drm/i915: Implement WaPixelRepeatModeFixForC0:chv
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "intel_dsi.h"
40 #include "i915_trace.h"
41 #include <drm/drm_atomic.h>
42 #include <drm/drm_atomic_helper.h>
43 #include <drm/drm_dp_helper.h>
44 #include <drm/drm_crtc_helper.h>
45 #include <drm/drm_plane_helper.h>
46 #include <drm/drm_rect.h>
47 #include <linux/dma_remapping.h>
48 #include <linux/reservation.h>
49 #include <linux/dma-buf.h>
50
51 /* Primary plane formats for gen <= 3 */
52 static const uint32_t i8xx_primary_formats[] = {
53         DRM_FORMAT_C8,
54         DRM_FORMAT_RGB565,
55         DRM_FORMAT_XRGB1555,
56         DRM_FORMAT_XRGB8888,
57 };
58
59 /* Primary plane formats for gen >= 4 */
60 static const uint32_t i965_primary_formats[] = {
61         DRM_FORMAT_C8,
62         DRM_FORMAT_RGB565,
63         DRM_FORMAT_XRGB8888,
64         DRM_FORMAT_XBGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_XBGR2101010,
67 };
68
69 static const uint32_t skl_primary_formats[] = {
70         DRM_FORMAT_C8,
71         DRM_FORMAT_RGB565,
72         DRM_FORMAT_XRGB8888,
73         DRM_FORMAT_XBGR8888,
74         DRM_FORMAT_ARGB8888,
75         DRM_FORMAT_ABGR8888,
76         DRM_FORMAT_XRGB2101010,
77         DRM_FORMAT_XBGR2101010,
78         DRM_FORMAT_YUYV,
79         DRM_FORMAT_YVYU,
80         DRM_FORMAT_UYVY,
81         DRM_FORMAT_VYUY,
82 };
83
84 /* Cursor formats */
85 static const uint32_t intel_cursor_formats[] = {
86         DRM_FORMAT_ARGB8888,
87 };
88
89 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
90                                 struct intel_crtc_state *pipe_config);
91 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
92                                    struct intel_crtc_state *pipe_config);
93
94 static int intel_framebuffer_init(struct drm_device *dev,
95                                   struct intel_framebuffer *ifb,
96                                   struct drm_mode_fb_cmd2 *mode_cmd,
97                                   struct drm_i915_gem_object *obj);
98 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
99 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
100 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
101 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
102                                          struct intel_link_m_n *m_n,
103                                          struct intel_link_m_n *m2_n2);
104 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
105 static void haswell_set_pipeconf(struct drm_crtc *crtc);
106 static void haswell_set_pipemisc(struct drm_crtc *crtc);
107 static void vlv_prepare_pll(struct intel_crtc *crtc,
108                             const struct intel_crtc_state *pipe_config);
109 static void chv_prepare_pll(struct intel_crtc *crtc,
110                             const struct intel_crtc_state *pipe_config);
111 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
112 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
113 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
114         struct intel_crtc_state *crtc_state);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
120
121 typedef struct {
122         int     min, max;
123 } intel_range_t;
124
125 typedef struct {
126         int     dot_limit;
127         int     p2_slow, p2_fast;
128 } intel_p2_t;
129
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
133         intel_p2_t          p2;
134 };
135
136 /* returns HPLL frequency in kHz */
137 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138 {
139         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140
141         /* Obtain SKU information */
142         mutex_lock(&dev_priv->sb_lock);
143         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144                 CCK_FUSE_HPLL_FREQ_MASK;
145         mutex_unlock(&dev_priv->sb_lock);
146
147         return vco_freq[hpll_freq] * 1000;
148 }
149
150 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
151                                   const char *name, u32 reg)
152 {
153         u32 val;
154         int divider;
155
156         if (dev_priv->hpll_freq == 0)
157                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
158
159         mutex_lock(&dev_priv->sb_lock);
160         val = vlv_cck_read(dev_priv, reg);
161         mutex_unlock(&dev_priv->sb_lock);
162
163         divider = val & CCK_FREQUENCY_VALUES;
164
165         WARN((val & CCK_FREQUENCY_STATUS) !=
166              (divider << CCK_FREQUENCY_STATUS_SHIFT),
167              "%s change in progress\n", name);
168
169         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
170 }
171
172 static int
173 intel_pch_rawclk(struct drm_i915_private *dev_priv)
174 {
175         return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
176 }
177
178 static int
179 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
180 {
181         return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
182                                       CCK_DISPLAY_REF_CLOCK_CONTROL);
183 }
184
185 static int
186 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
187 {
188         uint32_t clkcfg;
189
190         /* hrawclock is 1/4 the FSB frequency */
191         clkcfg = I915_READ(CLKCFG);
192         switch (clkcfg & CLKCFG_FSB_MASK) {
193         case CLKCFG_FSB_400:
194                 return 100000;
195         case CLKCFG_FSB_533:
196                 return 133333;
197         case CLKCFG_FSB_667:
198                 return 166667;
199         case CLKCFG_FSB_800:
200                 return 200000;
201         case CLKCFG_FSB_1067:
202                 return 266667;
203         case CLKCFG_FSB_1333:
204                 return 333333;
205         /* these two are just a guess; one of them might be right */
206         case CLKCFG_FSB_1600:
207         case CLKCFG_FSB_1600_ALT:
208                 return 400000;
209         default:
210                 return 133333;
211         }
212 }
213
214 static void intel_update_rawclk(struct drm_i915_private *dev_priv)
215 {
216         if (HAS_PCH_SPLIT(dev_priv))
217                 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
218         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
219                 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
220         else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
221                 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
222         else
223                 return; /* no rawclk on other platforms, or no need to know it */
224
225         DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
226 }
227
228 static void intel_update_czclk(struct drm_i915_private *dev_priv)
229 {
230         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
231                 return;
232
233         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
234                                                       CCK_CZ_CLOCK_CONTROL);
235
236         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
237 }
238
239 static inline u32 /* units of 100MHz */
240 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
241                     const struct intel_crtc_state *pipe_config)
242 {
243         if (HAS_DDI(dev_priv))
244                 return pipe_config->port_clock; /* SPLL */
245         else if (IS_GEN5(dev_priv))
246                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
247         else
248                 return 270000;
249 }
250
251 static const intel_limit_t intel_limits_i8xx_dac = {
252         .dot = { .min = 25000, .max = 350000 },
253         .vco = { .min = 908000, .max = 1512000 },
254         .n = { .min = 2, .max = 16 },
255         .m = { .min = 96, .max = 140 },
256         .m1 = { .min = 18, .max = 26 },
257         .m2 = { .min = 6, .max = 16 },
258         .p = { .min = 4, .max = 128 },
259         .p1 = { .min = 2, .max = 33 },
260         .p2 = { .dot_limit = 165000,
261                 .p2_slow = 4, .p2_fast = 2 },
262 };
263
264 static const intel_limit_t intel_limits_i8xx_dvo = {
265         .dot = { .min = 25000, .max = 350000 },
266         .vco = { .min = 908000, .max = 1512000 },
267         .n = { .min = 2, .max = 16 },
268         .m = { .min = 96, .max = 140 },
269         .m1 = { .min = 18, .max = 26 },
270         .m2 = { .min = 6, .max = 16 },
271         .p = { .min = 4, .max = 128 },
272         .p1 = { .min = 2, .max = 33 },
273         .p2 = { .dot_limit = 165000,
274                 .p2_slow = 4, .p2_fast = 4 },
275 };
276
277 static const intel_limit_t intel_limits_i8xx_lvds = {
278         .dot = { .min = 25000, .max = 350000 },
279         .vco = { .min = 908000, .max = 1512000 },
280         .n = { .min = 2, .max = 16 },
281         .m = { .min = 96, .max = 140 },
282         .m1 = { .min = 18, .max = 26 },
283         .m2 = { .min = 6, .max = 16 },
284         .p = { .min = 4, .max = 128 },
285         .p1 = { .min = 1, .max = 6 },
286         .p2 = { .dot_limit = 165000,
287                 .p2_slow = 14, .p2_fast = 7 },
288 };
289
290 static const intel_limit_t intel_limits_i9xx_sdvo = {
291         .dot = { .min = 20000, .max = 400000 },
292         .vco = { .min = 1400000, .max = 2800000 },
293         .n = { .min = 1, .max = 6 },
294         .m = { .min = 70, .max = 120 },
295         .m1 = { .min = 8, .max = 18 },
296         .m2 = { .min = 3, .max = 7 },
297         .p = { .min = 5, .max = 80 },
298         .p1 = { .min = 1, .max = 8 },
299         .p2 = { .dot_limit = 200000,
300                 .p2_slow = 10, .p2_fast = 5 },
301 };
302
303 static const intel_limit_t intel_limits_i9xx_lvds = {
304         .dot = { .min = 20000, .max = 400000 },
305         .vco = { .min = 1400000, .max = 2800000 },
306         .n = { .min = 1, .max = 6 },
307         .m = { .min = 70, .max = 120 },
308         .m1 = { .min = 8, .max = 18 },
309         .m2 = { .min = 3, .max = 7 },
310         .p = { .min = 7, .max = 98 },
311         .p1 = { .min = 1, .max = 8 },
312         .p2 = { .dot_limit = 112000,
313                 .p2_slow = 14, .p2_fast = 7 },
314 };
315
316
317 static const intel_limit_t intel_limits_g4x_sdvo = {
318         .dot = { .min = 25000, .max = 270000 },
319         .vco = { .min = 1750000, .max = 3500000},
320         .n = { .min = 1, .max = 4 },
321         .m = { .min = 104, .max = 138 },
322         .m1 = { .min = 17, .max = 23 },
323         .m2 = { .min = 5, .max = 11 },
324         .p = { .min = 10, .max = 30 },
325         .p1 = { .min = 1, .max = 3},
326         .p2 = { .dot_limit = 270000,
327                 .p2_slow = 10,
328                 .p2_fast = 10
329         },
330 };
331
332 static const intel_limit_t intel_limits_g4x_hdmi = {
333         .dot = { .min = 22000, .max = 400000 },
334         .vco = { .min = 1750000, .max = 3500000},
335         .n = { .min = 1, .max = 4 },
336         .m = { .min = 104, .max = 138 },
337         .m1 = { .min = 16, .max = 23 },
338         .m2 = { .min = 5, .max = 11 },
339         .p = { .min = 5, .max = 80 },
340         .p1 = { .min = 1, .max = 8},
341         .p2 = { .dot_limit = 165000,
342                 .p2_slow = 10, .p2_fast = 5 },
343 };
344
345 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
346         .dot = { .min = 20000, .max = 115000 },
347         .vco = { .min = 1750000, .max = 3500000 },
348         .n = { .min = 1, .max = 3 },
349         .m = { .min = 104, .max = 138 },
350         .m1 = { .min = 17, .max = 23 },
351         .m2 = { .min = 5, .max = 11 },
352         .p = { .min = 28, .max = 112 },
353         .p1 = { .min = 2, .max = 8 },
354         .p2 = { .dot_limit = 0,
355                 .p2_slow = 14, .p2_fast = 14
356         },
357 };
358
359 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
360         .dot = { .min = 80000, .max = 224000 },
361         .vco = { .min = 1750000, .max = 3500000 },
362         .n = { .min = 1, .max = 3 },
363         .m = { .min = 104, .max = 138 },
364         .m1 = { .min = 17, .max = 23 },
365         .m2 = { .min = 5, .max = 11 },
366         .p = { .min = 14, .max = 42 },
367         .p1 = { .min = 2, .max = 6 },
368         .p2 = { .dot_limit = 0,
369                 .p2_slow = 7, .p2_fast = 7
370         },
371 };
372
373 static const intel_limit_t intel_limits_pineview_sdvo = {
374         .dot = { .min = 20000, .max = 400000},
375         .vco = { .min = 1700000, .max = 3500000 },
376         /* Pineview's Ncounter is a ring counter */
377         .n = { .min = 3, .max = 6 },
378         .m = { .min = 2, .max = 256 },
379         /* Pineview only has one combined m divider, which we treat as m2. */
380         .m1 = { .min = 0, .max = 0 },
381         .m2 = { .min = 0, .max = 254 },
382         .p = { .min = 5, .max = 80 },
383         .p1 = { .min = 1, .max = 8 },
384         .p2 = { .dot_limit = 200000,
385                 .p2_slow = 10, .p2_fast = 5 },
386 };
387
388 static const intel_limit_t intel_limits_pineview_lvds = {
389         .dot = { .min = 20000, .max = 400000 },
390         .vco = { .min = 1700000, .max = 3500000 },
391         .n = { .min = 3, .max = 6 },
392         .m = { .min = 2, .max = 256 },
393         .m1 = { .min = 0, .max = 0 },
394         .m2 = { .min = 0, .max = 254 },
395         .p = { .min = 7, .max = 112 },
396         .p1 = { .min = 1, .max = 8 },
397         .p2 = { .dot_limit = 112000,
398                 .p2_slow = 14, .p2_fast = 14 },
399 };
400
401 /* Ironlake / Sandybridge
402  *
403  * We calculate clock using (register_value + 2) for N/M1/M2, so here
404  * the range value for them is (actual_value - 2).
405  */
406 static const intel_limit_t intel_limits_ironlake_dac = {
407         .dot = { .min = 25000, .max = 350000 },
408         .vco = { .min = 1760000, .max = 3510000 },
409         .n = { .min = 1, .max = 5 },
410         .m = { .min = 79, .max = 127 },
411         .m1 = { .min = 12, .max = 22 },
412         .m2 = { .min = 5, .max = 9 },
413         .p = { .min = 5, .max = 80 },
414         .p1 = { .min = 1, .max = 8 },
415         .p2 = { .dot_limit = 225000,
416                 .p2_slow = 10, .p2_fast = 5 },
417 };
418
419 static const intel_limit_t intel_limits_ironlake_single_lvds = {
420         .dot = { .min = 25000, .max = 350000 },
421         .vco = { .min = 1760000, .max = 3510000 },
422         .n = { .min = 1, .max = 3 },
423         .m = { .min = 79, .max = 118 },
424         .m1 = { .min = 12, .max = 22 },
425         .m2 = { .min = 5, .max = 9 },
426         .p = { .min = 28, .max = 112 },
427         .p1 = { .min = 2, .max = 8 },
428         .p2 = { .dot_limit = 225000,
429                 .p2_slow = 14, .p2_fast = 14 },
430 };
431
432 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
433         .dot = { .min = 25000, .max = 350000 },
434         .vco = { .min = 1760000, .max = 3510000 },
435         .n = { .min = 1, .max = 3 },
436         .m = { .min = 79, .max = 127 },
437         .m1 = { .min = 12, .max = 22 },
438         .m2 = { .min = 5, .max = 9 },
439         .p = { .min = 14, .max = 56 },
440         .p1 = { .min = 2, .max = 8 },
441         .p2 = { .dot_limit = 225000,
442                 .p2_slow = 7, .p2_fast = 7 },
443 };
444
445 /* LVDS 100mhz refclk limits. */
446 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
447         .dot = { .min = 25000, .max = 350000 },
448         .vco = { .min = 1760000, .max = 3510000 },
449         .n = { .min = 1, .max = 2 },
450         .m = { .min = 79, .max = 126 },
451         .m1 = { .min = 12, .max = 22 },
452         .m2 = { .min = 5, .max = 9 },
453         .p = { .min = 28, .max = 112 },
454         .p1 = { .min = 2, .max = 8 },
455         .p2 = { .dot_limit = 225000,
456                 .p2_slow = 14, .p2_fast = 14 },
457 };
458
459 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
460         .dot = { .min = 25000, .max = 350000 },
461         .vco = { .min = 1760000, .max = 3510000 },
462         .n = { .min = 1, .max = 3 },
463         .m = { .min = 79, .max = 126 },
464         .m1 = { .min = 12, .max = 22 },
465         .m2 = { .min = 5, .max = 9 },
466         .p = { .min = 14, .max = 42 },
467         .p1 = { .min = 2, .max = 6 },
468         .p2 = { .dot_limit = 225000,
469                 .p2_slow = 7, .p2_fast = 7 },
470 };
471
472 static const intel_limit_t intel_limits_vlv = {
473          /*
474           * These are the data rate limits (measured in fast clocks)
475           * since those are the strictest limits we have. The fast
476           * clock and actual rate limits are more relaxed, so checking
477           * them would make no difference.
478           */
479         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
480         .vco = { .min = 4000000, .max = 6000000 },
481         .n = { .min = 1, .max = 7 },
482         .m1 = { .min = 2, .max = 3 },
483         .m2 = { .min = 11, .max = 156 },
484         .p1 = { .min = 2, .max = 3 },
485         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
486 };
487
488 static const intel_limit_t intel_limits_chv = {
489         /*
490          * These are the data rate limits (measured in fast clocks)
491          * since those are the strictest limits we have.  The fast
492          * clock and actual rate limits are more relaxed, so checking
493          * them would make no difference.
494          */
495         .dot = { .min = 25000 * 5, .max = 540000 * 5},
496         .vco = { .min = 4800000, .max = 6480000 },
497         .n = { .min = 1, .max = 1 },
498         .m1 = { .min = 2, .max = 2 },
499         .m2 = { .min = 24 << 22, .max = 175 << 22 },
500         .p1 = { .min = 2, .max = 4 },
501         .p2 = { .p2_slow = 1, .p2_fast = 14 },
502 };
503
504 static const intel_limit_t intel_limits_bxt = {
505         /* FIXME: find real dot limits */
506         .dot = { .min = 0, .max = INT_MAX },
507         .vco = { .min = 4800000, .max = 6700000 },
508         .n = { .min = 1, .max = 1 },
509         .m1 = { .min = 2, .max = 2 },
510         /* FIXME: find real m2 limits */
511         .m2 = { .min = 2 << 22, .max = 255 << 22 },
512         .p1 = { .min = 2, .max = 4 },
513         .p2 = { .p2_slow = 1, .p2_fast = 20 },
514 };
515
516 static bool
517 needs_modeset(struct drm_crtc_state *state)
518 {
519         return drm_atomic_crtc_needs_modeset(state);
520 }
521
522 /**
523  * Returns whether any output on the specified pipe is of the specified type
524  */
525 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
526 {
527         struct drm_device *dev = crtc->base.dev;
528         struct intel_encoder *encoder;
529
530         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
531                 if (encoder->type == type)
532                         return true;
533
534         return false;
535 }
536
537 /**
538  * Returns whether any output on the specified pipe will have the specified
539  * type after a staged modeset is complete, i.e., the same as
540  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
541  * encoder->crtc.
542  */
543 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
544                                       int type)
545 {
546         struct drm_atomic_state *state = crtc_state->base.state;
547         struct drm_connector *connector;
548         struct drm_connector_state *connector_state;
549         struct intel_encoder *encoder;
550         int i, num_connectors = 0;
551
552         for_each_connector_in_state(state, connector, connector_state, i) {
553                 if (connector_state->crtc != crtc_state->base.crtc)
554                         continue;
555
556                 num_connectors++;
557
558                 encoder = to_intel_encoder(connector_state->best_encoder);
559                 if (encoder->type == type)
560                         return true;
561         }
562
563         WARN_ON(num_connectors == 0);
564
565         return false;
566 }
567
568 /*
569  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
570  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
571  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
572  * The helpers' return value is the rate of the clock that is fed to the
573  * display engine's pipe which can be the above fast dot clock rate or a
574  * divided-down version of it.
575  */
576 /* m1 is reserved as 0 in Pineview, n is a ring counter */
577 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
578 {
579         clock->m = clock->m2 + 2;
580         clock->p = clock->p1 * clock->p2;
581         if (WARN_ON(clock->n == 0 || clock->p == 0))
582                 return 0;
583         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
584         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
585
586         return clock->dot;
587 }
588
589 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
590 {
591         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
592 }
593
594 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
595 {
596         clock->m = i9xx_dpll_compute_m(clock);
597         clock->p = clock->p1 * clock->p2;
598         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
599                 return 0;
600         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
601         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
602
603         return clock->dot;
604 }
605
606 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
607 {
608         clock->m = clock->m1 * clock->m2;
609         clock->p = clock->p1 * clock->p2;
610         if (WARN_ON(clock->n == 0 || clock->p == 0))
611                 return 0;
612         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
613         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
614
615         return clock->dot / 5;
616 }
617
618 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
619 {
620         clock->m = clock->m1 * clock->m2;
621         clock->p = clock->p1 * clock->p2;
622         if (WARN_ON(clock->n == 0 || clock->p == 0))
623                 return 0;
624         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
625                         clock->n << 22);
626         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
627
628         return clock->dot / 5;
629 }
630
631 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
632 /**
633  * Returns whether the given set of divisors are valid for a given refclk with
634  * the given connectors.
635  */
636
637 static bool intel_PLL_is_valid(struct drm_device *dev,
638                                const intel_limit_t *limit,
639                                const intel_clock_t *clock)
640 {
641         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
642                 INTELPllInvalid("n out of range\n");
643         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
644                 INTELPllInvalid("p1 out of range\n");
645         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
646                 INTELPllInvalid("m2 out of range\n");
647         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
648                 INTELPllInvalid("m1 out of range\n");
649
650         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
651             !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
652                 if (clock->m1 <= clock->m2)
653                         INTELPllInvalid("m1 <= m2\n");
654
655         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
656                 if (clock->p < limit->p.min || limit->p.max < clock->p)
657                         INTELPllInvalid("p out of range\n");
658                 if (clock->m < limit->m.min || limit->m.max < clock->m)
659                         INTELPllInvalid("m out of range\n");
660         }
661
662         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
663                 INTELPllInvalid("vco out of range\n");
664         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
665          * connector, etc., rather than just a single range.
666          */
667         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
668                 INTELPllInvalid("dot out of range\n");
669
670         return true;
671 }
672
673 static int
674 i9xx_select_p2_div(const intel_limit_t *limit,
675                    const struct intel_crtc_state *crtc_state,
676                    int target)
677 {
678         struct drm_device *dev = crtc_state->base.crtc->dev;
679
680         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
681                 /*
682                  * For LVDS just rely on its current settings for dual-channel.
683                  * We haven't figured out how to reliably set up different
684                  * single/dual channel state, if we even can.
685                  */
686                 if (intel_is_dual_link_lvds(dev))
687                         return limit->p2.p2_fast;
688                 else
689                         return limit->p2.p2_slow;
690         } else {
691                 if (target < limit->p2.dot_limit)
692                         return limit->p2.p2_slow;
693                 else
694                         return limit->p2.p2_fast;
695         }
696 }
697
698 /*
699  * Returns a set of divisors for the desired target clock with the given
700  * refclk, or FALSE.  The returned values represent the clock equation:
701  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
702  *
703  * Target and reference clocks are specified in kHz.
704  *
705  * If match_clock is provided, then best_clock P divider must match the P
706  * divider from @match_clock used for LVDS downclocking.
707  */
708 static bool
709 i9xx_find_best_dpll(const intel_limit_t *limit,
710                     struct intel_crtc_state *crtc_state,
711                     int target, int refclk, intel_clock_t *match_clock,
712                     intel_clock_t *best_clock)
713 {
714         struct drm_device *dev = crtc_state->base.crtc->dev;
715         intel_clock_t clock;
716         int err = target;
717
718         memset(best_clock, 0, sizeof(*best_clock));
719
720         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
721
722         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
723              clock.m1++) {
724                 for (clock.m2 = limit->m2.min;
725                      clock.m2 <= limit->m2.max; clock.m2++) {
726                         if (clock.m2 >= clock.m1)
727                                 break;
728                         for (clock.n = limit->n.min;
729                              clock.n <= limit->n.max; clock.n++) {
730                                 for (clock.p1 = limit->p1.min;
731                                         clock.p1 <= limit->p1.max; clock.p1++) {
732                                         int this_err;
733
734                                         i9xx_calc_dpll_params(refclk, &clock);
735                                         if (!intel_PLL_is_valid(dev, limit,
736                                                                 &clock))
737                                                 continue;
738                                         if (match_clock &&
739                                             clock.p != match_clock->p)
740                                                 continue;
741
742                                         this_err = abs(clock.dot - target);
743                                         if (this_err < err) {
744                                                 *best_clock = clock;
745                                                 err = this_err;
746                                         }
747                                 }
748                         }
749                 }
750         }
751
752         return (err != target);
753 }
754
755 /*
756  * Returns a set of divisors for the desired target clock with the given
757  * refclk, or FALSE.  The returned values represent the clock equation:
758  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
759  *
760  * Target and reference clocks are specified in kHz.
761  *
762  * If match_clock is provided, then best_clock P divider must match the P
763  * divider from @match_clock used for LVDS downclocking.
764  */
765 static bool
766 pnv_find_best_dpll(const intel_limit_t *limit,
767                    struct intel_crtc_state *crtc_state,
768                    int target, int refclk, intel_clock_t *match_clock,
769                    intel_clock_t *best_clock)
770 {
771         struct drm_device *dev = crtc_state->base.crtc->dev;
772         intel_clock_t clock;
773         int err = target;
774
775         memset(best_clock, 0, sizeof(*best_clock));
776
777         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
778
779         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
780              clock.m1++) {
781                 for (clock.m2 = limit->m2.min;
782                      clock.m2 <= limit->m2.max; clock.m2++) {
783                         for (clock.n = limit->n.min;
784                              clock.n <= limit->n.max; clock.n++) {
785                                 for (clock.p1 = limit->p1.min;
786                                         clock.p1 <= limit->p1.max; clock.p1++) {
787                                         int this_err;
788
789                                         pnv_calc_dpll_params(refclk, &clock);
790                                         if (!intel_PLL_is_valid(dev, limit,
791                                                                 &clock))
792                                                 continue;
793                                         if (match_clock &&
794                                             clock.p != match_clock->p)
795                                                 continue;
796
797                                         this_err = abs(clock.dot - target);
798                                         if (this_err < err) {
799                                                 *best_clock = clock;
800                                                 err = this_err;
801                                         }
802                                 }
803                         }
804                 }
805         }
806
807         return (err != target);
808 }
809
810 /*
811  * Returns a set of divisors for the desired target clock with the given
812  * refclk, or FALSE.  The returned values represent the clock equation:
813  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
814  *
815  * Target and reference clocks are specified in kHz.
816  *
817  * If match_clock is provided, then best_clock P divider must match the P
818  * divider from @match_clock used for LVDS downclocking.
819  */
820 static bool
821 g4x_find_best_dpll(const intel_limit_t *limit,
822                    struct intel_crtc_state *crtc_state,
823                    int target, int refclk, intel_clock_t *match_clock,
824                    intel_clock_t *best_clock)
825 {
826         struct drm_device *dev = crtc_state->base.crtc->dev;
827         intel_clock_t clock;
828         int max_n;
829         bool found = false;
830         /* approximately equals target * 0.00585 */
831         int err_most = (target >> 8) + (target >> 9);
832
833         memset(best_clock, 0, sizeof(*best_clock));
834
835         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
836
837         max_n = limit->n.max;
838         /* based on hardware requirement, prefer smaller n to precision */
839         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
840                 /* based on hardware requirement, prefere larger m1,m2 */
841                 for (clock.m1 = limit->m1.max;
842                      clock.m1 >= limit->m1.min; clock.m1--) {
843                         for (clock.m2 = limit->m2.max;
844                              clock.m2 >= limit->m2.min; clock.m2--) {
845                                 for (clock.p1 = limit->p1.max;
846                                      clock.p1 >= limit->p1.min; clock.p1--) {
847                                         int this_err;
848
849                                         i9xx_calc_dpll_params(refclk, &clock);
850                                         if (!intel_PLL_is_valid(dev, limit,
851                                                                 &clock))
852                                                 continue;
853
854                                         this_err = abs(clock.dot - target);
855                                         if (this_err < err_most) {
856                                                 *best_clock = clock;
857                                                 err_most = this_err;
858                                                 max_n = clock.n;
859                                                 found = true;
860                                         }
861                                 }
862                         }
863                 }
864         }
865         return found;
866 }
867
868 /*
869  * Check if the calculated PLL configuration is more optimal compared to the
870  * best configuration and error found so far. Return the calculated error.
871  */
872 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
873                                const intel_clock_t *calculated_clock,
874                                const intel_clock_t *best_clock,
875                                unsigned int best_error_ppm,
876                                unsigned int *error_ppm)
877 {
878         /*
879          * For CHV ignore the error and consider only the P value.
880          * Prefer a bigger P value based on HW requirements.
881          */
882         if (IS_CHERRYVIEW(dev)) {
883                 *error_ppm = 0;
884
885                 return calculated_clock->p > best_clock->p;
886         }
887
888         if (WARN_ON_ONCE(!target_freq))
889                 return false;
890
891         *error_ppm = div_u64(1000000ULL *
892                                 abs(target_freq - calculated_clock->dot),
893                              target_freq);
894         /*
895          * Prefer a better P value over a better (smaller) error if the error
896          * is small. Ensure this preference for future configurations too by
897          * setting the error to 0.
898          */
899         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
900                 *error_ppm = 0;
901
902                 return true;
903         }
904
905         return *error_ppm + 10 < best_error_ppm;
906 }
907
908 /*
909  * Returns a set of divisors for the desired target clock with the given
910  * refclk, or FALSE.  The returned values represent the clock equation:
911  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
912  */
913 static bool
914 vlv_find_best_dpll(const intel_limit_t *limit,
915                    struct intel_crtc_state *crtc_state,
916                    int target, int refclk, intel_clock_t *match_clock,
917                    intel_clock_t *best_clock)
918 {
919         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
920         struct drm_device *dev = crtc->base.dev;
921         intel_clock_t clock;
922         unsigned int bestppm = 1000000;
923         /* min update 19.2 MHz */
924         int max_n = min(limit->n.max, refclk / 19200);
925         bool found = false;
926
927         target *= 5; /* fast clock */
928
929         memset(best_clock, 0, sizeof(*best_clock));
930
931         /* based on hardware requirement, prefer smaller n to precision */
932         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
933                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
934                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
935                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
936                                 clock.p = clock.p1 * clock.p2;
937                                 /* based on hardware requirement, prefer bigger m1,m2 values */
938                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
939                                         unsigned int ppm;
940
941                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
942                                                                      refclk * clock.m1);
943
944                                         vlv_calc_dpll_params(refclk, &clock);
945
946                                         if (!intel_PLL_is_valid(dev, limit,
947                                                                 &clock))
948                                                 continue;
949
950                                         if (!vlv_PLL_is_optimal(dev, target,
951                                                                 &clock,
952                                                                 best_clock,
953                                                                 bestppm, &ppm))
954                                                 continue;
955
956                                         *best_clock = clock;
957                                         bestppm = ppm;
958                                         found = true;
959                                 }
960                         }
961                 }
962         }
963
964         return found;
965 }
966
967 /*
968  * Returns a set of divisors for the desired target clock with the given
969  * refclk, or FALSE.  The returned values represent the clock equation:
970  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
971  */
972 static bool
973 chv_find_best_dpll(const intel_limit_t *limit,
974                    struct intel_crtc_state *crtc_state,
975                    int target, int refclk, intel_clock_t *match_clock,
976                    intel_clock_t *best_clock)
977 {
978         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
979         struct drm_device *dev = crtc->base.dev;
980         unsigned int best_error_ppm;
981         intel_clock_t clock;
982         uint64_t m2;
983         int found = false;
984
985         memset(best_clock, 0, sizeof(*best_clock));
986         best_error_ppm = 1000000;
987
988         /*
989          * Based on hardware doc, the n always set to 1, and m1 always
990          * set to 2.  If requires to support 200Mhz refclk, we need to
991          * revisit this because n may not 1 anymore.
992          */
993         clock.n = 1, clock.m1 = 2;
994         target *= 5;    /* fast clock */
995
996         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
997                 for (clock.p2 = limit->p2.p2_fast;
998                                 clock.p2 >= limit->p2.p2_slow;
999                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1000                         unsigned int error_ppm;
1001
1002                         clock.p = clock.p1 * clock.p2;
1003
1004                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1005                                         clock.n) << 22, refclk * clock.m1);
1006
1007                         if (m2 > INT_MAX/clock.m1)
1008                                 continue;
1009
1010                         clock.m2 = m2;
1011
1012                         chv_calc_dpll_params(refclk, &clock);
1013
1014                         if (!intel_PLL_is_valid(dev, limit, &clock))
1015                                 continue;
1016
1017                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1018                                                 best_error_ppm, &error_ppm))
1019                                 continue;
1020
1021                         *best_clock = clock;
1022                         best_error_ppm = error_ppm;
1023                         found = true;
1024                 }
1025         }
1026
1027         return found;
1028 }
1029
1030 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1031                         intel_clock_t *best_clock)
1032 {
1033         int refclk = 100000;
1034         const intel_limit_t *limit = &intel_limits_bxt;
1035
1036         return chv_find_best_dpll(limit, crtc_state,
1037                                   target_clock, refclk, NULL, best_clock);
1038 }
1039
1040 bool intel_crtc_active(struct drm_crtc *crtc)
1041 {
1042         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1043
1044         /* Be paranoid as we can arrive here with only partial
1045          * state retrieved from the hardware during setup.
1046          *
1047          * We can ditch the adjusted_mode.crtc_clock check as soon
1048          * as Haswell has gained clock readout/fastboot support.
1049          *
1050          * We can ditch the crtc->primary->fb check as soon as we can
1051          * properly reconstruct framebuffers.
1052          *
1053          * FIXME: The intel_crtc->active here should be switched to
1054          * crtc->state->active once we have proper CRTC states wired up
1055          * for atomic.
1056          */
1057         return intel_crtc->active && crtc->primary->state->fb &&
1058                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1059 }
1060
1061 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1062                                              enum pipe pipe)
1063 {
1064         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1065         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1066
1067         return intel_crtc->config->cpu_transcoder;
1068 }
1069
1070 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1071 {
1072         struct drm_i915_private *dev_priv = dev->dev_private;
1073         i915_reg_t reg = PIPEDSL(pipe);
1074         u32 line1, line2;
1075         u32 line_mask;
1076
1077         if (IS_GEN2(dev))
1078                 line_mask = DSL_LINEMASK_GEN2;
1079         else
1080                 line_mask = DSL_LINEMASK_GEN3;
1081
1082         line1 = I915_READ(reg) & line_mask;
1083         msleep(5);
1084         line2 = I915_READ(reg) & line_mask;
1085
1086         return line1 == line2;
1087 }
1088
1089 /*
1090  * intel_wait_for_pipe_off - wait for pipe to turn off
1091  * @crtc: crtc whose pipe to wait for
1092  *
1093  * After disabling a pipe, we can't wait for vblank in the usual way,
1094  * spinning on the vblank interrupt status bit, since we won't actually
1095  * see an interrupt when the pipe is disabled.
1096  *
1097  * On Gen4 and above:
1098  *   wait for the pipe register state bit to turn off
1099  *
1100  * Otherwise:
1101  *   wait for the display line value to settle (it usually
1102  *   ends up stopping at the start of the next frame).
1103  *
1104  */
1105 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1106 {
1107         struct drm_device *dev = crtc->base.dev;
1108         struct drm_i915_private *dev_priv = dev->dev_private;
1109         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1110         enum pipe pipe = crtc->pipe;
1111
1112         if (INTEL_INFO(dev)->gen >= 4) {
1113                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1114
1115                 /* Wait for the Pipe State to go off */
1116                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1117                              100))
1118                         WARN(1, "pipe_off wait timed out\n");
1119         } else {
1120                 /* Wait for the display line to settle */
1121                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1122                         WARN(1, "pipe_off wait timed out\n");
1123         }
1124 }
1125
1126 /* Only for pre-ILK configs */
1127 void assert_pll(struct drm_i915_private *dev_priv,
1128                 enum pipe pipe, bool state)
1129 {
1130         u32 val;
1131         bool cur_state;
1132
1133         val = I915_READ(DPLL(pipe));
1134         cur_state = !!(val & DPLL_VCO_ENABLE);
1135         I915_STATE_WARN(cur_state != state,
1136              "PLL state assertion failure (expected %s, current %s)\n",
1137                         onoff(state), onoff(cur_state));
1138 }
1139
1140 /* XXX: the dsi pll is shared between MIPI DSI ports */
1141 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1142 {
1143         u32 val;
1144         bool cur_state;
1145
1146         mutex_lock(&dev_priv->sb_lock);
1147         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1148         mutex_unlock(&dev_priv->sb_lock);
1149
1150         cur_state = val & DSI_PLL_VCO_EN;
1151         I915_STATE_WARN(cur_state != state,
1152              "DSI PLL state assertion failure (expected %s, current %s)\n",
1153                         onoff(state), onoff(cur_state));
1154 }
1155
1156 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1157                           enum pipe pipe, bool state)
1158 {
1159         bool cur_state;
1160         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1161                                                                       pipe);
1162
1163         if (HAS_DDI(dev_priv->dev)) {
1164                 /* DDI does not have a specific FDI_TX register */
1165                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1166                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1167         } else {
1168                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1169                 cur_state = !!(val & FDI_TX_ENABLE);
1170         }
1171         I915_STATE_WARN(cur_state != state,
1172              "FDI TX state assertion failure (expected %s, current %s)\n",
1173                         onoff(state), onoff(cur_state));
1174 }
1175 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1176 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1177
1178 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1179                           enum pipe pipe, bool state)
1180 {
1181         u32 val;
1182         bool cur_state;
1183
1184         val = I915_READ(FDI_RX_CTL(pipe));
1185         cur_state = !!(val & FDI_RX_ENABLE);
1186         I915_STATE_WARN(cur_state != state,
1187              "FDI RX state assertion failure (expected %s, current %s)\n",
1188                         onoff(state), onoff(cur_state));
1189 }
1190 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1191 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1192
1193 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1194                                       enum pipe pipe)
1195 {
1196         u32 val;
1197
1198         /* ILK FDI PLL is always enabled */
1199         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1200                 return;
1201
1202         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1203         if (HAS_DDI(dev_priv->dev))
1204                 return;
1205
1206         val = I915_READ(FDI_TX_CTL(pipe));
1207         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1208 }
1209
1210 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1211                        enum pipe pipe, bool state)
1212 {
1213         u32 val;
1214         bool cur_state;
1215
1216         val = I915_READ(FDI_RX_CTL(pipe));
1217         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1218         I915_STATE_WARN(cur_state != state,
1219              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1220                         onoff(state), onoff(cur_state));
1221 }
1222
1223 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1224                            enum pipe pipe)
1225 {
1226         struct drm_device *dev = dev_priv->dev;
1227         i915_reg_t pp_reg;
1228         u32 val;
1229         enum pipe panel_pipe = PIPE_A;
1230         bool locked = true;
1231
1232         if (WARN_ON(HAS_DDI(dev)))
1233                 return;
1234
1235         if (HAS_PCH_SPLIT(dev)) {
1236                 u32 port_sel;
1237
1238                 pp_reg = PCH_PP_CONTROL;
1239                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1240
1241                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1242                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1243                         panel_pipe = PIPE_B;
1244                 /* XXX: else fix for eDP */
1245         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1246                 /* presumably write lock depends on pipe, not port select */
1247                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1248                 panel_pipe = pipe;
1249         } else {
1250                 pp_reg = PP_CONTROL;
1251                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1252                         panel_pipe = PIPE_B;
1253         }
1254
1255         val = I915_READ(pp_reg);
1256         if (!(val & PANEL_POWER_ON) ||
1257             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1258                 locked = false;
1259
1260         I915_STATE_WARN(panel_pipe == pipe && locked,
1261              "panel assertion failure, pipe %c regs locked\n",
1262              pipe_name(pipe));
1263 }
1264
1265 static void assert_cursor(struct drm_i915_private *dev_priv,
1266                           enum pipe pipe, bool state)
1267 {
1268         struct drm_device *dev = dev_priv->dev;
1269         bool cur_state;
1270
1271         if (IS_845G(dev) || IS_I865G(dev))
1272                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1273         else
1274                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1275
1276         I915_STATE_WARN(cur_state != state,
1277              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1278                         pipe_name(pipe), onoff(state), onoff(cur_state));
1279 }
1280 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1281 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1282
1283 void assert_pipe(struct drm_i915_private *dev_priv,
1284                  enum pipe pipe, bool state)
1285 {
1286         bool cur_state;
1287         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1288                                                                       pipe);
1289         enum intel_display_power_domain power_domain;
1290
1291         /* if we need the pipe quirk it must be always on */
1292         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1293             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1294                 state = true;
1295
1296         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1297         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1298                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1299                 cur_state = !!(val & PIPECONF_ENABLE);
1300
1301                 intel_display_power_put(dev_priv, power_domain);
1302         } else {
1303                 cur_state = false;
1304         }
1305
1306         I915_STATE_WARN(cur_state != state,
1307              "pipe %c assertion failure (expected %s, current %s)\n",
1308                         pipe_name(pipe), onoff(state), onoff(cur_state));
1309 }
1310
1311 static void assert_plane(struct drm_i915_private *dev_priv,
1312                          enum plane plane, bool state)
1313 {
1314         u32 val;
1315         bool cur_state;
1316
1317         val = I915_READ(DSPCNTR(plane));
1318         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1319         I915_STATE_WARN(cur_state != state,
1320              "plane %c assertion failure (expected %s, current %s)\n",
1321                         plane_name(plane), onoff(state), onoff(cur_state));
1322 }
1323
1324 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1325 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1326
1327 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1328                                    enum pipe pipe)
1329 {
1330         struct drm_device *dev = dev_priv->dev;
1331         int i;
1332
1333         /* Primary planes are fixed to pipes on gen4+ */
1334         if (INTEL_INFO(dev)->gen >= 4) {
1335                 u32 val = I915_READ(DSPCNTR(pipe));
1336                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1337                      "plane %c assertion failure, should be disabled but not\n",
1338                      plane_name(pipe));
1339                 return;
1340         }
1341
1342         /* Need to check both planes against the pipe */
1343         for_each_pipe(dev_priv, i) {
1344                 u32 val = I915_READ(DSPCNTR(i));
1345                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1346                         DISPPLANE_SEL_PIPE_SHIFT;
1347                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1348                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1349                      plane_name(i), pipe_name(pipe));
1350         }
1351 }
1352
1353 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1354                                     enum pipe pipe)
1355 {
1356         struct drm_device *dev = dev_priv->dev;
1357         int sprite;
1358
1359         if (INTEL_INFO(dev)->gen >= 9) {
1360                 for_each_sprite(dev_priv, pipe, sprite) {
1361                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1362                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1363                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1364                              sprite, pipe_name(pipe));
1365                 }
1366         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1367                 for_each_sprite(dev_priv, pipe, sprite) {
1368                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1369                         I915_STATE_WARN(val & SP_ENABLE,
1370                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1371                              sprite_name(pipe, sprite), pipe_name(pipe));
1372                 }
1373         } else if (INTEL_INFO(dev)->gen >= 7) {
1374                 u32 val = I915_READ(SPRCTL(pipe));
1375                 I915_STATE_WARN(val & SPRITE_ENABLE,
1376                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1377                      plane_name(pipe), pipe_name(pipe));
1378         } else if (INTEL_INFO(dev)->gen >= 5) {
1379                 u32 val = I915_READ(DVSCNTR(pipe));
1380                 I915_STATE_WARN(val & DVS_ENABLE,
1381                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1382                      plane_name(pipe), pipe_name(pipe));
1383         }
1384 }
1385
1386 static void assert_vblank_disabled(struct drm_crtc *crtc)
1387 {
1388         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1389                 drm_crtc_vblank_put(crtc);
1390 }
1391
1392 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1393                                     enum pipe pipe)
1394 {
1395         u32 val;
1396         bool enabled;
1397
1398         val = I915_READ(PCH_TRANSCONF(pipe));
1399         enabled = !!(val & TRANS_ENABLE);
1400         I915_STATE_WARN(enabled,
1401              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1402              pipe_name(pipe));
1403 }
1404
1405 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1406                             enum pipe pipe, u32 port_sel, u32 val)
1407 {
1408         if ((val & DP_PORT_EN) == 0)
1409                 return false;
1410
1411         if (HAS_PCH_CPT(dev_priv->dev)) {
1412                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1413                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1414                         return false;
1415         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1416                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1417                         return false;
1418         } else {
1419                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1420                         return false;
1421         }
1422         return true;
1423 }
1424
1425 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1426                               enum pipe pipe, u32 val)
1427 {
1428         if ((val & SDVO_ENABLE) == 0)
1429                 return false;
1430
1431         if (HAS_PCH_CPT(dev_priv->dev)) {
1432                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1433                         return false;
1434         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1435                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1436                         return false;
1437         } else {
1438                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1439                         return false;
1440         }
1441         return true;
1442 }
1443
1444 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1445                               enum pipe pipe, u32 val)
1446 {
1447         if ((val & LVDS_PORT_EN) == 0)
1448                 return false;
1449
1450         if (HAS_PCH_CPT(dev_priv->dev)) {
1451                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1452                         return false;
1453         } else {
1454                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1455                         return false;
1456         }
1457         return true;
1458 }
1459
1460 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1461                               enum pipe pipe, u32 val)
1462 {
1463         if ((val & ADPA_DAC_ENABLE) == 0)
1464                 return false;
1465         if (HAS_PCH_CPT(dev_priv->dev)) {
1466                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1467                         return false;
1468         } else {
1469                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1470                         return false;
1471         }
1472         return true;
1473 }
1474
1475 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1476                                    enum pipe pipe, i915_reg_t reg,
1477                                    u32 port_sel)
1478 {
1479         u32 val = I915_READ(reg);
1480         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1481              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1482              i915_mmio_reg_offset(reg), pipe_name(pipe));
1483
1484         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1485              && (val & DP_PIPEB_SELECT),
1486              "IBX PCH dp port still using transcoder B\n");
1487 }
1488
1489 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1490                                      enum pipe pipe, i915_reg_t reg)
1491 {
1492         u32 val = I915_READ(reg);
1493         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1494              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1495              i915_mmio_reg_offset(reg), pipe_name(pipe));
1496
1497         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1498              && (val & SDVO_PIPE_B_SELECT),
1499              "IBX PCH hdmi port still using transcoder B\n");
1500 }
1501
1502 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1503                                       enum pipe pipe)
1504 {
1505         u32 val;
1506
1507         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1508         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1509         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1510
1511         val = I915_READ(PCH_ADPA);
1512         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1513              "PCH VGA enabled on transcoder %c, should be disabled\n",
1514              pipe_name(pipe));
1515
1516         val = I915_READ(PCH_LVDS);
1517         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1518              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1519              pipe_name(pipe));
1520
1521         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1522         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1523         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1524 }
1525
1526 static void vlv_enable_pll(struct intel_crtc *crtc,
1527                            const struct intel_crtc_state *pipe_config)
1528 {
1529         struct drm_device *dev = crtc->base.dev;
1530         struct drm_i915_private *dev_priv = dev->dev_private;
1531         i915_reg_t reg = DPLL(crtc->pipe);
1532         u32 dpll = pipe_config->dpll_hw_state.dpll;
1533
1534         assert_pipe_disabled(dev_priv, crtc->pipe);
1535
1536         /* PLL is protected by panel, make sure we can write it */
1537         if (IS_MOBILE(dev_priv->dev))
1538                 assert_panel_unlocked(dev_priv, crtc->pipe);
1539
1540         I915_WRITE(reg, dpll);
1541         POSTING_READ(reg);
1542         udelay(150);
1543
1544         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1545                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1546
1547         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1548         POSTING_READ(DPLL_MD(crtc->pipe));
1549
1550         /* We do this three times for luck */
1551         I915_WRITE(reg, dpll);
1552         POSTING_READ(reg);
1553         udelay(150); /* wait for warmup */
1554         I915_WRITE(reg, dpll);
1555         POSTING_READ(reg);
1556         udelay(150); /* wait for warmup */
1557         I915_WRITE(reg, dpll);
1558         POSTING_READ(reg);
1559         udelay(150); /* wait for warmup */
1560 }
1561
1562 static void chv_enable_pll(struct intel_crtc *crtc,
1563                            const struct intel_crtc_state *pipe_config)
1564 {
1565         struct drm_device *dev = crtc->base.dev;
1566         struct drm_i915_private *dev_priv = dev->dev_private;
1567         int pipe = crtc->pipe;
1568         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1569         u32 tmp;
1570
1571         assert_pipe_disabled(dev_priv, crtc->pipe);
1572
1573         mutex_lock(&dev_priv->sb_lock);
1574
1575         /* Enable back the 10bit clock to display controller */
1576         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1577         tmp |= DPIO_DCLKP_EN;
1578         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1579
1580         mutex_unlock(&dev_priv->sb_lock);
1581
1582         /*
1583          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1584          */
1585         udelay(1);
1586
1587         /* Enable PLL */
1588         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1589
1590         /* Check PLL is locked */
1591         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1592                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1593
1594         if (pipe != PIPE_A) {
1595                 /*
1596                  * WaPixelRepeatModeFixForC0:chv
1597                  *
1598                  * DPLLCMD is AWOL. Use chicken bits to propagate
1599                  * the value from DPLLBMD to either pipe B or C.
1600                  */
1601                 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1602                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1603                 I915_WRITE(CBR4_VLV, 0);
1604                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1605
1606                 /*
1607                  * DPLLB VGA mode also seems to cause problems.
1608                  * We should always have it disabled.
1609                  */
1610                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1611         } else {
1612                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1613                 POSTING_READ(DPLL_MD(pipe));
1614         }
1615 }
1616
1617 static int intel_num_dvo_pipes(struct drm_device *dev)
1618 {
1619         struct intel_crtc *crtc;
1620         int count = 0;
1621
1622         for_each_intel_crtc(dev, crtc)
1623                 count += crtc->base.state->active &&
1624                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1625
1626         return count;
1627 }
1628
1629 static void i9xx_enable_pll(struct intel_crtc *crtc)
1630 {
1631         struct drm_device *dev = crtc->base.dev;
1632         struct drm_i915_private *dev_priv = dev->dev_private;
1633         i915_reg_t reg = DPLL(crtc->pipe);
1634         u32 dpll = crtc->config->dpll_hw_state.dpll;
1635
1636         assert_pipe_disabled(dev_priv, crtc->pipe);
1637
1638         /* PLL is protected by panel, make sure we can write it */
1639         if (IS_MOBILE(dev) && !IS_I830(dev))
1640                 assert_panel_unlocked(dev_priv, crtc->pipe);
1641
1642         /* Enable DVO 2x clock on both PLLs if necessary */
1643         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1644                 /*
1645                  * It appears to be important that we don't enable this
1646                  * for the current pipe before otherwise configuring the
1647                  * PLL. No idea how this should be handled if multiple
1648                  * DVO outputs are enabled simultaneosly.
1649                  */
1650                 dpll |= DPLL_DVO_2X_MODE;
1651                 I915_WRITE(DPLL(!crtc->pipe),
1652                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1653         }
1654
1655         /*
1656          * Apparently we need to have VGA mode enabled prior to changing
1657          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1658          * dividers, even though the register value does change.
1659          */
1660         I915_WRITE(reg, 0);
1661
1662         I915_WRITE(reg, dpll);
1663
1664         /* Wait for the clocks to stabilize. */
1665         POSTING_READ(reg);
1666         udelay(150);
1667
1668         if (INTEL_INFO(dev)->gen >= 4) {
1669                 I915_WRITE(DPLL_MD(crtc->pipe),
1670                            crtc->config->dpll_hw_state.dpll_md);
1671         } else {
1672                 /* The pixel multiplier can only be updated once the
1673                  * DPLL is enabled and the clocks are stable.
1674                  *
1675                  * So write it again.
1676                  */
1677                 I915_WRITE(reg, dpll);
1678         }
1679
1680         /* We do this three times for luck */
1681         I915_WRITE(reg, dpll);
1682         POSTING_READ(reg);
1683         udelay(150); /* wait for warmup */
1684         I915_WRITE(reg, dpll);
1685         POSTING_READ(reg);
1686         udelay(150); /* wait for warmup */
1687         I915_WRITE(reg, dpll);
1688         POSTING_READ(reg);
1689         udelay(150); /* wait for warmup */
1690 }
1691
1692 /**
1693  * i9xx_disable_pll - disable a PLL
1694  * @dev_priv: i915 private structure
1695  * @pipe: pipe PLL to disable
1696  *
1697  * Disable the PLL for @pipe, making sure the pipe is off first.
1698  *
1699  * Note!  This is for pre-ILK only.
1700  */
1701 static void i9xx_disable_pll(struct intel_crtc *crtc)
1702 {
1703         struct drm_device *dev = crtc->base.dev;
1704         struct drm_i915_private *dev_priv = dev->dev_private;
1705         enum pipe pipe = crtc->pipe;
1706
1707         /* Disable DVO 2x clock on both PLLs if necessary */
1708         if (IS_I830(dev) &&
1709             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1710             !intel_num_dvo_pipes(dev)) {
1711                 I915_WRITE(DPLL(PIPE_B),
1712                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1713                 I915_WRITE(DPLL(PIPE_A),
1714                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1715         }
1716
1717         /* Don't disable pipe or pipe PLLs if needed */
1718         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1719             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1720                 return;
1721
1722         /* Make sure the pipe isn't still relying on us */
1723         assert_pipe_disabled(dev_priv, pipe);
1724
1725         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1726         POSTING_READ(DPLL(pipe));
1727 }
1728
1729 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1730 {
1731         u32 val;
1732
1733         /* Make sure the pipe isn't still relying on us */
1734         assert_pipe_disabled(dev_priv, pipe);
1735
1736         val = DPLL_INTEGRATED_REF_CLK_VLV |
1737                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1738         if (pipe != PIPE_A)
1739                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1740
1741         I915_WRITE(DPLL(pipe), val);
1742         POSTING_READ(DPLL(pipe));
1743 }
1744
1745 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1746 {
1747         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1748         u32 val;
1749
1750         /* Make sure the pipe isn't still relying on us */
1751         assert_pipe_disabled(dev_priv, pipe);
1752
1753         val = DPLL_SSC_REF_CLK_CHV |
1754                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1755         if (pipe != PIPE_A)
1756                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1757
1758         I915_WRITE(DPLL(pipe), val);
1759         POSTING_READ(DPLL(pipe));
1760
1761         mutex_lock(&dev_priv->sb_lock);
1762
1763         /* Disable 10bit clock to display controller */
1764         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1765         val &= ~DPIO_DCLKP_EN;
1766         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1767
1768         mutex_unlock(&dev_priv->sb_lock);
1769 }
1770
1771 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1772                          struct intel_digital_port *dport,
1773                          unsigned int expected_mask)
1774 {
1775         u32 port_mask;
1776         i915_reg_t dpll_reg;
1777
1778         switch (dport->port) {
1779         case PORT_B:
1780                 port_mask = DPLL_PORTB_READY_MASK;
1781                 dpll_reg = DPLL(0);
1782                 break;
1783         case PORT_C:
1784                 port_mask = DPLL_PORTC_READY_MASK;
1785                 dpll_reg = DPLL(0);
1786                 expected_mask <<= 4;
1787                 break;
1788         case PORT_D:
1789                 port_mask = DPLL_PORTD_READY_MASK;
1790                 dpll_reg = DPIO_PHY_STATUS;
1791                 break;
1792         default:
1793                 BUG();
1794         }
1795
1796         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1797                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1798                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1799 }
1800
1801 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1802                                            enum pipe pipe)
1803 {
1804         struct drm_device *dev = dev_priv->dev;
1805         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1806         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1807         i915_reg_t reg;
1808         uint32_t val, pipeconf_val;
1809
1810         /* Make sure PCH DPLL is enabled */
1811         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1812
1813         /* FDI must be feeding us bits for PCH ports */
1814         assert_fdi_tx_enabled(dev_priv, pipe);
1815         assert_fdi_rx_enabled(dev_priv, pipe);
1816
1817         if (HAS_PCH_CPT(dev)) {
1818                 /* Workaround: Set the timing override bit before enabling the
1819                  * pch transcoder. */
1820                 reg = TRANS_CHICKEN2(pipe);
1821                 val = I915_READ(reg);
1822                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1823                 I915_WRITE(reg, val);
1824         }
1825
1826         reg = PCH_TRANSCONF(pipe);
1827         val = I915_READ(reg);
1828         pipeconf_val = I915_READ(PIPECONF(pipe));
1829
1830         if (HAS_PCH_IBX(dev_priv->dev)) {
1831                 /*
1832                  * Make the BPC in transcoder be consistent with
1833                  * that in pipeconf reg. For HDMI we must use 8bpc
1834                  * here for both 8bpc and 12bpc.
1835                  */
1836                 val &= ~PIPECONF_BPC_MASK;
1837                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1838                         val |= PIPECONF_8BPC;
1839                 else
1840                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1841         }
1842
1843         val &= ~TRANS_INTERLACE_MASK;
1844         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1845                 if (HAS_PCH_IBX(dev_priv->dev) &&
1846                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1847                         val |= TRANS_LEGACY_INTERLACED_ILK;
1848                 else
1849                         val |= TRANS_INTERLACED;
1850         else
1851                 val |= TRANS_PROGRESSIVE;
1852
1853         I915_WRITE(reg, val | TRANS_ENABLE);
1854         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1855                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1856 }
1857
1858 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1859                                       enum transcoder cpu_transcoder)
1860 {
1861         u32 val, pipeconf_val;
1862
1863         /* FDI must be feeding us bits for PCH ports */
1864         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1865         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1866
1867         /* Workaround: set timing override bit. */
1868         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1869         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1870         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1871
1872         val = TRANS_ENABLE;
1873         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1874
1875         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1876             PIPECONF_INTERLACED_ILK)
1877                 val |= TRANS_INTERLACED;
1878         else
1879                 val |= TRANS_PROGRESSIVE;
1880
1881         I915_WRITE(LPT_TRANSCONF, val);
1882         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1883                 DRM_ERROR("Failed to enable PCH transcoder\n");
1884 }
1885
1886 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1887                                             enum pipe pipe)
1888 {
1889         struct drm_device *dev = dev_priv->dev;
1890         i915_reg_t reg;
1891         uint32_t val;
1892
1893         /* FDI relies on the transcoder */
1894         assert_fdi_tx_disabled(dev_priv, pipe);
1895         assert_fdi_rx_disabled(dev_priv, pipe);
1896
1897         /* Ports must be off as well */
1898         assert_pch_ports_disabled(dev_priv, pipe);
1899
1900         reg = PCH_TRANSCONF(pipe);
1901         val = I915_READ(reg);
1902         val &= ~TRANS_ENABLE;
1903         I915_WRITE(reg, val);
1904         /* wait for PCH transcoder off, transcoder state */
1905         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1906                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1907
1908         if (HAS_PCH_CPT(dev)) {
1909                 /* Workaround: Clear the timing override chicken bit again. */
1910                 reg = TRANS_CHICKEN2(pipe);
1911                 val = I915_READ(reg);
1912                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1913                 I915_WRITE(reg, val);
1914         }
1915 }
1916
1917 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1918 {
1919         u32 val;
1920
1921         val = I915_READ(LPT_TRANSCONF);
1922         val &= ~TRANS_ENABLE;
1923         I915_WRITE(LPT_TRANSCONF, val);
1924         /* wait for PCH transcoder off, transcoder state */
1925         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1926                 DRM_ERROR("Failed to disable PCH transcoder\n");
1927
1928         /* Workaround: clear timing override bit. */
1929         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1930         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1931         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1932 }
1933
1934 /**
1935  * intel_enable_pipe - enable a pipe, asserting requirements
1936  * @crtc: crtc responsible for the pipe
1937  *
1938  * Enable @crtc's pipe, making sure that various hardware specific requirements
1939  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1940  */
1941 static void intel_enable_pipe(struct intel_crtc *crtc)
1942 {
1943         struct drm_device *dev = crtc->base.dev;
1944         struct drm_i915_private *dev_priv = dev->dev_private;
1945         enum pipe pipe = crtc->pipe;
1946         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1947         enum pipe pch_transcoder;
1948         i915_reg_t reg;
1949         u32 val;
1950
1951         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1952
1953         assert_planes_disabled(dev_priv, pipe);
1954         assert_cursor_disabled(dev_priv, pipe);
1955         assert_sprites_disabled(dev_priv, pipe);
1956
1957         if (HAS_PCH_LPT(dev_priv->dev))
1958                 pch_transcoder = TRANSCODER_A;
1959         else
1960                 pch_transcoder = pipe;
1961
1962         /*
1963          * A pipe without a PLL won't actually be able to drive bits from
1964          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1965          * need the check.
1966          */
1967         if (HAS_GMCH_DISPLAY(dev_priv->dev))
1968                 if (crtc->config->has_dsi_encoder)
1969                         assert_dsi_pll_enabled(dev_priv);
1970                 else
1971                         assert_pll_enabled(dev_priv, pipe);
1972         else {
1973                 if (crtc->config->has_pch_encoder) {
1974                         /* if driving the PCH, we need FDI enabled */
1975                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1976                         assert_fdi_tx_pll_enabled(dev_priv,
1977                                                   (enum pipe) cpu_transcoder);
1978                 }
1979                 /* FIXME: assert CPU port conditions for SNB+ */
1980         }
1981
1982         reg = PIPECONF(cpu_transcoder);
1983         val = I915_READ(reg);
1984         if (val & PIPECONF_ENABLE) {
1985                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1986                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1987                 return;
1988         }
1989
1990         I915_WRITE(reg, val | PIPECONF_ENABLE);
1991         POSTING_READ(reg);
1992
1993         /*
1994          * Until the pipe starts DSL will read as 0, which would cause
1995          * an apparent vblank timestamp jump, which messes up also the
1996          * frame count when it's derived from the timestamps. So let's
1997          * wait for the pipe to start properly before we call
1998          * drm_crtc_vblank_on()
1999          */
2000         if (dev->max_vblank_count == 0 &&
2001             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2002                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2003 }
2004
2005 /**
2006  * intel_disable_pipe - disable a pipe, asserting requirements
2007  * @crtc: crtc whose pipes is to be disabled
2008  *
2009  * Disable the pipe of @crtc, making sure that various hardware
2010  * specific requirements are met, if applicable, e.g. plane
2011  * disabled, panel fitter off, etc.
