drm/i915: Add infrastructure for choosing DPLLs before disabling crtcs
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48         DRM_FORMAT_C8, \
49         DRM_FORMAT_RGB565, \
50         DRM_FORMAT_XRGB8888, \
51         DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55         COMMON_PRIMARY_FORMATS,
56         DRM_FORMAT_XRGB1555,
57         DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62         COMMON_PRIMARY_FORMATS, \
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_ABGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_ARGB2101010,
67         DRM_FORMAT_XBGR2101010,
68         DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73         DRM_FORMAT_ARGB8888,
74 };
75
76 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
77
78 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
79                                 struct intel_crtc_config *pipe_config);
80 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
81                                    struct intel_crtc_config *pipe_config);
82
83 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84                           int x, int y, struct drm_framebuffer *old_fb);
85 static int intel_framebuffer_init(struct drm_device *dev,
86                                   struct intel_framebuffer *ifb,
87                                   struct drm_mode_fb_cmd2 *mode_cmd,
88                                   struct drm_i915_gem_object *obj);
89 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
91 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
92                                          struct intel_link_m_n *m_n,
93                                          struct intel_link_m_n *m2_n2);
94 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
95 static void haswell_set_pipeconf(struct drm_crtc *crtc);
96 static void intel_set_pipe_csc(struct drm_crtc *crtc);
97 static void vlv_prepare_pll(struct intel_crtc *crtc,
98                             const struct intel_crtc_config *pipe_config);
99 static void chv_prepare_pll(struct intel_crtc *crtc,
100                             const struct intel_crtc_config *pipe_config);
101
102 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
103 {
104         if (!connector->mst_port)
105                 return connector->encoder;
106         else
107                 return &connector->mst_port->mst_encoders[pipe]->base;
108 }
109
110 typedef struct {
111         int     min, max;
112 } intel_range_t;
113
114 typedef struct {
115         int     dot_limit;
116         int     p2_slow, p2_fast;
117 } intel_p2_t;
118
119 typedef struct intel_limit intel_limit_t;
120 struct intel_limit {
121         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
122         intel_p2_t          p2;
123 };
124
125 int
126 intel_pch_rawclk(struct drm_device *dev)
127 {
128         struct drm_i915_private *dev_priv = dev->dev_private;
129
130         WARN_ON(!HAS_PCH_SPLIT(dev));
131
132         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
133 }
134
135 static inline u32 /* units of 100MHz */
136 intel_fdi_link_freq(struct drm_device *dev)
137 {
138         if (IS_GEN5(dev)) {
139                 struct drm_i915_private *dev_priv = dev->dev_private;
140                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
141         } else
142                 return 27;
143 }
144
145 static const intel_limit_t intel_limits_i8xx_dac = {
146         .dot = { .min = 25000, .max = 350000 },
147         .vco = { .min = 908000, .max = 1512000 },
148         .n = { .min = 2, .max = 16 },
149         .m = { .min = 96, .max = 140 },
150         .m1 = { .min = 18, .max = 26 },
151         .m2 = { .min = 6, .max = 16 },
152         .p = { .min = 4, .max = 128 },
153         .p1 = { .min = 2, .max = 33 },
154         .p2 = { .dot_limit = 165000,
155                 .p2_slow = 4, .p2_fast = 2 },
156 };
157
158 static const intel_limit_t intel_limits_i8xx_dvo = {
159         .dot = { .min = 25000, .max = 350000 },
160         .vco = { .min = 908000, .max = 1512000 },
161         .n = { .min = 2, .max = 16 },
162         .m = { .min = 96, .max = 140 },
163         .m1 = { .min = 18, .max = 26 },
164         .m2 = { .min = 6, .max = 16 },
165         .p = { .min = 4, .max = 128 },
166         .p1 = { .min = 2, .max = 33 },
167         .p2 = { .dot_limit = 165000,
168                 .p2_slow = 4, .p2_fast = 4 },
169 };
170
171 static const intel_limit_t intel_limits_i8xx_lvds = {
172         .dot = { .min = 25000, .max = 350000 },
173         .vco = { .min = 908000, .max = 1512000 },
174         .n = { .min = 2, .max = 16 },
175         .m = { .min = 96, .max = 140 },
176         .m1 = { .min = 18, .max = 26 },
177         .m2 = { .min = 6, .max = 16 },
178         .p = { .min = 4, .max = 128 },
179         .p1 = { .min = 1, .max = 6 },
180         .p2 = { .dot_limit = 165000,
181                 .p2_slow = 14, .p2_fast = 7 },
182 };
183
184 static const intel_limit_t intel_limits_i9xx_sdvo = {
185         .dot = { .min = 20000, .max = 400000 },
186         .vco = { .min = 1400000, .max = 2800000 },
187         .n = { .min = 1, .max = 6 },
188         .m = { .min = 70, .max = 120 },
189         .m1 = { .min = 8, .max = 18 },
190         .m2 = { .min = 3, .max = 7 },
191         .p = { .min = 5, .max = 80 },
192         .p1 = { .min = 1, .max = 8 },
193         .p2 = { .dot_limit = 200000,
194                 .p2_slow = 10, .p2_fast = 5 },
195 };
196
197 static const intel_limit_t intel_limits_i9xx_lvds = {
198         .dot = { .min = 20000, .max = 400000 },
199         .vco = { .min = 1400000, .max = 2800000 },
200         .n = { .min = 1, .max = 6 },
201         .m = { .min = 70, .max = 120 },
202         .m1 = { .min = 8, .max = 18 },
203         .m2 = { .min = 3, .max = 7 },
204         .p = { .min = 7, .max = 98 },
205         .p1 = { .min = 1, .max = 8 },
206         .p2 = { .dot_limit = 112000,
207                 .p2_slow = 14, .p2_fast = 7 },
208 };
209
210
211 static const intel_limit_t intel_limits_g4x_sdvo = {
212         .dot = { .min = 25000, .max = 270000 },
213         .vco = { .min = 1750000, .max = 3500000},
214         .n = { .min = 1, .max = 4 },
215         .m = { .min = 104, .max = 138 },
216         .m1 = { .min = 17, .max = 23 },
217         .m2 = { .min = 5, .max = 11 },
218         .p = { .min = 10, .max = 30 },
219         .p1 = { .min = 1, .max = 3},
220         .p2 = { .dot_limit = 270000,
221                 .p2_slow = 10,
222                 .p2_fast = 10
223         },
224 };
225
226 static const intel_limit_t intel_limits_g4x_hdmi = {
227         .dot = { .min = 22000, .max = 400000 },
228         .vco = { .min = 1750000, .max = 3500000},
229         .n = { .min = 1, .max = 4 },
230         .m = { .min = 104, .max = 138 },
231         .m1 = { .min = 16, .max = 23 },
232         .m2 = { .min = 5, .max = 11 },
233         .p = { .min = 5, .max = 80 },
234         .p1 = { .min = 1, .max = 8},
235         .p2 = { .dot_limit = 165000,
236                 .p2_slow = 10, .p2_fast = 5 },
237 };
238
239 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
240         .dot = { .min = 20000, .max = 115000 },
241         .vco = { .min = 1750000, .max = 3500000 },
242         .n = { .min = 1, .max = 3 },
243         .m = { .min = 104, .max = 138 },
244         .m1 = { .min = 17, .max = 23 },
245         .m2 = { .min = 5, .max = 11 },
246         .p = { .min = 28, .max = 112 },
247         .p1 = { .min = 2, .max = 8 },
248         .p2 = { .dot_limit = 0,
249                 .p2_slow = 14, .p2_fast = 14
250         },
251 };
252
253 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
254         .dot = { .min = 80000, .max = 224000 },
255         .vco = { .min = 1750000, .max = 3500000 },
256         .n = { .min = 1, .max = 3 },
257         .m = { .min = 104, .max = 138 },
258         .m1 = { .min = 17, .max = 23 },
259         .m2 = { .min = 5, .max = 11 },
260         .p = { .min = 14, .max = 42 },
261         .p1 = { .min = 2, .max = 6 },
262         .p2 = { .dot_limit = 0,
263                 .p2_slow = 7, .p2_fast = 7
264         },
265 };
266
267 static const intel_limit_t intel_limits_pineview_sdvo = {
268         .dot = { .min = 20000, .max = 400000},
269         .vco = { .min = 1700000, .max = 3500000 },
270         /* Pineview's Ncounter is a ring counter */
271         .n = { .min = 3, .max = 6 },
272         .m = { .min = 2, .max = 256 },
273         /* Pineview only has one combined m divider, which we treat as m2. */
274         .m1 = { .min = 0, .max = 0 },
275         .m2 = { .min = 0, .max = 254 },
276         .p = { .min = 5, .max = 80 },
277         .p1 = { .min = 1, .max = 8 },
278         .p2 = { .dot_limit = 200000,
279                 .p2_slow = 10, .p2_fast = 5 },
280 };
281
282 static const intel_limit_t intel_limits_pineview_lvds = {
283         .dot = { .min = 20000, .max = 400000 },
284         .vco = { .min = 1700000, .max = 3500000 },
285         .n = { .min = 3, .max = 6 },
286         .m = { .min = 2, .max = 256 },
287         .m1 = { .min = 0, .max = 0 },
288         .m2 = { .min = 0, .max = 254 },
289         .p = { .min = 7, .max = 112 },
290         .p1 = { .min = 1, .max = 8 },
291         .p2 = { .dot_limit = 112000,
292                 .p2_slow = 14, .p2_fast = 14 },
293 };
294
295 /* Ironlake / Sandybridge
296  *
297  * We calculate clock using (register_value + 2) for N/M1/M2, so here
298  * the range value for them is (actual_value - 2).
299  */
300 static const intel_limit_t intel_limits_ironlake_dac = {
301         .dot = { .min = 25000, .max = 350000 },
302         .vco = { .min = 1760000, .max = 3510000 },
303         .n = { .min = 1, .max = 5 },
304         .m = { .min = 79, .max = 127 },
305         .m1 = { .min = 12, .max = 22 },
306         .m2 = { .min = 5, .max = 9 },
307         .p = { .min = 5, .max = 80 },
308         .p1 = { .min = 1, .max = 8 },
309         .p2 = { .dot_limit = 225000,
310                 .p2_slow = 10, .p2_fast = 5 },
311 };
312
313 static const intel_limit_t intel_limits_ironlake_single_lvds = {
314         .dot = { .min = 25000, .max = 350000 },
315         .vco = { .min = 1760000, .max = 3510000 },
316         .n = { .min = 1, .max = 3 },
317         .m = { .min = 79, .max = 118 },
318         .m1 = { .min = 12, .max = 22 },
319         .m2 = { .min = 5, .max = 9 },
320         .p = { .min = 28, .max = 112 },
321         .p1 = { .min = 2, .max = 8 },
322         .p2 = { .dot_limit = 225000,
323                 .p2_slow = 14, .p2_fast = 14 },
324 };
325
326 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
327         .dot = { .min = 25000, .max = 350000 },
328         .vco = { .min = 1760000, .max = 3510000 },
329         .n = { .min = 1, .max = 3 },
330         .m = { .min = 79, .max = 127 },
331         .m1 = { .min = 12, .max = 22 },
332         .m2 = { .min = 5, .max = 9 },
333         .p = { .min = 14, .max = 56 },
334         .p1 = { .min = 2, .max = 8 },
335         .p2 = { .dot_limit = 225000,
336                 .p2_slow = 7, .p2_fast = 7 },
337 };
338
339 /* LVDS 100mhz refclk limits. */
340 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
341         .dot = { .min = 25000, .max = 350000 },
342         .vco = { .min = 1760000, .max = 3510000 },
343         .n = { .min = 1, .max = 2 },
344         .m = { .min = 79, .max = 126 },
345         .m1 = { .min = 12, .max = 22 },
346         .m2 = { .min = 5, .max = 9 },
347         .p = { .min = 28, .max = 112 },
348         .p1 = { .min = 2, .max = 8 },
349         .p2 = { .dot_limit = 225000,
350                 .p2_slow = 14, .p2_fast = 14 },
351 };
352
353 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
354         .dot = { .min = 25000, .max = 350000 },
355         .vco = { .min = 1760000, .max = 3510000 },
356         .n = { .min = 1, .max = 3 },
357         .m = { .min = 79, .max = 126 },
358         .m1 = { .min = 12, .max = 22 },
359         .m2 = { .min = 5, .max = 9 },
360         .p = { .min = 14, .max = 42 },
361         .p1 = { .min = 2, .max = 6 },
362         .p2 = { .dot_limit = 225000,
363                 .p2_slow = 7, .p2_fast = 7 },
364 };
365
366 static const intel_limit_t intel_limits_vlv = {
367          /*
368           * These are the data rate limits (measured in fast clocks)
369           * since those are the strictest limits we have. The fast
370           * clock and actual rate limits are more relaxed, so checking
371           * them would make no difference.
372           */
373         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
374         .vco = { .min = 4000000, .max = 6000000 },
375         .n = { .min = 1, .max = 7 },
376         .m1 = { .min = 2, .max = 3 },
377         .m2 = { .min = 11, .max = 156 },
378         .p1 = { .min = 2, .max = 3 },
379         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
380 };
381
382 static const intel_limit_t intel_limits_chv = {
383         /*
384          * These are the data rate limits (measured in fast clocks)
385          * since those are the strictest limits we have.  The fast
386          * clock and actual rate limits are more relaxed, so checking
387          * them would make no difference.
388          */
389         .dot = { .min = 25000 * 5, .max = 540000 * 5},
390         .vco = { .min = 4860000, .max = 6700000 },
391         .n = { .min = 1, .max = 1 },
392         .m1 = { .min = 2, .max = 2 },
393         .m2 = { .min = 24 << 22, .max = 175 << 22 },
394         .p1 = { .min = 2, .max = 4 },
395         .p2 = { .p2_slow = 1, .p2_fast = 14 },
396 };
397
398 static void vlv_clock(int refclk, intel_clock_t *clock)
399 {
400         clock->m = clock->m1 * clock->m2;
401         clock->p = clock->p1 * clock->p2;
402         if (WARN_ON(clock->n == 0 || clock->p == 0))
403                 return;
404         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
405         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
406 }
407
408 /**
409  * Returns whether any output on the specified pipe is of the specified type
410  */
411 bool intel_pipe_has_type(struct intel_crtc *crtc, int type)
412 {
413         struct drm_device *dev = crtc->base.dev;
414         struct intel_encoder *encoder;
415
416         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
417                 if (encoder->type == type)
418                         return true;
419
420         return false;
421 }
422
423 /**
424  * Returns whether any output on the specified pipe will have the specified
425  * type after a staged modeset is complete, i.e., the same as
426  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
427  * encoder->crtc.
428  */
429 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
430 {
431         struct drm_device *dev = crtc->base.dev;
432         struct intel_encoder *encoder;
433
434         for_each_intel_encoder(dev, encoder)
435                 if (encoder->new_crtc == crtc && encoder->type == type)
436                         return true;
437
438         return false;
439 }
440
441 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
442                                                 int refclk)
443 {
444         struct drm_device *dev = crtc->base.dev;
445         const intel_limit_t *limit;
446
447         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
448                 if (intel_is_dual_link_lvds(dev)) {
449                         if (refclk == 100000)
450                                 limit = &intel_limits_ironlake_dual_lvds_100m;
451                         else
452                                 limit = &intel_limits_ironlake_dual_lvds;
453                 } else {
454                         if (refclk == 100000)
455                                 limit = &intel_limits_ironlake_single_lvds_100m;
456                         else
457                                 limit = &intel_limits_ironlake_single_lvds;
458                 }
459         } else
460                 limit = &intel_limits_ironlake_dac;
461
462         return limit;
463 }
464
465 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
466 {
467         struct drm_device *dev = crtc->base.dev;
468         const intel_limit_t *limit;
469
470         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
471                 if (intel_is_dual_link_lvds(dev))
472                         limit = &intel_limits_g4x_dual_channel_lvds;
473                 else
474                         limit = &intel_limits_g4x_single_channel_lvds;
475         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
476                    intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
477                 limit = &intel_limits_g4x_hdmi;
478         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
479                 limit = &intel_limits_g4x_sdvo;
480         } else /* The option is for other outputs */
481                 limit = &intel_limits_i9xx_sdvo;
482
483         return limit;
484 }
485
486 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
487 {
488         struct drm_device *dev = crtc->base.dev;
489         const intel_limit_t *limit;
490
491         if (HAS_PCH_SPLIT(dev))
492                 limit = intel_ironlake_limit(crtc, refclk);
493         else if (IS_G4X(dev)) {
494                 limit = intel_g4x_limit(crtc);
495         } else if (IS_PINEVIEW(dev)) {
496                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
497                         limit = &intel_limits_pineview_lvds;
498                 else
499                         limit = &intel_limits_pineview_sdvo;
500         } else if (IS_CHERRYVIEW(dev)) {
501                 limit = &intel_limits_chv;
502         } else if (IS_VALLEYVIEW(dev)) {
503                 limit = &intel_limits_vlv;
504         } else if (!IS_GEN2(dev)) {
505                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
506                         limit = &intel_limits_i9xx_lvds;
507                 else
508                         limit = &intel_limits_i9xx_sdvo;
509         } else {
510                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
511                         limit = &intel_limits_i8xx_lvds;
512                 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
513                         limit = &intel_limits_i8xx_dvo;
514                 else
515                         limit = &intel_limits_i8xx_dac;
516         }
517         return limit;
518 }
519
520 /* m1 is reserved as 0 in Pineview, n is a ring counter */
521 static void pineview_clock(int refclk, intel_clock_t *clock)
522 {
523         clock->m = clock->m2 + 2;
524         clock->p = clock->p1 * clock->p2;
525         if (WARN_ON(clock->n == 0 || clock->p == 0))
526                 return;
527         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
528         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
529 }
530
531 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
532 {
533         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
534 }
535
536 static void i9xx_clock(int refclk, intel_clock_t *clock)
537 {
538         clock->m = i9xx_dpll_compute_m(clock);
539         clock->p = clock->p1 * clock->p2;
540         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
541                 return;
542         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
543         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
544 }
545
546 static void chv_clock(int refclk, intel_clock_t *clock)
547 {
548         clock->m = clock->m1 * clock->m2;
549         clock->p = clock->p1 * clock->p2;
550         if (WARN_ON(clock->n == 0 || clock->p == 0))
551                 return;
552         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
553                         clock->n << 22);
554         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
555 }
556
557 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
558 /**
559  * Returns whether the given set of divisors are valid for a given refclk with
560  * the given connectors.
561  */
562
563 static bool intel_PLL_is_valid(struct drm_device *dev,
564                                const intel_limit_t *limit,
565                                const intel_clock_t *clock)
566 {
567         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
568                 INTELPllInvalid("n out of range\n");
569         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
570                 INTELPllInvalid("p1 out of range\n");
571         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
572                 INTELPllInvalid("m2 out of range\n");
573         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
574                 INTELPllInvalid("m1 out of range\n");
575
576         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
577                 if (clock->m1 <= clock->m2)
578                         INTELPllInvalid("m1 <= m2\n");
579
580         if (!IS_VALLEYVIEW(dev)) {
581                 if (clock->p < limit->p.min || limit->p.max < clock->p)
582                         INTELPllInvalid("p out of range\n");
583                 if (clock->m < limit->m.min || limit->m.max < clock->m)
584                         INTELPllInvalid("m out of range\n");
585         }
586
587         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
588                 INTELPllInvalid("vco out of range\n");
589         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
590          * connector, etc., rather than just a single range.
591          */
592         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
593                 INTELPllInvalid("dot out of range\n");
594
595         return true;
596 }
597
598 static bool
599 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
600                     int target, int refclk, intel_clock_t *match_clock,
601                     intel_clock_t *best_clock)
602 {
603         struct drm_device *dev = crtc->base.dev;
604         intel_clock_t clock;
605         int err = target;
606
607         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
608                 /*
609                  * For LVDS just rely on its current settings for dual-channel.
610                  * We haven't figured out how to reliably set up different
611                  * single/dual channel state, if we even can.
612                  */
613                 if (intel_is_dual_link_lvds(dev))
614                         clock.p2 = limit->p2.p2_fast;
615                 else
616                         clock.p2 = limit->p2.p2_slow;
617         } else {
618                 if (target < limit->p2.dot_limit)
619                         clock.p2 = limit->p2.p2_slow;
620                 else
621                         clock.p2 = limit->p2.p2_fast;
622         }
623
624         memset(best_clock, 0, sizeof(*best_clock));
625
626         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
627              clock.m1++) {
628                 for (clock.m2 = limit->m2.min;
629                      clock.m2 <= limit->m2.max; clock.m2++) {
630                         if (clock.m2 >= clock.m1)
631                                 break;
632                         for (clock.n = limit->n.min;
633                              clock.n <= limit->n.max; clock.n++) {
634                                 for (clock.p1 = limit->p1.min;
635                                         clock.p1 <= limit->p1.max; clock.p1++) {
636                                         int this_err;
637
638                                         i9xx_clock(refclk, &clock);
639                                         if (!intel_PLL_is_valid(dev, limit,
640                                                                 &clock))
641                                                 continue;
642                                         if (match_clock &&
643                                             clock.p != match_clock->p)
644                                                 continue;
645
646                                         this_err = abs(clock.dot - target);
647                                         if (this_err < err) {
648                                                 *best_clock = clock;
649                                                 err = this_err;
650                                         }
651                                 }
652                         }
653                 }
654         }
655
656         return (err != target);
657 }
658
659 static bool
660 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
661                    int target, int refclk, intel_clock_t *match_clock,
662                    intel_clock_t *best_clock)
663 {
664         struct drm_device *dev = crtc->base.dev;
665         intel_clock_t clock;
666         int err = target;
667
668         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
669                 /*
670                  * For LVDS just rely on its current settings for dual-channel.
671                  * We haven't figured out how to reliably set up different
672                  * single/dual channel state, if we even can.
673                  */
674                 if (intel_is_dual_link_lvds(dev))
675                         clock.p2 = limit->p2.p2_fast;
676                 else
677                         clock.p2 = limit->p2.p2_slow;
678         } else {
679                 if (target < limit->p2.dot_limit)
680                         clock.p2 = limit->p2.p2_slow;
681                 else
682                         clock.p2 = limit->p2.p2_fast;
683         }
684
685         memset(best_clock, 0, sizeof(*best_clock));
686
687         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688              clock.m1++) {
689                 for (clock.m2 = limit->m2.min;
690                      clock.m2 <= limit->m2.max; clock.m2++) {
691                         for (clock.n = limit->n.min;
692                              clock.n <= limit->n.max; clock.n++) {
693                                 for (clock.p1 = limit->p1.min;
694                                         clock.p1 <= limit->p1.max; clock.p1++) {
695                                         int this_err;
696
697                                         pineview_clock(refclk, &clock);
698                                         if (!intel_PLL_is_valid(dev, limit,
699                                                                 &clock))
700                                                 continue;
701                                         if (match_clock &&
702                                             clock.p != match_clock->p)
703                                                 continue;
704
705                                         this_err = abs(clock.dot - target);
706                                         if (this_err < err) {
707                                                 *best_clock = clock;
708                                                 err = this_err;
709                                         }
710                                 }
711                         }
712                 }
713         }
714
715         return (err != target);
716 }
717
718 static bool
719 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
720                    int target, int refclk, intel_clock_t *match_clock,
721                    intel_clock_t *best_clock)
722 {
723         struct drm_device *dev = crtc->base.dev;
724         intel_clock_t clock;
725         int max_n;
726         bool found;
727         /* approximately equals target * 0.00585 */
728         int err_most = (target >> 8) + (target >> 9);
729         found = false;
730
731         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
732                 if (intel_is_dual_link_lvds(dev))
733                         clock.p2 = limit->p2.p2_fast;
734                 else
735                         clock.p2 = limit->p2.p2_slow;
736         } else {
737                 if (target < limit->p2.dot_limit)
738                         clock.p2 = limit->p2.p2_slow;
739                 else
740                         clock.p2 = limit->p2.p2_fast;
741         }
742
743         memset(best_clock, 0, sizeof(*best_clock));
744         max_n = limit->n.max;
745         /* based on hardware requirement, prefer smaller n to precision */
746         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
747                 /* based on hardware requirement, prefere larger m1,m2 */
748                 for (clock.m1 = limit->m1.max;
749                      clock.m1 >= limit->m1.min; clock.m1--) {
750                         for (clock.m2 = limit->m2.max;
751                              clock.m2 >= limit->m2.min; clock.m2--) {
752                                 for (clock.p1 = limit->p1.max;
753                                      clock.p1 >= limit->p1.min; clock.p1--) {
754                                         int this_err;
755
756                                         i9xx_clock(refclk, &clock);
757                                         if (!intel_PLL_is_valid(dev, limit,
758                                                                 &clock))
759                                                 continue;
760
761                                         this_err = abs(clock.dot - target);
762                                         if (this_err < err_most) {
763                                                 *best_clock = clock;
764                                                 err_most = this_err;
765                                                 max_n = clock.n;
766                                                 found = true;
767                                         }
768                                 }
769                         }
770                 }
771         }
772         return found;
773 }
774
775 static bool
776 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
777                    int target, int refclk, intel_clock_t *match_clock,
778                    intel_clock_t *best_clock)
779 {
780         struct drm_device *dev = crtc->base.dev;
781         intel_clock_t clock;
782         unsigned int bestppm = 1000000;
783         /* min update 19.2 MHz */
784         int max_n = min(limit->n.max, refclk / 19200);
785         bool found = false;
786
787         target *= 5; /* fast clock */
788
789         memset(best_clock, 0, sizeof(*best_clock));
790
791         /* based on hardware requirement, prefer smaller n to precision */
792         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
793                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
794                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
795                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
796                                 clock.p = clock.p1 * clock.p2;
797                                 /* based on hardware requirement, prefer bigger m1,m2 values */
798                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
799                                         unsigned int ppm, diff;
800
801                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
802                                                                      refclk * clock.m1);
803
804                                         vlv_clock(refclk, &clock);
805
806                                         if (!intel_PLL_is_valid(dev, limit,
807                                                                 &clock))
808                                                 continue;
809
810                                         diff = abs(clock.dot - target);
811                                         ppm = div_u64(1000000ULL * diff, target);
812
813                                         if (ppm < 100 && clock.p > best_clock->p) {
814                                                 bestppm = 0;
815                                                 *best_clock = clock;
816                                                 found = true;
817                                         }
818
819                                         if (bestppm >= 10 && ppm < bestppm - 10) {
820                                                 bestppm = ppm;
821                                                 *best_clock = clock;
822                                                 found = true;
823                                         }
824                                 }
825                         }
826                 }
827         }
828
829         return found;
830 }
831
832 static bool
833 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
834                    int target, int refclk, intel_clock_t *match_clock,
835                    intel_clock_t *best_clock)
836 {
837         struct drm_device *dev = crtc->base.dev;
838         intel_clock_t clock;
839         uint64_t m2;
840         int found = false;
841
842         memset(best_clock, 0, sizeof(*best_clock));
843
844         /*
845          * Based on hardware doc, the n always set to 1, and m1 always
846          * set to 2.  If requires to support 200Mhz refclk, we need to
847          * revisit this because n may not 1 anymore.
848          */
849         clock.n = 1, clock.m1 = 2;
850         target *= 5;    /* fast clock */
851
852         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
853                 for (clock.p2 = limit->p2.p2_fast;
854                                 clock.p2 >= limit->p2.p2_slow;
855                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
856
857                         clock.p = clock.p1 * clock.p2;
858
859                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
860                                         clock.n) << 22, refclk * clock.m1);
861
862                         if (m2 > INT_MAX/clock.m1)
863                                 continue;
864
865                         clock.m2 = m2;
866
867                         chv_clock(refclk, &clock);
868
869                         if (!intel_PLL_is_valid(dev, limit, &clock))
870                                 continue;
871
872                         /* based on hardware requirement, prefer bigger p
873                          */
874                         if (clock.p > best_clock->p) {
875                                 *best_clock = clock;
876                                 found = true;
877                         }
878                 }
879         }
880
881         return found;
882 }
883
884 bool intel_crtc_active(struct drm_crtc *crtc)
885 {
886         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
887
888         /* Be paranoid as we can arrive here with only partial
889          * state retrieved from the hardware during setup.
890          *
891          * We can ditch the adjusted_mode.crtc_clock check as soon
892          * as Haswell has gained clock readout/fastboot support.
893          *
894          * We can ditch the crtc->primary->fb check as soon as we can
895          * properly reconstruct framebuffers.
