         if (state)
15489                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15490         else
15491                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15492
15493         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15494                 DRM_ERROR("failed to write control word\n");
15495                 return -EIO;
15496         }
15497
15498         return 0;
15499 }
15500
15501 struct intel_display_error_state {
15502
15503         u32 power_well_driver;
15504
15505         int num_transcoders;
15506
15507         struct intel_cursor_error_state {
15508                 u32 control;
15509                 u32 position;
15510                 u32 base;
15511                 u32 size;
15512         } cursor[I915_MAX_PIPES];
15513
15514         struct intel_pipe_error_state {
15515                 bool power_domain_on;
15516                 u32 source;
15517                 u32 stat;
15518         } pipe[I915_MAX_PIPES];
15519
15520         struct intel_plane_error_state {
15521                 u32 control;
15522                 u32 stride;
15523                 u32 size;
15524                 u32 pos;
15525                 u32 addr;
15526                 u32 surface;
15527                 u32 tile_offset;
15528         } plane[I915_MAX_PIPES];
15529
15530         struct intel_transcoder_error_state {
15531                 bool power_domain_on;
15532                 enum transcoder cpu_transcoder;
15533
15534                 u32 conf;
15535
15536                 u32 htotal;
15537                 u32 hblank;
15538                 u32 hsync;
15539                 u32 vtotal;
15540                 u32 vblank;
15541                 u32 vsync;
15542         } transcoder[4];
15543 };
15544
15545 struct intel_display_error_state *
15546 intel_display_capture_error_state(struct drm_device *dev)
15547 {
15548         struct drm_i915_private *dev_priv = dev->dev_private;
15549         struct intel_display_error_state *error;
15550         int transcoders[] = {
15551                 TRANSCODER_A,
15552                 TRANSCODER_B,
15553                 TRANSCODER_C,
15554                 TRANSCODER_EDP,
15555         };
15556         int i;
15557
15558         if (INTEL_INFO(dev)->num_pipes == 0)
15559                 return NULL;
15560
15561         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15562         if (error == NULL)
15563                 return NULL;
15564
15565         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15566                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15567
15568         for_each_pipe(dev_priv, i) {
15569                 error->pipe[i].power_domain_on =
15570                         __intel_display_power_is_enabled(dev_priv,
15571                                                          POWER_DOMAIN_PIPE(i));
15572                 if (!error->pipe[i].power_domain_on)
15573                         continue;
15574
15575                 error->cursor[i].control = I915_READ(CURCNTR(i));
15576                 error->cursor[i].position = I915_READ(CURPOS(i));
15577                 error->cursor[i].base = I915_READ(CURBASE(i));
15578
15579                 error->plane[i].control = I915_READ(DSPCNTR(i));
15580                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15581                 if (INTEL_INFO(dev)->gen <= 3) {
15582                         error->plane[i].size = I915_READ(DSPSIZE(i));
15583                         error->plane[i].pos = I915_READ(DSPPOS(i));
15584                 }
15585                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15586                         error->plane[i].addr = I915_READ(DSPADDR(i));
15587                 if (INTEL_INFO(dev)->gen >= 4) {
15588                         error->plane[i].surface = I915_READ(DSPSURF(i));
15589                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15590                 }
15591
15592                 error->pipe[i].source = I915_READ(PIPESRC(i));
15593
15594                 if (HAS_GMCH_DISPLAY(dev))
15595                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15596         }
15597
15598         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15599         if (HAS_DDI(dev_priv->dev))
15600                 error->num_transcoders++; /* Account for eDP. */
15601
15602         for (i = 0; i < error->num_transcoders; i++) {
15603                 enum transcoder cpu_transcoder = transcoders[i];
15604
15605                 error->transcoder[i].power_domain_on =
15606                         __intel_display_power_is_enabled(dev_priv,
15607                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15608                 if (!error->transcoder[i].power_domain_on)
15609                         continue;
15610
15611                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15612
15613                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15614                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15615                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15616                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15617                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15618                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15619                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15620         }
15621
15622         return error;
15623 }
15624
15625 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15626
15627 void
15628 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15629                                 struct drm_device *dev,
15630                                 struct intel_display_error_state *error)
15631 {
15632         struct drm_i915_private *dev_priv = dev->dev_private;
15633         int i;
15634
15635         if (!error)
15636                 return;
15637
15638         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15639         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15640                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15641                            error->power_well_driver);
15642         for_each_pipe(dev_priv, i) {
15643                 err_printf(m, "Pipe [%d]:\n", i);
15644                 err_printf(m, "  Power: %s\n",
15645                            error->pipe[i].power_domain_on ? "on" : "off");
15646                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15647                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15648
15649                 err_printf(m, "Plane [%d]:\n", i);
15650                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15651                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15652                 if (INTEL_INFO(dev)->gen <= 3) {
15653                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15654                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15655                 }
15656                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15657                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15658                 if (INTEL_INFO(dev)->gen >= 4) {
15659                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15660                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15661                 }
15662
15663                 err_printf(m, "Cursor [%d]:\n", i);
15664                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15665                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15666                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15667         }
15668
15669         for (i = 0; i < error->num_transcoders; i++) {
15670                 err_printf(m, "CPU transcoder: %c\n",
15671                            transcoder_name(error->transcoder[i].cpu_transcoder));
15672                 err_printf(m, "  Power: %s\n",
15673                            error->transcoder[i].power_domain_on ? "on" : "off");
15674                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15675                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15676                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15677                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15678                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15679                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15680                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15681         }
15682 }
15683
15684 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15685 {
15686         struct intel_crtc *crtc;
15687
15688         for_each_intel_crtc(dev, crtc) {
15689                 struct intel_unpin_work *work;
15690
15691                 spin_lock_irq(&dev->event_lock);
15692
15693                 work = crtc->unpin_work;
15694
15695                 if (work && work->event &&
15696                     work->event->base.file_priv == file) {
15697                         kfree(work->event);
15698                         work->event = NULL;
15699                 }
15700
15701                 spin_unlock_irq(&dev->event_lock);
15702         }
15703 }