2012  *
2013  * Will wait until the pipe has shut down before returning.
2014  */
2015 static void intel_disable_pipe(struct intel_crtc *crtc)
2016 {
2017         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2018         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2019         enum pipe pipe = crtc->pipe;
2020         i915_reg_t reg;
2021         u32 val;
2022
2023         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2024
2025         /*
2026          * Make sure planes won't keep trying to pump pixels to us,
2027          * or we might hang the display.
2028          */
2029         assert_planes_disabled(dev_priv, pipe);
2030         assert_cursor_disabled(dev_priv, pipe);
2031         assert_sprites_disabled(dev_priv, pipe);
2032
2033         reg = PIPECONF(cpu_transcoder);
2034         val = I915_READ(reg);
2035         if ((val & PIPECONF_ENABLE) == 0)
2036                 return;
2037
2038         /*
2039          * Double wide has implications for planes
2040          * so best keep it disabled when not needed.
2041          */
2042         if (crtc->config->double_wide)
2043                 val &= ~PIPECONF_DOUBLE_WIDE;
2044
2045         /* Don't disable pipe or pipe PLLs if needed */
2046         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2047             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2048                 val &= ~PIPECONF_ENABLE;
2049
2050         I915_WRITE(reg, val);
2051         if ((val & PIPECONF_ENABLE) == 0)
2052                 intel_wait_for_pipe_off(crtc);
2053 }
2054
2055 static bool need_vtd_wa(struct drm_device *dev)
2056 {
2057 #ifdef CONFIG_INTEL_IOMMU
2058         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2059                 return true;
2060 #endif
2061         return false;
2062 }
2063
2064 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2065 {
2066         return IS_GEN2(dev_priv) ? 2048 : 4096;
2067 }
2068
2069 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2070                                            uint64_t fb_modifier, unsigned int cpp)
2071 {
2072         switch (fb_modifier) {
2073         case DRM_FORMAT_MOD_NONE:
2074                 return cpp;
2075         case I915_FORMAT_MOD_X_TILED:
2076                 if (IS_GEN2(dev_priv))
2077                         return 128;
2078                 else
2079                         return 512;
2080         case I915_FORMAT_MOD_Y_TILED:
2081                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2082                         return 128;
2083                 else
2084                         return 512;
2085         case I915_FORMAT_MOD_Yf_TILED:
2086                 switch (cpp) {
2087                 case 1:
2088                         return 64;
2089                 case 2:
2090                 case 4:
2091                         return 128;
2092                 case 8:
2093                 case 16:
2094                         return 256;
2095                 default:
2096                         MISSING_CASE(cpp);
2097                         return cpp;
2098                 }
2099                 break;
2100         default:
2101                 MISSING_CASE(fb_modifier);
2102                 return cpp;
2103         }
2104 }
2105
2106 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2107                                uint64_t fb_modifier, unsigned int cpp)
2108 {
2109         if (fb_modifier == DRM_FORMAT_MOD_NONE)
2110                 return 1;
2111         else
2112                 return intel_tile_size(dev_priv) /
2113                         intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2114 }
2115
2116 /* Return the tile dimensions in pixel units */
2117 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2118                             unsigned int *tile_width,
2119                             unsigned int *tile_height,
2120                             uint64_t fb_modifier,
2121                             unsigned int cpp)
2122 {
2123         unsigned int tile_width_bytes =
2124                 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2125
2126         *tile_width = tile_width_bytes / cpp;
2127         *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2128 }
2129
2130 unsigned int
2131 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2132                       uint32_t pixel_format, uint64_t fb_modifier)
2133 {
2134         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2135         unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2136
2137         return ALIGN(height, tile_height);
2138 }
2139
2140 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2141 {
2142         unsigned int size = 0;
2143         int i;
2144
2145         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2146                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2147
2148         return size;
2149 }
2150
2151 static void
2152 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2153                         const struct drm_framebuffer *fb,
2154                         unsigned int rotation)
2155 {
2156         if (intel_rotation_90_or_270(rotation)) {
2157                 *view = i915_ggtt_view_rotated;
2158                 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2159         } else {
2160                 *view = i915_ggtt_view_normal;
2161         }
2162 }
2163
2164 static void
2165 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2166                    struct drm_framebuffer *fb)
2167 {
2168         struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2169         unsigned int tile_size, tile_width, tile_height, cpp;
2170
2171         tile_size = intel_tile_size(dev_priv);
2172
2173         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2174         intel_tile_dims(dev_priv, &tile_width, &tile_height,
2175                         fb->modifier[0], cpp);
2176
2177         info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2178         info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
2179
2180         if (info->pixel_format == DRM_FORMAT_NV12) {
2181                 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2182                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2183                                 fb->modifier[1], cpp);
2184
2185                 info->uv_offset = fb->offsets[1];
2186                 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2187                 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
2188         }
2189 }
2190
2191 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2192 {
2193         if (INTEL_INFO(dev_priv)->gen >= 9)
2194                 return 256 * 1024;
2195         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2196                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2197                 return 128 * 1024;
2198         else if (INTEL_INFO(dev_priv)->gen >= 4)
2199                 return 4 * 1024;
2200         else
2201                 return 0;
2202 }
2203
2204 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2205                                          uint64_t fb_modifier)
2206 {
2207         switch (fb_modifier) {
2208         case DRM_FORMAT_MOD_NONE:
2209                 return intel_linear_alignment(dev_priv);
2210         case I915_FORMAT_MOD_X_TILED:
2211                 if (INTEL_INFO(dev_priv)->gen >= 9)
2212                         return 256 * 1024;
2213                 return 0;
2214         case I915_FORMAT_MOD_Y_TILED:
2215         case I915_FORMAT_MOD_Yf_TILED:
2216                 return 1 * 1024 * 1024;
2217         default:
2218                 MISSING_CASE(fb_modifier);
2219                 return 0;
2220         }
2221 }
2222
2223 int
2224 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2225                            unsigned int rotation)
2226 {
2227         struct drm_device *dev = fb->dev;
2228         struct drm_i915_private *dev_priv = dev->dev_private;
2229         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2230         struct i915_ggtt_view view;
2231         u32 alignment;
2232         int ret;
2233
2234         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2235
2236         alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2237
2238         intel_fill_fb_ggtt_view(&view, fb, rotation);
2239
2240         /* Note that the w/a also requires 64 PTE of padding following the
2241          * bo. We currently fill all unused PTE with the shadow page and so
2242          * we should always have valid PTE following the scanout preventing
2243          * the VT-d warning.
2244          */
2245         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2246                 alignment = 256 * 1024;
2247
2248         /*
2249          * Global gtt pte registers are special registers which actually forward
2250          * writes to a chunk of system memory. Which means that there is no risk
2251          * that the register values disappear as soon as we call
2252          * intel_runtime_pm_put(), so it is correct to wrap only the
2253          * pin/unpin/fence and not more.
2254          */
2255         intel_runtime_pm_get(dev_priv);
2256
2257         ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2258                                                    &view);
2259         if (ret)
2260                 goto err_pm;
2261
2262         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2263          * fence, whereas 965+ only requires a fence if using
2264          * framebuffer compression.  For simplicity, we always install
2265          * a fence as the cost is not that onerous.
2266          */
2267         if (view.type == I915_GGTT_VIEW_NORMAL) {
2268                 ret = i915_gem_object_get_fence(obj);
2269                 if (ret == -EDEADLK) {
2270                         /*
2271                          * -EDEADLK means there are no free fences
2272                          * no pending flips.
2273                          *
2274                          * This is propagated to atomic, but it uses
2275                          * -EDEADLK to force a locking recovery, so
2276                          * change the returned error to -EBUSY.
2277                          */
2278                         ret = -EBUSY;
2279                         goto err_unpin;
2280                 } else if (ret)
2281                         goto err_unpin;
2282
2283                 i915_gem_object_pin_fence(obj);
2284         }
2285
2286         intel_runtime_pm_put(dev_priv);
2287         return 0;
2288
2289 err_unpin:
2290         i915_gem_object_unpin_from_display_plane(obj, &view);
2291 err_pm:
2292         intel_runtime_pm_put(dev_priv);
2293         return ret;
2294 }
2295
2296 static void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2297 {
2298         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2299         struct i915_ggtt_view view;
2300
2301         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2302
2303         intel_fill_fb_ggtt_view(&view, fb, rotation);
2304
2305         if (view.type == I915_GGTT_VIEW_NORMAL)
2306                 i915_gem_object_unpin_fence(obj);
2307
2308         i915_gem_object_unpin_from_display_plane(obj, &view);
2309 }
2310
2311 /*
2312  * Adjust the tile offset by moving the difference into
2313  * the x/y offsets.
2314  *
2315  * Input tile dimensions and pitch must already be
2316  * rotated to match x and y, and in pixel units.
2317  */
2318 static u32 intel_adjust_tile_offset(int *x, int *y,
2319                                     unsigned int tile_width,
2320                                     unsigned int tile_height,
2321                                     unsigned int tile_size,
2322                                     unsigned int pitch_tiles,
2323                                     u32 old_offset,
2324                                     u32 new_offset)
2325 {
2326         unsigned int tiles;
2327
2328         WARN_ON(old_offset & (tile_size - 1));
2329         WARN_ON(new_offset & (tile_size - 1));
2330         WARN_ON(new_offset > old_offset);
2331
2332         tiles = (old_offset - new_offset) / tile_size;
2333
2334         *y += tiles / pitch_tiles * tile_height;
2335         *x += tiles % pitch_tiles * tile_width;
2336
2337         return new_offset;
2338 }
2339
2340 /*
2341  * Computes the linear offset to the base tile and adjusts
2342  * x, y. bytes per pixel is assumed to be a power-of-two.
2343  *
2344  * In the 90/270 rotated case, x and y are assumed
2345  * to be already rotated to match the rotated GTT view, and
2346  * pitch is the tile_height aligned framebuffer height.
2347  */
2348 u32 intel_compute_tile_offset(int *x, int *y,
2349                               const struct drm_framebuffer *fb, int plane,
2350                               unsigned int pitch,
2351                               unsigned int rotation)
2352 {
2353         const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2354         uint64_t fb_modifier = fb->modifier[plane];
2355         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2356         u32 offset, offset_aligned, alignment;
2357
2358         alignment = intel_surf_alignment(dev_priv, fb_modifier);
2359         if (alignment)
2360                 alignment--;
2361
2362         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2363                 unsigned int tile_size, tile_width, tile_height;
2364                 unsigned int tile_rows, tiles, pitch_tiles;
2365
2366                 tile_size = intel_tile_size(dev_priv);
2367                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2368                                 fb_modifier, cpp);
2369
2370                 if (intel_rotation_90_or_270(rotation)) {
2371                         pitch_tiles = pitch / tile_height;
2372                         swap(tile_width, tile_height);
2373                 } else {
2374                         pitch_tiles = pitch / (tile_width * cpp);
2375                 }
2376
2377                 tile_rows = *y / tile_height;
2378                 *y %= tile_height;
2379
2380                 tiles = *x / tile_width;
2381                 *x %= tile_width;
2382
2383                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2384                 offset_aligned = offset & ~alignment;
2385
2386                 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2387                                          tile_size, pitch_tiles,
2388                                          offset, offset_aligned);
2389         } else {
2390                 offset = *y * pitch + *x * cpp;
2391                 offset_aligned = offset & ~alignment;
2392
2393                 *y = (offset & alignment) / pitch;
2394                 *x = ((offset & alignment) - *y * pitch) / cpp;
2395         }
2396
2397         return offset_aligned;
2398 }
2399
2400 static int i9xx_format_to_fourcc(int format)
2401 {
2402         switch (format) {
2403         case DISPPLANE_8BPP:
2404                 return DRM_FORMAT_C8;
2405         case DISPPLANE_BGRX555:
2406                 return DRM_FORMAT_XRGB1555;
2407         case DISPPLANE_BGRX565:
2408                 return DRM_FORMAT_RGB565;
2409         default:
2410         case DISPPLANE_BGRX888:
2411                 return DRM_FORMAT_XRGB8888;
2412         case DISPPLANE_RGBX888:
2413                 return DRM_FORMAT_XBGR8888;
2414         case DISPPLANE_BGRX101010:
2415                 return DRM_FORMAT_XRGB2101010;
2416         case DISPPLANE_RGBX101010:
2417                 return DRM_FORMAT_XBGR2101010;
2418         }
2419 }
2420
2421 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2422 {
2423         switch (format) {
2424         case PLANE_CTL_FORMAT_RGB_565:
2425                 return DRM_FORMAT_RGB565;
2426         default:
2427         case PLANE_CTL_FORMAT_XRGB_8888:
2428                 if (rgb_order) {
2429                         if (alpha)
2430                                 return DRM_FORMAT_ABGR8888;
2431                         else
2432                                 return DRM_FORMAT_XBGR8888;
2433                 } else {
2434                         if (alpha)
2435                                 return DRM_FORMAT_ARGB8888;
2436                         else
2437                                 return DRM_FORMAT_XRGB8888;
2438                 }
2439         case PLANE_CTL_FORMAT_XRGB_2101010:
2440                 if (rgb_order)
2441                         return DRM_FORMAT_XBGR2101010;
2442                 else
2443                         return DRM_FORMAT_XRGB2101010;
2444         }
2445 }
2446
2447 static bool
2448 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2449                               struct intel_initial_plane_config *plane_config)
2450 {
2451         struct drm_device *dev = crtc->base.dev;
2452         struct drm_i915_private *dev_priv = to_i915(dev);
2453         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2454         struct drm_i915_gem_object *obj = NULL;
2455         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2456         struct drm_framebuffer *fb = &plane_config->fb->base;
2457         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2458         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2459                                     PAGE_SIZE);
2460
2461         size_aligned -= base_aligned;
2462
2463         if (plane_config->size == 0)
2464                 return false;
2465
2466         /* If the FB is too big, just don't use it since fbdev is not very
2467          * important and we should probably use that space with FBC or other
2468          * features. */
2469         if (size_aligned * 2 > ggtt->stolen_usable_size)
2470                 return false;
2471
2472         mutex_lock(&dev->struct_mutex);
2473
2474         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2475                                                              base_aligned,
2476                                                              base_aligned,
2477                                                              size_aligned);
2478         if (!obj) {
2479                 mutex_unlock(&dev->struct_mutex);
2480                 return false;
2481         }
2482
2483         obj->tiling_mode = plane_config->tiling;
2484         if (obj->tiling_mode == I915_TILING_X)
2485                 obj->stride = fb->pitches[0];
2486
2487         mode_cmd.pixel_format = fb->pixel_format;
2488         mode_cmd.width = fb->width;
2489         mode_cmd.height = fb->height;
2490         mode_cmd.pitches[0] = fb->pitches[0];
2491         mode_cmd.modifier[0] = fb->modifier[0];
2492         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2493
2494         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2495                                    &mode_cmd, obj)) {
2496                 DRM_DEBUG_KMS("intel fb init failed\n");
2497                 goto out_unref_obj;
2498         }
2499
2500         mutex_unlock(&dev->struct_mutex);
2501
2502         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2503         return true;
2504
2505 out_unref_obj:
2506         drm_gem_object_unreference(&obj->base);
2507         mutex_unlock(&dev->struct_mutex);
2508         return false;
2509 }
2510
2511 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2512 static void
2513 update_state_fb(struct drm_plane *plane)
2514 {
2515         if (plane->fb == plane->state->fb)
2516                 return;
2517
2518         if (plane->state->fb)
2519                 drm_framebuffer_unreference(plane->state->fb);
2520         plane->state->fb = plane->fb;
2521         if (plane->state->fb)
2522                 drm_framebuffer_reference(plane->state->fb);
2523 }
2524
2525 static void
2526 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2527                              struct intel_initial_plane_config *plane_config)
2528 {
2529         struct drm_device *dev = intel_crtc->base.dev;
2530         struct drm_i915_private *dev_priv = dev->dev_private;
2531         struct drm_crtc *c;
2532         struct intel_crtc *i;
2533         struct drm_i915_gem_object *obj;
2534         struct drm_plane *primary = intel_crtc->base.primary;
2535         struct drm_plane_state *plane_state = primary->state;
2536         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2537         struct intel_plane *intel_plane = to_intel_plane(primary);
2538         struct intel_plane_state *intel_state =
2539                 to_intel_plane_state(plane_state);
2540         struct drm_framebuffer *fb;
2541
2542         if (!plane_config->fb)
2543                 return;
2544
2545         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2546                 fb = &plane_config->fb->base;
2547                 goto valid_fb;
2548         }
2549
2550         kfree(plane_config->fb);
2551
2552         /*
2553          * Failed to alloc the obj, check to see if we should share
2554          * an fb with another CRTC instead
2555          */
2556         for_each_crtc(dev, c) {
2557                 i = to_intel_crtc(c);
2558
2559                 if (c == &intel_crtc->base)
2560                         continue;
2561
2562                 if (!i->active)
2563                         continue;
2564
2565                 fb = c->primary->fb;
2566                 if (!fb)
2567                         continue;
2568
2569                 obj = intel_fb_obj(fb);
2570                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2571                         drm_framebuffer_reference(fb);
2572                         goto valid_fb;
2573                 }
2574         }
2575
2576         /*
2577          * We've failed to reconstruct the BIOS FB.  Current display state
2578          * indicates that the primary plane is visible, but has a NULL FB,
2579          * which will lead to problems later if we don't fix it up.  The
2580          * simplest solution is to just disable the primary plane now and
2581          * pretend the BIOS never had it enabled.
2582          */
2583         to_intel_plane_state(plane_state)->visible = false;
2584         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2585         intel_pre_disable_primary_noatomic(&intel_crtc->base);
2586         intel_plane->disable_plane(primary, &intel_crtc->base);
2587
2588         return;
2589
2590 valid_fb:
2591         plane_state->src_x = 0;
2592         plane_state->src_y = 0;
2593         plane_state->src_w = fb->width << 16;
2594         plane_state->src_h = fb->height << 16;
2595
2596         plane_state->crtc_x = 0;
2597         plane_state->crtc_y = 0;
2598         plane_state->crtc_w = fb->width;
2599         plane_state->crtc_h = fb->height;
2600
2601         intel_state->src.x1 = plane_state->src_x;
2602         intel_state->src.y1 = plane_state->src_y;
2603         intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2604         intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2605         intel_state->dst.x1 = plane_state->crtc_x;
2606         intel_state->dst.y1 = plane_state->crtc_y;
2607         intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2608         intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2609
2610         obj = intel_fb_obj(fb);
2611         if (obj->tiling_mode != I915_TILING_NONE)
2612                 dev_priv->preserve_bios_swizzle = true;
2613
2614         drm_framebuffer_reference(fb);
2615         primary->fb = primary->state->fb = fb;
2616         primary->crtc = primary->state->crtc = &intel_crtc->base;
2617         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2618         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2619 }
2620
2621 static void i9xx_update_primary_plane(struct drm_plane *primary,
2622                                       const struct intel_crtc_state *crtc_state,
2623                                       const struct intel_plane_state *plane_state)
2624 {
2625         struct drm_device *dev = primary->dev;
2626         struct drm_i915_private *dev_priv = dev->dev_private;
2627         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2628         struct drm_framebuffer *fb = plane_state->base.fb;
2629         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2630         int plane = intel_crtc->plane;
2631         u32 linear_offset;
2632         u32 dspcntr;
2633         i915_reg_t reg = DSPCNTR(plane);
2634         unsigned int rotation = plane_state->base.rotation;
2635         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2636         int x = plane_state->src.x1 >> 16;
2637         int y = plane_state->src.y1 >> 16;
2638
2639         dspcntr = DISPPLANE_GAMMA_ENABLE;
2640
2641         dspcntr |= DISPLAY_PLANE_ENABLE;
2642
2643         if (INTEL_INFO(dev)->gen < 4) {
2644                 if (intel_crtc->pipe == PIPE_B)
2645                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2646
2647                 /* pipesrc and dspsize control the size that is scaled from,
2648                  * which should always be the user's requested size.
2649                  */
2650                 I915_WRITE(DSPSIZE(plane),
2651                            ((crtc_state->pipe_src_h - 1) << 16) |
2652                            (crtc_state->pipe_src_w - 1));
2653                 I915_WRITE(DSPPOS(plane), 0);
2654         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2655                 I915_WRITE(PRIMSIZE(plane),
2656                            ((crtc_state->pipe_src_h - 1) << 16) |
2657                            (crtc_state->pipe_src_w - 1));
2658                 I915_WRITE(PRIMPOS(plane), 0);
2659                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2660         }
2661
2662         switch (fb->pixel_format) {
2663         case DRM_FORMAT_C8:
2664                 dspcntr |= DISPPLANE_8BPP;
2665                 break;
2666         case DRM_FORMAT_XRGB1555:
2667                 dspcntr |= DISPPLANE_BGRX555;
2668                 break;
2669         case DRM_FORMAT_RGB565:
2670                 dspcntr |= DISPPLANE_BGRX565;
2671                 break;
2672         case DRM_FORMAT_XRGB8888:
2673                 dspcntr |= DISPPLANE_BGRX888;
2674                 break;
2675         case DRM_FORMAT_XBGR8888:
2676                 dspcntr |= DISPPLANE_RGBX888;
2677                 break;
2678         case DRM_FORMAT_XRGB2101010:
2679                 dspcntr |= DISPPLANE_BGRX101010;
2680                 break;
2681         case DRM_FORMAT_XBGR2101010:
2682                 dspcntr |= DISPPLANE_RGBX101010;
2683                 break;
2684         default:
2685                 BUG();
2686         }
2687
2688         if (INTEL_INFO(dev)->gen >= 4 &&
2689             obj->tiling_mode != I915_TILING_NONE)
2690                 dspcntr |= DISPPLANE_TILED;
2691
2692         if (IS_G4X(dev))
2693                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2694
2695         linear_offset = y * fb->pitches[0] + x * cpp;
2696
2697         if (INTEL_INFO(dev)->gen >= 4) {
2698                 intel_crtc->dspaddr_offset =
2699                         intel_compute_tile_offset(&x, &y, fb, 0,
2700                                                   fb->pitches[0], rotation);
2701                 linear_offset -= intel_crtc->dspaddr_offset;
2702         } else {
2703                 intel_crtc->dspaddr_offset = linear_offset;
2704         }
2705
2706         if (rotation == BIT(DRM_ROTATE_180)) {
2707                 dspcntr |= DISPPLANE_ROTATE_180;
2708
2709                 x += (crtc_state->pipe_src_w - 1);
2710                 y += (crtc_state->pipe_src_h - 1);
2711
2712                 /* Finding the last pixel of the last line of the display
2713                 data and adding to linear_offset*/
2714                 linear_offset +=
2715                         (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2716                         (crtc_state->pipe_src_w - 1) * cpp;
2717         }
2718
2719         intel_crtc->adjusted_x = x;
2720         intel_crtc->adjusted_y = y;
2721
2722         I915_WRITE(reg, dspcntr);
2723
2724         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2725         if (INTEL_INFO(dev)->gen >= 4) {
2726                 I915_WRITE(DSPSURF(plane),
2727                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2728                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2729                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2730         } else
2731                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2732         POSTING_READ(reg);
2733 }
2734
2735 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2736                                        struct drm_crtc *crtc)
2737 {
2738         struct drm_device *dev = crtc->dev;
2739         struct drm_i915_private *dev_priv = dev->dev_private;
2740         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2741         int plane = intel_crtc->plane;
2742
2743         I915_WRITE(DSPCNTR(plane), 0);
2744         if (INTEL_INFO(dev_priv)->gen >= 4)
2745                 I915_WRITE(DSPSURF(plane), 0);
2746         else
2747                 I915_WRITE(DSPADDR(plane), 0);
2748         POSTING_READ(DSPCNTR(plane));
2749 }
2750
2751 static void ironlake_update_primary_plane(struct drm_plane *primary,
2752                                           const struct intel_crtc_state *crtc_state,
2753                                           const struct intel_plane_state *plane_state)
2754 {
2755         struct drm_device *dev = primary->dev;
2756         struct drm_i915_private *dev_priv = dev->dev_private;
2757         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2758         struct drm_framebuffer *fb = plane_state->base.fb;
2759         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2760         int plane = intel_crtc->plane;
2761         u32 linear_offset;
2762         u32 dspcntr;
2763         i915_reg_t reg = DSPCNTR(plane);
2764         unsigned int rotation = plane_state->base.rotation;
2765         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2766         int x = plane_state->src.x1 >> 16;
2767         int y = plane_state->src.y1 >> 16;
2768
2769         dspcntr = DISPPLANE_GAMMA_ENABLE;
2770         dspcntr |= DISPLAY_PLANE_ENABLE;
2771
2772         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2773                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2774
2775         switch (fb->pixel_format) {
2776         case DRM_FORMAT_C8:
2777                 dspcntr |= DISPPLANE_8BPP;
2778                 break;
2779         case DRM_FORMAT_RGB565:
2780                 dspcntr |= DISPPLANE_BGRX565;
2781                 break;
2782         case DRM_FORMAT_XRGB8888:
2783                 dspcntr |= DISPPLANE_BGRX888;
2784                 break;
2785         case DRM_FORMAT_XBGR8888:
2786                 dspcntr |= DISPPLANE_RGBX888;
2787                 break;
2788         case DRM_FORMAT_XRGB2101010:
2789                 dspcntr |= DISPPLANE_BGRX101010;
2790                 break;
2791         case DRM_FORMAT_XBGR2101010:
2792                 dspcntr |= DISPPLANE_RGBX101010;
2793                 break;
2794         default:
2795                 BUG();
2796         }
2797
2798         if (obj->tiling_mode != I915_TILING_NONE)
2799                 dspcntr |= DISPPLANE_TILED;
2800
2801         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2802                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2803
2804         linear_offset = y * fb->pitches[0] + x * cpp;
2805         intel_crtc->dspaddr_offset =
2806                 intel_compute_tile_offset(&x, &y, fb, 0,
2807                                           fb->pitches[0], rotation);
2808         linear_offset -= intel_crtc->dspaddr_offset;
2809         if (rotation == BIT(DRM_ROTATE_180)) {
2810                 dspcntr |= DISPPLANE_ROTATE_180;
2811
2812                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2813                         x += (crtc_state->pipe_src_w - 1);
2814                         y += (crtc_state->pipe_src_h - 1);
2815
2816                         /* Finding the last pixel of the last line of the display
2817                         data and adding to linear_offset*/
2818                         linear_offset +=
2819                                 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2820                                 (crtc_state->pipe_src_w - 1) * cpp;
2821                 }
2822         }
2823
2824         intel_crtc->adjusted_x = x;
2825         intel_crtc->adjusted_y = y;
2826
2827         I915_WRITE(reg, dspcntr);
2828
2829         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2830         I915_WRITE(DSPSURF(plane),
2831                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2832         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2833                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2834         } else {
2835                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2836                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2837         }
2838         POSTING_READ(reg);
2839 }
2840
2841 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2842                               uint64_t fb_modifier, uint32_t pixel_format)
2843 {
2844         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2845                 return 64;
2846         } else {
2847                 int cpp = drm_format_plane_cpp(pixel_format, 0);
2848
2849                 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2850         }
2851 }
2852
2853 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2854                            struct drm_i915_gem_object *obj,
2855                            unsigned int plane)
2856 {
2857         struct i915_ggtt_view view;
2858         struct i915_vma *vma;
2859         u64 offset;
2860
2861         intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2862                                 intel_plane->base.state->rotation);
2863
2864         vma = i915_gem_obj_to_ggtt_view(obj, &view);
2865         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2866                 view.type))
2867                 return -1;
2868
2869         offset = vma->node.start;
2870
2871         if (plane == 1) {
2872                 offset += vma->ggtt_view.params.rotated.uv_start_page *
2873                           PAGE_SIZE;
2874         }
2875
2876         WARN_ON(upper_32_bits(offset));
2877
2878         return lower_32_bits(offset);
2879 }
2880
2881 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2882 {
2883         struct drm_device *dev = intel_crtc->base.dev;
2884         struct drm_i915_private *dev_priv = dev->dev_private;
2885
2886         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2887         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2888         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2889 }
2890
2891 /*
2892  * This function detaches (aka. unbinds) unused scalers in hardware
2893  */
2894 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2895 {
2896         struct intel_crtc_scaler_state *scaler_state;
2897         int i;
2898
2899         scaler_state = &intel_crtc->config->scaler_state;
2900
2901         /* loop through and disable scalers that aren't in use */
2902         for (i = 0; i < intel_crtc->num_scalers; i++) {
2903                 if (!scaler_state->scalers[i].in_use)
2904                         skl_detach_scaler(intel_crtc, i);
2905         }
2906 }
2907
2908 u32 skl_plane_ctl_format(uint32_t pixel_format)
2909 {
2910         switch (pixel_format) {
2911         case DRM_FORMAT_C8:
2912                 return PLANE_CTL_FORMAT_INDEXED;
2913         case DRM_FORMAT_RGB565:
2914                 return PLANE_CTL_FORMAT_RGB_565;
2915         case DRM_FORMAT_XBGR8888:
2916                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2917         case DRM_FORMAT_XRGB8888:
2918                 return PLANE_CTL_FORMAT_XRGB_8888;
2919         /*
2920          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2921          * to be already pre-multiplied. We need to add a knob (or a different
2922          * DRM_FORMAT) for user-space to configure that.
2923          */
2924         case DRM_FORMAT_ABGR8888:
2925                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2926                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2927         case DRM_FORMAT_ARGB8888:
2928                 return PLANE_CTL_FORMAT_XRGB_8888 |
2929                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2930         case DRM_FORMAT_XRGB2101010:
2931                 return PLANE_CTL_FORMAT_XRGB_2101010;
2932         case DRM_FORMAT_XBGR2101010:
2933                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2934         case DRM_FORMAT_YUYV:
2935                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2936         case DRM_FORMAT_YVYU:
2937                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2938         case DRM_FORMAT_UYVY:
2939                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2940         case DRM_FORMAT_VYUY:
2941                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2942         default:
2943                 MISSING_CASE(pixel_format);
2944         }
2945
2946         return 0;
2947 }
2948
2949 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2950 {
2951         switch (fb_modifier) {
2952         case DRM_FORMAT_MOD_NONE:
2953                 break;
2954         case I915_FORMAT_MOD_X_TILED:
2955                 return PLANE_CTL_TILED_X;
2956         case I915_FORMAT_MOD_Y_TILED:
2957                 return PLANE_CTL_TILED_Y;
2958         case I915_FORMAT_MOD_Yf_TILED:
2959                 return PLANE_CTL_TILED_YF;
2960         default:
2961                 MISSING_CASE(fb_modifier);
2962         }
2963
2964         return 0;
2965 }
2966
2967 u32 skl_plane_ctl_rotation(unsigned int rotation)
2968 {
2969         switch (rotation) {
2970         case BIT(DRM_ROTATE_0):
2971                 break;
2972         /*
2973          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2974          * while i915 HW rotation is clockwise, thats why this swapping.
2975          */
2976         case BIT(DRM_ROTATE_90):
2977                 return PLANE_CTL_ROTATE_270;
2978         case BIT(DRM_ROTATE_180):
2979                 return PLANE_CTL_ROTATE_180;
2980         case BIT(DRM_ROTATE_270):
2981                 return PLANE_CTL_ROTATE_90;
2982         default:
2983                 MISSING_CASE(rotation);
2984         }
2985
2986         return 0;
2987 }
2988
2989 static void skylake_update_primary_plane(struct drm_plane *plane,
2990                                          const struct intel_crtc_state *crtc_state,
2991                                          const struct intel_plane_state *plane_state)
2992 {
2993         struct drm_device *dev = plane->dev;
2994         struct drm_i915_private *dev_priv = dev->dev_private;
2995         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2996         struct drm_framebuffer *fb = plane_state->base.fb;
2997         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2998         int pipe = intel_crtc->pipe;
2999         u32 plane_ctl, stride_div, stride;
3000         u32 tile_height, plane_offset, plane_size;
3001         unsigned int rotation = plane_state->base.rotation;
3002         int x_offset, y_offset;
3003         u32 surf_addr;
3004         int scaler_id = plane_state->scaler_id;
3005         int src_x = plane_state->src.x1 >> 16;
3006         int src_y = plane_state->src.y1 >> 16;
3007         int src_w = drm_rect_width(&plane_state->src) >> 16;
3008         int src_h = drm_rect_height(&plane_state->src) >> 16;
3009         int dst_x = plane_state->dst.x1;
3010         int dst_y = plane_state->dst.y1;
3011         int dst_w = drm_rect_width(&plane_state->dst);
3012         int dst_h = drm_rect_height(&plane_state->dst);
3013
3014         plane_ctl = PLANE_CTL_ENABLE |
3015                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3016                     PLANE_CTL_PIPE_CSC_ENABLE;
3017
3018         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3019         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3020         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3021         plane_ctl |= skl_plane_ctl_rotation(rotation);
3022
3023         stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3024                                                fb->pixel_format);
3025         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3026
3027         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3028
3029         if (intel_rotation_90_or_270(rotation)) {
3030                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3031
3032                 /* stride = Surface height in tiles */
3033                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3034                 stride = DIV_ROUND_UP(fb->height, tile_height);
3035                 x_offset = stride * tile_height - src_y - src_h;
3036                 y_offset = src_x;
3037                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3038         } else {
3039                 stride = fb->pitches[0] / stride_div;
3040                 x_offset = src_x;
3041                 y_offset = src_y;
3042                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3043         }
3044         plane_offset = y_offset << 16 | x_offset;
3045
3046         intel_crtc->adjusted_x = x_offset;
3047         intel_crtc->adjusted_y = y_offset;
3048
3049         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3050         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3051         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3052         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3053
3054         if (scaler_id >= 0) {
3055                 uint32_t ps_ctrl = 0;
3056
3057                 WARN_ON(!dst_w || !dst_h);
3058                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3059                         crtc_state->scaler_state.scalers[scaler_id].mode;
3060                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3061                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3062                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3063                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3064                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3065         } else {
3066                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3067         }
3068
3069         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3070
3071         POSTING_READ(PLANE_SURF(pipe, 0));
3072 }
3073
3074 static void skylake_disable_primary_plane(struct drm_plane *primary,
3075                                           struct drm_crtc *crtc)
3076 {
3077         struct drm_device *dev = crtc->dev;
3078         struct drm_i915_private *dev_priv = dev->dev_private;
3079         int pipe = to_intel_crtc(crtc)->pipe;
3080
3081         I915_WRITE(PLANE_CTL(pipe, 0), 0);
3082         I915_WRITE(PLANE_SURF(pipe, 0), 0);
3083         POSTING_READ(PLANE_SURF(pipe, 0));
3084 }
3085
3086 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3087 static int
3088 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3089                            int x, int y, enum mode_set_atomic state)
3090 {
3091         /* Support for kgdboc is disabled, this needs a major rework. */
3092         DRM_ERROR("legacy panic handler not supported any more.\n");
3093
3094         return -ENODEV;
3095 }
3096
3097 static void intel_complete_page_flips(struct drm_device *dev)
3098 {
3099         struct drm_crtc *crtc;
3100
3101         for_each_crtc(dev, crtc) {
3102                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3103                 enum plane plane = intel_crtc->plane;
3104
3105                 intel_prepare_page_flip(dev, plane);
3106                 intel_finish_page_flip_plane(dev, plane);
3107         }
3108 }
3109
3110 static void intel_update_primary_planes(struct drm_device *dev)
3111 {
3112         struct drm_crtc *crtc;
3113
3114         for_each_crtc(dev, crtc) {
3115                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3116                 struct intel_plane_state *plane_state;
3117
3118                 drm_modeset_lock_crtc(crtc, &plane->base);
3119                 plane_state = to_intel_plane_state(plane->base.state);
3120
3121                 if (plane_state->visible)
3122                         plane->update_plane(&plane->base,
3123                                             to_intel_crtc_state(crtc->state),
3124                                             plane_state);
3125
3126                 drm_modeset_unlock_crtc(crtc);
3127         }
3128 }
3129
3130 void intel_prepare_reset(struct drm_device *dev)
3131 {
3132         /* no reset support for gen2 */
3133         if (IS_GEN2(dev))
3134                 return;
3135
3136         /* reset doesn't touch the display */
3137         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3138                 return;
3139
3140         drm_modeset_lock_all(dev);
3141         /*
3142          * Disabling the crtcs gracefully seems nicer. Also the
3143          * g33 docs say we should at least disable all the planes.
3144          */
3145         intel_display_suspend(dev);
3146 }
3147
3148 void intel_finish_reset(struct drm_device *dev)
3149 {
3150         struct drm_i915_private *dev_priv = to_i915(dev);
3151
3152         /*
3153          * Flips in the rings will be nuked by the reset,
3154          * so complete all pending flips so that user space
3155          * will get its events and not get stuck.
3156          */
3157         intel_complete_page_flips(dev);
3158
3159         /* no reset support for gen2 */
3160         if (IS_GEN2(dev))
3161                 return;
3162
3163         /* reset doesn't touch the display */
3164         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3165                 /*
3166                  * Flips in the rings have been nuked by the reset,
3167                  * so update the base address of all primary
3168                  * planes to the the last fb to make sure we're
3169                  * showing the correct fb after a reset.
3170                  *
3171                  * FIXME: Atomic will make this obsolete since we won't schedule
3172                  * CS-based flips (which might get lost in gpu resets) any more.
3173                  */
3174                 intel_update_primary_planes(dev);
3175                 return;
3176         }
3177
3178         /*
3179          * The display has been reset as well,
3180          * so need a full re-initialization.
3181          */
3182         intel_runtime_pm_disable_interrupts(dev_priv);
3183         intel_runtime_pm_enable_interrupts(dev_priv);
3184
3185         intel_modeset_init_hw(dev);
3186
3187         spin_lock_irq(&dev_priv->irq_lock);
3188         if (dev_priv->display.hpd_irq_setup)
3189                 dev_priv->display.hpd_irq_setup(dev);
3190         spin_unlock_irq(&dev_priv->irq_lock);
3191
3192         intel_display_resume(dev);
3193
3194         intel_hpd_init(dev_priv);
3195
3196         drm_modeset_unlock_all(dev);
3197 }
3198
3199 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3200 {
3201         struct drm_device *dev = crtc->dev;
3202         struct drm_i915_private *dev_priv = dev->dev_private;
3203         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3204         bool pending;
3205
3206         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3207             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3208                 return false;
3209
3210         spin_lock_irq(&dev->event_lock);
3211         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3212         spin_unlock_irq(&dev->event_lock);
3213
3214         return pending;
3215 }
3216
3217 static void intel_update_pipe_config(struct intel_crtc *crtc,
3218                                      struct intel_crtc_state *old_crtc_state)
3219 {
3220         struct drm_device *dev = crtc->base.dev;
3221         struct drm_i915_private *dev_priv = dev->dev_private;
3222         struct intel_crtc_state *pipe_config =
3223                 to_intel_crtc_state(crtc->base.state);
3224
3225         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3226         crtc->base.mode = crtc->base.state->mode;
3227
3228         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3229                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3230                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3231
3232         /*
3233          * Update pipe size and adjust fitter if needed: the reason for this is
3234          * that in compute_mode_changes we check the native mode (not the pfit
3235          * mode) to see if we can flip rather than do a full mode set. In the
3236          * fastboot case, we'll flip, but if we don't update the pipesrc and
3237          * pfit state, we'll end up with a big fb scanned out into the wrong
3238          * sized surface.
3239          */
3240
3241         I915_WRITE(PIPESRC(crtc->pipe),
3242                    ((pipe_config->pipe_src_w - 1) << 16) |
3243                    (pipe_config->pipe_src_h - 1));
3244
3245         /* on skylake this is done by detaching scalers */
3246         if (INTEL_INFO(dev)->gen >= 9) {
3247                 skl_detach_scalers(crtc);
3248
3249                 if (pipe_config->pch_pfit.enabled)
3250                         skylake_pfit_enable(crtc);
3251         } else if (HAS_PCH_SPLIT(dev)) {
3252                 if (pipe_config->pch_pfit.enabled)
3253                         ironlake_pfit_enable(crtc);
3254                 else if (old_crtc_state->pch_pfit.enabled)
3255                         ironlake_pfit_disable(crtc, true);
3256         }
3257 }
3258
3259 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3260 {
3261         struct drm_device *dev = crtc->dev;
3262         struct drm_i915_private *dev_priv = dev->dev_private;
3263         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3264         int pipe = intel_crtc->pipe;
3265         i915_reg_t reg;
3266         u32 temp;
3267
3268         /* enable normal train */
3269         reg = FDI_TX_CTL(pipe);
3270         temp = I915_READ(reg);
3271         if (IS_IVYBRIDGE(dev)) {
3272                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3273                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3274         } else {
3275                 temp &= ~FDI_LINK_TRAIN_NONE;
3276                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3277         }
3278         I915_WRITE(reg, temp);
3279
3280         reg = FDI_RX_CTL(pipe);
3281         temp = I915_READ(reg);
3282         if (HAS_PCH_CPT(dev)) {
3283                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3284                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3285         } else {
3286                 temp &= ~FDI_LINK_TRAIN_NONE;
3287                 temp |= FDI_LINK_TRAIN_NONE;
3288         }
3289         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3290
3291         /* wait one idle pattern time */
3292         POSTING_READ(reg);
3293         udelay(1000);
3294
3295         /* IVB wants error correction enabled */
3296         if (IS_IVYBRIDGE(dev))
3297                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3298                            FDI_FE_ERRC_ENABLE);
3299 }
3300
3301 /* The FDI link training functions for ILK/Ibexpeak. */
3302 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3303 {
3304         struct drm_device *dev = crtc->dev;
3305         struct drm_i915_private *dev_priv = dev->dev_private;
3306         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3307         int pipe = intel_crtc->pipe;
3308         i915_reg_t reg;
3309         u32 temp, tries;
3310
3311         /* FDI needs bits from pipe first */
3312         assert_pipe_enabled(dev_priv, pipe);
3313
3314         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3315            for train result */
3316         reg = FDI_RX_IMR(pipe);
3317         temp = I915_READ(reg);
3318         temp &= ~FDI_RX_SYMBOL_LOCK;
3319         temp &= ~FDI_RX_BIT_LOCK;
3320         I915_WRITE(reg, temp);
3321         I915_READ(reg);
3322         udelay(150);
3323
3324         /* enable CPU FDI TX and PCH FDI RX */
3325         reg = FDI_TX_CTL(pipe);
3326         temp = I915_READ(reg);
3327         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3328         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3329         temp &= ~FDI_LINK_TRAIN_NONE;
3330         temp |= FDI_LINK_TRAIN_PATTERN_1;
3331         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3332
3333         reg = FDI_RX_CTL(pipe);
3334         temp = I915_READ(reg);
3335         temp &= ~FDI_LINK_TRAIN_NONE;
3336         temp |= FDI_LINK_TRAIN_PATTERN_1;
3337         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3338
3339         POSTING_READ(reg);
3340         udelay(150);
3341
3342         /* Ironlake workaround, enable clock pointer after FDI enable*/
3343         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3344         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3345                    FDI_RX_PHASE_SYNC_POINTER_EN);
3346
3347         reg = FDI_RX_IIR(pipe);
3348         for (tries = 0; tries < 5; tries++) {
3349                 temp = I915_READ(reg);
3350                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3351
3352                 if ((temp & FDI_RX_BIT_LOCK)) {
3353                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3354                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3355                         break;
3356                 }
3357         }
3358         if (tries == 5)
3359                 DRM_ERROR("FDI train 1 fail!\n");
3360
3361         /* Train 2 */
3362         reg = FDI_TX_CTL(pipe);
3363         temp = I915_READ(reg);
3364         temp &= ~FDI_LINK_TRAIN_NONE;
3365         temp |= FDI_LINK_TRAIN_PATTERN_2;
3366         I915_WRITE(reg, temp);
3367
3368         reg = FDI_RX_CTL(pipe);
3369         temp = I915_READ(reg);
3370         temp &= ~FDI_LINK_TRAIN_NONE;
3371         temp |= FDI_LINK_TRAIN_PATTERN_2;
3372         I915_WRITE(reg, temp);
3373
3374         POSTING_READ(reg);
3375         udelay(150);
3376
3377         reg = FDI_RX_IIR(pipe);
3378         for (tries = 0; tries < 5; tries++) {
3379                 temp = I915_READ(reg);
3380                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3381
3382                 if (temp & FDI_RX_SYMBOL_LOCK) {
3383                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3384                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3385                         break;
3386                 }
3387         }
3388         if (tries == 5)
3389                 DRM_ERROR("FDI train 2 fail!\n");
3390
3391         DRM_DEBUG_KMS("FDI train done\n");
3392
3393 }
3394
3395 static const int snb_b_fdi_train_param[] = {
3396         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3397         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3398         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3399         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3400 };
3401
3402 /* The FDI link training functions for SNB/Cougarpoint. */
3403 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3404 {
3405         struct drm_device *dev = crtc->dev;
3406         struct drm_i915_private *dev_priv = dev->dev_private;
3407         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3408         int pipe = intel_crtc->pipe;
3409         i915_reg_t reg;
3410         u32 temp, i, retry;
3411
3412         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3413            for train result */
3414         reg = FDI_RX_IMR(pipe);
3415         temp = I915_READ(reg);
3416         temp &= ~FDI_RX_SYMBOL_LOCK;
3417         temp &= ~FDI_RX_BIT_LOCK;
3418         I915_WRITE(reg, temp);
3419
3420         POSTING_READ(reg);
3421         udelay(150);
3422
3423         /* enable CPU FDI TX and PCH FDI RX */
3424         reg = FDI_TX_CTL(pipe);
3425         temp = I915_READ(reg);
3426         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3427         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3428         temp &= ~FDI_LINK_TRAIN_NONE;
3429         temp |= FDI_LINK_TRAIN_PATTERN_1;
3430         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3431         /* SNB-B */
3432         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3433         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3434
3435         I915_WRITE(FDI_RX_MISC(pipe),
3436                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3437
3438         reg = FDI_RX_CTL(pipe);
3439         temp = I915_READ(reg);
3440         if (HAS_PCH_CPT(dev)) {
3441                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3442                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3443         } else {
3444                 temp &= ~FDI_LINK_TRAIN_NONE;
3445                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3446         }
3447         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3448
3449         POSTING_READ(reg);
3450         udelay(150);
3451
3452         for (i = 0; i < 4; i++) {
3453                 reg = FDI_TX_CTL(pipe);
3454                 temp = I915_READ(reg);
3455                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3456                 temp |= snb_b_fdi_train_param[i];
3457                 I915_WRITE(reg, temp);
3458
3459                 POSTING_READ(reg);
3460                 udelay(500);
3461
3462                 for (retry = 0; retry < 5; retry++) {
3463                         reg = FDI_RX_IIR(pipe);
3464                         temp = I915_READ(reg);
3465                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3466                         if (temp & FDI_RX_BIT_LOCK) {
3467                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3468                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3469                                 break;
3470                         }
3471                         udelay(50);
3472                 }
3473                 if (retry < 5)
3474                         break;
3475         }
3476         if (i == 4)
3477                 DRM_ERROR("FDI train 1 fail!\n");
3478
3479         /* Train 2 */
3480         reg = FDI_TX_CTL(pipe);
3481         temp = I915_READ(reg);
3482         temp &= ~FDI_LINK_TRAIN_NONE;
3483         temp |= FDI_LINK_TRAIN_PATTERN_2;
3484         if (IS_GEN6(dev)) {
3485                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3486                 /* SNB-B */
3487                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3488         }
3489         I915_WRITE(reg, temp);
3490
3491         reg = FDI_RX_CTL(pipe);
3492         temp = I915_READ(reg);
3493         if (HAS_PCH_CPT(dev)) {
3494                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3495                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3496         } else {
3497                 temp &= ~FDI_LINK_TRAIN_NONE;
3498                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3499         }
3500         I915_WRITE(reg, temp);
3501
3502         POSTING_READ(reg);
3503         udelay(150);
3504
3505         for (i = 0; i < 4; i++) {
3506                 reg = FDI_TX_CTL(pipe);
3507                 temp = I915_READ(reg);
3508                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3509                 temp |= snb_b_fdi_train_param[i];
3510                 I915_WRITE(reg, temp);
3511
3512                 POSTING_READ(reg);
3513                 udelay(500);
3514
3515                 for (retry = 0; retry < 5; retry++) {
3516                         reg = FDI_RX_IIR(pipe);
3517                         temp = I915_READ(reg);
3518                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3519                         if (temp & FDI_RX_SYMBOL_LOCK) {
3520                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3521                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3522                                 break;
3523                         }
3524                         udelay(50);
3525                 }
3526                 if (retry < 5)
3527                         break;
3528         }
3529         if (i == 4)
3530                 DRM_ERROR("FDI train 2 fail!\n");
3531
3532         DRM_DEBUG_KMS("FDI train done.\n");
3533 }
3534
3535 /* Manual link training for Ivy Bridge A0 parts */
3536 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3537 {
3538         struct drm_device *dev = crtc->dev;
3539         struct drm_i915_private *dev_priv = dev->dev_private;
3540         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3541         int pipe = intel_crtc->pipe;
3542         i915_reg_t reg;
3543         u32 temp, i, j;
3544
3545         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3546            for train result */
3547         reg = FDI_RX_IMR(pipe);
3548         temp = I915_READ(reg);
3549         temp &= ~FDI_RX_SYMBOL_LOCK;
3550         temp &= ~FDI_RX_BIT_LOCK;
3551         I915_WRITE(reg, temp);
3552
3553         POSTING_READ(reg);
3554         udelay(150);
3555
3556         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3557                       I915_READ(FDI_RX_IIR(pipe)));
3558
3559         /* Try each vswing and preemphasis setting twice before moving on */
3560         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3561                 /* disable first in case we need to retry */
3562                 reg = FDI_TX_CTL(pipe);
3563                 temp = I915_READ(reg);
3564                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3565                 temp &= ~FDI_TX_ENABLE;
3566                 I915_WRITE(reg, temp);
3567
3568                 reg = FDI_RX_CTL(pipe);
3569                 temp = I915_READ(reg);
3570                 temp &= ~FDI_LINK_TRAIN_AUTO;
3571                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3572                 temp &= ~FDI_RX_ENABLE;
3573                 I915_WRITE(reg, temp);
3574
3575                 /* enable CPU FDI TX and PCH FDI RX */
3576                 reg = FDI_TX_CTL(pipe);
3577                 temp = I915_READ(reg);
3578                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3579                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3580                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3581                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3582                 temp |= snb_b_fdi_train_param[j/2];
3583                 temp |= FDI_COMPOSITE_SYNC;
3584                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3585
3586                 I915_WRITE(FDI_RX_MISC(pipe),
3587                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3588
3589                 reg = FDI_RX_CTL(pipe);
3590                 temp = I915_READ(reg);
3591                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3592                 temp |= FDI_COMPOSITE_SYNC;
3593                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3594
3595                 POSTING_READ(reg);
3596                 udelay(1); /* should be 0.5us */
3597
3598                 for (i = 0; i < 4; i++) {
3599                         reg = FDI_RX_IIR(pipe);
3600                         temp = I915_READ(reg);
3601                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3602
3603                         if (temp & FDI_RX_BIT_LOCK ||
3604                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3605                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3606                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3607                                               i);
3608                                 break;
3609                         }
3610                         udelay(1); /* should be 0.5us */
3611                 }
3612                 if (i == 4) {
3613                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3614                         continue;
3615                 }
3616
3617                 /* Train 2 */
3618                 reg = FDI_TX_CTL(pipe);
3619                 temp = I915_READ(reg);
3620                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3621                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3622                 I915_WRITE(reg, temp);
3623
3624                 reg = FDI_RX_CTL(pipe);
3625                 temp = I915_READ(reg);
3626                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3627                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3628                 I915_WRITE(reg, temp);
3629
3630                 POSTING_READ(reg);
3631                 udelay(2); /* should be 1.5us */
3632
3633                 for (i = 0; i < 4; i++) {
3634                         reg = FDI_RX_IIR(pipe);
3635                         temp = I915_READ(reg);
3636                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3637
3638                         if (temp & FDI_RX_SYMBOL_LOCK ||
3639                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3640                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3641                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3642                                               i);
3643                                 goto train_done;
3644                         }
3645                         udelay(2); /* should be 1.5us */
3646                 }
3647                 if (i == 4)
3648                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3649         }
3650
3651 train_done:
3652         DRM_DEBUG_KMS("FDI train done.\n");
3653 }
3654
3655 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3656 {
3657         struct drm_device *dev = intel_crtc->base.dev;
3658         struct drm_i915_private *dev_priv = dev->dev_private;
3659         int pipe = intel_crtc->pipe;
3660         i915_reg_t reg;
3661         u32 temp;
3662
3663         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3664         reg = FDI_RX_CTL(pipe);
3665         temp = I915_READ(reg);
3666         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3667         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3668         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3669         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3670
3671         POSTING_READ(reg);
3672         udelay(200);
3673
3674         /* Switch from Rawclk to PCDclk */
3675         temp = I915_READ(reg);
3676         I915_WRITE(reg, temp | FDI_PCDCLK);
3677
3678         POSTING_READ(reg);
3679         udelay(200);
3680
3681         /* Enable CPU FDI TX PLL, always on for Ironlake */
3682         reg = FDI_TX_CTL(pipe);
3683         temp = I915_READ(reg);
3684         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3685                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3686
3687                 POSTING_READ(reg);
3688                 udelay(100);
3689         }
3690 }
3691
3692 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3693 {
3694         struct drm_device *dev = intel_crtc->base.dev;
3695         struct drm_i915_private *dev_priv = dev->dev_private;
3696         int pipe = intel_crtc->pipe;
3697         i915_reg_t reg;
3698         u32 temp;
3699
3700         /* Switch from PCDclk to Rawclk */
3701         reg = FDI_RX_CTL(pipe);
3702         temp = I915_READ(reg);
3703         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3704
3705         /* Disable CPU FDI TX PLL */
3706         reg = FDI_TX_CTL(pipe);
3707         temp = I915_READ(reg);
3708         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3709
3710         POSTING_READ(reg);
3711         udelay(100);
3712
3713         reg = FDI_RX_CTL(pipe);
3714         temp = I915_READ(reg);
3715         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3716
3717         /* Wait for the clocks to turn off. */
3718         POSTING_READ(reg);
3719         udelay(100);
3720 }
3721
3722 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3723 {
3724         struct drm_device *dev = crtc->dev;
3725         struct drm_i915_private *dev_priv = dev->dev_private;
3726         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3727         int pipe = intel_crtc->pipe;
3728         i915_reg_t reg;
3729         u32 temp;
3730
3731         /* disable CPU FDI tx and PCH FDI rx */
3732         reg = FDI_TX_CTL(pipe);
3733         temp = I915_READ(reg);
3734         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3735         POSTING_READ(reg);
3736
3737         reg = FDI_RX_CTL(pipe);
3738         temp = I915_READ(reg);
3739         temp &= ~(0x7 << 16);
3740         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3741         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3742
3743         POSTING_READ(reg);
3744         udelay(100);
3745
3746         /* Ironlake workaround, disable clock pointer after downing FDI */
3747         if (HAS_PCH_IBX(dev))
3748                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3749
3750         /* still set train pattern 1 */
3751         reg = FDI_TX_CTL(pipe);
3752         temp = I915_READ(reg);
3753         temp &= ~FDI_LINK_TRAIN_NONE;
3754         temp |= FDI_LINK_TRAIN_PATTERN_1;
3755         I915_WRITE(reg, temp);
3756
3757         reg = FDI_RX_CTL(pipe);
3758         temp = I915_READ(reg);
3759         if (HAS_PCH_CPT(dev)) {
3760                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3761                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3762         } else {
3763                 temp &= ~FDI_LINK_TRAIN_NONE;
3764                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3765         }
3766         /* BPC in FDI rx is consistent with that in PIPECONF */
3767         temp &= ~(0x07 << 16);
3768         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3769         I915_WRITE(reg, temp);
3770
3771         POSTING_READ(reg);
3772         udelay(100);
3773 }
3774
3775 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3776 {
3777         struct intel_crtc *crtc;
3778
3779         /* Note that we don't need to be called with mode_config.lock here
3780          * as our list of CRTC objects is static for the lifetime of the
3781          * device and so cannot disappear as we iterate. Similarly, we can
3782          * happily treat the predicates as racy, atomic checks as userspace
3783          * cannot claim and pin a new fb without at least acquring the
3784          * struct_mutex and so serialising with us.
3785          */
3786         for_each_intel_crtc(dev, crtc) {
3787                 if (atomic_read(&crtc->unpin_work_count) == 0)
3788                         continue;
3789
3790                 if (crtc->unpin_work)
3791                         intel_wait_for_vblank(dev, crtc->pipe);
3792
3793                 return true;
3794         }
3795
3796         return false;
3797 }
3798
3799 static void page_flip_completed(struct intel_crtc *intel_crtc)
3800 {
3801         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3802         struct intel_unpin_work *work = intel_crtc->unpin_work;
3803
3804         /* ensure that the unpin work is consistent wrt ->pending. */
3805         smp_rmb();
3806         intel_crtc->unpin_work = NULL;
3807
3808         if (work->event)
3809                 drm_send_vblank_event(intel_crtc->base.dev,
3810                                       intel_crtc->pipe,
3811                                       work->event);
3812
3813         drm_crtc_vblank_put(&intel_crtc->base);
3814
3815         wake_up_all(&dev_priv->pending_flip_queue);
3816         queue_work(dev_priv->wq, &work->work);
3817
3818         trace_i915_flip_complete(intel_crtc->plane,
3819                                  work->pending_flip_obj);
3820 }
3821
3822 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3823 {
3824         struct drm_device *dev = crtc->dev;
3825         struct drm_i915_private *dev_priv = dev->dev_private;
3826         long ret;
3827
3828         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3829
3830         ret = wait_event_interruptible_timeout(
3831                                         dev_priv->pending_flip_queue,
3832                                         !intel_crtc_has_pending_flip(crtc),
3833                                         60*HZ);
3834
3835         if (ret < 0)
3836                 return ret;
3837
3838         if (ret == 0) {
3839                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3840
3841                 spin_lock_irq(&dev->event_lock);
3842                 if (intel_crtc->unpin_work) {
3843                         WARN_ONCE(1, "Removing stuck page flip\n");
3844                         page_flip_completed(intel_crtc);
3845                 }
3846                 spin_unlock_irq(&dev->event_lock);
3847         }
3848
3849         return 0;
3850 }
3851
3852 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3853 {
3854         u32 temp;
3855
3856         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3857
3858         mutex_lock(&dev_priv->sb_lock);
3859
3860         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3861         temp |= SBI_SSCCTL_DISABLE;
3862         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3863
3864         mutex_unlock(&dev_priv->sb_lock);
3865 }
3866
3867 /* Program iCLKIP clock to the desired frequency */
3868 static void lpt_program_iclkip(struct drm_crtc *crtc)
3869 {
3870         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3871         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3872         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3873         u32 temp;
3874
3875         lpt_disable_iclkip(dev_priv);
3876
3877         /* The iCLK virtual clock root frequency is in MHz,
3878          * but the adjusted_mode->crtc_clock in in KHz. To get the
3879          * divisors, it is necessary to divide one by another, so we
3880          * convert the virtual clock precision to KHz here for higher
3881          * precision.