896          */
897         return intel_crtc->active && crtc->primary->fb &&
898                 intel_crtc->config.adjusted_mode.crtc_clock;
899 }
900
901 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
902                                              enum pipe pipe)
903 {
904         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
905         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
906
907         return intel_crtc->config.cpu_transcoder;
908 }
909
910 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
911 {
912         struct drm_i915_private *dev_priv = dev->dev_private;
913         u32 reg = PIPEDSL(pipe);
914         u32 line1, line2;
915         u32 line_mask;
916
917         if (IS_GEN2(dev))
918                 line_mask = DSL_LINEMASK_GEN2;
919         else
920                 line_mask = DSL_LINEMASK_GEN3;
921
922         line1 = I915_READ(reg) & line_mask;
923         mdelay(5);
924         line2 = I915_READ(reg) & line_mask;
925
926         return line1 == line2;
927 }
928
929 /*
930  * intel_wait_for_pipe_off - wait for pipe to turn off
931  * @crtc: crtc whose pipe to wait for
932  *
933  * After disabling a pipe, we can't wait for vblank in the usual way,
934  * spinning on the vblank interrupt status bit, since we won't actually
935  * see an interrupt when the pipe is disabled.
936  *
937  * On Gen4 and above:
938  *   wait for the pipe register state bit to turn off
939  *
940  * Otherwise:
941  *   wait for the display line value to settle (it usually
942  *   ends up stopping at the start of the next frame).
943  *
944  */
945 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
946 {
947         struct drm_device *dev = crtc->base.dev;
948         struct drm_i915_private *dev_priv = dev->dev_private;
949         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
950         enum pipe pipe = crtc->pipe;
951
952         if (INTEL_INFO(dev)->gen >= 4) {
953                 int reg = PIPECONF(cpu_transcoder);
954
955                 /* Wait for the Pipe State to go off */
956                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
957                              100))
958                         WARN(1, "pipe_off wait timed out\n");
959         } else {
960                 /* Wait for the display line to settle */
961                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
962                         WARN(1, "pipe_off wait timed out\n");
963         }
964 }
965
966 /*
967  * ibx_digital_port_connected - is the specified port connected?
968  * @dev_priv: i915 private structure
969  * @port: the port to test
970  *
971  * Returns true if @port is connected, false otherwise.
972  */
973 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
974                                 struct intel_digital_port *port)
975 {
976         u32 bit;
977
978         if (HAS_PCH_IBX(dev_priv->dev)) {
979                 switch (port->port) {
980                 case PORT_B:
981                         bit = SDE_PORTB_HOTPLUG;
982                         break;
983                 case PORT_C:
984                         bit = SDE_PORTC_HOTPLUG;
985                         break;
986                 case PORT_D:
987                         bit = SDE_PORTD_HOTPLUG;
988                         break;
989                 default:
990                         return true;
991                 }
992         } else {
993                 switch (port->port) {
994                 case PORT_B:
995                         bit = SDE_PORTB_HOTPLUG_CPT;
996                         break;
997                 case PORT_C:
998                         bit = SDE_PORTC_HOTPLUG_CPT;
999                         break;
1000                 case PORT_D:
1001                         bit = SDE_PORTD_HOTPLUG_CPT;
1002                         break;
1003                 default:
1004                         return true;
1005                 }
1006         }
1007
1008         return I915_READ(SDEISR) & bit;
1009 }
1010
1011 static const char *state_string(bool enabled)
1012 {
1013         return enabled ? "on" : "off";
1014 }
1015
1016 /* Only for pre-ILK configs */
1017 void assert_pll(struct drm_i915_private *dev_priv,
1018                 enum pipe pipe, bool state)
1019 {
1020         int reg;
1021         u32 val;
1022         bool cur_state;
1023
1024         reg = DPLL(pipe);
1025         val = I915_READ(reg);
1026         cur_state = !!(val & DPLL_VCO_ENABLE);
1027         WARN(cur_state != state,
1028              "PLL state assertion failure (expected %s, current %s)\n",
1029              state_string(state), state_string(cur_state));
1030 }
1031
1032 /* XXX: the dsi pll is shared between MIPI DSI ports */
1033 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1034 {
1035         u32 val;
1036         bool cur_state;
1037
1038         mutex_lock(&dev_priv->dpio_lock);
1039         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1040         mutex_unlock(&dev_priv->dpio_lock);
1041
1042         cur_state = val & DSI_PLL_VCO_EN;
1043         WARN(cur_state != state,
1044              "DSI PLL state assertion failure (expected %s, current %s)\n",
1045              state_string(state), state_string(cur_state));
1046 }
1047 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1048 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1049
1050 struct intel_shared_dpll *
1051 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1052 {
1053         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1054
1055         if (crtc->config.shared_dpll < 0)
1056                 return NULL;
1057
1058         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1059 }
1060
1061 /* For ILK+ */
1062 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1063                         struct intel_shared_dpll *pll,
1064                         bool state)
1065 {
1066         bool cur_state;
1067         struct intel_dpll_hw_state hw_state;
1068
1069         if (WARN (!pll,
1070                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1071                 return;
1072
1073         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1074         WARN(cur_state != state,
1075              "%s assertion failure (expected %s, current %s)\n",
1076              pll->name, state_string(state), state_string(cur_state));
1077 }
1078
1079 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080                           enum pipe pipe, bool state)
1081 {
1082         int reg;
1083         u32 val;
1084         bool cur_state;
1085         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086                                                                       pipe);
1087
1088         if (HAS_DDI(dev_priv->dev)) {
1089                 /* DDI does not have a specific FDI_TX register */
1090                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1091                 val = I915_READ(reg);
1092                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1093         } else {
1094                 reg = FDI_TX_CTL(pipe);
1095                 val = I915_READ(reg);
1096                 cur_state = !!(val & FDI_TX_ENABLE);
1097         }
1098         WARN(cur_state != state,
1099              "FDI TX state assertion failure (expected %s, current %s)\n",
1100              state_string(state), state_string(cur_state));
1101 }
1102 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106                           enum pipe pipe, bool state)
1107 {
1108         int reg;
1109         u32 val;
1110         bool cur_state;
1111
1112         reg = FDI_RX_CTL(pipe);
1113         val = I915_READ(reg);
1114         cur_state = !!(val & FDI_RX_ENABLE);
1115         WARN(cur_state != state,
1116              "FDI RX state assertion failure (expected %s, current %s)\n",
1117              state_string(state), state_string(cur_state));
1118 }
1119 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123                                       enum pipe pipe)
1124 {
1125         int reg;
1126         u32 val;
1127
1128         /* ILK FDI PLL is always enabled */
1129         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1130                 return;
1131
1132         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1133         if (HAS_DDI(dev_priv->dev))
1134                 return;
1135
1136         reg = FDI_TX_CTL(pipe);
1137         val = I915_READ(reg);
1138         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139 }
1140
1141 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142                        enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155
1156 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157                            enum pipe pipe)
1158 {
1159         struct drm_device *dev = dev_priv->dev;
1160         int pp_reg;
1161         u32 val;
1162         enum pipe panel_pipe = PIPE_A;
1163         bool locked = true;
1164
1165         if (WARN_ON(HAS_DDI(dev)))
1166                 return;
1167
1168         if (HAS_PCH_SPLIT(dev)) {
1169                 u32 port_sel;
1170
1171                 pp_reg = PCH_PP_CONTROL;
1172                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1173
1174                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1175                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1176                         panel_pipe = PIPE_B;
1177                 /* XXX: else fix for eDP */
1178         } else if (IS_VALLEYVIEW(dev)) {
1179                 /* presumably write lock depends on pipe, not port select */
1180                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1181                 panel_pipe = pipe;
1182         } else {
1183                 pp_reg = PP_CONTROL;
1184                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1185                         panel_pipe = PIPE_B;
1186         }
1187
1188         val = I915_READ(pp_reg);
1189         if (!(val & PANEL_POWER_ON) ||
1190             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1191                 locked = false;
1192
1193         WARN(panel_pipe == pipe && locked,
1194              "panel assertion failure, pipe %c regs locked\n",
1195              pipe_name(pipe));
1196 }
1197
1198 static void assert_cursor(struct drm_i915_private *dev_priv,
1199                           enum pipe pipe, bool state)
1200 {
1201         struct drm_device *dev = dev_priv->dev;
1202         bool cur_state;
1203
1204         if (IS_845G(dev) || IS_I865G(dev))
1205                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1206         else
1207                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1208
1209         WARN(cur_state != state,
1210              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1211              pipe_name(pipe), state_string(state), state_string(cur_state));
1212 }
1213 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1214 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1215
1216 void assert_pipe(struct drm_i915_private *dev_priv,
1217                  enum pipe pipe, bool state)
1218 {
1219         int reg;
1220         u32 val;
1221         bool cur_state;
1222         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223                                                                       pipe);
1224
1225         /* if we need the pipe quirk it must be always on */
1226         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1227             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1228                 state = true;
1229
1230         if (!intel_display_power_is_enabled(dev_priv,
1231                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1232                 cur_state = false;
1233         } else {
1234                 reg = PIPECONF(cpu_transcoder);
1235                 val = I915_READ(reg);
1236                 cur_state = !!(val & PIPECONF_ENABLE);
1237         }
1238
1239         WARN(cur_state != state,
1240              "pipe %c assertion failure (expected %s, current %s)\n",
1241              pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245                          enum plane plane, bool state)
1246 {
1247         int reg;
1248         u32 val;
1249         bool cur_state;
1250
1251         reg = DSPCNTR(plane);
1252         val = I915_READ(reg);
1253         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254         WARN(cur_state != state,
1255              "plane %c assertion failure (expected %s, current %s)\n",
1256              plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263                                    enum pipe pipe)
1264 {
1265         struct drm_device *dev = dev_priv->dev;
1266         int reg, i;
1267         u32 val;
1268         int cur_pipe;
1269
1270         /* Primary planes are fixed to pipes on gen4+ */
1271         if (INTEL_INFO(dev)->gen >= 4) {
1272                 reg = DSPCNTR(pipe);
1273                 val = I915_READ(reg);
1274                 WARN(val & DISPLAY_PLANE_ENABLE,
1275                      "plane %c assertion failure, should be disabled but not\n",
1276                      plane_name(pipe));
1277                 return;
1278         }
1279
1280         /* Need to check both planes against the pipe */
1281         for_each_pipe(dev_priv, i) {
1282                 reg = DSPCNTR(i);
1283                 val = I915_READ(reg);
1284                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1285                         DISPPLANE_SEL_PIPE_SHIFT;
1286                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1287                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1288                      plane_name(i), pipe_name(pipe));
1289         }
1290 }
1291
1292 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1293                                     enum pipe pipe)
1294 {
1295         struct drm_device *dev = dev_priv->dev;
1296         int reg, sprite;
1297         u32 val;
1298
1299         if (INTEL_INFO(dev)->gen >= 9) {
1300                 for_each_sprite(pipe, sprite) {
1301                         val = I915_READ(PLANE_CTL(pipe, sprite));
1302                         WARN(val & PLANE_CTL_ENABLE,
1303                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1304                              sprite, pipe_name(pipe));
1305                 }
1306         } else if (IS_VALLEYVIEW(dev)) {
1307                 for_each_sprite(pipe, sprite) {
1308                         reg = SPCNTR(pipe, sprite);
1309                         val = I915_READ(reg);
1310                         WARN(val & SP_ENABLE,
1311                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1312                              sprite_name(pipe, sprite), pipe_name(pipe));
1313                 }
1314         } else if (INTEL_INFO(dev)->gen >= 7) {
1315                 reg = SPRCTL(pipe);
1316                 val = I915_READ(reg);
1317                 WARN(val & SPRITE_ENABLE,
1318                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1319                      plane_name(pipe), pipe_name(pipe));
1320         } else if (INTEL_INFO(dev)->gen >= 5) {
1321                 reg = DVSCNTR(pipe);
1322                 val = I915_READ(reg);
1323                 WARN(val & DVS_ENABLE,
1324                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1325                      plane_name(pipe), pipe_name(pipe));
1326         }
1327 }
1328
1329 static void assert_vblank_disabled(struct drm_crtc *crtc)
1330 {
1331         if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1332                 drm_crtc_vblank_put(crtc);
1333 }
1334
1335 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1336 {
1337         u32 val;
1338         bool enabled;
1339
1340         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1341
1342         val = I915_READ(PCH_DREF_CONTROL);
1343         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1344                             DREF_SUPERSPREAD_SOURCE_MASK));
1345         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1346 }
1347
1348 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1349                                            enum pipe pipe)
1350 {
1351         int reg;
1352         u32 val;
1353         bool enabled;
1354
1355         reg = PCH_TRANSCONF(pipe);
1356         val = I915_READ(reg);
1357         enabled = !!(val & TRANS_ENABLE);
1358         WARN(enabled,
1359              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1360              pipe_name(pipe));
1361 }
1362
1363 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1364                             enum pipe pipe, u32 port_sel, u32 val)
1365 {
1366         if ((val & DP_PORT_EN) == 0)
1367                 return false;
1368
1369         if (HAS_PCH_CPT(dev_priv->dev)) {
1370                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1371                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1372                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1373                         return false;
1374         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1375                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1376                         return false;
1377         } else {
1378                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1379                         return false;
1380         }
1381         return true;
1382 }
1383
1384 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1385                               enum pipe pipe, u32 val)
1386 {
1387         if ((val & SDVO_ENABLE) == 0)
1388                 return false;
1389
1390         if (HAS_PCH_CPT(dev_priv->dev)) {
1391                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1392                         return false;
1393         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1394                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1395                         return false;
1396         } else {
1397                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1398                         return false;
1399         }
1400         return true;
1401 }
1402
1403 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1404                               enum pipe pipe, u32 val)
1405 {
1406         if ((val & LVDS_PORT_EN) == 0)
1407                 return false;
1408
1409         if (HAS_PCH_CPT(dev_priv->dev)) {
1410                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1411                         return false;
1412         } else {
1413                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1414                         return false;
1415         }
1416         return true;
1417 }
1418
1419 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1420                               enum pipe pipe, u32 val)
1421 {
1422         if ((val & ADPA_DAC_ENABLE) == 0)
1423                 return false;
1424         if (HAS_PCH_CPT(dev_priv->dev)) {
1425                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1426                         return false;
1427         } else {
1428                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1429                         return false;
1430         }
1431         return true;
1432 }
1433
1434 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1435                                    enum pipe pipe, int reg, u32 port_sel)
1436 {
1437         u32 val = I915_READ(reg);
1438         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1439              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1440              reg, pipe_name(pipe));
1441
1442         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1443              && (val & DP_PIPEB_SELECT),
1444              "IBX PCH dp port still using transcoder B\n");
1445 }
1446
1447 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1448                                      enum pipe pipe, int reg)
1449 {
1450         u32 val = I915_READ(reg);
1451         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1452              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1453              reg, pipe_name(pipe));
1454
1455         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1456              && (val & SDVO_PIPE_B_SELECT),
1457              "IBX PCH hdmi port still using transcoder B\n");
1458 }
1459
1460 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1461                                       enum pipe pipe)
1462 {
1463         int reg;
1464         u32 val;
1465
1466         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1467         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1468         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1469
1470         reg = PCH_ADPA;
1471         val = I915_READ(reg);
1472         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1473              "PCH VGA enabled on transcoder %c, should be disabled\n",
1474              pipe_name(pipe));
1475
1476         reg = PCH_LVDS;
1477         val = I915_READ(reg);
1478         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1479              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1480              pipe_name(pipe));
1481
1482         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1483         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1484         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1485 }
1486
1487 static void intel_init_dpio(struct drm_device *dev)
1488 {
1489         struct drm_i915_private *dev_priv = dev->dev_private;
1490
1491         if (!IS_VALLEYVIEW(dev))
1492                 return;
1493
1494         /*
1495          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1496          * CHV x1 PHY (DP/HDMI D)
1497          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1498          */
1499         if (IS_CHERRYVIEW(dev)) {
1500                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1501                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1502         } else {
1503                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1504         }
1505 }
1506
1507 static void vlv_enable_pll(struct intel_crtc *crtc,
1508                            const struct intel_crtc_config *pipe_config)
1509 {
1510         struct drm_device *dev = crtc->base.dev;
1511         struct drm_i915_private *dev_priv = dev->dev_private;
1512         int reg = DPLL(crtc->pipe);
1513         u32 dpll = pipe_config->dpll_hw_state.dpll;
1514
1515         assert_pipe_disabled(dev_priv, crtc->pipe);
1516
1517         /* No really, not for ILK+ */
1518         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1519
1520         /* PLL is protected by panel, make sure we can write it */
1521         if (IS_MOBILE(dev_priv->dev))
1522                 assert_panel_unlocked(dev_priv, crtc->pipe);
1523
1524         I915_WRITE(reg, dpll);
1525         POSTING_READ(reg);
1526         udelay(150);
1527
1528         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1529                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1530
1531         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1532         POSTING_READ(DPLL_MD(crtc->pipe));
1533
1534         /* We do this three times for luck */
1535         I915_WRITE(reg, dpll);
1536         POSTING_READ(reg);
1537         udelay(150); /* wait for warmup */
1538         I915_WRITE(reg, dpll);
1539         POSTING_READ(reg);
1540         udelay(150); /* wait for warmup */
1541         I915_WRITE(reg, dpll);
1542         POSTING_READ(reg);
1543         udelay(150); /* wait for warmup */
1544 }
1545
1546 static void chv_enable_pll(struct intel_crtc *crtc,
1547                            const struct intel_crtc_config *pipe_config)
1548 {
1549         struct drm_device *dev = crtc->base.dev;
1550         struct drm_i915_private *dev_priv = dev->dev_private;
1551         int pipe = crtc->pipe;
1552         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1553         u32 tmp;
1554
1555         assert_pipe_disabled(dev_priv, crtc->pipe);
1556
1557         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1558
1559         mutex_lock(&dev_priv->dpio_lock);
1560
1561         /* Enable back the 10bit clock to display controller */
1562         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1563         tmp |= DPIO_DCLKP_EN;
1564         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1565
1566         /*
1567          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1568          */
1569         udelay(1);
1570
1571         /* Enable PLL */
1572         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1573
1574         /* Check PLL is locked */
1575         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1576                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1577
1578         /* not sure when this should be written */
1579         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1580         POSTING_READ(DPLL_MD(pipe));
1581
1582         mutex_unlock(&dev_priv->dpio_lock);
1583 }
1584
1585 static int intel_num_dvo_pipes(struct drm_device *dev)
1586 {
1587         struct intel_crtc *crtc;
1588         int count = 0;
1589
1590         for_each_intel_crtc(dev, crtc)
1591                 count += crtc->active &&
1592                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1593
1594         return count;
1595 }
1596
1597 static void i9xx_enable_pll(struct intel_crtc *crtc)
1598 {
1599         struct drm_device *dev = crtc->base.dev;
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         int reg = DPLL(crtc->pipe);
1602         u32 dpll = crtc->config.dpll_hw_state.dpll;
1603
1604         assert_pipe_disabled(dev_priv, crtc->pipe);
1605
1606         /* No really, not for ILK+ */
1607         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1608
1609         /* PLL is protected by panel, make sure we can write it */
1610         if (IS_MOBILE(dev) && !IS_I830(dev))
1611                 assert_panel_unlocked(dev_priv, crtc->pipe);
1612
1613         /* Enable DVO 2x clock on both PLLs if necessary */
1614         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1615                 /*
1616                  * It appears to be important that we don't enable this
1617                  * for the current pipe before otherwise configuring the
1618                  * PLL. No idea how this should be handled if multiple
1619                  * DVO outputs are enabled simultaneosly.
1620                  */
1621                 dpll |= DPLL_DVO_2X_MODE;
1622                 I915_WRITE(DPLL(!crtc->pipe),
1623                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1624         }
1625
1626         /* Wait for the clocks to stabilize. */
1627         POSTING_READ(reg);
1628         udelay(150);
1629
1630         if (INTEL_INFO(dev)->gen >= 4) {
1631                 I915_WRITE(DPLL_MD(crtc->pipe),
1632                            crtc->config.dpll_hw_state.dpll_md);
1633         } else {
1634                 /* The pixel multiplier can only be updated once the
1635                  * DPLL is enabled and the clocks are stable.
1636                  *
1637                  * So write it again.
1638                  */
1639                 I915_WRITE(reg, dpll);
1640         }
1641
1642         /* We do this three times for luck */
1643         I915_WRITE(reg, dpll);
1644         POSTING_READ(reg);
1645         udelay(150); /* wait for warmup */
1646         I915_WRITE(reg, dpll);
1647         POSTING_READ(reg);
1648         udelay(150); /* wait for warmup */
1649         I915_WRITE(reg, dpll);
1650         POSTING_READ(reg);
1651         udelay(150); /* wait for warmup */
1652 }
1653
1654 /**
1655  * i9xx_disable_pll - disable a PLL
1656  * @dev_priv: i915 private structure
1657  * @pipe: pipe PLL to disable
1658  *
1659  * Disable the PLL for @pipe, making sure the pipe is off first.
1660  *
1661  * Note!  This is for pre-ILK only.
1662  */
1663 static void i9xx_disable_pll(struct intel_crtc *crtc)
1664 {
1665         struct drm_device *dev = crtc->base.dev;
1666         struct drm_i915_private *dev_priv = dev->dev_private;
1667         enum pipe pipe = crtc->pipe;
1668
1669         /* Disable DVO 2x clock on both PLLs if necessary */
1670         if (IS_I830(dev) &&
1671             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1672             intel_num_dvo_pipes(dev) == 1) {
1673                 I915_WRITE(DPLL(PIPE_B),
1674                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1675                 I915_WRITE(DPLL(PIPE_A),
1676                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1677         }
1678
1679         /* Don't disable pipe or pipe PLLs if needed */
1680         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1681             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1682                 return;
1683
1684         /* Make sure the pipe isn't still relying on us */
1685         assert_pipe_disabled(dev_priv, pipe);
1686
1687         I915_WRITE(DPLL(pipe), 0);
1688         POSTING_READ(DPLL(pipe));
1689 }
1690
1691 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1692 {
1693         u32 val = 0;
1694
1695         /* Make sure the pipe isn't still relying on us */
1696         assert_pipe_disabled(dev_priv, pipe);
1697
1698         /*
1699          * Leave integrated clock source and reference clock enabled for pipe B.
1700          * The latter is needed for VGA hotplug / manual detection.
1701          */
1702         if (pipe == PIPE_B)
1703                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1704         I915_WRITE(DPLL(pipe), val);
1705         POSTING_READ(DPLL(pipe));
1706
1707 }
1708
1709 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1710 {
1711         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1712         u32 val;
1713
1714         /* Make sure the pipe isn't still relying on us */
1715         assert_pipe_disabled(dev_priv, pipe);
1716
1717         /* Set PLL en = 0 */
1718         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1719         if (pipe != PIPE_A)
1720                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1721         I915_WRITE(DPLL(pipe), val);
1722         POSTING_READ(DPLL(pipe));
1723
1724         mutex_lock(&dev_priv->dpio_lock);
1725
1726         /* Disable 10bit clock to display controller */
1727         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1728         val &= ~DPIO_DCLKP_EN;
1729         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1730
1731         /* disable left/right clock distribution */
1732         if (pipe != PIPE_B) {
1733                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1734                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1735                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1736         } else {
1737                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1738                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1739                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1740         }
1741
1742         mutex_unlock(&dev_priv->dpio_lock);
1743 }
1744
1745 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1746                 struct intel_digital_port *dport)
1747 {
1748         u32 port_mask;
1749         int dpll_reg;
1750
1751         switch (dport->port) {
1752         case PORT_B:
1753                 port_mask = DPLL_PORTB_READY_MASK;
1754                 dpll_reg = DPLL(0);
1755                 break;
1756         case PORT_C:
1757                 port_mask = DPLL_PORTC_READY_MASK;
1758                 dpll_reg = DPLL(0);
1759                 break;
1760         case PORT_D:
1761                 port_mask = DPLL_PORTD_READY_MASK;
1762                 dpll_reg = DPIO_PHY_STATUS;
1763                 break;
1764         default:
1765                 BUG();
1766         }
1767
1768         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1769                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1770                      port_name(dport->port), I915_READ(dpll_reg));
1771 }
1772
1773 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1774 {
1775         struct drm_device *dev = crtc->base.dev;
1776         struct drm_i915_private *dev_priv = dev->dev_private;
1777         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1778
1779         if (WARN_ON(pll == NULL))
1780                 return;
1781
1782         WARN_ON(!pll->config.crtc_mask);
1783         if (pll->active == 0) {
1784                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1785                 WARN_ON(pll->on);
1786                 assert_shared_dpll_disabled(dev_priv, pll);
1787
1788                 pll->mode_set(dev_priv, pll);
1789         }
1790 }
1791
1792 /**
1793  * intel_enable_shared_dpll - enable PCH PLL
1794  * @dev_priv: i915 private structure
1795  * @pipe: pipe PLL to enable
1796  *
1797  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1798  * drives the transcoder clock.
1799  */
1800 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1801 {
1802         struct drm_device *dev = crtc->base.dev;
1803         struct drm_i915_private *dev_priv = dev->dev_private;
1804         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1805
1806         if (WARN_ON(pll == NULL))
1807                 return;
1808
1809         if (WARN_ON(pll->config.crtc_mask == 0))
1810                 return;
1811
1812         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1813                       pll->name, pll->active, pll->on,
1814                       crtc->base.base.id);
1815
1816         if (pll->active++) {
1817                 WARN_ON(!pll->on);
1818                 assert_shared_dpll_enabled(dev_priv, pll);
1819                 return;
1820         }
1821         WARN_ON(pll->on);
1822
1823         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1824
1825         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1826         pll->enable(dev_priv, pll);
1827         pll->on = true;
1828 }
1829
1830 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1831 {
1832         struct drm_device *dev = crtc->base.dev;
1833         struct drm_i915_private *dev_priv = dev->dev_private;
1834         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1835
1836         /* PCH only available on ILK+ */
1837         BUG_ON(INTEL_INFO(dev)->gen < 5);
1838         if (WARN_ON(pll == NULL))
1839                return;
1840
1841         if (WARN_ON(pll->config.crtc_mask == 0))
1842                 return;
1843
1844         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1845                       pll->name, pll->active, pll->on,
1846                       crtc->base.base.id);
1847
1848         if (WARN_ON(pll->active == 0)) {
1849                 assert_shared_dpll_disabled(dev_priv, pll);
1850                 return;
1851         }
1852
1853         assert_shared_dpll_enabled(dev_priv, pll);
1854         WARN_ON(!pll->on);
1855         if (--pll->active)
1856                 return;
1857
1858         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1859         pll->disable(dev_priv, pll);
1860         pll->on = false;
1861
1862         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1863 }
1864
1865 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1866                                            enum pipe pipe)
1867 {
1868         struct drm_device *dev = dev_priv->dev;
1869         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1870         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1871         uint32_t reg, val, pipeconf_val;
1872
1873         /* PCH only available on ILK+ */
1874         BUG_ON(!HAS_PCH_SPLIT(dev));
1875
1876         /* Make sure PCH DPLL is enabled */
1877         assert_shared_dpll_enabled(dev_priv,
1878                                    intel_crtc_to_shared_dpll(intel_crtc));
1879
1880         /* FDI must be feeding us bits for PCH ports */
1881         assert_fdi_tx_enabled(dev_priv, pipe);
1882         assert_fdi_rx_enabled(dev_priv, pipe);
1883
1884         if (HAS_PCH_CPT(dev)) {
1885                 /* Workaround: Set the timing override bit before enabling the
1886                  * pch transcoder. */
1887                 reg = TRANS_CHICKEN2(pipe);
1888                 val = I915_READ(reg);
1889                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1890                 I915_WRITE(reg, val);
1891         }
1892
1893         reg = PCH_TRANSCONF(pipe);
1894         val = I915_READ(reg);
1895         pipeconf_val = I915_READ(PIPECONF(pipe));
1896
1897         if (HAS_PCH_IBX(dev_priv->dev)) {
1898                 /*
1899                  * make the BPC in transcoder be consistent with
1900                  * that in pipeconf reg.