3882          */
3883         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
3884                 u32 iclk_virtual_root_freq = 172800 * 1000;
3885                 u32 iclk_pi_range = 64;
3886                 u32 desired_divisor;
3887
3888                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3889                                                     clock << auxdiv);
3890                 divsel = (desired_divisor / iclk_pi_range) - 2;
3891                 phaseinc = desired_divisor % iclk_pi_range;
3892
3893                 /*
3894                  * Near 20MHz is a corner case which is
3895                  * out of range for the 7-bit divisor
3896                  */
3897                 if (divsel <= 0x7f)
3898                         break;
3899         }
3900
3901         /* This should not happen with any sane values */
3902         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3903                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3904         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3905                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3906
3907         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3908                         clock,
3909                         auxdiv,
3910                         divsel,
3911                         phasedir,
3912                         phaseinc);
3913
3914         mutex_lock(&dev_priv->sb_lock);
3915
3916         /* Program SSCDIVINTPHASE6 */
3917         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3918         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3919         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3920         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3921         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3922         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3923         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3924         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3925
3926         /* Program SSCAUXDIV */
3927         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3928         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3929         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3930         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3931
3932         /* Enable modulator and associated divider */
3933         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3934         temp &= ~SBI_SSCCTL_DISABLE;
3935         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3936
3937         mutex_unlock(&dev_priv->sb_lock);
3938
3939         /* Wait for initialization time */
3940         udelay(24);
3941
3942         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3943 }
3944
3945 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3946 {
3947         u32 divsel, phaseinc, auxdiv;
3948         u32 iclk_virtual_root_freq = 172800 * 1000;
3949         u32 iclk_pi_range = 64;
3950         u32 desired_divisor;
3951         u32 temp;
3952
3953         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3954                 return 0;
3955
3956         mutex_lock(&dev_priv->sb_lock);
3957
3958         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3959         if (temp & SBI_SSCCTL_DISABLE) {
3960                 mutex_unlock(&dev_priv->sb_lock);
3961                 return 0;
3962         }
3963
3964         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3965         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
3966                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
3967         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
3968                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
3969
3970         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3971         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
3972                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
3973
3974         mutex_unlock(&dev_priv->sb_lock);
3975
3976         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
3977
3978         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3979                                  desired_divisor << auxdiv);
3980 }
3981
3982 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3983                                                 enum pipe pch_transcoder)
3984 {
3985         struct drm_device *dev = crtc->base.dev;
3986         struct drm_i915_private *dev_priv = dev->dev_private;
3987         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3988
3989         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3990                    I915_READ(HTOTAL(cpu_transcoder)));
3991         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3992                    I915_READ(HBLANK(cpu_transcoder)));
3993         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3994                    I915_READ(HSYNC(cpu_transcoder)));
3995
3996         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3997                    I915_READ(VTOTAL(cpu_transcoder)));
3998         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3999                    I915_READ(VBLANK(cpu_transcoder)));
4000         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4001                    I915_READ(VSYNC(cpu_transcoder)));
4002         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4003                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4004 }
4005
4006 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4007 {
4008         struct drm_i915_private *dev_priv = dev->dev_private;
4009         uint32_t temp;
4010
4011         temp = I915_READ(SOUTH_CHICKEN1);
4012         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4013                 return;
4014
4015         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4016         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4017
4018         temp &= ~FDI_BC_BIFURCATION_SELECT;
4019         if (enable)
4020                 temp |= FDI_BC_BIFURCATION_SELECT;
4021
4022         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4023         I915_WRITE(SOUTH_CHICKEN1, temp);
4024         POSTING_READ(SOUTH_CHICKEN1);
4025 }
4026
4027 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4028 {
4029         struct drm_device *dev = intel_crtc->base.dev;
4030
4031         switch (intel_crtc->pipe) {
4032         case PIPE_A:
4033                 break;
4034         case PIPE_B:
4035                 if (intel_crtc->config->fdi_lanes > 2)
4036                         cpt_set_fdi_bc_bifurcation(dev, false);
4037                 else
4038                         cpt_set_fdi_bc_bifurcation(dev, true);
4039
4040                 break;
4041         case PIPE_C:
4042                 cpt_set_fdi_bc_bifurcation(dev, true);
4043
4044                 break;
4045         default:
4046                 BUG();
4047         }
4048 }
4049
4050 /* Return which DP Port should be selected for Transcoder DP control */
4051 static enum port
4052 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4053 {
4054         struct drm_device *dev = crtc->dev;
4055         struct intel_encoder *encoder;
4056
4057         for_each_encoder_on_crtc(dev, crtc, encoder) {
4058                 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4059                     encoder->type == INTEL_OUTPUT_EDP)
4060                         return enc_to_dig_port(&encoder->base)->port;
4061         }
4062
4063         return -1;
4064 }
4065
4066 /*
4067  * Enable PCH resources required for PCH ports:
4068  *   - PCH PLLs
4069  *   - FDI training & RX/TX
4070  *   - update transcoder timings
4071  *   - DP transcoding bits
4072  *   - transcoder
4073  */
4074 static void ironlake_pch_enable(struct drm_crtc *crtc)
4075 {
4076         struct drm_device *dev = crtc->dev;
4077         struct drm_i915_private *dev_priv = dev->dev_private;
4078         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4079         int pipe = intel_crtc->pipe;
4080         u32 temp;
4081
4082         assert_pch_transcoder_disabled(dev_priv, pipe);
4083
4084         if (IS_IVYBRIDGE(dev))
4085                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4086
4087         /* Write the TU size bits before fdi link training, so that error
4088          * detection works. */
4089         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4090                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4091
4092         /*
4093          * Sometimes spurious CPU pipe underruns happen during FDI
4094          * training, at least with VGA+HDMI cloning. Suppress them.
4095          */
4096         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4097
4098         /* For PCH output, training FDI link */
4099         dev_priv->display.fdi_link_train(crtc);
4100
4101         /* We need to program the right clock selection before writing the pixel
4102          * mutliplier into the DPLL. */
4103         if (HAS_PCH_CPT(dev)) {
4104                 u32 sel;
4105
4106                 temp = I915_READ(PCH_DPLL_SEL);
4107                 temp |= TRANS_DPLL_ENABLE(pipe);
4108                 sel = TRANS_DPLLB_SEL(pipe);
4109                 if (intel_crtc->config->shared_dpll ==
4110                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4111                         temp |= sel;
4112                 else
4113                         temp &= ~sel;
4114                 I915_WRITE(PCH_DPLL_SEL, temp);
4115         }
4116
4117         /* XXX: pch pll's can be enabled any time before we enable the PCH
4118          * transcoder, and we actually should do this to not upset any PCH
4119          * transcoder that already use the clock when we share it.
4120          *
4121          * Note that enable_shared_dpll tries to do the right thing, but
4122          * get_shared_dpll unconditionally resets the pll - we need that to have
4123          * the right LVDS enable sequence. */
4124         intel_enable_shared_dpll(intel_crtc);
4125
4126         /* set transcoder timing, panel must allow it */
4127         assert_panel_unlocked(dev_priv, pipe);
4128         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4129
4130         intel_fdi_normal_train(crtc);
4131
4132         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4133
4134         /* For PCH DP, enable TRANS_DP_CTL */
4135         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4136                 const struct drm_display_mode *adjusted_mode =
4137                         &intel_crtc->config->base.adjusted_mode;
4138                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4139                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4140                 temp = I915_READ(reg);
4141                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4142                           TRANS_DP_SYNC_MASK |
4143                           TRANS_DP_BPC_MASK);
4144                 temp |= TRANS_DP_OUTPUT_ENABLE;
4145                 temp |= bpc << 9; /* same format but at 11:9 */
4146
4147                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4148                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4149                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4150                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4151
4152                 switch (intel_trans_dp_port_sel(crtc)) {
4153                 case PORT_B:
4154                         temp |= TRANS_DP_PORT_SEL_B;
4155                         break;
4156                 case PORT_C:
4157                         temp |= TRANS_DP_PORT_SEL_C;
4158                         break;
4159                 case PORT_D:
4160                         temp |= TRANS_DP_PORT_SEL_D;
4161                         break;
4162                 default:
4163                         BUG();
4164                 }
4165
4166                 I915_WRITE(reg, temp);
4167         }
4168
4169         ironlake_enable_pch_transcoder(dev_priv, pipe);
4170 }
4171
4172 static void lpt_pch_enable(struct drm_crtc *crtc)
4173 {
4174         struct drm_device *dev = crtc->dev;
4175         struct drm_i915_private *dev_priv = dev->dev_private;
4176         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4177         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4178
4179         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4180
4181         lpt_program_iclkip(crtc);
4182
4183         /* Set transcoder timing. */
4184         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4185
4186         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4187 }
4188
4189 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4190 {
4191         struct drm_i915_private *dev_priv = dev->dev_private;
4192         i915_reg_t dslreg = PIPEDSL(pipe);
4193         u32 temp;
4194
4195         temp = I915_READ(dslreg);
4196         udelay(500);
4197         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4198                 if (wait_for(I915_READ(dslreg) != temp, 5))
4199                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4200         }
4201 }
4202
4203 static int
4204 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4205                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4206                   int src_w, int src_h, int dst_w, int dst_h)
4207 {
4208         struct intel_crtc_scaler_state *scaler_state =
4209                 &crtc_state->scaler_state;
4210         struct intel_crtc *intel_crtc =
4211                 to_intel_crtc(crtc_state->base.crtc);
4212         int need_scaling;
4213
4214         need_scaling = intel_rotation_90_or_270(rotation) ?
4215                 (src_h != dst_w || src_w != dst_h):
4216                 (src_w != dst_w || src_h != dst_h);
4217
4218         /*
4219          * if plane is being disabled or scaler is no more required or force detach
4220          *  - free scaler binded to this plane/crtc
4221          *  - in order to do this, update crtc->scaler_usage
4222          *
4223          * Here scaler state in crtc_state is set free so that
4224          * scaler can be assigned to other user. Actual register
4225          * update to free the scaler is done in plane/panel-fit programming.
4226          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4227          */
4228         if (force_detach || !need_scaling) {
4229                 if (*scaler_id >= 0) {
4230                         scaler_state->scaler_users &= ~(1 << scaler_user);
4231                         scaler_state->scalers[*scaler_id].in_use = 0;
4232
4233                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4234                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4235                                 intel_crtc->pipe, scaler_user, *scaler_id,
4236                                 scaler_state->scaler_users);
4237                         *scaler_id = -1;
4238                 }
4239                 return 0;
4240         }
4241
4242         /* range checks */
4243         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4244                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4245
4246                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4247                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4248                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4249                         "size is out of scaler range\n",
4250                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4251                 return -EINVAL;
4252         }
4253
4254         /* mark this plane as a scaler user in crtc_state */
4255         scaler_state->scaler_users |= (1 << scaler_user);
4256         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4257                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4258                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4259                 scaler_state->scaler_users);
4260
4261         return 0;
4262 }
4263
4264 /**
4265  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4266  *
4267  * @state: crtc's scaler state
4268  *
4269  * Return
4270  *     0 - scaler_usage updated successfully
4271  *    error - requested scaling cannot be supported or other error condition
4272  */
4273 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4274 {
4275         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4276         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4277
4278         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4279                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4280
4281         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4282                 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4283                 state->pipe_src_w, state->pipe_src_h,
4284                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4285 }
4286
4287 /**
4288  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4289  *
4290  * @state: crtc's scaler state
4291  * @plane_state: atomic plane state to update
4292  *
4293  * Return
4294  *     0 - scaler_usage updated successfully
4295  *    error - requested scaling cannot be supported or other error condition
4296  */
4297 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4298                                    struct intel_plane_state *plane_state)
4299 {
4300
4301         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4302         struct intel_plane *intel_plane =
4303                 to_intel_plane(plane_state->base.plane);
4304         struct drm_framebuffer *fb = plane_state->base.fb;
4305         int ret;
4306
4307         bool force_detach = !fb || !plane_state->visible;
4308
4309         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4310                       intel_plane->base.base.id, intel_crtc->pipe,
4311                       drm_plane_index(&intel_plane->base));
4312
4313         ret = skl_update_scaler(crtc_state, force_detach,
4314                                 drm_plane_index(&intel_plane->base),
4315                                 &plane_state->scaler_id,
4316                                 plane_state->base.rotation,
4317                                 drm_rect_width(&plane_state->src) >> 16,
4318                                 drm_rect_height(&plane_state->src) >> 16,
4319                                 drm_rect_width(&plane_state->dst),
4320                                 drm_rect_height(&plane_state->dst));
4321
4322         if (ret || plane_state->scaler_id < 0)
4323                 return ret;
4324
4325         /* check colorkey */
4326         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4327                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4328                               intel_plane->base.base.id);
4329                 return -EINVAL;
4330         }
4331
4332         /* Check src format */
4333         switch (fb->pixel_format) {
4334         case DRM_FORMAT_RGB565:
4335         case DRM_FORMAT_XBGR8888:
4336         case DRM_FORMAT_XRGB8888:
4337         case DRM_FORMAT_ABGR8888:
4338         case DRM_FORMAT_ARGB8888:
4339         case DRM_FORMAT_XRGB2101010:
4340         case DRM_FORMAT_XBGR2101010:
4341         case DRM_FORMAT_YUYV:
4342         case DRM_FORMAT_YVYU:
4343         case DRM_FORMAT_UYVY:
4344         case DRM_FORMAT_VYUY:
4345                 break;
4346         default:
4347                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4348                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4349                 return -EINVAL;
4350         }
4351
4352         return 0;
4353 }
4354
4355 static void skylake_scaler_disable(struct intel_crtc *crtc)
4356 {
4357         int i;
4358
4359         for (i = 0; i < crtc->num_scalers; i++)
4360                 skl_detach_scaler(crtc, i);
4361 }
4362
4363 static void skylake_pfit_enable(struct intel_crtc *crtc)
4364 {
4365         struct drm_device *dev = crtc->base.dev;
4366         struct drm_i915_private *dev_priv = dev->dev_private;
4367         int pipe = crtc->pipe;
4368         struct intel_crtc_scaler_state *scaler_state =
4369                 &crtc->config->scaler_state;
4370
4371         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4372
4373         if (crtc->config->pch_pfit.enabled) {
4374                 int id;
4375
4376                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4377                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4378                         return;
4379                 }
4380
4381                 id = scaler_state->scaler_id;
4382                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4383                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4384                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4385                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4386
4387                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4388         }
4389 }
4390
4391 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4392 {
4393         struct drm_device *dev = crtc->base.dev;
4394         struct drm_i915_private *dev_priv = dev->dev_private;
4395         int pipe = crtc->pipe;
4396
4397         if (crtc->config->pch_pfit.enabled) {
4398                 /* Force use of hard-coded filter coefficients
4399                  * as some pre-programmed values are broken,
4400                  * e.g. x201.
4401                  */
4402                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4403                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4404                                                  PF_PIPE_SEL_IVB(pipe));
4405                 else
4406                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4407                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4408                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4409         }
4410 }
4411
4412 void hsw_enable_ips(struct intel_crtc *crtc)
4413 {
4414         struct drm_device *dev = crtc->base.dev;
4415         struct drm_i915_private *dev_priv = dev->dev_private;
4416
4417         if (!crtc->config->ips_enabled)
4418                 return;
4419
4420         /*
4421          * We can only enable IPS after we enable a plane and wait for a vblank
4422          * This function is called from post_plane_update, which is run after
4423          * a vblank wait.
4424          */
4425
4426         assert_plane_enabled(dev_priv, crtc->plane);
4427         if (IS_BROADWELL(dev)) {
4428                 mutex_lock(&dev_priv->rps.hw_lock);
4429                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4430                 mutex_unlock(&dev_priv->rps.hw_lock);
4431                 /* Quoting Art Runyan: "its not safe to expect any particular
4432                  * value in IPS_CTL bit 31 after enabling IPS through the
4433                  * mailbox." Moreover, the mailbox may return a bogus state,
4434                  * so we need to just enable it and continue on.
4435                  */
4436         } else {
4437                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4438                 /* The bit only becomes 1 in the next vblank, so this wait here
4439                  * is essentially intel_wait_for_vblank. If we don't have this
4440                  * and don't wait for vblanks until the end of crtc_enable, then
4441                  * the HW state readout code will complain that the expected
4442                  * IPS_CTL value is not the one we read. */
4443                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4444                         DRM_ERROR("Timed out waiting for IPS enable\n");
4445         }
4446 }
4447
4448 void hsw_disable_ips(struct intel_crtc *crtc)
4449 {
4450         struct drm_device *dev = crtc->base.dev;
4451         struct drm_i915_private *dev_priv = dev->dev_private;
4452
4453         if (!crtc->config->ips_enabled)
4454                 return;
4455
4456         assert_plane_enabled(dev_priv, crtc->plane);
4457         if (IS_BROADWELL(dev)) {
4458                 mutex_lock(&dev_priv->rps.hw_lock);
4459                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4460                 mutex_unlock(&dev_priv->rps.hw_lock);
4461                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4462                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4463                         DRM_ERROR("Timed out waiting for IPS disable\n");
4464         } else {
4465                 I915_WRITE(IPS_CTL, 0);
4466                 POSTING_READ(IPS_CTL);
4467         }
4468
4469         /* We need to wait for a vblank before we can disable the plane. */
4470         intel_wait_for_vblank(dev, crtc->pipe);
4471 }
4472
4473 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4474 {
4475         if (intel_crtc->overlay) {
4476                 struct drm_device *dev = intel_crtc->base.dev;
4477                 struct drm_i915_private *dev_priv = dev->dev_private;
4478
4479                 mutex_lock(&dev->struct_mutex);
4480                 dev_priv->mm.interruptible = false;
4481                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4482                 dev_priv->mm.interruptible = true;
4483                 mutex_unlock(&dev->struct_mutex);
4484         }
4485
4486         /* Let userspace switch the overlay on again. In most cases userspace
4487          * has to recompute where to put it anyway.
4488          */
4489 }
4490
4491 /**
4492  * intel_post_enable_primary - Perform operations after enabling primary plane
4493  * @crtc: the CRTC whose primary plane was just enabled
4494  *
4495  * Performs potentially sleeping operations that must be done after the primary
4496  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4497  * called due to an explicit primary plane update, or due to an implicit
4498  * re-enable that is caused when a sprite plane is updated to no longer
4499  * completely hide the primary plane.
4500  */
4501 static void
4502 intel_post_enable_primary(struct drm_crtc *crtc)
4503 {
4504         struct drm_device *dev = crtc->dev;
4505         struct drm_i915_private *dev_priv = dev->dev_private;
4506         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4507         int pipe = intel_crtc->pipe;
4508
4509         /*
4510          * FIXME IPS should be fine as long as one plane is
4511          * enabled, but in practice it seems to have problems
4512          * when going from primary only to sprite only and vice
4513          * versa.
4514          */
4515         hsw_enable_ips(intel_crtc);
4516
4517         /*
4518          * Gen2 reports pipe underruns whenever all planes are disabled.
4519          * So don't enable underrun reporting before at least some planes
4520          * are enabled.
4521          * FIXME: Need to fix the logic to work when we turn off all planes
4522          * but leave the pipe running.
4523          */
4524         if (IS_GEN2(dev))
4525                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4526
4527         /* Underruns don't always raise interrupts, so check manually. */
4528         intel_check_cpu_fifo_underruns(dev_priv);
4529         intel_check_pch_fifo_underruns(dev_priv);
4530 }
4531
4532 /* FIXME move all this to pre_plane_update() with proper state tracking */
4533 static void
4534 intel_pre_disable_primary(struct drm_crtc *crtc)
4535 {
4536         struct drm_device *dev = crtc->dev;
4537         struct drm_i915_private *dev_priv = dev->dev_private;
4538         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4539         int pipe = intel_crtc->pipe;
4540
4541         /*
4542          * Gen2 reports pipe underruns whenever all planes are disabled.
4543          * So diasble underrun reporting before all the planes get disabled.
4544          * FIXME: Need to fix the logic to work when we turn off all planes
4545          * but leave the pipe running.
4546          */
4547         if (IS_GEN2(dev))
4548                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4549
4550         /*
4551          * FIXME IPS should be fine as long as one plane is
4552          * enabled, but in practice it seems to have problems
4553          * when going from primary only to sprite only and vice
4554          * versa.
4555          */
4556         hsw_disable_ips(intel_crtc);
4557 }
4558
4559 /* FIXME get rid of this and use pre_plane_update */
4560 static void
4561 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4562 {
4563         struct drm_device *dev = crtc->dev;
4564         struct drm_i915_private *dev_priv = dev->dev_private;
4565         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4566         int pipe = intel_crtc->pipe;
4567
4568         intel_pre_disable_primary(crtc);
4569
4570         /*
4571          * Vblank time updates from the shadow to live plane control register
4572          * are blocked if the memory self-refresh mode is active at that
4573          * moment. So to make sure the plane gets truly disabled, disable
4574          * first the self-refresh mode. The self-refresh enable bit in turn
4575          * will be checked/applied by the HW only at the next frame start
4576          * event which is after the vblank start event, so we need to have a
4577          * wait-for-vblank between disabling the plane and the pipe.
4578          */
4579         if (HAS_GMCH_DISPLAY(dev)) {
4580                 intel_set_memory_cxsr(dev_priv, false);
4581                 dev_priv->wm.vlv.cxsr = false;
4582                 intel_wait_for_vblank(dev, pipe);
4583         }
4584 }
4585
4586 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4587 {
4588         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4589         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4590         struct intel_crtc_state *pipe_config =
4591                 to_intel_crtc_state(crtc->base.state);
4592         struct drm_device *dev = crtc->base.dev;
4593         struct drm_plane *primary = crtc->base.primary;
4594         struct drm_plane_state *old_pri_state =
4595                 drm_atomic_get_existing_plane_state(old_state, primary);
4596
4597         intel_frontbuffer_flip(dev, pipe_config->fb_bits);
4598
4599         crtc->wm.cxsr_allowed = true;
4600
4601         if (pipe_config->update_wm_post && pipe_config->base.active)
4602                 intel_update_watermarks(&crtc->base);
4603
4604         if (old_pri_state) {
4605                 struct intel_plane_state *primary_state =
4606                         to_intel_plane_state(primary->state);
4607                 struct intel_plane_state *old_primary_state =
4608                         to_intel_plane_state(old_pri_state);
4609
4610                 intel_fbc_post_update(crtc);
4611
4612                 if (primary_state->visible &&
4613                     (needs_modeset(&pipe_config->base) ||
4614                      !old_primary_state->visible))
4615                         intel_post_enable_primary(&crtc->base);
4616         }
4617 }
4618
4619 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4620 {
4621         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4622         struct drm_device *dev = crtc->base.dev;
4623         struct drm_i915_private *dev_priv = dev->dev_private;
4624         struct intel_crtc_state *pipe_config =
4625                 to_intel_crtc_state(crtc->base.state);
4626         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4627         struct drm_plane *primary = crtc->base.primary;
4628         struct drm_plane_state *old_pri_state =
4629                 drm_atomic_get_existing_plane_state(old_state, primary);
4630         bool modeset = needs_modeset(&pipe_config->base);
4631
4632         if (old_pri_state) {
4633                 struct intel_plane_state *primary_state =
4634                         to_intel_plane_state(primary->state);
4635                 struct intel_plane_state *old_primary_state =
4636                         to_intel_plane_state(old_pri_state);
4637
4638                 intel_fbc_pre_update(crtc);
4639
4640                 if (old_primary_state->visible &&
4641                     (modeset || !primary_state->visible))
4642                         intel_pre_disable_primary(&crtc->base);
4643         }
4644
4645         if (pipe_config->disable_cxsr) {
4646                 crtc->wm.cxsr_allowed = false;
4647
4648                 /*
4649                  * Vblank time updates from the shadow to live plane control register
4650                  * are blocked if the memory self-refresh mode is active at that
4651                  * moment. So to make sure the plane gets truly disabled, disable
4652                  * first the self-refresh mode. The self-refresh enable bit in turn
4653                  * will be checked/applied by the HW only at the next frame start
4654                  * event which is after the vblank start event, so we need to have a
4655                  * wait-for-vblank between disabling the plane and the pipe.
4656                  */
4657                 if (old_crtc_state->base.active) {
4658                         intel_set_memory_cxsr(dev_priv, false);
4659                         dev_priv->wm.vlv.cxsr = false;
4660                         intel_wait_for_vblank(dev, crtc->pipe);
4661                 }
4662         }
4663
4664         /*
4665          * IVB workaround: must disable low power watermarks for at least
4666          * one frame before enabling scaling.  LP watermarks can be re-enabled
4667          * when scaling is disabled.
4668          *
4669          * WaCxSRDisabledForSpriteScaling:ivb
4670          */
4671         if (pipe_config->disable_lp_wm) {
4672                 ilk_disable_lp_wm(dev);
4673                 intel_wait_for_vblank(dev, crtc->pipe);
4674         }
4675
4676         /*
4677          * If we're doing a modeset, we're done.  No need to do any pre-vblank
4678          * watermark programming here.
4679          */
4680         if (needs_modeset(&pipe_config->base))
4681                 return;
4682
4683         /*
4684          * For platforms that support atomic watermarks, program the
4685          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
4686          * will be the intermediate values that are safe for both pre- and
4687          * post- vblank; when vblank happens, the 'active' values will be set
4688          * to the final 'target' values and we'll do this again to get the
4689          * optimal watermarks.  For gen9+ platforms, the values we program here
4690          * will be the final target values which will get automatically latched
4691          * at vblank time; no further programming will be necessary.
4692          *
4693          * If a platform hasn't been transitioned to atomic watermarks yet,
4694          * we'll continue to update watermarks the old way, if flags tell
4695          * us to.
4696          */
4697         if (dev_priv->display.initial_watermarks != NULL)
4698                 dev_priv->display.initial_watermarks(pipe_config);
4699         else if (pipe_config->update_wm_pre)
4700                 intel_update_watermarks(&crtc->base);
4701 }
4702
4703 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4704 {
4705         struct drm_device *dev = crtc->dev;
4706         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4707         struct drm_plane *p;
4708         int pipe = intel_crtc->pipe;
4709
4710         intel_crtc_dpms_overlay_disable(intel_crtc);
4711
4712         drm_for_each_plane_mask(p, dev, plane_mask)
4713                 to_intel_plane(p)->disable_plane(p, crtc);
4714
4715         /*
4716          * FIXME: Once we grow proper nuclear flip support out of this we need
4717          * to compute the mask of flip planes precisely. For the time being
4718          * consider this a flip to a NULL plane.
4719          */
4720         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4721 }
4722
4723 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4724 {
4725         struct drm_device *dev = crtc->dev;
4726         struct drm_i915_private *dev_priv = dev->dev_private;
4727         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4728         struct intel_encoder *encoder;
4729         int pipe = intel_crtc->pipe;
4730         struct intel_crtc_state *pipe_config =
4731                 to_intel_crtc_state(crtc->state);
4732
4733         if (WARN_ON(intel_crtc->active))
4734                 return;
4735
4736         if (intel_crtc->config->has_pch_encoder)
4737                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4738
4739         if (intel_crtc->config->has_pch_encoder)
4740                 intel_prepare_shared_dpll(intel_crtc);
4741
4742         if (intel_crtc->config->has_dp_encoder)
4743                 intel_dp_set_m_n(intel_crtc, M1_N1);
4744
4745         intel_set_pipe_timings(intel_crtc);
4746         intel_set_pipe_src_size(intel_crtc);
4747
4748         if (intel_crtc->config->has_pch_encoder) {
4749                 intel_cpu_transcoder_set_m_n(intel_crtc,
4750                                      &intel_crtc->config->fdi_m_n, NULL);
4751         }
4752
4753         ironlake_set_pipeconf(crtc);
4754
4755         intel_crtc->active = true;
4756
4757         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4758
4759         for_each_encoder_on_crtc(dev, crtc, encoder)
4760                 if (encoder->pre_enable)
4761                         encoder->pre_enable(encoder);
4762
4763         if (intel_crtc->config->has_pch_encoder) {
4764                 /* Note: FDI PLL enabling _must_ be done before we enable the
4765                  * cpu pipes, hence this is separate from all the other fdi/pch
4766                  * enabling. */
4767                 ironlake_fdi_pll_enable(intel_crtc);
4768         } else {
4769                 assert_fdi_tx_disabled(dev_priv, pipe);
4770                 assert_fdi_rx_disabled(dev_priv, pipe);
4771         }
4772
4773         ironlake_pfit_enable(intel_crtc);
4774
4775         /*
4776          * On ILK+ LUT must be loaded before the pipe is running but with
4777          * clocks enabled
4778          */
4779         intel_color_load_luts(&pipe_config->base);
4780
4781         if (dev_priv->display.initial_watermarks != NULL)
4782                 dev_priv->display.initial_watermarks(intel_crtc->config);
4783         intel_enable_pipe(intel_crtc);
4784
4785         if (intel_crtc->config->has_pch_encoder)
4786                 ironlake_pch_enable(crtc);
4787
4788         assert_vblank_disabled(crtc);
4789         drm_crtc_vblank_on(crtc);
4790
4791         for_each_encoder_on_crtc(dev, crtc, encoder)
4792                 encoder->enable(encoder);
4793
4794         if (HAS_PCH_CPT(dev))
4795                 cpt_verify_modeset(dev, intel_crtc->pipe);
4796
4797         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4798         if (intel_crtc->config->has_pch_encoder)
4799                 intel_wait_for_vblank(dev, pipe);
4800         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4801 }
4802
4803 /* IPS only exists on ULT machines and is tied to pipe A. */
4804 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4805 {
4806         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4807 }
4808
4809 static void haswell_crtc_enable(struct drm_crtc *crtc)
4810 {
4811         struct drm_device *dev = crtc->dev;
4812         struct drm_i915_private *dev_priv = dev->dev_private;
4813         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4814         struct intel_encoder *encoder;
4815         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4816         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4817         struct intel_crtc_state *pipe_config =
4818                 to_intel_crtc_state(crtc->state);
4819
4820         if (WARN_ON(intel_crtc->active))
4821                 return;
4822
4823         if (intel_crtc->config->has_pch_encoder)
4824                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4825                                                       false);
4826
4827         if (intel_crtc->config->shared_dpll)
4828                 intel_enable_shared_dpll(intel_crtc);
4829
4830         if (intel_crtc->config->has_dp_encoder)
4831                 intel_dp_set_m_n(intel_crtc, M1_N1);
4832
4833         if (!intel_crtc->config->has_dsi_encoder)
4834                 intel_set_pipe_timings(intel_crtc);
4835
4836         intel_set_pipe_src_size(intel_crtc);
4837
4838         if (cpu_transcoder != TRANSCODER_EDP &&
4839             !transcoder_is_dsi(cpu_transcoder)) {
4840                 I915_WRITE(PIPE_MULT(cpu_transcoder),
4841                            intel_crtc->config->pixel_multiplier - 1);
4842         }
4843
4844         if (intel_crtc->config->has_pch_encoder) {
4845                 intel_cpu_transcoder_set_m_n(intel_crtc,
4846                                      &intel_crtc->config->fdi_m_n, NULL);
4847         }
4848
4849         if (!intel_crtc->config->has_dsi_encoder)
4850                 haswell_set_pipeconf(crtc);
4851
4852         haswell_set_pipemisc(crtc);
4853
4854         intel_color_set_csc(&pipe_config->base);
4855
4856         intel_crtc->active = true;
4857
4858         if (intel_crtc->config->has_pch_encoder)
4859                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4860         else
4861                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4862
4863         for_each_encoder_on_crtc(dev, crtc, encoder) {
4864                 if (encoder->pre_enable)
4865                         encoder->pre_enable(encoder);
4866         }
4867
4868         if (intel_crtc->config->has_pch_encoder)
4869                 dev_priv->display.fdi_link_train(crtc);
4870
4871         if (!intel_crtc->config->has_dsi_encoder)
4872                 intel_ddi_enable_pipe_clock(intel_crtc);
4873
4874         if (INTEL_INFO(dev)->gen >= 9)
4875                 skylake_pfit_enable(intel_crtc);
4876         else
4877                 ironlake_pfit_enable(intel_crtc);
4878
4879         /*
4880          * On ILK+ LUT must be loaded before the pipe is running but with
4881          * clocks enabled
4882          */
4883         intel_color_load_luts(&pipe_config->base);
4884
4885         intel_ddi_set_pipe_settings(crtc);
4886         if (!intel_crtc->config->has_dsi_encoder)
4887                 intel_ddi_enable_transcoder_func(crtc);
4888
4889         if (dev_priv->display.initial_watermarks != NULL)
4890                 dev_priv->display.initial_watermarks(pipe_config);
4891         else
4892                 intel_update_watermarks(crtc);
4893
4894         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4895         if (!intel_crtc->config->has_dsi_encoder)
4896                 intel_enable_pipe(intel_crtc);
4897
4898         if (intel_crtc->config->has_pch_encoder)
4899                 lpt_pch_enable(crtc);
4900
4901         if (intel_crtc->config->dp_encoder_is_mst)
4902                 intel_ddi_set_vc_payload_alloc(crtc, true);
4903
4904         assert_vblank_disabled(crtc);
4905         drm_crtc_vblank_on(crtc);
4906
4907         for_each_encoder_on_crtc(dev, crtc, encoder) {
4908                 encoder->enable(encoder);
4909                 intel_opregion_notify_encoder(encoder, true);
4910         }
4911
4912         if (intel_crtc->config->has_pch_encoder) {
4913                 intel_wait_for_vblank(dev, pipe);
4914                 intel_wait_for_vblank(dev, pipe);
4915                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4916                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4917                                                       true);
4918         }
4919
4920         /* If we change the relative order between pipe/planes enabling, we need
4921          * to change the workaround. */
4922         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4923         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4924                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4925                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4926         }
4927 }
4928
4929 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4930 {
4931         struct drm_device *dev = crtc->base.dev;
4932         struct drm_i915_private *dev_priv = dev->dev_private;
4933         int pipe = crtc->pipe;
4934
4935         /* To avoid upsetting the power well on haswell only disable the pfit if
4936          * it's in use. The hw state code will make sure we get this right. */
4937         if (force || crtc->config->pch_pfit.enabled) {
4938                 I915_WRITE(PF_CTL(pipe), 0);
4939                 I915_WRITE(PF_WIN_POS(pipe), 0);
4940                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4941         }
4942 }
4943
4944 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4945 {
4946         struct drm_device *dev = crtc->dev;
4947         struct drm_i915_private *dev_priv = dev->dev_private;
4948         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4949         struct intel_encoder *encoder;
4950         int pipe = intel_crtc->pipe;
4951
4952         if (intel_crtc->config->has_pch_encoder)
4953                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4954
4955         for_each_encoder_on_crtc(dev, crtc, encoder)
4956                 encoder->disable(encoder);
4957
4958         drm_crtc_vblank_off(crtc);
4959         assert_vblank_disabled(crtc);
4960
4961         /*
4962          * Sometimes spurious CPU pipe underruns happen when the
4963          * pipe is already disabled, but FDI RX/TX is still enabled.
4964          * Happens at least with VGA+HDMI cloning. Suppress them.
4965          */
4966         if (intel_crtc->config->has_pch_encoder)
4967                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4968
4969         intel_disable_pipe(intel_crtc);
4970
4971         ironlake_pfit_disable(intel_crtc, false);
4972
4973         if (intel_crtc->config->has_pch_encoder) {
4974                 ironlake_fdi_disable(crtc);
4975                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4976         }
4977
4978         for_each_encoder_on_crtc(dev, crtc, encoder)
4979                 if (encoder->post_disable)
4980                         encoder->post_disable(encoder);
4981
4982         if (intel_crtc->config->has_pch_encoder) {
4983                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4984
4985                 if (HAS_PCH_CPT(dev)) {
4986                         i915_reg_t reg;
4987                         u32 temp;
4988
4989                         /* disable TRANS_DP_CTL */
4990                         reg = TRANS_DP_CTL(pipe);
4991                         temp = I915_READ(reg);
4992                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4993                                   TRANS_DP_PORT_SEL_MASK);
4994                         temp |= TRANS_DP_PORT_SEL_NONE;
4995                         I915_WRITE(reg, temp);
4996
4997                         /* disable DPLL_SEL */
4998                         temp = I915_READ(PCH_DPLL_SEL);
4999                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5000                         I915_WRITE(PCH_DPLL_SEL, temp);
5001                 }
5002
5003                 ironlake_fdi_pll_disable(intel_crtc);
5004         }
5005
5006         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5007 }
5008
5009 static void haswell_crtc_disable(struct drm_crtc *crtc)
5010 {
5011         struct drm_device *dev = crtc->dev;
5012         struct drm_i915_private *dev_priv = dev->dev_private;
5013         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5014         struct intel_encoder *encoder;
5015         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5016
5017         if (intel_crtc->config->has_pch_encoder)
5018                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5019                                                       false);
5020
5021         for_each_encoder_on_crtc(dev, crtc, encoder) {
5022                 intel_opregion_notify_encoder(encoder, false);
5023                 encoder->disable(encoder);
5024         }
5025
5026         drm_crtc_vblank_off(crtc);
5027         assert_vblank_disabled(crtc);
5028
5029         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5030         if (!intel_crtc->config->has_dsi_encoder)
5031                 intel_disable_pipe(intel_crtc);
5032
5033         if (intel_crtc->config->dp_encoder_is_mst)
5034                 intel_ddi_set_vc_payload_alloc(crtc, false);
5035
5036         if (!intel_crtc->config->has_dsi_encoder)
5037                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5038
5039         if (INTEL_INFO(dev)->gen >= 9)
5040                 skylake_scaler_disable(intel_crtc);
5041         else
5042                 ironlake_pfit_disable(intel_crtc, false);
5043
5044         if (!intel_crtc->config->has_dsi_encoder)
5045                 intel_ddi_disable_pipe_clock(intel_crtc);
5046
5047         for_each_encoder_on_crtc(dev, crtc, encoder)
5048                 if (encoder->post_disable)
5049                         encoder->post_disable(encoder);
5050
5051         if (intel_crtc->config->has_pch_encoder) {
5052                 lpt_disable_pch_transcoder(dev_priv);
5053                 lpt_disable_iclkip(dev_priv);
5054                 intel_ddi_fdi_disable(crtc);
5055
5056                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5057                                                       true);
5058         }
5059 }
5060
5061 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5062 {
5063         struct drm_device *dev = crtc->base.dev;
5064         struct drm_i915_private *dev_priv = dev->dev_private;
5065         struct intel_crtc_state *pipe_config = crtc->config;
5066
5067         if (!pipe_config->gmch_pfit.control)
5068                 return;
5069
5070         /*
5071          * The panel fitter should only be adjusted whilst the pipe is disabled,
5072          * according to register description and PRM.
5073          */
5074         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5075         assert_pipe_disabled(dev_priv, crtc->pipe);
5076
5077         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5078         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5079
5080         /* Border color in case we don't scale up to the full screen. Black by
5081          * default, change to something else for debugging. */
5082         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5083 }
5084
5085 static enum intel_display_power_domain port_to_power_domain(enum port port)
5086 {
5087         switch (port) {
5088         case PORT_A:
5089                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5090         case PORT_B:
5091                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5092         case PORT_C:
5093                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5094         case PORT_D:
5095                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5096         case PORT_E:
5097                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5098         default:
5099                 MISSING_CASE(port);
5100                 return POWER_DOMAIN_PORT_OTHER;
5101         }
5102 }
5103
5104 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5105 {
5106         switch (port) {
5107         case PORT_A:
5108                 return POWER_DOMAIN_AUX_A;
5109         case PORT_B:
5110                 return POWER_DOMAIN_AUX_B;
5111         case PORT_C:
5112                 return POWER_DOMAIN_AUX_C;
5113         case PORT_D:
5114                 return POWER_DOMAIN_AUX_D;
5115         case PORT_E:
5116                 /* FIXME: Check VBT for actual wiring of PORT E */
5117                 return POWER_DOMAIN_AUX_D;
5118         default:
5119                 MISSING_CASE(port);
5120                 return POWER_DOMAIN_AUX_A;
5121         }
5122 }
5123
5124 enum intel_display_power_domain
5125 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5126 {
5127         struct drm_device *dev = intel_encoder->base.dev;
5128         struct intel_digital_port *intel_dig_port;
5129
5130         switch (intel_encoder->type) {
5131         case INTEL_OUTPUT_UNKNOWN:
5132                 /* Only DDI platforms should ever use this output type */
5133                 WARN_ON_ONCE(!HAS_DDI(dev));
5134         case INTEL_OUTPUT_DISPLAYPORT:
5135         case INTEL_OUTPUT_HDMI:
5136         case INTEL_OUTPUT_EDP:
5137                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5138                 return port_to_power_domain(intel_dig_port->port);
5139         case INTEL_OUTPUT_DP_MST:
5140                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5141                 return port_to_power_domain(intel_dig_port->port);
5142         case INTEL_OUTPUT_ANALOG:
5143                 return POWER_DOMAIN_PORT_CRT;
5144         case INTEL_OUTPUT_DSI:
5145                 return POWER_DOMAIN_PORT_DSI;
5146         default:
5147                 return POWER_DOMAIN_PORT_OTHER;
5148         }
5149 }
5150
5151 enum intel_display_power_domain
5152 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5153 {
5154         struct drm_device *dev = intel_encoder->base.dev;
5155         struct intel_digital_port *intel_dig_port;
5156
5157         switch (intel_encoder->type) {
5158         case INTEL_OUTPUT_UNKNOWN:
5159         case INTEL_OUTPUT_HDMI:
5160                 /*
5161                  * Only DDI platforms should ever use these output types.
5162                  * We can get here after the HDMI detect code has already set
5163                  * the type of the shared encoder. Since we can't be sure
5164                  * what's the status of the given connectors, play safe and
5165                  * run the DP detection too.
5166                  */
5167                 WARN_ON_ONCE(!HAS_DDI(dev));
5168         case INTEL_OUTPUT_DISPLAYPORT:
5169         case INTEL_OUTPUT_EDP:
5170                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5171                 return port_to_aux_power_domain(intel_dig_port->port);
5172         case INTEL_OUTPUT_DP_MST:
5173                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5174                 return port_to_aux_power_domain(intel_dig_port->port);
5175         default:
5176                 MISSING_CASE(intel_encoder->type);
5177                 return POWER_DOMAIN_AUX_A;
5178         }
5179 }
5180
5181 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5182                                             struct intel_crtc_state *crtc_state)
5183 {
5184         struct drm_device *dev = crtc->dev;
5185         struct drm_encoder *encoder;
5186         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5187         enum pipe pipe = intel_crtc->pipe;
5188         unsigned long mask;
5189         enum transcoder transcoder = crtc_state->cpu_transcoder;
5190
5191         if (!crtc_state->base.active)
5192                 return 0;
5193
5194         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5195         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5196         if (crtc_state->pch_pfit.enabled ||
5197             crtc_state->pch_pfit.force_thru)
5198                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5199
5200         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5201                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5202
5203                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5204         }
5205
5206         if (crtc_state->shared_dpll)
5207                 mask |= BIT(POWER_DOMAIN_PLLS);
5208
5209         return mask;
5210 }
5211
5212 static unsigned long
5213 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5214                                struct intel_crtc_state *crtc_state)
5215 {
5216         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5217         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5218         enum intel_display_power_domain domain;
5219         unsigned long domains, new_domains, old_domains;
5220
5221         old_domains = intel_crtc->enabled_power_domains;
5222         intel_crtc->enabled_power_domains = new_domains =
5223                 get_crtc_power_domains(crtc, crtc_state);
5224
5225         domains = new_domains & ~old_domains;
5226
5227         for_each_power_domain(domain, domains)
5228                 intel_display_power_get(dev_priv, domain);
5229
5230         return old_domains & ~new_domains;
5231 }
5232
5233 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5234                                       unsigned long domains)
5235 {
5236         enum intel_display_power_domain domain;
5237
5238         for_each_power_domain(domain, domains)
5239                 intel_display_power_put(dev_priv, domain);
5240 }
5241
5242 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5243 {
5244         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5245
5246         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5247             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5248                 return max_cdclk_freq;
5249         else if (IS_CHERRYVIEW(dev_priv))
5250                 return max_cdclk_freq*95/100;
5251         else if (INTEL_INFO(dev_priv)->gen < 4)
5252                 return 2*max_cdclk_freq*90/100;
5253         else
5254                 return max_cdclk_freq*90/100;
5255 }
5256
5257 static void intel_update_max_cdclk(struct drm_device *dev)
5258 {
5259         struct drm_i915_private *dev_priv = dev->dev_private;
5260
5261         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5262                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5263
5264                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5265                         dev_priv->max_cdclk_freq = 675000;
5266                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5267                         dev_priv->max_cdclk_freq = 540000;
5268                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5269                         dev_priv->max_cdclk_freq = 450000;
5270                 else
5271                         dev_priv->max_cdclk_freq = 337500;
5272         } else if (IS_BROADWELL(dev))  {
5273                 /*
5274                  * FIXME with extra cooling we can allow
5275                  * 540 MHz for ULX and 675 Mhz for ULT.
5276                  * How can we know if extra cooling is
5277                  * available? PCI ID, VTB, something else?
5278                  */
5279                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5280                         dev_priv->max_cdclk_freq = 450000;
5281                 else if (IS_BDW_ULX(dev))
5282                         dev_priv->max_cdclk_freq = 450000;
5283                 else if (IS_BDW_ULT(dev))
5284                         dev_priv->max_cdclk_freq = 540000;
5285                 else
5286                         dev_priv->max_cdclk_freq = 675000;
5287         } else if (IS_CHERRYVIEW(dev)) {
5288                 dev_priv->max_cdclk_freq = 320000;
5289         } else if (IS_VALLEYVIEW(dev)) {
5290                 dev_priv->max_cdclk_freq = 400000;
5291         } else {
5292                 /* otherwise assume cdclk is fixed */
5293                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5294         }
5295
5296         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5297
5298         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5299                          dev_priv->max_cdclk_freq);
5300
5301         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5302                          dev_priv->max_dotclk_freq);
5303 }
5304
5305 static void intel_update_cdclk(struct drm_device *dev)
5306 {
5307         struct drm_i915_private *dev_priv = dev->dev_private;
5308
5309         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5310         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5311                          dev_priv->cdclk_freq);
5312
5313         /*
5314          * Program the gmbus_freq based on the cdclk frequency.
5315          * BSpec erroneously claims we should aim for 4MHz, but
5316          * in fact 1MHz is the correct frequency.
5317          */
5318         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5319                 /*
5320                  * Program the gmbus_freq based on the cdclk frequency.
5321                  * BSpec erroneously claims we should aim for 4MHz, but
5322                  * in fact 1MHz is the correct frequency.
5323                  */
5324                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5325         }
5326
5327         if (dev_priv->max_cdclk_freq == 0)
5328                 intel_update_max_cdclk(dev);
5329 }
5330
5331 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5332 {
5333         struct drm_i915_private *dev_priv = dev->dev_private;
5334         uint32_t divider;
5335         uint32_t ratio;
5336         uint32_t current_freq;
5337         int ret;
5338
5339         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5340         switch (frequency) {
5341         case 144000:
5342                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5343                 ratio = BXT_DE_PLL_RATIO(60);
5344                 break;
5345         case 288000:
5346                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5347                 ratio = BXT_DE_PLL_RATIO(60);
5348                 break;
5349         case 384000:
5350                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5351                 ratio = BXT_DE_PLL_RATIO(60);
5352                 break;
5353         case 576000:
5354                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5355                 ratio = BXT_DE_PLL_RATIO(60);
5356                 break;
5357         case 624000:
5358                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5359                 ratio = BXT_DE_PLL_RATIO(65);
5360                 break;
5361         case 19200:
5362                 /*
5363                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5364                  * to suppress GCC warning.
5365                  */
5366                 ratio = 0;
5367                 divider = 0;
5368                 break;
5369         default:
5370                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5371
5372                 return;
5373         }
5374
5375         mutex_lock(&dev_priv->rps.hw_lock);
5376         /* Inform power controller of upcoming frequency change */
5377         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5378                                       0x80000000);
5379         mutex_unlock(&dev_priv->rps.hw_lock);
5380
5381         if (ret) {
5382                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5383                           ret, frequency);
5384                 return;
5385         }
5386
5387         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5388         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5389         current_freq = current_freq * 500 + 1000;
5390
5391         /*
5392          * DE PLL has to be disabled when
5393          * - setting to 19.2MHz (bypass, PLL isn't used)
5394          * - before setting to 624MHz (PLL needs toggling)
5395          * - before setting to any frequency from 624MHz (PLL needs toggling)
5396          */
5397         if (frequency == 19200 || frequency == 624000 ||
5398             current_freq == 624000) {
5399                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5400                 /* Timeout 200us */
5401                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5402                              1))
5403                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5404         }
5405
5406         if (frequency != 19200) {
5407                 uint32_t val;
5408
5409                 val = I915_READ(BXT_DE_PLL_CTL);
5410                 val &= ~BXT_DE_PLL_RATIO_MASK;
5411                 val |= ratio;
5412                 I915_WRITE(BXT_DE_PLL_CTL, val);
5413
5414                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5415                 /* Timeout 200us */
5416                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5417                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5418
5419                 val = I915_READ(CDCLK_CTL);
5420                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5421                 val |= divider;
5422                 /*
5423                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5424                  * enable otherwise.
5425                  */
5426                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5427                 if (frequency >= 500000)
5428                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5429
5430                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5431                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5432                 val |= (frequency - 1000) / 500;
5433                 I915_WRITE(CDCLK_CTL, val);
5434         }
5435
5436         mutex_lock(&dev_priv->rps.hw_lock);
5437         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5438                                       DIV_ROUND_UP(frequency, 25000));
5439         mutex_unlock(&dev_priv->rps.hw_lock);
5440
5441         if (ret) {
5442                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5443                           ret, frequency);
5444                 return;
5445         }
5446
5447         intel_update_cdclk(dev);
5448 }
5449
5450 void broxton_init_cdclk(struct drm_device *dev)
5451 {
5452         struct drm_i915_private *dev_priv = dev->dev_private;
5453         uint32_t val;
5454
5455         /*
5456          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5457          * or else the reset will hang because there is no PCH to respond.
5458          * Move the handshake programming to initialization sequence.
5459          * Previously was left up to BIOS.
5460          */
5461         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5462         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5463         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5464
5465         /* Enable PG1 for cdclk */
5466         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5467
5468         /* check if cd clock is enabled */
5469         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5470                 DRM_DEBUG_KMS("Display already initialized\n");
5471                 return;
5472         }
5473
5474         /*
5475          * FIXME:
5476          * - The initial CDCLK needs to be read from VBT.
5477          *   Need to make this change after VBT has changes for BXT.
5478          * - check if setting the max (or any) cdclk freq is really necessary
5479          *   here, it belongs to modeset time
5480          */
5481         broxton_set_cdclk(dev, 624000);
5482
5483         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5484         POSTING_READ(DBUF_CTL);
5485
5486         udelay(10);
5487
5488         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5489                 DRM_ERROR("DBuf power enable timeout!\n");
5490 }
5491
5492 void broxton_uninit_cdclk(struct drm_device *dev)
5493 {
5494         struct drm_i915_private *dev_priv = dev->dev_private;
5495
5496         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5497         POSTING_READ(DBUF_CTL);
5498
5499         udelay(10);
5500
5501         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5502                 DRM_ERROR("DBuf power disable timeout!\n");
5503
5504         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5505         broxton_set_cdclk(dev, 19200);
5506
5507         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5508 }
5509
5510 static const struct skl_cdclk_entry {
5511         unsigned int freq;
5512         unsigned int vco;
5513 } skl_cdclk_frequencies[] = {
5514         { .freq = 308570, .vco = 8640 },
5515         { .freq = 337500, .vco = 8100 },
5516         { .freq = 432000, .vco = 8640 },
5517         { .freq = 450000, .vco = 8100 },
5518         { .freq = 540000, .vco = 8100 },
5519         { .freq = 617140, .vco = 8640 },
5520         { .freq = 675000, .vco = 8100 },
5521 };
5522
5523 static unsigned int skl_cdclk_decimal(unsigned int freq)
5524 {
5525         return (freq - 1000) / 500;
5526 }
5527
5528 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5529 {
5530         unsigned int i;
5531
5532         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5533                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5534
5535                 if (e->freq == freq)
5536                         return e->vco;
5537         }
5538
5539         return 8100;
5540 }
5541
5542 static void
5543 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5544 {
5545         unsigned int min_freq;
5546         u32 val;
5547
5548         /* select the minimum CDCLK before enabling DPLL 0 */
5549         val = I915_READ(CDCLK_CTL);
5550         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5551         val |= CDCLK_FREQ_337_308;
5552
5553         if (required_vco == 8640)
5554                 min_freq = 308570;
5555         else
5556                 min_freq = 337500;
5557
5558         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5559
5560         I915_WRITE(CDCLK_CTL, val);
5561         POSTING_READ(CDCLK_CTL);
5562
5563         /*
5564          * We always enable DPLL0 with the lowest link rate possible, but still
5565          * taking into account the VCO required to operate the eDP panel at the
5566          * desired frequency. The usual DP link rates operate with a VCO of
5567          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5568          * The modeset code is responsible for the selection of the exact link
5569          * rate later on, with the constraint of choosing a frequency that
5570          * works with required_vco.
5571          */
5572         val = I915_READ(DPLL_CTRL1);
5573
5574         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5575                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5576         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5577         if (required_vco == 8640)
5578                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5579                                             SKL_DPLL0);
5580         else
5581                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5582                                             SKL_DPLL0);
5583
5584         I915_WRITE(DPLL_CTRL1, val);
5585         POSTING_READ(DPLL_CTRL1);
5586
5587         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5588
5589         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5590                 DRM_ERROR("DPLL0 not locked\n");
5591 }
5592
5593 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5594 {
5595         int ret;
5596         u32 val;
5597
5598         /* inform PCU we want to change CDCLK */
5599         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5600         mutex_lock(&dev_priv->rps.hw_lock);
5601         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5602         mutex_unlock(&dev_priv->rps.hw_lock);
5603
5604         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5605 }
5606
5607 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5608 {
5609         unsigned int i;
5610
5611         for (i = 0; i < 15; i++) {
5612                 if (skl_cdclk_pcu_ready(dev_priv))
5613                         return true;
5614                 udelay(10);
5615         }
5616
5617         return false;
5618 }
5619
5620 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5621 {
5622         struct drm_device *dev = dev_priv->dev;
5623         u32 freq_select, pcu_ack;
5624
5625         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5626
5627         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5628                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5629                 return;
5630         }
5631
5632         /* set CDCLK_CTL */
5633         switch(freq) {
5634         case 450000:
5635         case 432000:
5636                 freq_select = CDCLK_FREQ_450_432;
5637                 pcu_ack = 1;
5638                 break;
5639         case 540000:
5640                 freq_select = CDCLK_FREQ_540;
5641                 pcu_ack = 2;
5642                 break;
5643         case 308570:
5644         case 337500:
5645         default:
5646                 freq_select = CDCLK_FREQ_337_308;
5647                 pcu_ack = 0;
5648                 break;
5649         case 617140:
5650         case 675000:
5651                 freq_select = CDCLK_FREQ_675_617;
5652                 pcu_ack = 3;
5653                 break;
5654         }
5655
5656         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5657         POSTING_READ(CDCLK_CTL);
5658
5659         /* inform PCU of the change */
5660         mutex_lock(&dev_priv->rps.hw_lock);
5661         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5662         mutex_unlock(&dev_priv->rps.hw_lock);
5663
5664         intel_update_cdclk(dev);
5665 }
5666
5667 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5668 {
5669         /* disable DBUF power */
5670         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5671         POSTING_READ(DBUF_CTL);
5672
5673         udelay(10);
5674
5675         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5676                 DRM_ERROR("DBuf power disable timeout\n");
5677
5678         /* disable DPLL0 */
5679         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5680         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5681                 DRM_ERROR("Couldn't disable DPLL0\n");
5682 }
5683
5684 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5685 {
5686         unsigned int required_vco;
5687
5688         /* DPLL0 not enabled (happens on early BIOS versions) */
5689         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5690                 /* enable DPLL0 */
5691                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5692                 skl_dpll0_enable(dev_priv, required_vco);
5693         }
5694
5695         /* set CDCLK to the frequency the BIOS chose */
5696         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5697
5698         /* enable DBUF power */
5699         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5700         POSTING_READ(DBUF_CTL);
5701
5702         udelay(10);
5703
5704         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5705                 DRM_ERROR("DBuf power enable timeout\n");
5706 }
5707
5708 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5709 {
5710         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5711         uint32_t cdctl = I915_READ(CDCLK_CTL);
5712         int freq = dev_priv->skl_boot_cdclk;
5713
5714         /*
5715          * check if the pre-os intialized the display
5716          * There is SWF18 scratchpad register defined which is set by the
5717          * pre-os which can be used by the OS drivers to check the status
5718          */
5719         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5720                 goto sanitize;
5721
5722         /* Is PLL enabled and locked ? */
5723         if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5724                 goto sanitize;
5725
5726         /* DPLL okay; verify the cdclock
5727          *
5728          * Noticed in some instances that the freq selection is correct but
5729          * decimal part is programmed wrong from BIOS where pre-os does not
5730          * enable display. Verify the same as well.
5731          */
5732         if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5733                 /* All well; nothing to sanitize */
5734                 return false;
5735 sanitize:
5736         /*
5737          * As of now initialize with max cdclk till
5738          * we get dynamic cdclk support
5739          * */
5740         dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5741         skl_init_cdclk(dev_priv);
5742
5743         /* we did have to sanitize */
5744         return true;
5745 }
5746
5747 /* Adjust CDclk dividers to allow high res or save power if possible */
5748 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5749 {
5750         struct drm_i915_private *dev_priv = dev->dev_private;
5751         u32 val, cmd;
5752
5753         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5754                                         != dev_priv->cdclk_freq);
5755
5756         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5757                 cmd = 2;
5758         else if (cdclk == 266667)
5759                 cmd = 1;
5760         else
5761                 cmd = 0;
5762
5763         mutex_lock(&dev_priv->rps.hw_lock);
5764         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5765         val &= ~DSPFREQGUAR_MASK;
5766         val |= (cmd << DSPFREQGUAR_SHIFT);
5767         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5768         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5769                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5770                      50)) {
5771                 DRM_ERROR("timed out waiting for CDclk change\n");
5772         }
5773         mutex_unlock(&dev_priv->rps.hw_lock);
5774
5775         mutex_lock(&dev_priv->sb_lock);
5776
5777         if (cdclk == 400000) {
5778                 u32 divider;
5779
5780                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5781
5782                 /* adjust cdclk divider */
5783                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5784                 val &= ~CCK_FREQUENCY_VALUES;
5785                 val |= divider;
5786                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5787
5788                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5789                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5790                              50))
5791                         DRM_ERROR("timed out waiting for CDclk change\n");
5792         }
5793
5794         /* adjust self-refresh exit latency value */
5795         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5796         val &= ~0x7f;
5797
5798         /*
5799          * For high bandwidth configs, we set a higher latency in the bunit
5800          * so that the core display fetch happens in time to avoid underruns.
5801          */
5802         if (cdclk == 400000)
5803                 val |= 4500 / 250; /* 4.5 usec */
5804         else
5805                 val |= 3000 / 250; /* 3.0 usec */
5806         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5807
5808         mutex_unlock(&dev_priv->sb_lock);
5809
5810         intel_update_cdclk(dev);
5811 }
5812
5813 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5814 {
5815         struct drm_i915_private *dev_priv = dev->dev_private;
5816         u32 val, cmd;
5817
5818         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5819                                                 != dev_priv->cdclk_freq);
5820
5821         switch (cdclk) {
5822         case 333333:
5823         case 320000:
5824         case 266667:
5825         case 200000:
5826                 break;
5827         default:
5828                 MISSING_CASE(cdclk);
5829                 return;
5830         }
5831
5832         /*
5833          * Specs are full of misinformation, but testing on actual
5834          * hardware has shown that we just need to write the desired
5835          * CCK divider into the Punit register.
5836          */
5837         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5838
5839         mutex_lock(&dev_priv->rps.hw_lock);
5840         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5841         val &= ~DSPFREQGUAR_MASK_CHV;
5842         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5843         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5844         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5845                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5846                      50)) {
5847                 DRM_ERROR("timed out waiting for CDclk change\n");
5848         }
5849         mutex_unlock(&dev_priv->rps.hw_lock);
5850
5851         intel_update_cdclk(dev);
5852 }
5853
5854 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5855                                  int max_pixclk)
5856 {
5857         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5858         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5859
5860         /*
5861          * Really only a few cases to deal with, as only 4 CDclks are supported:
5862          *   200MHz
5863          *   267MHz
5864          *   320/333MHz (depends on HPLL freq)
5865          *   400MHz (VLV only)
5866          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5867          * of the lower bin and adjust if needed.
5868          *
5869          * We seem to get an unstable or solid color picture at 200MHz.
5870          * Not sure what's wrong. For now use 200MHz only when all pipes
5871          * are off.
5872          */
5873         if (!IS_CHERRYVIEW(dev_priv) &&
5874             max_pixclk > freq_320*limit/100)
5875                 return 400000;
5876         else if (max_pixclk > 266667*limit/100)
5877                 return freq_320;
5878         else if (max_pixclk > 0)
5879                 return 266667;
5880         else
5881                 return 200000;
5882 }
5883
5884 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5885                               int max_pixclk)
5886 {
5887         /*
5888          * FIXME:
5889          * - remove the guardband, it's not needed on BXT
5890          * - set 19.2MHz bypass frequency if there are no active pipes
5891          */
5892         if (max_pixclk > 576000*9/10)
5893                 return 624000;
5894         else if (max_pixclk > 384000*9/10)
5895                 return 576000;
5896         else if (max_pixclk > 288000*9/10)
5897                 return 384000;
5898         else if (max_pixclk > 144000*9/10)
5899                 return 288000;
5900         else
5901                 return 144000;
5902 }
5903
5904 /* Compute the max pixel clock for new configuration. */
5905 static int intel_mode_max_pixclk(struct drm_device *dev,
5906                                  struct drm_atomic_state *state)
5907 {
5908         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5909         struct drm_i915_private *dev_priv = dev->dev_private;
5910         struct drm_crtc *crtc;
5911         struct drm_crtc_state *crtc_state;
5912         unsigned max_pixclk = 0, i;
5913         enum pipe pipe;
5914
5915         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
5916                sizeof(intel_state->min_pixclk));
5917
5918         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5919                 int pixclk = 0;
5920
5921                 if (crtc_state->enable)
5922                         pixclk = crtc_state->adjusted_mode.crtc_clock;
5923
5924                 intel_state->min_pixclk[i] = pixclk;
5925         }
5926
5927         for_each_pipe(dev_priv, pipe)
5928                 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
5929
5930         return max_pixclk;
5931 }
5932
5933 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5934 {
5935         struct drm_device *dev = state->dev;
5936         struct drm_i915_private *dev_priv = dev->dev_private;
5937         int max_pixclk = intel_mode_max_pixclk(dev, state);
5938         struct intel_atomic_state *intel_state =
5939                 to_intel_atomic_state(state);
5940
5941         if (max_pixclk < 0)
5942                 return max_pixclk;
5943
5944         intel_state->cdclk = intel_state->dev_cdclk =
5945                 valleyview_calc_cdclk(dev_priv, max_pixclk);
5946
5947         if (!intel_state->active_crtcs)
5948                 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
5949
5950         return 0;
5951 }
5952
5953 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5954 {
5955         struct drm_device *dev = state->dev;
5956         struct drm_i915_private *dev_priv = dev->dev_private;
5957         int max_pixclk = intel_mode_max_pixclk(dev, state);
5958         struct intel_atomic_state *intel_state =
5959                 to_intel_atomic_state(state);
5960
5961         if (max_pixclk < 0)
5962                 return max_pixclk;
5963
5964         intel_state->cdclk = intel_state->dev_cdclk =
5965                 broxton_calc_cdclk(dev_priv, max_pixclk);
5966
5967         if (!intel_state->active_crtcs)
5968                 intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0);
5969
5970         return 0;
5971 }
5972
5973 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5974 {
5975         unsigned int credits, default_credits;
5976
5977         if (IS_CHERRYVIEW(dev_priv))
5978                 default_credits = PFI_CREDIT(12);
5979         else
5980                 default_credits = PFI_CREDIT(8);
5981
5982         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
5983                 /* CHV suggested value is 31 or 63 */
5984                 if (IS_CHERRYVIEW(dev_priv))
5985                         credits = PFI_CREDIT_63;
5986                 else
5987                         credits = PFI_CREDIT(15);
5988         } else {
5989                 credits = default_credits;
5990         }
5991
5992         /*
5993          * WA - write default credits before re-programming
5994          * FIXME: should we also set the resend bit here?