1901                  */
1902                 val &= ~PIPECONF_BPC_MASK;
1903                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1904         }
1905
1906         val &= ~TRANS_INTERLACE_MASK;
1907         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1908                 if (HAS_PCH_IBX(dev_priv->dev) &&
1909                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1910                         val |= TRANS_LEGACY_INTERLACED_ILK;
1911                 else
1912                         val |= TRANS_INTERLACED;
1913         else
1914                 val |= TRANS_PROGRESSIVE;
1915
1916         I915_WRITE(reg, val | TRANS_ENABLE);
1917         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1918                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1919 }
1920
1921 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1922                                       enum transcoder cpu_transcoder)
1923 {
1924         u32 val, pipeconf_val;
1925
1926         /* PCH only available on ILK+ */
1927         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1928
1929         /* FDI must be feeding us bits for PCH ports */
1930         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1931         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1932
1933         /* Workaround: set timing override bit. */
1934         val = I915_READ(_TRANSA_CHICKEN2);
1935         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1936         I915_WRITE(_TRANSA_CHICKEN2, val);
1937
1938         val = TRANS_ENABLE;
1939         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1940
1941         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1942             PIPECONF_INTERLACED_ILK)
1943                 val |= TRANS_INTERLACED;
1944         else
1945                 val |= TRANS_PROGRESSIVE;
1946
1947         I915_WRITE(LPT_TRANSCONF, val);
1948         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1949                 DRM_ERROR("Failed to enable PCH transcoder\n");
1950 }
1951
1952 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1953                                             enum pipe pipe)
1954 {
1955         struct drm_device *dev = dev_priv->dev;
1956         uint32_t reg, val;
1957
1958         /* FDI relies on the transcoder */
1959         assert_fdi_tx_disabled(dev_priv, pipe);
1960         assert_fdi_rx_disabled(dev_priv, pipe);
1961
1962         /* Ports must be off as well */
1963         assert_pch_ports_disabled(dev_priv, pipe);
1964
1965         reg = PCH_TRANSCONF(pipe);
1966         val = I915_READ(reg);
1967         val &= ~TRANS_ENABLE;
1968         I915_WRITE(reg, val);
1969         /* wait for PCH transcoder off, transcoder state */
1970         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1971                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1972
1973         if (!HAS_PCH_IBX(dev)) {
1974                 /* Workaround: Clear the timing override chicken bit again. */
1975                 reg = TRANS_CHICKEN2(pipe);
1976                 val = I915_READ(reg);
1977                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1978                 I915_WRITE(reg, val);
1979         }
1980 }
1981
1982 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1983 {
1984         u32 val;
1985
1986         val = I915_READ(LPT_TRANSCONF);
1987         val &= ~TRANS_ENABLE;
1988         I915_WRITE(LPT_TRANSCONF, val);
1989         /* wait for PCH transcoder off, transcoder state */
1990         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1991                 DRM_ERROR("Failed to disable PCH transcoder\n");
1992
1993         /* Workaround: clear timing override bit. */
1994         val = I915_READ(_TRANSA_CHICKEN2);
1995         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1996         I915_WRITE(_TRANSA_CHICKEN2, val);
1997 }
1998
1999 /**
2000  * intel_enable_pipe - enable a pipe, asserting requirements
2001  * @crtc: crtc responsible for the pipe
2002  *
2003  * Enable @crtc's pipe, making sure that various hardware specific requirements
2004  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2005  */
2006 static void intel_enable_pipe(struct intel_crtc *crtc)
2007 {
2008         struct drm_device *dev = crtc->base.dev;
2009         struct drm_i915_private *dev_priv = dev->dev_private;
2010         enum pipe pipe = crtc->pipe;
2011         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2012                                                                       pipe);
2013         enum pipe pch_transcoder;
2014         int reg;
2015         u32 val;
2016
2017         assert_planes_disabled(dev_priv, pipe);
2018         assert_cursor_disabled(dev_priv, pipe);
2019         assert_sprites_disabled(dev_priv, pipe);
2020
2021         if (HAS_PCH_LPT(dev_priv->dev))
2022                 pch_transcoder = TRANSCODER_A;
2023         else
2024                 pch_transcoder = pipe;
2025
2026         /*
2027          * A pipe without a PLL won't actually be able to drive bits from
2028          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2029          * need the check.
2030          */
2031         if (!HAS_PCH_SPLIT(dev_priv->dev))
2032                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2033                         assert_dsi_pll_enabled(dev_priv);
2034                 else
2035                         assert_pll_enabled(dev_priv, pipe);
2036         else {
2037                 if (crtc->config.has_pch_encoder) {
2038                         /* if driving the PCH, we need FDI enabled */
2039                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2040                         assert_fdi_tx_pll_enabled(dev_priv,
2041                                                   (enum pipe) cpu_transcoder);
2042                 }
2043                 /* FIXME: assert CPU port conditions for SNB+ */
2044         }
2045
2046         reg = PIPECONF(cpu_transcoder);
2047         val = I915_READ(reg);
2048         if (val & PIPECONF_ENABLE) {
2049                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2050                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2051                 return;
2052         }
2053
2054         I915_WRITE(reg, val | PIPECONF_ENABLE);
2055         POSTING_READ(reg);
2056 }
2057
2058 /**
2059  * intel_disable_pipe - disable a pipe, asserting requirements
2060  * @crtc: crtc whose pipes is to be disabled
2061  *
2062  * Disable the pipe of @crtc, making sure that various hardware
2063  * specific requirements are met, if applicable, e.g. plane
2064  * disabled, panel fitter off, etc.
2065  *
2066  * Will wait until the pipe has shut down before returning.
2067  */
2068 static void intel_disable_pipe(struct intel_crtc *crtc)
2069 {
2070         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2071         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2072         enum pipe pipe = crtc->pipe;
2073         int reg;
2074         u32 val;
2075
2076         /*
2077          * Make sure planes won't keep trying to pump pixels to us,
2078          * or we might hang the display.
2079          */
2080         assert_planes_disabled(dev_priv, pipe);
2081         assert_cursor_disabled(dev_priv, pipe);
2082         assert_sprites_disabled(dev_priv, pipe);
2083
2084         reg = PIPECONF(cpu_transcoder);
2085         val = I915_READ(reg);
2086         if ((val & PIPECONF_ENABLE) == 0)
2087                 return;
2088
2089         /*
2090          * Double wide has implications for planes
2091          * so best keep it disabled when not needed.
2092          */
2093         if (crtc->config.double_wide)
2094                 val &= ~PIPECONF_DOUBLE_WIDE;
2095
2096         /* Don't disable pipe or pipe PLLs if needed */
2097         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2098             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2099                 val &= ~PIPECONF_ENABLE;
2100
2101         I915_WRITE(reg, val);
2102         if ((val & PIPECONF_ENABLE) == 0)
2103                 intel_wait_for_pipe_off(crtc);
2104 }
2105
2106 /*
2107  * Plane regs are double buffered, going from enabled->disabled needs a
2108  * trigger in order to latch.  The display address reg provides this.
2109  */
2110 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2111                                enum plane plane)
2112 {
2113         struct drm_device *dev = dev_priv->dev;
2114         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2115
2116         I915_WRITE(reg, I915_READ(reg));
2117         POSTING_READ(reg);
2118 }
2119
2120 /**
2121  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2122  * @plane:  plane to be enabled
2123  * @crtc: crtc for the plane
2124  *
2125  * Enable @plane on @crtc, making sure that the pipe is running first.
2126  */
2127 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2128                                           struct drm_crtc *crtc)
2129 {
2130         struct drm_device *dev = plane->dev;
2131         struct drm_i915_private *dev_priv = dev->dev_private;
2132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2133
2134         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2135         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2136
2137         if (intel_crtc->primary_enabled)
2138                 return;
2139
2140         intel_crtc->primary_enabled = true;
2141
2142         dev_priv->display.update_primary_plane(crtc, plane->fb,
2143                                                crtc->x, crtc->y);
2144
2145         /*
2146          * BDW signals flip done immediately if the plane
2147          * is disabled, even if the plane enable is already
2148          * armed to occur at the next vblank :(
2149          */
2150         if (IS_BROADWELL(dev))
2151                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2152 }
2153
2154 /**
2155  * intel_disable_primary_hw_plane - disable the primary hardware plane
2156  * @plane: plane to be disabled
2157  * @crtc: crtc for the plane
2158  *
2159  * Disable @plane on @crtc, making sure that the pipe is running first.
2160  */
2161 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2162                                            struct drm_crtc *crtc)
2163 {
2164         struct drm_device *dev = plane->dev;
2165         struct drm_i915_private *dev_priv = dev->dev_private;
2166         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2167
2168         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2169
2170         if (!intel_crtc->primary_enabled)
2171                 return;
2172
2173         intel_crtc->primary_enabled = false;
2174
2175         dev_priv->display.update_primary_plane(crtc, plane->fb,
2176                                                crtc->x, crtc->y);
2177 }
2178
2179 static bool need_vtd_wa(struct drm_device *dev)
2180 {
2181 #ifdef CONFIG_INTEL_IOMMU
2182         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2183                 return true;
2184 #endif
2185         return false;
2186 }
2187
2188 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2189 {
2190         int tile_height;
2191
2192         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2193         return ALIGN(height, tile_height);
2194 }
2195
2196 int
2197 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2198                            struct drm_i915_gem_object *obj,
2199                            struct intel_engine_cs *pipelined)
2200 {
2201         struct drm_i915_private *dev_priv = dev->dev_private;
2202         u32 alignment;
2203         int ret;
2204
2205         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2206
2207         switch (obj->tiling_mode) {
2208         case I915_TILING_NONE:
2209                 if (INTEL_INFO(dev)->gen >= 9)
2210                         alignment = 256 * 1024;
2211                 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2212                         alignment = 128 * 1024;
2213                 else if (INTEL_INFO(dev)->gen >= 4)
2214                         alignment = 4 * 1024;
2215                 else
2216                         alignment = 64 * 1024;
2217                 break;
2218         case I915_TILING_X:
2219                 if (INTEL_INFO(dev)->gen >= 9)
2220                         alignment = 256 * 1024;
2221                 else {
2222                         /* pin() will align the object as required by fence */
2223                         alignment = 0;
2224                 }
2225                 break;
2226         case I915_TILING_Y:
2227                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2228                 return -EINVAL;
2229         default:
2230                 BUG();
2231         }
2232
2233         /* Note that the w/a also requires 64 PTE of padding following the
2234          * bo. We currently fill all unused PTE with the shadow page and so
2235          * we should always have valid PTE following the scanout preventing
2236          * the VT-d warning.
2237          */
2238         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2239                 alignment = 256 * 1024;
2240
2241         /*
2242          * Global gtt pte registers are special registers which actually forward
2243          * writes to a chunk of system memory. Which means that there is no risk
2244          * that the register values disappear as soon as we call
2245          * intel_runtime_pm_put(), so it is correct to wrap only the
2246          * pin/unpin/fence and not more.
2247          */
2248         intel_runtime_pm_get(dev_priv);
2249
2250         dev_priv->mm.interruptible = false;
2251         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2252         if (ret)
2253                 goto err_interruptible;
2254
2255         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2256          * fence, whereas 965+ only requires a fence if using
2257          * framebuffer compression.  For simplicity, we always install
2258          * a fence as the cost is not that onerous.
2259          */
2260         ret = i915_gem_object_get_fence(obj);
2261         if (ret)
2262                 goto err_unpin;
2263
2264         i915_gem_object_pin_fence(obj);
2265
2266         dev_priv->mm.interruptible = true;
2267         intel_runtime_pm_put(dev_priv);
2268         return 0;
2269
2270 err_unpin:
2271         i915_gem_object_unpin_from_display_plane(obj);
2272 err_interruptible:
2273         dev_priv->mm.interruptible = true;
2274         intel_runtime_pm_put(dev_priv);
2275         return ret;
2276 }
2277
2278 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2279 {
2280         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2281
2282         i915_gem_object_unpin_fence(obj);
2283         i915_gem_object_unpin_from_display_plane(obj);
2284 }
2285
2286 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2287  * is assumed to be a power-of-two. */
2288 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2289                                              unsigned int tiling_mode,
2290                                              unsigned int cpp,
2291                                              unsigned int pitch)
2292 {
2293         if (tiling_mode != I915_TILING_NONE) {
2294                 unsigned int tile_rows, tiles;
2295
2296                 tile_rows = *y / 8;
2297                 *y %= 8;
2298
2299                 tiles = *x / (512/cpp);
2300                 *x %= 512/cpp;
2301
2302                 return tile_rows * pitch * 8 + tiles * 4096;
2303         } else {
2304                 unsigned int offset;
2305
2306                 offset = *y * pitch + *x * cpp;
2307                 *y = 0;
2308                 *x = (offset & 4095) / cpp;
2309                 return offset & -4096;
2310         }
2311 }
2312
2313 int intel_format_to_fourcc(int format)
2314 {
2315         switch (format) {
2316         case DISPPLANE_8BPP:
2317                 return DRM_FORMAT_C8;
2318         case DISPPLANE_BGRX555:
2319                 return DRM_FORMAT_XRGB1555;
2320         case DISPPLANE_BGRX565:
2321                 return DRM_FORMAT_RGB565;
2322         default:
2323         case DISPPLANE_BGRX888:
2324                 return DRM_FORMAT_XRGB8888;
2325         case DISPPLANE_RGBX888:
2326                 return DRM_FORMAT_XBGR8888;
2327         case DISPPLANE_BGRX101010:
2328                 return DRM_FORMAT_XRGB2101010;
2329         case DISPPLANE_RGBX101010:
2330                 return DRM_FORMAT_XBGR2101010;
2331         }
2332 }
2333
2334 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2335                                   struct intel_plane_config *plane_config)
2336 {
2337         struct drm_device *dev = crtc->base.dev;
2338         struct drm_i915_gem_object *obj = NULL;
2339         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2340         u32 base = plane_config->base;
2341
2342         if (plane_config->size == 0)
2343                 return false;
2344
2345         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2346                                                              plane_config->size);
2347         if (!obj)
2348                 return false;
2349
2350         if (plane_config->tiled) {
2351                 obj->tiling_mode = I915_TILING_X;
2352                 obj->stride = crtc->base.primary->fb->pitches[0];
2353         }
2354
2355         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2356         mode_cmd.width = crtc->base.primary->fb->width;
2357         mode_cmd.height = crtc->base.primary->fb->height;
2358         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2359
2360         mutex_lock(&dev->struct_mutex);
2361
2362         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2363                                    &mode_cmd, obj)) {
2364                 DRM_DEBUG_KMS("intel fb init failed\n");
2365                 goto out_unref_obj;
2366         }
2367
2368         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2369         mutex_unlock(&dev->struct_mutex);
2370
2371         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2372         return true;
2373
2374 out_unref_obj:
2375         drm_gem_object_unreference(&obj->base);
2376         mutex_unlock(&dev->struct_mutex);
2377         return false;
2378 }
2379
2380 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2381                                  struct intel_plane_config *plane_config)
2382 {
2383         struct drm_device *dev = intel_crtc->base.dev;
2384         struct drm_i915_private *dev_priv = dev->dev_private;
2385         struct drm_crtc *c;
2386         struct intel_crtc *i;
2387         struct drm_i915_gem_object *obj;
2388
2389         if (!intel_crtc->base.primary->fb)
2390                 return;
2391
2392         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2393                 return;
2394
2395         kfree(intel_crtc->base.primary->fb);
2396         intel_crtc->base.primary->fb = NULL;
2397
2398         /*
2399          * Failed to alloc the obj, check to see if we should share
2400          * an fb with another CRTC instead
2401          */
2402         for_each_crtc(dev, c) {
2403                 i = to_intel_crtc(c);
2404
2405                 if (c == &intel_crtc->base)
2406                         continue;
2407
2408                 if (!i->active)
2409                         continue;
2410
2411                 obj = intel_fb_obj(c->primary->fb);
2412                 if (obj == NULL)
2413                         continue;
2414
2415                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2416                         if (obj->tiling_mode != I915_TILING_NONE)
2417                                 dev_priv->preserve_bios_swizzle = true;
2418
2419                         drm_framebuffer_reference(c->primary->fb);
2420                         intel_crtc->base.primary->fb = c->primary->fb;
2421                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2422                         break;
2423                 }
2424         }
2425 }
2426
2427 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2428                                       struct drm_framebuffer *fb,
2429                                       int x, int y)
2430 {
2431         struct drm_device *dev = crtc->dev;
2432         struct drm_i915_private *dev_priv = dev->dev_private;
2433         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2434         struct drm_i915_gem_object *obj;
2435         int plane = intel_crtc->plane;
2436         unsigned long linear_offset;
2437         u32 dspcntr;
2438         u32 reg = DSPCNTR(plane);
2439         int pixel_size;
2440
2441         if (!intel_crtc->primary_enabled) {
2442                 I915_WRITE(reg, 0);
2443                 if (INTEL_INFO(dev)->gen >= 4)
2444                         I915_WRITE(DSPSURF(plane), 0);
2445                 else
2446                         I915_WRITE(DSPADDR(plane), 0);
2447                 POSTING_READ(reg);
2448                 return;
2449         }
2450
2451         obj = intel_fb_obj(fb);
2452         if (WARN_ON(obj == NULL))
2453                 return;
2454
2455         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2456
2457         dspcntr = DISPPLANE_GAMMA_ENABLE;
2458
2459         dspcntr |= DISPLAY_PLANE_ENABLE;
2460
2461         if (INTEL_INFO(dev)->gen < 4) {
2462                 if (intel_crtc->pipe == PIPE_B)
2463                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2464
2465                 /* pipesrc and dspsize control the size that is scaled from,
2466                  * which should always be the user's requested size.
2467                  */
2468                 I915_WRITE(DSPSIZE(plane),
2469                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2470                            (intel_crtc->config.pipe_src_w - 1));
2471                 I915_WRITE(DSPPOS(plane), 0);
2472         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2473                 I915_WRITE(PRIMSIZE(plane),
2474                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2475                            (intel_crtc->config.pipe_src_w - 1));
2476                 I915_WRITE(PRIMPOS(plane), 0);
2477                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2478         }
2479
2480         switch (fb->pixel_format) {
2481         case DRM_FORMAT_C8:
2482                 dspcntr |= DISPPLANE_8BPP;
2483                 break;
2484         case DRM_FORMAT_XRGB1555:
2485         case DRM_FORMAT_ARGB1555:
2486                 dspcntr |= DISPPLANE_BGRX555;
2487                 break;
2488         case DRM_FORMAT_RGB565:
2489                 dspcntr |= DISPPLANE_BGRX565;
2490                 break;
2491         case DRM_FORMAT_XRGB8888:
2492         case DRM_FORMAT_ARGB8888:
2493                 dspcntr |= DISPPLANE_BGRX888;
2494                 break;
2495         case DRM_FORMAT_XBGR8888:
2496         case DRM_FORMAT_ABGR8888:
2497                 dspcntr |= DISPPLANE_RGBX888;
2498                 break;
2499         case DRM_FORMAT_XRGB2101010:
2500         case DRM_FORMAT_ARGB2101010:
2501                 dspcntr |= DISPPLANE_BGRX101010;
2502                 break;
2503         case DRM_FORMAT_XBGR2101010:
2504         case DRM_FORMAT_ABGR2101010:
2505                 dspcntr |= DISPPLANE_RGBX101010;
2506                 break;
2507         default:
2508                 BUG();
2509         }
2510
2511         if (INTEL_INFO(dev)->gen >= 4 &&
2512             obj->tiling_mode != I915_TILING_NONE)
2513                 dspcntr |= DISPPLANE_TILED;
2514
2515         if (IS_G4X(dev))
2516                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2517
2518         linear_offset = y * fb->pitches[0] + x * pixel_size;
2519
2520         if (INTEL_INFO(dev)->gen >= 4) {
2521                 intel_crtc->dspaddr_offset =
2522                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2523                                                        pixel_size,
2524                                                        fb->pitches[0]);
2525                 linear_offset -= intel_crtc->dspaddr_offset;
2526         } else {
2527                 intel_crtc->dspaddr_offset = linear_offset;
2528         }
2529
2530         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2531                 dspcntr |= DISPPLANE_ROTATE_180;
2532
2533                 x += (intel_crtc->config.pipe_src_w - 1);
2534                 y += (intel_crtc->config.pipe_src_h - 1);
2535
2536                 /* Finding the last pixel of the last line of the display
2537                 data and adding to linear_offset*/
2538                 linear_offset +=
2539                         (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2540                         (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2541         }
2542
2543         I915_WRITE(reg, dspcntr);
2544
2545         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2546                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2547                       fb->pitches[0]);
2548         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2549         if (INTEL_INFO(dev)->gen >= 4) {
2550                 I915_WRITE(DSPSURF(plane),
2551                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2552                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2553                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2554         } else
2555                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2556         POSTING_READ(reg);
2557 }
2558
2559 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2560                                           struct drm_framebuffer *fb,
2561                                           int x, int y)
2562 {
2563         struct drm_device *dev = crtc->dev;
2564         struct drm_i915_private *dev_priv = dev->dev_private;
2565         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2566         struct drm_i915_gem_object *obj;
2567         int plane = intel_crtc->plane;
2568         unsigned long linear_offset;
2569         u32 dspcntr;
2570         u32 reg = DSPCNTR(plane);
2571         int pixel_size;
2572
2573         if (!intel_crtc->primary_enabled) {
2574                 I915_WRITE(reg, 0);
2575                 I915_WRITE(DSPSURF(plane), 0);
2576                 POSTING_READ(reg);
2577                 return;
2578         }
2579
2580         obj = intel_fb_obj(fb);
2581         if (WARN_ON(obj == NULL))
2582                 return;
2583
2584         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2585
2586         dspcntr = DISPPLANE_GAMMA_ENABLE;
2587
2588         dspcntr |= DISPLAY_PLANE_ENABLE;
2589
2590         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2591                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2592
2593         switch (fb->pixel_format) {
2594         case DRM_FORMAT_C8:
2595                 dspcntr |= DISPPLANE_8BPP;
2596                 break;
2597         case DRM_FORMAT_RGB565:
2598                 dspcntr |= DISPPLANE_BGRX565;
2599                 break;
2600         case DRM_FORMAT_XRGB8888:
2601         case DRM_FORMAT_ARGB8888:
2602                 dspcntr |= DISPPLANE_BGRX888;
2603                 break;
2604         case DRM_FORMAT_XBGR8888:
2605         case DRM_FORMAT_ABGR8888:
2606                 dspcntr |= DISPPLANE_RGBX888;
2607                 break;
2608         case DRM_FORMAT_XRGB2101010:
2609         case DRM_FORMAT_ARGB2101010:
2610                 dspcntr |= DISPPLANE_BGRX101010;
2611                 break;
2612         case DRM_FORMAT_XBGR2101010:
2613         case DRM_FORMAT_ABGR2101010:
2614                 dspcntr |= DISPPLANE_RGBX101010;
2615                 break;
2616         default:
2617                 BUG();
2618         }
2619
2620         if (obj->tiling_mode != I915_TILING_NONE)
2621                 dspcntr |= DISPPLANE_TILED;
2622
2623         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2624                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2625
2626         linear_offset = y * fb->pitches[0] + x * pixel_size;
2627         intel_crtc->dspaddr_offset =
2628                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2629                                                pixel_size,
2630                                                fb->pitches[0]);
2631         linear_offset -= intel_crtc->dspaddr_offset;
2632         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2633                 dspcntr |= DISPPLANE_ROTATE_180;
2634
2635                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2636                         x += (intel_crtc->config.pipe_src_w - 1);
2637                         y += (intel_crtc->config.pipe_src_h - 1);
2638
2639                         /* Finding the last pixel of the last line of the display
2640                         data and adding to linear_offset*/
2641                         linear_offset +=
2642                                 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2643                                 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2644                 }
2645         }
2646
2647         I915_WRITE(reg, dspcntr);
2648
2649         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2650                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2651                       fb->pitches[0]);
2652         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2653         I915_WRITE(DSPSURF(plane),
2654                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2655         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2656                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2657         } else {
2658                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2659                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2660         }
2661         POSTING_READ(reg);
2662 }
2663
2664 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2665                                          struct drm_framebuffer *fb,
2666                                          int x, int y)
2667 {
2668         struct drm_device *dev = crtc->dev;
2669         struct drm_i915_private *dev_priv = dev->dev_private;
2670         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2671         struct intel_framebuffer *intel_fb;
2672         struct drm_i915_gem_object *obj;
2673         int pipe = intel_crtc->pipe;
2674         u32 plane_ctl, stride;
2675
2676         if (!intel_crtc->primary_enabled) {
2677                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2678                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2679                 POSTING_READ(PLANE_CTL(pipe, 0));
2680                 return;
2681         }
2682
2683         plane_ctl = PLANE_CTL_ENABLE |
2684                     PLANE_CTL_PIPE_GAMMA_ENABLE |
2685                     PLANE_CTL_PIPE_CSC_ENABLE;
2686
2687         switch (fb->pixel_format) {
2688         case DRM_FORMAT_RGB565:
2689                 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2690                 break;
2691         case DRM_FORMAT_XRGB8888:
2692                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2693                 break;
2694         case DRM_FORMAT_XBGR8888:
2695                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2696                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2697                 break;
2698         case DRM_FORMAT_XRGB2101010:
2699                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2700                 break;
2701         case DRM_FORMAT_XBGR2101010:
2702                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2703                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2704                 break;
2705         default:
2706                 BUG();
2707         }
2708
2709         intel_fb = to_intel_framebuffer(fb);
2710         obj = intel_fb->obj;
2711
2712         /*
2713          * The stride is either expressed as a multiple of 64 bytes chunks for
2714          * linear buffers or in number of tiles for tiled buffers.
2715          */
2716         switch (obj->tiling_mode) {
2717         case I915_TILING_NONE:
2718                 stride = fb->pitches[0] >> 6;
2719                 break;
2720         case I915_TILING_X:
2721                 plane_ctl |= PLANE_CTL_TILED_X;
2722                 stride = fb->pitches[0] >> 9;
2723                 break;
2724         default:
2725                 BUG();
2726         }
2727
2728         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2729         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2730                 plane_ctl |= PLANE_CTL_ROTATE_180;
2731
2732         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2733
2734         DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2735                       i915_gem_obj_ggtt_offset(obj),
2736                       x, y, fb->width, fb->height,
2737                       fb->pitches[0]);
2738
2739         I915_WRITE(PLANE_POS(pipe, 0), 0);
2740         I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2741         I915_WRITE(PLANE_SIZE(pipe, 0),
2742                    (intel_crtc->config.pipe_src_h - 1) << 16 |
2743                    (intel_crtc->config.pipe_src_w - 1));
2744         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2745         I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2746
2747         POSTING_READ(PLANE_SURF(pipe, 0));
2748 }
2749
2750 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2751 static int
2752 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2753                            int x, int y, enum mode_set_atomic state)
2754 {
2755         struct drm_device *dev = crtc->dev;
2756         struct drm_i915_private *dev_priv = dev->dev_private;
2757
2758         if (dev_priv->display.disable_fbc)
2759                 dev_priv->display.disable_fbc(dev);
2760
2761         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2762
2763         return 0;
2764 }
2765
2766 void intel_display_handle_reset(struct drm_device *dev)
2767 {
2768         struct drm_i915_private *dev_priv = dev->dev_private;
2769         struct drm_crtc *crtc;
2770
2771         /*
2772          * Flips in the rings have been nuked by the reset,
2773          * so complete all pending flips so that user space
2774          * will get its events and not get stuck.
2775          *
2776          * Also update the base address of all primary
2777          * planes to the the last fb to make sure we're
2778          * showing the correct fb after a reset.
2779          *
2780          * Need to make two loops over the crtcs so that we
2781          * don't try to grab a crtc mutex before the
2782          * pending_flip_queue really got woken up.
2783          */
2784
2785         for_each_crtc(dev, crtc) {
2786                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2787                 enum plane plane = intel_crtc->plane;
2788
2789                 intel_prepare_page_flip(dev, plane);
2790                 intel_finish_page_flip_plane(dev, plane);
2791         }
2792
2793         for_each_crtc(dev, crtc) {
2794                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2795
2796                 drm_modeset_lock(&crtc->mutex, NULL);
2797                 /*
2798                  * FIXME: Once we have proper support for primary planes (and
2799                  * disabling them without disabling the entire crtc) allow again
2800                  * a NULL crtc->primary->fb.
2801                  */
2802                 if (intel_crtc->active && crtc->primary->fb)
2803                         dev_priv->display.update_primary_plane(crtc,
2804                                                                crtc->primary->fb,
2805                                                                crtc->x,
2806                                                                crtc->y);
2807                 drm_modeset_unlock(&crtc->mutex);
2808         }
2809 }
2810
2811 static int
2812 intel_finish_fb(struct drm_framebuffer *old_fb)
2813 {
2814         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2815         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2816         bool was_interruptible = dev_priv->mm.interruptible;
2817         int ret;
2818
2819         /* Big Hammer, we also need to ensure that any pending
2820          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2821          * current scanout is retired before unpinning the old
2822          * framebuffer.
2823          *
2824          * This should only fail upon a hung GPU, in which case we
2825          * can safely continue.
2826          */
2827         dev_priv->mm.interruptible = false;
2828         ret = i915_gem_object_finish_gpu(obj);
2829         dev_priv->mm.interruptible = was_interruptible;
2830
2831         return ret;
2832 }
2833
2834 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2835 {
2836         struct drm_device *dev = crtc->dev;
2837         struct drm_i915_private *dev_priv = dev->dev_private;
2838         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2839         bool pending;
2840
2841         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2842             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2843                 return false;
2844
2845         spin_lock_irq(&dev->event_lock);
2846         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2847         spin_unlock_irq(&dev->event_lock);
2848
2849         return pending;
2850 }
2851
2852 static void intel_update_pipe_size(struct intel_crtc *crtc)
2853 {
2854         struct drm_device *dev = crtc->base.dev;
2855         struct drm_i915_private *dev_priv = dev->dev_private;
2856         const struct drm_display_mode *adjusted_mode;
2857
2858         if (!i915.fastboot)
2859                 return;
2860
2861         /*
2862          * Update pipe size and adjust fitter if needed: the reason for this is
2863          * that in compute_mode_changes we check the native mode (not the pfit
2864          * mode) to see if we can flip rather than do a full mode set. In the
2865          * fastboot case, we'll flip, but if we don't update the pipesrc and
2866          * pfit state, we'll end up with a big fb scanned out into the wrong
2867          * sized surface.
2868          *
2869          * To fix this properly, we need to hoist the checks up into
2870          * compute_mode_changes (or above), check the actual pfit state and
2871          * whether the platform allows pfit disable with pipe active, and only
2872          * then update the pipesrc and pfit state, even on the flip path.
2873          */
2874
2875         adjusted_mode = &crtc->config.adjusted_mode;
2876
2877         I915_WRITE(PIPESRC(crtc->pipe),
2878                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2879                    (adjusted_mode->crtc_vdisplay - 1));
2880         if (!crtc->config.pch_pfit.enabled &&
2881             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2882              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2883                 I915_WRITE(PF_CTL(crtc->pipe), 0);
2884                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2885                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2886         }
2887         crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2888         crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2889 }
2890
2891 static int
2892 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2893                     struct drm_framebuffer *fb)
2894 {
2895         struct drm_device *dev = crtc->dev;
2896         struct drm_i915_private *dev_priv = dev->dev_private;
2897         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2898         enum pipe pipe = intel_crtc->pipe;
2899         struct drm_framebuffer *old_fb = crtc->primary->fb;
2900         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2901         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2902         int ret;
2903
2904         if (intel_crtc_has_pending_flip(crtc)) {
2905                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2906                 return -EBUSY;
2907         }
2908
2909         /* no fb bound */
2910         if (!fb) {
2911                 DRM_ERROR("No FB bound\n");
2912                 return 0;
2913         }
2914
2915         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2916                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2917                           plane_name(intel_crtc->plane),
2918                           INTEL_INFO(dev)->num_pipes);
2919                 return -EINVAL;
2920         }
2921
2922         mutex_lock(&dev->struct_mutex);
2923         ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2924         if (ret == 0)
2925                 i915_gem_track_fb(old_obj, obj,
2926                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
2927         mutex_unlock(&dev->struct_mutex);
2928         if (ret != 0) {
2929                 DRM_ERROR("pin & fence failed\n");
2930                 return ret;
2931         }
2932
2933         intel_update_pipe_size(intel_crtc);
2934
2935         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2936
2937         if (intel_crtc->active)
2938                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2939
2940         crtc->primary->fb = fb;
2941         crtc->x = x;
2942         crtc->y = y;
2943
2944         if (old_fb) {
2945                 if (intel_crtc->active && old_fb != fb)
2946                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2947                 mutex_lock(&dev->struct_mutex);
2948                 intel_unpin_fb_obj(old_obj);
2949                 mutex_unlock(&dev->struct_mutex);
2950         }
2951
2952         mutex_lock(&dev->struct_mutex);
2953         intel_update_fbc(dev);
2954         mutex_unlock(&dev->struct_mutex);
2955
2956         return 0;
2957 }
2958
2959 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2960 {
2961         struct drm_device *dev = crtc->dev;
2962         struct drm_i915_private *dev_priv = dev->dev_private;
2963         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2964         int pipe = intel_crtc->pipe;
2965         u32 reg, temp;
2966
2967         /* enable normal train */
2968         reg = FDI_TX_CTL(pipe);
2969         temp = I915_READ(reg);
2970         if (IS_IVYBRIDGE(dev)) {
2971                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2972                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2973         } else {
2974                 temp &= ~FDI_LINK_TRAIN_NONE;
2975                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2976         }
2977         I915_WRITE(reg, temp);
2978
2979         reg = FDI_RX_CTL(pipe);
2980         temp = I915_READ(reg);
2981         if (HAS_PCH_CPT(dev)) {
2982                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2983                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2984         } else {
2985                 temp &= ~FDI_LINK_TRAIN_NONE;
2986                 temp |= FDI_LINK_TRAIN_NONE;
2987         }
2988         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2989
2990         /* wait one idle pattern time */
2991         POSTING_READ(reg);
2992         udelay(1000);
2993
2994         /* IVB wants error correction enabled */
2995         if (IS_IVYBRIDGE(dev))
2996                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2997                            FDI_FE_ERRC_ENABLE);
2998 }
2999
3000 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
3001 {
3002         return crtc->base.enabled && crtc->active &&
3003                 crtc->config.has_pch_encoder;
3004 }
3005
3006 static void ivb_modeset_global_resources(struct drm_device *dev)
3007 {
3008         struct drm_i915_private *dev_priv = dev->dev_private;
3009         struct intel_crtc *pipe_B_crtc =
3010                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3011         struct intel_crtc *pipe_C_crtc =
3012                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3013         uint32_t temp;
3014
3015         /*
3016          * When everything is off disable fdi C so that we could enable fdi B
3017          * with all lanes. Note that we don't care about enabled pipes without
3018          * an enabled pch encoder.
3019          */
3020         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3021             !pipe_has_enabled_pch(pipe_C_crtc)) {
3022                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3023                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3024
3025                 temp = I915_READ(SOUTH_CHICKEN1);
3026                 temp &= ~FDI_BC_BIFURCATION_SELECT;
3027                 DRM_DEBUG_KMS("disabling fdi C rx\n");
3028                 I915_WRITE(SOUTH_CHICKEN1, temp);
3029         }
3030 }
3031
3032 /* The FDI link training functions for ILK/Ibexpeak. */
3033 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3034 {
3035         struct drm_device *dev = crtc->dev;
3036         struct drm_i915_private *dev_priv = dev->dev_private;
3037         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3038         int pipe = intel_crtc->pipe;
3039         u32 reg, temp, tries;
3040
3041         /* FDI needs bits from pipe first */
3042         assert_pipe_enabled(dev_priv, pipe);
3043
3044         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3045            for train result */
3046         reg = FDI_RX_IMR(pipe);
3047         temp = I915_READ(reg);
3048         temp &= ~FDI_RX_SYMBOL_LOCK;
3049         temp &= ~FDI_RX_BIT_LOCK;
3050         I915_WRITE(reg, temp);
3051         I915_READ(reg);
3052         udelay(150);
3053
3054         /* enable CPU FDI TX and PCH FDI RX */
3055         reg = FDI_TX_CTL(pipe);
3056         temp = I915_READ(reg);
3057         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3058         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3059         temp &= ~FDI_LINK_TRAIN_NONE;
3060         temp |= FDI_LINK_TRAIN_PATTERN_1;
3061         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3062
3063         reg = FDI_RX_CTL(pipe);
3064         temp = I915_READ(reg);
3065         temp &= ~FDI_LINK_TRAIN_NONE;
3066         temp |= FDI_LINK_TRAIN_PATTERN_1;
3067         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3068
3069         POSTING_READ(reg);
3070         udelay(150);
3071
3072         /* Ironlake workaround, enable clock pointer after FDI enable*/
3073         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3074         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3075                    FDI_RX_PHASE_SYNC_POINTER_EN);
3076
3077         reg = FDI_RX_IIR(pipe);
3078         for (tries = 0; tries < 5; tries++) {
3079                 temp = I915_READ(reg);
3080                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3081
3082                 if ((temp & FDI_RX_BIT_LOCK)) {
3083                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3084                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3085                         break;
3086                 }
3087         }
3088         if (tries == 5)
3089                 DRM_ERROR("FDI train 1 fail!\n");
3090
3091         /* Train 2 */
3092         reg = FDI_TX_CTL(pipe);
3093         temp = I915_READ(reg);
3094         temp &= ~FDI_LINK_TRAIN_NONE;
3095         temp |= FDI_LINK_TRAIN_PATTERN_2;
3096         I915_WRITE(reg, temp);
3097
3098         reg = FDI_RX_CTL(pipe);
3099         temp = I915_READ(reg);
3100         temp &= ~FDI_LINK_TRAIN_NONE;
3101         temp |= FDI_LINK_TRAIN_PATTERN_2;
3102         I915_WRITE(reg, temp);
3103
3104         POSTING_READ(reg);
3105         udelay(150);
3106
3107         reg = FDI_RX_IIR(pipe);
3108         for (tries = 0; tries < 5; tries++) {
3109                 temp = I915_READ(reg);
3110                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3111
3112                 if (temp & FDI_RX_SYMBOL_LOCK) {
3113                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3114                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3115                         break;
3116                 }
3117         }
3118         if (tries == 5)
3119                 DRM_ERROR("FDI train 2 fail!\n");
3120
3121         DRM_DEBUG_KMS("FDI train done\n");
3122
3123 }
3124
3125 static const int snb_b_fdi_train_param[] = {
3126         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3127         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3128         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3129         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3130 };
3131
3132 /* The FDI link training functions for SNB/Cougarpoint. */
3133 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3134 {
3135         struct drm_device *dev = crtc->dev;
3136         struct drm_i915_private *dev_priv = dev->dev_private;
3137         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3138         int pipe = intel_crtc->pipe;
3139         u32 reg, temp, i, retry;
3140
3141         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3142            for train result */
3143         reg = FDI_RX_IMR(pipe);
3144         temp = I915_READ(reg);
3145         temp &= ~FDI_RX_SYMBOL_LOCK;
3146         temp &= ~FDI_RX_BIT_LOCK;
3147         I915_WRITE(reg, temp);
3148
3149         POSTING_READ(reg);
3150         udelay(150);
3151
3152         /* enable CPU FDI TX and PCH FDI RX */
3153         reg = FDI_TX_CTL(pipe);
3154         temp = I915_READ(reg);
3155         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3156         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3157         temp &= ~FDI_LINK_TRAIN_NONE;
3158         temp |= FDI_LINK_TRAIN_PATTERN_1;
3159         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3160         /* SNB-B */
3161         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3162         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3163
3164         I915_WRITE(FDI_RX_MISC(pipe),
3165                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3166
3167         reg = FDI_RX_CTL(pipe);
3168         temp = I915_READ(reg);
3169         if (HAS_PCH_CPT(dev)) {
3170                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3171                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3172         } else {
3173                 temp &= ~FDI_LINK_TRAIN_NONE;
3174                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3175         }
3176         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3177
3178         POSTING_READ(reg);
3179         udelay(150);
3180
3181         for (i = 0; i < 4; i++) {
3182                 reg = FDI_TX_CTL(pipe);
3183                 temp = I915_READ(reg);
3184                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3185                 temp |= snb_b_fdi_train_param[i];
3186                 I915_WRITE(reg, temp);
3187
3188                 POSTING_READ(reg);
3189                 udelay(500);
3190
3191                 for (retry = 0; retry < 5; retry++) {
3192                         reg = FDI_RX_IIR(pipe);
3193                         temp = I915_READ(reg);
3194                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3195                         if (temp & FDI_RX_BIT_LOCK) {
3196                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3197                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3198                                 break;
3199                         }
3200                         udelay(50);
3201                 }
3202                 if (retry < 5)
3203                         break;
3204         }
3205         if (i == 4)
3206                 DRM_ERROR("FDI train 1 fail!\n");
3207
3208         /* Train 2 */
3209         reg = FDI_TX_CTL(pipe);
3210         temp = I915_READ(reg);
3211         temp &= ~FDI_LINK_TRAIN_NONE;
3212         temp |= FDI_LINK_TRAIN_PATTERN_2;
3213         if (IS_GEN6(dev)) {
3214                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3215                 /* SNB-B */
3216                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3217         }
3218         I915_WRITE(reg, temp);
3219
3220         reg = FDI_RX_CTL(pipe);
3221         temp = I915_READ(reg);
3222         if (HAS_PCH_CPT(dev)) {
3223                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3224                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3225         } else {
3226                 temp &= ~FDI_LINK_TRAIN_NONE;
3227                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3228         }
3229         I915_WRITE(reg, temp);
3230
3231         POSTING_READ(reg);
3232         udelay(150);
3233
3234         for (i = 0; i < 4; i++) {
3235                 reg = FDI_TX_CTL(pipe);
3236                 temp = I915_READ(reg);
3237                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3238                 temp |= snb_b_fdi_train_param[i];
3239                 I915_WRITE(reg, temp);
3240
3241                 POSTING_READ(reg);
3242                 udelay(500);
3243
3244                 for (retry = 0; retry < 5; retry++) {
3245                         reg = FDI_RX_IIR(pipe);
3246                         temp = I915_READ(reg);
3247                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3248                         if (temp & FDI_RX_SYMBOL_LOCK) {
3249                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3250                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3251                                 break;
3252                         }
3253                         udelay(50);
3254                 }
3255                 if (retry < 5)
3256                         break;
3257         }
3258         if (i == 4)
3259                 DRM_ERROR("FDI train 2 fail!\n");
3260
3261         DRM_DEBUG_KMS("FDI train done.\n");
3262 }
3263
3264 /* Manual link training for Ivy Bridge A0 parts */
3265 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3266 {
3267         struct drm_device *dev = crtc->dev;
3268         struct drm_i915_private *dev_priv = dev->dev_private;
3269         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3270         int pipe = intel_crtc->pipe;
3271         u32 reg, temp, i, j;
3272
3273         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3274            for train result */
3275         reg = FDI_RX_IMR(pipe);
3276         temp = I915_READ(reg);
3277         temp &= ~FDI_RX_SYMBOL_LOCK;
3278         temp &= ~FDI_RX_BIT_LOCK;
3279         I915_WRITE(reg, temp);
3280
3281         POSTING_READ(reg);
3282         udelay(150);
3283
3284         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3285                       I915_READ(FDI_RX_IIR(pipe)));
3286
3287         /* Try each vswing and preemphasis setting twice before moving on */
3288         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3289                 /* disable first in case we need to retry */
3290                 reg = FDI_TX_CTL(pipe);
3291                 temp = I915_READ(reg);
3292                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3293                 temp &= ~FDI_TX_ENABLE;
3294                 I915_WRITE(reg, temp);
3295
3296                 reg = FDI_RX_CTL(pipe);
3297                 temp = I915_READ(reg);
3298                 temp &= ~FDI_LINK_TRAIN_AUTO;
3299                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3300                 temp &= ~FDI_RX_ENABLE;
3301                 I915_WRITE(reg, temp);
3302
3303                 /* enable CPU FDI TX and PCH FDI RX */
3304                 reg = FDI_TX_CTL(pipe);
3305                 temp = I915_READ(reg);
3306                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3307                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3308                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3309                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3310                 temp |= snb_b_fdi_train_param[j/2];
3311                 temp |= FDI_COMPOSITE_SYNC;
3312                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3313
3314                 I915_WRITE(FDI_RX_MISC(pipe),
3315                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3316
3317                 reg = FDI_RX_CTL(pipe);
3318                 temp = I915_READ(reg);
3319                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3320                 temp |= FDI_COMPOSITE_SYNC;
3321                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3322
3323                 POSTING_READ(reg);
3324                 udelay(1); /* should be 0.5us */
3325
3326                 for (i = 0; i < 4; i++) {
3327                         reg = FDI_RX_IIR(pipe);
3328                         temp = I915_READ(reg);
3329                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3330
3331                         if (temp & FDI_RX_BIT_LOCK ||
3332                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3333                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3334                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3335                                               i);
3336                                 break;
3337                         }
3338                         udelay(1); /* should be 0.5us */
3339                 }
3340                 if (i == 4) {
3341                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3342                         continue;
3343                 }
3344
3345                 /* Train 2 */
3346                 reg = FDI_TX_CTL(pipe);
3347                 temp = I915_READ(reg);
3348                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3349                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3350                 I915_WRITE(reg, temp);
3351
3352                 reg = FDI_RX_CTL(pipe);
3353                 temp = I915_READ(reg);
3354                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3355                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3356                 I915_WRITE(reg, temp);
3357
3358                 POSTING_READ(reg);
3359                 udelay(2); /* should be 1.5us */
3360
3361                 for (i = 0; i < 4; i++) {
3362                         reg = FDI_RX_IIR(pipe);
3363                         temp = I915_READ(reg);
3364                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3365
3366                         if (temp & FDI_RX_SYMBOL_LOCK ||
3367                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3368                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3369                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3370                                               i);
3371                                 goto train_done;
3372                         }
3373                         udelay(2); /* should be 1.5us */
3374                 }
3375                 if (i == 4)
3376                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3377         }
3378
3379 train_done:
3380         DRM_DEBUG_KMS("FDI train done.\n");
3381 }
3382
3383 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3384 {
3385         struct drm_device *dev = intel_crtc->base.dev;
3386         struct drm_i915_private *dev_priv = dev->dev_private;
3387         int pipe = intel_crtc->pipe;
3388         u32 reg, temp;
3389
3390
3391         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3392         reg = FDI_RX_CTL(pipe);
3393         temp = I915_READ(reg);
3394         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3395         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3396         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3397         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3398
3399         POSTING_READ(reg);
3400         udelay(200);
3401
3402         /* Switch from Rawclk to PCDclk */
3403         temp = I915_READ(reg);
3404         I915_WRITE(reg, temp | FDI_PCDCLK);
3405
3406         POSTING_READ(reg);
3407         udelay(200);
3408
3409         /* Enable CPU FDI TX PLL, always on for Ironlake */
3410         reg = FDI_TX_CTL(pipe);
3411         temp = I915_READ(reg);
3412         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3413                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3414
3415                 POSTING_READ(reg);
3416                 udelay(100);
3417         }
3418 }
3419
3420 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3421 {
3422         struct drm_device *dev = intel_crtc->base.dev;
3423         struct drm_i915_private *dev_priv = dev->dev_private;
3424         int pipe = intel_crtc->pipe;
3425         u32 reg, temp;
3426
3427         /* Switch from PCDclk to Rawclk */
3428         reg = FDI_RX_CTL(pipe);
3429         temp = I915_READ(reg);
3430         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3431
3432         /* Disable CPU FDI TX PLL */
3433         reg = FDI_TX_CTL(pipe);
3434         temp = I915_READ(reg);
3435         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3436
3437         POSTING_READ(reg);
3438         udelay(100);
3439
3440         reg = FDI_RX_CTL(pipe);
3441         temp = I915_READ(reg);
3442         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3443
3444         /* Wait for the clocks to turn off. */
3445         POSTING_READ(reg);
3446         udelay(100);
3447 }
3448
3449 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3450 {
3451         struct drm_device *dev = crtc->dev;
3452         struct drm_i915_private *dev_priv = dev->dev_private;
3453         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3454         int pipe = intel_crtc->pipe;
3455         u32 reg, temp;
3456
3457         /* disable CPU FDI tx and PCH FDI rx */
3458         reg = FDI_TX_CTL(pipe);
3459         temp = I915_READ(reg);
3460         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3461         POSTING_READ(reg);
3462
3463         reg = FDI_RX_CTL(pipe);
3464         temp = I915_READ(reg);
3465         temp &= ~(0x7 << 16);
3466         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3467         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3468
3469         POSTING_READ(reg);
3470         udelay(100);
3471
3472         /* Ironlake workaround, disable clock pointer after downing FDI */
3473         if (HAS_PCH_IBX(dev))
3474                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3475
3476         /* still set train pattern 1 */
3477         reg = FDI_TX_CTL(pipe);
3478         temp = I915_READ(reg);
3479         temp &= ~FDI_LINK_TRAIN_NONE;
3480         temp |= FDI_LINK_TRAIN_PATTERN_1;
3481         I915_WRITE(reg, temp);
3482
3483         reg = FDI_RX_CTL(pipe);
3484         temp = I915_READ(reg);
3485         if (HAS_PCH_CPT(dev)) {
3486                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3487                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3488         } else {
3489                 temp &= ~FDI_LINK_TRAIN_NONE;
3490                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3491         }
3492         /* BPC in FDI rx is consistent with that in PIPECONF */
3493         temp &= ~(0x07 << 16);
3494         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3495         I915_WRITE(reg, temp);
3496
3497         POSTING_READ(reg);
3498         udelay(100);
3499 }
3500
3501 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3502 {
3503         struct intel_crtc *crtc;
3504
3505         /* Note that we don't need to be called with mode_config.lock here
3506          * as our list of CRTC objects is static for the lifetime of the
3507          * device and so cannot disappear as we iterate. Similarly, we can
3508          * happily treat the predicates as racy, atomic checks as userspace
3509          * cannot claim and pin a new fb without at least acquring the
3510          * struct_mutex and so serialising with us.
3511          */
3512         for_each_intel_crtc(dev, crtc) {
3513                 if (atomic_read(&crtc->unpin_work_count) == 0)
3514                         continue;
3515
3516                 if (crtc->unpin_work)
3517                         intel_wait_for_vblank(dev, crtc->pipe);
3518
3519                 return true;
3520         }
3521
3522         return false;
3523 }
3524
3525 static void page_flip_completed(struct intel_crtc *intel_crtc)
3526 {
3527         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3528         struct intel_unpin_work *work = intel_crtc->unpin_work;
3529
3530         /* ensure that the unpin work is consistent wrt ->pending. */
3531         smp_rmb();
3532         intel_crtc->unpin_work = NULL;
3533
3534         if (work->event)
3535                 drm_send_vblank_event(intel_crtc->base.dev,
3536                                       intel_crtc->pipe,
3537                                       work->event);
3538
3539         drm_crtc_vblank_put(&intel_crtc->base);
3540
3541         wake_up_all(&dev_priv->pending_flip_queue);
3542         queue_work(dev_priv->wq, &work->work);
3543
3544         trace_i915_flip_complete(intel_crtc->plane,
3545                                  work->pending_flip_obj);
3546 }
3547
3548 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3549 {
3550         struct drm_device *dev = crtc->dev;
3551         struct drm_i915_private *dev_priv = dev->dev_private;
3552
3553         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3554         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3555                                        !intel_crtc_has_pending_flip(crtc),
3556                                        60*HZ) == 0)) {
3557                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3558
3559                 spin_lock_irq(&dev->event_lock);
3560                 if (intel_crtc->unpin_work) {
3561                         WARN_ONCE(1, "Removing stuck page flip\n");
3562                         page_flip_completed(intel_crtc);
3563                 }
3564                 spin_unlock_irq(&dev->event_lock);
3565         }
3566
3567         if (crtc->primary->fb) {
3568                 mutex_lock(&dev->struct_mutex);
3569                 intel_finish_fb(crtc->primary->fb);
3570                 mutex_unlock(&dev->struct_mutex);
3571         }
3572 }
3573
3574 /* Program iCLKIP clock to the desired frequency */
3575 static void lpt_program_iclkip(struct drm_crtc *crtc)
3576 {
3577         struct drm_device *dev = crtc->dev;
3578         struct drm_i915_private *dev_priv = dev->dev_private;
3579         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3580         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3581         u32 temp;
3582
3583         mutex_lock(&dev_priv->dpio_lock);
3584
3585         /* It is necessary to ungate the pixclk gate prior to programming
3586          * the divisors, and gate it back when it is done.
3587          */
3588         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3589
3590         /* Disable SSCCTL */
3591         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3592                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3593                                 SBI_SSCCTL_DISABLE,
3594                         SBI_ICLK);
3595
3596         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3597         if (clock == 20000) {
3598                 auxdiv = 1;
3599                 divsel = 0x41;
3600                 phaseinc = 0x20;
3601         } else {
3602                 /* The iCLK virtual clock root frequency is in MHz,
3603                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3604                  * divisors, it is necessary to divide one by another, so we
3605                  * convert the virtual clock precision to KHz here for higher
3606                  * precision.
3607                  */
3608                 u32 iclk_virtual_root_freq = 172800 * 1000;
3609                 u32 iclk_pi_range = 64;
3610                 u32 desired_divisor, msb_divisor_value, pi_value;
3611
3612                 desired_divisor = (iclk_virtual_root_freq / clock);
3613                 msb_divisor_value = desired_divisor / iclk_pi_range;
3614                 pi_value = desired_divisor % iclk_pi_range;
3615
3616                 auxdiv = 0;
3617                 divsel = msb_divisor_value - 2;
3618                 phaseinc = pi_value;
3619         }
3620
3621         /* This should not happen with any sane values */
3622         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3623                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3624         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3625                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3626
3627         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3628                         clock,
3629                         auxdiv,
3630                         divsel,
3631                         phasedir,
3632                         phaseinc);
3633
3634         /* Program SSCDIVINTPHASE6 */
3635         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3636         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3637         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3638         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3639         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3640         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3641         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3642         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3643
3644         /* Program SSCAUXDIV */
3645         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3646         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3647         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3648         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3649
3650         /* Enable modulator and associated divider */
3651         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3652         temp &= ~SBI_SSCCTL_DISABLE;
3653         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3654
3655         /* Wait for initialization time */
3656         udelay(24);
3657
3658         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3659
3660         mutex_unlock(&dev_priv->dpio_lock);
3661 }
3662
3663 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3664                                                 enum pipe pch_transcoder)
3665 {
3666         struct drm_device *dev = crtc->base.dev;
3667         struct drm_i915_private *dev_priv = dev->dev_private;
3668         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3669
3670         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3671                    I915_READ(HTOTAL(cpu_transcoder)));
3672         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3673                    I915_READ(HBLANK(cpu_transcoder)));
3674         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3675                    I915_READ(HSYNC(cpu_transcoder)));
3676
3677         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3678                    I915_READ(VTOTAL(cpu_transcoder)));
3679         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3680                    I915_READ(VBLANK(cpu_transcoder)));
3681         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3682                    I915_READ(VSYNC(cpu_transcoder)));
3683         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3684                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3685 }
3686
3687 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3688 {
3689         struct drm_i915_private *dev_priv = dev->dev_private;
3690         uint32_t temp;
3691
3692         temp = I915_READ(SOUTH_CHICKEN1);
3693         if (temp & FDI_BC_BIFURCATION_SELECT)
3694                 return;
3695
3696         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3697         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3698
3699         temp |= FDI_BC_BIFURCATION_SELECT;
3700         DRM_DEBUG_KMS("enabling fdi C rx\n");
3701         I915_WRITE(SOUTH_CHICKEN1, temp);
3702         POSTING_READ(SOUTH_CHICKEN1);
3703 }
3704
3705 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3706 {
3707         struct drm_device *dev = intel_crtc->base.dev;
3708         struct drm_i915_private *dev_priv = dev->dev_private;
3709
3710         switch (intel_crtc->pipe) {
3711         case PIPE_A:
3712                 break;
3713         case PIPE_B:
3714                 if (intel_crtc->config.fdi_lanes > 2)
3715                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3716                 else
3717                         cpt_enable_fdi_bc_bifurcation(dev);
3718
3719                 break;
3720         case PIPE_C:
3721                 cpt_enable_fdi_bc_bifurcation(dev);
3722
3723                 break;
3724         default:
3725                 BUG();
3726         }
3727 }
3728
3729 /*
3730  * Enable PCH resources required for PCH ports:
3731  *   - PCH PLLs
3732  *   - FDI training & RX/TX
3733  *   - update transcoder timings
3734  *   - DP transcoding bits
3735  *   - transcoder
3736  */
3737 static void ironlake_pch_enable(struct drm_crtc *crtc)
3738 {
3739         struct drm_device *dev = crtc->dev;
3740         struct drm_i915_private *dev_priv = dev->dev_private;
3741         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3742         int pipe = intel_crtc->pipe;
3743         u32 reg, temp;
3744
3745         assert_pch_transcoder_disabled(dev_priv, pipe);
3746
3747         if (IS_IVYBRIDGE(dev))
3748                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3749
3750         /* Write the TU size bits before fdi link training, so that error
3751          * detection works. */
3752         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3753                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3754
3755         /* For PCH output, training FDI link */
3756         dev_priv->display.fdi_link_train(crtc);
3757
3758         /* We need to program the right clock selection before writing the pixel
3759          * mutliplier into the DPLL. */
3760         if (HAS_PCH_CPT(dev)) {
3761                 u32 sel;
3762
3763                 temp = I915_READ(PCH_DPLL_SEL);
3764                 temp |= TRANS_DPLL_ENABLE(pipe);
3765                 sel = TRANS_DPLLB_SEL(pipe);
3766                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3767                         temp |= sel;
3768                 else
3769                         temp &= ~sel;
3770                 I915_WRITE(PCH_DPLL_SEL, temp);
3771         }
3772
3773         /* XXX: pch pll's can be enabled any time before we enable the PCH
3774          * transcoder, and we actually should do this to not upset any PCH
3775          * transcoder that already use the clock when we share it.