5995          */
5996         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5997                    default_credits);
5998
5999         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6000                    credits | PFI_CREDIT_RESEND);
6001
6002         /*
6003          * FIXME is this guaranteed to clear
6004          * immediately or should we poll for it?
6005          */
6006         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6007 }
6008
6009 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6010 {
6011         struct drm_device *dev = old_state->dev;
6012         struct drm_i915_private *dev_priv = dev->dev_private;
6013         struct intel_atomic_state *old_intel_state =
6014                 to_intel_atomic_state(old_state);
6015         unsigned req_cdclk = old_intel_state->dev_cdclk;
6016
6017         /*
6018          * FIXME: We can end up here with all power domains off, yet
6019          * with a CDCLK frequency other than the minimum. To account
6020          * for this take the PIPE-A power domain, which covers the HW
6021          * blocks needed for the following programming. This can be
6022          * removed once it's guaranteed that we get here either with
6023          * the minimum CDCLK set, or the required power domains
6024          * enabled.
6025          */
6026         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6027
6028         if (IS_CHERRYVIEW(dev))
6029                 cherryview_set_cdclk(dev, req_cdclk);
6030         else
6031                 valleyview_set_cdclk(dev, req_cdclk);
6032
6033         vlv_program_pfi_credits(dev_priv);
6034
6035         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6036 }
6037
6038 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6039 {
6040         struct drm_device *dev = crtc->dev;
6041         struct drm_i915_private *dev_priv = to_i915(dev);
6042         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6043         struct intel_encoder *encoder;
6044         struct intel_crtc_state *pipe_config =
6045                 to_intel_crtc_state(crtc->state);
6046         int pipe = intel_crtc->pipe;
6047
6048         if (WARN_ON(intel_crtc->active))
6049                 return;
6050
6051         if (intel_crtc->config->has_dp_encoder)
6052                 intel_dp_set_m_n(intel_crtc, M1_N1);
6053
6054         intel_set_pipe_timings(intel_crtc);
6055         intel_set_pipe_src_size(intel_crtc);
6056
6057         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6058                 struct drm_i915_private *dev_priv = dev->dev_private;
6059
6060                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6061                 I915_WRITE(CHV_CANVAS(pipe), 0);
6062         }
6063
6064         i9xx_set_pipeconf(intel_crtc);
6065
6066         intel_crtc->active = true;
6067
6068         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6069
6070         for_each_encoder_on_crtc(dev, crtc, encoder)
6071                 if (encoder->pre_pll_enable)
6072                         encoder->pre_pll_enable(encoder);
6073
6074         if (!intel_crtc->config->has_dsi_encoder) {
6075                 if (IS_CHERRYVIEW(dev)) {
6076                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6077                         chv_enable_pll(intel_crtc, intel_crtc->config);
6078                 } else {
6079                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6080                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6081                 }
6082         }
6083
6084         for_each_encoder_on_crtc(dev, crtc, encoder)
6085                 if (encoder->pre_enable)
6086                         encoder->pre_enable(encoder);
6087
6088         i9xx_pfit_enable(intel_crtc);
6089
6090         intel_color_load_luts(&pipe_config->base);
6091
6092         intel_update_watermarks(crtc);
6093         intel_enable_pipe(intel_crtc);
6094
6095         assert_vblank_disabled(crtc);
6096         drm_crtc_vblank_on(crtc);
6097
6098         for_each_encoder_on_crtc(dev, crtc, encoder)
6099                 encoder->enable(encoder);
6100 }
6101
6102 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6103 {
6104         struct drm_device *dev = crtc->base.dev;
6105         struct drm_i915_private *dev_priv = dev->dev_private;
6106
6107         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6108         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6109 }
6110
6111 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6112 {
6113         struct drm_device *dev = crtc->dev;
6114         struct drm_i915_private *dev_priv = to_i915(dev);
6115         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6116         struct intel_encoder *encoder;
6117         struct intel_crtc_state *pipe_config =
6118                 to_intel_crtc_state(crtc->state);
6119         int pipe = intel_crtc->pipe;
6120
6121         if (WARN_ON(intel_crtc->active))
6122                 return;
6123
6124         i9xx_set_pll_dividers(intel_crtc);
6125
6126         if (intel_crtc->config->has_dp_encoder)
6127                 intel_dp_set_m_n(intel_crtc, M1_N1);
6128
6129         intel_set_pipe_timings(intel_crtc);
6130         intel_set_pipe_src_size(intel_crtc);
6131
6132         i9xx_set_pipeconf(intel_crtc);
6133
6134         intel_crtc->active = true;
6135
6136         if (!IS_GEN2(dev))
6137                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6138
6139         for_each_encoder_on_crtc(dev, crtc, encoder)
6140                 if (encoder->pre_enable)
6141                         encoder->pre_enable(encoder);
6142
6143         i9xx_enable_pll(intel_crtc);
6144
6145         i9xx_pfit_enable(intel_crtc);
6146
6147         intel_color_load_luts(&pipe_config->base);
6148
6149         intel_update_watermarks(crtc);
6150         intel_enable_pipe(intel_crtc);
6151
6152         assert_vblank_disabled(crtc);
6153         drm_crtc_vblank_on(crtc);
6154
6155         for_each_encoder_on_crtc(dev, crtc, encoder)
6156                 encoder->enable(encoder);
6157 }
6158
6159 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6160 {
6161         struct drm_device *dev = crtc->base.dev;
6162         struct drm_i915_private *dev_priv = dev->dev_private;
6163
6164         if (!crtc->config->gmch_pfit.control)
6165                 return;
6166
6167         assert_pipe_disabled(dev_priv, crtc->pipe);
6168
6169         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6170                          I915_READ(PFIT_CONTROL));
6171         I915_WRITE(PFIT_CONTROL, 0);
6172 }
6173
6174 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6175 {
6176         struct drm_device *dev = crtc->dev;
6177         struct drm_i915_private *dev_priv = dev->dev_private;
6178         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6179         struct intel_encoder *encoder;
6180         int pipe = intel_crtc->pipe;
6181
6182         /*
6183          * On gen2 planes are double buffered but the pipe isn't, so we must
6184          * wait for planes to fully turn off before disabling the pipe.
6185          */
6186         if (IS_GEN2(dev))
6187                 intel_wait_for_vblank(dev, pipe);
6188
6189         for_each_encoder_on_crtc(dev, crtc, encoder)
6190                 encoder->disable(encoder);
6191
6192         drm_crtc_vblank_off(crtc);
6193         assert_vblank_disabled(crtc);
6194
6195         intel_disable_pipe(intel_crtc);
6196
6197         i9xx_pfit_disable(intel_crtc);
6198
6199         for_each_encoder_on_crtc(dev, crtc, encoder)
6200                 if (encoder->post_disable)
6201                         encoder->post_disable(encoder);
6202
6203         if (!intel_crtc->config->has_dsi_encoder) {
6204                 if (IS_CHERRYVIEW(dev))
6205                         chv_disable_pll(dev_priv, pipe);
6206                 else if (IS_VALLEYVIEW(dev))
6207                         vlv_disable_pll(dev_priv, pipe);
6208                 else
6209                         i9xx_disable_pll(intel_crtc);
6210         }
6211
6212         for_each_encoder_on_crtc(dev, crtc, encoder)
6213                 if (encoder->post_pll_disable)
6214                         encoder->post_pll_disable(encoder);
6215
6216         if (!IS_GEN2(dev))
6217                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6218 }
6219
6220 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6221 {
6222         struct intel_encoder *encoder;
6223         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6224         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6225         enum intel_display_power_domain domain;
6226         unsigned long domains;
6227
6228         if (!intel_crtc->active)
6229                 return;
6230
6231         if (to_intel_plane_state(crtc->primary->state)->visible) {
6232                 WARN_ON(intel_crtc->unpin_work);
6233
6234                 intel_pre_disable_primary_noatomic(crtc);
6235
6236                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6237                 to_intel_plane_state(crtc->primary->state)->visible = false;
6238         }
6239
6240         dev_priv->display.crtc_disable(crtc);
6241
6242         DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was enabled, now disabled\n",
6243                       crtc->base.id);
6244
6245         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6246         crtc->state->active = false;
6247         intel_crtc->active = false;
6248         crtc->enabled = false;
6249         crtc->state->connector_mask = 0;
6250         crtc->state->encoder_mask = 0;
6251
6252         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6253                 encoder->base.crtc = NULL;
6254
6255         intel_fbc_disable(intel_crtc);
6256         intel_update_watermarks(crtc);
6257         intel_disable_shared_dpll(intel_crtc);
6258
6259         domains = intel_crtc->enabled_power_domains;
6260         for_each_power_domain(domain, domains)
6261                 intel_display_power_put(dev_priv, domain);
6262         intel_crtc->enabled_power_domains = 0;
6263
6264         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6265         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6266 }
6267
6268 /*
6269  * turn all crtc's off, but do not adjust state
6270  * This has to be paired with a call to intel_modeset_setup_hw_state.
6271  */
6272 int intel_display_suspend(struct drm_device *dev)
6273 {
6274         struct drm_i915_private *dev_priv = to_i915(dev);
6275         struct drm_atomic_state *state;
6276         int ret;
6277
6278         state = drm_atomic_helper_suspend(dev);
6279         ret = PTR_ERR_OR_ZERO(state);
6280         if (ret)
6281                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6282         else
6283                 dev_priv->modeset_restore_state = state;
6284         return ret;
6285 }
6286
6287 void intel_encoder_destroy(struct drm_encoder *encoder)
6288 {
6289         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6290
6291         drm_encoder_cleanup(encoder);
6292         kfree(intel_encoder);
6293 }
6294
6295 /* Cross check the actual hw state with our own modeset state tracking (and it's
6296  * internal consistency). */
6297 static void intel_connector_check_state(struct intel_connector *connector)
6298 {
6299         struct drm_crtc *crtc = connector->base.state->crtc;
6300
6301         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6302                       connector->base.base.id,
6303                       connector->base.name);
6304
6305         if (connector->get_hw_state(connector)) {
6306                 struct intel_encoder *encoder = connector->encoder;
6307                 struct drm_connector_state *conn_state = connector->base.state;
6308
6309                 I915_STATE_WARN(!crtc,
6310                          "connector enabled without attached crtc\n");
6311
6312                 if (!crtc)
6313                         return;
6314
6315                 I915_STATE_WARN(!crtc->state->active,
6316                       "connector is active, but attached crtc isn't\n");
6317
6318                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6319                         return;
6320
6321                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6322                         "atomic encoder doesn't match attached encoder\n");
6323
6324                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6325                         "attached encoder crtc differs from connector crtc\n");
6326         } else {
6327                 I915_STATE_WARN(crtc && crtc->state->active,
6328                         "attached crtc is active, but connector isn't\n");
6329                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6330                         "best encoder set without crtc!\n");
6331         }
6332 }
6333
6334 int intel_connector_init(struct intel_connector *connector)
6335 {
6336         drm_atomic_helper_connector_reset(&connector->base);
6337
6338         if (!connector->base.state)
6339                 return -ENOMEM;
6340
6341         return 0;
6342 }
6343
6344 struct intel_connector *intel_connector_alloc(void)
6345 {
6346         struct intel_connector *connector;
6347
6348         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6349         if (!connector)
6350                 return NULL;
6351
6352         if (intel_connector_init(connector) < 0) {
6353                 kfree(connector);
6354                 return NULL;
6355         }
6356
6357         return connector;
6358 }
6359
6360 /* Simple connector->get_hw_state implementation for encoders that support only
6361  * one connector and no cloning and hence the encoder state determines the state
6362  * of the connector. */
6363 bool intel_connector_get_hw_state(struct intel_connector *connector)
6364 {
6365         enum pipe pipe = 0;
6366         struct intel_encoder *encoder = connector->encoder;
6367
6368         return encoder->get_hw_state(encoder, &pipe);
6369 }
6370
6371 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6372 {
6373         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6374                 return crtc_state->fdi_lanes;
6375
6376         return 0;
6377 }
6378
6379 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6380                                      struct intel_crtc_state *pipe_config)
6381 {
6382         struct drm_atomic_state *state = pipe_config->base.state;
6383         struct intel_crtc *other_crtc;
6384         struct intel_crtc_state *other_crtc_state;
6385
6386         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6387                       pipe_name(pipe), pipe_config->fdi_lanes);
6388         if (pipe_config->fdi_lanes > 4) {
6389                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6390                               pipe_name(pipe), pipe_config->fdi_lanes);
6391                 return -EINVAL;
6392         }
6393
6394         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6395                 if (pipe_config->fdi_lanes > 2) {
6396                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6397                                       pipe_config->fdi_lanes);
6398                         return -EINVAL;
6399                 } else {
6400                         return 0;
6401                 }
6402         }
6403
6404         if (INTEL_INFO(dev)->num_pipes == 2)
6405                 return 0;
6406
6407         /* Ivybridge 3 pipe is really complicated */
6408         switch (pipe) {
6409         case PIPE_A:
6410                 return 0;
6411         case PIPE_B:
6412                 if (pipe_config->fdi_lanes <= 2)
6413                         return 0;
6414
6415                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6416                 other_crtc_state =
6417                         intel_atomic_get_crtc_state(state, other_crtc);
6418                 if (IS_ERR(other_crtc_state))
6419                         return PTR_ERR(other_crtc_state);
6420
6421                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6422                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6423                                       pipe_name(pipe), pipe_config->fdi_lanes);
6424                         return -EINVAL;
6425                 }
6426                 return 0;
6427         case PIPE_C:
6428                 if (pipe_config->fdi_lanes > 2) {
6429                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6430                                       pipe_name(pipe), pipe_config->fdi_lanes);
6431                         return -EINVAL;
6432                 }
6433
6434                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6435                 other_crtc_state =
6436                         intel_atomic_get_crtc_state(state, other_crtc);
6437                 if (IS_ERR(other_crtc_state))
6438                         return PTR_ERR(other_crtc_state);
6439
6440                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6441                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6442                         return -EINVAL;
6443                 }
6444                 return 0;
6445         default:
6446                 BUG();
6447         }
6448 }
6449
6450 #define RETRY 1
6451 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6452                                        struct intel_crtc_state *pipe_config)
6453 {
6454         struct drm_device *dev = intel_crtc->base.dev;
6455         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6456         int lane, link_bw, fdi_dotclock, ret;
6457         bool needs_recompute = false;
6458
6459 retry:
6460         /* FDI is a binary signal running at ~2.7GHz, encoding
6461          * each output octet as 10 bits. The actual frequency
6462          * is stored as a divider into a 100MHz clock, and the
6463          * mode pixel clock is stored in units of 1KHz.
6464          * Hence the bw of each lane in terms of the mode signal
6465          * is:
6466          */
6467         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6468
6469         fdi_dotclock = adjusted_mode->crtc_clock;
6470
6471         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6472                                            pipe_config->pipe_bpp);
6473
6474         pipe_config->fdi_lanes = lane;
6475
6476         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6477                                link_bw, &pipe_config->fdi_m_n);
6478
6479         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6480         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6481                 pipe_config->pipe_bpp -= 2*3;
6482                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6483                               pipe_config->pipe_bpp);
6484                 needs_recompute = true;
6485                 pipe_config->bw_constrained = true;
6486
6487                 goto retry;
6488         }
6489
6490         if (needs_recompute)
6491                 return RETRY;
6492
6493         return ret;
6494 }
6495
6496 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6497                                      struct intel_crtc_state *pipe_config)
6498 {
6499         if (pipe_config->pipe_bpp > 24)
6500                 return false;
6501
6502         /* HSW can handle pixel rate up to cdclk? */
6503         if (IS_HASWELL(dev_priv->dev))
6504                 return true;
6505
6506         /*
6507          * We compare against max which means we must take
6508          * the increased cdclk requirement into account when
6509          * calculating the new cdclk.
6510          *
6511          * Should measure whether using a lower cdclk w/o IPS
6512          */
6513         return ilk_pipe_pixel_rate(pipe_config) <=
6514                 dev_priv->max_cdclk_freq * 95 / 100;
6515 }
6516
6517 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6518                                    struct intel_crtc_state *pipe_config)
6519 {
6520         struct drm_device *dev = crtc->base.dev;
6521         struct drm_i915_private *dev_priv = dev->dev_private;
6522
6523         pipe_config->ips_enabled = i915.enable_ips &&
6524                 hsw_crtc_supports_ips(crtc) &&
6525                 pipe_config_supports_ips(dev_priv, pipe_config);
6526 }
6527
6528 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6529 {
6530         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6531
6532         /* GDG double wide on either pipe, otherwise pipe A only */
6533         return INTEL_INFO(dev_priv)->gen < 4 &&
6534                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6535 }
6536
6537 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6538                                      struct intel_crtc_state *pipe_config)
6539 {
6540         struct drm_device *dev = crtc->base.dev;
6541         struct drm_i915_private *dev_priv = dev->dev_private;
6542         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6543
6544         /* FIXME should check pixel clock limits on all platforms */
6545         if (INTEL_INFO(dev)->gen < 4) {
6546                 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6547
6548                 /*
6549                  * Enable double wide mode when the dot clock
6550                  * is > 90% of the (display) core speed.
6551                  */
6552                 if (intel_crtc_supports_double_wide(crtc) &&
6553                     adjusted_mode->crtc_clock > clock_limit) {
6554                         clock_limit *= 2;
6555                         pipe_config->double_wide = true;
6556                 }
6557
6558                 if (adjusted_mode->crtc_clock > clock_limit) {
6559                         DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6560                                       adjusted_mode->crtc_clock, clock_limit,
6561                                       yesno(pipe_config->double_wide));
6562                         return -EINVAL;
6563                 }
6564         }
6565
6566         /*
6567          * Pipe horizontal size must be even in:
6568          * - DVO ganged mode
6569          * - LVDS dual channel mode
6570          * - Double wide pipe
6571          */
6572         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6573              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6574                 pipe_config->pipe_src_w &= ~1;
6575
6576         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6577          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6578          */
6579         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6580                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6581                 return -EINVAL;
6582
6583         if (HAS_IPS(dev))
6584                 hsw_compute_ips_config(crtc, pipe_config);
6585
6586         if (pipe_config->has_pch_encoder)
6587                 return ironlake_fdi_compute_config(crtc, pipe_config);
6588
6589         return 0;
6590 }
6591
6592 static int skylake_get_display_clock_speed(struct drm_device *dev)
6593 {
6594         struct drm_i915_private *dev_priv = to_i915(dev);
6595         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6596         uint32_t cdctl = I915_READ(CDCLK_CTL);
6597         uint32_t linkrate;
6598
6599         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6600                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6601
6602         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6603                 return 540000;
6604
6605         linkrate = (I915_READ(DPLL_CTRL1) &
6606                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6607
6608         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6609             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6610                 /* vco 8640 */
6611                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6612                 case CDCLK_FREQ_450_432:
6613                         return 432000;
6614                 case CDCLK_FREQ_337_308:
6615                         return 308570;
6616                 case CDCLK_FREQ_675_617:
6617                         return 617140;
6618                 default:
6619                         WARN(1, "Unknown cd freq selection\n");
6620                 }
6621         } else {
6622                 /* vco 8100 */
6623                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6624                 case CDCLK_FREQ_450_432:
6625                         return 450000;
6626                 case CDCLK_FREQ_337_308:
6627                         return 337500;
6628                 case CDCLK_FREQ_675_617:
6629                         return 675000;
6630                 default:
6631                         WARN(1, "Unknown cd freq selection\n");
6632                 }
6633         }
6634
6635         /* error case, do as if DPLL0 isn't enabled */
6636         return 24000;
6637 }
6638
6639 static int broxton_get_display_clock_speed(struct drm_device *dev)
6640 {
6641         struct drm_i915_private *dev_priv = to_i915(dev);
6642         uint32_t cdctl = I915_READ(CDCLK_CTL);
6643         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6644         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6645         int cdclk;
6646
6647         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6648                 return 19200;
6649
6650         cdclk = 19200 * pll_ratio / 2;
6651
6652         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6653         case BXT_CDCLK_CD2X_DIV_SEL_1:
6654                 return cdclk;  /* 576MHz or 624MHz */
6655         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6656                 return cdclk * 2 / 3; /* 384MHz */
6657         case BXT_CDCLK_CD2X_DIV_SEL_2:
6658                 return cdclk / 2; /* 288MHz */
6659         case BXT_CDCLK_CD2X_DIV_SEL_4:
6660                 return cdclk / 4; /* 144MHz */
6661         }
6662
6663         /* error case, do as if DE PLL isn't enabled */
6664         return 19200;
6665 }
6666
6667 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6668 {
6669         struct drm_i915_private *dev_priv = dev->dev_private;
6670         uint32_t lcpll = I915_READ(LCPLL_CTL);
6671         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6672
6673         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6674                 return 800000;
6675         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6676                 return 450000;
6677         else if (freq == LCPLL_CLK_FREQ_450)
6678                 return 450000;
6679         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6680                 return 540000;
6681         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6682                 return 337500;
6683         else
6684                 return 675000;
6685 }
6686
6687 static int haswell_get_display_clock_speed(struct drm_device *dev)
6688 {
6689         struct drm_i915_private *dev_priv = dev->dev_private;
6690         uint32_t lcpll = I915_READ(LCPLL_CTL);
6691         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6692
6693         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6694                 return 800000;
6695         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6696                 return 450000;
6697         else if (freq == LCPLL_CLK_FREQ_450)
6698                 return 450000;
6699         else if (IS_HSW_ULT(dev))
6700                 return 337500;
6701         else
6702                 return 540000;
6703 }
6704
6705 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6706 {
6707         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6708                                       CCK_DISPLAY_CLOCK_CONTROL);
6709 }
6710
6711 static int ilk_get_display_clock_speed(struct drm_device *dev)
6712 {
6713         return 450000;
6714 }
6715
6716 static int i945_get_display_clock_speed(struct drm_device *dev)
6717 {
6718         return 400000;
6719 }
6720
6721 static int i915_get_display_clock_speed(struct drm_device *dev)
6722 {
6723         return 333333;
6724 }
6725
6726 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6727 {
6728         return 200000;
6729 }
6730
6731 static int pnv_get_display_clock_speed(struct drm_device *dev)
6732 {
6733         u16 gcfgc = 0;
6734
6735         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6736
6737         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6738         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6739                 return 266667;
6740         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6741                 return 333333;
6742         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6743                 return 444444;
6744         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6745                 return 200000;
6746         default:
6747                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6748         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6749                 return 133333;
6750         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6751                 return 166667;
6752         }
6753 }
6754
6755 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6756 {
6757         u16 gcfgc = 0;
6758
6759         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6760
6761         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6762                 return 133333;
6763         else {
6764                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6765                 case GC_DISPLAY_CLOCK_333_MHZ:
6766                         return 333333;
6767                 default:
6768                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6769                         return 190000;
6770                 }
6771         }
6772 }
6773
6774 static int i865_get_display_clock_speed(struct drm_device *dev)
6775 {
6776         return 266667;
6777 }
6778
6779 static int i85x_get_display_clock_speed(struct drm_device *dev)
6780 {
6781         u16 hpllcc = 0;
6782
6783         /*
6784          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6785          * encoding is different :(
6786          * FIXME is this the right way to detect 852GM/852GMV?
6787          */
6788         if (dev->pdev->revision == 0x1)
6789                 return 133333;
6790
6791         pci_bus_read_config_word(dev->pdev->bus,
6792                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6793
6794         /* Assume that the hardware is in the high speed state.  This
6795          * should be the default.
6796          */
6797         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6798         case GC_CLOCK_133_200:
6799         case GC_CLOCK_133_200_2:
6800         case GC_CLOCK_100_200:
6801                 return 200000;
6802         case GC_CLOCK_166_250:
6803                 return 250000;
6804         case GC_CLOCK_100_133:
6805                 return 133333;
6806         case GC_CLOCK_133_266:
6807         case GC_CLOCK_133_266_2:
6808         case GC_CLOCK_166_266:
6809                 return 266667;
6810         }
6811
6812         /* Shouldn't happen */
6813         return 0;
6814 }
6815
6816 static int i830_get_display_clock_speed(struct drm_device *dev)
6817 {
6818         return 133333;
6819 }
6820
6821 static unsigned int intel_hpll_vco(struct drm_device *dev)
6822 {
6823         struct drm_i915_private *dev_priv = dev->dev_private;
6824         static const unsigned int blb_vco[8] = {
6825                 [0] = 3200000,
6826                 [1] = 4000000,
6827                 [2] = 5333333,
6828                 [3] = 4800000,
6829                 [4] = 6400000,
6830         };
6831         static const unsigned int pnv_vco[8] = {
6832                 [0] = 3200000,
6833                 [1] = 4000000,
6834                 [2] = 5333333,
6835                 [3] = 4800000,
6836                 [4] = 2666667,
6837         };
6838         static const unsigned int cl_vco[8] = {
6839                 [0] = 3200000,
6840                 [1] = 4000000,
6841                 [2] = 5333333,
6842                 [3] = 6400000,
6843                 [4] = 3333333,
6844                 [5] = 3566667,
6845                 [6] = 4266667,
6846         };
6847         static const unsigned int elk_vco[8] = {
6848                 [0] = 3200000,
6849                 [1] = 4000000,
6850                 [2] = 5333333,
6851                 [3] = 4800000,
6852         };
6853         static const unsigned int ctg_vco[8] = {
6854                 [0] = 3200000,
6855                 [1] = 4000000,
6856                 [2] = 5333333,
6857                 [3] = 6400000,
6858                 [4] = 2666667,
6859                 [5] = 4266667,
6860         };
6861         const unsigned int *vco_table;
6862         unsigned int vco;
6863         uint8_t tmp = 0;
6864
6865         /* FIXME other chipsets? */
6866         if (IS_GM45(dev))
6867                 vco_table = ctg_vco;
6868         else if (IS_G4X(dev))
6869                 vco_table = elk_vco;
6870         else if (IS_CRESTLINE(dev))
6871                 vco_table = cl_vco;
6872         else if (IS_PINEVIEW(dev))
6873                 vco_table = pnv_vco;
6874         else if (IS_G33(dev))
6875                 vco_table = blb_vco;
6876         else
6877                 return 0;
6878
6879         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6880
6881         vco = vco_table[tmp & 0x7];
6882         if (vco == 0)
6883                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6884         else
6885                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6886
6887         return vco;
6888 }
6889
6890 static int gm45_get_display_clock_speed(struct drm_device *dev)
6891 {
6892         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6893         uint16_t tmp = 0;
6894
6895         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6896
6897         cdclk_sel = (tmp >> 12) & 0x1;
6898
6899         switch (vco) {
6900         case 2666667:
6901         case 4000000:
6902         case 5333333:
6903                 return cdclk_sel ? 333333 : 222222;
6904         case 3200000:
6905                 return cdclk_sel ? 320000 : 228571;
6906         default:
6907                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6908                 return 222222;
6909         }
6910 }
6911
6912 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6913 {
6914         static const uint8_t div_3200[] = { 16, 10,  8 };
6915         static const uint8_t div_4000[] = { 20, 12, 10 };
6916         static const uint8_t div_5333[] = { 24, 16, 14 };
6917         const uint8_t *div_table;
6918         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6919         uint16_t tmp = 0;
6920
6921         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6922
6923         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6924
6925         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6926                 goto fail;
6927
6928         switch (vco) {
6929         case 3200000:
6930                 div_table = div_3200;
6931                 break;
6932         case 4000000:
6933                 div_table = div_4000;
6934                 break;
6935         case 5333333:
6936                 div_table = div_5333;
6937                 break;
6938         default:
6939                 goto fail;
6940         }
6941
6942         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6943
6944 fail:
6945         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6946         return 200000;
6947 }
6948
6949 static int g33_get_display_clock_speed(struct drm_device *dev)
6950 {
6951         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
6952         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
6953         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6954         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6955         const uint8_t *div_table;
6956         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6957         uint16_t tmp = 0;
6958
6959         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6960
6961         cdclk_sel = (tmp >> 4) & 0x7;
6962
6963         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6964                 goto fail;
6965
6966         switch (vco) {
6967         case 3200000:
6968                 div_table = div_3200;
6969                 break;
6970         case 4000000:
6971                 div_table = div_4000;
6972                 break;
6973         case 4800000:
6974                 div_table = div_4800;
6975                 break;
6976         case 5333333:
6977                 div_table = div_5333;
6978                 break;
6979         default:
6980                 goto fail;
6981         }
6982
6983         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6984
6985 fail:
6986         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
6987         return 190476;
6988 }
6989
6990 static void
6991 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6992 {
6993         while (*num > DATA_LINK_M_N_MASK ||
6994                *den > DATA_LINK_M_N_MASK) {
6995                 *num >>= 1;
6996                 *den >>= 1;
6997         }
6998 }
6999
7000 static void compute_m_n(unsigned int m, unsigned int n,
7001                         uint32_t *ret_m, uint32_t *ret_n)
7002 {
7003         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7004         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7005         intel_reduce_m_n_ratio(ret_m, ret_n);
7006 }
7007
7008 void
7009 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7010                        int pixel_clock, int link_clock,
7011                        struct intel_link_m_n *m_n)
7012 {
7013         m_n->tu = 64;
7014
7015         compute_m_n(bits_per_pixel * pixel_clock,
7016                     link_clock * nlanes * 8,
7017                     &m_n->gmch_m, &m_n->gmch_n);
7018
7019         compute_m_n(pixel_clock, link_clock,
7020                     &m_n->link_m, &m_n->link_n);
7021 }
7022
7023 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7024 {
7025         if (i915.panel_use_ssc >= 0)
7026                 return i915.panel_use_ssc != 0;
7027         return dev_priv->vbt.lvds_use_ssc
7028                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7029 }
7030
7031 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7032 {
7033         return (1 << dpll->n) << 16 | dpll->m2;
7034 }
7035
7036 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7037 {
7038         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7039 }
7040
7041 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7042                                      struct intel_crtc_state *crtc_state,
7043                                      intel_clock_t *reduced_clock)
7044 {
7045         struct drm_device *dev = crtc->base.dev;
7046         u32 fp, fp2 = 0;
7047
7048         if (IS_PINEVIEW(dev)) {
7049                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7050                 if (reduced_clock)
7051                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7052         } else {
7053                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7054                 if (reduced_clock)
7055                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7056         }
7057
7058         crtc_state->dpll_hw_state.fp0 = fp;
7059
7060         crtc->lowfreq_avail = false;
7061         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7062             reduced_clock) {
7063                 crtc_state->dpll_hw_state.fp1 = fp2;
7064                 crtc->lowfreq_avail = true;
7065         } else {
7066                 crtc_state->dpll_hw_state.fp1 = fp;
7067         }
7068 }
7069
7070 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7071                 pipe)
7072 {
7073         u32 reg_val;
7074
7075         /*
7076          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7077          * and set it to a reasonable value instead.
7078          */
7079         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7080         reg_val &= 0xffffff00;
7081         reg_val |= 0x00000030;
7082         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7083
7084         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7085         reg_val &= 0x8cffffff;
7086         reg_val = 0x8c000000;
7087         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7088
7089         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7090         reg_val &= 0xffffff00;
7091         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7092
7093         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7094         reg_val &= 0x00ffffff;
7095         reg_val |= 0xb0000000;
7096         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7097 }
7098
7099 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7100                                          struct intel_link_m_n *m_n)
7101 {
7102         struct drm_device *dev = crtc->base.dev;
7103         struct drm_i915_private *dev_priv = dev->dev_private;
7104         int pipe = crtc->pipe;
7105
7106         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7107         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7108         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7109         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7110 }
7111
7112 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7113                                          struct intel_link_m_n *m_n,
7114                                          struct intel_link_m_n *m2_n2)
7115 {
7116         struct drm_device *dev = crtc->base.dev;
7117         struct drm_i915_private *dev_priv = dev->dev_private;
7118         int pipe = crtc->pipe;
7119         enum transcoder transcoder = crtc->config->cpu_transcoder;
7120
7121         if (INTEL_INFO(dev)->gen >= 5) {
7122                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7123                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7124                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7125                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7126                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7127                  * for gen < 8) and if DRRS is supported (to make sure the
7128                  * registers are not unnecessarily accessed).
7129                  */
7130                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7131                         crtc->config->has_drrs) {
7132                         I915_WRITE(PIPE_DATA_M2(transcoder),
7133                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7134                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7135                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7136                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7137                 }
7138         } else {
7139                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7140                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7141                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7142                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7143         }
7144 }
7145
7146 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7147 {
7148         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7149
7150         if (m_n == M1_N1) {
7151                 dp_m_n = &crtc->config->dp_m_n;
7152                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7153         } else if (m_n == M2_N2) {
7154
7155                 /*
7156                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7157                  * needs to be programmed into M1_N1.
7158                  */
7159                 dp_m_n = &crtc->config->dp_m2_n2;
7160         } else {
7161                 DRM_ERROR("Unsupported divider value\n");
7162                 return;
7163         }
7164
7165         if (crtc->config->has_pch_encoder)
7166                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7167         else
7168                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7169 }
7170
7171 static void vlv_compute_dpll(struct intel_crtc *crtc,
7172                              struct intel_crtc_state *pipe_config)
7173 {
7174         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7175                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7176                 DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV;
7177         if (crtc->pipe != PIPE_A)
7178                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7179
7180         pipe_config->dpll_hw_state.dpll_md =
7181                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7182 }
7183
7184 static void chv_compute_dpll(struct intel_crtc *crtc,
7185                              struct intel_crtc_state *pipe_config)
7186 {
7187         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7188                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7189                 DPLL_VCO_ENABLE;
7190         if (crtc->pipe != PIPE_A)
7191                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7192
7193         pipe_config->dpll_hw_state.dpll_md =
7194                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7195 }
7196
7197 static void vlv_prepare_pll(struct intel_crtc *crtc,
7198                             const struct intel_crtc_state *pipe_config)
7199 {
7200         struct drm_device *dev = crtc->base.dev;
7201         struct drm_i915_private *dev_priv = dev->dev_private;
7202         int pipe = crtc->pipe;
7203         u32 mdiv;
7204         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7205         u32 coreclk, reg_val;
7206
7207         mutex_lock(&dev_priv->sb_lock);
7208
7209         bestn = pipe_config->dpll.n;
7210         bestm1 = pipe_config->dpll.m1;
7211         bestm2 = pipe_config->dpll.m2;
7212         bestp1 = pipe_config->dpll.p1;
7213         bestp2 = pipe_config->dpll.p2;
7214
7215         /* See eDP HDMI DPIO driver vbios notes doc */
7216
7217         /* PLL B needs special handling */
7218         if (pipe == PIPE_B)
7219                 vlv_pllb_recal_opamp(dev_priv, pipe);
7220
7221         /* Set up Tx target for periodic Rcomp update */
7222         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7223
7224         /* Disable target IRef on PLL */
7225         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7226         reg_val &= 0x00ffffff;
7227         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7228
7229         /* Disable fast lock */
7230         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7231
7232         /* Set idtafcrecal before PLL is enabled */
7233         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7234         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7235         mdiv |= ((bestn << DPIO_N_SHIFT));
7236         mdiv |= (1 << DPIO_K_SHIFT);
7237
7238         /*
7239          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7240          * but we don't support that).
7241          * Note: don't use the DAC post divider as it seems unstable.
7242          */
7243         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7244         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7245
7246         mdiv |= DPIO_ENABLE_CALIBRATION;
7247         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7248
7249         /* Set HBR and RBR LPF coefficients */
7250         if (pipe_config->port_clock == 162000 ||
7251             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7252             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7253                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7254                                  0x009f0003);
7255         else
7256                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7257                                  0x00d0000f);
7258
7259         if (pipe_config->has_dp_encoder) {
7260                 /* Use SSC source */
7261                 if (pipe == PIPE_A)
7262                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7263                                          0x0df40000);
7264                 else
7265                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7266                                          0x0df70000);
7267         } else { /* HDMI or VGA */
7268                 /* Use bend source */
7269                 if (pipe == PIPE_A)
7270                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7271                                          0x0df70000);
7272                 else
7273                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7274                                          0x0df40000);
7275         }
7276
7277         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7278         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7279         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7280             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7281                 coreclk |= 0x01000000;
7282         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7283
7284         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7285         mutex_unlock(&dev_priv->sb_lock);
7286 }
7287
7288 static void chv_prepare_pll(struct intel_crtc *crtc,
7289                             const struct intel_crtc_state *pipe_config)
7290 {
7291         struct drm_device *dev = crtc->base.dev;
7292         struct drm_i915_private *dev_priv = dev->dev_private;
7293         int pipe = crtc->pipe;
7294         i915_reg_t dpll_reg = DPLL(crtc->pipe);
7295         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7296         u32 loopfilter, tribuf_calcntr;
7297         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7298         u32 dpio_val;
7299         int vco;
7300
7301         bestn = pipe_config->dpll.n;
7302         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7303         bestm1 = pipe_config->dpll.m1;
7304         bestm2 = pipe_config->dpll.m2 >> 22;
7305         bestp1 = pipe_config->dpll.p1;
7306         bestp2 = pipe_config->dpll.p2;
7307         vco = pipe_config->dpll.vco;
7308         dpio_val = 0;
7309         loopfilter = 0;
7310
7311         /*
7312          * Enable Refclk and SSC
7313          */
7314         I915_WRITE(dpll_reg,
7315                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7316
7317         mutex_lock(&dev_priv->sb_lock);
7318
7319         /* p1 and p2 divider */
7320         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7321                         5 << DPIO_CHV_S1_DIV_SHIFT |
7322                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7323                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7324                         1 << DPIO_CHV_K_DIV_SHIFT);
7325
7326         /* Feedback post-divider - m2 */
7327         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7328
7329         /* Feedback refclk divider - n and m1 */
7330         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7331                         DPIO_CHV_M1_DIV_BY_2 |
7332                         1 << DPIO_CHV_N_DIV_SHIFT);
7333
7334         /* M2 fraction division */
7335         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7336
7337         /* M2 fraction division enable */
7338         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7339         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7340         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7341         if (bestm2_frac)
7342                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7343         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7344
7345         /* Program digital lock detect threshold */
7346         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7347         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7348                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7349         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7350         if (!bestm2_frac)
7351                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7352         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7353
7354         /* Loop filter */
7355         if (vco == 5400000) {
7356                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7357                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7358                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7359                 tribuf_calcntr = 0x9;
7360         } else if (vco <= 6200000) {
7361                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7362                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7363                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7364                 tribuf_calcntr = 0x9;
7365         } else if (vco <= 6480000) {
7366                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7367                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7368                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7369                 tribuf_calcntr = 0x8;
7370         } else {
7371                 /* Not supported. Apply the same limits as in the max case */
7372                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7373                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7374                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7375                 tribuf_calcntr = 0;
7376         }
7377         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7378
7379         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7380         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7381         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7382         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7383
7384         /* AFC Recal */
7385         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7386                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7387                         DPIO_AFC_RECAL);
7388
7389         mutex_unlock(&dev_priv->sb_lock);
7390 }
7391
7392 /**
7393  * vlv_force_pll_on - forcibly enable just the PLL
7394  * @dev_priv: i915 private structure
7395  * @pipe: pipe PLL to enable
7396  * @dpll: PLL configuration
7397  *
7398  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7399  * in cases where we need the PLL enabled even when @pipe is not going to
7400  * be enabled.
7401  */
7402 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7403                      const struct dpll *dpll)
7404 {
7405         struct intel_crtc *crtc =
7406                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7407         struct intel_crtc_state *pipe_config;
7408
7409         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7410         if (!pipe_config)
7411                 return -ENOMEM;
7412
7413         pipe_config->base.crtc = &crtc->base;
7414         pipe_config->pixel_multiplier = 1;
7415         pipe_config->dpll = *dpll;
7416
7417         if (IS_CHERRYVIEW(dev)) {
7418                 chv_compute_dpll(crtc, pipe_config);
7419                 chv_prepare_pll(crtc, pipe_config);
7420                 chv_enable_pll(crtc, pipe_config);
7421         } else {
7422                 vlv_compute_dpll(crtc, pipe_config);
7423                 vlv_prepare_pll(crtc, pipe_config);
7424                 vlv_enable_pll(crtc, pipe_config);
7425         }
7426
7427         kfree(pipe_config);
7428
7429         return 0;
7430 }
7431
7432 /**
7433  * vlv_force_pll_off - forcibly disable just the PLL
7434  * @dev_priv: i915 private structure
7435  * @pipe: pipe PLL to disable
7436  *
7437  * Disable the PLL for @pipe. To be used in cases where we need
7438  * the PLL enabled even when @pipe is not going to be enabled.
7439  */
7440 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7441 {
7442         if (IS_CHERRYVIEW(dev))
7443                 chv_disable_pll(to_i915(dev), pipe);
7444         else
7445                 vlv_disable_pll(to_i915(dev), pipe);
7446 }
7447
7448 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7449                               struct intel_crtc_state *crtc_state,
7450                               intel_clock_t *reduced_clock)
7451 {
7452         struct drm_device *dev = crtc->base.dev;
7453         struct drm_i915_private *dev_priv = dev->dev_private;
7454         u32 dpll;
7455         bool is_sdvo;
7456         struct dpll *clock = &crtc_state->dpll;
7457
7458         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7459
7460         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7461                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7462
7463         dpll = DPLL_VGA_MODE_DIS;
7464
7465         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7466                 dpll |= DPLLB_MODE_LVDS;
7467         else
7468                 dpll |= DPLLB_MODE_DAC_SERIAL;
7469
7470         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7471                 dpll |= (crtc_state->pixel_multiplier - 1)
7472                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7473         }
7474
7475         if (is_sdvo)
7476                 dpll |= DPLL_SDVO_HIGH_SPEED;
7477
7478         if (crtc_state->has_dp_encoder)
7479                 dpll |= DPLL_SDVO_HIGH_SPEED;
7480
7481         /* compute bitmask from p1 value */
7482         if (IS_PINEVIEW(dev))
7483                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7484         else {
7485                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7486                 if (IS_G4X(dev) && reduced_clock)
7487                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7488         }
7489         switch (clock->p2) {
7490         case 5:
7491                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7492                 break;
7493         case 7:
7494                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7495                 break;
7496         case 10:
7497                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7498                 break;
7499         case 14:
7500                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7501                 break;
7502         }
7503         if (INTEL_INFO(dev)->gen >= 4)
7504                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7505
7506         if (crtc_state->sdvo_tv_clock)
7507                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7508         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7509                  intel_panel_use_ssc(dev_priv))
7510                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7511         else
7512                 dpll |= PLL_REF_INPUT_DREFCLK;
7513
7514         dpll |= DPLL_VCO_ENABLE;
7515         crtc_state->dpll_hw_state.dpll = dpll;
7516
7517         if (INTEL_INFO(dev)->gen >= 4) {
7518                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7519                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7520                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7521         }
7522 }
7523
7524 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7525                               struct intel_crtc_state *crtc_state,
7526                               intel_clock_t *reduced_clock)
7527 {
7528         struct drm_device *dev = crtc->base.dev;
7529         struct drm_i915_private *dev_priv = dev->dev_private;
7530         u32 dpll;
7531         struct dpll *clock = &crtc_state->dpll;
7532
7533         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7534
7535         dpll = DPLL_VGA_MODE_DIS;
7536
7537         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7538                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7539         } else {
7540                 if (clock->p1 == 2)
7541                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7542                 else
7543                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7544                 if (clock->p2 == 4)
7545                         dpll |= PLL_P2_DIVIDE_BY_4;
7546         }
7547
7548         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7549                 dpll |= DPLL_DVO_2X_MODE;
7550
7551         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7552             intel_panel_use_ssc(dev_priv))
7553                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7554         else
7555                 dpll |= PLL_REF_INPUT_DREFCLK;
7556
7557         dpll |= DPLL_VCO_ENABLE;
7558         crtc_state->dpll_hw_state.dpll = dpll;
7559 }
7560
7561 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7562 {
7563         struct drm_device *dev = intel_crtc->base.dev;
7564         struct drm_i915_private *dev_priv = dev->dev_private;
7565         enum pipe pipe = intel_crtc->pipe;
7566         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7567         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7568         uint32_t crtc_vtotal, crtc_vblank_end;
7569         int vsyncshift = 0;
7570
7571         /* We need to be careful not to changed the adjusted mode, for otherwise
7572          * the hw state checker will get angry at the mismatch. */
7573         crtc_vtotal = adjusted_mode->crtc_vtotal;
7574         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7575
7576         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7577                 /* the chip adds 2 halflines automatically */
7578                 crtc_vtotal -= 1;
7579                 crtc_vblank_end -= 1;
7580
7581                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7582                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7583                 else
7584                         vsyncshift = adjusted_mode->crtc_hsync_start -
7585                                 adjusted_mode->crtc_htotal / 2;
7586                 if (vsyncshift < 0)
7587                         vsyncshift += adjusted_mode->crtc_htotal;
7588         }
7589
7590         if (INTEL_INFO(dev)->gen > 3)
7591                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7592
7593         I915_WRITE(HTOTAL(cpu_transcoder),
7594                    (adjusted_mode->crtc_hdisplay - 1) |
7595                    ((adjusted_mode->crtc_htotal - 1) << 16));
7596         I915_WRITE(HBLANK(cpu_transcoder),
7597                    (adjusted_mode->crtc_hblank_start - 1) |
7598                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7599         I915_WRITE(HSYNC(cpu_transcoder),
7600                    (adjusted_mode->crtc_hsync_start - 1) |
7601                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7602
7603         I915_WRITE(VTOTAL(cpu_transcoder),
7604                    (adjusted_mode->crtc_vdisplay - 1) |
7605                    ((crtc_vtotal - 1) << 16));
7606         I915_WRITE(VBLANK(cpu_transcoder),
7607                    (adjusted_mode->crtc_vblank_start - 1) |
7608                    ((crtc_vblank_end - 1) << 16));
7609         I915_WRITE(VSYNC(cpu_transcoder),
7610                    (adjusted_mode->crtc_vsync_start - 1) |
7611                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7612
7613         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7614          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7615          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7616          * bits. */
7617         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7618             (pipe == PIPE_B || pipe == PIPE_C))
7619                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7620
7621 }
7622
7623 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7624 {
7625         struct drm_device *dev = intel_crtc->base.dev;
7626         struct drm_i915_private *dev_priv = dev->dev_private;
7627         enum pipe pipe = intel_crtc->pipe;
7628
7629         /* pipesrc controls the size that is scaled from, which should
7630          * always be the user's requested size.
7631          */
7632         I915_WRITE(PIPESRC(pipe),
7633                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7634                    (intel_crtc->config->pipe_src_h - 1));
7635 }
7636
7637 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7638                                    struct intel_crtc_state *pipe_config)
7639 {
7640         struct drm_device *dev = crtc->base.dev;
7641         struct drm_i915_private *dev_priv = dev->dev_private;
7642         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7643         uint32_t tmp;
7644
7645         tmp = I915_READ(HTOTAL(cpu_transcoder));
7646         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7647         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7648         tmp = I915_READ(HBLANK(cpu_transcoder));
7649         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7650         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7651         tmp = I915_READ(HSYNC(cpu_transcoder));
7652         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7653         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7654
7655         tmp = I915_READ(VTOTAL(cpu_transcoder));
7656         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7657         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7658         tmp = I915_READ(VBLANK(cpu_transcoder));
7659         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7660         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7661         tmp = I915_READ(VSYNC(cpu_transcoder));
7662         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7663         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7664
7665         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7666                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7667                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7668                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7669         }
7670 }
7671
7672 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7673                                     struct intel_crtc_state *pipe_config)
7674 {
7675         struct drm_device *dev = crtc->base.dev;
7676         struct drm_i915_private *dev_priv = dev->dev_private;
7677         u32 tmp;
7678
7679         tmp = I915_READ(PIPESRC(crtc->pipe));
7680         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7681         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7682
7683         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7684         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7685 }
7686
7687 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7688                                  struct intel_crtc_state *pipe_config)
7689 {
7690         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7691         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7692         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7693         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7694
7695         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7696         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7697         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7698         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7699
7700         mode->flags = pipe_config->base.adjusted_mode.flags;
7701         mode->type = DRM_MODE_TYPE_DRIVER;
7702
7703         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7704         mode->flags |= pipe_config->base.adjusted_mode.flags;
7705
7706         mode->hsync = drm_mode_hsync(mode);
7707         mode->vrefresh = drm_mode_vrefresh(mode);
7708         drm_mode_set_name(mode);
7709 }
7710
7711 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7712 {
7713         struct drm_device *dev = intel_crtc->base.dev;
7714         struct drm_i915_private *dev_priv = dev->dev_private;
7715         uint32_t pipeconf;
7716
7717         pipeconf = 0;
7718
7719         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7720             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7721                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7722
7723         if (intel_crtc->config->double_wide)
7724                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7725
7726         /* only g4x and later have fancy bpc/dither controls */
7727         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7728                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7729                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7730                         pipeconf |= PIPECONF_DITHER_EN |
7731                                     PIPECONF_DITHER_TYPE_SP;
7732
7733                 switch (intel_crtc->config->pipe_bpp) {
7734                 case 18:
7735                         pipeconf |= PIPECONF_6BPC;
7736                         break;
7737                 case 24:
7738                         pipeconf |= PIPECONF_8BPC;
7739                         break;
7740                 case 30:
7741                         pipeconf |= PIPECONF_10BPC;
7742                         break;
7743                 default:
7744                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7745                         BUG();
7746                 }
7747         }
7748
7749         if (HAS_PIPE_CXSR(dev)) {
7750                 if (intel_crtc->lowfreq_avail) {
7751                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7752                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7753                 } else {
7754                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7755                 }
7756         }
7757
7758         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7759                 if (INTEL_INFO(dev)->gen < 4 ||
7760                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7761                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7762                 else
7763                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7764         } else
7765                 pipeconf |= PIPECONF_PROGRESSIVE;
7766
7767         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7768              intel_crtc->config->limited_color_range)
7769                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7770
7771         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7772         POSTING_READ(PIPECONF(intel_crtc->pipe));
7773 }
7774
7775 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7776                                    struct intel_crtc_state *crtc_state)
7777 {
7778         struct drm_device *dev = crtc->base.dev;
7779         struct drm_i915_private *dev_priv = dev->dev_private;
7780         const intel_limit_t *limit;
7781         int refclk = 48000;
7782
7783         memset(&crtc_state->dpll_hw_state, 0,
7784                sizeof(crtc_state->dpll_hw_state));
7785
7786         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7787                 if (intel_panel_use_ssc(dev_priv)) {
7788                         refclk = dev_priv->vbt.lvds_ssc_freq;
7789                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7790                 }
7791
7792                 limit = &intel_limits_i8xx_lvds;
7793         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO)) {
7794                 limit = &intel_limits_i8xx_dvo;
7795         } else {
7796                 limit = &intel_limits_i8xx_dac;
7797         }
7798
7799         if (!crtc_state->clock_set &&
7800             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7801                                  refclk, NULL, &crtc_state->dpll)) {
7802                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7803                 return -EINVAL;
7804         }
7805
7806         i8xx_compute_dpll(crtc, crtc_state, NULL);
7807
7808         return 0;
7809 }
7810
7811 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7812                                   struct intel_crtc_state *crtc_state)
7813 {
7814         struct drm_device *dev = crtc->base.dev;
7815         struct drm_i915_private *dev_priv = dev->dev_private;
7816         const intel_limit_t *limit;
7817         int refclk = 96000;
7818
7819         memset(&crtc_state->dpll_hw_state, 0,
7820                sizeof(crtc_state->dpll_hw_state));
7821
7822         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7823                 if (intel_panel_use_ssc(dev_priv)) {
7824                         refclk = dev_priv->vbt.lvds_ssc_freq;
7825                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7826                 }
7827
7828                 if (intel_is_dual_link_lvds(dev))
7829                         limit = &intel_limits_g4x_dual_channel_lvds;
7830                 else
7831                         limit = &intel_limits_g4x_single_channel_lvds;
7832         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7833                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7834                 limit = &intel_limits_g4x_hdmi;
7835         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7836                 limit = &intel_limits_g4x_sdvo;
7837         } else {
7838                 /* The option is for other outputs */
7839                 limit = &intel_limits_i9xx_sdvo;
7840         }
7841
7842         if (!crtc_state->clock_set &&
7843             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7844                                 refclk, NULL, &crtc_state->dpll)) {
7845                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7846                 return -EINVAL;
7847         }
7848
7849         i9xx_compute_dpll(crtc, crtc_state, NULL);
7850
7851         return 0;
7852 }
7853
7854 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7855                                   struct intel_crtc_state *crtc_state)
7856 {
7857         struct drm_device *dev = crtc->base.dev;
7858         struct drm_i915_private *dev_priv = dev->dev_private;
7859         const intel_limit_t *limit;
7860         int refclk = 96000;
7861
7862         memset(&crtc_state->dpll_hw_state, 0,
7863                sizeof(crtc_state->dpll_hw_state));
7864
7865         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7866                 if (intel_panel_use_ssc(dev_priv)) {
7867                         refclk = dev_priv->vbt.lvds_ssc_freq;
7868                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7869                 }
7870
7871                 limit = &intel_limits_pineview_lvds;
7872         } else {
7873                 limit = &intel_limits_pineview_sdvo;
7874         }
7875
7876         if (!crtc_state->clock_set &&
7877             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7878                                 refclk, NULL, &crtc_state->dpll)) {
7879                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7880                 return -EINVAL;
7881         }
7882
7883         i9xx_compute_dpll(crtc, crtc_state, NULL);
7884
7885         return 0;
7886 }
7887
7888 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7889                                    struct intel_crtc_state *crtc_state)
7890 {
7891         struct drm_device *dev = crtc->base.dev;
7892         struct drm_i915_private *dev_priv = dev->dev_private;
7893         const intel_limit_t *limit;
7894         int refclk = 96000;
7895
7896         memset(&crtc_state->dpll_hw_state, 0,
7897                sizeof(crtc_state->dpll_hw_state));
7898
7899         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7900                 if (intel_panel_use_ssc(dev_priv)) {
7901                         refclk = dev_priv->vbt.lvds_ssc_freq;
7902                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7903                 }
7904
7905                 limit = &intel_limits_i9xx_lvds;
7906         } else {
7907                 limit = &intel_limits_i9xx_sdvo;
7908         }
7909
7910         if (!crtc_state->clock_set &&
7911             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7912                                  refclk, NULL, &crtc_state->dpll)) {
7913                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7914                 return -EINVAL;
7915         }
7916
7917         i9xx_compute_dpll(crtc, crtc_state, NULL);
7918
7919         return 0;
7920 }
7921
7922 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7923                                   struct intel_crtc_state *crtc_state)
7924 {
7925         int refclk = 100000;
7926         const intel_limit_t *limit = &intel_limits_chv;
7927
7928         memset(&crtc_state->dpll_hw_state, 0,
7929                sizeof(crtc_state->dpll_hw_state));
7930
7931         if (crtc_state->has_dsi_encoder)
7932                 return 0;
7933
7934         if (!crtc_state->clock_set &&
7935             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7936                                 refclk, NULL, &crtc_state->dpll)) {
7937                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7938                 return -EINVAL;
7939         }
7940
7941         chv_compute_dpll(crtc, crtc_state);
7942
7943         return 0;
7944 }
7945
7946 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7947                                   struct intel_crtc_state *crtc_state)
7948 {
7949         int refclk = 100000;
7950         const intel_limit_t *limit = &intel_limits_vlv;
7951
7952         memset(&crtc_state->dpll_hw_state, 0,
7953                sizeof(crtc_state->dpll_hw_state));
7954
7955         if (crtc_state->has_dsi_encoder)
7956                 return 0;
7957
7958         if (!crtc_state->clock_set &&
7959             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7960                                 refclk, NULL, &crtc_state->dpll)) {
7961                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7962                 return -EINVAL;
7963         }
7964
7965         vlv_compute_dpll(crtc, crtc_state);
7966
7967         return 0;
7968 }
7969
7970 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7971                                  struct intel_crtc_state *pipe_config)
7972 {
7973         struct drm_device *dev = crtc->base.dev;
7974         struct drm_i915_private *dev_priv = dev->dev_private;
7975         uint32_t tmp;
7976
7977         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7978                 return;
7979
7980         tmp = I915_READ(PFIT_CONTROL);
7981         if (!(tmp & PFIT_ENABLE))
7982                 return;
7983
7984         /* Check whether the pfit is attached to our pipe. */
7985         if (INTEL_INFO(dev)->gen < 4) {
7986                 if (crtc->pipe != PIPE_B)
7987                         return;
7988         } else {
7989                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7990                         return;
7991         }
7992
7993         pipe_config->gmch_pfit.control = tmp;
7994         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7995         if (INTEL_INFO(dev)->gen < 5)
7996                 pipe_config->gmch_pfit.lvds_border_bits =
7997                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7998 }
7999
8000 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8001                                struct intel_crtc_state *pipe_config)
8002 {
8003         struct drm_device *dev = crtc->base.dev;
8004         struct drm_i915_private *dev_priv = dev->dev_private;
8005         int pipe = pipe_config->cpu_transcoder;
8006         intel_clock_t clock;
8007         u32 mdiv;
8008         int refclk = 100000;
8009
8010         /* In case of MIPI DPLL will not even be used */
8011         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8012                 return;
8013
8014         mutex_lock(&dev_priv->sb_lock);
8015         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8016         mutex_unlock(&dev_priv->sb_lock);
8017
8018         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8019         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8020         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8021         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8022         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8023
8024         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8025 }
8026
8027 static void
8028 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8029                               struct intel_initial_plane_config *plane_config)
8030 {
8031         struct drm_device *dev = crtc->base.dev;
8032         struct drm_i915_private *dev_priv = dev->dev_private;
8033         u32 val, base, offset;
8034         int pipe = crtc->pipe, plane = crtc->plane;
8035         int fourcc, pixel_format;
8036         unsigned int aligned_height;
8037         struct drm_framebuffer *fb;
8038         struct intel_framebuffer *intel_fb;
8039
8040         val = I915_READ(DSPCNTR(plane));
8041         if (!(val & DISPLAY_PLANE_ENABLE))
8042                 return;
8043
8044         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8045         if (!intel_fb) {
8046                 DRM_DEBUG_KMS("failed to alloc fb\n");
8047                 return;
8048         }
8049
8050         fb = &intel_fb->base;
8051
8052         if (INTEL_INFO(dev)->gen >= 4) {
8053                 if (val & DISPPLANE_TILED) {
8054                         plane_config->tiling = I915_TILING_X;
8055                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8056                 }
8057         }
8058
8059         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8060         fourcc = i9xx_format_to_fourcc(pixel_format);
8061         fb->pixel_format = fourcc;
8062         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8063
8064         if (INTEL_INFO(dev)->gen >= 4) {
8065                 if (plane_config->tiling)
8066                         offset = I915_READ(DSPTILEOFF(plane));
8067                 else
8068                         offset = I915_READ(DSPLINOFF(plane));
8069                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8070         } else {
8071                 base = I915_READ(DSPADDR(plane));
8072         }
8073         plane_config->base = base;
8074
8075         val = I915_READ(PIPESRC(pipe));
8076         fb->width = ((val >> 16) & 0xfff) + 1;
8077         fb->height = ((val >> 0) & 0xfff) + 1;
8078
8079         val = I915_READ(DSPSTRIDE(pipe));
8080         fb->pitches[0] = val & 0xffffffc0;
8081
8082         aligned_height = intel_fb_align_height(dev, fb->height,
8083                                                fb->pixel_format,
8084                                                fb->modifier[0]);
8085
8086         plane_config->size = fb->pitches[0] * aligned_height;
8087
8088         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8089                       pipe_name(pipe), plane, fb->width, fb->height,
8090                       fb->bits_per_pixel, base, fb->pitches[0],
8091                       plane_config->size);
8092
8093         plane_config->fb = intel_fb;
8094 }
8095
8096 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8097                                struct intel_crtc_state *pipe_config)
8098 {
8099         struct drm_device *dev = crtc->base.dev;
8100         struct drm_i915_private *dev_priv = dev->dev_private;
8101         int pipe = pipe_config->cpu_transcoder;
8102         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8103         intel_clock_t clock;
8104         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8105         int refclk = 100000;
8106
8107         mutex_lock(&dev_priv->sb_lock);
8108         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8109         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8110         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8111         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8112         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8113         mutex_unlock(&dev_priv->sb_lock);
8114
8115         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8116         clock.m2 = (pll_dw0 & 0xff) << 22;
8117         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8118                 clock.m2 |= pll_dw2 & 0x3fffff;
8119         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8120         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8121         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8122
8123         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8124 }
8125
8126 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8127                                  struct intel_crtc_state *pipe_config)
8128 {
8129         struct drm_device *dev = crtc->base.dev;
8130         struct drm_i915_private *dev_priv = dev->dev_private;
8131         enum intel_display_power_domain power_domain;
8132         uint32_t tmp;
8133         bool ret;
8134
8135         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8136         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8137                 return false;
8138
8139         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8140         pipe_config->shared_dpll = NULL;
8141
8142         ret = false;
8143
8144         tmp = I915_READ(PIPECONF(crtc->pipe));
8145         if (!(tmp & PIPECONF_ENABLE))
8146                 goto out;
8147
8148         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8149                 switch (tmp & PIPECONF_BPC_MASK) {
8150                 case PIPECONF_6BPC:
8151                         pipe_config->pipe_bpp = 18;
8152                         break;
8153                 case PIPECONF_8BPC:
8154                         pipe_config->pipe_bpp = 24;
8155                         break;
8156                 case PIPECONF_10BPC:
8157                         pipe_config->pipe_bpp = 30;
8158                         break;
8159                 default:
8160                         break;
8161                 }
8162         }
8163
8164         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8165             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8166                 pipe_config->limited_color_range = true;
8167
8168         if (INTEL_INFO(dev)->gen < 4)
8169                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8170
8171         intel_get_pipe_timings(crtc, pipe_config);
8172         intel_get_pipe_src_size(crtc, pipe_config);
8173
8174         i9xx_get_pfit_config(crtc, pipe_config);
8175
8176         if (INTEL_INFO(dev)->gen >= 4) {
8177                 /* No way to read it out on pipes B and C */
8178                 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8179                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
8180                 else
8181                         tmp = I915_READ(DPLL_MD(crtc->pipe));
8182                 pipe_config->pixel_multiplier =
8183                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8184                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8185                 pipe_config->dpll_hw_state.dpll_md = tmp;
8186         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8187                 tmp = I915_READ(DPLL(crtc->pipe));
8188                 pipe_config->pixel_multiplier =
8189                         ((tmp & SDVO_MULTIPLIER_MASK)
8190                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8191         } else {
8192                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8193                  * port and will be fixed up in the encoder->get_config
8194                  * function. */
8195                 pipe_config->pixel_multiplier = 1;
8196         }
8197         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8198         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8199                 /*
8200                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8201                  * on 830. Filter it out here so that we don't
8202                  * report errors due to that.