3776          *
3777          * Note that enable_shared_dpll tries to do the right thing, but
3778          * get_shared_dpll unconditionally resets the pll - we need that to have
3779          * the right LVDS enable sequence. */
3780         intel_enable_shared_dpll(intel_crtc);
3781
3782         /* set transcoder timing, panel must allow it */
3783         assert_panel_unlocked(dev_priv, pipe);
3784         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3785
3786         intel_fdi_normal_train(crtc);
3787
3788         /* For PCH DP, enable TRANS_DP_CTL */
3789         if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) {
3790                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3791                 reg = TRANS_DP_CTL(pipe);
3792                 temp = I915_READ(reg);
3793                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3794                           TRANS_DP_SYNC_MASK |
3795                           TRANS_DP_BPC_MASK);
3796                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3797                          TRANS_DP_ENH_FRAMING);
3798                 temp |= bpc << 9; /* same format but at 11:9 */
3799
3800                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3801                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3802                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3803                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3804
3805                 switch (intel_trans_dp_port_sel(crtc)) {
3806                 case PCH_DP_B:
3807                         temp |= TRANS_DP_PORT_SEL_B;
3808                         break;
3809                 case PCH_DP_C:
3810                         temp |= TRANS_DP_PORT_SEL_C;
3811                         break;
3812                 case PCH_DP_D:
3813                         temp |= TRANS_DP_PORT_SEL_D;
3814                         break;
3815                 default:
3816                         BUG();
3817                 }
3818
3819                 I915_WRITE(reg, temp);
3820         }
3821
3822         ironlake_enable_pch_transcoder(dev_priv, pipe);
3823 }
3824
3825 static void lpt_pch_enable(struct drm_crtc *crtc)
3826 {
3827         struct drm_device *dev = crtc->dev;
3828         struct drm_i915_private *dev_priv = dev->dev_private;
3829         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3830         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3831
3832         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3833
3834         lpt_program_iclkip(crtc);
3835
3836         /* Set transcoder timing. */
3837         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3838
3839         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3840 }
3841
3842 void intel_put_shared_dpll(struct intel_crtc *crtc)
3843 {
3844         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3845
3846         if (pll == NULL)
3847                 return;
3848
3849         if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
3850                 WARN(1, "bad %s crtc mask\n", pll->name);
3851                 return;
3852         }
3853
3854         pll->config.crtc_mask &= ~(1 << crtc->pipe);
3855         if (pll->config.crtc_mask == 0) {
3856                 WARN_ON(pll->on);
3857                 WARN_ON(pll->active);
3858         }
3859
3860         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3861 }
3862
3863 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3864 {
3865         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3866         struct intel_shared_dpll *pll;
3867         enum intel_dpll_id i;
3868
3869         if (HAS_PCH_IBX(dev_priv->dev)) {
3870                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3871                 i = (enum intel_dpll_id) crtc->pipe;
3872                 pll = &dev_priv->shared_dplls[i];
3873
3874                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3875                               crtc->base.base.id, pll->name);
3876
3877                 WARN_ON(pll->new_config->crtc_mask);
3878
3879                 goto found;
3880         }
3881
3882         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3883                 pll = &dev_priv->shared_dplls[i];
3884
3885                 /* Only want to check enabled timings first */
3886                 if (pll->new_config->crtc_mask == 0)
3887                         continue;
3888
3889                 if (memcmp(&crtc->new_config->dpll_hw_state,
3890                            &pll->new_config->hw_state,
3891                            sizeof(pll->new_config->hw_state)) == 0) {
3892                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
3893                                       crtc->base.base.id, pll->name,
3894                                       pll->new_config->crtc_mask,
3895                                       pll->active);
3896                         goto found;
3897                 }
3898         }
3899
3900         /* Ok no matching timings, maybe there's a free one? */
3901         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3902                 pll = &dev_priv->shared_dplls[i];
3903                 if (pll->new_config->crtc_mask == 0) {
3904                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3905                                       crtc->base.base.id, pll->name);
3906                         goto found;
3907                 }
3908         }
3909
3910         return NULL;
3911
3912 found:
3913         if (pll->new_config->crtc_mask == 0)
3914                 pll->new_config->hw_state = crtc->new_config->dpll_hw_state;
3915
3916         crtc->new_config->shared_dpll = i;
3917         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3918                          pipe_name(crtc->pipe));
3919
3920         pll->new_config->crtc_mask |= 1 << crtc->pipe;
3921
3922         return pll;
3923 }
3924
3925 /**
3926  * intel_shared_dpll_start_config - start a new PLL staged config
3927  * @dev_priv: DRM device
3928  * @clear_pipes: mask of pipes that will have their PLLs freed
3929  *
3930  * Starts a new PLL staged config, copying the current config but
3931  * releasing the references of pipes specified in clear_pipes.
3932  */
3933 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3934                                           unsigned clear_pipes)
3935 {
3936         struct intel_shared_dpll *pll;
3937         enum intel_dpll_id i;
3938
3939         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3940                 pll = &dev_priv->shared_dplls[i];
3941
3942                 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
3943                                           GFP_KERNEL);
3944                 if (!pll->new_config)
3945                         goto cleanup;
3946
3947                 pll->new_config->crtc_mask &= ~clear_pipes;
3948         }
3949
3950         return 0;
3951
3952 cleanup:
3953         while (--i >= 0) {
3954                 pll = &dev_priv->shared_dplls[i];
3955                 pll->new_config = NULL;
3956         }
3957
3958         return -ENOMEM;
3959 }
3960
3961 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
3962 {
3963         struct intel_shared_dpll *pll;
3964         enum intel_dpll_id i;
3965
3966         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3967                 pll = &dev_priv->shared_dplls[i];
3968
3969                 WARN_ON(pll->new_config == &pll->config);
3970
3971                 pll->config = *pll->new_config;
3972                 kfree(pll->new_config);
3973                 pll->new_config = NULL;
3974         }
3975 }
3976
3977 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
3978 {
3979         struct intel_shared_dpll *pll;
3980         enum intel_dpll_id i;
3981
3982         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3983                 pll = &dev_priv->shared_dplls[i];
3984
3985                 WARN_ON(pll->new_config == &pll->config);
3986
3987                 kfree(pll->new_config);
3988                 pll->new_config = NULL;
3989         }
3990 }
3991
3992 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3993 {
3994         struct drm_i915_private *dev_priv = dev->dev_private;
3995         int dslreg = PIPEDSL(pipe);
3996         u32 temp;
3997
3998         temp = I915_READ(dslreg);
3999         udelay(500);
4000         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4001                 if (wait_for(I915_READ(dslreg) != temp, 5))
4002                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4003         }
4004 }
4005
4006 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4007 {
4008         struct drm_device *dev = crtc->base.dev;
4009         struct drm_i915_private *dev_priv = dev->dev_private;
4010         int pipe = crtc->pipe;
4011
4012         if (crtc->config.pch_pfit.enabled) {
4013                 /* Force use of hard-coded filter coefficients
4014                  * as some pre-programmed values are broken,
4015                  * e.g. x201.
4016                  */
4017                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4018                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4019                                                  PF_PIPE_SEL_IVB(pipe));
4020                 else
4021                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4022                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4023                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4024         }
4025 }
4026
4027 static void intel_enable_planes(struct drm_crtc *crtc)
4028 {
4029         struct drm_device *dev = crtc->dev;
4030         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4031         struct drm_plane *plane;
4032         struct intel_plane *intel_plane;
4033
4034         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4035                 intel_plane = to_intel_plane(plane);
4036                 if (intel_plane->pipe == pipe)
4037                         intel_plane_restore(&intel_plane->base);
4038         }
4039 }
4040
4041 static void intel_disable_planes(struct drm_crtc *crtc)
4042 {
4043         struct drm_device *dev = crtc->dev;
4044         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4045         struct drm_plane *plane;
4046         struct intel_plane *intel_plane;
4047
4048         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4049                 intel_plane = to_intel_plane(plane);
4050                 if (intel_plane->pipe == pipe)
4051                         intel_plane_disable(&intel_plane->base);
4052         }
4053 }
4054
4055 void hsw_enable_ips(struct intel_crtc *crtc)
4056 {
4057         struct drm_device *dev = crtc->base.dev;
4058         struct drm_i915_private *dev_priv = dev->dev_private;
4059
4060         if (!crtc->config.ips_enabled)
4061                 return;
4062
4063         /* We can only enable IPS after we enable a plane and wait for a vblank */
4064         intel_wait_for_vblank(dev, crtc->pipe);
4065
4066         assert_plane_enabled(dev_priv, crtc->plane);
4067         if (IS_BROADWELL(dev)) {
4068                 mutex_lock(&dev_priv->rps.hw_lock);
4069                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4070                 mutex_unlock(&dev_priv->rps.hw_lock);
4071                 /* Quoting Art Runyan: "its not safe to expect any particular
4072                  * value in IPS_CTL bit 31 after enabling IPS through the
4073                  * mailbox." Moreover, the mailbox may return a bogus state,
4074                  * so we need to just enable it and continue on.
4075                  */
4076         } else {
4077                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4078                 /* The bit only becomes 1 in the next vblank, so this wait here
4079                  * is essentially intel_wait_for_vblank. If we don't have this
4080                  * and don't wait for vblanks until the end of crtc_enable, then
4081                  * the HW state readout code will complain that the expected
4082                  * IPS_CTL value is not the one we read. */
4083                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4084                         DRM_ERROR("Timed out waiting for IPS enable\n");
4085         }
4086 }
4087
4088 void hsw_disable_ips(struct intel_crtc *crtc)
4089 {
4090         struct drm_device *dev = crtc->base.dev;
4091         struct drm_i915_private *dev_priv = dev->dev_private;
4092
4093         if (!crtc->config.ips_enabled)
4094                 return;
4095
4096         assert_plane_enabled(dev_priv, crtc->plane);
4097         if (IS_BROADWELL(dev)) {
4098                 mutex_lock(&dev_priv->rps.hw_lock);
4099                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4100                 mutex_unlock(&dev_priv->rps.hw_lock);
4101                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4102                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4103                         DRM_ERROR("Timed out waiting for IPS disable\n");
4104         } else {
4105                 I915_WRITE(IPS_CTL, 0);
4106                 POSTING_READ(IPS_CTL);
4107         }
4108
4109         /* We need to wait for a vblank before we can disable the plane. */
4110         intel_wait_for_vblank(dev, crtc->pipe);
4111 }
4112
4113 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4114 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4115 {
4116         struct drm_device *dev = crtc->dev;
4117         struct drm_i915_private *dev_priv = dev->dev_private;
4118         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4119         enum pipe pipe = intel_crtc->pipe;
4120         int palreg = PALETTE(pipe);
4121         int i;
4122         bool reenable_ips = false;
4123
4124         /* The clocks have to be on to load the palette. */
4125         if (!crtc->enabled || !intel_crtc->active)
4126                 return;
4127
4128         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4129                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4130                         assert_dsi_pll_enabled(dev_priv);
4131                 else
4132                         assert_pll_enabled(dev_priv, pipe);
4133         }
4134
4135         /* use legacy palette for Ironlake */
4136         if (!HAS_GMCH_DISPLAY(dev))
4137                 palreg = LGC_PALETTE(pipe);
4138
4139         /* Workaround : Do not read or write the pipe palette/gamma data while
4140          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4141          */
4142         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
4143             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4144              GAMMA_MODE_MODE_SPLIT)) {
4145                 hsw_disable_ips(intel_crtc);
4146                 reenable_ips = true;
4147         }
4148
4149         for (i = 0; i < 256; i++) {
4150                 I915_WRITE(palreg + 4 * i,
4151                            (intel_crtc->lut_r[i] << 16) |
4152                            (intel_crtc->lut_g[i] << 8) |
4153                            intel_crtc->lut_b[i]);
4154         }
4155
4156         if (reenable_ips)
4157                 hsw_enable_ips(intel_crtc);
4158 }
4159
4160 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4161 {
4162         if (!enable && intel_crtc->overlay) {
4163                 struct drm_device *dev = intel_crtc->base.dev;
4164                 struct drm_i915_private *dev_priv = dev->dev_private;
4165
4166                 mutex_lock(&dev->struct_mutex);
4167                 dev_priv->mm.interruptible = false;
4168                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4169                 dev_priv->mm.interruptible = true;
4170                 mutex_unlock(&dev->struct_mutex);
4171         }
4172
4173         /* Let userspace switch the overlay on again. In most cases userspace
4174          * has to recompute where to put it anyway.
4175          */
4176 }
4177
4178 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4179 {
4180         struct drm_device *dev = crtc->dev;
4181         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4182         int pipe = intel_crtc->pipe;
4183
4184         intel_enable_primary_hw_plane(crtc->primary, crtc);
4185         intel_enable_planes(crtc);
4186         intel_crtc_update_cursor(crtc, true);
4187         intel_crtc_dpms_overlay(intel_crtc, true);
4188
4189         hsw_enable_ips(intel_crtc);
4190
4191         mutex_lock(&dev->struct_mutex);
4192         intel_update_fbc(dev);
4193         mutex_unlock(&dev->struct_mutex);
4194
4195         /*
4196          * FIXME: Once we grow proper nuclear flip support out of this we need
4197          * to compute the mask of flip planes precisely. For the time being
4198          * consider this a flip from a NULL plane.
4199          */
4200         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4201 }
4202
4203 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4204 {
4205         struct drm_device *dev = crtc->dev;
4206         struct drm_i915_private *dev_priv = dev->dev_private;
4207         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4208         int pipe = intel_crtc->pipe;
4209         int plane = intel_crtc->plane;
4210
4211         intel_crtc_wait_for_pending_flips(crtc);
4212
4213         if (dev_priv->fbc.plane == plane)
4214                 intel_disable_fbc(dev);
4215
4216         hsw_disable_ips(intel_crtc);
4217
4218         intel_crtc_dpms_overlay(intel_crtc, false);
4219         intel_crtc_update_cursor(crtc, false);
4220         intel_disable_planes(crtc);
4221         intel_disable_primary_hw_plane(crtc->primary, crtc);
4222
4223         /*
4224          * FIXME: Once we grow proper nuclear flip support out of this we need
4225          * to compute the mask of flip planes precisely. For the time being
4226          * consider this a flip to a NULL plane.
4227          */
4228         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4229 }
4230
4231 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4232 {
4233         struct drm_device *dev = crtc->dev;
4234         struct drm_i915_private *dev_priv = dev->dev_private;
4235         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4236         struct intel_encoder *encoder;
4237         int pipe = intel_crtc->pipe;
4238
4239         WARN_ON(!crtc->enabled);
4240
4241         if (intel_crtc->active)
4242                 return;
4243
4244         if (intel_crtc->config.has_pch_encoder)
4245                 intel_prepare_shared_dpll(intel_crtc);
4246
4247         if (intel_crtc->config.has_dp_encoder)
4248                 intel_dp_set_m_n(intel_crtc);
4249
4250         intel_set_pipe_timings(intel_crtc);
4251
4252         if (intel_crtc->config.has_pch_encoder) {
4253                 intel_cpu_transcoder_set_m_n(intel_crtc,
4254                                      &intel_crtc->config.fdi_m_n, NULL);
4255         }
4256
4257         ironlake_set_pipeconf(crtc);
4258
4259         intel_crtc->active = true;
4260
4261         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4262         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4263
4264         for_each_encoder_on_crtc(dev, crtc, encoder)
4265                 if (encoder->pre_enable)
4266                         encoder->pre_enable(encoder);
4267
4268         if (intel_crtc->config.has_pch_encoder) {
4269                 /* Note: FDI PLL enabling _must_ be done before we enable the
4270                  * cpu pipes, hence this is separate from all the other fdi/pch
4271                  * enabling. */
4272                 ironlake_fdi_pll_enable(intel_crtc);
4273         } else {
4274                 assert_fdi_tx_disabled(dev_priv, pipe);
4275                 assert_fdi_rx_disabled(dev_priv, pipe);
4276         }
4277
4278         ironlake_pfit_enable(intel_crtc);
4279
4280         /*
4281          * On ILK+ LUT must be loaded before the pipe is running but with
4282          * clocks enabled
4283          */
4284         intel_crtc_load_lut(crtc);
4285
4286         intel_update_watermarks(crtc);
4287         intel_enable_pipe(intel_crtc);
4288
4289         if (intel_crtc->config.has_pch_encoder)
4290                 ironlake_pch_enable(crtc);
4291
4292         for_each_encoder_on_crtc(dev, crtc, encoder)
4293                 encoder->enable(encoder);
4294
4295         if (HAS_PCH_CPT(dev))
4296                 cpt_verify_modeset(dev, intel_crtc->pipe);
4297
4298         assert_vblank_disabled(crtc);
4299         drm_crtc_vblank_on(crtc);
4300
4301         intel_crtc_enable_planes(crtc);
4302 }
4303
4304 /* IPS only exists on ULT machines and is tied to pipe A. */
4305 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4306 {
4307         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4308 }
4309
4310 /*
4311  * This implements the workaround described in the "notes" section of the mode
4312  * set sequence documentation. When going from no pipes or single pipe to
4313  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4314  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4315  */
4316 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4317 {
4318         struct drm_device *dev = crtc->base.dev;
4319         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4320
4321         /* We want to get the other_active_crtc only if there's only 1 other
4322          * active crtc. */
4323         for_each_intel_crtc(dev, crtc_it) {
4324                 if (!crtc_it->active || crtc_it == crtc)
4325                         continue;
4326
4327                 if (other_active_crtc)
4328                         return;
4329
4330                 other_active_crtc = crtc_it;
4331         }
4332         if (!other_active_crtc)
4333                 return;
4334
4335         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4336         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4337 }
4338
4339 static void haswell_crtc_enable(struct drm_crtc *crtc)
4340 {
4341         struct drm_device *dev = crtc->dev;
4342         struct drm_i915_private *dev_priv = dev->dev_private;
4343         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4344         struct intel_encoder *encoder;
4345         int pipe = intel_crtc->pipe;
4346
4347         WARN_ON(!crtc->enabled);
4348
4349         if (intel_crtc->active)
4350                 return;
4351
4352         if (intel_crtc_to_shared_dpll(intel_crtc))
4353                 intel_enable_shared_dpll(intel_crtc);
4354
4355         if (intel_crtc->config.has_dp_encoder)
4356                 intel_dp_set_m_n(intel_crtc);
4357
4358         intel_set_pipe_timings(intel_crtc);
4359
4360         if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4361                 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4362                            intel_crtc->config.pixel_multiplier - 1);
4363         }
4364
4365         if (intel_crtc->config.has_pch_encoder) {
4366                 intel_cpu_transcoder_set_m_n(intel_crtc,
4367                                      &intel_crtc->config.fdi_m_n, NULL);
4368         }
4369
4370         haswell_set_pipeconf(crtc);
4371
4372         intel_set_pipe_csc(crtc);
4373
4374         intel_crtc->active = true;
4375
4376         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4377         for_each_encoder_on_crtc(dev, crtc, encoder)
4378                 if (encoder->pre_enable)
4379                         encoder->pre_enable(encoder);
4380
4381         if (intel_crtc->config.has_pch_encoder) {
4382                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4383                                                       true);
4384                 dev_priv->display.fdi_link_train(crtc);
4385         }
4386
4387         intel_ddi_enable_pipe_clock(intel_crtc);
4388
4389         ironlake_pfit_enable(intel_crtc);
4390
4391         /*
4392          * On ILK+ LUT must be loaded before the pipe is running but with
4393          * clocks enabled
4394          */
4395         intel_crtc_load_lut(crtc);
4396
4397         intel_ddi_set_pipe_settings(crtc);
4398         intel_ddi_enable_transcoder_func(crtc);
4399
4400         intel_update_watermarks(crtc);
4401         intel_enable_pipe(intel_crtc);
4402
4403         if (intel_crtc->config.has_pch_encoder)
4404                 lpt_pch_enable(crtc);
4405
4406         if (intel_crtc->config.dp_encoder_is_mst)
4407                 intel_ddi_set_vc_payload_alloc(crtc, true);
4408
4409         for_each_encoder_on_crtc(dev, crtc, encoder) {
4410                 encoder->enable(encoder);
4411                 intel_opregion_notify_encoder(encoder, true);
4412         }
4413
4414         assert_vblank_disabled(crtc);
4415         drm_crtc_vblank_on(crtc);
4416
4417         /* If we change the relative order between pipe/planes enabling, we need
4418          * to change the workaround. */
4419         haswell_mode_set_planes_workaround(intel_crtc);
4420         intel_crtc_enable_planes(crtc);
4421 }
4422
4423 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4424 {
4425         struct drm_device *dev = crtc->base.dev;
4426         struct drm_i915_private *dev_priv = dev->dev_private;
4427         int pipe = crtc->pipe;
4428
4429         /* To avoid upsetting the power well on haswell only disable the pfit if
4430          * it's in use. The hw state code will make sure we get this right. */
4431         if (crtc->config.pch_pfit.enabled) {
4432                 I915_WRITE(PF_CTL(pipe), 0);
4433                 I915_WRITE(PF_WIN_POS(pipe), 0);
4434                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4435         }
4436 }
4437
4438 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4439 {
4440         struct drm_device *dev = crtc->dev;
4441         struct drm_i915_private *dev_priv = dev->dev_private;
4442         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4443         struct intel_encoder *encoder;
4444         int pipe = intel_crtc->pipe;
4445         u32 reg, temp;
4446
4447         if (!intel_crtc->active)
4448                 return;
4449
4450         intel_crtc_disable_planes(crtc);
4451
4452         drm_crtc_vblank_off(crtc);
4453         assert_vblank_disabled(crtc);
4454
4455         for_each_encoder_on_crtc(dev, crtc, encoder)
4456                 encoder->disable(encoder);
4457
4458         if (intel_crtc->config.has_pch_encoder)
4459                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4460
4461         intel_disable_pipe(intel_crtc);
4462
4463         ironlake_pfit_disable(intel_crtc);
4464
4465         for_each_encoder_on_crtc(dev, crtc, encoder)
4466                 if (encoder->post_disable)
4467                         encoder->post_disable(encoder);
4468
4469         if (intel_crtc->config.has_pch_encoder) {
4470                 ironlake_fdi_disable(crtc);
4471
4472                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4473                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4474
4475                 if (HAS_PCH_CPT(dev)) {
4476                         /* disable TRANS_DP_CTL */
4477                         reg = TRANS_DP_CTL(pipe);
4478                         temp = I915_READ(reg);
4479                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4480                                   TRANS_DP_PORT_SEL_MASK);
4481                         temp |= TRANS_DP_PORT_SEL_NONE;
4482                         I915_WRITE(reg, temp);
4483
4484                         /* disable DPLL_SEL */
4485                         temp = I915_READ(PCH_DPLL_SEL);
4486                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4487                         I915_WRITE(PCH_DPLL_SEL, temp);
4488                 }
4489
4490                 /* disable PCH DPLL */
4491                 intel_disable_shared_dpll(intel_crtc);
4492
4493                 ironlake_fdi_pll_disable(intel_crtc);
4494         }
4495
4496         intel_crtc->active = false;
4497         intel_update_watermarks(crtc);
4498
4499         mutex_lock(&dev->struct_mutex);
4500         intel_update_fbc(dev);
4501         mutex_unlock(&dev->struct_mutex);
4502 }
4503
4504 static void haswell_crtc_disable(struct drm_crtc *crtc)
4505 {
4506         struct drm_device *dev = crtc->dev;
4507         struct drm_i915_private *dev_priv = dev->dev_private;
4508         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4509         struct intel_encoder *encoder;
4510         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4511
4512         if (!intel_crtc->active)
4513                 return;
4514
4515         intel_crtc_disable_planes(crtc);
4516
4517         drm_crtc_vblank_off(crtc);
4518         assert_vblank_disabled(crtc);
4519
4520         for_each_encoder_on_crtc(dev, crtc, encoder) {
4521                 intel_opregion_notify_encoder(encoder, false);
4522                 encoder->disable(encoder);
4523         }
4524
4525         if (intel_crtc->config.has_pch_encoder)
4526                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4527                                                       false);
4528         intel_disable_pipe(intel_crtc);
4529
4530         if (intel_crtc->config.dp_encoder_is_mst)
4531                 intel_ddi_set_vc_payload_alloc(crtc, false);
4532
4533         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4534
4535         ironlake_pfit_disable(intel_crtc);
4536
4537         intel_ddi_disable_pipe_clock(intel_crtc);
4538
4539         if (intel_crtc->config.has_pch_encoder) {
4540                 lpt_disable_pch_transcoder(dev_priv);
4541                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4542                                                       true);
4543                 intel_ddi_fdi_disable(crtc);
4544         }
4545
4546         for_each_encoder_on_crtc(dev, crtc, encoder)
4547                 if (encoder->post_disable)
4548                         encoder->post_disable(encoder);
4549
4550         intel_crtc->active = false;
4551         intel_update_watermarks(crtc);
4552
4553         mutex_lock(&dev->struct_mutex);
4554         intel_update_fbc(dev);
4555         mutex_unlock(&dev->struct_mutex);
4556
4557         if (intel_crtc_to_shared_dpll(intel_crtc))
4558                 intel_disable_shared_dpll(intel_crtc);
4559 }
4560
4561 static void ironlake_crtc_off(struct drm_crtc *crtc)
4562 {
4563         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4564         intel_put_shared_dpll(intel_crtc);
4565 }
4566
4567
4568 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4569 {
4570         struct drm_device *dev = crtc->base.dev;
4571         struct drm_i915_private *dev_priv = dev->dev_private;
4572         struct intel_crtc_config *pipe_config = &crtc->config;
4573
4574         if (!crtc->config.gmch_pfit.control)
4575                 return;
4576
4577         /*
4578          * The panel fitter should only be adjusted whilst the pipe is disabled,
4579          * according to register description and PRM.
4580          */
4581         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4582         assert_pipe_disabled(dev_priv, crtc->pipe);
4583
4584         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4585         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4586
4587         /* Border color in case we don't scale up to the full screen. Black by
4588          * default, change to something else for debugging. */
4589         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4590 }
4591
4592 static enum intel_display_power_domain port_to_power_domain(enum port port)
4593 {
4594         switch (port) {
4595         case PORT_A:
4596                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4597         case PORT_B:
4598                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4599         case PORT_C:
4600                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4601         case PORT_D:
4602                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4603         default:
4604                 WARN_ON_ONCE(1);
4605                 return POWER_DOMAIN_PORT_OTHER;
4606         }
4607 }
4608
4609 #define for_each_power_domain(domain, mask)                             \
4610         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4611                 if ((1 << (domain)) & (mask))
4612
4613 enum intel_display_power_domain
4614 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4615 {
4616         struct drm_device *dev = intel_encoder->base.dev;
4617         struct intel_digital_port *intel_dig_port;
4618
4619         switch (intel_encoder->type) {
4620         case INTEL_OUTPUT_UNKNOWN:
4621                 /* Only DDI platforms should ever use this output type */
4622                 WARN_ON_ONCE(!HAS_DDI(dev));
4623         case INTEL_OUTPUT_DISPLAYPORT:
4624         case INTEL_OUTPUT_HDMI:
4625         case INTEL_OUTPUT_EDP:
4626                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4627                 return port_to_power_domain(intel_dig_port->port);
4628         case INTEL_OUTPUT_DP_MST:
4629                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4630                 return port_to_power_domain(intel_dig_port->port);
4631         case INTEL_OUTPUT_ANALOG:
4632                 return POWER_DOMAIN_PORT_CRT;
4633         case INTEL_OUTPUT_DSI:
4634                 return POWER_DOMAIN_PORT_DSI;
4635         default:
4636                 return POWER_DOMAIN_PORT_OTHER;
4637         }
4638 }
4639
4640 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4641 {
4642         struct drm_device *dev = crtc->dev;
4643         struct intel_encoder *intel_encoder;
4644         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4645         enum pipe pipe = intel_crtc->pipe;
4646         unsigned long mask;
4647         enum transcoder transcoder;
4648
4649         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4650
4651         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4652         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4653         if (intel_crtc->config.pch_pfit.enabled ||
4654             intel_crtc->config.pch_pfit.force_thru)
4655                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4656
4657         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4658                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4659
4660         return mask;
4661 }
4662
4663 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4664 {
4665         struct drm_i915_private *dev_priv = dev->dev_private;
4666         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4667         struct intel_crtc *crtc;
4668
4669         /*
4670          * First get all needed power domains, then put all unneeded, to avoid
4671          * any unnecessary toggling of the power wells.
4672          */
4673         for_each_intel_crtc(dev, crtc) {
4674                 enum intel_display_power_domain domain;
4675
4676                 if (!crtc->base.enabled)
4677                         continue;
4678
4679                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4680
4681                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4682                         intel_display_power_get(dev_priv, domain);
4683         }
4684
4685         for_each_intel_crtc(dev, crtc) {
4686                 enum intel_display_power_domain domain;
4687
4688                 for_each_power_domain(domain, crtc->enabled_power_domains)
4689                         intel_display_power_put(dev_priv, domain);
4690
4691                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4692         }
4693
4694         intel_display_set_init_power(dev_priv, false);
4695 }
4696
4697 /* returns HPLL frequency in kHz */
4698 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4699 {
4700         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4701
4702         /* Obtain SKU information */
4703         mutex_lock(&dev_priv->dpio_lock);
4704         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4705                 CCK_FUSE_HPLL_FREQ_MASK;
4706         mutex_unlock(&dev_priv->dpio_lock);
4707
4708         return vco_freq[hpll_freq] * 1000;
4709 }
4710
4711 static void vlv_update_cdclk(struct drm_device *dev)
4712 {
4713         struct drm_i915_private *dev_priv = dev->dev_private;
4714
4715         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4716         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4717                          dev_priv->vlv_cdclk_freq);
4718
4719         /*
4720          * Program the gmbus_freq based on the cdclk frequency.
4721          * BSpec erroneously claims we should aim for 4MHz, but
4722          * in fact 1MHz is the correct frequency.
4723          */
4724         I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4725 }
4726
4727 /* Adjust CDclk dividers to allow high res or save power if possible */
4728 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4729 {
4730         struct drm_i915_private *dev_priv = dev->dev_private;
4731         u32 val, cmd;
4732
4733         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4734
4735         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4736                 cmd = 2;
4737         else if (cdclk == 266667)
4738                 cmd = 1;
4739         else
4740                 cmd = 0;
4741
4742         mutex_lock(&dev_priv->rps.hw_lock);
4743         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4744         val &= ~DSPFREQGUAR_MASK;
4745         val |= (cmd << DSPFREQGUAR_SHIFT);
4746         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4747         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4748                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4749                      50)) {
4750                 DRM_ERROR("timed out waiting for CDclk change\n");
4751         }
4752         mutex_unlock(&dev_priv->rps.hw_lock);
4753
4754         if (cdclk == 400000) {
4755                 u32 divider, vco;
4756
4757                 vco = valleyview_get_vco(dev_priv);
4758                 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4759
4760                 mutex_lock(&dev_priv->dpio_lock);
4761                 /* adjust cdclk divider */
4762                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4763                 val &= ~DISPLAY_FREQUENCY_VALUES;
4764                 val |= divider;
4765                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4766
4767                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4768                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4769                              50))
4770                         DRM_ERROR("timed out waiting for CDclk change\n");
4771                 mutex_unlock(&dev_priv->dpio_lock);
4772         }
4773
4774         mutex_lock(&dev_priv->dpio_lock);
4775         /* adjust self-refresh exit latency value */
4776         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4777         val &= ~0x7f;
4778
4779         /*
4780          * For high bandwidth configs, we set a higher latency in the bunit
4781          * so that the core display fetch happens in time to avoid underruns.
4782          */
4783         if (cdclk == 400000)
4784                 val |= 4500 / 250; /* 4.5 usec */
4785         else
4786                 val |= 3000 / 250; /* 3.0 usec */
4787         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4788         mutex_unlock(&dev_priv->dpio_lock);
4789
4790         vlv_update_cdclk(dev);
4791 }
4792
4793 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4794 {
4795         struct drm_i915_private *dev_priv = dev->dev_private;
4796         u32 val, cmd;
4797
4798         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4799
4800         switch (cdclk) {
4801         case 400000:
4802                 cmd = 3;
4803                 break;
4804         case 333333:
4805         case 320000:
4806                 cmd = 2;
4807                 break;
4808         case 266667:
4809                 cmd = 1;
4810                 break;
4811         case 200000:
4812                 cmd = 0;
4813                 break;
4814         default:
4815                 WARN_ON(1);
4816                 return;
4817         }
4818
4819         mutex_lock(&dev_priv->rps.hw_lock);
4820         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4821         val &= ~DSPFREQGUAR_MASK_CHV;
4822         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4823         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4824         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4825                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4826                      50)) {
4827                 DRM_ERROR("timed out waiting for CDclk change\n");
4828         }
4829         mutex_unlock(&dev_priv->rps.hw_lock);
4830
4831         vlv_update_cdclk(dev);
4832 }
4833
4834 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4835                                  int max_pixclk)
4836 {
4837         int vco = valleyview_get_vco(dev_priv);
4838         int freq_320 = (vco <<  1) % 320000 != 0 ? 333333 : 320000;
4839
4840         /* FIXME: Punit isn't quite ready yet */
4841         if (IS_CHERRYVIEW(dev_priv->dev))
4842                 return 400000;
4843
4844         /*
4845          * Really only a few cases to deal with, as only 4 CDclks are supported:
4846          *   200MHz
4847          *   267MHz
4848          *   320/333MHz (depends on HPLL freq)
4849          *   400MHz
4850          * So we check to see whether we're above 90% of the lower bin and
4851          * adjust if needed.
4852          *
4853          * We seem to get an unstable or solid color picture at 200MHz.
4854          * Not sure what's wrong. For now use 200MHz only when all pipes
4855          * are off.
4856          */
4857         if (max_pixclk > freq_320*9/10)
4858                 return 400000;
4859         else if (max_pixclk > 266667*9/10)
4860                 return freq_320;
4861         else if (max_pixclk > 0)
4862                 return 266667;
4863         else
4864                 return 200000;
4865 }
4866
4867 /* compute the max pixel clock for new configuration */
4868 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4869 {
4870         struct drm_device *dev = dev_priv->dev;
4871         struct intel_crtc *intel_crtc;
4872         int max_pixclk = 0;
4873
4874         for_each_intel_crtc(dev, intel_crtc) {
4875                 if (intel_crtc->new_enabled)
4876                         max_pixclk = max(max_pixclk,
4877                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4878         }
4879
4880         return max_pixclk;
4881 }
4882
4883 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4884                                             unsigned *prepare_pipes)
4885 {
4886         struct drm_i915_private *dev_priv = dev->dev_private;
4887         struct intel_crtc *intel_crtc;
4888         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4889
4890         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4891             dev_priv->vlv_cdclk_freq)
4892                 return;
4893
4894         /* disable/enable all currently active pipes while we change cdclk */
4895         for_each_intel_crtc(dev, intel_crtc)
4896                 if (intel_crtc->base.enabled)
4897                         *prepare_pipes |= (1 << intel_crtc->pipe);
4898 }
4899
4900 static void valleyview_modeset_global_resources(struct drm_device *dev)
4901 {
4902         struct drm_i915_private *dev_priv = dev->dev_private;
4903         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4904         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4905
4906         if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4907                 if (IS_CHERRYVIEW(dev))
4908                         cherryview_set_cdclk(dev, req_cdclk);
4909                 else
4910                         valleyview_set_cdclk(dev, req_cdclk);
4911         }
4912
4913         modeset_update_crtc_power_domains(dev);
4914 }
4915
4916 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4917 {
4918         struct drm_device *dev = crtc->dev;
4919         struct drm_i915_private *dev_priv = to_i915(dev);
4920         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4921         struct intel_encoder *encoder;
4922         int pipe = intel_crtc->pipe;
4923         bool is_dsi;
4924
4925         WARN_ON(!crtc->enabled);
4926
4927         if (intel_crtc->active)
4928                 return;
4929
4930         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4931
4932         if (!is_dsi) {
4933                 if (IS_CHERRYVIEW(dev))
4934                         chv_prepare_pll(intel_crtc, &intel_crtc->config);
4935                 else
4936                         vlv_prepare_pll(intel_crtc, &intel_crtc->config);
4937         }
4938
4939         if (intel_crtc->config.has_dp_encoder)
4940                 intel_dp_set_m_n(intel_crtc);
4941
4942         intel_set_pipe_timings(intel_crtc);
4943
4944         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
4945                 struct drm_i915_private *dev_priv = dev->dev_private;
4946
4947                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
4948                 I915_WRITE(CHV_CANVAS(pipe), 0);
4949         }
4950
4951         i9xx_set_pipeconf(intel_crtc);
4952
4953         intel_crtc->active = true;
4954
4955         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4956
4957         for_each_encoder_on_crtc(dev, crtc, encoder)
4958                 if (encoder->pre_pll_enable)
4959                         encoder->pre_pll_enable(encoder);
4960
4961         if (!is_dsi) {
4962                 if (IS_CHERRYVIEW(dev))
4963                         chv_enable_pll(intel_crtc, &intel_crtc->config);
4964                 else
4965                         vlv_enable_pll(intel_crtc, &intel_crtc->config);
4966         }
4967
4968         for_each_encoder_on_crtc(dev, crtc, encoder)
4969                 if (encoder->pre_enable)
4970                         encoder->pre_enable(encoder);
4971
4972         i9xx_pfit_enable(intel_crtc);
4973
4974         intel_crtc_load_lut(crtc);
4975
4976         intel_update_watermarks(crtc);
4977         intel_enable_pipe(intel_crtc);
4978
4979         for_each_encoder_on_crtc(dev, crtc, encoder)
4980                 encoder->enable(encoder);
4981
4982         assert_vblank_disabled(crtc);
4983         drm_crtc_vblank_on(crtc);
4984
4985         intel_crtc_enable_planes(crtc);
4986
4987         /* Underruns don't raise interrupts, so check manually. */
4988         i9xx_check_fifo_underruns(dev_priv);
4989 }
4990
4991 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4992 {
4993         struct drm_device *dev = crtc->base.dev;
4994         struct drm_i915_private *dev_priv = dev->dev_private;
4995
4996         I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4997         I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4998 }
4999
5000 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5001 {
5002         struct drm_device *dev = crtc->dev;
5003         struct drm_i915_private *dev_priv = to_i915(dev);
5004         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5005         struct intel_encoder *encoder;
5006         int pipe = intel_crtc->pipe;
5007
5008         WARN_ON(!crtc->enabled);
5009
5010         if (intel_crtc->active)
5011                 return;
5012
5013         i9xx_set_pll_dividers(intel_crtc);
5014
5015         if (intel_crtc->config.has_dp_encoder)
5016                 intel_dp_set_m_n(intel_crtc);
5017
5018         intel_set_pipe_timings(intel_crtc);
5019
5020         i9xx_set_pipeconf(intel_crtc);
5021
5022         intel_crtc->active = true;
5023
5024         if (!IS_GEN2(dev))
5025                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5026
5027         for_each_encoder_on_crtc(dev, crtc, encoder)
5028                 if (encoder->pre_enable)
5029                         encoder->pre_enable(encoder);
5030
5031         i9xx_enable_pll(intel_crtc);
5032
5033         i9xx_pfit_enable(intel_crtc);
5034
5035         intel_crtc_load_lut(crtc);
5036
5037         intel_update_watermarks(crtc);
5038         intel_enable_pipe(intel_crtc);
5039
5040         for_each_encoder_on_crtc(dev, crtc, encoder)
5041                 encoder->enable(encoder);
5042
5043         assert_vblank_disabled(crtc);
5044         drm_crtc_vblank_on(crtc);
5045
5046         intel_crtc_enable_planes(crtc);
5047
5048         /*
5049          * Gen2 reports pipe underruns whenever all planes are disabled.
5050          * So don't enable underrun reporting before at least some planes
5051          * are enabled.
5052          * FIXME: Need to fix the logic to work when we turn off all planes
5053          * but leave the pipe running.
5054          */
5055         if (IS_GEN2(dev))
5056                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5057
5058         /* Underruns don't raise interrupts, so check manually. */
5059         i9xx_check_fifo_underruns(dev_priv);
5060 }
5061
5062 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5063 {
5064         struct drm_device *dev = crtc->base.dev;
5065         struct drm_i915_private *dev_priv = dev->dev_private;
5066
5067         if (!crtc->config.gmch_pfit.control)
5068                 return;
5069
5070         assert_pipe_disabled(dev_priv, crtc->pipe);
5071
5072         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5073                          I915_READ(PFIT_CONTROL));
5074         I915_WRITE(PFIT_CONTROL, 0);
5075 }
5076
5077 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5078 {
5079         struct drm_device *dev = crtc->dev;
5080         struct drm_i915_private *dev_priv = dev->dev_private;
5081         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5082         struct intel_encoder *encoder;
5083         int pipe = intel_crtc->pipe;
5084
5085         if (!intel_crtc->active)
5086                 return;
5087
5088         /*
5089          * Gen2 reports pipe underruns whenever all planes are disabled.
5090          * So diasble underrun reporting before all the planes get disabled.
5091          * FIXME: Need to fix the logic to work when we turn off all planes
5092          * but leave the pipe running.
5093          */
5094         if (IS_GEN2(dev))
5095                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5096
5097         /*
5098          * Vblank time updates from the shadow to live plane control register
5099          * are blocked if the memory self-refresh mode is active at that
5100          * moment. So to make sure the plane gets truly disabled, disable
5101          * first the self-refresh mode. The self-refresh enable bit in turn
5102          * will be checked/applied by the HW only at the next frame start
5103          * event which is after the vblank start event, so we need to have a
5104          * wait-for-vblank between disabling the plane and the pipe.
5105          */
5106         intel_set_memory_cxsr(dev_priv, false);
5107         intel_crtc_disable_planes(crtc);
5108
5109         /*
5110          * On gen2 planes are double buffered but the pipe isn't, so we must
5111          * wait for planes to fully turn off before disabling the pipe.
5112          * We also need to wait on all gmch platforms because of the
5113          * self-refresh mode constraint explained above.
5114          */
5115         intel_wait_for_vblank(dev, pipe);
5116
5117         drm_crtc_vblank_off(crtc);
5118         assert_vblank_disabled(crtc);
5119
5120         for_each_encoder_on_crtc(dev, crtc, encoder)
5121                 encoder->disable(encoder);
5122
5123         intel_disable_pipe(intel_crtc);
5124
5125         i9xx_pfit_disable(intel_crtc);
5126
5127         for_each_encoder_on_crtc(dev, crtc, encoder)
5128                 if (encoder->post_disable)
5129                         encoder->post_disable(encoder);
5130
5131         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5132                 if (IS_CHERRYVIEW(dev))
5133                         chv_disable_pll(dev_priv, pipe);
5134                 else if (IS_VALLEYVIEW(dev))
5135                         vlv_disable_pll(dev_priv, pipe);
5136                 else
5137                         i9xx_disable_pll(intel_crtc);
5138         }
5139
5140         if (!IS_GEN2(dev))
5141                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5142
5143         intel_crtc->active = false;
5144         intel_update_watermarks(crtc);
5145
5146         mutex_lock(&dev->struct_mutex);
5147         intel_update_fbc(dev);
5148         mutex_unlock(&dev->struct_mutex);
5149 }
5150
5151 static void i9xx_crtc_off(struct drm_crtc *crtc)
5152 {
5153 }
5154
5155 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
5156                                     bool enabled)
5157 {
5158         struct drm_device *dev = crtc->dev;
5159         struct drm_i915_master_private *master_priv;
5160         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5161         int pipe = intel_crtc->pipe;
5162
5163         if (!dev->primary->master)
5164                 return;
5165
5166         master_priv = dev->primary->master->driver_priv;
5167         if (!master_priv->sarea_priv)
5168                 return;
5169
5170         switch (pipe) {
5171         case 0:
5172                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
5173                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
5174                 break;
5175         case 1:
5176                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
5177                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
5178                 break;
5179         default:
5180                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
5181                 break;
5182         }
5183 }
5184
5185 /* Master function to enable/disable CRTC and corresponding power wells */
5186 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5187 {
5188         struct drm_device *dev = crtc->dev;
5189         struct drm_i915_private *dev_priv = dev->dev_private;
5190         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5191         enum intel_display_power_domain domain;
5192         unsigned long domains;
5193
5194         if (enable) {
5195                 if (!intel_crtc->active) {
5196                         domains = get_crtc_power_domains(crtc);
5197                         for_each_power_domain(domain, domains)
5198                                 intel_display_power_get(dev_priv, domain);
5199                         intel_crtc->enabled_power_domains = domains;
5200
5201                         dev_priv->display.crtc_enable(crtc);
5202                 }
5203         } else {
5204                 if (intel_crtc->active) {
5205                         dev_priv->display.crtc_disable(crtc);
5206
5207                         domains = intel_crtc->enabled_power_domains;
5208                         for_each_power_domain(domain, domains)
5209                                 intel_display_power_put(dev_priv, domain);
5210                         intel_crtc->enabled_power_domains = 0;
5211                 }
5212         }
5213 }
5214
5215 /**
5216  * Sets the power management mode of the pipe and plane.
5217  */
5218 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5219 {
5220         struct drm_device *dev = crtc->dev;
5221         struct intel_encoder *intel_encoder;
5222         bool enable = false;
5223
5224         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5225                 enable |= intel_encoder->connectors_active;
5226
5227         intel_crtc_control(crtc, enable);
5228
5229         intel_crtc_update_sarea(crtc, enable);
5230 }
5231
5232 static void intel_crtc_disable(struct drm_crtc *crtc)
5233 {
5234         struct drm_device *dev = crtc->dev;
5235         struct drm_connector *connector;
5236         struct drm_i915_private *dev_priv = dev->dev_private;
5237         struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
5238         enum pipe pipe = to_intel_crtc(crtc)->pipe;
5239
5240         /* crtc should still be enabled when we disable it. */
5241         WARN_ON(!crtc->enabled);
5242
5243         dev_priv->display.crtc_disable(crtc);
5244         intel_crtc_update_sarea(crtc, false);
5245         dev_priv->display.off(crtc);
5246
5247         if (crtc->primary->fb) {
5248                 mutex_lock(&dev->struct_mutex);
5249                 intel_unpin_fb_obj(old_obj);
5250                 i915_gem_track_fb(old_obj, NULL,
5251                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
5252                 mutex_unlock(&dev->struct_mutex);
5253                 crtc->primary->fb = NULL;
5254         }
5255
5256         /* Update computed state. */
5257         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5258                 if (!connector->encoder || !connector->encoder->crtc)
5259                         continue;
5260
5261                 if (connector->encoder->crtc != crtc)
5262                         continue;
5263
5264                 connector->dpms = DRM_MODE_DPMS_OFF;
5265                 to_intel_encoder(connector->encoder)->connectors_active = false;
5266         }
5267 }
5268
5269 void intel_encoder_destroy(struct drm_encoder *encoder)
5270 {
5271         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5272
5273         drm_encoder_cleanup(encoder);
5274         kfree(intel_encoder);
5275 }
5276
5277 /* Simple dpms helper for encoders with just one connector, no cloning and only
5278  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5279  * state of the entire output pipe. */
5280 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5281 {
5282         if (mode == DRM_MODE_DPMS_ON) {
5283                 encoder->connectors_active = true;
5284
5285                 intel_crtc_update_dpms(encoder->base.crtc);
5286         } else {
5287                 encoder->connectors_active = false;
5288
5289                 intel_crtc_update_dpms(encoder->base.crtc);
5290         }
5291 }
5292
5293 /* Cross check the actual hw state with our own modeset state tracking (and it's
5294  * internal consistency). */
5295 static void intel_connector_check_state(struct intel_connector *connector)
5296 {
5297         if (connector->get_hw_state(connector)) {
5298                 struct intel_encoder *encoder = connector->encoder;
5299                 struct drm_crtc *crtc;
5300                 bool encoder_enabled;
5301                 enum pipe pipe;
5302
5303                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5304                               connector->base.base.id,
5305                               connector->base.name);
5306
5307                 /* there is no real hw state for MST connectors */
5308                 if (connector->mst_port)
5309                         return;
5310
5311                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5312                      "wrong connector dpms state\n");
5313                 WARN(connector->base.encoder != &encoder->base,
5314                      "active connector not linked to encoder\n");
5315
5316                 if (encoder) {
5317                         WARN(!encoder->connectors_active,
5318                              "encoder->connectors_active not set\n");
5319
5320                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5321                         WARN(!encoder_enabled, "encoder not enabled\n");
5322                         if (WARN_ON(!encoder->base.crtc))
5323                                 return;
5324
5325                         crtc = encoder->base.crtc;
5326
5327                         WARN(!crtc->enabled, "crtc not enabled\n");
5328                         WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5329                         WARN(pipe != to_intel_crtc(crtc)->pipe,
5330                              "encoder active on the wrong pipe\n");
5331                 }
5332         }
5333 }
5334
5335 /* Even simpler default implementation, if there's really no special case to
5336  * consider. */
5337 void intel_connector_dpms(struct drm_connector *connector, int mode)
5338 {
5339         /* All the simple cases only support two dpms states. */
5340         if (mode != DRM_MODE_DPMS_ON)
5341                 mode = DRM_MODE_DPMS_OFF;
5342
5343         if (mode == connector->dpms)
5344                 return;
5345
5346         connector->dpms = mode;
5347
5348         /* Only need to change hw state when actually enabled */
5349         if (connector->encoder)
5350                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5351
5352         intel_modeset_check_state(connector->dev);
5353 }
5354
5355 /* Simple connector->get_hw_state implementation for encoders that support only
5356  * one connector and no cloning and hence the encoder state determines the state
5357  * of the connector. */
5358 bool intel_connector_get_hw_state(struct intel_connector *connector)
5359 {
5360         enum pipe pipe = 0;
5361         struct intel_encoder *encoder = connector->encoder;
5362
5363         return encoder->get_hw_state(encoder, &pipe);
5364 }
5365
5366 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5367                                      struct intel_crtc_config *pipe_config)
5368 {
5369         struct drm_i915_private *dev_priv = dev->dev_private;
5370         struct intel_crtc *pipe_B_crtc =
5371                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5372
5373         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5374                       pipe_name(pipe), pipe_config->fdi_lanes);
5375         if (pipe_config->fdi_lanes > 4) {
5376                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5377                               pipe_name(pipe), pipe_config->fdi_lanes);
5378                 return false;
5379         }
5380
5381         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5382                 if (pipe_config->fdi_lanes > 2) {
5383                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5384                                       pipe_config->fdi_lanes);
5385                         return false;
5386                 } else {
5387                         return true;
5388                 }
5389         }
5390
5391         if (INTEL_INFO(dev)->num_pipes == 2)
5392                 return true;
5393
5394         /* Ivybridge 3 pipe is really complicated */
5395         switch (pipe) {
5396         case PIPE_A:
5397                 return true;
5398         case PIPE_B:
5399                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5400                     pipe_config->fdi_lanes > 2) {
5401                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5402                                       pipe_name(pipe), pipe_config->fdi_lanes);
5403                         return false;
5404                 }
5405                 return true;
5406         case PIPE_C:
5407                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5408                     pipe_B_crtc->config.fdi_lanes <= 2) {
5409                         if (pipe_config->fdi_lanes > 2) {
5410                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5411                                               pipe_name(pipe), pipe_config->fdi_lanes);
5412                                 return false;
5413                         }
5414                 } else {
5415                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5416                         return false;
5417                 }
5418                 return true;
5419         default:
5420                 BUG();
5421         }
5422 }
5423
5424 #define RETRY 1
5425 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5426                                        struct intel_crtc_config *pipe_config)
5427 {
5428         struct drm_device *dev = intel_crtc->base.dev;
5429         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5430         int lane, link_bw, fdi_dotclock;
5431         bool setup_ok, needs_recompute = false;
5432
5433 retry:
5434         /* FDI is a binary signal running at ~2.7GHz, encoding
5435          * each output octet as 10 bits. The actual frequency
5436          * is stored as a divider into a 100MHz clock, and the
5437          * mode pixel clock is stored in units of 1KHz.
5438          * Hence the bw of each lane in terms of the mode signal
5439          * is:
5440          */
5441         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5442
5443         fdi_dotclock = adjusted_mode->crtc_clock;
5444
5445         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5446                                            pipe_config->pipe_bpp);
5447
5448         pipe_config->fdi_lanes = lane;
5449
5450         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5451                                link_bw, &pipe_config->fdi_m_n);
5452
5453         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5454                                             intel_crtc->pipe, pipe_config);
5455         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5456                 pipe_config->pipe_bpp -= 2*3;
5457                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5458                               pipe_config->pipe_bpp);
5459                 needs_recompute = true;
5460                 pipe_config->bw_constrained = true;
5461
5462                 goto retry;
5463         }
5464
5465         if (needs_recompute)
5466                 return RETRY;
5467
5468         return setup_ok ? 0 : -EINVAL;
5469 }
5470
5471 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5472                                    struct intel_crtc_config *pipe_config)
5473 {
5474         pipe_config->ips_enabled = i915.enable_ips &&
5475                                    hsw_crtc_supports_ips(crtc) &&
5476                                    pipe_config->pipe_bpp <= 24;
5477 }
5478
5479 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5480                                      struct intel_crtc_config *pipe_config)
5481 {
5482         struct drm_device *dev = crtc->base.dev;
5483         struct drm_i915_private *dev_priv = dev->dev_private;
5484         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5485
5486         /* FIXME should check pixel clock limits on all platforms */
5487         if (INTEL_INFO(dev)->gen < 4) {
5488                 int clock_limit =
5489                         dev_priv->display.get_display_clock_speed(dev);
5490
5491                 /*
5492                  * Enable pixel doubling when the dot clock
5493                  * is > 90% of the (display) core speed.
5494                  *
5495                  * GDG double wide on either pipe,
5496                  * otherwise pipe A only.
5497                  */
5498                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5499                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5500                         clock_limit *= 2;
5501                         pipe_config->double_wide = true;
5502                 }
5503
5504                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5505                         return -EINVAL;
5506         }
5507
5508         /*
5509          * Pipe horizontal size must be even in:
5510          * - DVO ganged mode
5511          * - LVDS dual channel mode
5512          * - Double wide pipe
5513          */
5514         if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5515              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5516                 pipe_config->pipe_src_w &= ~1;
5517
5518         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5519          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5520          */
5521         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5522                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5523                 return -EINVAL;
5524
5525         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5526                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5527         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5528                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5529                  * for lvds. */
5530                 pipe_config->pipe_bpp = 8*3;
5531         }
5532
5533         if (HAS_IPS(dev))
5534                 hsw_compute_ips_config(crtc, pipe_config);
5535
5536         /*
5537          * XXX: PCH/WRPLL clock sharing is done in ->mode_set if ->compute_clock is not
5538          * set, so make sure the old clock survives for now.
5539          */
5540         if (dev_priv->display.crtc_compute_clock == NULL &&
5541             (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev)))
5542                 pipe_config->shared_dpll = crtc->config.shared_dpll;
5543
5544         if (pipe_config->has_pch_encoder)
5545                 return ironlake_fdi_compute_config(crtc, pipe_config);
5546
5547         return 0;
5548 }
5549
5550 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5551 {
5552         struct drm_i915_private *dev_priv = dev->dev_private;
5553         int vco = valleyview_get_vco(dev_priv);
5554         u32 val;
5555         int divider;
5556
5557         /* FIXME: Punit isn't quite ready yet */
5558         if (IS_CHERRYVIEW(dev))
5559                 return 400000;
5560
5561         mutex_lock(&dev_priv->dpio_lock);
5562         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5563         mutex_unlock(&dev_priv->dpio_lock);
5564
5565         divider = val & DISPLAY_FREQUENCY_VALUES;
5566
5567         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5568              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5569              "cdclk change in progress\n");
5570
5571         return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
5572 }
5573
5574 static int i945_get_display_clock_speed(struct drm_device *dev)
5575 {
5576         return 400000;
5577 }
5578
5579 static int i915_get_display_clock_speed(struct drm_device *dev)
5580 {
5581         return 333000;
5582 }
5583
5584 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5585 {
5586         return 200000;
5587 }
5588
5589 static int pnv_get_display_clock_speed(struct drm_device *dev)
5590 {
5591         u16 gcfgc = 0;
5592
5593         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5594
5595         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5596         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5597                 return 267000;
5598         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5599                 return 333000;
5600         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5601                 return 444000;
5602         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5603                 return 200000;
5604         default:
5605                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5606         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5607                 return 133000;
5608         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5609                 return 167000;
5610         }
5611 }
5612
5613 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5614 {
5615         u16 gcfgc = 0;
5616
5617         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5618
5619         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5620                 return 133000;
5621         else {
5622                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5623                 case GC_DISPLAY_CLOCK_333_MHZ:
5624                         return 333000;
5625                 default:
5626                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5627                         return 190000;
5628                 }
5629         }
5630 }
5631
5632 static int i865_get_display_clock_speed(struct drm_device *dev)
5633 {
5634         return 266000;
5635 }
5636
5637 static int i855_get_display_clock_speed(struct drm_device *dev)
5638 {
5639         u16 hpllcc = 0;
5640         /* Assume that the hardware is in the high speed state.  This
5641          * should be the default.