8203                  */
8204                 if (IS_I830(dev))
8205                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8206
8207                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8208                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8209         } else {
8210                 /* Mask out read-only status bits. */
8211                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8212                                                      DPLL_PORTC_READY_MASK |
8213                                                      DPLL_PORTB_READY_MASK);
8214         }
8215
8216         if (IS_CHERRYVIEW(dev))
8217                 chv_crtc_clock_get(crtc, pipe_config);
8218         else if (IS_VALLEYVIEW(dev))
8219                 vlv_crtc_clock_get(crtc, pipe_config);
8220         else
8221                 i9xx_crtc_clock_get(crtc, pipe_config);
8222
8223         /*
8224          * Normally the dotclock is filled in by the encoder .get_config()
8225          * but in case the pipe is enabled w/o any ports we need a sane
8226          * default.
8227          */
8228         pipe_config->base.adjusted_mode.crtc_clock =
8229                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8230
8231         ret = true;
8232
8233 out:
8234         intel_display_power_put(dev_priv, power_domain);
8235
8236         return ret;
8237 }
8238
8239 static void ironlake_init_pch_refclk(struct drm_device *dev)
8240 {
8241         struct drm_i915_private *dev_priv = dev->dev_private;
8242         struct intel_encoder *encoder;
8243         u32 val, final;
8244         bool has_lvds = false;
8245         bool has_cpu_edp = false;
8246         bool has_panel = false;
8247         bool has_ck505 = false;
8248         bool can_ssc = false;
8249
8250         /* We need to take the global config into account */
8251         for_each_intel_encoder(dev, encoder) {
8252                 switch (encoder->type) {
8253                 case INTEL_OUTPUT_LVDS:
8254                         has_panel = true;
8255                         has_lvds = true;
8256                         break;
8257                 case INTEL_OUTPUT_EDP:
8258                         has_panel = true;
8259                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8260                                 has_cpu_edp = true;
8261                         break;
8262                 default:
8263                         break;
8264                 }
8265         }
8266
8267         if (HAS_PCH_IBX(dev)) {
8268                 has_ck505 = dev_priv->vbt.display_clock_mode;
8269                 can_ssc = has_ck505;
8270         } else {
8271                 has_ck505 = false;
8272                 can_ssc = true;
8273         }
8274
8275         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8276                       has_panel, has_lvds, has_ck505);
8277
8278         /* Ironlake: try to setup display ref clock before DPLL
8279          * enabling. This is only under driver's control after
8280          * PCH B stepping, previous chipset stepping should be
8281          * ignoring this setting.
8282          */
8283         val = I915_READ(PCH_DREF_CONTROL);
8284
8285         /* As we must carefully and slowly disable/enable each source in turn,
8286          * compute the final state we want first and check if we need to
8287          * make any changes at all.
8288          */
8289         final = val;
8290         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8291         if (has_ck505)
8292                 final |= DREF_NONSPREAD_CK505_ENABLE;
8293         else
8294                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8295
8296         final &= ~DREF_SSC_SOURCE_MASK;
8297         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8298         final &= ~DREF_SSC1_ENABLE;
8299
8300         if (has_panel) {
8301                 final |= DREF_SSC_SOURCE_ENABLE;
8302
8303                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8304                         final |= DREF_SSC1_ENABLE;
8305
8306                 if (has_cpu_edp) {
8307                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8308                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8309                         else
8310                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8311                 } else
8312                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8313         } else {
8314                 final |= DREF_SSC_SOURCE_DISABLE;
8315                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8316         }
8317
8318         if (final == val)
8319                 return;
8320
8321         /* Always enable nonspread source */
8322         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8323
8324         if (has_ck505)
8325                 val |= DREF_NONSPREAD_CK505_ENABLE;
8326         else
8327                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8328
8329         if (has_panel) {
8330                 val &= ~DREF_SSC_SOURCE_MASK;
8331                 val |= DREF_SSC_SOURCE_ENABLE;
8332
8333                 /* SSC must be turned on before enabling the CPU output  */
8334                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8335                         DRM_DEBUG_KMS("Using SSC on panel\n");
8336                         val |= DREF_SSC1_ENABLE;
8337                 } else
8338                         val &= ~DREF_SSC1_ENABLE;
8339
8340                 /* Get SSC going before enabling the outputs */
8341                 I915_WRITE(PCH_DREF_CONTROL, val);
8342                 POSTING_READ(PCH_DREF_CONTROL);
8343                 udelay(200);
8344
8345                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8346
8347                 /* Enable CPU source on CPU attached eDP */
8348                 if (has_cpu_edp) {
8349                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8350                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8351                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8352                         } else
8353                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8354                 } else
8355                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8356
8357                 I915_WRITE(PCH_DREF_CONTROL, val);
8358                 POSTING_READ(PCH_DREF_CONTROL);
8359                 udelay(200);
8360         } else {
8361                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8362
8363                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8364
8365                 /* Turn off CPU output */
8366                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8367
8368                 I915_WRITE(PCH_DREF_CONTROL, val);
8369                 POSTING_READ(PCH_DREF_CONTROL);
8370                 udelay(200);
8371
8372                 /* Turn off the SSC source */
8373                 val &= ~DREF_SSC_SOURCE_MASK;
8374                 val |= DREF_SSC_SOURCE_DISABLE;
8375
8376                 /* Turn off SSC1 */
8377                 val &= ~DREF_SSC1_ENABLE;
8378
8379                 I915_WRITE(PCH_DREF_CONTROL, val);
8380                 POSTING_READ(PCH_DREF_CONTROL);
8381                 udelay(200);
8382         }
8383
8384         BUG_ON(val != final);
8385 }
8386
8387 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8388 {
8389         uint32_t tmp;
8390
8391         tmp = I915_READ(SOUTH_CHICKEN2);
8392         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8393         I915_WRITE(SOUTH_CHICKEN2, tmp);
8394
8395         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8396                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8397                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8398
8399         tmp = I915_READ(SOUTH_CHICKEN2);
8400         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8401         I915_WRITE(SOUTH_CHICKEN2, tmp);
8402
8403         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8404                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8405                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8406 }
8407
8408 /* WaMPhyProgramming:hsw */
8409 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8410 {
8411         uint32_t tmp;
8412
8413         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8414         tmp &= ~(0xFF << 24);
8415         tmp |= (0x12 << 24);
8416         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8417
8418         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8419         tmp |= (1 << 11);
8420         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8421
8422         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8423         tmp |= (1 << 11);
8424         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8425
8426         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8427         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8428         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8429
8430         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8431         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8432         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8433
8434         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8435         tmp &= ~(7 << 13);
8436         tmp |= (5 << 13);
8437         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8438
8439         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8440         tmp &= ~(7 << 13);
8441         tmp |= (5 << 13);
8442         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8443
8444         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8445         tmp &= ~0xFF;
8446         tmp |= 0x1C;
8447         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8448
8449         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8450         tmp &= ~0xFF;
8451         tmp |= 0x1C;
8452         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8453
8454         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8455         tmp &= ~(0xFF << 16);
8456         tmp |= (0x1C << 16);
8457         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8458
8459         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8460         tmp &= ~(0xFF << 16);
8461         tmp |= (0x1C << 16);
8462         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8463
8464         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8465         tmp |= (1 << 27);
8466         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8467
8468         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8469         tmp |= (1 << 27);
8470         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8471
8472         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8473         tmp &= ~(0xF << 28);
8474         tmp |= (4 << 28);
8475         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8476
8477         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8478         tmp &= ~(0xF << 28);
8479         tmp |= (4 << 28);
8480         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8481 }
8482
8483 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8484  * Programming" based on the parameters passed:
8485  * - Sequence to enable CLKOUT_DP
8486  * - Sequence to enable CLKOUT_DP without spread
8487  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8488  */
8489 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8490                                  bool with_fdi)
8491 {
8492         struct drm_i915_private *dev_priv = dev->dev_private;
8493         uint32_t reg, tmp;
8494
8495         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8496                 with_spread = true;
8497         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8498                 with_fdi = false;
8499
8500         mutex_lock(&dev_priv->sb_lock);
8501
8502         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8503         tmp &= ~SBI_SSCCTL_DISABLE;
8504         tmp |= SBI_SSCCTL_PATHALT;
8505         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8506
8507         udelay(24);
8508
8509         if (with_spread) {
8510                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8511                 tmp &= ~SBI_SSCCTL_PATHALT;
8512                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8513
8514                 if (with_fdi) {
8515                         lpt_reset_fdi_mphy(dev_priv);
8516                         lpt_program_fdi_mphy(dev_priv);
8517                 }
8518         }
8519
8520         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8521         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8522         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8523         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8524
8525         mutex_unlock(&dev_priv->sb_lock);
8526 }
8527
8528 /* Sequence to disable CLKOUT_DP */
8529 static void lpt_disable_clkout_dp(struct drm_device *dev)
8530 {
8531         struct drm_i915_private *dev_priv = dev->dev_private;
8532         uint32_t reg, tmp;
8533
8534         mutex_lock(&dev_priv->sb_lock);
8535
8536         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8537         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8538         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8539         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8540
8541         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8542         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8543                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8544                         tmp |= SBI_SSCCTL_PATHALT;
8545                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8546                         udelay(32);
8547                 }
8548                 tmp |= SBI_SSCCTL_DISABLE;
8549                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8550         }
8551
8552         mutex_unlock(&dev_priv->sb_lock);
8553 }
8554
8555 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8556
8557 static const uint16_t sscdivintphase[] = {
8558         [BEND_IDX( 50)] = 0x3B23,
8559         [BEND_IDX( 45)] = 0x3B23,
8560         [BEND_IDX( 40)] = 0x3C23,
8561         [BEND_IDX( 35)] = 0x3C23,
8562         [BEND_IDX( 30)] = 0x3D23,
8563         [BEND_IDX( 25)] = 0x3D23,
8564         [BEND_IDX( 20)] = 0x3E23,
8565         [BEND_IDX( 15)] = 0x3E23,
8566         [BEND_IDX( 10)] = 0x3F23,
8567         [BEND_IDX(  5)] = 0x3F23,
8568         [BEND_IDX(  0)] = 0x0025,
8569         [BEND_IDX( -5)] = 0x0025,
8570         [BEND_IDX(-10)] = 0x0125,
8571         [BEND_IDX(-15)] = 0x0125,
8572         [BEND_IDX(-20)] = 0x0225,
8573         [BEND_IDX(-25)] = 0x0225,
8574         [BEND_IDX(-30)] = 0x0325,
8575         [BEND_IDX(-35)] = 0x0325,
8576         [BEND_IDX(-40)] = 0x0425,
8577         [BEND_IDX(-45)] = 0x0425,
8578         [BEND_IDX(-50)] = 0x0525,
8579 };
8580
8581 /*
8582  * Bend CLKOUT_DP
8583  * steps -50 to 50 inclusive, in steps of 5
8584  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8585  * change in clock period = -(steps / 10) * 5.787 ps
8586  */
8587 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8588 {
8589         uint32_t tmp;
8590         int idx = BEND_IDX(steps);
8591
8592         if (WARN_ON(steps % 5 != 0))
8593                 return;
8594
8595         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8596                 return;
8597
8598         mutex_lock(&dev_priv->sb_lock);
8599
8600         if (steps % 10 != 0)
8601                 tmp = 0xAAAAAAAB;
8602         else
8603                 tmp = 0x00000000;
8604         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8605
8606         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8607         tmp &= 0xffff0000;
8608         tmp |= sscdivintphase[idx];
8609         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8610
8611         mutex_unlock(&dev_priv->sb_lock);
8612 }
8613
8614 #undef BEND_IDX
8615
8616 static void lpt_init_pch_refclk(struct drm_device *dev)
8617 {
8618         struct intel_encoder *encoder;
8619         bool has_vga = false;
8620
8621         for_each_intel_encoder(dev, encoder) {
8622                 switch (encoder->type) {
8623                 case INTEL_OUTPUT_ANALOG:
8624                         has_vga = true;
8625                         break;
8626                 default:
8627                         break;
8628                 }
8629         }
8630
8631         if (has_vga) {
8632                 lpt_bend_clkout_dp(to_i915(dev), 0);
8633                 lpt_enable_clkout_dp(dev, true, true);
8634         } else {
8635                 lpt_disable_clkout_dp(dev);
8636         }
8637 }
8638
8639 /*
8640  * Initialize reference clocks when the driver loads
8641  */
8642 void intel_init_pch_refclk(struct drm_device *dev)
8643 {
8644         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8645                 ironlake_init_pch_refclk(dev);
8646         else if (HAS_PCH_LPT(dev))
8647                 lpt_init_pch_refclk(dev);
8648 }
8649
8650 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8651 {
8652         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8653         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8654         int pipe = intel_crtc->pipe;
8655         uint32_t val;
8656
8657         val = 0;
8658
8659         switch (intel_crtc->config->pipe_bpp) {
8660         case 18:
8661                 val |= PIPECONF_6BPC;
8662                 break;
8663         case 24:
8664                 val |= PIPECONF_8BPC;
8665                 break;
8666         case 30:
8667                 val |= PIPECONF_10BPC;
8668                 break;
8669         case 36:
8670                 val |= PIPECONF_12BPC;
8671                 break;
8672         default:
8673                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8674                 BUG();
8675         }
8676
8677         if (intel_crtc->config->dither)
8678                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8679
8680         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8681                 val |= PIPECONF_INTERLACED_ILK;
8682         else
8683                 val |= PIPECONF_PROGRESSIVE;
8684
8685         if (intel_crtc->config->limited_color_range)
8686                 val |= PIPECONF_COLOR_RANGE_SELECT;
8687
8688         I915_WRITE(PIPECONF(pipe), val);
8689         POSTING_READ(PIPECONF(pipe));
8690 }
8691
8692 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8693 {
8694         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8695         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8696         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8697         u32 val = 0;
8698
8699         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8700                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8701
8702         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8703                 val |= PIPECONF_INTERLACED_ILK;
8704         else
8705                 val |= PIPECONF_PROGRESSIVE;
8706
8707         I915_WRITE(PIPECONF(cpu_transcoder), val);
8708         POSTING_READ(PIPECONF(cpu_transcoder));
8709 }
8710
8711 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8712 {
8713         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8714         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8715
8716         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8717                 u32 val = 0;
8718
8719                 switch (intel_crtc->config->pipe_bpp) {
8720                 case 18:
8721                         val |= PIPEMISC_DITHER_6_BPC;
8722                         break;
8723                 case 24:
8724                         val |= PIPEMISC_DITHER_8_BPC;
8725                         break;
8726                 case 30:
8727                         val |= PIPEMISC_DITHER_10_BPC;
8728                         break;
8729                 case 36:
8730                         val |= PIPEMISC_DITHER_12_BPC;
8731                         break;
8732                 default:
8733                         /* Case prevented by pipe_config_set_bpp. */
8734                         BUG();
8735                 }
8736
8737                 if (intel_crtc->config->dither)
8738                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8739
8740                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8741         }
8742 }
8743
8744 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8745 {
8746         /*
8747          * Account for spread spectrum to avoid
8748          * oversubscribing the link. Max center spread
8749          * is 2.5%; use 5% for safety's sake.
8750          */
8751         u32 bps = target_clock * bpp * 21 / 20;
8752         return DIV_ROUND_UP(bps, link_bw * 8);
8753 }
8754
8755 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8756 {
8757         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8758 }
8759
8760 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8761                                   struct intel_crtc_state *crtc_state,
8762                                   intel_clock_t *reduced_clock)
8763 {
8764         struct drm_crtc *crtc = &intel_crtc->base;
8765         struct drm_device *dev = crtc->dev;
8766         struct drm_i915_private *dev_priv = dev->dev_private;
8767         struct drm_atomic_state *state = crtc_state->base.state;
8768         struct drm_connector *connector;
8769         struct drm_connector_state *connector_state;
8770         struct intel_encoder *encoder;
8771         u32 dpll, fp, fp2;
8772         int factor, i;
8773         bool is_lvds = false, is_sdvo = false;
8774
8775         for_each_connector_in_state(state, connector, connector_state, i) {
8776                 if (connector_state->crtc != crtc_state->base.crtc)
8777                         continue;
8778
8779                 encoder = to_intel_encoder(connector_state->best_encoder);
8780
8781                 switch (encoder->type) {
8782                 case INTEL_OUTPUT_LVDS:
8783                         is_lvds = true;
8784                         break;
8785                 case INTEL_OUTPUT_SDVO:
8786                 case INTEL_OUTPUT_HDMI:
8787                         is_sdvo = true;
8788                         break;
8789                 default:
8790                         break;
8791                 }
8792         }
8793
8794         /* Enable autotuning of the PLL clock (if permissible) */
8795         factor = 21;
8796         if (is_lvds) {
8797                 if ((intel_panel_use_ssc(dev_priv) &&
8798                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8799                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8800                         factor = 25;
8801         } else if (crtc_state->sdvo_tv_clock)
8802                 factor = 20;
8803
8804         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8805
8806         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8807                 fp |= FP_CB_TUNE;
8808
8809         if (reduced_clock) {
8810                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8811
8812                 if (reduced_clock->m < factor * reduced_clock->n)
8813                         fp2 |= FP_CB_TUNE;
8814         } else {
8815                 fp2 = fp;
8816         }
8817
8818         dpll = 0;
8819
8820         if (is_lvds)
8821                 dpll |= DPLLB_MODE_LVDS;
8822         else
8823                 dpll |= DPLLB_MODE_DAC_SERIAL;
8824
8825         dpll |= (crtc_state->pixel_multiplier - 1)
8826                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8827
8828         if (is_sdvo)
8829                 dpll |= DPLL_SDVO_HIGH_SPEED;
8830         if (crtc_state->has_dp_encoder)
8831                 dpll |= DPLL_SDVO_HIGH_SPEED;
8832
8833         /* compute bitmask from p1 value */
8834         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8835         /* also FPA1 */
8836         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8837
8838         switch (crtc_state->dpll.p2) {
8839         case 5:
8840                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8841                 break;
8842         case 7:
8843                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8844                 break;
8845         case 10:
8846                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8847                 break;
8848         case 14:
8849                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8850                 break;
8851         }
8852
8853         if (is_lvds && intel_panel_use_ssc(dev_priv))
8854                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8855         else
8856                 dpll |= PLL_REF_INPUT_DREFCLK;
8857
8858         dpll |= DPLL_VCO_ENABLE;
8859
8860         crtc_state->dpll_hw_state.dpll = dpll;
8861         crtc_state->dpll_hw_state.fp0 = fp;
8862         crtc_state->dpll_hw_state.fp1 = fp2;
8863 }
8864
8865 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8866                                        struct intel_crtc_state *crtc_state)
8867 {
8868         struct drm_device *dev = crtc->base.dev;
8869         struct drm_i915_private *dev_priv = dev->dev_private;
8870         intel_clock_t reduced_clock;
8871         bool has_reduced_clock = false;
8872         struct intel_shared_dpll *pll;
8873         const intel_limit_t *limit;
8874         int refclk = 120000;
8875
8876         memset(&crtc_state->dpll_hw_state, 0,
8877                sizeof(crtc_state->dpll_hw_state));
8878
8879         crtc->lowfreq_avail = false;
8880
8881         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8882         if (!crtc_state->has_pch_encoder)
8883                 return 0;
8884
8885         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8886                 if (intel_panel_use_ssc(dev_priv)) {
8887                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8888                                       dev_priv->vbt.lvds_ssc_freq);
8889                         refclk = dev_priv->vbt.lvds_ssc_freq;
8890                 }
8891
8892                 if (intel_is_dual_link_lvds(dev)) {
8893                         if (refclk == 100000)
8894                                 limit = &intel_limits_ironlake_dual_lvds_100m;
8895                         else
8896                                 limit = &intel_limits_ironlake_dual_lvds;
8897                 } else {
8898                         if (refclk == 100000)
8899                                 limit = &intel_limits_ironlake_single_lvds_100m;
8900                         else
8901                                 limit = &intel_limits_ironlake_single_lvds;
8902                 }
8903         } else {
8904                 limit = &intel_limits_ironlake_dac;
8905         }
8906
8907         if (!crtc_state->clock_set &&
8908             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8909                                 refclk, NULL, &crtc_state->dpll)) {
8910                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8911                 return -EINVAL;
8912         }
8913
8914         ironlake_compute_dpll(crtc, crtc_state,
8915                               has_reduced_clock ? &reduced_clock : NULL);
8916
8917         pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
8918         if (pll == NULL) {
8919                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8920                                  pipe_name(crtc->pipe));
8921                 return -EINVAL;
8922         }
8923
8924         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8925             has_reduced_clock)
8926                 crtc->lowfreq_avail = true;
8927
8928         return 0;
8929 }
8930
8931 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8932                                          struct intel_link_m_n *m_n)
8933 {
8934         struct drm_device *dev = crtc->base.dev;
8935         struct drm_i915_private *dev_priv = dev->dev_private;
8936         enum pipe pipe = crtc->pipe;
8937
8938         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8939         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8940         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8941                 & ~TU_SIZE_MASK;
8942         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8943         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8944                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8945 }
8946
8947 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8948                                          enum transcoder transcoder,
8949                                          struct intel_link_m_n *m_n,
8950                                          struct intel_link_m_n *m2_n2)
8951 {
8952         struct drm_device *dev = crtc->base.dev;
8953         struct drm_i915_private *dev_priv = dev->dev_private;
8954         enum pipe pipe = crtc->pipe;
8955
8956         if (INTEL_INFO(dev)->gen >= 5) {
8957                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8958                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8959                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8960                         & ~TU_SIZE_MASK;
8961                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8962                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8963                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8964                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8965                  * gen < 8) and if DRRS is supported (to make sure the
8966                  * registers are not unnecessarily read).
8967                  */
8968                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8969                         crtc->config->has_drrs) {
8970                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8971                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8972                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8973                                         & ~TU_SIZE_MASK;
8974                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8975                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8976                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8977                 }
8978         } else {
8979                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8980                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8981                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8982                         & ~TU_SIZE_MASK;
8983                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8984                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8985                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8986         }
8987 }
8988
8989 void intel_dp_get_m_n(struct intel_crtc *crtc,
8990                       struct intel_crtc_state *pipe_config)
8991 {
8992         if (pipe_config->has_pch_encoder)
8993                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8994         else
8995                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8996                                              &pipe_config->dp_m_n,
8997                                              &pipe_config->dp_m2_n2);
8998 }
8999
9000 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9001                                         struct intel_crtc_state *pipe_config)
9002 {
9003         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9004                                      &pipe_config->fdi_m_n, NULL);
9005 }
9006
9007 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9008                                     struct intel_crtc_state *pipe_config)
9009 {
9010         struct drm_device *dev = crtc->base.dev;
9011         struct drm_i915_private *dev_priv = dev->dev_private;
9012         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9013         uint32_t ps_ctrl = 0;
9014         int id = -1;
9015         int i;
9016
9017         /* find scaler attached to this pipe */
9018         for (i = 0; i < crtc->num_scalers; i++) {
9019                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9020                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9021                         id = i;
9022                         pipe_config->pch_pfit.enabled = true;
9023                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9024                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9025                         break;
9026                 }
9027         }
9028
9029         scaler_state->scaler_id = id;
9030         if (id >= 0) {
9031                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9032         } else {
9033                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9034         }
9035 }
9036
9037 static void
9038 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9039                                  struct intel_initial_plane_config *plane_config)
9040 {
9041         struct drm_device *dev = crtc->base.dev;
9042         struct drm_i915_private *dev_priv = dev->dev_private;
9043         u32 val, base, offset, stride_mult, tiling;
9044         int pipe = crtc->pipe;
9045         int fourcc, pixel_format;
9046         unsigned int aligned_height;
9047         struct drm_framebuffer *fb;
9048         struct intel_framebuffer *intel_fb;
9049
9050         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9051         if (!intel_fb) {
9052                 DRM_DEBUG_KMS("failed to alloc fb\n");
9053                 return;
9054         }
9055
9056         fb = &intel_fb->base;
9057
9058         val = I915_READ(PLANE_CTL(pipe, 0));
9059         if (!(val & PLANE_CTL_ENABLE))
9060                 goto error;
9061
9062         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9063         fourcc = skl_format_to_fourcc(pixel_format,
9064                                       val & PLANE_CTL_ORDER_RGBX,
9065                                       val & PLANE_CTL_ALPHA_MASK);
9066         fb->pixel_format = fourcc;
9067         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9068
9069         tiling = val & PLANE_CTL_TILED_MASK;
9070         switch (tiling) {
9071         case PLANE_CTL_TILED_LINEAR:
9072                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9073                 break;
9074         case PLANE_CTL_TILED_X:
9075                 plane_config->tiling = I915_TILING_X;
9076                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9077                 break;
9078         case PLANE_CTL_TILED_Y:
9079                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9080                 break;
9081         case PLANE_CTL_TILED_YF:
9082                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9083                 break;
9084         default:
9085                 MISSING_CASE(tiling);
9086                 goto error;
9087         }
9088
9089         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9090         plane_config->base = base;
9091
9092         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9093
9094         val = I915_READ(PLANE_SIZE(pipe, 0));
9095         fb->height = ((val >> 16) & 0xfff) + 1;
9096         fb->width = ((val >> 0) & 0x1fff) + 1;
9097
9098         val = I915_READ(PLANE_STRIDE(pipe, 0));
9099         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9100                                                 fb->pixel_format);
9101         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9102
9103         aligned_height = intel_fb_align_height(dev, fb->height,
9104                                                fb->pixel_format,
9105                                                fb->modifier[0]);
9106
9107         plane_config->size = fb->pitches[0] * aligned_height;
9108
9109         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9110                       pipe_name(pipe), fb->width, fb->height,
9111                       fb->bits_per_pixel, base, fb->pitches[0],
9112                       plane_config->size);
9113
9114         plane_config->fb = intel_fb;
9115         return;
9116
9117 error:
9118         kfree(fb);
9119 }
9120
9121 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9122                                      struct intel_crtc_state *pipe_config)
9123 {
9124         struct drm_device *dev = crtc->base.dev;
9125         struct drm_i915_private *dev_priv = dev->dev_private;
9126         uint32_t tmp;
9127
9128         tmp = I915_READ(PF_CTL(crtc->pipe));
9129
9130         if (tmp & PF_ENABLE) {
9131                 pipe_config->pch_pfit.enabled = true;
9132                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9133                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9134
9135                 /* We currently do not free assignements of panel fitters on
9136                  * ivb/hsw (since we don't use the higher upscaling modes which
9137                  * differentiates them) so just WARN about this case for now. */
9138                 if (IS_GEN7(dev)) {
9139                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9140                                 PF_PIPE_SEL_IVB(crtc->pipe));
9141                 }
9142         }
9143 }
9144
9145 static void
9146 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9147                                   struct intel_initial_plane_config *plane_config)
9148 {
9149         struct drm_device *dev = crtc->base.dev;
9150         struct drm_i915_private *dev_priv = dev->dev_private;
9151         u32 val, base, offset;
9152         int pipe = crtc->pipe;
9153         int fourcc, pixel_format;
9154         unsigned int aligned_height;
9155         struct drm_framebuffer *fb;
9156         struct intel_framebuffer *intel_fb;
9157
9158         val = I915_READ(DSPCNTR(pipe));
9159         if (!(val & DISPLAY_PLANE_ENABLE))
9160                 return;
9161
9162         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9163         if (!intel_fb) {
9164                 DRM_DEBUG_KMS("failed to alloc fb\n");
9165                 return;
9166         }
9167
9168         fb = &intel_fb->base;
9169
9170         if (INTEL_INFO(dev)->gen >= 4) {
9171                 if (val & DISPPLANE_TILED) {
9172                         plane_config->tiling = I915_TILING_X;
9173                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9174                 }
9175         }
9176
9177         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9178         fourcc = i9xx_format_to_fourcc(pixel_format);
9179         fb->pixel_format = fourcc;
9180         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9181
9182         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9183         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9184                 offset = I915_READ(DSPOFFSET(pipe));
9185         } else {
9186                 if (plane_config->tiling)
9187                         offset = I915_READ(DSPTILEOFF(pipe));
9188                 else
9189                         offset = I915_READ(DSPLINOFF(pipe));
9190         }
9191         plane_config->base = base;
9192
9193         val = I915_READ(PIPESRC(pipe));
9194         fb->width = ((val >> 16) & 0xfff) + 1;
9195         fb->height = ((val >> 0) & 0xfff) + 1;
9196
9197         val = I915_READ(DSPSTRIDE(pipe));
9198         fb->pitches[0] = val & 0xffffffc0;
9199
9200         aligned_height = intel_fb_align_height(dev, fb->height,
9201                                                fb->pixel_format,
9202                                                fb->modifier[0]);
9203
9204         plane_config->size = fb->pitches[0] * aligned_height;
9205
9206         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9207                       pipe_name(pipe), fb->width, fb->height,
9208                       fb->bits_per_pixel, base, fb->pitches[0],
9209                       plane_config->size);
9210
9211         plane_config->fb = intel_fb;
9212 }
9213
9214 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9215                                      struct intel_crtc_state *pipe_config)
9216 {
9217         struct drm_device *dev = crtc->base.dev;
9218         struct drm_i915_private *dev_priv = dev->dev_private;
9219         enum intel_display_power_domain power_domain;
9220         uint32_t tmp;
9221         bool ret;
9222
9223         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9224         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9225                 return false;
9226
9227         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9228         pipe_config->shared_dpll = NULL;
9229
9230         ret = false;
9231         tmp = I915_READ(PIPECONF(crtc->pipe));
9232         if (!(tmp & PIPECONF_ENABLE))
9233                 goto out;
9234
9235         switch (tmp & PIPECONF_BPC_MASK) {
9236         case PIPECONF_6BPC:
9237                 pipe_config->pipe_bpp = 18;
9238                 break;
9239         case PIPECONF_8BPC:
9240                 pipe_config->pipe_bpp = 24;
9241                 break;
9242         case PIPECONF_10BPC:
9243                 pipe_config->pipe_bpp = 30;
9244                 break;
9245         case PIPECONF_12BPC:
9246                 pipe_config->pipe_bpp = 36;
9247                 break;
9248         default:
9249                 break;
9250         }
9251
9252         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9253                 pipe_config->limited_color_range = true;
9254
9255         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9256                 struct intel_shared_dpll *pll;
9257                 enum intel_dpll_id pll_id;
9258
9259                 pipe_config->has_pch_encoder = true;
9260
9261                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9262                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9263                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9264
9265                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9266
9267                 if (HAS_PCH_IBX(dev_priv->dev)) {
9268                         pll_id = (enum intel_dpll_id) crtc->pipe;
9269                 } else {
9270                         tmp = I915_READ(PCH_DPLL_SEL);
9271                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9272                                 pll_id = DPLL_ID_PCH_PLL_B;
9273                         else
9274                                 pll_id= DPLL_ID_PCH_PLL_A;
9275                 }
9276
9277                 pipe_config->shared_dpll =
9278                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
9279                 pll = pipe_config->shared_dpll;
9280
9281                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9282                                                  &pipe_config->dpll_hw_state));
9283
9284                 tmp = pipe_config->dpll_hw_state.dpll;
9285                 pipe_config->pixel_multiplier =
9286                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9287                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9288
9289                 ironlake_pch_clock_get(crtc, pipe_config);
9290         } else {
9291                 pipe_config->pixel_multiplier = 1;
9292         }
9293
9294         intel_get_pipe_timings(crtc, pipe_config);
9295         intel_get_pipe_src_size(crtc, pipe_config);
9296
9297         ironlake_get_pfit_config(crtc, pipe_config);
9298
9299         ret = true;
9300
9301 out:
9302         intel_display_power_put(dev_priv, power_domain);
9303
9304         return ret;
9305 }
9306
9307 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9308 {
9309         struct drm_device *dev = dev_priv->dev;
9310         struct intel_crtc *crtc;
9311
9312         for_each_intel_crtc(dev, crtc)
9313                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9314                      pipe_name(crtc->pipe));
9315
9316         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9317         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9318         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9319         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9320         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9321         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9322              "CPU PWM1 enabled\n");
9323         if (IS_HASWELL(dev))
9324                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9325                      "CPU PWM2 enabled\n");
9326         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9327              "PCH PWM1 enabled\n");
9328         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9329              "Utility pin enabled\n");
9330         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9331
9332         /*
9333          * In theory we can still leave IRQs enabled, as long as only the HPD
9334          * interrupts remain enabled. We used to check for that, but since it's
9335          * gen-specific and since we only disable LCPLL after we fully disable
9336          * the interrupts, the check below should be enough.
9337          */
9338         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9339 }
9340
9341 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9342 {
9343         struct drm_device *dev = dev_priv->dev;
9344
9345         if (IS_HASWELL(dev))
9346                 return I915_READ(D_COMP_HSW);
9347         else
9348                 return I915_READ(D_COMP_BDW);
9349 }
9350
9351 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9352 {
9353         struct drm_device *dev = dev_priv->dev;
9354
9355         if (IS_HASWELL(dev)) {
9356                 mutex_lock(&dev_priv->rps.hw_lock);
9357                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9358                                             val))
9359                         DRM_ERROR("Failed to write to D_COMP\n");
9360                 mutex_unlock(&dev_priv->rps.hw_lock);
9361         } else {
9362                 I915_WRITE(D_COMP_BDW, val);
9363                 POSTING_READ(D_COMP_BDW);
9364         }
9365 }
9366
9367 /*
9368  * This function implements pieces of two sequences from BSpec:
9369  * - Sequence for display software to disable LCPLL
9370  * - Sequence for display software to allow package C8+
9371  * The steps implemented here are just the steps that actually touch the LCPLL
9372  * register. Callers should take care of disabling all the display engine
9373  * functions, doing the mode unset, fixing interrupts, etc.
9374  */
9375 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9376                               bool switch_to_fclk, bool allow_power_down)
9377 {
9378         uint32_t val;
9379
9380         assert_can_disable_lcpll(dev_priv);
9381
9382         val = I915_READ(LCPLL_CTL);
9383
9384         if (switch_to_fclk) {
9385                 val |= LCPLL_CD_SOURCE_FCLK;
9386                 I915_WRITE(LCPLL_CTL, val);
9387
9388                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9389                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9390                         DRM_ERROR("Switching to FCLK failed\n");
9391
9392                 val = I915_READ(LCPLL_CTL);
9393         }
9394
9395         val |= LCPLL_PLL_DISABLE;
9396         I915_WRITE(LCPLL_CTL, val);
9397         POSTING_READ(LCPLL_CTL);
9398
9399         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9400                 DRM_ERROR("LCPLL still locked\n");
9401
9402         val = hsw_read_dcomp(dev_priv);
9403         val |= D_COMP_COMP_DISABLE;
9404         hsw_write_dcomp(dev_priv, val);
9405         ndelay(100);
9406
9407         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9408                      1))
9409                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9410
9411         if (allow_power_down) {
9412                 val = I915_READ(LCPLL_CTL);
9413                 val |= LCPLL_POWER_DOWN_ALLOW;
9414                 I915_WRITE(LCPLL_CTL, val);
9415                 POSTING_READ(LCPLL_CTL);
9416         }
9417 }
9418
9419 /*
9420  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9421  * source.
9422  */
9423 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9424 {
9425         uint32_t val;
9426
9427         val = I915_READ(LCPLL_CTL);
9428
9429         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9430                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9431                 return;
9432
9433         /*
9434          * Make sure we're not on PC8 state before disabling PC8, otherwise
9435          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9436          */
9437         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9438
9439         if (val & LCPLL_POWER_DOWN_ALLOW) {
9440                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9441                 I915_WRITE(LCPLL_CTL, val);
9442                 POSTING_READ(LCPLL_CTL);
9443         }
9444
9445         val = hsw_read_dcomp(dev_priv);
9446         val |= D_COMP_COMP_FORCE;
9447         val &= ~D_COMP_COMP_DISABLE;
9448         hsw_write_dcomp(dev_priv, val);
9449
9450         val = I915_READ(LCPLL_CTL);
9451         val &= ~LCPLL_PLL_DISABLE;
9452         I915_WRITE(LCPLL_CTL, val);
9453
9454         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9455                 DRM_ERROR("LCPLL not locked yet\n");
9456
9457         if (val & LCPLL_CD_SOURCE_FCLK) {
9458                 val = I915_READ(LCPLL_CTL);
9459                 val &= ~LCPLL_CD_SOURCE_FCLK;
9460                 I915_WRITE(LCPLL_CTL, val);
9461
9462                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9463                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9464                         DRM_ERROR("Switching back to LCPLL failed\n");
9465         }
9466
9467         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9468         intel_update_cdclk(dev_priv->dev);
9469 }
9470
9471 /*
9472  * Package states C8 and deeper are really deep PC states that can only be
9473  * reached when all the devices on the system allow it, so even if the graphics
9474  * device allows PC8+, it doesn't mean the system will actually get to these
9475  * states. Our driver only allows PC8+ when going into runtime PM.
9476  *
9477  * The requirements for PC8+ are that all the outputs are disabled, the power
9478  * well is disabled and most interrupts are disabled, and these are also
9479  * requirements for runtime PM. When these conditions are met, we manually do
9480  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9481  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9482  * hang the machine.
9483  *
9484  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9485  * the state of some registers, so when we come back from PC8+ we need to
9486  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9487  * need to take care of the registers kept by RC6. Notice that this happens even
9488  * if we don't put the device in PCI D3 state (which is what currently happens
9489  * because of the runtime PM support).
9490  *
9491  * For more, read "Display Sequences for Package C8" on the hardware
9492  * documentation.
9493  */
9494 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9495 {
9496         struct drm_device *dev = dev_priv->dev;
9497         uint32_t val;
9498
9499         DRM_DEBUG_KMS("Enabling package C8+\n");
9500
9501         if (HAS_PCH_LPT_LP(dev)) {
9502                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9503                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9504                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9505         }
9506
9507         lpt_disable_clkout_dp(dev);
9508         hsw_disable_lcpll(dev_priv, true, true);
9509 }
9510
9511 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9512 {
9513         struct drm_device *dev = dev_priv->dev;
9514         uint32_t val;
9515
9516         DRM_DEBUG_KMS("Disabling package C8+\n");
9517
9518         hsw_restore_lcpll(dev_priv);
9519         lpt_init_pch_refclk(dev);
9520
9521         if (HAS_PCH_LPT_LP(dev)) {
9522                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9523                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9524                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9525         }
9526 }
9527
9528 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9529 {
9530         struct drm_device *dev = old_state->dev;
9531         struct intel_atomic_state *old_intel_state =
9532                 to_intel_atomic_state(old_state);
9533         unsigned int req_cdclk = old_intel_state->dev_cdclk;
9534
9535         broxton_set_cdclk(dev, req_cdclk);
9536 }
9537
9538 /* compute the max rate for new configuration */
9539 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9540 {
9541         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9542         struct drm_i915_private *dev_priv = state->dev->dev_private;
9543         struct drm_crtc *crtc;
9544         struct drm_crtc_state *cstate;
9545         struct intel_crtc_state *crtc_state;
9546         unsigned max_pixel_rate = 0, i;
9547         enum pipe pipe;
9548
9549         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9550                sizeof(intel_state->min_pixclk));
9551
9552         for_each_crtc_in_state(state, crtc, cstate, i) {
9553                 int pixel_rate;
9554
9555                 crtc_state = to_intel_crtc_state(cstate);
9556                 if (!crtc_state->base.enable) {
9557                         intel_state->min_pixclk[i] = 0;
9558                         continue;
9559                 }
9560
9561                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9562
9563                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9564                 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9565                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9566
9567                 intel_state->min_pixclk[i] = pixel_rate;
9568         }
9569
9570         for_each_pipe(dev_priv, pipe)
9571                 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9572
9573         return max_pixel_rate;
9574 }
9575
9576 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9577 {
9578         struct drm_i915_private *dev_priv = dev->dev_private;
9579         uint32_t val, data;
9580         int ret;
9581
9582         if (WARN((I915_READ(LCPLL_CTL) &
9583                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9584                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9585                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9586                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9587                  "trying to change cdclk frequency with cdclk not enabled\n"))
9588                 return;
9589
9590         mutex_lock(&dev_priv->rps.hw_lock);
9591         ret = sandybridge_pcode_write(dev_priv,
9592                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9593         mutex_unlock(&dev_priv->rps.hw_lock);
9594         if (ret) {
9595                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9596                 return;
9597         }
9598
9599         val = I915_READ(LCPLL_CTL);
9600         val |= LCPLL_CD_SOURCE_FCLK;
9601         I915_WRITE(LCPLL_CTL, val);
9602
9603         if (wait_for_us(I915_READ(LCPLL_CTL) &
9604                         LCPLL_CD_SOURCE_FCLK_DONE, 1))
9605                 DRM_ERROR("Switching to FCLK failed\n");
9606
9607         val = I915_READ(LCPLL_CTL);
9608         val &= ~LCPLL_CLK_FREQ_MASK;
9609
9610         switch (cdclk) {
9611         case 450000:
9612                 val |= LCPLL_CLK_FREQ_450;
9613                 data = 0;
9614                 break;
9615         case 540000:
9616                 val |= LCPLL_CLK_FREQ_54O_BDW;
9617                 data = 1;
9618                 break;
9619         case 337500:
9620                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9621                 data = 2;
9622                 break;
9623         case 675000:
9624                 val |= LCPLL_CLK_FREQ_675_BDW;
9625                 data = 3;
9626                 break;
9627         default:
9628                 WARN(1, "invalid cdclk frequency\n");
9629                 return;
9630         }
9631
9632         I915_WRITE(LCPLL_CTL, val);
9633
9634         val = I915_READ(LCPLL_CTL);
9635         val &= ~LCPLL_CD_SOURCE_FCLK;
9636         I915_WRITE(LCPLL_CTL, val);
9637
9638         if (wait_for_us((I915_READ(LCPLL_CTL) &
9639                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9640                 DRM_ERROR("Switching back to LCPLL failed\n");
9641
9642         mutex_lock(&dev_priv->rps.hw_lock);
9643         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9644         mutex_unlock(&dev_priv->rps.hw_lock);
9645
9646         intel_update_cdclk(dev);
9647
9648         WARN(cdclk != dev_priv->cdclk_freq,
9649              "cdclk requested %d kHz but got %d kHz\n",
9650              cdclk, dev_priv->cdclk_freq);
9651 }
9652
9653 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9654 {
9655         struct drm_i915_private *dev_priv = to_i915(state->dev);
9656         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9657         int max_pixclk = ilk_max_pixel_rate(state);
9658         int cdclk;
9659
9660         /*
9661          * FIXME should also account for plane ratio
9662          * once 64bpp pixel formats are supported.
9663          */
9664         if (max_pixclk > 540000)
9665                 cdclk = 675000;
9666         else if (max_pixclk > 450000)
9667                 cdclk = 540000;
9668         else if (max_pixclk > 337500)
9669                 cdclk = 450000;
9670         else
9671                 cdclk = 337500;
9672
9673         if (cdclk > dev_priv->max_cdclk_freq) {
9674                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9675                               cdclk, dev_priv->max_cdclk_freq);
9676                 return -EINVAL;
9677         }
9678
9679         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9680         if (!intel_state->active_crtcs)
9681                 intel_state->dev_cdclk = 337500;
9682
9683         return 0;
9684 }
9685
9686 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9687 {
9688         struct drm_device *dev = old_state->dev;
9689         struct intel_atomic_state *old_intel_state =
9690                 to_intel_atomic_state(old_state);
9691         unsigned req_cdclk = old_intel_state->dev_cdclk;
9692
9693         broadwell_set_cdclk(dev, req_cdclk);
9694 }
9695
9696 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9697                                       struct intel_crtc_state *crtc_state)
9698 {
9699         struct intel_encoder *intel_encoder =
9700                 intel_ddi_get_crtc_new_encoder(crtc_state);
9701
9702         if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9703                 if (!intel_ddi_pll_select(crtc, crtc_state))
9704                         return -EINVAL;
9705         }
9706
9707         crtc->lowfreq_avail = false;
9708
9709         return 0;
9710 }
9711
9712 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9713                                 enum port port,
9714                                 struct intel_crtc_state *pipe_config)
9715 {
9716         enum intel_dpll_id id;
9717
9718         switch (port) {
9719         case PORT_A:
9720                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9721                 id = DPLL_ID_SKL_DPLL0;
9722                 break;
9723         case PORT_B:
9724                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9725                 id = DPLL_ID_SKL_DPLL1;
9726                 break;
9727         case PORT_C:
9728                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9729                 id = DPLL_ID_SKL_DPLL2;
9730                 break;
9731         default:
9732                 DRM_ERROR("Incorrect port type\n");
9733                 return;
9734         }
9735
9736         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9737 }
9738
9739 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9740                                 enum port port,
9741                                 struct intel_crtc_state *pipe_config)
9742 {
9743         enum intel_dpll_id id;
9744         u32 temp;
9745
9746         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9747         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9748
9749         switch (pipe_config->ddi_pll_sel) {
9750         case SKL_DPLL0:
9751                 id = DPLL_ID_SKL_DPLL0;
9752                 break;
9753         case SKL_DPLL1:
9754                 id = DPLL_ID_SKL_DPLL1;
9755                 break;
9756         case SKL_DPLL2:
9757                 id = DPLL_ID_SKL_DPLL2;
9758                 break;
9759         case SKL_DPLL3:
9760                 id = DPLL_ID_SKL_DPLL3;
9761                 break;
9762         default:
9763                 MISSING_CASE(pipe_config->ddi_pll_sel);
9764                 return;
9765         }
9766
9767         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9768 }
9769
9770 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9771                                 enum port port,
9772                                 struct intel_crtc_state *pipe_config)
9773 {
9774         enum intel_dpll_id id;
9775
9776         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9777
9778         switch (pipe_config->ddi_pll_sel) {
9779         case PORT_CLK_SEL_WRPLL1:
9780                 id = DPLL_ID_WRPLL1;
9781                 break;
9782         case PORT_CLK_SEL_WRPLL2:
9783                 id = DPLL_ID_WRPLL2;
9784                 break;
9785         case PORT_CLK_SEL_SPLL:
9786                 id = DPLL_ID_SPLL;
9787                 break;
9788         case PORT_CLK_SEL_LCPLL_810:
9789                 id = DPLL_ID_LCPLL_810;
9790                 break;
9791         case PORT_CLK_SEL_LCPLL_1350:
9792                 id = DPLL_ID_LCPLL_1350;
9793                 break;
9794         case PORT_CLK_SEL_LCPLL_2700:
9795                 id = DPLL_ID_LCPLL_2700;
9796                 break;
9797         default:
9798                 MISSING_CASE(pipe_config->ddi_pll_sel);
9799                 /* fall through */
9800         case PORT_CLK_SEL_NONE:
9801                 return;
9802         }
9803
9804         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9805 }
9806
9807 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9808                                      struct intel_crtc_state *pipe_config,
9809                                      unsigned long *power_domain_mask)
9810 {
9811         struct drm_device *dev = crtc->base.dev;
9812         struct drm_i915_private *dev_priv = dev->dev_private;
9813         enum intel_display_power_domain power_domain;
9814         u32 tmp;
9815
9816         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9817
9818         /*
9819          * XXX: Do intel_display_power_get_if_enabled before reading this (for
9820          * consistency and less surprising code; it's in always on power).
9821          */
9822         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9823         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9824                 enum pipe trans_edp_pipe;
9825                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9826                 default:
9827                         WARN(1, "unknown pipe linked to edp transcoder\n");
9828                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9829                 case TRANS_DDI_EDP_INPUT_A_ON:
9830                         trans_edp_pipe = PIPE_A;
9831                         break;
9832                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9833                         trans_edp_pipe = PIPE_B;
9834                         break;
9835                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9836                         trans_edp_pipe = PIPE_C;
9837                         break;
9838                 }
9839
9840                 if (trans_edp_pipe == crtc->pipe)
9841                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9842         }
9843
9844         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9845         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9846                 return false;
9847         *power_domain_mask |= BIT(power_domain);
9848
9849         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9850
9851         return tmp & PIPECONF_ENABLE;
9852 }
9853
9854 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9855                                          struct intel_crtc_state *pipe_config,
9856                                          unsigned long *power_domain_mask)
9857 {
9858         struct drm_device *dev = crtc->base.dev;
9859         struct drm_i915_private *dev_priv = dev->dev_private;
9860         enum intel_display_power_domain power_domain;
9861         enum port port;
9862         enum transcoder cpu_transcoder;
9863         u32 tmp;
9864
9865         pipe_config->has_dsi_encoder = false;
9866
9867         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9868                 if (port == PORT_A)
9869                         cpu_transcoder = TRANSCODER_DSI_A;
9870                 else
9871                         cpu_transcoder = TRANSCODER_DSI_C;
9872
9873                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9874                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9875                         continue;
9876                 *power_domain_mask |= BIT(power_domain);
9877
9878                 /*
9879                  * The PLL needs to be enabled with a valid divider
9880                  * configuration, otherwise accessing DSI registers will hang
9881                  * the machine. See BSpec North Display Engine
9882                  * registers/MIPI[BXT]. We can break out here early, since we
9883                  * need the same DSI PLL to be enabled for both DSI ports.
9884                  */
9885                 if (!intel_dsi_pll_is_enabled(dev_priv))
9886                         break;
9887
9888                 /* XXX: this works for video mode only */
9889                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9890                 if (!(tmp & DPI_ENABLE))
9891                         continue;
9892
9893                 tmp = I915_READ(MIPI_CTRL(port));
9894                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9895                         continue;
9896
9897                 pipe_config->cpu_transcoder = cpu_transcoder;
9898                 pipe_config->has_dsi_encoder = true;
9899                 break;
9900         }
9901
9902         return pipe_config->has_dsi_encoder;
9903 }
9904
9905 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9906                                        struct intel_crtc_state *pipe_config)
9907 {
9908         struct drm_device *dev = crtc->base.dev;
9909         struct drm_i915_private *dev_priv = dev->dev_private;
9910         struct intel_shared_dpll *pll;
9911         enum port port;
9912         uint32_t tmp;
9913
9914         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9915
9916         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9917
9918         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9919                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9920         else if (IS_BROXTON(dev))
9921                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9922         else
9923                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9924
9925         pll = pipe_config->shared_dpll;
9926         if (pll) {
9927                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9928                                                  &pipe_config->dpll_hw_state));
9929         }
9930
9931         /*
9932          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9933          * DDI E. So just check whether this pipe is wired to DDI E and whether
9934          * the PCH transcoder is on.
9935          */
9936         if (INTEL_INFO(dev)->gen < 9 &&
9937             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9938                 pipe_config->has_pch_encoder = true;
9939
9940                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9941                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9942                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9943
9944                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9945         }
9946 }
9947
9948 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9949                                     struct intel_crtc_state *pipe_config)
9950 {
9951         struct drm_device *dev = crtc->base.dev;
9952         struct drm_i915_private *dev_priv = dev->dev_private;
9953         enum intel_display_power_domain power_domain;
9954         unsigned long power_domain_mask;
9955         bool active;
9956
9957         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9958         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9959                 return false;
9960         power_domain_mask = BIT(power_domain);
9961
9962         pipe_config->shared_dpll = NULL;
9963
9964         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
9965
9966         if (IS_BROXTON(dev_priv)) {
9967                 bxt_get_dsi_transcoder_state(crtc, pipe_config,
9968                                              &power_domain_mask);
9969                 WARN_ON(active && pipe_config->has_dsi_encoder);
9970                 if (pipe_config->has_dsi_encoder)
9971                         active = true;
9972         }
9973
9974         if (!active)
9975                 goto out;
9976
9977         if (!pipe_config->has_dsi_encoder) {
9978                 haswell_get_ddi_port_state(crtc, pipe_config);
9979                 intel_get_pipe_timings(crtc, pipe_config);
9980         }
9981
9982         intel_get_pipe_src_size(crtc, pipe_config);
9983
9984         pipe_config->gamma_mode =
9985                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
9986
9987         if (INTEL_INFO(dev)->gen >= 9) {
9988                 skl_init_scalers(dev, crtc, pipe_config);
9989         }
9990
9991         if (INTEL_INFO(dev)->gen >= 9) {
9992                 pipe_config->scaler_state.scaler_id = -1;
9993                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9994         }
9995
9996         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9997         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
9998                 power_domain_mask |= BIT(power_domain);
9999                 if (INTEL_INFO(dev)->gen >= 9)
10000                         skylake_get_pfit_config(crtc, pipe_config);
10001                 else
10002                         ironlake_get_pfit_config(crtc, pipe_config);
10003         }
10004
10005         if (IS_HASWELL(dev))
10006                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10007                         (I915_READ(IPS_CTL) & IPS_ENABLE);
10008
10009         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10010             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10011                 pipe_config->pixel_multiplier =
10012                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10013         } else {
10014                 pipe_config->pixel_multiplier = 1;
10015         }
10016
10017 out:
10018         for_each_power_domain(power_domain, power_domain_mask)
10019                 intel_display_power_put(dev_priv, power_domain);
10020
10021         return active;
10022 }
10023
10024 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10025                                const struct intel_plane_state *plane_state)
10026 {
10027         struct drm_device *dev = crtc->dev;
10028         struct drm_i915_private *dev_priv = dev->dev_private;
10029         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10030         uint32_t cntl = 0, size = 0;
10031
10032         if (plane_state && plane_state->visible) {
10033                 unsigned int width = plane_state->base.crtc_w;
10034                 unsigned int height = plane_state->base.crtc_h;
10035                 unsigned int stride = roundup_pow_of_two(width) * 4;
10036
10037                 switch (stride) {
10038                 default:
10039                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10040                                   width, stride);
10041                         stride = 256;
10042                         /* fallthrough */
10043                 case 256:
10044                 case 512:
10045                 case 1024:
10046                 case 2048:
10047                         break;
10048                 }
10049
10050                 cntl |= CURSOR_ENABLE |
10051                         CURSOR_GAMMA_ENABLE |
10052                         CURSOR_FORMAT_ARGB |
10053                         CURSOR_STRIDE(stride);
10054
10055                 size = (height << 12) | width;
10056         }
10057
10058         if (intel_crtc->cursor_cntl != 0 &&
10059             (intel_crtc->cursor_base != base ||
10060              intel_crtc->cursor_size != size ||
10061              intel_crtc->cursor_cntl != cntl)) {
10062                 /* On these chipsets we can only modify the base/size/stride
10063                  * whilst the cursor is disabled.
10064                  */
10065                 I915_WRITE(CURCNTR(PIPE_A), 0);
10066                 POSTING_READ(CURCNTR(PIPE_A));
10067                 intel_crtc->cursor_cntl = 0;
10068         }
10069
10070         if (intel_crtc->cursor_base != base) {
10071                 I915_WRITE(CURBASE(PIPE_A), base);
10072                 intel_crtc->cursor_base = base;
10073         }
10074
10075         if (intel_crtc->cursor_size != size) {
10076                 I915_WRITE(CURSIZE, size);
10077                 intel_crtc->cursor_size = size;
10078         }
10079
10080         if (intel_crtc->cursor_cntl != cntl) {
10081                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10082                 POSTING_READ(CURCNTR(PIPE_A));
10083                 intel_crtc->cursor_cntl = cntl;
10084         }
10085 }
10086
10087 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10088                                const struct intel_plane_state *plane_state)
10089 {
10090         struct drm_device *dev = crtc->dev;
10091         struct drm_i915_private *dev_priv = dev->dev_private;
10092         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10093         int pipe = intel_crtc->pipe;
10094         uint32_t cntl = 0;
10095
10096         if (plane_state && plane_state->visible) {
10097                 cntl = MCURSOR_GAMMA_ENABLE;
10098                 switch (plane_state->base.crtc_w) {
10099                         case 64:
10100                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10101                                 break;
10102                         case 128:
10103                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10104                                 break;
10105                         case 256:
10106                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10107                                 break;
10108                         default:
10109                                 MISSING_CASE(plane_state->base.crtc_w);
10110                                 return;
10111                 }
10112                 cntl |= pipe << 28; /* Connect to correct pipe */
10113
10114                 if (HAS_DDI(dev))
10115                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10116
10117                 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10118                         cntl |= CURSOR_ROTATE_180;
10119         }
10120
10121         if (intel_crtc->cursor_cntl != cntl) {
10122                 I915_WRITE(CURCNTR(pipe), cntl);
10123                 POSTING_READ(CURCNTR(pipe));
10124                 intel_crtc->cursor_cntl = cntl;
10125         }
10126
10127         /* and commit changes on next vblank */
10128         I915_WRITE(CURBASE(pipe), base);
10129         POSTING_READ(CURBASE(pipe));
10130
10131         intel_crtc->cursor_base = base;
10132 }
10133
10134 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10135 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10136                                      const struct intel_plane_state *plane_state)
10137 {
10138         struct drm_device *dev = crtc->dev;
10139         struct drm_i915_private *dev_priv = dev->dev_private;
10140         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10141         int pipe = intel_crtc->pipe;
10142         u32 base = intel_crtc->cursor_addr;
10143         u32 pos = 0;
10144
10145         if (plane_state) {
10146                 int x = plane_state->base.crtc_x;
10147                 int y = plane_state->base.crtc_y;
10148
10149                 if (x < 0) {
10150                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10151                         x = -x;
10152                 }
10153                 pos |= x << CURSOR_X_SHIFT;
10154
10155                 if (y < 0) {
10156                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10157                         y = -y;
10158                 }
10159                 pos |= y << CURSOR_Y_SHIFT;
10160
10161                 /* ILK+ do this automagically */
10162                 if (HAS_GMCH_DISPLAY(dev) &&
10163                     plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10164                         base += (plane_state->base.crtc_h *
10165                                  plane_state->base.crtc_w - 1) * 4;
10166                 }
10167         }
10168
10169         I915_WRITE(CURPOS(pipe), pos);
10170
10171         if (IS_845G(dev) || IS_I865G(dev))
10172                 i845_update_cursor(crtc, base, plane_state);
10173         else
10174                 i9xx_update_cursor(crtc, base, plane_state);
10175 }
10176
10177 static bool cursor_size_ok(struct drm_device *dev,
10178                            uint32_t width, uint32_t height)
10179 {
10180         if (width == 0 || height == 0)
10181                 return false;
10182
10183         /*
10184          * 845g/865g are special in that they are only limited by
10185          * the width of their cursors, the height is arbitrary up to
10186          * the precision of the register. Everything else requires
10187          * square cursors, limited to a few power-of-two sizes.
10188          */
10189         if (IS_845G(dev) || IS_I865G(dev)) {
10190                 if ((width & 63) != 0)
10191                         return false;
10192
10193                 if (width > (IS_845G(dev) ? 64 : 512))
10194                         return false;
10195
10196                 if (height > 1023)
10197                         return false;
10198         } else {
10199                 switch (width | height) {
10200                 case 256:
10201                 case 128:
10202                         if (IS_GEN2(dev))
10203                                 return false;
10204                 case 64:
10205                         break;
10206                 default:
10207                         return false;
10208                 }
10209         }
10210
10211         return true;
10212 }
10213
10214 /* VESA 640x480x72Hz mode to set on the pipe */
10215 static struct drm_display_mode load_detect_mode = {
10216         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10217                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10218 };
10219
10220 struct drm_framebuffer *
10221 __intel_framebuffer_create(struct drm_device *dev,
10222                            struct drm_mode_fb_cmd2 *mode_cmd,
10223                            struct drm_i915_gem_object *obj)
10224 {
10225         struct intel_framebuffer *intel_fb;
10226         int ret;
10227
10228         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10229         if (!intel_fb)
10230                 return ERR_PTR(-ENOMEM);
10231
10232         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10233         if (ret)
10234                 goto err;
10235
10236         return &intel_fb->base;
10237
10238 err:
10239         kfree(intel_fb);
10240         return ERR_PTR(ret);
10241 }
10242
10243 static struct drm_framebuffer *
10244 intel_framebuffer_create(struct drm_device *dev,
10245                          struct drm_mode_fb_cmd2 *mode_cmd,
10246                          struct drm_i915_gem_object *obj)
10247 {
10248         struct drm_framebuffer *fb;
10249         int ret;
10250
10251         ret = i915_mutex_lock_interruptible(dev);
10252         if (ret)
10253                 return ERR_PTR(ret);
10254         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10255         mutex_unlock(&dev->struct_mutex);
10256
10257         return fb;
10258 }
10259
10260 static u32
10261 intel_framebuffer_pitch_for_width(int width, int bpp)
10262 {
10263         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10264         return ALIGN(pitch, 64);
10265 }
10266
10267 static u32
10268 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10269 {
10270         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10271         return PAGE_ALIGN(pitch * mode->vdisplay);
10272 }
10273
10274 static struct drm_framebuffer *
10275 intel_framebuffer_create_for_mode(struct drm_device *dev,
10276                                   struct drm_display_mode *mode,
10277                                   int depth, int bpp)
10278 {
10279         struct drm_framebuffer *fb;
10280         struct drm_i915_gem_object *obj;
10281         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10282
10283         obj = i915_gem_alloc_object(dev,
10284                                     intel_framebuffer_size_for_mode(mode, bpp));
10285         if (obj == NULL)
10286                 return ERR_PTR(-ENOMEM);
10287
10288         mode_cmd.width = mode->hdisplay;
10289         mode_cmd.height = mode->vdisplay;
10290         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10291                                                                 bpp);
10292         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10293
10294         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10295         if (IS_ERR(fb))
10296                 drm_gem_object_unreference_unlocked(&obj->base);
10297
10298         return fb;
10299 }
10300
10301 static struct drm_framebuffer *
10302 mode_fits_in_fbdev(struct drm_device *dev,
10303                    struct drm_display_mode *mode)
10304 {
10305 #ifdef CONFIG_DRM_FBDEV_EMULATION
10306         struct drm_i915_private *dev_priv = dev->dev_private;
10307         struct drm_i915_gem_object *obj;
10308         struct drm_framebuffer *fb;
10309
10310         if (!dev_priv->fbdev)
10311                 return NULL;
10312
10313         if (!dev_priv->fbdev->fb)
10314                 return NULL;
10315
10316         obj = dev_priv->fbdev->fb->obj;
10317         BUG_ON(!obj);
10318
10319         fb = &dev_priv->fbdev->fb->base;
10320         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10321                                                                fb->bits_per_pixel))
10322                 return NULL;
10323
10324         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10325                 return NULL;
10326
10327         drm_framebuffer_reference(fb);
10328         return fb;
10329 #else
10330         return NULL;
10331 #endif
10332 }
10333
10334 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10335                                            struct drm_crtc *crtc,
10336                                            struct drm_display_mode *mode,
10337                                            struct drm_framebuffer *fb,
10338                                            int x, int y)
10339 {
10340         struct drm_plane_state *plane_state;
10341         int hdisplay, vdisplay;
10342         int ret;
10343
10344         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10345         if (IS_ERR(plane_state))
10346                 return PTR_ERR(plane_state);
10347
10348         if (mode)
10349                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10350         else
10351                 hdisplay = vdisplay = 0;
10352
10353         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10354         if (ret)
10355                 return ret;
10356         drm_atomic_set_fb_for_plane(plane_state, fb);
10357         plane_state->crtc_x = 0;
10358         plane_state->crtc_y = 0;
10359         plane_state->crtc_w = hdisplay;
10360         plane_state->crtc_h = vdisplay;
10361         plane_state->src_x = x << 16;
10362         plane_state->src_y = y << 16;
10363         plane_state->src_w = hdisplay << 16;
10364         plane_state->src_h = vdisplay << 16;
10365
10366         return 0;
10367 }
10368
10369 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10370                                 struct drm_display_mode *mode,
10371                                 struct intel_load_detect_pipe *old,
10372                                 struct drm_modeset_acquire_ctx *ctx)
10373 {
10374         struct intel_crtc *intel_crtc;
10375         struct intel_encoder *intel_encoder =
10376                 intel_attached_encoder(connector);
10377         struct drm_crtc *possible_crtc;
10378         struct drm_encoder *encoder = &intel_encoder->base;
10379         struct drm_crtc *crtc = NULL;
10380         struct drm_device *dev = encoder->dev;
10381         struct drm_framebuffer *fb;
10382         struct drm_mode_config *config = &dev->mode_config;
10383         struct drm_atomic_state *state = NULL, *restore_state = NULL;
10384         struct drm_connector_state *connector_state;
10385         struct intel_crtc_state *crtc_state;
10386         int ret, i = -1;
10387
10388         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10389                       connector->base.id, connector->name,
10390                       encoder->base.id, encoder->name);
10391
10392         old->restore_state = NULL;
10393
10394 retry:
10395         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10396         if (ret)
10397                 goto fail;
10398
10399         /*
10400          * Algorithm gets a little messy:
10401          *
10402          *   - if the connector already has an assigned crtc, use it (but make
10403          *     sure it's on first)
10404          *
10405          *   - try to find the first unused crtc that can drive this connector,
10406          *     and use that if we find one
10407          */
10408
10409         /* See if we already have a CRTC for this connector */
10410         if (connector->state->crtc) {
10411                 crtc = connector->state->crtc;
10412
10413                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10414                 if (ret)
10415                         goto fail;
10416
10417                 /* Make sure the crtc and connector are running */
10418                 goto found;
10419         }
10420
10421         /* Find an unused one (if possible) */
10422         for_each_crtc(dev, possible_crtc) {
10423                 i++;
10424                 if (!(encoder->possible_crtcs & (1 << i)))
10425                         continue;
10426
10427                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10428                 if (ret)
10429                         goto fail;
10430
10431                 if (possible_crtc->state->enable) {
10432                         drm_modeset_unlock(&possible_crtc->mutex);
10433                         continue;
10434                 }
10435
10436                 crtc = possible_crtc;
10437                 break;
10438         }
10439
10440         /*
10441          * If we didn't find an unused CRTC, don't use any.
10442          */
10443         if (!crtc) {
10444                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10445                 goto fail;
10446         }
10447
10448 found:
10449         intel_crtc = to_intel_crtc(crtc);
10450
10451         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10452         if (ret)
10453                 goto fail;
10454
10455         state = drm_atomic_state_alloc(dev);
10456         restore_state = drm_atomic_state_alloc(dev);
10457         if (!state || !restore_state) {
10458                 ret = -ENOMEM;
10459                 goto fail;
10460         }
10461
10462         state->acquire_ctx = ctx;
10463         restore_state->acquire_ctx = ctx;
10464
10465         connector_state = drm_atomic_get_connector_state(state, connector);
10466         if (IS_ERR(connector_state)) {
10467                 ret = PTR_ERR(connector_state);
10468                 goto fail;
10469         }
10470
10471         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10472         if (ret)
10473                 goto fail;
10474
10475         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10476         if (IS_ERR(crtc_state)) {
10477                 ret = PTR_ERR(crtc_state);
10478                 goto fail;
10479         }
10480
10481         crtc_state->base.active = crtc_state->base.enable = true;
10482
10483         if (!mode)
10484                 mode = &load_detect_mode;
10485
10486         /* We need a framebuffer large enough to accommodate all accesses
10487          * that the plane may generate whilst we perform load detection.
10488          * We can not rely on the fbcon either being present (we get called
10489          * during its initialisation to detect all boot displays, or it may
10490          * not even exist) or that it is large enough to satisfy the
10491          * requested mode.
10492          */
10493         fb = mode_fits_in_fbdev(dev, mode);
10494         if (fb == NULL) {
10495                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10496                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10497         } else
10498                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10499         if (IS_ERR(fb)) {
10500                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10501                 goto fail;
10502         }
10503
10504         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10505         if (ret)
10506                 goto fail;
10507
10508         drm_framebuffer_unreference(fb);
10509
10510         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10511         if (ret)
10512                 goto fail;
10513
10514         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10515         if (!ret)
10516                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10517         if (!ret)
10518                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10519         if (ret) {
10520                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10521                 goto fail;
10522         }
10523
10524         ret = drm_atomic_commit(state);
10525         if (ret) {
10526                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10527                 goto fail;
10528         }
10529
10530         old->restore_state = restore_state;
10531
10532         /* let the connector get through one full cycle before testing */
10533         intel_wait_for_vblank(dev, intel_crtc->pipe);
10534         return true;
10535
10536 fail:
10537         drm_atomic_state_free(state);
10538         drm_atomic_state_free(restore_state);
10539         restore_state = state = NULL;
10540
10541         if (ret == -EDEADLK) {
10542                 drm_modeset_backoff(ctx);
10543                 goto retry;
10544         }
10545
10546         return false;
10547 }
10548
10549 void intel_release_load_detect_pipe(struct drm_connector *connector,
10550                                     struct intel_load_detect_pipe *old,
10551                                     struct drm_modeset_acquire_ctx *ctx)
10552 {
10553         struct intel_encoder *intel_encoder =
10554                 intel_attached_encoder(connector);
10555         struct drm_encoder *encoder = &intel_encoder->base;
10556         struct drm_atomic_state *state = old->restore_state;
10557         int ret;
10558
10559         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10560                       connector->base.id, connector->name,
10561                       encoder->base.id, encoder->name);
10562
10563         if (!state)
10564                 return;
10565
10566         ret = drm_atomic_commit(state);
10567         if (ret) {
10568                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10569                 drm_atomic_state_free(state);
10570         }
10571 }
10572
10573 static int i9xx_pll_refclk(struct drm_device *dev,
10574                            const struct intel_crtc_state *pipe_config)
10575 {
10576         struct drm_i915_private *dev_priv = dev->dev_private;
10577         u32 dpll = pipe_config->dpll_hw_state.dpll;
10578
10579         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10580                 return dev_priv->vbt.lvds_ssc_freq;
10581         else if (HAS_PCH_SPLIT(dev))
10582                 return 120000;
10583         else if (!IS_GEN2(dev))
10584                 return 96000;
10585         else
10586                 return 48000;
10587 }
10588
10589 /* Returns the clock of the currently programmed mode of the given pipe. */
10590 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10591                                 struct intel_crtc_state *pipe_config)
10592 {
10593         struct drm_device *dev = crtc->base.dev;
10594         struct drm_i915_private *dev_priv = dev->dev_private;
10595         int pipe = pipe_config->cpu_transcoder;
10596         u32 dpll = pipe_config->dpll_hw_state.dpll;
10597         u32 fp;
10598         intel_clock_t clock;
10599         int port_clock;
10600         int refclk = i9xx_pll_refclk(dev, pipe_config);
10601
10602         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10603                 fp = pipe_config->dpll_hw_state.fp0;
10604         else
10605                 fp = pipe_config->dpll_hw_state.fp1;
10606
10607         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10608         if (IS_PINEVIEW(dev)) {
10609                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10610                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10611         } else {
10612                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10613                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10614         }
10615
10616         if (!IS_GEN2(dev)) {
10617                 if (IS_PINEVIEW(dev))
10618                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10619                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10620                 else
10621                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10622                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10623
10624                 switch (dpll & DPLL_MODE_MASK) {
10625                 case DPLLB_MODE_DAC_SERIAL:
10626                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10627                                 5 : 10;
10628                         break;
10629                 case DPLLB_MODE_LVDS:
10630                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10631                                 7 : 14;
10632                         break;
10633                 default:
10634                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10635                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10636                         return;
10637                 }
10638
10639                 if (IS_PINEVIEW(dev))
10640                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10641                 else
10642                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10643         } else {
10644                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10645                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10646
10647                 if (is_lvds) {
10648                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10649                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10650
10651                         if (lvds & LVDS_CLKB_POWER_UP)
10652                                 clock.p2 = 7;
10653                         else
10654                                 clock.p2 = 14;
10655                 } else {
10656                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10657                                 clock.p1 = 2;
10658                         else {
10659                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10660                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10661                         }
10662                         if (dpll & PLL_P2_DIVIDE_BY_4)
10663                                 clock.p2 = 4;
10664                         else
10665                                 clock.p2 = 2;
10666                 }
10667
10668                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10669         }
10670
10671         /*
10672          * This value includes pixel_multiplier. We will use
10673          * port_clock to compute adjusted_mode.crtc_clock in the
10674          * encoder's get_config() function.
10675          */
10676         pipe_config->port_clock = port_clock;
10677 }
10678
10679 int intel_dotclock_calculate(int link_freq,
10680                              const struct intel_link_m_n *m_n)
10681 {
10682         /*
10683          * The calculation for the data clock is:
10684          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10685          * But we want to avoid losing precison if possible, so:
10686          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10687          *
10688          * and the link clock is simpler:
10689          * link_clock = (m * link_clock) / n
10690          */
10691
10692         if (!m_n->link_n)
10693                 return 0;
10694
10695         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10696 }
10697
10698 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10699                                    struct intel_crtc_state *pipe_config)
10700 {
10701         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10702
10703         /* read out port_clock from the DPLL */
10704         i9xx_crtc_clock_get(crtc, pipe_config);
10705
10706         /*
10707          * In case there is an active pipe without active ports,
10708          * we may need some idea for the dotclock anyway.
10709          * Calculate one based on the FDI configuration.
10710          */
10711         pipe_config->base.adjusted_mode.crtc_clock =
10712                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10713                                          &pipe_config->fdi_m_n);
10714 }
10715
10716 /** Returns the currently programmed mode of the given pipe. */
10717 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10718                                              struct drm_crtc *crtc)
10719 {
10720         struct drm_i915_private *dev_priv = dev->dev_private;
10721         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10722         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10723         struct drm_display_mode *mode;
10724         struct intel_crtc_state *pipe_config;
10725         int htot = I915_READ(HTOTAL(cpu_transcoder));
10726         int hsync = I915_READ(HSYNC(cpu_transcoder));
10727         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10728         int vsync = I915_READ(VSYNC(cpu_transcoder));
10729         enum pipe pipe = intel_crtc->pipe;
10730
10731         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10732         if (!mode)
10733                 return NULL;
10734
10735         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10736         if (!pipe_config) {
10737                 kfree(mode);
10738                 return NULL;
10739         }
10740
10741         /*
10742          * Construct a pipe_config sufficient for getting the clock info
10743          * back out of crtc_clock_get.
10744          *
10745          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10746          * to use a real value here instead.
10747          */
10748         pipe_config->cpu_transcoder = (enum transcoder) pipe;
10749         pipe_config->pixel_multiplier = 1;
10750         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10751         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10752         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10753         i9xx_crtc_clock_get(intel_crtc, pipe_config);
10754
10755         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10756         mode->hdisplay = (htot & 0xffff) + 1;
10757         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10758         mode->hsync_start = (hsync & 0xffff) + 1;
10759         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10760         mode->vdisplay = (vtot & 0xffff) + 1;
10761         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10762         mode->vsync_start = (vsync & 0xffff) + 1;
10763         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10764
10765         drm_mode_set_name(mode);
10766
10767         kfree(pipe_config);
10768
10769         return mode;
10770 }
10771
10772 void intel_mark_busy(struct drm_device *dev)
10773 {
10774         struct drm_i915_private *dev_priv = dev->dev_private;
10775
10776         if (dev_priv->mm.busy)
10777                 return;
10778
10779         intel_runtime_pm_get(dev_priv);
10780         i915_update_gfx_val(dev_priv);
10781         if (INTEL_INFO(dev)->gen >= 6)
10782                 gen6_rps_busy(dev_priv);
10783         dev_priv->mm.busy = true;
10784 }
10785
10786 void intel_mark_idle(struct drm_device *dev)
10787 {
10788         struct drm_i915_private *dev_priv = dev->dev_private;
10789
10790         if (!dev_priv->mm.busy)
10791                 return;
10792
10793         dev_priv->mm.busy = false;
10794
10795         if (INTEL_INFO(dev)->gen >= 6)
10796                 gen6_rps_idle(dev->dev_private);
10797
10798         intel_runtime_pm_put(dev_priv);
10799 }
10800
10801 static void intel_crtc_destroy(struct drm_crtc *crtc)
10802 {
10803         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10804         struct drm_device *dev = crtc->dev;
10805         struct intel_unpin_work *work;
10806
10807         spin_lock_irq(&dev->event_lock);
10808         work = intel_crtc->unpin_work;
10809         intel_crtc->unpin_work = NULL;
10810         spin_unlock_irq(&dev->event_lock);
10811
10812         if (work) {
10813                 cancel_work_sync(&work->work);
10814                 kfree(work);
10815         }
10816
10817         drm_crtc_cleanup(crtc);
10818
10819         kfree(intel_crtc);
10820 }
10821
10822 static void intel_unpin_work_fn(struct work_struct *__work)
10823 {
10824         struct intel_unpin_work *work =
10825                 container_of(__work, struct intel_unpin_work, work);
10826         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10827         struct drm_device *dev = crtc->base.dev;
10828         struct drm_plane *primary = crtc->base.primary;
10829
10830         mutex_lock(&dev->struct_mutex);
10831         intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
10832         drm_gem_object_unreference(&work->pending_flip_obj->base);
10833
10834         if (work->flip_queued_req)
10835                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10836         mutex_unlock(&dev->struct_mutex);
10837
10838         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10839         intel_fbc_post_update(crtc);
10840         drm_framebuffer_unreference(work->old_fb);
10841
10842         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10843         atomic_dec(&crtc->unpin_work_count);
10844
10845         kfree(work);
10846 }
10847
10848 static void do_intel_finish_page_flip(struct drm_device *dev,
10849                                       struct drm_crtc *crtc)
10850 {
10851         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10852         struct intel_unpin_work *work;
10853         unsigned long flags;
10854
10855         /* Ignore early vblank irqs */
10856         if (intel_crtc == NULL)
10857                 return;
10858
10859         /*
10860          * This is called both by irq handlers and the reset code (to complete
10861          * lost pageflips) so needs the full irqsave spinlocks.
10862          */
10863         spin_lock_irqsave(&dev->event_lock, flags);
10864         work = intel_crtc->unpin_work;
10865
10866         /* Ensure we don't miss a work->pending update ... */
10867         smp_rmb();
10868
10869         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10870                 spin_unlock_irqrestore(&dev->event_lock, flags);
10871                 return;
10872         }
10873
10874         page_flip_completed(intel_crtc);
10875
10876         spin_unlock_irqrestore(&dev->event_lock, flags);
10877 }
10878
10879 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10880 {
10881         struct drm_i915_private *dev_priv = dev->dev_private;
10882         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10883
10884         do_intel_finish_page_flip(dev, crtc);
10885 }
10886
10887 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10888 {
10889         struct drm_i915_private *dev_priv = dev->dev_private;
10890         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10891
10892         do_intel_finish_page_flip(dev, crtc);
10893 }
10894
10895 /* Is 'a' after or equal to 'b'? */
10896 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10897 {
10898         return !((a - b) & 0x80000000);
10899 }
10900
10901 static bool page_flip_finished(struct intel_crtc *crtc)
10902 {
10903         struct drm_device *dev = crtc->base.dev;
10904         struct drm_i915_private *dev_priv = dev->dev_private;
10905
10906         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10907             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10908                 return true;
10909
10910         /*
10911          * The relevant registers doen't exist on pre-ctg.
10912          * As the flip done interrupt doesn't trigger for mmio
10913          * flips on gmch platforms, a flip count check isn't
10914          * really needed there. But since ctg has the registers,
10915          * include it in the check anyway.
10916          */
10917         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10918                 return true;
10919
10920         /*
10921          * BDW signals flip done immediately if the plane
10922          * is disabled, even if the plane enable is already
10923          * armed to occur at the next vblank :(
10924          */
10925
10926         /*
10927          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10928          * used the same base address. In that case the mmio flip might
10929          * have completed, but the CS hasn't even executed the flip yet.
10930          *
10931          * A flip count check isn't enough as the CS might have updated
10932          * the base address just after start of vblank, but before we
10933          * managed to process the interrupt. This means we'd complete the
10934          * CS flip too soon.
10935          *
10936          * Combining both checks should get us a good enough result. It may
10937          * still happen that the CS flip has been executed, but has not
10938          * yet actually completed. But in case the base address is the same
10939          * anyway, we don't really care.
10940          */
10941         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10942                 crtc->unpin_work->gtt_offset &&
10943                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10944                                     crtc->unpin_work->flip_count);
10945 }
10946
10947 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10948 {
10949         struct drm_i915_private *dev_priv = dev->dev_private;
10950         struct intel_crtc *intel_crtc =
10951                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10952         unsigned long flags;
10953
10954
10955         /*
10956          * This is called both by irq handlers and the reset code (to complete
10957          * lost pageflips) so needs the full irqsave spinlocks.
10958          *
10959          * NB: An MMIO update of the plane base pointer will also
10960          * generate a page-flip completion irq, i.e. every modeset
10961          * is also accompanied by a spurious intel_prepare_page_flip().
10962          */
10963         spin_lock_irqsave(&dev->event_lock, flags);
10964         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10965                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10966         spin_unlock_irqrestore(&dev->event_lock, flags);
10967 }
10968
10969 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
10970 {
10971         /* Ensure that the work item is consistent when activating it ... */
10972         smp_wmb();
10973         atomic_set(&work->pending, INTEL_FLIP_PENDING);
10974         /* and that it is marked active as soon as the irq could fire. */
10975         smp_wmb();
10976 }
10977
10978 static int intel_gen2_queue_flip(struct drm_device *dev,
10979                                  struct drm_crtc *crtc,
10980                                  struct drm_framebuffer *fb,
10981                                  struct drm_i915_gem_object *obj,
10982                                  struct drm_i915_gem_request *req,
10983                                  uint32_t flags)
10984 {
10985         struct intel_engine_cs *engine = req->engine;
10986         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10987         u32 flip_mask;
10988         int ret;
10989
10990         ret = intel_ring_begin(req, 6);
10991         if (ret)
10992                 return ret;
10993
10994         /* Can't queue multiple flips, so wait for the previous
10995          * one to finish before executing the next.
10996          */
10997         if (intel_crtc->plane)
10998                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10999         else
11000                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11001         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11002         intel_ring_emit(engine, MI_NOOP);
11003         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11004                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11005         intel_ring_emit(engine, fb->pitches[0]);
11006         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11007         intel_ring_emit(engine, 0); /* aux display base address, unused */
11008
11009         intel_mark_page_flip_active(intel_crtc->unpin_work);
11010         return 0;
11011 }
11012
11013 static int intel_gen3_queue_flip(struct drm_device *dev,
11014                                  struct drm_crtc *crtc,
11015                                  struct drm_framebuffer *fb,
11016                                  struct drm_i915_gem_object *obj,
11017                                  struct drm_i915_gem_request *req,
11018                                  uint32_t flags)
11019 {
11020         struct intel_engine_cs *engine = req->engine;
11021         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11022         u32 flip_mask;
11023         int ret;
11024
11025         ret = intel_ring_begin(req, 6);
11026         if (ret)
11027                 return ret;
11028
11029         if (intel_crtc->plane)
11030                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11031         else
11032                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11033         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11034         intel_ring_emit(engine, MI_NOOP);
11035         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
11036                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11037         intel_ring_emit(engine, fb->pitches[0]);
11038         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11039         intel_ring_emit(engine, MI_NOOP);
11040
11041         intel_mark_page_flip_active(intel_crtc->unpin_work);
11042         return 0;
11043 }
11044
11045 static int intel_gen4_queue_flip(struct drm_device *dev,
11046                                  struct drm_crtc *crtc,
11047                                  struct drm_framebuffer *fb,
11048                                  struct drm_i915_gem_object *obj,
11049                                  struct drm_i915_gem_request *req,
11050                                  uint32_t flags)
11051 {
11052         struct intel_engine_cs *engine = req->engine;
11053         struct drm_i915_private *dev_priv = dev->dev_private;
11054         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11055         uint32_t pf, pipesrc;
11056         int ret;
11057
11058         ret = intel_ring_begin(req, 4);
11059         if (ret)
11060                 return ret;
11061
11062         /* i965+ uses the linear or tiled offsets from the
11063          * Display Registers (which do not change across a page-flip)
11064          * so we need only reprogram the base address.
11065          */
11066         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11067                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11068         intel_ring_emit(engine, fb->pitches[0]);
11069         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset |
11070                         obj->tiling_mode);
11071
11072         /* XXX Enabling the panel-fitter across page-flip is so far
11073          * untested on non-native modes, so ignore it for now.
11074          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11075          */
11076         pf = 0;
11077         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11078         intel_ring_emit(engine, pf | pipesrc);
11079
11080         intel_mark_page_flip_active(intel_crtc->unpin_work);
11081         return 0;
11082 }
11083
11084 static int intel_gen6_queue_flip(struct drm_device *dev,
11085                                  struct drm_crtc *crtc,
11086                                  struct drm_framebuffer *fb,
11087                                  struct drm_i915_gem_object *obj,
11088                                  struct drm_i915_gem_request *req,
11089                                  uint32_t flags)
11090 {
11091         struct intel_engine_cs *engine = req->engine;
11092         struct drm_i915_private *dev_priv = dev->dev_private;
11093         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11094         uint32_t pf, pipesrc;
11095         int ret;
11096
11097         ret = intel_ring_begin(req, 4);
11098         if (ret)
11099                 return ret;
11100
11101         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11102                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11103         intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11104         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11105
11106         /* Contrary to the suggestions in the documentation,
11107          * "Enable Panel Fitter" does not seem to be required when page
11108          * flipping with a non-native mode, and worse causes a normal
11109          * modeset to fail.
11110          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11111          */
11112         pf = 0;
11113         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11114         intel_ring_emit(engine, pf | pipesrc);
11115
11116         intel_mark_page_flip_active(intel_crtc->unpin_work);
11117         return 0;
11118 }
11119
11120 static int intel_gen7_queue_flip(struct drm_device *dev,
11121                                  struct drm_crtc *crtc,
11122                                  struct drm_framebuffer *fb,
11123                                  struct drm_i915_gem_object *obj,
11124                                  struct drm_i915_gem_request *req,
11125                                  uint32_t flags)
11126 {
11127         struct intel_engine_cs *engine = req->engine;
11128         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11129         uint32_t plane_bit = 0;
11130         int len, ret;
11131
11132         switch (intel_crtc->plane) {
11133         case PLANE_A:
11134                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11135                 break;
11136         case PLANE_B:
11137                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11138                 break;
11139         case PLANE_C:
11140                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11141                 break;
11142         default:
11143                 WARN_ONCE(1, "unknown plane in flip command\n");
11144                 return -ENODEV;
11145         }
11146
11147         len = 4;
11148         if (engine->id == RCS) {
11149                 len += 6;
11150                 /*
11151                  * On Gen 8, SRM is now taking an extra dword to accommodate
11152                  * 48bits addresses, and we need a NOOP for the batch size to
11153                  * stay even.
11154                  */
11155                 if (IS_GEN8(dev))
11156                         len += 2;
11157         }
11158
11159         /*
11160          * BSpec MI_DISPLAY_FLIP for IVB:
11161          * "The full packet must be contained within the same cache line."
11162          *
11163          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11164          * cacheline, if we ever start emitting more commands before
11165          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11166          * then do the cacheline alignment, and finally emit the
11167          * MI_DISPLAY_FLIP.
11168          */
11169         ret = intel_ring_cacheline_align(req);
11170         if (ret)
11171                 return ret;
11172
11173         ret = intel_ring_begin(req, len);
11174         if (ret)
11175                 return ret;
11176
11177         /* Unmask the flip-done completion message. Note that the bspec says that
11178          * we should do this for both the BCS and RCS, and that we must not unmask
11179          * more than one flip event at any time (or ensure that one flip message
11180          * can be sent by waiting for flip-done prior to queueing new flips).
11181          * Experimentation says that BCS works despite DERRMR masking all
11182          * flip-done completion events and that unmasking all planes at once
11183          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11184          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11185          */
11186         if (engine->id == RCS) {
11187                 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11188                 intel_ring_emit_reg(engine, DERRMR);
11189                 intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11190                                           DERRMR_PIPEB_PRI_FLIP_DONE |
11191                                           DERRMR_PIPEC_PRI_FLIP_DONE));
11192                 if (IS_GEN8(dev))
11193                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
11194                                               MI_SRM_LRM_GLOBAL_GTT);
11195                 else
11196                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
11197                                               MI_SRM_LRM_GLOBAL_GTT);
11198                 intel_ring_emit_reg(engine, DERRMR);
11199                 intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
11200                 if (IS_GEN8(dev)) {
11201                         intel_ring_emit(engine, 0);
11202                         intel_ring_emit(engine, MI_NOOP);
11203                 }
11204         }
11205
11206         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11207         intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11208         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11209         intel_ring_emit(engine, (MI_NOOP));
11210
11211         intel_mark_page_flip_active(intel_crtc->unpin_work);
11212         return 0;
11213 }
11214
11215 static bool use_mmio_flip(struct intel_engine_cs *engine,
11216                           struct drm_i915_gem_object *obj)
11217 {
11218         /*
11219          * This is not being used for older platforms, because
11220          * non-availability of flip done interrupt forces us to use
11221          * CS flips. Older platforms derive flip done using some clever
11222          * tricks involving the flip_pending status bits and vblank irqs.
11223          * So using MMIO flips there would disrupt this mechanism.
11224          */
11225
11226         if (engine == NULL)
11227                 return true;
11228
11229         if (INTEL_INFO(engine->dev)->gen < 5)
11230                 return false;
11231
11232         if (i915.use_mmio_flip < 0)
11233                 return false;
11234         else if (i915.use_mmio_flip > 0)
11235                 return true;
11236         else if (i915.enable_execlists)
11237                 return true;
11238         else if (obj->base.dma_buf &&
11239                  !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11240                                                        false))
11241                 return true;
11242         else
11243                 return engine != i915_gem_request_get_engine(obj->last_write_req);
11244 }
11245
11246 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11247                              unsigned int rotation,
11248                              struct intel_unpin_work *work)
11249 {
11250         struct drm_device *dev = intel_crtc->base.dev;
11251         struct drm_i915_private *dev_priv = dev->dev_private;
11252         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11253         const enum pipe pipe = intel_crtc->pipe;
11254         u32 ctl, stride, tile_height;
11255
11256         ctl = I915_READ(PLANE_CTL(pipe, 0));
11257         ctl &= ~PLANE_CTL_TILED_MASK;
11258         switch (fb->modifier[0]) {
11259         case DRM_FORMAT_MOD_NONE:
11260                 break;
11261         case I915_FORMAT_MOD_X_TILED:
11262                 ctl |= PLANE_CTL_TILED_X;
11263                 break;
11264         case I915_FORMAT_MOD_Y_TILED:
11265                 ctl |= PLANE_CTL_TILED_Y;
11266                 break;
11267         case I915_FORMAT_MOD_Yf_TILED:
11268                 ctl |= PLANE_CTL_TILED_YF;
11269                 break;
11270         default:
11271                 MISSING_CASE(fb->modifier[0]);
11272         }
11273
11274         /*
11275          * The stride is either expressed as a multiple of 64 bytes chunks for
11276          * linear buffers or in number of tiles for tiled buffers.
11277          */
11278         if (intel_rotation_90_or_270(rotation)) {
11279                 /* stride = Surface height in tiles */
11280                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11281                 stride = DIV_ROUND_UP(fb->height, tile_height);
11282         } else {
11283                 stride = fb->pitches[0] /
11284                         intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11285                                                   fb->pixel_format);
11286         }
11287
11288         /*
11289          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11290          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11291          */
11292         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11293         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11294
11295         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11296         POSTING_READ(PLANE_SURF(pipe, 0));
11297 }
11298
11299 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11300                              struct intel_unpin_work *work)
11301 {
11302         struct drm_device *dev = intel_crtc->base.dev;
11303         struct drm_i915_private *dev_priv = dev->dev_private;
11304         struct intel_framebuffer *intel_fb =
11305                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11306         struct drm_i915_gem_object *obj = intel_fb->obj;
11307         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11308         u32 dspcntr;
11309
11310         dspcntr = I915_READ(reg);
11311
11312         if (obj->tiling_mode != I915_TILING_NONE)
11313                 dspcntr |= DISPPLANE_TILED;
11314         else
11315                 dspcntr &= ~DISPPLANE_TILED;
11316
11317         I915_WRITE(reg, dspcntr);
11318
11319         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11320         POSTING_READ(DSPSURF(intel_crtc->plane));
11321 }
11322
11323 /*
11324  * XXX: This is the temporary way to update the plane registers until we get
11325  * around to using the usual plane update functions for MMIO flips
11326  */
11327 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11328 {
11329         struct intel_crtc *crtc = mmio_flip->crtc;
11330         struct intel_unpin_work *work;
11331
11332         spin_lock_irq(&crtc->base.dev->event_lock);
11333         work = crtc->unpin_work;
11334         spin_unlock_irq(&crtc->base.dev->event_lock);
11335         if (work == NULL)
11336                 return;
11337
11338         intel_mark_page_flip_active(work);
11339
11340         intel_pipe_update_start(crtc);
11341
11342         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11343                 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11344         else
11345                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11346                 ilk_do_mmio_flip(crtc, work);
11347
11348         intel_pipe_update_end(crtc);
11349 }
11350
11351 static void intel_mmio_flip_work_func(struct work_struct *work)
11352 {
11353         struct intel_mmio_flip *mmio_flip =
11354                 container_of(work, struct intel_mmio_flip, work);
11355         struct intel_framebuffer *intel_fb =
11356                 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11357         struct drm_i915_gem_object *obj = intel_fb->obj;
11358
11359         if (mmio_flip->req) {
11360                 WARN_ON(__i915_wait_request(mmio_flip->req,
11361                                             mmio_flip->crtc->reset_counter,
11362                                             false, NULL,
11363                                             &mmio_flip->i915->rps.mmioflips));
11364                 i915_gem_request_unreference__unlocked(mmio_flip->req);
11365         }
11366
11367         /* For framebuffer backed by dmabuf, wait for fence */
11368         if (obj->base.dma_buf)
11369                 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11370                                                             false, false,
11371                                                             MAX_SCHEDULE_TIMEOUT) < 0);
11372
11373         intel_do_mmio_flip(mmio_flip);
11374         kfree(mmio_flip);
11375 }
11376
11377 static int intel_queue_mmio_flip(struct drm_device *dev,
11378                                  struct drm_crtc *crtc,
11379                                  struct drm_i915_gem_object *obj)
11380 {
11381         struct intel_mmio_flip *mmio_flip;
11382
11383         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11384         if (mmio_flip == NULL)
11385                 return -ENOMEM;
11386
11387         mmio_flip->i915 = to_i915(dev);
11388         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11389         mmio_flip->crtc = to_intel_crtc(crtc);
11390         mmio_flip->rotation = crtc->primary->state->rotation;
11391
11392         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11393         schedule_work(&mmio_flip->work);
11394
11395         return 0;
11396 }
11397
11398 static int intel_default_queue_flip(struct drm_device *dev,
11399                                     struct drm_crtc *crtc,
11400                                     struct drm_framebuffer *fb,
11401                                     struct drm_i915_gem_object *obj,
11402                                     struct drm_i915_gem_request *req,
11403                                     uint32_t flags)
11404 {
11405         return -ENODEV;
11406 }
11407
11408 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11409                                          struct drm_crtc *crtc)
11410 {
11411         struct drm_i915_private *dev_priv = dev->dev_private;
11412         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11413         struct intel_unpin_work *work = intel_crtc->unpin_work;
11414         u32 addr;
11415
11416         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11417                 return true;
11418
11419         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11420                 return false;
11421
11422         if (!work->enable_stall_check)
11423                 return false;
11424
11425         if (work->flip_ready_vblank == 0) {
11426                 if (work->flip_queued_req &&
11427                     !i915_gem_request_completed(work->flip_queued_req, true))
11428                         return false;
11429
11430                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11431         }
11432
11433         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11434                 return false;
11435
11436         /* Potential stall - if we see that the flip has happened,
11437          * assume a missed interrupt. */
11438         if (INTEL_INFO(dev)->gen >= 4)
11439                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11440         else
11441                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11442
11443         /* There is a potential issue here with a false positive after a flip
11444          * to the same address. We could address this by checking for a
11445          * non-incrementing frame counter.
11446          */
11447         return addr == work->gtt_offset;
11448 }
11449
11450 void intel_check_page_flip(struct drm_device *dev, int pipe)
11451 {
11452         struct drm_i915_private *dev_priv = dev->dev_private;
11453         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11454         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11455         struct intel_unpin_work *work;
11456
11457         WARN_ON(!in_interrupt());
11458
11459         if (crtc == NULL)
11460                 return;
11461
11462         spin_lock(&dev->event_lock);
11463         work = intel_crtc->unpin_work;
11464         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11465                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11466                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11467                 page_flip_completed(intel_crtc);
11468                 work = NULL;
11469         }
11470         if (work != NULL &&
11471             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11472                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11473         spin_unlock(&dev->event_lock);
11474 }
11475
11476 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11477                                 struct drm_framebuffer *fb,
11478                                 struct drm_pending_vblank_event *event,
11479                                 uint32_t page_flip_flags)
11480 {
11481         struct drm_device *dev = crtc->dev;
11482         struct drm_i915_private *dev_priv = dev->dev_private;
11483         struct drm_framebuffer *old_fb = crtc->primary->fb;
11484         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11485         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11486         struct drm_plane *primary = crtc->primary;
11487         enum pipe pipe = intel_crtc->pipe;
11488         struct intel_unpin_work *work;
11489         struct intel_engine_cs *engine;
11490         bool mmio_flip;
11491         struct drm_i915_gem_request *request = NULL;
11492         int ret;
11493
11494         /*
11495          * drm_mode_page_flip_ioctl() should already catch this, but double
11496          * check to be safe.  In the future we may enable pageflipping from
11497          * a disabled primary plane.
11498          */
11499         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11500                 return -EBUSY;
11501
11502         /* Can't change pixel format via MI display flips. */
11503         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11504                 return -EINVAL;
11505
11506         /*
11507          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11508          * Note that pitch changes could also affect these register.
11509          */
11510         if (INTEL_INFO(dev)->gen > 3 &&
11511             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11512              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11513                 return -EINVAL;
11514
11515         if (i915_terminally_wedged(&dev_priv->gpu_error))
11516                 goto out_hang;
11517
11518         work = kzalloc(sizeof(*work), GFP_KERNEL);
11519         if (work == NULL)
11520                 return -ENOMEM;
11521
11522         work->event = event;
11523         work->crtc = crtc;
11524         work->old_fb = old_fb;
11525         INIT_WORK(&work->work, intel_unpin_work_fn);
11526
11527         ret = drm_crtc_vblank_get(crtc);
11528         if (ret)
11529                 goto free_work;
11530
11531         /* We borrow the event spin lock for protecting unpin_work */
11532         spin_lock_irq(&dev->event_lock);
11533         if (intel_crtc->unpin_work) {
11534                 /* Before declaring the flip queue wedged, check if
11535                  * the hardware completed the operation behind our backs.
11536                  */
11537                 if (__intel_pageflip_stall_check(dev, crtc)) {
11538                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11539                         page_flip_completed(intel_crtc);
11540                 } else {
11541                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11542                         spin_unlock_irq(&dev->event_lock);
11543
11544                         drm_crtc_vblank_put(crtc);
11545                         kfree(work);
11546                         return -EBUSY;
11547                 }
11548         }
11549         intel_crtc->unpin_work = work;
11550         spin_unlock_irq(&dev->event_lock);
11551
11552         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11553                 flush_workqueue(dev_priv->wq);
11554
11555         /* Reference the objects for the scheduled work. */
11556         drm_framebuffer_reference(work->old_fb);
11557         drm_gem_object_reference(&obj->base);
11558
11559         crtc->primary->fb = fb;
11560         update_state_fb(crtc->primary);
11561         intel_fbc_pre_update(intel_crtc);
11562
11563         work->pending_flip_obj = obj;
11564
11565         ret = i915_mutex_lock_interruptible(dev);
11566         if (ret)
11567                 goto cleanup;
11568
11569         atomic_inc(&intel_crtc->unpin_work_count);
11570         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11571
11572         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11573                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11574
11575         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11576                 engine = &dev_priv->engine[BCS];
11577                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11578                         /* vlv: DISPLAY_FLIP fails to change tiling */
11579                         engine = NULL;
11580         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11581                 engine = &dev_priv->engine[BCS];
11582         } else if (INTEL_INFO(dev)->gen >= 7) {
11583                 engine = i915_gem_request_get_engine(obj->last_write_req);
11584                 if (engine == NULL || engine->id != RCS)
11585                         engine = &dev_priv->engine[BCS];
11586         } else {
11587                 engine = &dev_priv->engine[RCS];
11588         }
11589
11590         mmio_flip = use_mmio_flip(engine, obj);
11591
11592         /* When using CS flips, we want to emit semaphores between rings.
11593          * However, when using mmio flips we will create a task to do the
11594          * synchronisation, so all we want here is to pin the framebuffer
11595          * into the display plane and skip any waits.
11596          */
11597         if (!mmio_flip) {
11598                 ret = i915_gem_object_sync(obj, engine, &request);
11599                 if (ret)
11600                         goto cleanup_pending;
11601         }
11602
11603         ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11604         if (ret)
11605                 goto cleanup_pending;
11606
11607         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11608                                                   obj, 0);
11609         work->gtt_offset += intel_crtc->dspaddr_offset;
11610
11611         if (mmio_flip) {
11612                 ret = intel_queue_mmio_flip(dev, crtc, obj);
11613                 if (ret)
11614                         goto cleanup_unpin;
11615
11616                 i915_gem_request_assign(&work->flip_queued_req,
11617                                         obj->last_write_req);
11618         } else {
11619                 if (!request) {
11620                         request = i915_gem_request_alloc(engine, NULL);
11621                         if (IS_ERR(request)) {
11622                                 ret = PTR_ERR(request);
11623                                 goto cleanup_unpin;
11624                         }
11625                 }
11626
11627                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11628                                                    page_flip_flags);
11629                 if (ret)
11630                         goto cleanup_unpin;
11631
11632                 i915_gem_request_assign(&work->flip_queued_req, request);
11633         }
11634
11635         if (request)
11636                 i915_add_request_no_flush(request);
11637
11638         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11639         work->enable_stall_check = true;
11640
11641         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11642                           to_intel_plane(primary)->frontbuffer_bit);
11643         mutex_unlock(&dev->struct_mutex);
11644
11645         intel_frontbuffer_flip_prepare(dev,
11646                                        to_intel_plane(primary)->frontbuffer_bit);
11647
11648         trace_i915_flip_request(intel_crtc->plane, obj);
11649
11650         return 0;
11651
11652 cleanup_unpin:
11653         intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11654 cleanup_pending:
11655         if (!IS_ERR_OR_NULL(request))
11656                 i915_gem_request_cancel(request);
11657         atomic_dec(&intel_crtc->unpin_work_count);
11658         mutex_unlock(&dev->struct_mutex);
11659 cleanup:
11660         crtc->primary->fb = old_fb;
11661         update_state_fb(crtc->primary);
11662
11663         drm_gem_object_unreference_unlocked(&obj->base);
11664         drm_framebuffer_unreference(work->old_fb);
11665
11666         spin_lock_irq(&dev->event_lock);
11667         intel_crtc->unpin_work = NULL;
11668         spin_unlock_irq(&dev->event_lock);
11669
11670         drm_crtc_vblank_put(crtc);
11671 free_work:
11672         kfree(work);
11673
11674         if (ret == -EIO) {
11675                 struct drm_atomic_state *state;
11676                 struct drm_plane_state *plane_state;
11677
11678 out_hang:
11679                 state = drm_atomic_state_alloc(dev);
11680                 if (!state)
11681                         return -ENOMEM;
11682                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11683
11684 retry:
11685                 plane_state = drm_atomic_get_plane_state(state, primary);
11686                 ret = PTR_ERR_OR_ZERO(plane_state);
11687                 if (!ret) {
11688                         drm_atomic_set_fb_for_plane(plane_state, fb);
11689
11690                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11691                         if (!ret)
11692                                 ret = drm_atomic_commit(state);
11693                 }
11694
11695                 if (ret == -EDEADLK) {
11696                         drm_modeset_backoff(state->acquire_ctx);
11697                         drm_atomic_state_clear(state);
11698                         goto retry;
11699                 }
11700
11701                 if (ret)
11702                         drm_atomic_state_free(state);
11703
11704                 if (ret == 0 && event) {
11705                         spin_lock_irq(&dev->event_lock);
11706                         drm_send_vblank_event(dev, pipe, event);
11707                         spin_unlock_irq(&dev->event_lock);
11708                 }
11709         }
11710         return ret;
11711 }
11712
11713
11714 /**
11715  * intel_wm_need_update - Check whether watermarks need updating
11716  * @plane: drm plane
11717  * @state: new plane state
11718  *
11719  * Check current plane state versus the new one to determine whether
11720  * watermarks need to be recalculated.
11721  *
11722  * Returns true or false.
11723  */
11724 static bool intel_wm_need_update(struct drm_plane *plane,
11725                                  struct drm_plane_state *state)
11726 {
11727         struct intel_plane_state *new = to_intel_plane_state(state);
11728         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11729
11730         /* Update watermarks on tiling or size changes. */
11731         if (new->visible != cur->visible)
11732                 return true;
11733
11734         if (!cur->base.fb || !new->base.fb)
11735                 return false;
11736
11737         if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11738             cur->base.rotation != new->base.rotation ||
11739             drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11740             drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11741             drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11742             drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11743                 return true;
11744
11745         return false;
11746 }
11747
11748 static bool needs_scaling(struct intel_plane_state *state)
11749 {
11750         int src_w = drm_rect_width(&state->src) >> 16;
11751         int src_h = drm_rect_height(&state->src) >> 16;
11752         int dst_w = drm_rect_width(&state->dst);
11753         int dst_h = drm_rect_height(&state->dst);
11754
11755         return (src_w != dst_w || src_h != dst_h);
11756 }
11757
11758 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11759                                     struct drm_plane_state *plane_state)
11760 {
11761         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11762         struct drm_crtc *crtc = crtc_state->crtc;
11763         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11764         struct drm_plane *plane = plane_state->plane;
11765         struct drm_device *dev = crtc->dev;
11766         struct drm_i915_private *dev_priv = to_i915(dev);
11767         struct intel_plane_state *old_plane_state =
11768                 to_intel_plane_state(plane->state);
11769         int idx = intel_crtc->base.base.id, ret;
11770         bool mode_changed = needs_modeset(crtc_state);
11771         bool was_crtc_enabled = crtc->state->active;
11772         bool is_crtc_enabled = crtc_state->active;
11773         bool turn_off, turn_on, visible, was_visible;
11774         struct drm_framebuffer *fb = plane_state->fb;
11775
11776         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11777             plane->type != DRM_PLANE_TYPE_CURSOR) {
11778                 ret = skl_update_scaler_plane(
11779                         to_intel_crtc_state(crtc_state),
11780                         to_intel_plane_state(plane_state));
11781                 if (ret)
11782                         return ret;
11783         }
11784
11785         was_visible = old_plane_state->visible;
11786         visible = to_intel_plane_state(plane_state)->visible;
11787
11788         if (!was_crtc_enabled && WARN_ON(was_visible))
11789                 was_visible = false;
11790
11791         /*
11792          * Visibility is calculated as if the crtc was on, but
11793          * after scaler setup everything depends on it being off
11794          * when the crtc isn't active.
11795          */
11796         if (!is_crtc_enabled)
11797                 to_intel_plane_state(plane_state)->visible = visible = false;
11798
11799         if (!was_visible && !visible)
11800                 return 0;
11801
11802         if (fb != old_plane_state->base.fb)
11803                 pipe_config->fb_changed = true;
11804
11805         turn_off = was_visible && (!visible || mode_changed);
11806         turn_on = visible && (!was_visible || mode_changed);
11807
11808         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11809                          plane->base.id, fb ? fb->base.id : -1);
11810
11811         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11812                          plane->base.id, was_visible, visible,
11813                          turn_off, turn_on, mode_changed);
11814
11815         if (turn_on) {
11816                 pipe_config->update_wm_pre = true;
11817
11818                 /* must disable cxsr around plane enable/disable */
11819                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11820                         pipe_config->disable_cxsr = true;
11821         } else if (turn_off) {
11822                 pipe_config->update_wm_post = true;
11823
11824                 /* must disable cxsr around plane enable/disable */
11825                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11826                         pipe_config->disable_cxsr = true;
11827         } else if (intel_wm_need_update(plane, plane_state)) {
11828                 /* FIXME bollocks */
11829                 pipe_config->update_wm_pre = true;
11830                 pipe_config->update_wm_post = true;
11831         }
11832
11833         /* Pre-gen9 platforms need two-step watermark updates */
11834         if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
11835             INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
11836                 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
11837
11838         if (visible || was_visible)
11839                 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
11840
11841         /*
11842          * WaCxSRDisabledForSpriteScaling:ivb
11843          *
11844          * cstate->update_wm was already set above, so this flag will
11845          * take effect when we commit and program watermarks.
11846          */
11847         if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
11848             needs_scaling(to_intel_plane_state(plane_state)) &&
11849             !needs_scaling(old_plane_state))
11850                 pipe_config->disable_lp_wm = true;
11851
11852         return 0;
11853 }
11854
11855 static bool encoders_cloneable(const struct intel_encoder *a,
11856                                const struct intel_encoder *b)
11857 {
11858         /* masks could be asymmetric, so check both ways */
11859         return a == b || (a->cloneable & (1 << b->type) &&
11860                           b->cloneable & (1 << a->type));
11861 }
11862
11863 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11864                                          struct intel_crtc *crtc,
11865                                          struct intel_encoder *encoder)
11866 {
11867         struct intel_encoder *source_encoder;
11868         struct drm_connector *connector;
11869         struct drm_connector_state *connector_state;
11870         int i;
11871
11872         for_each_connector_in_state(state, connector, connector_state, i) {
11873                 if (connector_state->crtc != &crtc->base)
11874                         continue;
11875
11876                 source_encoder =
11877                         to_intel_encoder(connector_state->best_encoder);
11878                 if (!encoders_cloneable(encoder, source_encoder))
11879                         return false;
11880         }
11881
11882         return true;
11883 }
11884
11885 static bool check_encoder_cloning(struct drm_atomic_state *state,
11886                                   struct intel_crtc *crtc)
11887 {
11888         struct intel_encoder *encoder;
11889         struct drm_connector *connector;
11890         struct drm_connector_state *connector_state;
11891         int i;
11892
11893         for_each_connector_in_state(state, connector, connector_state, i) {
11894                 if (connector_state->crtc != &crtc->base)
11895                         continue;
11896
11897                 encoder = to_intel_encoder(connector_state->best_encoder);
11898                 if (!check_single_encoder_cloning(state, crtc, encoder))
11899                         return false;
11900         }
11901
11902         return true;
11903 }
11904
11905 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11906                                    struct drm_crtc_state *crtc_state)
11907 {
11908         struct drm_device *dev = crtc->dev;
11909         struct drm_i915_private *dev_priv = dev->dev_private;
11910         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11911         struct intel_crtc_state *pipe_config =
11912                 to_intel_crtc_state(crtc_state);
11913         struct drm_atomic_state *state = crtc_state->state;
11914         int ret;
11915         bool mode_changed = needs_modeset(crtc_state);
11916
11917         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11918                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11919                 return -EINVAL;
11920         }
11921
11922         if (mode_changed && !crtc_state->active)
11923                 pipe_config->update_wm_post = true;
11924
11925         if (mode_changed && crtc_state->enable &&
11926             dev_priv->display.crtc_compute_clock &&
11927             !WARN_ON(pipe_config->shared_dpll)) {
11928                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11929                                                            pipe_config);
11930                 if (ret)
11931                         return ret;
11932         }
11933
11934         if (crtc_state->color_mgmt_changed) {
11935                 ret = intel_color_check(crtc, crtc_state);
11936                 if (ret)
11937                         return ret;
11938         }
11939
11940         ret = 0;
11941         if (dev_priv->display.compute_pipe_wm) {
11942                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
11943                 if (ret) {
11944                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
11945                         return ret;
11946                 }
11947         }
11948
11949         if (dev_priv->display.compute_intermediate_wm &&
11950             !to_intel_atomic_state(state)->skip_intermediate_wm) {
11951                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
11952                         return 0;
11953
11954                 /*
11955                  * Calculate 'intermediate' watermarks that satisfy both the
11956                  * old state and the new state.  We can program these
11957                  * immediately.
11958                  */
11959                 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
11960                                                                 intel_crtc,
11961                                                                 pipe_config);
11962                 if (ret) {
11963                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
11964                         return ret;
11965                 }
11966         }
11967
11968         if (INTEL_INFO(dev)->gen >= 9) {
11969                 if (mode_changed)
11970                         ret = skl_update_scaler_crtc(pipe_config);
11971
11972                 if (!ret)
11973                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
11974                                                          pipe_config);
11975         }
11976
11977         return ret;
11978 }
11979
11980 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11981         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11982         .atomic_begin = intel_begin_crtc_commit,
11983         .atomic_flush = intel_finish_crtc_commit,
11984         .atomic_check = intel_crtc_atomic_check,
11985 };
11986
11987 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11988 {
11989         struct intel_connector *connector;
11990
11991         for_each_intel_connector(dev, connector) {
11992                 if (connector->base.encoder) {
11993                         connector->base.state->best_encoder =
11994                                 connector->base.encoder;
11995                         connector->base.state->crtc =
11996                                 connector->base.encoder->crtc;
11997                 } else {
11998                         connector->base.state->best_encoder = NULL;
11999                         connector->base.state->crtc = NULL;
12000                 }
12001         }
12002 }
12003
12004 static void
12005 connected_sink_compute_bpp(struct intel_connector *connector,
12006                            struct intel_crtc_state *pipe_config)
12007 {
12008         int bpp = pipe_config->pipe_bpp;
12009
12010         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12011                 connector->base.base.id,
12012                 connector->base.name);
12013
12014         /* Don't use an invalid EDID bpc value */
12015         if (connector->base.display_info.bpc &&
12016             connector->base.display_info.bpc * 3 < bpp) {
12017                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12018                               bpp, connector->base.display_info.bpc*3);
12019                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12020         }
12021
12022         /* Clamp bpp to default limit on screens without EDID 1.4 */
12023         if (connector->base.display_info.bpc == 0) {
12024                 int type = connector->base.connector_type;
12025                 int clamp_bpp = 24;
12026
12027                 /* Fall back to 18 bpp when DP sink capability is unknown. */
12028                 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12029                     type == DRM_MODE_CONNECTOR_eDP)
12030                         clamp_bpp = 18;
12031
12032                 if (bpp > clamp_bpp) {
12033                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12034                                       bpp, clamp_bpp);
12035                         pipe_config->pipe_bpp = clamp_bpp;
12036                 }
12037         }
12038 }
12039
12040 static int
12041 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12042                           struct intel_crtc_state *pipe_config)
12043 {
12044         struct drm_device *dev = crtc->base.dev;
12045         struct drm_atomic_state *state;
12046         struct drm_connector *connector;
12047         struct drm_connector_state *connector_state;
12048         int bpp, i;
12049
12050         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12051                 bpp = 10*3;
12052         else if (INTEL_INFO(dev)->gen >= 5)
12053                 bpp = 12*3;
12054         else
12055                 bpp = 8*3;
12056
12057
12058         pipe_config->pipe_bpp = bpp;
12059
12060         state = pipe_config->base.state;
12061
12062         /* Clamp display bpp to EDID value */
12063         for_each_connector_in_state(state, connector, connector_state, i) {
12064                 if (connector_state->crtc != &crtc->base)
12065                         continue;
12066
12067                 connected_sink_compute_bpp(to_intel_connector(connector),
12068                                            pipe_config);
12069         }
12070
12071         return bpp;
12072 }
12073
12074 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12075 {
12076         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12077                         "type: 0x%x flags: 0x%x\n",
12078                 mode->crtc_clock,
12079                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12080                 mode->crtc_hsync_end, mode->crtc_htotal,
12081                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12082                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12083 }
12084
12085 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12086                                    struct intel_crtc_state *pipe_config,
12087                                    const char *context)
12088 {
12089         struct drm_device *dev = crtc->base.dev;
12090         struct drm_plane *plane;
12091         struct intel_plane *intel_plane;
12092         struct intel_plane_state *state;
12093         struct drm_framebuffer *fb;
12094
12095         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12096                       context, pipe_config, pipe_name(crtc->pipe));
12097
12098         DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12099         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12100                       pipe_config->pipe_bpp, pipe_config->dither);
12101         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12102                       pipe_config->has_pch_encoder,
12103                       pipe_config->fdi_lanes,
12104                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12105                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12106                       pipe_config->fdi_m_n.tu);
12107         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12108                       pipe_config->has_dp_encoder,
12109                       pipe_config->lane_count,
12110                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12111                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12112                       pipe_config->dp_m_n.tu);
12113
12114         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12115                       pipe_config->has_dp_encoder,
12116                       pipe_config->lane_count,
12117                       pipe_config->dp_m2_n2.gmch_m,
12118                       pipe_config->dp_m2_n2.gmch_n,
12119                       pipe_config->dp_m2_n2.link_m,
12120                       pipe_config->dp_m2_n2.link_n,
12121                       pipe_config->dp_m2_n2.tu);
12122
12123         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12124                       pipe_config->has_audio,
12125                       pipe_config->has_infoframe);
12126
12127         DRM_DEBUG_KMS("requested mode:\n");
12128         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12129         DRM_DEBUG_KMS("adjusted mode:\n");
12130         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12131         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12132         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12133         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12134                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12135         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12136                       crtc->num_scalers,
12137                       pipe_config->scaler_state.scaler_users,
12138                       pipe_config->scaler_state.scaler_id);
12139         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12140                       pipe_config->gmch_pfit.control,
12141                       pipe_config->gmch_pfit.pgm_ratios,
12142                       pipe_config->gmch_pfit.lvds_border_bits);
12143         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12144                       pipe_config->pch_pfit.pos,
12145                       pipe_config->pch_pfit.size,
12146                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12147         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12148         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12149
12150         if (IS_BROXTON(dev)) {
12151                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12152                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12153                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12154                               pipe_config->ddi_pll_sel,
12155                               pipe_config->dpll_hw_state.ebb0,
12156                               pipe_config->dpll_hw_state.ebb4,
12157                               pipe_config->dpll_hw_state.pll0,
12158                               pipe_config->dpll_hw_state.pll1,
12159                               pipe_config->dpll_hw_state.pll2,
12160                               pipe_config->dpll_hw_state.pll3,
12161                               pipe_config->dpll_hw_state.pll6,
12162                               pipe_config->dpll_hw_state.pll8,
12163                               pipe_config->dpll_hw_state.pll9,
12164                               pipe_config->dpll_hw_state.pll10,
12165                               pipe_config->dpll_hw_state.pcsdw12);
12166         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12167                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12168                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12169                               pipe_config->ddi_pll_sel,
12170                               pipe_config->dpll_hw_state.ctrl1,
12171                               pipe_config->dpll_hw_state.cfgcr1,
12172                               pipe_config->dpll_hw_state.cfgcr2);
12173         } else if (HAS_DDI(dev)) {
12174                 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12175                               pipe_config->ddi_pll_sel,
12176                               pipe_config->dpll_hw_state.wrpll,
12177                               pipe_config->dpll_hw_state.spll);
12178         } else {
12179                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12180                               "fp0: 0x%x, fp1: 0x%x\n",
12181                               pipe_config->dpll_hw_state.dpll,
12182                               pipe_config->dpll_hw_state.dpll_md,
12183                               pipe_config->dpll_hw_state.fp0,
12184                               pipe_config->dpll_hw_state.fp1);
12185         }
12186
12187         DRM_DEBUG_KMS("planes on this crtc\n");
12188         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12189                 intel_plane = to_intel_plane(plane);
12190                 if (intel_plane->pipe != crtc->pipe)
12191                         continue;
12192
12193                 state = to_intel_plane_state(plane->state);
12194                 fb = state->base.fb;
12195                 if (!fb) {
12196                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12197                                 "disabled, scaler_id = %d\n",
12198                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12199                                 plane->base.id, intel_plane->pipe,
12200                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12201                                 drm_plane_index(plane), state->scaler_id);
12202                         continue;
12203                 }
12204
12205                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12206                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12207                         plane->base.id, intel_plane->pipe,
12208                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12209                         drm_plane_index(plane));
12210                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12211                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12212                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12213                         state->scaler_id,
12214                         state->src.x1 >> 16, state->src.y1 >> 16,
12215                         drm_rect_width(&state->src) >> 16,
12216                         drm_rect_height(&state->src) >> 16,
12217                         state->dst.x1, state->dst.y1,
12218                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12219         }
12220 }
12221
12222 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12223 {
12224         struct drm_device *dev = state->dev;
12225         struct drm_connector *connector;
12226         unsigned int used_ports = 0;
12227
12228         /*
12229          * Walk the connector list instead of the encoder
12230          * list to detect the problem on ddi platforms
12231          * where there's just one encoder per digital port.