5642          */
5643         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5644         case GC_CLOCK_133_200:
5645         case GC_CLOCK_100_200:
5646                 return 200000;
5647         case GC_CLOCK_166_250:
5648                 return 250000;
5649         case GC_CLOCK_100_133:
5650                 return 133000;
5651         }
5652
5653         /* Shouldn't happen */
5654         return 0;
5655 }
5656
5657 static int i830_get_display_clock_speed(struct drm_device *dev)
5658 {
5659         return 133000;
5660 }
5661
5662 static void
5663 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5664 {
5665         while (*num > DATA_LINK_M_N_MASK ||
5666                *den > DATA_LINK_M_N_MASK) {
5667                 *num >>= 1;
5668                 *den >>= 1;
5669         }
5670 }
5671
5672 static void compute_m_n(unsigned int m, unsigned int n,
5673                         uint32_t *ret_m, uint32_t *ret_n)
5674 {
5675         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5676         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5677         intel_reduce_m_n_ratio(ret_m, ret_n);
5678 }
5679
5680 void
5681 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5682                        int pixel_clock, int link_clock,
5683                        struct intel_link_m_n *m_n)
5684 {
5685         m_n->tu = 64;
5686
5687         compute_m_n(bits_per_pixel * pixel_clock,
5688                     link_clock * nlanes * 8,
5689                     &m_n->gmch_m, &m_n->gmch_n);
5690
5691         compute_m_n(pixel_clock, link_clock,
5692                     &m_n->link_m, &m_n->link_n);
5693 }
5694
5695 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5696 {
5697         if (i915.panel_use_ssc >= 0)
5698                 return i915.panel_use_ssc != 0;
5699         return dev_priv->vbt.lvds_use_ssc
5700                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5701 }
5702
5703 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5704 {
5705         struct drm_device *dev = crtc->base.dev;
5706         struct drm_i915_private *dev_priv = dev->dev_private;
5707         int refclk;
5708
5709         if (IS_VALLEYVIEW(dev)) {
5710                 refclk = 100000;
5711         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5712             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5713                 refclk = dev_priv->vbt.lvds_ssc_freq;
5714                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5715         } else if (!IS_GEN2(dev)) {
5716                 refclk = 96000;
5717         } else {
5718                 refclk = 48000;
5719         }
5720
5721         return refclk;
5722 }
5723
5724 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5725 {
5726         return (1 << dpll->n) << 16 | dpll->m2;
5727 }
5728
5729 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5730 {
5731         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5732 }
5733
5734 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5735                                      intel_clock_t *reduced_clock)
5736 {
5737         struct drm_device *dev = crtc->base.dev;
5738         u32 fp, fp2 = 0;
5739
5740         if (IS_PINEVIEW(dev)) {
5741                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5742                 if (reduced_clock)
5743                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5744         } else {
5745                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5746                 if (reduced_clock)
5747                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5748         }
5749
5750         crtc->config.dpll_hw_state.fp0 = fp;
5751
5752         crtc->lowfreq_avail = false;
5753         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5754             reduced_clock && i915.powersave) {
5755                 crtc->config.dpll_hw_state.fp1 = fp2;
5756                 crtc->lowfreq_avail = true;
5757         } else {
5758                 crtc->config.dpll_hw_state.fp1 = fp;
5759         }
5760 }
5761
5762 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5763                 pipe)
5764 {
5765         u32 reg_val;
5766
5767         /*
5768          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5769          * and set it to a reasonable value instead.
5770          */
5771         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5772         reg_val &= 0xffffff00;
5773         reg_val |= 0x00000030;
5774         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5775
5776         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5777         reg_val &= 0x8cffffff;
5778         reg_val = 0x8c000000;
5779         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5780
5781         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5782         reg_val &= 0xffffff00;
5783         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5784
5785         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5786         reg_val &= 0x00ffffff;
5787         reg_val |= 0xb0000000;
5788         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5789 }
5790
5791 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5792                                          struct intel_link_m_n *m_n)
5793 {
5794         struct drm_device *dev = crtc->base.dev;
5795         struct drm_i915_private *dev_priv = dev->dev_private;
5796         int pipe = crtc->pipe;
5797
5798         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5799         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5800         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5801         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5802 }
5803
5804 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5805                                          struct intel_link_m_n *m_n,
5806                                          struct intel_link_m_n *m2_n2)
5807 {
5808         struct drm_device *dev = crtc->base.dev;
5809         struct drm_i915_private *dev_priv = dev->dev_private;
5810         int pipe = crtc->pipe;
5811         enum transcoder transcoder = crtc->config.cpu_transcoder;
5812
5813         if (INTEL_INFO(dev)->gen >= 5) {
5814                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5815                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5816                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5817                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5818                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5819                  * for gen < 8) and if DRRS is supported (to make sure the
5820                  * registers are not unnecessarily accessed).
5821                  */
5822                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5823                         crtc->config.has_drrs) {
5824                         I915_WRITE(PIPE_DATA_M2(transcoder),
5825                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5826                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5827                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5828                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5829                 }
5830         } else {
5831                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5832                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5833                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5834                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5835         }
5836 }
5837
5838 void intel_dp_set_m_n(struct intel_crtc *crtc)
5839 {
5840         if (crtc->config.has_pch_encoder)
5841                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5842         else
5843                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5844                                                    &crtc->config.dp_m2_n2);
5845 }
5846
5847 static void vlv_update_pll(struct intel_crtc *crtc,
5848                            struct intel_crtc_config *pipe_config)
5849 {
5850         u32 dpll, dpll_md;
5851
5852         /*
5853          * Enable DPIO clock input. We should never disable the reference
5854          * clock for pipe B, since VGA hotplug / manual detection depends
5855          * on it.
5856          */
5857         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5858                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5859         /* We should never disable this, set it here for state tracking */
5860         if (crtc->pipe == PIPE_B)
5861                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5862         dpll |= DPLL_VCO_ENABLE;
5863         pipe_config->dpll_hw_state.dpll = dpll;
5864
5865         dpll_md = (pipe_config->pixel_multiplier - 1)
5866                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5867         pipe_config->dpll_hw_state.dpll_md = dpll_md;
5868 }
5869
5870 static void vlv_prepare_pll(struct intel_crtc *crtc,
5871                             const struct intel_crtc_config *pipe_config)
5872 {
5873         struct drm_device *dev = crtc->base.dev;
5874         struct drm_i915_private *dev_priv = dev->dev_private;
5875         int pipe = crtc->pipe;
5876         u32 mdiv;
5877         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5878         u32 coreclk, reg_val;
5879
5880         mutex_lock(&dev_priv->dpio_lock);
5881
5882         bestn = pipe_config->dpll.n;
5883         bestm1 = pipe_config->dpll.m1;
5884         bestm2 = pipe_config->dpll.m2;
5885         bestp1 = pipe_config->dpll.p1;
5886         bestp2 = pipe_config->dpll.p2;
5887
5888         /* See eDP HDMI DPIO driver vbios notes doc */
5889
5890         /* PLL B needs special handling */
5891         if (pipe == PIPE_B)
5892                 vlv_pllb_recal_opamp(dev_priv, pipe);
5893
5894         /* Set up Tx target for periodic Rcomp update */
5895         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5896
5897         /* Disable target IRef on PLL */
5898         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5899         reg_val &= 0x00ffffff;
5900         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5901
5902         /* Disable fast lock */
5903         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5904
5905         /* Set idtafcrecal before PLL is enabled */
5906         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5907         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5908         mdiv |= ((bestn << DPIO_N_SHIFT));
5909         mdiv |= (1 << DPIO_K_SHIFT);
5910
5911         /*
5912          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5913          * but we don't support that).
5914          * Note: don't use the DAC post divider as it seems unstable.
5915          */
5916         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5917         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5918
5919         mdiv |= DPIO_ENABLE_CALIBRATION;
5920         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5921
5922         /* Set HBR and RBR LPF coefficients */
5923         if (pipe_config->port_clock == 162000 ||
5924             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5925             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
5926                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5927                                  0x009f0003);
5928         else
5929                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5930                                  0x00d0000f);
5931
5932         if (crtc->config.has_dp_encoder) {
5933                 /* Use SSC source */
5934                 if (pipe == PIPE_A)
5935                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5936                                          0x0df40000);
5937                 else
5938                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5939                                          0x0df70000);
5940         } else { /* HDMI or VGA */
5941                 /* Use bend source */
5942                 if (pipe == PIPE_A)
5943                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5944                                          0x0df70000);
5945                 else
5946                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5947                                          0x0df40000);
5948         }
5949
5950         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5951         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5952         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5953             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
5954                 coreclk |= 0x01000000;
5955         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5956
5957         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5958         mutex_unlock(&dev_priv->dpio_lock);
5959 }
5960
5961 static void chv_update_pll(struct intel_crtc *crtc,
5962                            struct intel_crtc_config *pipe_config)
5963 {
5964         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5965                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5966                 DPLL_VCO_ENABLE;
5967         if (crtc->pipe != PIPE_A)
5968                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5969
5970         pipe_config->dpll_hw_state.dpll_md =
5971                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5972 }
5973
5974 static void chv_prepare_pll(struct intel_crtc *crtc,
5975                             const struct intel_crtc_config *pipe_config)
5976 {
5977         struct drm_device *dev = crtc->base.dev;
5978         struct drm_i915_private *dev_priv = dev->dev_private;
5979         int pipe = crtc->pipe;
5980         int dpll_reg = DPLL(crtc->pipe);
5981         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5982         u32 loopfilter, intcoeff;
5983         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5984         int refclk;
5985
5986         bestn = pipe_config->dpll.n;
5987         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
5988         bestm1 = pipe_config->dpll.m1;
5989         bestm2 = pipe_config->dpll.m2 >> 22;
5990         bestp1 = pipe_config->dpll.p1;
5991         bestp2 = pipe_config->dpll.p2;
5992
5993         /*
5994          * Enable Refclk and SSC
5995          */
5996         I915_WRITE(dpll_reg,
5997                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5998
5999         mutex_lock(&dev_priv->dpio_lock);
6000
6001         /* p1 and p2 divider */
6002         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6003                         5 << DPIO_CHV_S1_DIV_SHIFT |
6004                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6005                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6006                         1 << DPIO_CHV_K_DIV_SHIFT);
6007
6008         /* Feedback post-divider - m2 */
6009         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6010
6011         /* Feedback refclk divider - n and m1 */
6012         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6013                         DPIO_CHV_M1_DIV_BY_2 |
6014                         1 << DPIO_CHV_N_DIV_SHIFT);
6015
6016         /* M2 fraction division */
6017         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6018
6019         /* M2 fraction division enable */
6020         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6021                        DPIO_CHV_FRAC_DIV_EN |
6022                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6023
6024         /* Loop filter */
6025         refclk = i9xx_get_refclk(crtc, 0);
6026         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6027                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6028         if (refclk == 100000)
6029                 intcoeff = 11;
6030         else if (refclk == 38400)
6031                 intcoeff = 10;
6032         else
6033                 intcoeff = 9;
6034         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6035         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6036
6037         /* AFC Recal */
6038         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6039                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6040                         DPIO_AFC_RECAL);
6041
6042         mutex_unlock(&dev_priv->dpio_lock);
6043 }
6044
6045 /**
6046  * vlv_force_pll_on - forcibly enable just the PLL
6047  * @dev_priv: i915 private structure
6048  * @pipe: pipe PLL to enable
6049  * @dpll: PLL configuration
6050  *
6051  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6052  * in cases where we need the PLL enabled even when @pipe is not going to
6053  * be enabled.
6054  */
6055 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6056                       const struct dpll *dpll)
6057 {
6058         struct intel_crtc *crtc =
6059                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6060         struct intel_crtc_config pipe_config = {
6061                 .pixel_multiplier = 1,
6062                 .dpll = *dpll,
6063         };
6064
6065         if (IS_CHERRYVIEW(dev)) {
6066                 chv_update_pll(crtc, &pipe_config);
6067                 chv_prepare_pll(crtc, &pipe_config);
6068                 chv_enable_pll(crtc, &pipe_config);
6069         } else {
6070                 vlv_update_pll(crtc, &pipe_config);
6071                 vlv_prepare_pll(crtc, &pipe_config);
6072                 vlv_enable_pll(crtc, &pipe_config);
6073         }
6074 }
6075
6076 /**
6077  * vlv_force_pll_off - forcibly disable just the PLL
6078  * @dev_priv: i915 private structure
6079  * @pipe: pipe PLL to disable
6080  *
6081  * Disable the PLL for @pipe. To be used in cases where we need
6082  * the PLL enabled even when @pipe is not going to be enabled.
6083  */
6084 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6085 {
6086         if (IS_CHERRYVIEW(dev))
6087                 chv_disable_pll(to_i915(dev), pipe);
6088         else
6089                 vlv_disable_pll(to_i915(dev), pipe);
6090 }
6091
6092 static void i9xx_update_pll(struct intel_crtc *crtc,
6093                             intel_clock_t *reduced_clock,
6094                             int num_connectors)
6095 {
6096         struct drm_device *dev = crtc->base.dev;
6097         struct drm_i915_private *dev_priv = dev->dev_private;
6098         u32 dpll;
6099         bool is_sdvo;
6100         struct dpll *clock = &crtc->new_config->dpll;
6101
6102         i9xx_update_pll_dividers(crtc, reduced_clock);
6103
6104         is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6105                 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6106
6107         dpll = DPLL_VGA_MODE_DIS;
6108
6109         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6110                 dpll |= DPLLB_MODE_LVDS;
6111         else
6112                 dpll |= DPLLB_MODE_DAC_SERIAL;
6113
6114         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6115                 dpll |= (crtc->new_config->pixel_multiplier - 1)
6116                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6117         }
6118
6119         if (is_sdvo)
6120                 dpll |= DPLL_SDVO_HIGH_SPEED;
6121
6122         if (crtc->new_config->has_dp_encoder)
6123                 dpll |= DPLL_SDVO_HIGH_SPEED;
6124
6125         /* compute bitmask from p1 value */
6126         if (IS_PINEVIEW(dev))
6127                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6128         else {
6129                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6130                 if (IS_G4X(dev) && reduced_clock)
6131                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6132         }
6133         switch (clock->p2) {
6134         case 5:
6135                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6136                 break;
6137         case 7:
6138                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6139                 break;
6140         case 10:
6141                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6142                 break;
6143         case 14:
6144                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6145                 break;
6146         }
6147         if (INTEL_INFO(dev)->gen >= 4)
6148                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6149
6150         if (crtc->new_config->sdvo_tv_clock)
6151                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6152         else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6153                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6154                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6155         else
6156                 dpll |= PLL_REF_INPUT_DREFCLK;
6157
6158         dpll |= DPLL_VCO_ENABLE;
6159         crtc->new_config->dpll_hw_state.dpll = dpll;
6160
6161         if (INTEL_INFO(dev)->gen >= 4) {
6162                 u32 dpll_md = (crtc->new_config->pixel_multiplier - 1)
6163                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6164                 crtc->new_config->dpll_hw_state.dpll_md = dpll_md;
6165         }
6166 }
6167
6168 static void i8xx_update_pll(struct intel_crtc *crtc,
6169                             intel_clock_t *reduced_clock,
6170                             int num_connectors)
6171 {
6172         struct drm_device *dev = crtc->base.dev;
6173         struct drm_i915_private *dev_priv = dev->dev_private;
6174         u32 dpll;
6175         struct dpll *clock = &crtc->new_config->dpll;
6176
6177         i9xx_update_pll_dividers(crtc, reduced_clock);
6178
6179         dpll = DPLL_VGA_MODE_DIS;
6180
6181         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6182                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6183         } else {
6184                 if (clock->p1 == 2)
6185                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6186                 else
6187                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6188                 if (clock->p2 == 4)
6189                         dpll |= PLL_P2_DIVIDE_BY_4;
6190         }
6191
6192         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6193                 dpll |= DPLL_DVO_2X_MODE;
6194
6195         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6196                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6197                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6198         else
6199                 dpll |= PLL_REF_INPUT_DREFCLK;
6200
6201         dpll |= DPLL_VCO_ENABLE;
6202         crtc->new_config->dpll_hw_state.dpll = dpll;
6203 }
6204
6205 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6206 {
6207         struct drm_device *dev = intel_crtc->base.dev;
6208         struct drm_i915_private *dev_priv = dev->dev_private;
6209         enum pipe pipe = intel_crtc->pipe;
6210         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6211         struct drm_display_mode *adjusted_mode =
6212                 &intel_crtc->config.adjusted_mode;
6213         uint32_t crtc_vtotal, crtc_vblank_end;
6214         int vsyncshift = 0;
6215
6216         /* We need to be careful not to changed the adjusted mode, for otherwise
6217          * the hw state checker will get angry at the mismatch. */
6218         crtc_vtotal = adjusted_mode->crtc_vtotal;
6219         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6220
6221         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6222                 /* the chip adds 2 halflines automatically */
6223                 crtc_vtotal -= 1;
6224                 crtc_vblank_end -= 1;
6225
6226                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6227                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6228                 else
6229                         vsyncshift = adjusted_mode->crtc_hsync_start -
6230                                 adjusted_mode->crtc_htotal / 2;
6231                 if (vsyncshift < 0)
6232                         vsyncshift += adjusted_mode->crtc_htotal;
6233         }
6234
6235         if (INTEL_INFO(dev)->gen > 3)
6236                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6237
6238         I915_WRITE(HTOTAL(cpu_transcoder),
6239                    (adjusted_mode->crtc_hdisplay - 1) |
6240                    ((adjusted_mode->crtc_htotal - 1) << 16));
6241         I915_WRITE(HBLANK(cpu_transcoder),
6242                    (adjusted_mode->crtc_hblank_start - 1) |
6243                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6244         I915_WRITE(HSYNC(cpu_transcoder),
6245                    (adjusted_mode->crtc_hsync_start - 1) |
6246                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6247
6248         I915_WRITE(VTOTAL(cpu_transcoder),
6249                    (adjusted_mode->crtc_vdisplay - 1) |
6250                    ((crtc_vtotal - 1) << 16));
6251         I915_WRITE(VBLANK(cpu_transcoder),
6252                    (adjusted_mode->crtc_vblank_start - 1) |
6253                    ((crtc_vblank_end - 1) << 16));
6254         I915_WRITE(VSYNC(cpu_transcoder),
6255                    (adjusted_mode->crtc_vsync_start - 1) |
6256                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6257
6258         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6259          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6260          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6261          * bits. */
6262         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6263             (pipe == PIPE_B || pipe == PIPE_C))
6264                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6265
6266         /* pipesrc controls the size that is scaled from, which should
6267          * always be the user's requested size.
6268          */
6269         I915_WRITE(PIPESRC(pipe),
6270                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
6271                    (intel_crtc->config.pipe_src_h - 1));
6272 }
6273
6274 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6275                                    struct intel_crtc_config *pipe_config)
6276 {
6277         struct drm_device *dev = crtc->base.dev;
6278         struct drm_i915_private *dev_priv = dev->dev_private;
6279         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6280         uint32_t tmp;
6281
6282         tmp = I915_READ(HTOTAL(cpu_transcoder));
6283         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6284         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6285         tmp = I915_READ(HBLANK(cpu_transcoder));
6286         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6287         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6288         tmp = I915_READ(HSYNC(cpu_transcoder));
6289         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6290         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6291
6292         tmp = I915_READ(VTOTAL(cpu_transcoder));
6293         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6294         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6295         tmp = I915_READ(VBLANK(cpu_transcoder));
6296         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6297         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6298         tmp = I915_READ(VSYNC(cpu_transcoder));
6299         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6300         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6301
6302         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6303                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6304                 pipe_config->adjusted_mode.crtc_vtotal += 1;
6305                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6306         }
6307
6308         tmp = I915_READ(PIPESRC(crtc->pipe));
6309         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6310         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6311
6312         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6313         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6314 }
6315
6316 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6317                                  struct intel_crtc_config *pipe_config)
6318 {
6319         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6320         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6321         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6322         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6323
6324         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6325         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6326         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6327         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6328
6329         mode->flags = pipe_config->adjusted_mode.flags;
6330
6331         mode->clock = pipe_config->adjusted_mode.crtc_clock;
6332         mode->flags |= pipe_config->adjusted_mode.flags;
6333 }
6334
6335 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6336 {
6337         struct drm_device *dev = intel_crtc->base.dev;
6338         struct drm_i915_private *dev_priv = dev->dev_private;
6339         uint32_t pipeconf;
6340
6341         pipeconf = 0;
6342
6343         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6344             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6345                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6346
6347         if (intel_crtc->config.double_wide)
6348                 pipeconf |= PIPECONF_DOUBLE_WIDE;
6349
6350         /* only g4x and later have fancy bpc/dither controls */
6351         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6352                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6353                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6354                         pipeconf |= PIPECONF_DITHER_EN |
6355                                     PIPECONF_DITHER_TYPE_SP;
6356
6357                 switch (intel_crtc->config.pipe_bpp) {
6358                 case 18:
6359                         pipeconf |= PIPECONF_6BPC;
6360                         break;
6361                 case 24:
6362                         pipeconf |= PIPECONF_8BPC;
6363                         break;
6364                 case 30:
6365                         pipeconf |= PIPECONF_10BPC;
6366                         break;
6367                 default:
6368                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6369                         BUG();
6370                 }
6371         }
6372
6373         if (HAS_PIPE_CXSR(dev)) {
6374                 if (intel_crtc->lowfreq_avail) {
6375                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6376                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6377                 } else {
6378                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6379                 }
6380         }
6381
6382         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6383                 if (INTEL_INFO(dev)->gen < 4 ||
6384                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6385                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6386                 else
6387                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6388         } else
6389                 pipeconf |= PIPECONF_PROGRESSIVE;
6390
6391         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6392                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6393
6394         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6395         POSTING_READ(PIPECONF(intel_crtc->pipe));
6396 }
6397
6398 static int i9xx_crtc_mode_set(struct intel_crtc *crtc,
6399                               int x, int y,
6400                               struct drm_framebuffer *fb)
6401 {
6402         struct drm_device *dev = crtc->base.dev;
6403         struct drm_i915_private *dev_priv = dev->dev_private;
6404         int refclk, num_connectors = 0;
6405         intel_clock_t clock, reduced_clock;
6406         bool ok, has_reduced_clock = false;
6407         bool is_lvds = false, is_dsi = false;
6408         struct intel_encoder *encoder;
6409         const intel_limit_t *limit;
6410
6411         for_each_intel_encoder(dev, encoder) {
6412                 if (encoder->new_crtc != crtc)
6413                         continue;
6414
6415                 switch (encoder->type) {
6416                 case INTEL_OUTPUT_LVDS:
6417                         is_lvds = true;
6418                         break;
6419                 case INTEL_OUTPUT_DSI:
6420                         is_dsi = true;
6421                         break;
6422                 default:
6423                         break;
6424                 }
6425
6426                 num_connectors++;
6427         }
6428
6429         if (is_dsi)
6430                 return 0;
6431
6432         if (!crtc->new_config->clock_set) {
6433                 refclk = i9xx_get_refclk(crtc, num_connectors);
6434
6435                 /*
6436                  * Returns a set of divisors for the desired target clock with
6437                  * the given refclk, or FALSE.  The returned values represent
6438                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6439                  * 2) / p1 / p2.
6440                  */
6441                 limit = intel_limit(crtc, refclk);
6442                 ok = dev_priv->display.find_dpll(limit, crtc,
6443                                                  crtc->new_config->port_clock,
6444                                                  refclk, NULL, &clock);
6445                 if (!ok) {
6446                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6447                         return -EINVAL;
6448                 }
6449
6450                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6451                         /*
6452                          * Ensure we match the reduced clock's P to the target
6453                          * clock.  If the clocks don't match, we can't switch
6454                          * the display clock by using the FP0/FP1. In such case
6455                          * we will disable the LVDS downclock feature.
6456                          */
6457                         has_reduced_clock =
6458                                 dev_priv->display.find_dpll(limit, crtc,
6459                                                             dev_priv->lvds_downclock,
6460                                                             refclk, &clock,
6461                                                             &reduced_clock);
6462                 }
6463                 /* Compat-code for transition, will disappear. */
6464                 crtc->new_config->dpll.n = clock.n;
6465                 crtc->new_config->dpll.m1 = clock.m1;
6466                 crtc->new_config->dpll.m2 = clock.m2;
6467                 crtc->new_config->dpll.p1 = clock.p1;
6468                 crtc->new_config->dpll.p2 = clock.p2;
6469         }
6470
6471         if (IS_GEN2(dev)) {
6472                 i8xx_update_pll(crtc,
6473                                 has_reduced_clock ? &reduced_clock : NULL,
6474                                 num_connectors);
6475         } else if (IS_CHERRYVIEW(dev)) {
6476                 chv_update_pll(crtc, crtc->new_config);
6477         } else if (IS_VALLEYVIEW(dev)) {
6478                 vlv_update_pll(crtc, crtc->new_config);
6479         } else {
6480                 i9xx_update_pll(crtc,
6481                                 has_reduced_clock ? &reduced_clock : NULL,
6482                                 num_connectors);
6483         }
6484
6485         return 0;
6486 }
6487
6488 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6489                                  struct intel_crtc_config *pipe_config)
6490 {
6491         struct drm_device *dev = crtc->base.dev;
6492         struct drm_i915_private *dev_priv = dev->dev_private;
6493         uint32_t tmp;
6494
6495         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6496                 return;
6497
6498         tmp = I915_READ(PFIT_CONTROL);
6499         if (!(tmp & PFIT_ENABLE))
6500                 return;
6501
6502         /* Check whether the pfit is attached to our pipe. */
6503         if (INTEL_INFO(dev)->gen < 4) {
6504                 if (crtc->pipe != PIPE_B)
6505                         return;
6506         } else {
6507                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6508                         return;
6509         }
6510
6511         pipe_config->gmch_pfit.control = tmp;
6512         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6513         if (INTEL_INFO(dev)->gen < 5)
6514                 pipe_config->gmch_pfit.lvds_border_bits =
6515                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6516 }
6517
6518 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6519                                struct intel_crtc_config *pipe_config)
6520 {
6521         struct drm_device *dev = crtc->base.dev;
6522         struct drm_i915_private *dev_priv = dev->dev_private;
6523         int pipe = pipe_config->cpu_transcoder;
6524         intel_clock_t clock;
6525         u32 mdiv;
6526         int refclk = 100000;
6527
6528         /* In case of MIPI DPLL will not even be used */
6529         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6530                 return;
6531
6532         mutex_lock(&dev_priv->dpio_lock);
6533         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6534         mutex_unlock(&dev_priv->dpio_lock);
6535
6536         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6537         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6538         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6539         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6540         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6541
6542         vlv_clock(refclk, &clock);
6543
6544         /* clock.dot is the fast clock */
6545         pipe_config->port_clock = clock.dot / 5;
6546 }
6547
6548 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6549                                   struct intel_plane_config *plane_config)
6550 {
6551         struct drm_device *dev = crtc->base.dev;
6552         struct drm_i915_private *dev_priv = dev->dev_private;
6553         u32 val, base, offset;
6554         int pipe = crtc->pipe, plane = crtc->plane;
6555         int fourcc, pixel_format;
6556         int aligned_height;
6557
6558         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6559         if (!crtc->base.primary->fb) {
6560                 DRM_DEBUG_KMS("failed to alloc fb\n");
6561                 return;
6562         }
6563
6564         val = I915_READ(DSPCNTR(plane));
6565
6566         if (INTEL_INFO(dev)->gen >= 4)
6567                 if (val & DISPPLANE_TILED)
6568                         plane_config->tiled = true;
6569
6570         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6571         fourcc = intel_format_to_fourcc(pixel_format);
6572         crtc->base.primary->fb->pixel_format = fourcc;
6573         crtc->base.primary->fb->bits_per_pixel =
6574                 drm_format_plane_cpp(fourcc, 0) * 8;
6575
6576         if (INTEL_INFO(dev)->gen >= 4) {
6577                 if (plane_config->tiled)
6578                         offset = I915_READ(DSPTILEOFF(plane));
6579                 else
6580                         offset = I915_READ(DSPLINOFF(plane));
6581                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6582         } else {
6583                 base = I915_READ(DSPADDR(plane));
6584         }
6585         plane_config->base = base;
6586
6587         val = I915_READ(PIPESRC(pipe));
6588         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6589         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6590
6591         val = I915_READ(DSPSTRIDE(pipe));
6592         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6593
6594         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6595                                             plane_config->tiled);
6596
6597         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6598                                         aligned_height);
6599
6600         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6601                       pipe, plane, crtc->base.primary->fb->width,
6602                       crtc->base.primary->fb->height,
6603                       crtc->base.primary->fb->bits_per_pixel, base,
6604                       crtc->base.primary->fb->pitches[0],
6605                       plane_config->size);
6606
6607 }
6608
6609 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6610                                struct intel_crtc_config *pipe_config)
6611 {
6612         struct drm_device *dev = crtc->base.dev;
6613         struct drm_i915_private *dev_priv = dev->dev_private;
6614         int pipe = pipe_config->cpu_transcoder;
6615         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6616         intel_clock_t clock;
6617         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6618         int refclk = 100000;
6619
6620         mutex_lock(&dev_priv->dpio_lock);
6621         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6622         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6623         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6624         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6625         mutex_unlock(&dev_priv->dpio_lock);
6626
6627         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6628         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6629         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6630         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6631         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6632
6633         chv_clock(refclk, &clock);
6634
6635         /* clock.dot is the fast clock */
6636         pipe_config->port_clock = clock.dot / 5;
6637 }
6638
6639 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6640                                  struct intel_crtc_config *pipe_config)
6641 {
6642         struct drm_device *dev = crtc->base.dev;
6643         struct drm_i915_private *dev_priv = dev->dev_private;
6644         uint32_t tmp;
6645
6646         if (!intel_display_power_is_enabled(dev_priv,
6647                                             POWER_DOMAIN_PIPE(crtc->pipe)))
6648                 return false;
6649
6650         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6651         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6652
6653         tmp = I915_READ(PIPECONF(crtc->pipe));
6654         if (!(tmp & PIPECONF_ENABLE))
6655                 return false;
6656
6657         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6658                 switch (tmp & PIPECONF_BPC_MASK) {
6659                 case PIPECONF_6BPC:
6660                         pipe_config->pipe_bpp = 18;
6661                         break;
6662                 case PIPECONF_8BPC:
6663                         pipe_config->pipe_bpp = 24;
6664                         break;
6665                 case PIPECONF_10BPC:
6666                         pipe_config->pipe_bpp = 30;
6667                         break;
6668                 default:
6669                         break;
6670                 }
6671         }
6672
6673         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6674                 pipe_config->limited_color_range = true;
6675
6676         if (INTEL_INFO(dev)->gen < 4)
6677                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6678
6679         intel_get_pipe_timings(crtc, pipe_config);
6680
6681         i9xx_get_pfit_config(crtc, pipe_config);
6682
6683         if (INTEL_INFO(dev)->gen >= 4) {
6684                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6685                 pipe_config->pixel_multiplier =
6686                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6687                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6688                 pipe_config->dpll_hw_state.dpll_md = tmp;
6689         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6690                 tmp = I915_READ(DPLL(crtc->pipe));
6691                 pipe_config->pixel_multiplier =
6692                         ((tmp & SDVO_MULTIPLIER_MASK)
6693                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6694         } else {
6695                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6696                  * port and will be fixed up in the encoder->get_config
6697                  * function. */
6698                 pipe_config->pixel_multiplier = 1;
6699         }
6700         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6701         if (!IS_VALLEYVIEW(dev)) {
6702                 /*
6703                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6704                  * on 830. Filter it out here so that we don't
6705                  * report errors due to that.