12232          */
12233         drm_for_each_connector(connector, dev) {
12234                 struct drm_connector_state *connector_state;
12235                 struct intel_encoder *encoder;
12236
12237                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12238                 if (!connector_state)
12239                         connector_state = connector->state;
12240
12241                 if (!connector_state->best_encoder)
12242                         continue;
12243
12244                 encoder = to_intel_encoder(connector_state->best_encoder);
12245
12246                 WARN_ON(!connector_state->crtc);
12247
12248                 switch (encoder->type) {
12249                         unsigned int port_mask;
12250                 case INTEL_OUTPUT_UNKNOWN:
12251                         if (WARN_ON(!HAS_DDI(dev)))
12252                                 break;
12253                 case INTEL_OUTPUT_DISPLAYPORT:
12254                 case INTEL_OUTPUT_HDMI:
12255                 case INTEL_OUTPUT_EDP:
12256                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12257
12258                         /* the same port mustn't appear more than once */
12259                         if (used_ports & port_mask)
12260                                 return false;
12261
12262                         used_ports |= port_mask;
12263                 default:
12264                         break;
12265                 }
12266         }
12267
12268         return true;
12269 }
12270
12271 static void
12272 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12273 {
12274         struct drm_crtc_state tmp_state;
12275         struct intel_crtc_scaler_state scaler_state;
12276         struct intel_dpll_hw_state dpll_hw_state;
12277         struct intel_shared_dpll *shared_dpll;
12278         uint32_t ddi_pll_sel;
12279         bool force_thru;
12280
12281         /* FIXME: before the switch to atomic started, a new pipe_config was
12282          * kzalloc'd. Code that depends on any field being zero should be
12283          * fixed, so that the crtc_state can be safely duplicated. For now,
12284          * only fields that are know to not cause problems are preserved. */
12285
12286         tmp_state = crtc_state->base;
12287         scaler_state = crtc_state->scaler_state;
12288         shared_dpll = crtc_state->shared_dpll;
12289         dpll_hw_state = crtc_state->dpll_hw_state;
12290         ddi_pll_sel = crtc_state->ddi_pll_sel;
12291         force_thru = crtc_state->pch_pfit.force_thru;
12292
12293         memset(crtc_state, 0, sizeof *crtc_state);
12294
12295         crtc_state->base = tmp_state;
12296         crtc_state->scaler_state = scaler_state;
12297         crtc_state->shared_dpll = shared_dpll;
12298         crtc_state->dpll_hw_state = dpll_hw_state;
12299         crtc_state->ddi_pll_sel = ddi_pll_sel;
12300         crtc_state->pch_pfit.force_thru = force_thru;
12301 }
12302
12303 static int
12304 intel_modeset_pipe_config(struct drm_crtc *crtc,
12305                           struct intel_crtc_state *pipe_config)
12306 {
12307         struct drm_atomic_state *state = pipe_config->base.state;
12308         struct intel_encoder *encoder;
12309         struct drm_connector *connector;
12310         struct drm_connector_state *connector_state;
12311         int base_bpp, ret = -EINVAL;
12312         int i;
12313         bool retry = true;
12314
12315         clear_intel_crtc_state(pipe_config);
12316
12317         pipe_config->cpu_transcoder =
12318                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12319
12320         /*
12321          * Sanitize sync polarity flags based on requested ones. If neither
12322          * positive or negative polarity is requested, treat this as meaning
12323          * negative polarity.
12324          */
12325         if (!(pipe_config->base.adjusted_mode.flags &
12326               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12327                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12328
12329         if (!(pipe_config->base.adjusted_mode.flags &
12330               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12331                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12332
12333         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12334                                              pipe_config);
12335         if (base_bpp < 0)
12336                 goto fail;
12337
12338         /*
12339          * Determine the real pipe dimensions. Note that stereo modes can
12340          * increase the actual pipe size due to the frame doubling and
12341          * insertion of additional space for blanks between the frame. This
12342          * is stored in the crtc timings. We use the requested mode to do this
12343          * computation to clearly distinguish it from the adjusted mode, which
12344          * can be changed by the connectors in the below retry loop.
12345          */
12346         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12347                                &pipe_config->pipe_src_w,
12348                                &pipe_config->pipe_src_h);
12349
12350 encoder_retry:
12351         /* Ensure the port clock defaults are reset when retrying. */
12352         pipe_config->port_clock = 0;
12353         pipe_config->pixel_multiplier = 1;
12354
12355         /* Fill in default crtc timings, allow encoders to overwrite them. */
12356         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12357                               CRTC_STEREO_DOUBLE);
12358
12359         /* Pass our mode to the connectors and the CRTC to give them a chance to
12360          * adjust it according to limitations or connector properties, and also
12361          * a chance to reject the mode entirely.
12362          */
12363         for_each_connector_in_state(state, connector, connector_state, i) {
12364                 if (connector_state->crtc != crtc)
12365                         continue;
12366
12367                 encoder = to_intel_encoder(connector_state->best_encoder);
12368
12369                 if (!(encoder->compute_config(encoder, pipe_config))) {
12370                         DRM_DEBUG_KMS("Encoder config failure\n");
12371                         goto fail;
12372                 }
12373         }
12374
12375         /* Set default port clock if not overwritten by the encoder. Needs to be
12376          * done afterwards in case the encoder adjusts the mode. */
12377         if (!pipe_config->port_clock)
12378                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12379                         * pipe_config->pixel_multiplier;
12380
12381         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12382         if (ret < 0) {
12383                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12384                 goto fail;
12385         }
12386
12387         if (ret == RETRY) {
12388                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12389                         ret = -EINVAL;
12390                         goto fail;
12391                 }
12392
12393                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12394                 retry = false;
12395                 goto encoder_retry;
12396         }
12397
12398         /* Dithering seems to not pass-through bits correctly when it should, so
12399          * only enable it on 6bpc panels. */
12400         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12401         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12402                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12403
12404 fail:
12405         return ret;
12406 }
12407
12408 static void
12409 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12410 {
12411         struct drm_crtc *crtc;
12412         struct drm_crtc_state *crtc_state;
12413         int i;
12414
12415         /* Double check state. */
12416         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12417                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12418
12419                 /* Update hwmode for vblank functions */
12420                 if (crtc->state->active)
12421                         crtc->hwmode = crtc->state->adjusted_mode;
12422                 else
12423                         crtc->hwmode.crtc_clock = 0;
12424
12425                 /*
12426                  * Update legacy state to satisfy fbc code. This can
12427                  * be removed when fbc uses the atomic state.
12428                  */
12429                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12430                         struct drm_plane_state *plane_state = crtc->primary->state;
12431
12432                         crtc->primary->fb = plane_state->fb;
12433                         crtc->x = plane_state->src_x >> 16;
12434                         crtc->y = plane_state->src_y >> 16;
12435                 }
12436         }
12437 }
12438
12439 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12440 {
12441         int diff;
12442
12443         if (clock1 == clock2)
12444                 return true;
12445
12446         if (!clock1 || !clock2)
12447                 return false;
12448
12449         diff = abs(clock1 - clock2);
12450
12451         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12452                 return true;
12453
12454         return false;
12455 }
12456
12457 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12458         list_for_each_entry((intel_crtc), \
12459                             &(dev)->mode_config.crtc_list, \
12460                             base.head) \
12461                 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12462
12463 static bool
12464 intel_compare_m_n(unsigned int m, unsigned int n,
12465                   unsigned int m2, unsigned int n2,
12466                   bool exact)
12467 {
12468         if (m == m2 && n == n2)
12469                 return true;
12470
12471         if (exact || !m || !n || !m2 || !n2)
12472                 return false;
12473
12474         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12475
12476         if (n > n2) {
12477                 while (n > n2) {
12478                         m2 <<= 1;
12479                         n2 <<= 1;
12480                 }
12481         } else if (n < n2) {
12482                 while (n < n2) {
12483                         m <<= 1;
12484                         n <<= 1;
12485                 }
12486         }
12487
12488         if (n != n2)
12489                 return false;
12490
12491         return intel_fuzzy_clock_check(m, m2);
12492 }
12493
12494 static bool
12495 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12496                        struct intel_link_m_n *m2_n2,
12497                        bool adjust)
12498 {
12499         if (m_n->tu == m2_n2->tu &&
12500             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12501                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12502             intel_compare_m_n(m_n->link_m, m_n->link_n,
12503                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12504                 if (adjust)
12505                         *m2_n2 = *m_n;
12506
12507                 return true;
12508         }
12509
12510         return false;
12511 }
12512
12513 static bool
12514 intel_pipe_config_compare(struct drm_device *dev,
12515                           struct intel_crtc_state *current_config,
12516                           struct intel_crtc_state *pipe_config,
12517                           bool adjust)
12518 {
12519         bool ret = true;
12520
12521 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12522         do { \
12523                 if (!adjust) \
12524                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12525                 else \
12526                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12527         } while (0)
12528
12529 #define PIPE_CONF_CHECK_X(name) \
12530         if (current_config->name != pipe_config->name) { \
12531                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12532                           "(expected 0x%08x, found 0x%08x)\n", \
12533                           current_config->name, \
12534                           pipe_config->name); \
12535                 ret = false; \
12536         }
12537
12538 #define PIPE_CONF_CHECK_I(name) \
12539         if (current_config->name != pipe_config->name) { \
12540                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12541                           "(expected %i, found %i)\n", \
12542                           current_config->name, \
12543                           pipe_config->name); \
12544                 ret = false; \
12545         }
12546
12547 #define PIPE_CONF_CHECK_P(name) \
12548         if (current_config->name != pipe_config->name) { \
12549                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12550                           "(expected %p, found %p)\n", \
12551                           current_config->name, \
12552                           pipe_config->name); \
12553                 ret = false; \
12554         }
12555
12556 #define PIPE_CONF_CHECK_M_N(name) \
12557         if (!intel_compare_link_m_n(&current_config->name, \
12558                                     &pipe_config->name,\
12559                                     adjust)) { \
12560                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12561                           "(expected tu %i gmch %i/%i link %i/%i, " \
12562                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12563                           current_config->name.tu, \
12564                           current_config->name.gmch_m, \
12565                           current_config->name.gmch_n, \
12566                           current_config->name.link_m, \
12567                           current_config->name.link_n, \
12568                           pipe_config->name.tu, \
12569                           pipe_config->name.gmch_m, \
12570                           pipe_config->name.gmch_n, \
12571                           pipe_config->name.link_m, \
12572                           pipe_config->name.link_n); \
12573                 ret = false; \
12574         }
12575
12576 /* This is required for BDW+ where there is only one set of registers for
12577  * switching between high and low RR.
12578  * This macro can be used whenever a comparison has to be made between one
12579  * hw state and multiple sw state variables.
12580  */
12581 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12582         if (!intel_compare_link_m_n(&current_config->name, \
12583                                     &pipe_config->name, adjust) && \
12584             !intel_compare_link_m_n(&current_config->alt_name, \
12585                                     &pipe_config->name, adjust)) { \
12586                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12587                           "(expected tu %i gmch %i/%i link %i/%i, " \
12588                           "or tu %i gmch %i/%i link %i/%i, " \
12589                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12590                           current_config->name.tu, \
12591                           current_config->name.gmch_m, \
12592                           current_config->name.gmch_n, \
12593                           current_config->name.link_m, \
12594                           current_config->name.link_n, \
12595                           current_config->alt_name.tu, \
12596                           current_config->alt_name.gmch_m, \
12597                           current_config->alt_name.gmch_n, \
12598                           current_config->alt_name.link_m, \
12599                           current_config->alt_name.link_n, \
12600                           pipe_config->name.tu, \
12601                           pipe_config->name.gmch_m, \
12602                           pipe_config->name.gmch_n, \
12603                           pipe_config->name.link_m, \
12604                           pipe_config->name.link_n); \
12605                 ret = false; \
12606         }
12607
12608 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12609         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12610                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12611                           "(expected %i, found %i)\n", \
12612                           current_config->name & (mask), \
12613                           pipe_config->name & (mask)); \
12614                 ret = false; \
12615         }
12616
12617 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12618         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12619                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12620                           "(expected %i, found %i)\n", \
12621                           current_config->name, \
12622                           pipe_config->name); \
12623                 ret = false; \
12624         }
12625
12626 #define PIPE_CONF_QUIRK(quirk)  \
12627         ((current_config->quirks | pipe_config->quirks) & (quirk))
12628
12629         PIPE_CONF_CHECK_I(cpu_transcoder);
12630
12631         PIPE_CONF_CHECK_I(has_pch_encoder);
12632         PIPE_CONF_CHECK_I(fdi_lanes);
12633         PIPE_CONF_CHECK_M_N(fdi_m_n);
12634
12635         PIPE_CONF_CHECK_I(has_dp_encoder);
12636         PIPE_CONF_CHECK_I(lane_count);
12637
12638         if (INTEL_INFO(dev)->gen < 8) {
12639                 PIPE_CONF_CHECK_M_N(dp_m_n);
12640
12641                 if (current_config->has_drrs)
12642                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12643         } else
12644                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12645
12646         PIPE_CONF_CHECK_I(has_dsi_encoder);
12647
12648         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12649         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12650         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12651         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12652         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12653         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12654
12655         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12656         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12657         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12658         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12659         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12660         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12661
12662         PIPE_CONF_CHECK_I(pixel_multiplier);
12663         PIPE_CONF_CHECK_I(has_hdmi_sink);
12664         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12665             IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12666                 PIPE_CONF_CHECK_I(limited_color_range);
12667         PIPE_CONF_CHECK_I(has_infoframe);
12668
12669         PIPE_CONF_CHECK_I(has_audio);
12670
12671         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12672                               DRM_MODE_FLAG_INTERLACE);
12673
12674         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12675                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12676                                       DRM_MODE_FLAG_PHSYNC);
12677                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12678                                       DRM_MODE_FLAG_NHSYNC);
12679                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12680                                       DRM_MODE_FLAG_PVSYNC);
12681                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12682                                       DRM_MODE_FLAG_NVSYNC);
12683         }
12684
12685         PIPE_CONF_CHECK_X(gmch_pfit.control);
12686         /* pfit ratios are autocomputed by the hw on gen4+ */
12687         if (INTEL_INFO(dev)->gen < 4)
12688                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12689         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12690
12691         if (!adjust) {
12692                 PIPE_CONF_CHECK_I(pipe_src_w);
12693                 PIPE_CONF_CHECK_I(pipe_src_h);
12694
12695                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12696                 if (current_config->pch_pfit.enabled) {
12697                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12698                         PIPE_CONF_CHECK_X(pch_pfit.size);
12699                 }
12700
12701                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12702         }
12703
12704         /* BDW+ don't expose a synchronous way to read the state */
12705         if (IS_HASWELL(dev))
12706                 PIPE_CONF_CHECK_I(ips_enabled);
12707
12708         PIPE_CONF_CHECK_I(double_wide);
12709
12710         PIPE_CONF_CHECK_X(ddi_pll_sel);
12711
12712         PIPE_CONF_CHECK_P(shared_dpll);
12713         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12714         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12715         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12716         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12717         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12718         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12719         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12720         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12721         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12722
12723         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12724                 PIPE_CONF_CHECK_I(pipe_bpp);
12725
12726         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12727         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12728
12729 #undef PIPE_CONF_CHECK_X
12730 #undef PIPE_CONF_CHECK_I
12731 #undef PIPE_CONF_CHECK_P
12732 #undef PIPE_CONF_CHECK_FLAGS
12733 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12734 #undef PIPE_CONF_QUIRK
12735 #undef INTEL_ERR_OR_DBG_KMS
12736
12737         return ret;
12738 }
12739
12740 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12741                                            const struct intel_crtc_state *pipe_config)
12742 {
12743         if (pipe_config->has_pch_encoder) {
12744                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12745                                                             &pipe_config->fdi_m_n);
12746                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12747
12748                 /*
12749                  * FDI already provided one idea for the dotclock.
12750                  * Yell if the encoder disagrees.
12751                  */
12752                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12753                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12754                      fdi_dotclock, dotclock);
12755         }
12756 }
12757
12758 static void check_wm_state(struct drm_device *dev)
12759 {
12760         struct drm_i915_private *dev_priv = dev->dev_private;
12761         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12762         struct intel_crtc *intel_crtc;
12763         int plane;
12764
12765         if (INTEL_INFO(dev)->gen < 9)
12766                 return;
12767
12768         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12769         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12770
12771         for_each_intel_crtc(dev, intel_crtc) {
12772                 struct skl_ddb_entry *hw_entry, *sw_entry;
12773                 const enum pipe pipe = intel_crtc->pipe;
12774
12775                 if (!intel_crtc->active)
12776                         continue;
12777
12778                 /* planes */
12779                 for_each_plane(dev_priv, pipe, plane) {
12780                         hw_entry = &hw_ddb.plane[pipe][plane];
12781                         sw_entry = &sw_ddb->plane[pipe][plane];
12782
12783                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12784                                 continue;
12785
12786                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12787                                   "(expected (%u,%u), found (%u,%u))\n",
12788                                   pipe_name(pipe), plane + 1,
12789                                   sw_entry->start, sw_entry->end,
12790                                   hw_entry->start, hw_entry->end);
12791                 }
12792
12793                 /* cursor */
12794                 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12795                 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12796
12797                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12798                         continue;
12799
12800                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12801                           "(expected (%u,%u), found (%u,%u))\n",
12802                           pipe_name(pipe),
12803                           sw_entry->start, sw_entry->end,
12804                           hw_entry->start, hw_entry->end);
12805         }
12806 }
12807
12808 static void
12809 check_connector_state(struct drm_device *dev,
12810                       struct drm_atomic_state *old_state)
12811 {
12812         struct drm_connector_state *old_conn_state;
12813         struct drm_connector *connector;
12814         int i;
12815
12816         for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12817                 struct drm_encoder *encoder = connector->encoder;
12818                 struct drm_connector_state *state = connector->state;
12819
12820                 /* This also checks the encoder/connector hw state with the
12821                  * ->get_hw_state callbacks. */
12822                 intel_connector_check_state(to_intel_connector(connector));
12823
12824                 I915_STATE_WARN(state->best_encoder != encoder,
12825                      "connector's atomic encoder doesn't match legacy encoder\n");
12826         }
12827 }
12828
12829 static void
12830 check_encoder_state(struct drm_device *dev)
12831 {
12832         struct intel_encoder *encoder;
12833         struct intel_connector *connector;
12834
12835         for_each_intel_encoder(dev, encoder) {
12836                 bool enabled = false;
12837                 enum pipe pipe;
12838
12839                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12840                               encoder->base.base.id,
12841                               encoder->base.name);
12842
12843                 for_each_intel_connector(dev, connector) {
12844                         if (connector->base.state->best_encoder != &encoder->base)
12845                                 continue;
12846                         enabled = true;
12847
12848                         I915_STATE_WARN(connector->base.state->crtc !=
12849                                         encoder->base.crtc,
12850                              "connector's crtc doesn't match encoder crtc\n");
12851                 }
12852
12853                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12854                      "encoder's enabled state mismatch "
12855                      "(expected %i, found %i)\n",
12856                      !!encoder->base.crtc, enabled);
12857
12858                 if (!encoder->base.crtc) {
12859                         bool active;
12860
12861                         active = encoder->get_hw_state(encoder, &pipe);
12862                         I915_STATE_WARN(active,
12863                              "encoder detached but still enabled on pipe %c.\n",
12864                              pipe_name(pipe));
12865                 }
12866         }
12867 }
12868
12869 static void
12870 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12871 {
12872         struct drm_i915_private *dev_priv = dev->dev_private;
12873         struct intel_encoder *encoder;
12874         struct drm_crtc_state *old_crtc_state;
12875         struct drm_crtc *crtc;
12876         int i;
12877
12878         for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12879                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12880                 struct intel_crtc_state *pipe_config, *sw_config;
12881                 bool active;
12882
12883                 if (!needs_modeset(crtc->state) &&
12884                     !to_intel_crtc_state(crtc->state)->update_pipe)
12885                         continue;
12886
12887                 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12888                 pipe_config = to_intel_crtc_state(old_crtc_state);
12889                 memset(pipe_config, 0, sizeof(*pipe_config));
12890                 pipe_config->base.crtc = crtc;
12891                 pipe_config->base.state = old_state;
12892
12893                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12894                               crtc->base.id);
12895
12896                 active = dev_priv->display.get_pipe_config(intel_crtc,
12897                                                            pipe_config);
12898
12899                 /* hw state is inconsistent with the pipe quirk */
12900                 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12901                     (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12902                         active = crtc->state->active;
12903
12904                 I915_STATE_WARN(crtc->state->active != active,
12905                      "crtc active state doesn't match with hw state "
12906                      "(expected %i, found %i)\n", crtc->state->active, active);
12907
12908                 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12909                      "transitional active state does not match atomic hw state "
12910                      "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12911
12912                 for_each_encoder_on_crtc(dev, crtc, encoder) {
12913                         enum pipe pipe;
12914
12915                         active = encoder->get_hw_state(encoder, &pipe);
12916                         I915_STATE_WARN(active != crtc->state->active,
12917                                 "[ENCODER:%i] active %i with crtc active %i\n",
12918                                 encoder->base.base.id, active, crtc->state->active);
12919
12920                         I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12921                                         "Encoder connected to wrong pipe %c\n",
12922                                         pipe_name(pipe));
12923
12924                         if (active)
12925                                 encoder->get_config(encoder, pipe_config);
12926                 }
12927
12928                 if (!crtc->state->active)
12929                         continue;
12930
12931                 intel_pipe_config_sanity_check(dev_priv, pipe_config);
12932
12933                 sw_config = to_intel_crtc_state(crtc->state);
12934                 if (!intel_pipe_config_compare(dev, sw_config,
12935                                                pipe_config, false)) {
12936                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12937                         intel_dump_pipe_config(intel_crtc, pipe_config,
12938                                                "[hw state]");
12939                         intel_dump_pipe_config(intel_crtc, sw_config,
12940                                                "[sw state]");
12941                 }
12942         }
12943 }
12944
12945 static void
12946 check_shared_dpll_state(struct drm_device *dev)
12947 {
12948         struct drm_i915_private *dev_priv = dev->dev_private;
12949         struct intel_crtc *crtc;
12950         struct intel_dpll_hw_state dpll_hw_state;
12951         int i;
12952
12953         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12954                 struct intel_shared_dpll *pll =
12955                         intel_get_shared_dpll_by_id(dev_priv, i);
12956                 unsigned enabled_crtcs = 0, active_crtcs = 0;
12957                 bool active;
12958
12959                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12960
12961                 DRM_DEBUG_KMS("%s\n", pll->name);
12962
12963                 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
12964
12965                 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
12966                      "more active pll users than references: %x vs %x\n",
12967                      pll->active_mask, pll->config.crtc_mask);
12968
12969                 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12970                         I915_STATE_WARN(!pll->on && pll->active_mask,
12971                              "pll in active use but not on in sw tracking\n");
12972                         I915_STATE_WARN(pll->on && !pll->active_mask,
12973                              "pll is on but not used by any active crtc\n");
12974                         I915_STATE_WARN(pll->on != active,
12975                              "pll on state mismatch (expected %i, found %i)\n",
12976                              pll->on, active);
12977                 }
12978
12979                 for_each_intel_crtc(dev, crtc) {
12980                         if (crtc->base.state->enable && crtc->config->shared_dpll == pll)
12981                                 enabled_crtcs |= 1 << drm_crtc_index(&crtc->base);
12982                         if (crtc->base.state->active && crtc->config->shared_dpll == pll)
12983                                 active_crtcs |= 1 << drm_crtc_index(&crtc->base);
12984                 }
12985
12986                 I915_STATE_WARN(pll->active_mask != active_crtcs,
12987                      "pll active crtcs mismatch (expected %x, found %x)\n",
12988                      pll->active_mask, active_crtcs);
12989                 I915_STATE_WARN(pll->config.crtc_mask != enabled_crtcs,
12990                      "pll enabled crtcs mismatch (expected %x, found %x)\n",
12991                      pll->config.crtc_mask, enabled_crtcs);
12992
12993                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12994                                        sizeof(dpll_hw_state)),
12995                      "pll hw state mismatch\n");
12996         }
12997 }
12998
12999 static void
13000 intel_modeset_check_state(struct drm_device *dev,
13001                           struct drm_atomic_state *old_state)
13002 {
13003         check_wm_state(dev);
13004         check_connector_state(dev, old_state);
13005         check_encoder_state(dev);
13006         check_crtc_state(dev, old_state);
13007         check_shared_dpll_state(dev);
13008 }
13009
13010 static void update_scanline_offset(struct intel_crtc *crtc)
13011 {
13012         struct drm_device *dev = crtc->base.dev;
13013
13014         /*
13015          * The scanline counter increments at the leading edge of hsync.
13016          *
13017          * On most platforms it starts counting from vtotal-1 on the
13018          * first active line. That means the scanline counter value is
13019          * always one less than what we would expect. Ie. just after
13020          * start of vblank, which also occurs at start of hsync (on the
13021          * last active line), the scanline counter will read vblank_start-1.
13022          *
13023          * On gen2 the scanline counter starts counting from 1 instead
13024          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13025          * to keep the value positive), instead of adding one.
13026          *
13027          * On HSW+ the behaviour of the scanline counter depends on the output
13028          * type. For DP ports it behaves like most other platforms, but on HDMI
13029          * there's an extra 1 line difference. So we need to add two instead of
13030          * one to the value.
13031          */
13032         if (IS_GEN2(dev)) {
13033                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13034                 int vtotal;
13035
13036                 vtotal = adjusted_mode->crtc_vtotal;
13037                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13038                         vtotal /= 2;
13039
13040                 crtc->scanline_offset = vtotal - 1;
13041         } else if (HAS_DDI(dev) &&
13042                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13043                 crtc->scanline_offset = 2;
13044         } else
13045                 crtc->scanline_offset = 1;
13046 }
13047
13048 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13049 {
13050         struct drm_device *dev = state->dev;
13051         struct drm_i915_private *dev_priv = to_i915(dev);
13052         struct intel_shared_dpll_config *shared_dpll = NULL;
13053         struct drm_crtc *crtc;
13054         struct drm_crtc_state *crtc_state;
13055         int i;
13056
13057         if (!dev_priv->display.crtc_compute_clock)
13058                 return;
13059
13060         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13061                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13062                 struct intel_shared_dpll *old_dpll =
13063                         to_intel_crtc_state(crtc->state)->shared_dpll;
13064
13065                 if (!needs_modeset(crtc_state))
13066                         continue;
13067
13068                 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13069
13070                 if (!old_dpll)
13071                         continue;
13072
13073                 if (!shared_dpll)
13074                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13075
13076                 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13077         }
13078 }
13079
13080 /*
13081  * This implements the workaround described in the "notes" section of the mode
13082  * set sequence documentation. When going from no pipes or single pipe to
13083  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13084  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13085  */
13086 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13087 {
13088         struct drm_crtc_state *crtc_state;
13089         struct intel_crtc *intel_crtc;
13090         struct drm_crtc *crtc;
13091         struct intel_crtc_state *first_crtc_state = NULL;
13092         struct intel_crtc_state *other_crtc_state = NULL;
13093         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13094         int i;
13095
13096         /* look at all crtc's that are going to be enabled in during modeset */
13097         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13098                 intel_crtc = to_intel_crtc(crtc);
13099
13100                 if (!crtc_state->active || !needs_modeset(crtc_state))
13101                         continue;
13102
13103                 if (first_crtc_state) {
13104                         other_crtc_state = to_intel_crtc_state(crtc_state);
13105                         break;
13106                 } else {
13107                         first_crtc_state = to_intel_crtc_state(crtc_state);
13108                         first_pipe = intel_crtc->pipe;
13109                 }
13110         }
13111
13112         /* No workaround needed? */
13113         if (!first_crtc_state)
13114                 return 0;
13115
13116         /* w/a possibly needed, check how many crtc's are already enabled. */
13117         for_each_intel_crtc(state->dev, intel_crtc) {
13118                 struct intel_crtc_state *pipe_config;
13119
13120                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13121                 if (IS_ERR(pipe_config))
13122                         return PTR_ERR(pipe_config);
13123
13124                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13125
13126                 if (!pipe_config->base.active ||
13127                     needs_modeset(&pipe_config->base))
13128                         continue;
13129
13130                 /* 2 or more enabled crtcs means no need for w/a */
13131                 if (enabled_pipe != INVALID_PIPE)
13132                         return 0;
13133
13134                 enabled_pipe = intel_crtc->pipe;
13135         }
13136
13137         if (enabled_pipe != INVALID_PIPE)
13138                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13139         else if (other_crtc_state)
13140                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13141
13142         return 0;
13143 }
13144
13145 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13146 {
13147         struct drm_crtc *crtc;
13148         struct drm_crtc_state *crtc_state;
13149         int ret = 0;
13150
13151         /* add all active pipes to the state */
13152         for_each_crtc(state->dev, crtc) {
13153                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13154                 if (IS_ERR(crtc_state))
13155                         return PTR_ERR(crtc_state);
13156
13157                 if (!crtc_state->active || needs_modeset(crtc_state))
13158                         continue;
13159
13160                 crtc_state->mode_changed = true;
13161
13162                 ret = drm_atomic_add_affected_connectors(state, crtc);
13163                 if (ret)
13164                         break;
13165
13166                 ret = drm_atomic_add_affected_planes(state, crtc);
13167                 if (ret)
13168                         break;
13169         }
13170
13171         return ret;
13172 }
13173
13174 static int intel_modeset_checks(struct drm_atomic_state *state)
13175 {
13176         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13177         struct drm_i915_private *dev_priv = state->dev->dev_private;
13178         struct drm_crtc *crtc;
13179         struct drm_crtc_state *crtc_state;
13180         int ret = 0, i;
13181
13182         if (!check_digital_port_conflicts(state)) {
13183                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13184                 return -EINVAL;
13185         }
13186
13187         intel_state->modeset = true;
13188         intel_state->active_crtcs = dev_priv->active_crtcs;
13189
13190         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13191                 if (crtc_state->active)
13192                         intel_state->active_crtcs |= 1 << i;
13193                 else
13194                         intel_state->active_crtcs &= ~(1 << i);
13195         }
13196
13197         /*
13198          * See if the config requires any additional preparation, e.g.
13199          * to adjust global state with pipes off.  We need to do this
13200          * here so we can get the modeset_pipe updated config for the new
13201          * mode set on this crtc.  For other crtcs we need to use the
13202          * adjusted_mode bits in the crtc directly.
13203          */
13204         if (dev_priv->display.modeset_calc_cdclk) {
13205                 ret = dev_priv->display.modeset_calc_cdclk(state);
13206
13207                 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
13208                         ret = intel_modeset_all_pipes(state);
13209
13210                 if (ret < 0)
13211                         return ret;
13212
13213                 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13214                               intel_state->cdclk, intel_state->dev_cdclk);
13215         } else
13216                 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13217
13218         intel_modeset_clear_plls(state);
13219
13220         if (IS_HASWELL(dev_priv))
13221                 return haswell_mode_set_planes_workaround(state);
13222
13223         return 0;
13224 }
13225
13226 /*
13227  * Handle calculation of various watermark data at the end of the atomic check
13228  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13229  * handlers to ensure that all derived state has been updated.
13230  */
13231 static void calc_watermark_data(struct drm_atomic_state *state)
13232 {
13233         struct drm_device *dev = state->dev;
13234         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13235         struct drm_crtc *crtc;
13236         struct drm_crtc_state *cstate;
13237         struct drm_plane *plane;
13238         struct drm_plane_state *pstate;
13239
13240         /*
13241          * Calculate watermark configuration details now that derived
13242          * plane/crtc state is all properly updated.
13243          */
13244         drm_for_each_crtc(crtc, dev) {
13245                 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13246                         crtc->state;
13247
13248                 if (cstate->active)
13249                         intel_state->wm_config.num_pipes_active++;
13250         }
13251         drm_for_each_legacy_plane(plane, dev) {
13252                 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13253                         plane->state;
13254
13255                 if (!to_intel_plane_state(pstate)->visible)
13256                         continue;
13257
13258                 intel_state->wm_config.sprites_enabled = true;
13259                 if (pstate->crtc_w != pstate->src_w >> 16 ||
13260                     pstate->crtc_h != pstate->src_h >> 16)
13261                         intel_state->wm_config.sprites_scaled = true;
13262         }
13263 }
13264
13265 /**
13266  * intel_atomic_check - validate state object
13267  * @dev: drm device
13268  * @state: state to validate
13269  */
13270 static int intel_atomic_check(struct drm_device *dev,
13271                               struct drm_atomic_state *state)
13272 {
13273         struct drm_i915_private *dev_priv = to_i915(dev);
13274         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13275         struct drm_crtc *crtc;
13276         struct drm_crtc_state *crtc_state;
13277         int ret, i;
13278         bool any_ms = false;
13279
13280         ret = drm_atomic_helper_check_modeset(dev, state);
13281         if (ret)
13282                 return ret;
13283
13284         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13285                 struct intel_crtc_state *pipe_config =
13286                         to_intel_crtc_state(crtc_state);
13287
13288                 /* Catch I915_MODE_FLAG_INHERITED */
13289                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13290                         crtc_state->mode_changed = true;
13291
13292                 if (!crtc_state->enable) {
13293                         if (needs_modeset(crtc_state))
13294                                 any_ms = true;
13295                         continue;
13296                 }
13297
13298                 if (!needs_modeset(crtc_state))
13299                         continue;
13300
13301                 /* FIXME: For only active_changed we shouldn't need to do any
13302                  * state recomputation at all. */
13303
13304                 ret = drm_atomic_add_affected_connectors(state, crtc);
13305                 if (ret)
13306                         return ret;
13307
13308                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13309                 if (ret)
13310                         return ret;
13311
13312                 if (i915.fastboot &&
13313                     intel_pipe_config_compare(dev,
13314                                         to_intel_crtc_state(crtc->state),
13315                                         pipe_config, true)) {
13316                         crtc_state->mode_changed = false;
13317                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13318                 }
13319
13320                 if (needs_modeset(crtc_state)) {
13321                         any_ms = true;
13322
13323                         ret = drm_atomic_add_affected_planes(state, crtc);
13324                         if (ret)
13325                                 return ret;
13326                 }
13327
13328                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13329                                        needs_modeset(crtc_state) ?
13330                                        "[modeset]" : "[fastset]");
13331         }
13332
13333         if (any_ms) {
13334                 ret = intel_modeset_checks(state);
13335
13336                 if (ret)
13337                         return ret;
13338         } else
13339                 intel_state->cdclk = dev_priv->cdclk_freq;
13340
13341         ret = drm_atomic_helper_check_planes(dev, state);
13342         if (ret)
13343                 return ret;
13344
13345         intel_fbc_choose_crtc(dev_priv, state);
13346         calc_watermark_data(state);
13347
13348         return 0;
13349 }
13350
13351 static int intel_atomic_prepare_commit(struct drm_device *dev,
13352                                        struct drm_atomic_state *state,
13353                                        bool async)
13354 {
13355         struct drm_i915_private *dev_priv = dev->dev_private;
13356         struct drm_plane_state *plane_state;
13357         struct drm_crtc_state *crtc_state;
13358         struct drm_plane *plane;
13359         struct drm_crtc *crtc;
13360         int i, ret;
13361
13362         if (async) {
13363                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13364                 return -EINVAL;
13365         }
13366
13367         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13368                 ret = intel_crtc_wait_for_pending_flips(crtc);
13369                 if (ret)
13370                         return ret;
13371
13372                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13373                         flush_workqueue(dev_priv->wq);
13374         }
13375
13376         ret = mutex_lock_interruptible(&dev->struct_mutex);
13377         if (ret)
13378                 return ret;
13379
13380         ret = drm_atomic_helper_prepare_planes(dev, state);
13381         if (!ret && !async && !i915_reset_in_progress(&dev_priv->gpu_error)) {
13382                 u32 reset_counter;
13383
13384                 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
13385                 mutex_unlock(&dev->struct_mutex);
13386
13387                 for_each_plane_in_state(state, plane, plane_state, i) {
13388                         struct intel_plane_state *intel_plane_state =
13389                                 to_intel_plane_state(plane_state);
13390
13391                         if (!intel_plane_state->wait_req)
13392                                 continue;
13393
13394                         ret = __i915_wait_request(intel_plane_state->wait_req,
13395                                                   reset_counter, true,
13396                                                   NULL, NULL);
13397
13398                         /* Swallow -EIO errors to allow updates during hw lockup. */
13399                         if (ret == -EIO)
13400                                 ret = 0;
13401
13402                         if (ret)
13403                                 break;
13404                 }
13405
13406                 if (!ret)
13407                         return 0;
13408
13409                 mutex_lock(&dev->struct_mutex);
13410                 drm_atomic_helper_cleanup_planes(dev, state);
13411         }
13412
13413         mutex_unlock(&dev->struct_mutex);
13414         return ret;
13415 }
13416
13417 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13418                                           struct drm_i915_private *dev_priv,
13419                                           unsigned crtc_mask)
13420 {
13421         unsigned last_vblank_count[I915_MAX_PIPES];
13422         enum pipe pipe;
13423         int ret;
13424
13425         if (!crtc_mask)
13426                 return;
13427
13428         for_each_pipe(dev_priv, pipe) {
13429                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13430
13431                 if (!((1 << pipe) & crtc_mask))
13432                         continue;
13433
13434                 ret = drm_crtc_vblank_get(crtc);
13435                 if (WARN_ON(ret != 0)) {
13436                         crtc_mask &= ~(1 << pipe);
13437                         continue;
13438                 }
13439
13440                 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13441         }
13442
13443         for_each_pipe(dev_priv, pipe) {
13444                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13445                 long lret;
13446
13447                 if (!((1 << pipe) & crtc_mask))
13448                         continue;
13449
13450                 lret = wait_event_timeout(dev->vblank[pipe].queue,
13451                                 last_vblank_count[pipe] !=
13452                                         drm_crtc_vblank_count(crtc),
13453                                 msecs_to_jiffies(50));
13454
13455                 WARN_ON(!lret);
13456
13457                 drm_crtc_vblank_put(crtc);
13458         }
13459 }
13460
13461 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13462 {
13463         /* fb updated, need to unpin old fb */
13464         if (crtc_state->fb_changed)
13465                 return true;
13466
13467         /* wm changes, need vblank before final wm's */
13468         if (crtc_state->update_wm_post)
13469                 return true;
13470
13471         /*
13472          * cxsr is re-enabled after vblank.
13473          * This is already handled by crtc_state->update_wm_post,
13474          * but added for clarity.
13475          */
13476         if (crtc_state->disable_cxsr)
13477                 return true;
13478
13479         return false;
13480 }
13481
13482 /**
13483  * intel_atomic_commit - commit validated state object
13484  * @dev: DRM device
13485  * @state: the top-level driver state object
13486  * @async: asynchronous commit
13487  *
13488  * This function commits a top-level state object that has been validated
13489  * with drm_atomic_helper_check().
13490  *
13491  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13492  * we can only handle plane-related operations and do not yet support
13493  * asynchronous commit.
13494  *
13495  * RETURNS
13496  * Zero for success or -errno.
13497  */
13498 static int intel_atomic_commit(struct drm_device *dev,
13499                                struct drm_atomic_state *state,
13500                                bool async)
13501 {
13502         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13503         struct drm_i915_private *dev_priv = dev->dev_private;
13504         struct drm_crtc_state *old_crtc_state;
13505         struct drm_crtc *crtc;
13506         struct intel_crtc_state *intel_cstate;
13507         int ret = 0, i;
13508         bool hw_check = intel_state->modeset;
13509         unsigned long put_domains[I915_MAX_PIPES] = {};
13510         unsigned crtc_vblank_mask = 0;
13511
13512         ret = intel_atomic_prepare_commit(dev, state, async);
13513         if (ret) {
13514                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13515                 return ret;
13516         }
13517
13518         drm_atomic_helper_swap_state(dev, state);
13519         dev_priv->wm.config = intel_state->wm_config;
13520         intel_shared_dpll_commit(state);
13521
13522         if (intel_state->modeset) {
13523                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13524                        sizeof(intel_state->min_pixclk));
13525                 dev_priv->active_crtcs = intel_state->active_crtcs;
13526                 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13527
13528                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13529         }
13530
13531         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13532                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13533
13534                 if (needs_modeset(crtc->state) ||
13535                     to_intel_crtc_state(crtc->state)->update_pipe) {
13536                         hw_check = true;
13537
13538                         put_domains[to_intel_crtc(crtc)->pipe] =
13539                                 modeset_get_crtc_power_domains(crtc,
13540                                         to_intel_crtc_state(crtc->state));
13541                 }
13542
13543                 if (!needs_modeset(crtc->state))
13544                         continue;
13545
13546                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13547
13548                 if (old_crtc_state->active) {
13549                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13550                         dev_priv->display.crtc_disable(crtc);
13551                         intel_crtc->active = false;
13552                         intel_fbc_disable(intel_crtc);
13553                         intel_disable_shared_dpll(intel_crtc);
13554
13555                         /*
13556                          * Underruns don't always raise
13557                          * interrupts, so check manually.
13558                          */
13559                         intel_check_cpu_fifo_underruns(dev_priv);
13560                         intel_check_pch_fifo_underruns(dev_priv);
13561
13562                         if (!crtc->state->active)
13563                                 intel_update_watermarks(crtc);
13564                 }
13565         }
13566
13567         /* Only after disabling all output pipelines that will be changed can we
13568          * update the the output configuration. */
13569         intel_modeset_update_crtc_state(state);
13570
13571         if (intel_state->modeset) {
13572                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13573
13574                 if (dev_priv->display.modeset_commit_cdclk &&
13575                     intel_state->dev_cdclk != dev_priv->cdclk_freq)
13576                         dev_priv->display.modeset_commit_cdclk(state);
13577         }
13578
13579         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13580         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13581                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13582                 bool modeset = needs_modeset(crtc->state);
13583                 struct intel_crtc_state *pipe_config =
13584                         to_intel_crtc_state(crtc->state);
13585                 bool update_pipe = !modeset && pipe_config->update_pipe;
13586
13587                 if (modeset && crtc->state->active) {
13588                         update_scanline_offset(to_intel_crtc(crtc));
13589                         dev_priv->display.crtc_enable(crtc);
13590                 }
13591
13592                 if (!modeset)
13593                         intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13594
13595                 if (crtc->state->active &&
13596                     drm_atomic_get_existing_plane_state(state, crtc->primary))
13597                         intel_fbc_enable(intel_crtc);
13598
13599                 if (crtc->state->active &&
13600                     (crtc->state->planes_changed || update_pipe))
13601                         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
13602
13603                 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13604                         crtc_vblank_mask |= 1 << i;
13605         }
13606
13607         /* FIXME: add subpixel order */
13608
13609         if (!state->legacy_cursor_update)
13610                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13611
13612         /*
13613          * Now that the vblank has passed, we can go ahead and program the
13614          * optimal watermarks on platforms that need two-step watermark
13615          * programming.
13616          *
13617          * TODO: Move this (and other cleanup) to an async worker eventually.
13618          */
13619         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13620                 intel_cstate = to_intel_crtc_state(crtc->state);
13621
13622                 if (dev_priv->display.optimize_watermarks)
13623                         dev_priv->display.optimize_watermarks(intel_cstate);
13624         }
13625
13626         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13627                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13628
13629                 if (put_domains[i])
13630                         modeset_put_power_domains(dev_priv, put_domains[i]);
13631         }
13632
13633         if (intel_state->modeset)
13634                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13635
13636         mutex_lock(&dev->struct_mutex);
13637         drm_atomic_helper_cleanup_planes(dev, state);
13638         mutex_unlock(&dev->struct_mutex);
13639
13640         if (hw_check)
13641                 intel_modeset_check_state(dev, state);
13642
13643         drm_atomic_state_free(state);
13644
13645         /* As one of the primary mmio accessors, KMS has a high likelihood
13646          * of triggering bugs in unclaimed access. After we finish
13647          * modesetting, see if an error has been flagged, and if so
13648          * enable debugging for the next modeset - and hope we catch
13649          * the culprit.
13650          *
13651          * XXX note that we assume display power is on at this point.
13652          * This might hold true now but we need to add pm helper to check
13653          * unclaimed only when the hardware is on, as atomic commits
13654          * can happen also when the device is completely off.
13655          */
13656         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13657
13658         return 0;
13659 }
13660
13661 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13662 {
13663         struct drm_device *dev = crtc->dev;
13664         struct drm_atomic_state *state;
13665         struct drm_crtc_state *crtc_state;
13666         int ret;
13667
13668         state = drm_atomic_state_alloc(dev);
13669         if (!state) {
13670                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13671                               crtc->base.id);
13672                 return;
13673         }
13674
13675         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13676
13677 retry:
13678         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13679         ret = PTR_ERR_OR_ZERO(crtc_state);
13680         if (!ret) {
13681                 if (!crtc_state->active)
13682                         goto out;
13683
13684                 crtc_state->mode_changed = true;
13685                 ret = drm_atomic_commit(state);
13686         }
13687
13688         if (ret == -EDEADLK) {
13689                 drm_atomic_state_clear(state);
13690                 drm_modeset_backoff(state->acquire_ctx);
13691                 goto retry;
13692         }
13693
13694         if (ret)
13695 out:
13696                 drm_atomic_state_free(state);
13697 }
13698
13699 #undef for_each_intel_crtc_masked
13700
13701 static const struct drm_crtc_funcs intel_crtc_funcs = {
13702         .gamma_set = drm_atomic_helper_legacy_gamma_set,
13703         .set_config = drm_atomic_helper_set_config,
13704         .set_property = drm_atomic_helper_crtc_set_property,
13705         .destroy = intel_crtc_destroy,
13706         .page_flip = intel_crtc_page_flip,
13707         .atomic_duplicate_state = intel_crtc_duplicate_state,
13708         .atomic_destroy_state = intel_crtc_destroy_state,
13709 };
13710
13711 /**
13712  * intel_prepare_plane_fb - Prepare fb for usage on plane
13713  * @plane: drm plane to prepare for
13714  * @fb: framebuffer to prepare for presentation
13715  *
13716  * Prepares a framebuffer for usage on a display plane.  Generally this
13717  * involves pinning the underlying object and updating the frontbuffer tracking
13718  * bits.  Some older platforms need special physical address handling for
13719  * cursor planes.
13720  *
13721  * Must be called with struct_mutex held.
13722  *
13723  * Returns 0 on success, negative error code on failure.
13724  */
13725 int
13726 intel_prepare_plane_fb(struct drm_plane *plane,
13727                        const struct drm_plane_state *new_state)
13728 {
13729         struct drm_device *dev = plane->dev;
13730         struct drm_framebuffer *fb = new_state->fb;
13731         struct intel_plane *intel_plane = to_intel_plane(plane);
13732         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13733         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13734         int ret = 0;
13735
13736         if (!obj && !old_obj)
13737                 return 0;
13738
13739         if (old_obj) {
13740                 struct drm_crtc_state *crtc_state =
13741                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13742
13743                 /* Big Hammer, we also need to ensure that any pending
13744                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13745                  * current scanout is retired before unpinning the old
13746                  * framebuffer. Note that we rely on userspace rendering
13747                  * into the buffer attached to the pipe they are waiting
13748                  * on. If not, userspace generates a GPU hang with IPEHR
13749                  * point to the MI_WAIT_FOR_EVENT.
13750                  *
13751                  * This should only fail upon a hung GPU, in which case we
13752                  * can safely continue.
13753                  */
13754                 if (needs_modeset(crtc_state))
13755                         ret = i915_gem_object_wait_rendering(old_obj, true);
13756
13757                 /* Swallow -EIO errors to allow updates during hw lockup. */
13758                 if (ret && ret != -EIO)
13759                         return ret;
13760         }
13761
13762         /* For framebuffer backed by dmabuf, wait for fence */
13763         if (obj && obj->base.dma_buf) {
13764                 long lret;
13765
13766                 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13767                                                            false, true,
13768                                                            MAX_SCHEDULE_TIMEOUT);
13769                 if (lret == -ERESTARTSYS)
13770                         return lret;
13771
13772                 WARN(lret < 0, "waiting returns %li\n", lret);
13773         }
13774
13775         if (!obj) {
13776                 ret = 0;
13777         } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13778             INTEL_INFO(dev)->cursor_needs_physical) {
13779                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13780                 ret = i915_gem_object_attach_phys(obj, align);
13781                 if (ret)
13782                         DRM_DEBUG_KMS("failed to attach phys object\n");
13783         } else {
13784                 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13785         }
13786
13787         if (ret == 0) {
13788                 if (obj) {
13789                         struct intel_plane_state *plane_state =
13790                                 to_intel_plane_state(new_state);
13791
13792                         i915_gem_request_assign(&plane_state->wait_req,
13793                                                 obj->last_write_req);
13794                 }
13795
13796                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13797         }
13798
13799         return ret;
13800 }
13801
13802 /**
13803  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13804  * @plane: drm plane to clean up for
13805  * @fb: old framebuffer that was on plane
13806  *
13807  * Cleans up a framebuffer that has just been removed from a plane.
13808  *
13809  * Must be called with struct_mutex held.
13810  */
13811 void
13812 intel_cleanup_plane_fb(struct drm_plane *plane,
13813                        const struct drm_plane_state *old_state)
13814 {
13815         struct drm_device *dev = plane->dev;
13816         struct intel_plane *intel_plane = to_intel_plane(plane);
13817         struct intel_plane_state *old_intel_state;
13818         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13819         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13820
13821         old_intel_state = to_intel_plane_state(old_state);
13822
13823         if (!obj && !old_obj)
13824                 return;
13825
13826         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13827             !INTEL_INFO(dev)->cursor_needs_physical))
13828                 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
13829
13830         /* prepare_fb aborted? */
13831         if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13832             (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13833                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13834
13835         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13836 }
13837
13838 int
13839 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13840 {
13841         int max_scale;
13842         struct drm_device *dev;
13843         struct drm_i915_private *dev_priv;
13844         int crtc_clock, cdclk;
13845
13846         if (!intel_crtc || !crtc_state->base.enable)
13847                 return DRM_PLANE_HELPER_NO_SCALING;
13848
13849         dev = intel_crtc->base.dev;
13850         dev_priv = dev->dev_private;
13851         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13852         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13853
13854         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13855                 return DRM_PLANE_HELPER_NO_SCALING;
13856
13857         /*
13858          * skl max scale is lower of:
13859          *    close to 3 but not 3, -1 is for that purpose
13860          *            or
13861          *    cdclk/crtc_clock
13862          */
13863         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13864
13865         return max_scale;
13866 }
13867
13868 static int
13869 intel_check_primary_plane(struct drm_plane *plane,
13870                           struct intel_crtc_state *crtc_state,
13871                           struct intel_plane_state *state)
13872 {
13873         struct drm_crtc *crtc = state->base.crtc;
13874         struct drm_framebuffer *fb = state->base.fb;
13875         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13876         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13877         bool can_position = false;
13878
13879         if (INTEL_INFO(plane->dev)->gen >= 9) {
13880                 /* use scaler when colorkey is not required */
13881                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13882                         min_scale = 1;
13883                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13884                 }
13885                 can_position = true;
13886         }
13887
13888         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13889                                              &state->dst, &state->clip,
13890                                              min_scale, max_scale,
13891                                              can_position, true,
13892                                              &state->visible);
13893 }
13894
13895 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13896                                     struct drm_crtc_state *old_crtc_state)
13897 {
13898         struct drm_device *dev = crtc->dev;
13899         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13900         struct intel_crtc_state *old_intel_state =
13901                 to_intel_crtc_state(old_crtc_state);
13902         bool modeset = needs_modeset(crtc->state);
13903
13904         /* Perform vblank evasion around commit operation */
13905         intel_pipe_update_start(intel_crtc);
13906
13907         if (modeset)
13908                 return;
13909
13910         if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
13911                 intel_color_set_csc(crtc->state);
13912                 intel_color_load_luts(crtc->state);
13913         }
13914
13915         if (to_intel_crtc_state(crtc->state)->update_pipe)
13916                 intel_update_pipe_config(intel_crtc, old_intel_state);
13917         else if (INTEL_INFO(dev)->gen >= 9)
13918                 skl_detach_scalers(intel_crtc);
13919 }
13920
13921 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13922                                      struct drm_crtc_state *old_crtc_state)
13923 {
13924         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13925
13926         intel_pipe_update_end(intel_crtc);
13927 }
13928
13929 /**
13930  * intel_plane_destroy - destroy a plane
13931  * @plane: plane to destroy
13932  *
13933  * Common destruction function for all types of planes (primary, cursor,
13934  * sprite).
13935  */
13936 void intel_plane_destroy(struct drm_plane *plane)
13937 {
13938         struct intel_plane *intel_plane = to_intel_plane(plane);
13939         drm_plane_cleanup(plane);
13940         kfree(intel_plane);
13941 }
13942
13943 const struct drm_plane_funcs intel_plane_funcs = {
13944         .update_plane = drm_atomic_helper_update_plane,
13945         .disable_plane = drm_atomic_helper_disable_plane,
13946         .destroy = intel_plane_destroy,
13947         .set_property = drm_atomic_helper_plane_set_property,
13948         .atomic_get_property = intel_plane_atomic_get_property,
13949         .atomic_set_property = intel_plane_atomic_set_property,
13950         .atomic_duplicate_state = intel_plane_duplicate_state,
13951         .atomic_destroy_state = intel_plane_destroy_state,
13952
13953 };
13954
13955 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13956                                                     int pipe)
13957 {
13958         struct intel_plane *primary;
13959         struct intel_plane_state *state;
13960         const uint32_t *intel_primary_formats;
13961         unsigned int num_formats;
13962
13963         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13964         if (primary == NULL)
13965                 return NULL;
13966
13967         state = intel_create_plane_state(&primary->base);
13968         if (!state) {
13969                 kfree(primary);
13970                 return NULL;
13971         }
13972         primary->base.state = &state->base;
13973
13974         primary->can_scale = false;
13975         primary->max_downscale = 1;
13976         if (INTEL_INFO(dev)->gen >= 9) {
13977                 primary->can_scale = true;
13978                 state->scaler_id = -1;
13979         }
13980         primary->pipe = pipe;
13981         primary->plane = pipe;
13982         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13983         primary->check_plane = intel_check_primary_plane;
13984         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13985                 primary->plane = !pipe;
13986
13987         if (INTEL_INFO(dev)->gen >= 9) {
13988                 intel_primary_formats = skl_primary_formats;
13989                 num_formats = ARRAY_SIZE(skl_primary_formats);
13990
13991                 primary->update_plane = skylake_update_primary_plane;
13992                 primary->disable_plane = skylake_disable_primary_plane;
13993         } else if (HAS_PCH_SPLIT(dev)) {
13994                 intel_primary_formats = i965_primary_formats;
13995                 num_formats = ARRAY_SIZE(i965_primary_formats);
13996
13997                 primary->update_plane = ironlake_update_primary_plane;
13998                 primary->disable_plane = i9xx_disable_primary_plane;
13999         } else if (INTEL_INFO(dev)->gen >= 4) {
14000                 intel_primary_formats = i965_primary_formats;
14001                 num_formats = ARRAY_SIZE(i965_primary_formats);
14002
14003                 primary->update_plane = i9xx_update_primary_plane;
14004                 primary->disable_plane = i9xx_disable_primary_plane;
14005         } else {
14006                 intel_primary_formats = i8xx_primary_formats;
14007                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14008
14009                 primary->update_plane = i9xx_update_primary_plane;
14010                 primary->disable_plane = i9xx_disable_primary_plane;
14011         }
14012
14013         drm_universal_plane_init(dev, &primary->base, 0,
14014                                  &intel_plane_funcs,
14015                                  intel_primary_formats, num_formats,
14016                                  DRM_PLANE_TYPE_PRIMARY, NULL);
14017
14018         if (INTEL_INFO(dev)->gen >= 4)
14019                 intel_create_rotation_property(dev, primary);
14020
14021         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14022
14023         return &primary->base;
14024 }
14025
14026 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14027 {
14028         if (!dev->mode_config.rotation_property) {
14029                 unsigned long flags = BIT(DRM_ROTATE_0) |
14030                         BIT(DRM_ROTATE_180);
14031
14032                 if (INTEL_INFO(dev)->gen >= 9)
14033                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14034
14035                 dev->mode_config.rotation_property =
14036                         drm_mode_create_rotation_property(dev, flags);
14037         }
14038         if (dev->mode_config.rotation_property)
14039                 drm_object_attach_property(&plane->base.base,
14040                                 dev->mode_config.rotation_property,
14041                                 plane->base.state->rotation);
14042 }
14043
14044 static int
14045 intel_check_cursor_plane(struct drm_plane *plane,
14046                          struct intel_crtc_state *crtc_state,
14047                          struct intel_plane_state *state)
14048 {
14049         struct drm_crtc *crtc = crtc_state->base.crtc;
14050         struct drm_framebuffer *fb = state->base.fb;
14051         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14052         enum pipe pipe = to_intel_plane(plane)->pipe;
14053         unsigned stride;
14054         int ret;
14055
14056         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14057                                             &state->dst, &state->clip,
14058                                             DRM_PLANE_HELPER_NO_SCALING,
14059                                             DRM_PLANE_HELPER_NO_SCALING,
14060                                             true, true, &state->visible);
14061         if (ret)
14062                 return ret;
14063
14064         /* if we want to turn off the cursor ignore width and height */
14065         if (!obj)
14066                 return 0;
14067
14068         /* Check for which cursor types we support */
14069         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14070                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14071                           state->base.crtc_w, state->base.crtc_h);
14072                 return -EINVAL;
14073         }
14074
14075         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14076         if (obj->base.size < stride * state->base.crtc_h) {
14077                 DRM_DEBUG_KMS("buffer is too small\n");
14078                 return -ENOMEM;
14079         }
14080
14081         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14082                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14083                 return -EINVAL;
14084         }
14085
14086         /*
14087          * There's something wrong with the cursor on CHV pipe C.
14088          * If it straddles the left edge of the screen then
14089          * moving it away from the edge or disabling it often
14090          * results in a pipe underrun, and often that can lead to
14091          * dead pipe (constant underrun reported, and it scans
14092          * out just a solid color). To recover from that, the
14093          * display power well must be turned off and on again.
14094          * Refuse the put the cursor into that compromised position.
14095          */
14096         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14097             state->visible && state->base.crtc_x < 0) {
14098                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14099                 return -EINVAL;
14100         }
14101
14102         return 0;
14103 }
14104
14105 static void
14106 intel_disable_cursor_plane(struct drm_plane *plane,
14107                            struct drm_crtc *crtc)
14108 {
14109         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14110
14111         intel_crtc->cursor_addr = 0;
14112         intel_crtc_update_cursor(crtc, NULL);
14113 }
14114
14115 static void
14116 intel_update_cursor_plane(struct drm_plane *plane,
14117                           const struct intel_crtc_state *crtc_state,
14118                           const struct intel_plane_state *state)
14119 {
14120         struct drm_crtc *crtc = crtc_state->base.crtc;
14121         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14122         struct drm_device *dev = plane->dev;
14123         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14124         uint32_t addr;
14125
14126         if (!obj)
14127                 addr = 0;
14128         else if (!INTEL_INFO(dev)->cursor_needs_physical)
14129                 addr = i915_gem_obj_ggtt_offset(obj);
14130         else
14131                 addr = obj->phys_handle->busaddr;
14132
14133         intel_crtc->cursor_addr = addr;
14134         intel_crtc_update_cursor(crtc, state);
14135 }
14136
14137 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14138                                                    int pipe)
14139 {
14140         struct intel_plane *cursor;
14141         struct intel_plane_state *state;
14142
14143         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14144         if (cursor == NULL)
14145                 return NULL;
14146
14147         state = intel_create_plane_state(&cursor->base);
14148         if (!state) {
14149                 kfree(cursor);
14150                 return NULL;
14151         }
14152         cursor->base.state = &state->base;
14153
14154         cursor->can_scale = false;
14155         cursor->max_downscale = 1;
14156         cursor->pipe = pipe;
14157         cursor->plane = pipe;
14158         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14159         cursor->check_plane = intel_check_cursor_plane;
14160         cursor->update_plane = intel_update_cursor_plane;
14161         cursor->disable_plane = intel_disable_cursor_plane;
14162
14163         drm_universal_plane_init(dev, &cursor->base, 0,
14164                                  &intel_plane_funcs,
14165                                  intel_cursor_formats,
14166                                  ARRAY_SIZE(intel_cursor_formats),
14167                                  DRM_PLANE_TYPE_CURSOR, NULL);
14168
14169         if (INTEL_INFO(dev)->gen >= 4) {
14170                 if (!dev->mode_config.rotation_property)
14171                         dev->mode_config.rotation_property =
14172                                 drm_mode_create_rotation_property(dev,
14173                                                         BIT(DRM_ROTATE_0) |
14174                                                         BIT(DRM_ROTATE_180));
14175                 if (dev->mode_config.rotation_property)
14176                         drm_object_attach_property(&cursor->base.base,
14177                                 dev->mode_config.rotation_property,
14178                                 state->base.rotation);
14179         }
14180
14181         if (INTEL_INFO(dev)->gen >=9)
14182                 state->scaler_id = -1;
14183
14184         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14185
14186         return &cursor->base;
14187 }
14188
14189 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14190         struct intel_crtc_state *crtc_state)
14191 {
14192         int i;
14193         struct intel_scaler *intel_scaler;
14194         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14195
14196         for (i = 0; i < intel_crtc->num_scalers; i++) {
14197                 intel_scaler = &scaler_state->scalers[i];
14198                 intel_scaler->in_use = 0;
14199                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14200         }
14201
14202         scaler_state->scaler_id = -1;
14203 }
14204
14205 static void intel_crtc_init(struct drm_device *dev, int pipe)
14206 {
14207         struct drm_i915_private *dev_priv = dev->dev_private;
14208         struct intel_crtc *intel_crtc;
14209         struct intel_crtc_state *crtc_state = NULL;
14210         struct drm_plane *primary = NULL;
14211         struct drm_plane *cursor = NULL;
14212         int ret;
14213
14214         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14215         if (intel_crtc == NULL)
14216                 return;
14217
14218         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14219         if (!crtc_state)
14220                 goto fail;
14221         intel_crtc->config = crtc_state;
14222         intel_crtc->base.state = &crtc_state->base;
14223         crtc_state->base.crtc = &intel_crtc->base;
14224
14225         /* initialize shared scalers */
14226         if (INTEL_INFO(dev)->gen >= 9) {
14227                 if (pipe == PIPE_C)
14228                         intel_crtc->num_scalers = 1;
14229                 else
14230                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14231
14232                 skl_init_scalers(dev, intel_crtc, crtc_state);
14233         }
14234
14235         primary = intel_primary_plane_create(dev, pipe);
14236         if (!primary)
14237                 goto fail;
14238
14239         cursor = intel_cursor_plane_create(dev, pipe);
14240         if (!cursor)
14241                 goto fail;
14242
14243         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14244                                         cursor, &intel_crtc_funcs, NULL);
14245         if (ret)
14246                 goto fail;
14247
14248         /*
14249          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14250          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14251          */
14252         intel_crtc->pipe = pipe;
14253         intel_crtc->plane = pipe;
14254         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14255                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14256                 intel_crtc->plane = !pipe;
14257         }
14258
14259         intel_crtc->cursor_base = ~0;
14260         intel_crtc->cursor_cntl = ~0;
14261         intel_crtc->cursor_size = ~0;
14262
14263         intel_crtc->wm.cxsr_allowed = true;
14264
14265         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14266                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14267         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14268         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14269
14270         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14271
14272         intel_color_init(&intel_crtc->base);
14273
14274         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14275         return;
14276
14277 fail:
14278         if (primary)
14279                 drm_plane_cleanup(primary);
14280         if (cursor)
14281                 drm_plane_cleanup(cursor);
14282         kfree(crtc_state);
14283         kfree(intel_crtc);
14284 }
14285
14286 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14287 {
14288         struct drm_encoder *encoder = connector->base.encoder;
14289         struct drm_device *dev = connector->base.dev;
14290
14291         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14292
14293         if (!encoder || WARN_ON(!encoder->crtc))
14294                 return INVALID_PIPE;
14295
14296         return to_intel_crtc(encoder->crtc)->pipe;
14297 }
14298
14299 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14300                                 struct drm_file *file)
14301 {
14302         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14303         struct drm_crtc *drmmode_crtc;
14304         struct intel_crtc *crtc;
14305
14306         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14307
14308         if (!drmmode_crtc) {
14309                 DRM_ERROR("no such CRTC id\n");
14310                 return -ENOENT;
14311         }
14312
14313         crtc = to_intel_crtc(drmmode_crtc);
14314         pipe_from_crtc_id->pipe = crtc->pipe;
14315
14316         return 0;
14317 }
14318
14319 static int intel_encoder_clones(struct intel_encoder *encoder)
14320 {
14321         struct drm_device *dev = encoder->base.dev;
14322         struct intel_encoder *source_encoder;
14323         int index_mask = 0;
14324         int entry = 0;
14325
14326         for_each_intel_encoder(dev, source_encoder) {
14327                 if (encoders_cloneable(encoder, source_encoder))
14328                         index_mask |= (1 << entry);
14329
14330                 entry++;
14331         }
14332
14333         return index_mask;
14334 }
14335
14336 static bool has_edp_a(struct drm_device *dev)
14337 {
14338         struct drm_i915_private *dev_priv = dev->dev_private;
14339
14340         if (!IS_MOBILE(dev))
14341                 return false;
14342
14343         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14344                 return false;
14345
14346         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14347                 return false;
14348
14349         return true;
14350 }
14351
14352 static bool intel_crt_present(struct drm_device *dev)
14353 {
14354         struct drm_i915_private *dev_priv = dev->dev_private;
14355
14356         if (INTEL_INFO(dev)->gen >= 9)
14357                 return false;
14358
14359         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14360                 return false;
14361
14362         if (IS_CHERRYVIEW(dev))
14363                 return false;
14364
14365         if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14366                 return false;
14367
14368         /* DDI E can't be used if DDI A requires 4 lanes */
14369         if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14370                 return false;
14371
14372         if (!dev_priv->vbt.int_crt_support)
14373                 return false;
14374
14375         return true;
14376 }
14377
14378 static void intel_setup_outputs(struct drm_device *dev)
14379 {
14380         struct drm_i915_private *dev_priv = dev->dev_private;
14381         struct intel_encoder *encoder;
14382         bool dpd_is_edp = false;
14383
14384         intel_lvds_init(dev);
14385
14386         if (intel_crt_present(dev))
14387                 intel_crt_init(dev);
14388
14389         if (IS_BROXTON(dev)) {
14390                 /*
14391                  * FIXME: Broxton doesn't support port detection via the
14392                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14393                  * detect the ports.
14394                  */
14395                 intel_ddi_init(dev, PORT_A);
14396                 intel_ddi_init(dev, PORT_B);
14397                 intel_ddi_init(dev, PORT_C);
14398
14399                 intel_dsi_init(dev);
14400         } else if (HAS_DDI(dev)) {
14401                 int found;
14402
14403                 /*
14404                  * Haswell uses DDI functions to detect digital outputs.
14405                  * On SKL pre-D0 the strap isn't connected, so we assume
14406                  * it's there.
14407                  */
14408                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14409                 /* WaIgnoreDDIAStrap: skl */
14410                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14411                         intel_ddi_init(dev, PORT_A);
14412
14413                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14414                  * register */
14415                 found = I915_READ(SFUSE_STRAP);
14416
14417                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14418                         intel_ddi_init(dev, PORT_B);
14419                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14420                         intel_ddi_init(dev, PORT_C);
14421                 if (found & SFUSE_STRAP_DDID_DETECTED)
14422                         intel_ddi_init(dev, PORT_D);
14423                 /*
14424                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14425                  */
14426                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14427                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14428                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14429                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14430                         intel_ddi_init(dev, PORT_E);
14431
14432         } else if (HAS_PCH_SPLIT(dev)) {
14433                 int found;
14434                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14435
14436                 if (has_edp_a(dev))
14437                         intel_dp_init(dev, DP_A, PORT_A);
14438
14439                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14440                         /* PCH SDVOB multiplex with HDMIB */
14441                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14442                         if (!found)
14443                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14444                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14445                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14446                 }
14447
14448                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14449                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14450
14451                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14452                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14453
14454                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14455                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14456
14457                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14458                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14459         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14460                 /*
14461                  * The DP_DETECTED bit is the latched state of the DDC
14462                  * SDA pin at boot. However since eDP doesn't require DDC
14463                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14464                  * eDP ports may have been muxed to an alternate function.
14465                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14466                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14467                  * detect eDP ports.
14468                  */
14469                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14470                     !intel_dp_is_edp(dev, PORT_B))
14471                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14472                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14473                     intel_dp_is_edp(dev, PORT_B))
14474                         intel_dp_init(dev, VLV_DP_B, PORT_B);
14475
14476                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14477                     !intel_dp_is_edp(dev, PORT_C))
14478                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14479                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14480                     intel_dp_is_edp(dev, PORT_C))
14481                         intel_dp_init(dev, VLV_DP_C, PORT_C);
14482
14483                 if (IS_CHERRYVIEW(dev)) {
14484                         /* eDP not supported on port D, so don't check VBT */
14485                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14486                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14487                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
14488                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14489                 }
14490
14491                 intel_dsi_init(dev);
14492         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14493                 bool found = false;
14494
14495                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14496                         DRM_DEBUG_KMS("probing SDVOB\n");
14497                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14498                         if (!found && IS_G4X(dev)) {
14499                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14500                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14501                         }
14502
14503                         if (!found && IS_G4X(dev))
14504                                 intel_dp_init(dev, DP_B, PORT_B);
14505                 }
14506
14507                 /* Before G4X SDVOC doesn't have its own detect register */
14508
14509                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14510                         DRM_DEBUG_KMS("probing SDVOC\n");
14511                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14512                 }
14513
14514                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14515
14516                         if (IS_G4X(dev)) {
14517                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14518                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14519                         }
14520                         if (IS_G4X(dev))
14521                                 intel_dp_init(dev, DP_C, PORT_C);
14522                 }
14523
14524                 if (IS_G4X(dev) &&
14525                     (I915_READ(DP_D) & DP_DETECTED))
14526                         intel_dp_init(dev, DP_D, PORT_D);
14527         } else if (IS_GEN2(dev))
14528                 intel_dvo_init(dev);
14529
14530         if (SUPPORTS_TV(dev))
14531                 intel_tv_init(dev);
14532
14533         intel_psr_init(dev);
14534
14535         for_each_intel_encoder(dev, encoder) {
14536                 encoder->base.possible_crtcs = encoder->crtc_mask;
14537                 encoder->base.possible_clones =
14538                         intel_encoder_clones(encoder);
14539         }
14540
14541         intel_init_pch_refclk(dev);
14542
14543         drm_helper_move_panel_connectors_to_head(dev);
14544 }
14545
14546 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14547 {
14548         struct drm_device *dev = fb->dev;
14549         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14550
14551         drm_framebuffer_cleanup(fb);
14552         mutex_lock(&dev->struct_mutex);
14553         WARN_ON(!intel_fb->obj->framebuffer_references--);
14554         drm_gem_object_unreference(&intel_fb->obj->base);
14555         mutex_unlock(&dev->struct_mutex);
14556         kfree(intel_fb);
14557 }
14558
14559 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14560                                                 struct drm_file *file,
14561                                                 unsigned int *handle)
14562 {
14563         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14564         struct drm_i915_gem_object *obj = intel_fb->obj;
14565
14566         if (obj->userptr.mm) {
14567                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14568                 return -EINVAL;
14569         }
14570
14571         return drm_gem_handle_create(file, &obj->base, handle);
14572 }
14573
14574 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14575                                         struct drm_file *file,
14576                                         unsigned flags, unsigned color,
14577                                         struct drm_clip_rect *clips,
14578                                         unsigned num_clips)
14579 {
14580         struct drm_device *dev = fb->dev;
14581         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14582         struct drm_i915_gem_object *obj = intel_fb->obj;
14583
14584         mutex_lock(&dev->struct_mutex);
14585         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14586         mutex_unlock(&dev->struct_mutex);
14587
14588         return 0;
14589 }
14590
14591 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14592         .destroy = intel_user_framebuffer_destroy,
14593         .create_handle = intel_user_framebuffer_create_handle,
14594         .dirty = intel_user_framebuffer_dirty,
14595 };
14596
14597 static
14598 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14599                          uint32_t pixel_format)
14600 {
14601         u32 gen = INTEL_INFO(dev)->gen;
14602
14603         if (gen >= 9) {
14604                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14605
14606                 /* "The stride in bytes must not exceed the of the size of 8K
14607                  *  pixels and 32K bytes."
14608                  */
14609                 return min(8192 * cpp, 32768);
14610         } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14611                 return 32*1024;
14612         } else if (gen >= 4) {
14613                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14614                         return 16*1024;
14615                 else
14616                         return 32*1024;
14617         } else if (gen >= 3) {
14618                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14619                         return 8*1024;
14620                 else
14621                         return 16*1024;
14622         } else {
14623                 /* XXX DSPC is limited to 4k tiled */
14624                 return 8*1024;
14625         }
14626 }
14627
14628 static int intel_framebuffer_init(struct drm_device *dev,
14629                                   struct intel_framebuffer *intel_fb,
14630                                   struct drm_mode_fb_cmd2 *mode_cmd,
14631                                   struct drm_i915_gem_object *obj)
14632 {
14633         struct drm_i915_private *dev_priv = to_i915(dev);
14634         unsigned int aligned_height;
14635         int ret;
14636         u32 pitch_limit, stride_alignment;
14637
14638         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14639
14640         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14641                 /* Enforce that fb modifier and tiling mode match, but only for
14642                  * X-tiled. This is needed for FBC. */
14643                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14644                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14645                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14646                         return -EINVAL;
14647                 }
14648         } else {
14649                 if (obj->tiling_mode == I915_TILING_X)
14650                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14651                 else if (obj->tiling_mode == I915_TILING_Y) {
14652                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14653                         return -EINVAL;
14654                 }
14655         }
14656
14657         /* Passed in modifier sanity checking. */
14658         switch (mode_cmd->modifier[0]) {
14659         case I915_FORMAT_MOD_Y_TILED:
14660         case I915_FORMAT_MOD_Yf_TILED:
14661                 if (INTEL_INFO(dev)->gen < 9) {
14662                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14663                                   mode_cmd->modifier[0]);
14664                         return -EINVAL;
14665                 }
14666         case DRM_FORMAT_MOD_NONE:
14667         case I915_FORMAT_MOD_X_TILED:
14668                 break;
14669         default:
14670                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14671                           mode_cmd->modifier[0]);
14672                 return -EINVAL;
14673         }
14674
14675         stride_alignment = intel_fb_stride_alignment(dev_priv,
14676                                                      mode_cmd->modifier[0],
14677                                                      mode_cmd->pixel_format);
14678         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14679                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14680                           mode_cmd->pitches[0], stride_alignment);
14681                 return -EINVAL;
14682         }
14683
14684         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14685                                            mode_cmd->pixel_format);
14686         if (mode_cmd->pitches[0] > pitch_limit) {
14687                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14688                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14689                           "tiled" : "linear",
14690                           mode_cmd->pitches[0], pitch_limit);
14691                 return -EINVAL;
14692         }
14693
14694         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14695             mode_cmd->pitches[0] != obj->stride) {
14696                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14697                           mode_cmd->pitches[0], obj->stride);
14698                 return -EINVAL;
14699         }
14700
14701         /* Reject formats not supported by any plane early. */
14702         switch (mode_cmd->pixel_format) {
14703         case DRM_FORMAT_C8:
14704         case DRM_FORMAT_RGB565:
14705         case DRM_FORMAT_XRGB8888:
14706         case DRM_FORMAT_ARGB8888:
14707                 break;
14708         case DRM_FORMAT_XRGB1555:
14709                 if (INTEL_INFO(dev)->gen > 3) {
14710                         DRM_DEBUG("unsupported pixel format: %s\n",
14711                                   drm_get_format_name(mode_cmd->pixel_format));
14712                         return -EINVAL;
14713                 }
14714                 break;
14715         case DRM_FORMAT_ABGR8888:
14716                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14717                     INTEL_INFO(dev)->gen < 9) {
14718                         DRM_DEBUG("unsupported pixel format: %s\n",
14719                                   drm_get_format_name(mode_cmd->pixel_format));
14720                         return -EINVAL;
14721                 }
14722                 break;
14723         case DRM_FORMAT_XBGR8888:
14724         case DRM_FORMAT_XRGB2101010:
14725         case DRM_FORMAT_XBGR2101010:
14726                 if (INTEL_INFO(dev)->gen < 4) {
14727                         DRM_DEBUG("unsupported pixel format: %s\n",
14728                                   drm_get_format_name(mode_cmd->pixel_format));
14729                         return -EINVAL;
14730                 }
14731                 break;
14732         case DRM_FORMAT_ABGR2101010:
14733                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14734                         DRM_DEBUG("unsupported pixel format: %s\n",
14735                                   drm_get_format_name(mode_cmd->pixel_format));
14736                         return -EINVAL;
14737                 }
14738                 break;
14739         case DRM_FORMAT_YUYV:
14740         case DRM_FORMAT_UYVY:
14741         case DRM_FORMAT_YVYU:
14742         case DRM_FORMAT_VYUY:
14743                 if (INTEL_INFO(dev)->gen < 5) {
14744                         DRM_DEBUG("unsupported pixel format: %s\n",
14745                                   drm_get_format_name(mode_cmd->pixel_format));
14746                         return -EINVAL;
14747                 }
14748                 break;
14749         default:
14750                 DRM_DEBUG("unsupported pixel format: %s\n",
14751                           drm_get_format_name(mode_cmd->pixel_format));
14752                 return -EINVAL;
14753         }
14754
14755         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14756         if (mode_cmd->offsets[0] != 0)
14757                 return -EINVAL;
14758
14759         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14760                                                mode_cmd->pixel_format,
14761                                                mode_cmd->modifier[0]);
14762         /* FIXME drm helper for size checks (especially planar formats)? */
14763         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14764                 return -EINVAL;
14765
14766         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14767         intel_fb->obj = obj;
14768
14769         intel_fill_fb_info(dev_priv, &intel_fb->base);
14770
14771         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14772         if (ret) {
14773                 DRM_ERROR("framebuffer init failed %d\n", ret);
14774                 return ret;
14775         }
14776
14777         intel_fb->obj->framebuffer_references++;
14778
14779         return 0;
14780 }
14781
14782 static struct drm_framebuffer *
14783 intel_user_framebuffer_create(struct drm_device *dev,
14784                               struct drm_file *filp,
14785                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14786 {
14787         struct drm_framebuffer *fb;
14788         struct drm_i915_gem_object *obj;
14789         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14790
14791         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14792                                                 mode_cmd.handles[0]));
14793         if (&obj->base == NULL)
14794                 return ERR_PTR(-ENOENT);
14795
14796         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14797         if (IS_ERR(fb))
14798                 drm_gem_object_unreference_unlocked(&obj->base);
14799
14800         return fb;
14801 }
14802
14803 #ifndef CONFIG_DRM_FBDEV_EMULATION
14804 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14805 {
14806 }
14807 #endif
14808
14809 static const struct drm_mode_config_funcs intel_mode_funcs = {
14810         .fb_create = intel_user_framebuffer_create,
14811         .output_poll_changed = intel_fbdev_output_poll_changed,
14812         .atomic_check = intel_atomic_check,
14813         .atomic_commit = intel_atomic_commit,
14814         .atomic_state_alloc = intel_atomic_state_alloc,
14815         .atomic_state_clear = intel_atomic_state_clear,
14816 };
14817
14818 /**
14819  * intel_init_display_hooks - initialize the display modesetting hooks
14820  * @dev_priv: device private
14821  */
14822 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14823 {
14824         if (INTEL_INFO(dev_priv)->gen >= 9) {
14825                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14826                 dev_priv->display.get_initial_plane_config =
14827                         skylake_get_initial_plane_config;
14828                 dev_priv->display.crtc_compute_clock =
14829                         haswell_crtc_compute_clock;
14830                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14831                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14832         } else if (HAS_DDI(dev_priv)) {
14833                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14834                 dev_priv->display.get_initial_plane_config =
14835                         ironlake_get_initial_plane_config;
14836                 dev_priv->display.crtc_compute_clock =
14837                         haswell_crtc_compute_clock;
14838                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14839                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14840         } else if (HAS_PCH_SPLIT(dev_priv)) {
14841                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14842                 dev_priv->display.get_initial_plane_config =
14843                         ironlake_get_initial_plane_config;
14844                 dev_priv->display.crtc_compute_clock =
14845                         ironlake_crtc_compute_clock;
14846                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14847                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14848         } else if (IS_CHERRYVIEW(dev_priv)) {
14849                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14850                 dev_priv->display.get_initial_plane_config =
14851                         i9xx_get_initial_plane_config;
14852                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14853                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14854                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14855         } else if (IS_VALLEYVIEW(dev_priv)) {
14856                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14857                 dev_priv->display.get_initial_plane_config =
14858                         i9xx_get_initial_plane_config;
14859                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14860                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14861                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14862         } else if (IS_G4X(dev_priv)) {
14863                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14864                 dev_priv->display.get_initial_plane_config =
14865                         i9xx_get_initial_plane_config;
14866                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14867                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14868                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14869         } else if (IS_PINEVIEW(dev_priv)) {
14870                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14871                 dev_priv->display.get_initial_plane_config =
14872                         i9xx_get_initial_plane_config;
14873                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14874                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14875                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14876         } else if (!IS_GEN2(dev_priv)) {
14877                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14878                 dev_priv->display.get_initial_plane_config =
14879                         i9xx_get_initial_plane_config;
14880                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14881                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14882                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14883         } else {
14884                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14885                 dev_priv->display.get_initial_plane_config =
14886                         i9xx_get_initial_plane_config;
14887                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14888                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14889                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14890         }
14891
14892         /* Returns the core display clock speed */
14893         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
14894                 dev_priv->display.get_display_clock_speed =
14895                         skylake_get_display_clock_speed;
14896         else if (IS_BROXTON(dev_priv))
14897                 dev_priv->display.get_display_clock_speed =
14898                         broxton_get_display_clock_speed;
14899         else if (IS_BROADWELL(dev_priv))
14900                 dev_priv->display.get_display_clock_speed =
14901                         broadwell_get_display_clock_speed;
14902         else if (IS_HASWELL(dev_priv))
14903                 dev_priv->display.get_display_clock_speed =
14904                         haswell_get_display_clock_speed;
14905         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14906                 dev_priv->display.get_display_clock_speed =
14907                         valleyview_get_display_clock_speed;
14908         else if (IS_GEN5(dev_priv))
14909                 dev_priv->display.get_display_clock_speed =
14910                         ilk_get_display_clock_speed;
14911         else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
14912                  IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
14913                 dev_priv->display.get_display_clock_speed =
14914                         i945_get_display_clock_speed;
14915         else if (IS_GM45(dev_priv))
14916                 dev_priv->display.get_display_clock_speed =
14917                         gm45_get_display_clock_speed;
14918         else if (IS_CRESTLINE(dev_priv))
14919                 dev_priv->display.get_display_clock_speed =
14920                         i965gm_get_display_clock_speed;
14921         else if (IS_PINEVIEW(dev_priv))
14922                 dev_priv->display.get_display_clock_speed =
14923                         pnv_get_display_clock_speed;
14924         else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
14925                 dev_priv->display.get_display_clock_speed =
14926                         g33_get_display_clock_speed;
14927         else if (IS_I915G(dev_priv))
14928                 dev_priv->display.get_display_clock_speed =
14929                         i915_get_display_clock_speed;
14930         else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
14931                 dev_priv->display.get_display_clock_speed =
14932                         i9xx_misc_get_display_clock_speed;
14933         else if (IS_I915GM(dev_priv))
14934                 dev_priv->display.get_display_clock_speed =
14935                         i915gm_get_display_clock_speed;
14936         else if (IS_I865G(dev_priv))
14937                 dev_priv->display.get_display_clock_speed =
14938                         i865_get_display_clock_speed;
14939         else if (IS_I85X(dev_priv))
14940                 dev_priv->display.get_display_clock_speed =
14941                         i85x_get_display_clock_speed;
14942         else { /* 830 */
14943                 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
14944                 dev_priv->display.get_display_clock_speed =
14945                         i830_get_display_clock_speed;
14946         }
14947
14948         if (IS_GEN5(dev_priv)) {
14949                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14950         } else if (IS_GEN6(dev_priv)) {
14951                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14952         } else if (IS_IVYBRIDGE(dev_priv)) {
14953                 /* FIXME: detect B0+ stepping and use auto training */
14954                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14955         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
14956                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14957                 if (IS_BROADWELL(dev_priv)) {
14958                         dev_priv->display.modeset_commit_cdclk =
14959                                 broadwell_modeset_commit_cdclk;
14960                         dev_priv->display.modeset_calc_cdclk =
14961                                 broadwell_modeset_calc_cdclk;
14962                 }
14963         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
14964                 dev_priv->display.modeset_commit_cdclk =
14965                         valleyview_modeset_commit_cdclk;
14966                 dev_priv->display.modeset_calc_cdclk =
14967                         valleyview_modeset_calc_cdclk;
14968         } else if (IS_BROXTON(dev_priv)) {
14969                 dev_priv->display.modeset_commit_cdclk =
14970                         broxton_modeset_commit_cdclk;
14971                 dev_priv->display.modeset_calc_cdclk =
14972                         broxton_modeset_calc_cdclk;
14973         }
14974
14975         switch (INTEL_INFO(dev_priv)->gen) {
14976         case 2:
14977                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14978                 break;
14979
14980         case 3:
14981                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14982                 break;
14983
14984         case 4:
14985         case 5:
14986                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14987                 break;
14988
14989         case 6:
14990                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14991                 break;
14992         case 7:
14993         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14994                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14995                 break;
14996         case 9:
14997                 /* Drop through - unsupported since execlist only. */
14998         default:
14999                 /* Default just returns -ENODEV to indicate unsupported */
15000                 dev_priv->display.queue_flip = intel_default_queue_flip;
15001         }
15002 }
15003
15004 /*
15005  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15006  * resume, or other times.  This quirk makes sure that's the case for
15007  * affected systems.
15008  */
15009 static void quirk_pipea_force(struct drm_device *dev)
15010 {
15011         struct drm_i915_private *dev_priv = dev->dev_private;
15012
15013         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15014         DRM_INFO("applying pipe a force quirk\n");
15015 }
15016
15017 static void quirk_pipeb_force(struct drm_device *dev)
15018 {
15019         struct drm_i915_private *dev_priv = dev->dev_private;
15020
15021         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15022         DRM_INFO("applying pipe b force quirk\n");
15023 }
15024
15025 /*
15026  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15027  */
15028 static void quirk_ssc_force_disable(struct drm_device *dev)
15029 {
15030         struct drm_i915_private *dev_priv = dev->dev_private;
15031         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15032         DRM_INFO("applying lvds SSC disable quirk\n");
15033 }
15034
15035 /*
15036  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15037  * brightness value
15038  */
15039 static void quirk_invert_brightness(struct drm_device *dev)
15040 {
15041         struct drm_i915_private *dev_priv = dev->dev_private;
15042         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15043         DRM_INFO("applying inverted panel brightness quirk\n");
15044 }
15045
15046 /* Some VBT's incorrectly indicate no backlight is present */
15047 static void quirk_backlight_present(struct drm_device *dev)
15048 {
15049         struct drm_i915_private *dev_priv = dev->dev_private;
15050         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15051         DRM_INFO("applying backlight present quirk\n");
15052 }
15053
15054 struct intel_quirk {
15055         int device;
15056         int subsystem_vendor;
15057         int subsystem_device;
15058         void (*hook)(struct drm_device *dev);
15059 };
15060
15061 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15062 struct intel_dmi_quirk {
15063         void (*hook)(struct drm_device *dev);
15064         const struct dmi_system_id (*dmi_id_list)[];
15065 };
15066
15067 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15068 {
15069         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15070         return 1;
15071 }
15072
15073 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15074         {
15075                 .dmi_id_list = &(const struct dmi_system_id[]) {
15076                         {
15077                                 .callback = intel_dmi_reverse_brightness,
15078                                 .ident = "NCR Corporation",
15079                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15080                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
15081                                 },
15082                         },
15083                         { }  /* terminating entry */
15084                 },
15085                 .hook = quirk_invert_brightness,
15086         },
15087 };
15088
15089 static struct intel_quirk intel_quirks[] = {
15090         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15091         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15092
15093         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15094         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15095
15096         /* 830 needs to leave pipe A & dpll A up */
15097         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15098
15099         /* 830 needs to leave pipe B & dpll B up */
15100         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15101
15102         /* Lenovo U160 cannot use SSC on LVDS */
15103         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15104
15105         /* Sony Vaio Y cannot use SSC on LVDS */
15106         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15107
15108         /* Acer Aspire 5734Z must invert backlight brightness */
15109         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15110
15111         /* Acer/eMachines G725 */
15112         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15113
15114         /* Acer/eMachines e725 */
15115         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15116
15117         /* Acer/Packard Bell NCL20 */
15118         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15119
15120         /* Acer Aspire 4736Z */
15121         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15122
15123         /* Acer Aspire 5336 */
15124         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15125
15126         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15127         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15128
15129         /* Acer C720 Chromebook (Core i3 4005U) */
15130         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15131
15132         /* Apple Macbook 2,1 (Core 2 T7400) */
15133         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15134
15135         /* Apple Macbook 4,1 */
15136         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15137
15138         /* Toshiba CB35 Chromebook (Celeron 2955U) */
15139         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15140
15141         /* HP Chromebook 14 (Celeron 2955U) */
15142         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15143
15144         /* Dell Chromebook 11 */
15145         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15146
15147         /* Dell Chromebook 11 (2015 version) */
15148         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15149 };
15150
15151 static void intel_init_quirks(struct drm_device *dev)
15152 {
15153         struct pci_dev *d = dev->pdev;
15154         int i;
15155
15156         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15157                 struct intel_quirk *q = &intel_quirks[i];
15158
15159                 if (d->device == q->device &&
15160                     (d->subsystem_vendor == q->subsystem_vendor ||
15161                      q->subsystem_vendor == PCI_ANY_ID) &&
15162                     (d->subsystem_device == q->subsystem_device ||
15163                      q->subsystem_device == PCI_ANY_ID))
15164                         q->hook(dev);
15165         }
15166         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15167                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15168                         intel_dmi_quirks[i].hook(dev);
15169         }
15170 }
15171
15172 /* Disable the VGA plane that we never use */
15173 static void i915_disable_vga(struct drm_device *dev)
15174 {
15175         struct drm_i915_private *dev_priv = dev->dev_private;
15176         u8 sr1;
15177         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15178
15179         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15180         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15181         outb(SR01, VGA_SR_INDEX);
15182         sr1 = inb(VGA_SR_DATA);
15183         outb(sr1 | 1<<5, VGA_SR_DATA);
15184         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15185         udelay(300);
15186
15187         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15188         POSTING_READ(vga_reg);
15189 }
15190
15191 void intel_modeset_init_hw(struct drm_device *dev)
15192 {
15193         struct drm_i915_private *dev_priv = dev->dev_private;
15194
15195         intel_update_cdclk(dev);
15196
15197         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15198
15199         intel_init_clock_gating(dev);
15200         intel_enable_gt_powersave(dev);
15201 }
15202
15203 /*
15204  * Calculate what we think the watermarks should be for the state we've read
15205  * out of the hardware and then immediately program those watermarks so that
15206  * we ensure the hardware settings match our internal state.
15207  *
15208  * We can calculate what we think WM's should be by creating a duplicate of the
15209  * current state (which was constructed during hardware readout) and running it
15210  * through the atomic check code to calculate new watermark values in the
15211  * state object.
15212  */
15213 static void sanitize_watermarks(struct drm_device *dev)
15214 {
15215         struct drm_i915_private *dev_priv = to_i915(dev);
15216         struct drm_atomic_state *state;
15217         struct drm_crtc *crtc;
15218         struct drm_crtc_state *cstate;
15219         struct drm_modeset_acquire_ctx ctx;
15220         int ret;
15221         int i;
15222
15223         /* Only supported on platforms that use atomic watermark design */
15224         if (!dev_priv->display.optimize_watermarks)
15225                 return;
15226
15227         /*
15228          * We need to hold connection_mutex before calling duplicate_state so
15229          * that the connector loop is protected.
15230          */
15231         drm_modeset_acquire_init(&ctx, 0);
15232 retry:
15233         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15234         if (ret == -EDEADLK) {
15235                 drm_modeset_backoff(&ctx);
15236                 goto retry;
15237         } else if (WARN_ON(ret)) {
15238                 goto fail;
15239         }
15240
15241         state = drm_atomic_helper_duplicate_state(dev, &ctx);
15242         if (WARN_ON(IS_ERR(state)))
15243                 goto fail;
15244
15245         /*
15246          * Hardware readout is the only time we don't want to calculate
15247          * intermediate watermarks (since we don't trust the current
15248          * watermarks).
15249          */
15250         to_intel_atomic_state(state)->skip_intermediate_wm = true;
15251
15252         ret = intel_atomic_check(dev, state);
15253         if (ret) {
15254                 /*
15255                  * If we fail here, it means that the hardware appears to be
15256                  * programmed in a way that shouldn't be possible, given our
15257                  * understanding of watermark requirements.  This might mean a
15258                  * mistake in the hardware readout code or a mistake in the
15259                  * watermark calculations for a given platform.  Raise a WARN
15260                  * so that this is noticeable.
15261                  *
15262                  * If this actually happens, we'll have to just leave the
15263                  * BIOS-programmed watermarks untouched and hope for the best.
15264                  */
15265                 WARN(true, "Could not determine valid watermarks for inherited state\n");
15266                 goto fail;
15267         }
15268
15269         /* Write calculated watermark values back */
15270         to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config;
15271         for_each_crtc_in_state(state, crtc, cstate, i) {
15272                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15273
15274                 cs->wm.need_postvbl_update = true;
15275                 dev_priv->display.optimize_watermarks(cs);
15276         }
15277
15278         drm_atomic_state_free(state);
15279 fail:
15280         drm_modeset_drop_locks(&ctx);
15281         drm_modeset_acquire_fini(&ctx);
15282 }
15283
15284 void intel_modeset_init(struct drm_device *dev)
15285 {
15286         struct drm_i915_private *dev_priv = to_i915(dev);
15287         struct i915_ggtt *ggtt = &dev_priv->ggtt;
15288         int sprite, ret;
15289         enum pipe pipe;
15290         struct intel_crtc *crtc;
15291
15292         drm_mode_config_init(dev);
15293
15294         dev->mode_config.min_width = 0;
15295         dev->mode_config.min_height = 0;
15296
15297         dev->mode_config.preferred_depth = 24;
15298         dev->mode_config.prefer_shadow = 1;
15299
15300         dev->mode_config.allow_fb_modifiers = true;
15301
15302         dev->mode_config.funcs = &intel_mode_funcs;
15303
15304         intel_init_quirks(dev);
15305
15306         intel_init_pm(dev);
15307
15308         if (INTEL_INFO(dev)->num_pipes == 0)
15309                 return;
15310
15311         /*
15312          * There may be no VBT; and if the BIOS enabled SSC we can
15313          * just keep using it to avoid unnecessary flicker.  Whereas if the
15314          * BIOS isn't using it, don't assume it will work even if the VBT
15315          * indicates as much.
15316          */
15317         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15318                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15319                                             DREF_SSC1_ENABLE);
15320
15321                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15322                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15323                                      bios_lvds_use_ssc ? "en" : "dis",
15324                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15325                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15326                 }
15327         }
15328
15329         if (IS_GEN2(dev)) {
15330                 dev->mode_config.max_width = 2048;
15331                 dev->mode_config.max_height = 2048;
15332         } else if (IS_GEN3(dev)) {
15333                 dev->mode_config.max_width = 4096;
15334                 dev->mode_config.max_height = 4096;
15335         } else {
15336                 dev->mode_config.max_width = 8192;
15337                 dev->mode_config.max_height = 8192;
15338         }
15339
15340         if (IS_845G(dev) || IS_I865G(dev)) {
15341                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15342                 dev->mode_config.cursor_height = 1023;
15343         } else if (IS_GEN2(dev)) {
15344                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15345                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15346         } else {
15347                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15348                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15349         }
15350
15351         dev->mode_config.fb_base = ggtt->mappable_base;
15352
15353         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15354                       INTEL_INFO(dev)->num_pipes,
15355                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15356
15357         for_each_pipe(dev_priv, pipe) {
15358                 intel_crtc_init(dev, pipe);
15359                 for_each_sprite(dev_priv, pipe, sprite) {
15360                         ret = intel_plane_init(dev, pipe, sprite);
15361                         if (ret)
15362                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15363                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15364                 }
15365         }
15366
15367         intel_update_czclk(dev_priv);
15368         intel_update_rawclk(dev_priv);
15369         intel_update_cdclk(dev);
15370
15371         intel_shared_dpll_init(dev);
15372
15373         /* Just disable it once at startup */
15374         i915_disable_vga(dev);
15375         intel_setup_outputs(dev);
15376
15377         drm_modeset_lock_all(dev);
15378         intel_modeset_setup_hw_state(dev);
15379         drm_modeset_unlock_all(dev);
15380
15381         for_each_intel_crtc(dev, crtc) {
15382                 struct intel_initial_plane_config plane_config = {};
15383
15384                 if (!crtc->active)
15385                         continue;
15386
15387                 /*
15388                  * Note that reserving the BIOS fb up front prevents us
15389                  * from stuffing other stolen allocations like the ring
15390                  * on top.  This prevents some ugliness at boot time, and
15391                  * can even allow for smooth boot transitions if the BIOS
15392                  * fb is large enough for the active pipe configuration.
15393                  */
15394                 dev_priv->display.get_initial_plane_config(crtc,
15395                                                            &plane_config);
15396
15397                 /*
15398                  * If the fb is shared between multiple heads, we'll
15399                  * just get the first one.
15400                  */
15401                 intel_find_initial_plane_obj(crtc, &plane_config);
15402         }
15403
15404         /*
15405          * Make sure hardware watermarks really match the state we read out.
15406          * Note that we need to do this after reconstructing the BIOS fb's
15407          * since the watermark calculation done here will use pstate->fb.
15408          */
15409         sanitize_watermarks(dev);
15410 }
15411
15412 static void intel_enable_pipe_a(struct drm_device *dev)
15413 {
15414         struct intel_connector *connector;
15415         struct drm_connector *crt = NULL;
15416         struct intel_load_detect_pipe load_detect_temp;
15417         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15418
15419         /* We can't just switch on the pipe A, we need to set things up with a
15420          * proper mode and output configuration. As a gross hack, enable pipe A
15421          * by enabling the load detect pipe once. */
15422         for_each_intel_connector(dev, connector) {
15423                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15424                         crt = &connector->base;
15425                         break;
15426                 }
15427         }
15428
15429         if (!crt)
15430                 return;
15431
15432         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15433                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15434 }
15435
15436 static bool
15437 intel_check_plane_mapping(struct intel_crtc *crtc)
15438 {
15439         struct drm_device *dev = crtc->base.dev;
15440         struct drm_i915_private *dev_priv = dev->dev_private;
15441         u32 val;
15442
15443         if (INTEL_INFO(dev)->num_pipes == 1)
15444                 return true;
15445
15446         val = I915_READ(DSPCNTR(!crtc->plane));
15447
15448         if ((val & DISPLAY_PLANE_ENABLE) &&
15449             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15450                 return false;
15451
15452         return true;
15453 }
15454
15455 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15456 {
15457         struct drm_device *dev = crtc->base.dev;
15458         struct intel_encoder *encoder;
15459
15460         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15461                 return true;
15462
15463         return false;
15464 }
15465
15466 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15467 {
15468         struct drm_device *dev = encoder->base.dev;
15469         struct intel_connector *connector;
15470
15471         for_each_connector_on_encoder(dev, &encoder->base, connector)
15472                 return true;
15473
15474         return false;
15475 }
15476
15477 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15478 {
15479         struct drm_device *dev = crtc->base.dev;
15480         struct drm_i915_private *dev_priv = dev->dev_private;
15481         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15482
15483         /* Clear any frame start delays used for debugging left by the BIOS */
15484         if (!transcoder_is_dsi(cpu_transcoder)) {
15485                 i915_reg_t reg = PIPECONF(cpu_transcoder);
15486
15487                 I915_WRITE(reg,
15488                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15489         }
15490
15491         /* restore vblank interrupts to correct state */
15492         drm_crtc_vblank_reset(&crtc->base);
15493         if (crtc->active) {
15494                 struct intel_plane *plane;
15495
15496                 drm_crtc_vblank_on(&crtc->base);
15497
15498                 /* Disable everything but the primary plane */
15499                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15500                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15501                                 continue;
15502
15503                         plane->disable_plane(&plane->base, &crtc->base);
15504                 }
15505         }
15506
15507         /* We need to sanitize the plane -> pipe mapping first because this will
15508          * disable the crtc (and hence change the state) if it is wrong. Note
15509          * that gen4+ has a fixed plane -> pipe mapping.  */
15510         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15511                 bool plane;
15512
15513                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15514                               crtc->base.base.id);
15515
15516                 /* Pipe has the wrong plane attached and the plane is active.
15517                  * Temporarily change the plane mapping and disable everything
15518                  * ...  */
15519                 plane = crtc->plane;
15520                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15521                 crtc->plane = !plane;
15522                 intel_crtc_disable_noatomic(&crtc->base);
15523                 crtc->plane = plane;
15524         }
15525
15526         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15527             crtc->pipe == PIPE_A && !crtc->active) {
15528                 /* BIOS forgot to enable pipe A, this mostly happens after
15529                  * resume. Force-enable the pipe to fix this, the update_dpms
15530                  * call below we restore the pipe to the right state, but leave
15531                  * the required bits on. */
15532                 intel_enable_pipe_a(dev);
15533         }
15534
15535         /* Adjust the state of the output pipe according to whether we
15536          * have active connectors/encoders. */
15537         if (crtc->active && !intel_crtc_has_encoders(crtc))
15538                 intel_crtc_disable_noatomic(&crtc->base);
15539
15540         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15541                 /*
15542                  * We start out with underrun reporting disabled to avoid races.
15543                  * For correct bookkeeping mark this on active crtcs.
15544                  *
15545                  * Also on gmch platforms we dont have any hardware bits to
15546                  * disable the underrun reporting. Which means we need to start
15547                  * out with underrun reporting disabled also on inactive pipes,
15548                  * since otherwise we'll complain about the garbage we read when
15549                  * e.g. coming up after runtime pm.
15550                  *
15551                  * No protection against concurrent access is required - at
15552                  * worst a fifo underrun happens which also sets this to false.
15553                  */
15554                 crtc->cpu_fifo_underrun_disabled = true;
15555                 crtc->pch_fifo_underrun_disabled = true;
15556         }
15557 }
15558
15559 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15560 {
15561         struct intel_connector *connector;
15562         struct drm_device *dev = encoder->base.dev;
15563
15564         /* We need to check both for a crtc link (meaning that the
15565          * encoder is active and trying to read from a pipe) and the
15566          * pipe itself being active. */
15567         bool has_active_crtc = encoder->base.crtc &&
15568                 to_intel_crtc(encoder->base.crtc)->active;
15569
15570         if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15571                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15572                               encoder->base.base.id,
15573                               encoder->base.name);
15574
15575                 /* Connector is active, but has no active pipe. This is
15576                  * fallout from our resume register restoring. Disable
15577                  * the encoder manually again. */
15578                 if (encoder->base.crtc) {
15579                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15580                                       encoder->base.base.id,
15581                                       encoder->base.name);
15582                         encoder->disable(encoder);
15583                         if (encoder->post_disable)
15584                                 encoder->post_disable(encoder);
15585                 }
15586                 encoder->base.crtc = NULL;
15587
15588                 /* Inconsistent output/port/pipe state happens presumably due to
15589                  * a bug in one of the get_hw_state functions. Or someplace else
15590                  * in our code, like the register restore mess on resume. Clamp
15591                  * things to off as a safer default. */
15592                 for_each_intel_connector(dev, connector) {
15593                         if (connector->encoder != encoder)
15594                                 continue;
15595                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15596                         connector->base.encoder = NULL;
15597                 }
15598         }
15599         /* Enabled encoders without active connectors will be fixed in
15600          * the crtc fixup. */
15601 }
15602
15603 void i915_redisable_vga_power_on(struct drm_device *dev)
15604 {
15605         struct drm_i915_private *dev_priv = dev->dev_private;
15606         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15607
15608         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15609                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15610                 i915_disable_vga(dev);
15611         }
15612 }
15613
15614 void i915_redisable_vga(struct drm_device *dev)
15615 {
15616         struct drm_i915_private *dev_priv = dev->dev_private;
15617
15618         /* This function can be called both from intel_modeset_setup_hw_state or
15619          * at a very early point in our resume sequence, where the power well
15620          * structures are not yet restored. Since this function is at a very
15621          * paranoid "someone might have enabled VGA while we were not looking"
15622          * level, just check if the power well is enabled instead of trying to
15623          * follow the "don't touch the power well if we don't need it" policy
15624          * the rest of the driver uses. */
15625         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15626                 return;
15627
15628         i915_redisable_vga_power_on(dev);
15629
15630         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15631 }
15632
15633 static bool primary_get_hw_state(struct intel_plane *plane)
15634 {
15635         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15636
15637         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15638 }
15639
15640 /* FIXME read out full plane state for all planes */
15641 static void readout_plane_state(struct intel_crtc *crtc)
15642 {
15643         struct drm_plane *primary = crtc->base.primary;
15644         struct intel_plane_state *plane_state =
15645                 to_intel_plane_state(primary->state);
15646
15647         plane_state->visible = crtc->active &&
15648                 primary_get_hw_state(to_intel_plane(primary));
15649
15650         if (plane_state->visible)
15651                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15652 }
15653
15654 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15655 {
15656         struct drm_i915_private *dev_priv = dev->dev_private;
15657         enum pipe pipe;
15658         struct intel_crtc *crtc;
15659         struct intel_encoder *encoder;
15660         struct intel_connector *connector;
15661         int i;
15662
15663         dev_priv->active_crtcs = 0;
15664
15665         for_each_intel_crtc(dev, crtc) {
15666                 struct intel_crtc_state *crtc_state = crtc->config;
15667                 int pixclk = 0;
15668
15669                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, &crtc_state->base);
15670                 memset(crtc_state, 0, sizeof(*crtc_state));
15671                 crtc_state->base.crtc = &crtc->base;
15672
15673                 crtc_state->base.active = crtc_state->base.enable =
15674                         dev_priv->display.get_pipe_config(crtc, crtc_state);
15675
15676                 crtc->base.enabled = crtc_state->base.enable;
15677                 crtc->active = crtc_state->base.active;
15678
15679                 if (crtc_state->base.active) {
15680                         dev_priv->active_crtcs |= 1 << crtc->pipe;
15681
15682                         if (IS_BROADWELL(dev_priv)) {
15683                                 pixclk = ilk_pipe_pixel_rate(crtc_state);
15684
15685                                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15686                                 if (crtc_state->ips_enabled)
15687                                         pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15688                         } else if (IS_VALLEYVIEW(dev_priv) ||
15689                                    IS_CHERRYVIEW(dev_priv) ||
15690                                    IS_BROXTON(dev_priv))
15691                                 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15692                         else
15693                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15694                 }
15695
15696                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15697
15698                 readout_plane_state(crtc);
15699
15700                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15701                               crtc->base.base.id,
15702                               crtc->active ? "enabled" : "disabled");
15703         }
15704
15705         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15706                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15707
15708                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15709                                                   &pll->config.hw_state);
15710                 pll->config.crtc_mask = 0;
15711                 for_each_intel_crtc(dev, crtc) {
15712                         if (crtc->active && crtc->config->shared_dpll == pll)
15713                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15714                 }
15715                 pll->active_mask = pll->config.crtc_mask;
15716
15717                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15718                               pll->name, pll->config.crtc_mask, pll->on);
15719         }
15720
15721         for_each_intel_encoder(dev, encoder) {
15722                 pipe = 0;
15723
15724                 if (encoder->get_hw_state(encoder, &pipe)) {
15725                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15726                         encoder->base.crtc = &crtc->base;
15727                         encoder->get_config(encoder, crtc->config);
15728                 } else {
15729                         encoder->base.crtc = NULL;
15730                 }
15731
15732                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15733                               encoder->base.base.id,
15734                               encoder->base.name,
15735                               encoder->base.crtc ? "enabled" : "disabled",
15736                               pipe_name(pipe));
15737         }
15738
15739         for_each_intel_connector(dev, connector) {
15740                 if (connector->get_hw_state(connector)) {
15741                         connector->base.dpms = DRM_MODE_DPMS_ON;
15742
15743                         encoder = connector->encoder;
15744                         connector->base.encoder = &encoder->base;
15745
15746                         if (encoder->base.crtc &&
15747                             encoder->base.crtc->state->active) {
15748                                 /*
15749                                  * This has to be done during hardware readout
15750                                  * because anything calling .crtc_disable may
15751                                  * rely on the connector_mask being accurate.
15752                                  */
15753                                 encoder->base.crtc->state->connector_mask |=
15754                                         1 << drm_connector_index(&connector->base);
15755                                 encoder->base.crtc->state->encoder_mask |=
15756                                         1 << drm_encoder_index(&encoder->base);
15757                         }
15758
15759                 } else {
15760                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15761                         connector->base.encoder = NULL;
15762                 }
15763                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15764                               connector->base.base.id,
15765                               connector->base.name,
15766                               connector->base.encoder ? "enabled" : "disabled");
15767         }
15768
15769         for_each_intel_crtc(dev, crtc) {
15770                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15771
15772                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15773                 if (crtc->base.state->active) {
15774                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15775                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15776                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15777
15778                         /*
15779                          * The initial mode needs to be set in order to keep
15780                          * the atomic core happy. It wants a valid mode if the
15781                          * crtc's enabled, so we do the above call.
15782                          *
15783                          * At this point some state updated by the connectors
15784                          * in their ->detect() callback has not run yet, so
15785                          * no recalculation can be done yet.
15786                          *
15787                          * Even if we could do a recalculation and modeset
15788                          * right now it would cause a double modeset if
15789                          * fbdev or userspace chooses a different initial mode.
15790                          *
15791                          * If that happens, someone indicated they wanted a
15792                          * mode change, which means it's safe to do a full
15793                          * recalculation.
15794                          */
15795                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15796
15797                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15798                         update_scanline_offset(crtc);
15799                 }
15800
15801                 intel_pipe_config_sanity_check(dev_priv, crtc->config);
15802         }
15803 }
15804
15805 /* Scan out the current hw modeset state,
15806  * and sanitizes it to the current state
15807  */
15808 static void
15809 intel_modeset_setup_hw_state(struct drm_device *dev)
15810 {
15811         struct drm_i915_private *dev_priv = dev->dev_private;
15812         enum pipe pipe;
15813         struct intel_crtc *crtc;
15814         struct intel_encoder *encoder;
15815         int i;
15816
15817         intel_modeset_readout_hw_state(dev);
15818
15819         /* HW state is read out, now we need to sanitize this mess. */
15820         for_each_intel_encoder(dev, encoder) {
15821                 intel_sanitize_encoder(encoder);
15822         }
15823
15824         for_each_pipe(dev_priv, pipe) {
15825                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15826                 intel_sanitize_crtc(crtc);
15827                 intel_dump_pipe_config(crtc, crtc->config,
15828                                        "[setup_hw_state]");
15829         }
15830
15831         intel_modeset_update_connector_atomic_state(dev);
15832
15833         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15834                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15835
15836                 if (!pll->on || pll->active_mask)
15837                         continue;
15838
15839                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15840
15841                 pll->funcs.disable(dev_priv, pll);
15842                 pll->on = false;
15843         }
15844
15845         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
15846                 vlv_wm_get_hw_state(dev);
15847         else if (IS_GEN9(dev))
15848                 skl_wm_get_hw_state(dev);
15849         else if (HAS_PCH_SPLIT(dev))
15850                 ilk_wm_get_hw_state(dev);
15851
15852         for_each_intel_crtc(dev, crtc) {
15853                 unsigned long put_domains;
15854
15855                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15856                 if (WARN_ON(put_domains))
15857                         modeset_put_power_domains(dev_priv, put_domains);
15858         }
15859         intel_display_set_init_power(dev_priv, false);
15860
15861         intel_fbc_init_pipe_state(dev_priv);
15862 }
15863
15864 void intel_display_resume(struct drm_device *dev)
15865 {
15866         struct drm_i915_private *dev_priv = to_i915(dev);
15867         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15868         struct drm_modeset_acquire_ctx ctx;
15869         int ret;
15870         bool setup = false;
15871
15872         dev_priv->modeset_restore_state = NULL;
15873
15874         /*
15875          * This is a cludge because with real atomic modeset mode_config.mutex
15876          * won't be taken. Unfortunately some probed state like
15877          * audio_codec_enable is still protected by mode_config.mutex, so lock
15878          * it here for now.
15879          */
15880         mutex_lock(&dev->mode_config.mutex);
15881         drm_modeset_acquire_init(&ctx, 0);
15882
15883 retry:
15884         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15885
15886         if (ret == 0 && !setup) {
15887                 setup = true;
15888
15889                 intel_modeset_setup_hw_state(dev);
15890                 i915_redisable_vga(dev);
15891         }
15892
15893         if (ret == 0 && state) {
15894                 struct drm_crtc_state *crtc_state;
15895                 struct drm_crtc *crtc;
15896                 int i;
15897
15898                 state->acquire_ctx = &ctx;
15899
15900                 for_each_crtc_in_state(state, crtc, crtc_state, i) {
15901                         /*
15902                          * Force recalculation even if we restore
15903                          * current state. With fast modeset this may not result
15904                          * in a modeset when the state is compatible.
15905                          */
15906                         crtc_state->mode_changed = true;
15907                 }
15908
15909                 ret = drm_atomic_commit(state);
15910         }
15911
15912         if (ret == -EDEADLK) {
15913                 drm_modeset_backoff(&ctx);
15914                 goto retry;
15915         }
15916
15917         drm_modeset_drop_locks(&ctx);
15918         drm_modeset_acquire_fini(&ctx);
15919         mutex_unlock(&dev->mode_config.mutex);
15920
15921         if (ret) {
15922                 DRM_ERROR("Restoring old state failed with %i\n", ret);
15923                 drm_atomic_state_free(state);
15924         }
15925 }
15926
15927 void intel_modeset_gem_init(struct drm_device *dev)
15928 {
15929         struct drm_crtc *c;
15930         struct drm_i915_gem_object *obj;
15931         int ret;
15932
15933         intel_init_gt_powersave(dev);
15934
15935         intel_modeset_init_hw(dev);
15936
15937         intel_setup_overlay(dev);
15938
15939         /*
15940          * Make sure any fbs we allocated at startup are properly
15941          * pinned & fenced.  When we do the allocation it's too early
15942          * for this.
15943          */
15944         for_each_crtc(dev, c) {
15945                 obj = intel_fb_obj(c->primary->fb);
15946                 if (obj == NULL)
15947                         continue;
15948
15949                 mutex_lock(&dev->struct_mutex);
15950                 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
15951                                                  c->primary->state->rotation);
15952                 mutex_unlock(&dev->struct_mutex);
15953                 if (ret) {
15954                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15955                                   to_intel_crtc(c)->pipe);
15956                         drm_framebuffer_unreference(c->primary->fb);
15957                         c->primary->fb = NULL;
15958                         c->primary->crtc = c->primary->state->crtc = NULL;
15959                         update_state_fb(c->primary);
15960                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15961                 }
15962         }
15963
15964         intel_backlight_register(dev);
15965 }
15966
15967 void intel_connector_unregister(struct intel_connector *intel_connector)
15968 {
15969         struct drm_connector *connector = &intel_connector->base;
15970
15971         intel_panel_destroy_backlight(connector);
15972         drm_connector_unregister(connector);
15973 }
15974
15975 void intel_modeset_cleanup(struct drm_device *dev)
15976 {
15977         struct drm_i915_private *dev_priv = dev->dev_private;
15978         struct intel_connector *connector;
15979
15980         intel_disable_gt_powersave(dev);
15981
15982         intel_backlight_unregister(dev);
15983
15984         /*
15985          * Interrupts and polling as the first thing to avoid creating havoc.
15986          * Too much stuff here (turning of connectors, ...) would
15987          * experience fancy races otherwise.
15988          */
15989         intel_irq_uninstall(dev_priv);
15990
15991         /*
15992          * Due to the hpd irq storm handling the hotplug work can re-arm the
15993          * poll handlers. Hence disable polling after hpd handling is shut down.
15994          */
15995         drm_kms_helper_poll_fini(dev);
15996
15997         intel_unregister_dsm_handler();
15998
15999         intel_fbc_global_disable(dev_priv);
16000
16001         /* flush any delayed tasks or pending work */
16002         flush_scheduled_work();
16003
16004         /* destroy the backlight and sysfs files before encoders/connectors */
16005         for_each_intel_connector(dev, connector)
16006                 connector->unregister(connector);
16007
16008         drm_mode_config_cleanup(dev);
16009
16010         intel_cleanup_overlay(dev);
16011
16012         intel_cleanup_gt_powersave(dev);
16013
16014         intel_teardown_gmbus(dev);
16015 }
16016
16017 /*
16018  * Return which encoder is currently attached for connector.
16019  */
16020 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
16021 {
16022         return &intel_attached_encoder(connector)->base;
16023 }
16024
16025 void intel_connector_attach_encoder(struct intel_connector *connector,
16026                                     struct intel_encoder *encoder)
16027 {
16028         connector->encoder = encoder;
16029         drm_mode_connector_attach_encoder(&connector->base,
16030                                           &encoder->base);
16031 }
16032
16033 /*
16034  * set vga decode state - true == enable VGA decode
16035  */
16036 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16037 {
16038         struct drm_i915_private *dev_priv = dev->dev_private;
16039         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16040         u16 gmch_ctrl;
16041
16042         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16043                 DRM_ERROR("failed to read control word\n");
16044                 return -EIO;
16045         }
16046
16047         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16048                 return 0;
16049
16050         if (state)
16051                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16052         else
16053                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16054
16055         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16056                 DRM_ERROR("failed to write control word\n");
16057                 return -EIO;
16058         }
16059
16060         return 0;
16061 }
16062
16063 struct intel_display_error_state {
16064
16065         u32 power_well_driver;
16066
16067         int num_transcoders;
16068
16069         struct intel_cursor_error_state {
16070                 u32 control;
16071                 u32 position;
16072                 u32 base;
16073                 u32 size;
16074         } cursor[I915_MAX_PIPES];
16075
16076         struct intel_pipe_error_state {
16077                 bool power_domain_on;
16078                 u32 source;
16079                 u32 stat;
16080         } pipe[I915_MAX_PIPES];
16081
16082         struct intel_plane_error_state {
16083                 u32 control;
16084                 u32 stride;
16085                 u32 size;
16086                 u32 pos;
16087                 u32 addr;
16088                 u32 surface;
16089                 u32 tile_offset;
16090         } plane[I915_MAX_PIPES];
16091
16092         struct intel_transcoder_error_state {
16093                 bool power_domain_on;
16094                 enum transcoder cpu_transcoder;
16095
16096                 u32 conf;
16097
16098                 u32 htotal;
16099                 u32 hblank;
16100                 u32 hsync;
16101                 u32 vtotal;
16102                 u32 vblank;
16103                 u32 vsync;
16104         } transcoder[4];
16105 };
16106
16107 struct intel_display_error_state *
16108 intel_display_capture_error_state(struct drm_device *dev)
16109 {
16110         struct drm_i915_private *dev_priv = dev->dev_private;
16111         struct intel_display_error_state *error;
16112         int transcoders[] = {
16113                 TRANSCODER_A,
16114                 TRANSCODER_B,
16115                 TRANSCODER_C,
16116                 TRANSCODER_EDP,
16117         };
16118         int i;
16119
16120         if (INTEL_INFO(dev)->num_pipes == 0)
16121                 return NULL;
16122
16123         error = kzalloc(sizeof(*error), GFP_ATOMIC);
16124         if (error == NULL)
16125                 return NULL;
16126
16127         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16128                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16129
16130         for_each_pipe(dev_priv, i) {
16131                 error->pipe[i].power_domain_on =
16132                         __intel_display_power_is_enabled(dev_priv,
16133                                                          POWER_DOMAIN_PIPE(i));
16134                 if (!error->pipe[i].power_domain_on)
16135                         continue;
16136
16137                 error->cursor[i].control = I915_READ(CURCNTR(i));
16138                 error->cursor[i].position = I915_READ(CURPOS(i));
16139                 error->cursor[i].base = I915_READ(CURBASE(i));
16140
16141                 error->plane[i].control = I915_READ(DSPCNTR(i));
16142                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16143                 if (INTEL_INFO(dev)->gen <= 3) {
16144                         error->plane[i].size = I915_READ(DSPSIZE(i));
16145                         error->plane[i].pos = I915_READ(DSPPOS(i));
16146                 }
16147                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16148                         error->plane[i].addr = I915_READ(DSPADDR(i));
16149                 if (INTEL_INFO(dev)->gen >= 4) {
16150                         error->plane[i].surface = I915_READ(DSPSURF(i));
16151                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16152                 }
16153
16154                 error->pipe[i].source = I915_READ(PIPESRC(i));
16155
16156                 if (HAS_GMCH_DISPLAY(dev))
16157                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
16158         }
16159
16160         /* Note: this does not include DSI transcoders. */
16161         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
16162         if (HAS_DDI(dev_priv->dev))
16163                 error->num_transcoders++; /* Account for eDP. */
16164
16165         for (i = 0; i < error->num_transcoders; i++) {
16166                 enum transcoder cpu_transcoder = transcoders[i];
16167
16168                 error->transcoder[i].power_domain_on =
16169                         __intel_display_power_is_enabled(dev_priv,
16170                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16171                 if (!error->transcoder[i].power_domain_on)
16172                         continue;
16173
16174                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16175
16176                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16177                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16178                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16179                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16180                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16181                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16182                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16183         }
16184
16185         return error;
16186 }
16187
16188 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16189
16190 void
16191 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16192                                 struct drm_device *dev,
16193                                 struct intel_display_error_state *error)
16194 {
16195         struct drm_i915_private *dev_priv = dev->dev_private;
16196         int i;
16197
16198         if (!error)
16199                 return;
16200
16201         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16202         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16203                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16204                            error->power_well_driver);
16205         for_each_pipe(dev_priv, i) {
16206                 err_printf(m, "Pipe [%d]:\n", i);
16207                 err_printf(m, "  Power: %s\n",
16208                            onoff(error->pipe[i].power_domain_on));
16209                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16210                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16211
16212                 err_printf(m, "Plane [%d]:\n", i);
16213                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16214                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16215                 if (INTEL_INFO(dev)->gen <= 3) {
16216                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16217                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16218                 }
16219                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16220                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16221                 if (INTEL_INFO(dev)->gen >= 4) {
16222                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16223                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16224                 }
16225
16226                 err_printf(m, "Cursor [%d]:\n", i);
16227                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16228                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16229                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16230         }
16231
16232         for (i = 0; i < error->num_transcoders; i++) {
16233                 err_printf(m, "CPU transcoder: %s\n",
16234                            transcoder_name(error->transcoder[i].cpu_transcoder));
16235                 err_printf(m, "  Power: %s\n",
16236                            onoff(error->transcoder[i].power_domain_on));
16237                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16238                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16239                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16240                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16241                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16242                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16243                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16244         }
16245 }