6706                  */
6707                 if (IS_I830(dev))
6708                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6709
6710                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6711                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6712         } else {
6713                 /* Mask out read-only status bits. */
6714                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6715                                                      DPLL_PORTC_READY_MASK |
6716                                                      DPLL_PORTB_READY_MASK);
6717         }
6718
6719         if (IS_CHERRYVIEW(dev))
6720                 chv_crtc_clock_get(crtc, pipe_config);
6721         else if (IS_VALLEYVIEW(dev))
6722                 vlv_crtc_clock_get(crtc, pipe_config);
6723         else
6724                 i9xx_crtc_clock_get(crtc, pipe_config);
6725
6726         return true;
6727 }
6728
6729 static void ironlake_init_pch_refclk(struct drm_device *dev)
6730 {
6731         struct drm_i915_private *dev_priv = dev->dev_private;
6732         struct intel_encoder *encoder;
6733         u32 val, final;
6734         bool has_lvds = false;
6735         bool has_cpu_edp = false;
6736         bool has_panel = false;
6737         bool has_ck505 = false;
6738         bool can_ssc = false;
6739
6740         /* We need to take the global config into account */
6741         for_each_intel_encoder(dev, encoder) {
6742                 switch (encoder->type) {
6743                 case INTEL_OUTPUT_LVDS:
6744                         has_panel = true;
6745                         has_lvds = true;
6746                         break;
6747                 case INTEL_OUTPUT_EDP:
6748                         has_panel = true;
6749                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6750                                 has_cpu_edp = true;
6751                         break;
6752                 default:
6753                         break;
6754                 }
6755         }
6756
6757         if (HAS_PCH_IBX(dev)) {
6758                 has_ck505 = dev_priv->vbt.display_clock_mode;
6759                 can_ssc = has_ck505;
6760         } else {
6761                 has_ck505 = false;
6762                 can_ssc = true;
6763         }
6764
6765         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6766                       has_panel, has_lvds, has_ck505);
6767
6768         /* Ironlake: try to setup display ref clock before DPLL
6769          * enabling. This is only under driver's control after
6770          * PCH B stepping, previous chipset stepping should be
6771          * ignoring this setting.
6772          */
6773         val = I915_READ(PCH_DREF_CONTROL);
6774
6775         /* As we must carefully and slowly disable/enable each source in turn,
6776          * compute the final state we want first and check if we need to
6777          * make any changes at all.
6778          */
6779         final = val;
6780         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6781         if (has_ck505)
6782                 final |= DREF_NONSPREAD_CK505_ENABLE;
6783         else
6784                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6785
6786         final &= ~DREF_SSC_SOURCE_MASK;
6787         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6788         final &= ~DREF_SSC1_ENABLE;
6789
6790         if (has_panel) {
6791                 final |= DREF_SSC_SOURCE_ENABLE;
6792
6793                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6794                         final |= DREF_SSC1_ENABLE;
6795
6796                 if (has_cpu_edp) {
6797                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6798                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6799                         else
6800                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6801                 } else
6802                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6803         } else {
6804                 final |= DREF_SSC_SOURCE_DISABLE;
6805                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6806         }
6807
6808         if (final == val)
6809                 return;
6810
6811         /* Always enable nonspread source */
6812         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6813
6814         if (has_ck505)
6815                 val |= DREF_NONSPREAD_CK505_ENABLE;
6816         else
6817                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6818
6819         if (has_panel) {
6820                 val &= ~DREF_SSC_SOURCE_MASK;
6821                 val |= DREF_SSC_SOURCE_ENABLE;
6822
6823                 /* SSC must be turned on before enabling the CPU output  */
6824                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6825                         DRM_DEBUG_KMS("Using SSC on panel\n");
6826                         val |= DREF_SSC1_ENABLE;
6827                 } else
6828                         val &= ~DREF_SSC1_ENABLE;
6829
6830                 /* Get SSC going before enabling the outputs */
6831                 I915_WRITE(PCH_DREF_CONTROL, val);
6832                 POSTING_READ(PCH_DREF_CONTROL);
6833                 udelay(200);
6834
6835                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6836
6837                 /* Enable CPU source on CPU attached eDP */
6838                 if (has_cpu_edp) {
6839                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6840                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6841                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6842                         } else
6843                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6844                 } else
6845                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6846
6847                 I915_WRITE(PCH_DREF_CONTROL, val);
6848                 POSTING_READ(PCH_DREF_CONTROL);
6849                 udelay(200);
6850         } else {
6851                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6852
6853                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6854
6855                 /* Turn off CPU output */
6856                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6857
6858                 I915_WRITE(PCH_DREF_CONTROL, val);
6859                 POSTING_READ(PCH_DREF_CONTROL);
6860                 udelay(200);
6861
6862                 /* Turn off the SSC source */
6863                 val &= ~DREF_SSC_SOURCE_MASK;
6864                 val |= DREF_SSC_SOURCE_DISABLE;
6865
6866                 /* Turn off SSC1 */
6867                 val &= ~DREF_SSC1_ENABLE;
6868
6869                 I915_WRITE(PCH_DREF_CONTROL, val);
6870                 POSTING_READ(PCH_DREF_CONTROL);
6871                 udelay(200);
6872         }
6873
6874         BUG_ON(val != final);
6875 }
6876
6877 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6878 {
6879         uint32_t tmp;
6880
6881         tmp = I915_READ(SOUTH_CHICKEN2);
6882         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6883         I915_WRITE(SOUTH_CHICKEN2, tmp);
6884
6885         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6886                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6887                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6888
6889         tmp = I915_READ(SOUTH_CHICKEN2);
6890         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6891         I915_WRITE(SOUTH_CHICKEN2, tmp);
6892
6893         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6894                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6895                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6896 }
6897
6898 /* WaMPhyProgramming:hsw */
6899 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6900 {
6901         uint32_t tmp;
6902
6903         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6904         tmp &= ~(0xFF << 24);
6905         tmp |= (0x12 << 24);
6906         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6907
6908         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6909         tmp |= (1 << 11);
6910         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6911
6912         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6913         tmp |= (1 << 11);
6914         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6915
6916         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6917         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6918         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6919
6920         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6921         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6922         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6923
6924         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6925         tmp &= ~(7 << 13);
6926         tmp |= (5 << 13);
6927         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6928
6929         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6930         tmp &= ~(7 << 13);
6931         tmp |= (5 << 13);
6932         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6933
6934         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6935         tmp &= ~0xFF;
6936         tmp |= 0x1C;
6937         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6938
6939         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6940         tmp &= ~0xFF;
6941         tmp |= 0x1C;
6942         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6943
6944         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6945         tmp &= ~(0xFF << 16);
6946         tmp |= (0x1C << 16);
6947         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6948
6949         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6950         tmp &= ~(0xFF << 16);
6951         tmp |= (0x1C << 16);
6952         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6953
6954         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6955         tmp |= (1 << 27);
6956         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6957
6958         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6959         tmp |= (1 << 27);
6960         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6961
6962         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6963         tmp &= ~(0xF << 28);
6964         tmp |= (4 << 28);
6965         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6966
6967         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6968         tmp &= ~(0xF << 28);
6969         tmp |= (4 << 28);
6970         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6971 }
6972
6973 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6974  * Programming" based on the parameters passed:
6975  * - Sequence to enable CLKOUT_DP
6976  * - Sequence to enable CLKOUT_DP without spread
6977  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6978  */
6979 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6980                                  bool with_fdi)
6981 {
6982         struct drm_i915_private *dev_priv = dev->dev_private;
6983         uint32_t reg, tmp;
6984
6985         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6986                 with_spread = true;
6987         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6988                  with_fdi, "LP PCH doesn't have FDI\n"))
6989                 with_fdi = false;
6990
6991         mutex_lock(&dev_priv->dpio_lock);
6992
6993         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6994         tmp &= ~SBI_SSCCTL_DISABLE;
6995         tmp |= SBI_SSCCTL_PATHALT;
6996         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6997
6998         udelay(24);
6999
7000         if (with_spread) {
7001                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7002                 tmp &= ~SBI_SSCCTL_PATHALT;
7003                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7004
7005                 if (with_fdi) {
7006                         lpt_reset_fdi_mphy(dev_priv);
7007                         lpt_program_fdi_mphy(dev_priv);
7008                 }
7009         }
7010
7011         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7012                SBI_GEN0 : SBI_DBUFF0;
7013         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7014         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7015         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7016
7017         mutex_unlock(&dev_priv->dpio_lock);
7018 }
7019
7020 /* Sequence to disable CLKOUT_DP */
7021 static void lpt_disable_clkout_dp(struct drm_device *dev)
7022 {
7023         struct drm_i915_private *dev_priv = dev->dev_private;
7024         uint32_t reg, tmp;
7025
7026         mutex_lock(&dev_priv->dpio_lock);
7027
7028         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7029                SBI_GEN0 : SBI_DBUFF0;
7030         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7031         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7032         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7033
7034         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7035         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7036                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7037                         tmp |= SBI_SSCCTL_PATHALT;
7038                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7039                         udelay(32);
7040                 }
7041                 tmp |= SBI_SSCCTL_DISABLE;
7042                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7043         }
7044
7045         mutex_unlock(&dev_priv->dpio_lock);
7046 }
7047
7048 static void lpt_init_pch_refclk(struct drm_device *dev)
7049 {
7050         struct intel_encoder *encoder;
7051         bool has_vga = false;
7052
7053         for_each_intel_encoder(dev, encoder) {
7054                 switch (encoder->type) {
7055                 case INTEL_OUTPUT_ANALOG:
7056                         has_vga = true;
7057                         break;
7058                 default:
7059                         break;
7060                 }
7061         }
7062
7063         if (has_vga)
7064                 lpt_enable_clkout_dp(dev, true, true);
7065         else
7066                 lpt_disable_clkout_dp(dev);
7067 }
7068
7069 /*
7070  * Initialize reference clocks when the driver loads
7071  */
7072 void intel_init_pch_refclk(struct drm_device *dev)
7073 {
7074         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7075                 ironlake_init_pch_refclk(dev);
7076         else if (HAS_PCH_LPT(dev))
7077                 lpt_init_pch_refclk(dev);
7078 }
7079
7080 static int ironlake_get_refclk(struct drm_crtc *crtc)
7081 {
7082         struct drm_device *dev = crtc->dev;
7083         struct drm_i915_private *dev_priv = dev->dev_private;
7084         struct intel_encoder *encoder;
7085         int num_connectors = 0;
7086         bool is_lvds = false;
7087
7088         for_each_intel_encoder(dev, encoder) {
7089                 if (encoder->new_crtc != to_intel_crtc(crtc))
7090                         continue;
7091
7092                 switch (encoder->type) {
7093                 case INTEL_OUTPUT_LVDS:
7094                         is_lvds = true;
7095                         break;
7096                 default:
7097                         break;
7098                 }
7099                 num_connectors++;
7100         }
7101
7102         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7103                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7104                               dev_priv->vbt.lvds_ssc_freq);
7105                 return dev_priv->vbt.lvds_ssc_freq;
7106         }
7107
7108         return 120000;
7109 }
7110
7111 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7112 {
7113         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7114         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7115         int pipe = intel_crtc->pipe;
7116         uint32_t val;
7117
7118         val = 0;
7119
7120         switch (intel_crtc->config.pipe_bpp) {
7121         case 18:
7122                 val |= PIPECONF_6BPC;
7123                 break;
7124         case 24:
7125                 val |= PIPECONF_8BPC;
7126                 break;
7127         case 30:
7128                 val |= PIPECONF_10BPC;
7129                 break;
7130         case 36:
7131                 val |= PIPECONF_12BPC;
7132                 break;
7133         default:
7134                 /* Case prevented by intel_choose_pipe_bpp_dither. */
7135                 BUG();
7136         }
7137
7138         if (intel_crtc->config.dither)
7139                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7140
7141         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7142                 val |= PIPECONF_INTERLACED_ILK;
7143         else
7144                 val |= PIPECONF_PROGRESSIVE;
7145
7146         if (intel_crtc->config.limited_color_range)
7147                 val |= PIPECONF_COLOR_RANGE_SELECT;
7148
7149         I915_WRITE(PIPECONF(pipe), val);
7150         POSTING_READ(PIPECONF(pipe));
7151 }
7152
7153 /*
7154  * Set up the pipe CSC unit.
7155  *
7156  * Currently only full range RGB to limited range RGB conversion
7157  * is supported, but eventually this should handle various
7158  * RGB<->YCbCr scenarios as well.
7159  */
7160 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7161 {
7162         struct drm_device *dev = crtc->dev;
7163         struct drm_i915_private *dev_priv = dev->dev_private;
7164         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7165         int pipe = intel_crtc->pipe;
7166         uint16_t coeff = 0x7800; /* 1.0 */
7167
7168         /*
7169          * TODO: Check what kind of values actually come out of the pipe
7170          * with these coeff/postoff values and adjust to get the best
7171          * accuracy. Perhaps we even need to take the bpc value into
7172          * consideration.
7173          */
7174
7175         if (intel_crtc->config.limited_color_range)
7176                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7177
7178         /*
7179          * GY/GU and RY/RU should be the other way around according
7180          * to BSpec, but reality doesn't agree. Just set them up in
7181          * a way that results in the correct picture.
7182          */
7183         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7184         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7185
7186         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7187         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7188
7189         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7190         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7191
7192         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7193         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7194         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7195
7196         if (INTEL_INFO(dev)->gen > 6) {
7197                 uint16_t postoff = 0;
7198
7199                 if (intel_crtc->config.limited_color_range)
7200                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
7201
7202                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7203                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7204                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7205
7206                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7207         } else {
7208                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7209
7210                 if (intel_crtc->config.limited_color_range)
7211                         mode |= CSC_BLACK_SCREEN_OFFSET;
7212
7213                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7214         }
7215 }
7216
7217 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7218 {
7219         struct drm_device *dev = crtc->dev;
7220         struct drm_i915_private *dev_priv = dev->dev_private;
7221         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7222         enum pipe pipe = intel_crtc->pipe;
7223         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7224         uint32_t val;
7225
7226         val = 0;
7227
7228         if (IS_HASWELL(dev) && intel_crtc->config.dither)
7229                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7230
7231         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7232                 val |= PIPECONF_INTERLACED_ILK;
7233         else
7234                 val |= PIPECONF_PROGRESSIVE;
7235
7236         I915_WRITE(PIPECONF(cpu_transcoder), val);
7237         POSTING_READ(PIPECONF(cpu_transcoder));
7238
7239         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7240         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7241
7242         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7243                 val = 0;
7244
7245                 switch (intel_crtc->config.pipe_bpp) {
7246                 case 18:
7247                         val |= PIPEMISC_DITHER_6_BPC;
7248                         break;
7249                 case 24:
7250                         val |= PIPEMISC_DITHER_8_BPC;
7251                         break;
7252                 case 30:
7253                         val |= PIPEMISC_DITHER_10_BPC;
7254                         break;
7255                 case 36:
7256                         val |= PIPEMISC_DITHER_12_BPC;
7257                         break;
7258                 default:
7259                         /* Case prevented by pipe_config_set_bpp. */
7260                         BUG();
7261                 }
7262
7263                 if (intel_crtc->config.dither)
7264                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7265
7266                 I915_WRITE(PIPEMISC(pipe), val);
7267         }
7268 }
7269
7270 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7271                                     intel_clock_t *clock,
7272                                     bool *has_reduced_clock,
7273                                     intel_clock_t *reduced_clock)
7274 {
7275         struct drm_device *dev = crtc->dev;
7276         struct drm_i915_private *dev_priv = dev->dev_private;
7277         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7278         int refclk;
7279         const intel_limit_t *limit;
7280         bool ret, is_lvds = false;
7281
7282         is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7283
7284         refclk = ironlake_get_refclk(crtc);
7285
7286         /*
7287          * Returns a set of divisors for the desired target clock with the given
7288          * refclk, or FALSE.  The returned values represent the clock equation:
7289          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7290          */
7291         limit = intel_limit(intel_crtc, refclk);
7292         ret = dev_priv->display.find_dpll(limit, intel_crtc,
7293                                           intel_crtc->new_config->port_clock,
7294                                           refclk, NULL, clock);
7295         if (!ret)
7296                 return false;
7297
7298         if (is_lvds && dev_priv->lvds_downclock_avail) {
7299                 /*
7300                  * Ensure we match the reduced clock's P to the target clock.
7301                  * If the clocks don't match, we can't switch the display clock
7302                  * by using the FP0/FP1. In such case we will disable the LVDS
7303                  * downclock feature.
7304                 */
7305                 *has_reduced_clock =
7306                         dev_priv->display.find_dpll(limit, intel_crtc,
7307                                                     dev_priv->lvds_downclock,
7308                                                     refclk, clock,
7309                                                     reduced_clock);
7310         }
7311
7312         return true;
7313 }
7314
7315 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7316 {
7317         /*
7318          * Account for spread spectrum to avoid
7319          * oversubscribing the link. Max center spread
7320          * is 2.5%; use 5% for safety's sake.
7321          */
7322         u32 bps = target_clock * bpp * 21 / 20;
7323         return DIV_ROUND_UP(bps, link_bw * 8);
7324 }
7325
7326 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7327 {
7328         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7329 }
7330
7331 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7332                                       u32 *fp,
7333                                       intel_clock_t *reduced_clock, u32 *fp2)
7334 {
7335         struct drm_crtc *crtc = &intel_crtc->base;
7336         struct drm_device *dev = crtc->dev;
7337         struct drm_i915_private *dev_priv = dev->dev_private;
7338         struct intel_encoder *intel_encoder;
7339         uint32_t dpll;
7340         int factor, num_connectors = 0;
7341         bool is_lvds = false, is_sdvo = false;
7342
7343         for_each_intel_encoder(dev, intel_encoder) {
7344                 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7345                         continue;
7346
7347                 switch (intel_encoder->type) {
7348                 case INTEL_OUTPUT_LVDS:
7349                         is_lvds = true;
7350                         break;
7351                 case INTEL_OUTPUT_SDVO:
7352                 case INTEL_OUTPUT_HDMI:
7353                         is_sdvo = true;
7354                         break;
7355                 default:
7356                         break;
7357                 }
7358
7359                 num_connectors++;
7360         }
7361
7362         /* Enable autotuning of the PLL clock (if permissible) */
7363         factor = 21;
7364         if (is_lvds) {
7365                 if ((intel_panel_use_ssc(dev_priv) &&
7366                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7367                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7368                         factor = 25;
7369         } else if (intel_crtc->new_config->sdvo_tv_clock)
7370                 factor = 20;
7371
7372         if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor))
7373                 *fp |= FP_CB_TUNE;
7374
7375         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7376                 *fp2 |= FP_CB_TUNE;
7377
7378         dpll = 0;
7379
7380         if (is_lvds)
7381                 dpll |= DPLLB_MODE_LVDS;
7382         else
7383                 dpll |= DPLLB_MODE_DAC_SERIAL;
7384
7385         dpll |= (intel_crtc->new_config->pixel_multiplier - 1)
7386                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7387
7388         if (is_sdvo)
7389                 dpll |= DPLL_SDVO_HIGH_SPEED;
7390         if (intel_crtc->new_config->has_dp_encoder)
7391                 dpll |= DPLL_SDVO_HIGH_SPEED;
7392
7393         /* compute bitmask from p1 value */
7394         dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7395         /* also FPA1 */
7396         dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7397
7398         switch (intel_crtc->new_config->dpll.p2) {
7399         case 5:
7400                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7401                 break;
7402         case 7:
7403                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7404                 break;
7405         case 10:
7406                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7407                 break;
7408         case 14:
7409                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7410                 break;
7411         }
7412
7413         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7414                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7415         else
7416                 dpll |= PLL_REF_INPUT_DREFCLK;
7417
7418         return dpll | DPLL_VCO_ENABLE;
7419 }
7420
7421 static int ironlake_crtc_mode_set(struct intel_crtc *crtc,
7422                                   int x, int y,
7423                                   struct drm_framebuffer *fb)
7424 {
7425         struct drm_device *dev = crtc->base.dev;
7426         intel_clock_t clock, reduced_clock;
7427         u32 dpll = 0, fp = 0, fp2 = 0;
7428         bool ok, has_reduced_clock = false;
7429         bool is_lvds = false;
7430         struct intel_shared_dpll *pll;
7431
7432         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7433
7434         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7435              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7436
7437         ok = ironlake_compute_clocks(&crtc->base, &clock,
7438                                      &has_reduced_clock, &reduced_clock);
7439         if (!ok && !crtc->new_config->clock_set) {
7440                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7441                 return -EINVAL;
7442         }
7443         /* Compat-code for transition, will disappear. */
7444         if (!crtc->new_config->clock_set) {
7445                 crtc->new_config->dpll.n = clock.n;
7446                 crtc->new_config->dpll.m1 = clock.m1;
7447                 crtc->new_config->dpll.m2 = clock.m2;
7448                 crtc->new_config->dpll.p1 = clock.p1;
7449                 crtc->new_config->dpll.p2 = clock.p2;
7450         }
7451
7452         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7453         if (crtc->new_config->has_pch_encoder) {
7454                 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
7455                 if (has_reduced_clock)
7456                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7457
7458                 dpll = ironlake_compute_dpll(crtc,
7459                                              &fp, &reduced_clock,
7460                                              has_reduced_clock ? &fp2 : NULL);
7461
7462                 crtc->new_config->dpll_hw_state.dpll = dpll;
7463                 crtc->new_config->dpll_hw_state.fp0 = fp;
7464                 if (has_reduced_clock)
7465                         crtc->new_config->dpll_hw_state.fp1 = fp2;
7466                 else
7467                         crtc->new_config->dpll_hw_state.fp1 = fp;
7468
7469                 if (intel_crtc_to_shared_dpll(crtc))
7470                         intel_put_shared_dpll(crtc);
7471
7472                 pll = intel_get_shared_dpll(crtc);
7473                 if (pll == NULL) {
7474                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7475                                          pipe_name(crtc->pipe));
7476                         return -EINVAL;
7477                 }
7478         } else
7479                 intel_put_shared_dpll(crtc);
7480
7481         if (is_lvds && has_reduced_clock && i915.powersave)
7482                 crtc->lowfreq_avail = true;
7483         else
7484                 crtc->lowfreq_avail = false;
7485
7486         return 0;
7487 }
7488
7489 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7490                                          struct intel_link_m_n *m_n)
7491 {
7492         struct drm_device *dev = crtc->base.dev;
7493         struct drm_i915_private *dev_priv = dev->dev_private;
7494         enum pipe pipe = crtc->pipe;
7495
7496         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7497         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7498         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7499                 & ~TU_SIZE_MASK;
7500         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7501         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7502                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7503 }
7504
7505 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7506                                          enum transcoder transcoder,
7507                                          struct intel_link_m_n *m_n,
7508                                          struct intel_link_m_n *m2_n2)
7509 {
7510         struct drm_device *dev = crtc->base.dev;
7511         struct drm_i915_private *dev_priv = dev->dev_private;
7512         enum pipe pipe = crtc->pipe;
7513
7514         if (INTEL_INFO(dev)->gen >= 5) {
7515                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7516                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7517                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7518                         & ~TU_SIZE_MASK;
7519                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7520                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7521                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7522                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7523                  * gen < 8) and if DRRS is supported (to make sure the
7524                  * registers are not unnecessarily read).
7525                  */
7526                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7527                         crtc->config.has_drrs) {
7528                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7529                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7530                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7531                                         & ~TU_SIZE_MASK;
7532                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7533                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7534                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7535                 }
7536         } else {
7537                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7538                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7539                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7540                         & ~TU_SIZE_MASK;
7541                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7542                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7543                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7544         }
7545 }
7546
7547 void intel_dp_get_m_n(struct intel_crtc *crtc,
7548                       struct intel_crtc_config *pipe_config)
7549 {
7550         if (crtc->config.has_pch_encoder)
7551                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7552         else
7553                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7554                                              &pipe_config->dp_m_n,
7555                                              &pipe_config->dp_m2_n2);
7556 }
7557
7558 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7559                                         struct intel_crtc_config *pipe_config)
7560 {
7561         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7562                                      &pipe_config->fdi_m_n, NULL);
7563 }
7564
7565 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7566                                      struct intel_crtc_config *pipe_config)
7567 {
7568         struct drm_device *dev = crtc->base.dev;
7569         struct drm_i915_private *dev_priv = dev->dev_private;
7570         uint32_t tmp;
7571
7572         tmp = I915_READ(PF_CTL(crtc->pipe));
7573
7574         if (tmp & PF_ENABLE) {
7575                 pipe_config->pch_pfit.enabled = true;
7576                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7577                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7578
7579                 /* We currently do not free assignements of panel fitters on
7580                  * ivb/hsw (since we don't use the higher upscaling modes which
7581                  * differentiates them) so just WARN about this case for now. */
7582                 if (IS_GEN7(dev)) {
7583                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7584                                 PF_PIPE_SEL_IVB(crtc->pipe));
7585                 }
7586         }
7587 }
7588
7589 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7590                                       struct intel_plane_config *plane_config)
7591 {
7592         struct drm_device *dev = crtc->base.dev;
7593         struct drm_i915_private *dev_priv = dev->dev_private;
7594         u32 val, base, offset;
7595         int pipe = crtc->pipe, plane = crtc->plane;
7596         int fourcc, pixel_format;
7597         int aligned_height;
7598
7599         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7600         if (!crtc->base.primary->fb) {
7601                 DRM_DEBUG_KMS("failed to alloc fb\n");
7602                 return;
7603         }
7604
7605         val = I915_READ(DSPCNTR(plane));
7606
7607         if (INTEL_INFO(dev)->gen >= 4)
7608                 if (val & DISPPLANE_TILED)
7609                         plane_config->tiled = true;
7610
7611         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7612         fourcc = intel_format_to_fourcc(pixel_format);
7613         crtc->base.primary->fb->pixel_format = fourcc;
7614         crtc->base.primary->fb->bits_per_pixel =
7615                 drm_format_plane_cpp(fourcc, 0) * 8;
7616
7617         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7618         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7619                 offset = I915_READ(DSPOFFSET(plane));
7620         } else {
7621                 if (plane_config->tiled)
7622                         offset = I915_READ(DSPTILEOFF(plane));
7623                 else
7624                         offset = I915_READ(DSPLINOFF(plane));
7625         }
7626         plane_config->base = base;
7627
7628         val = I915_READ(PIPESRC(pipe));
7629         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7630         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7631
7632         val = I915_READ(DSPSTRIDE(pipe));
7633         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7634
7635         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7636                                             plane_config->tiled);
7637
7638         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7639                                         aligned_height);
7640
7641         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7642                       pipe, plane, crtc->base.primary->fb->width,
7643                       crtc->base.primary->fb->height,
7644                       crtc->base.primary->fb->bits_per_pixel, base,
7645                       crtc->base.primary->fb->pitches[0],
7646                       plane_config->size);
7647 }
7648
7649 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7650                                      struct intel_crtc_config *pipe_config)
7651 {
7652         struct drm_device *dev = crtc->base.dev;
7653         struct drm_i915_private *dev_priv = dev->dev_private;
7654         uint32_t tmp;
7655
7656         if (!intel_display_power_is_enabled(dev_priv,
7657                                             POWER_DOMAIN_PIPE(crtc->pipe)))
7658                 return false;
7659
7660         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7661         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7662
7663         tmp = I915_READ(PIPECONF(crtc->pipe));
7664         if (!(tmp & PIPECONF_ENABLE))
7665                 return false;
7666
7667         switch (tmp & PIPECONF_BPC_MASK) {
7668         case PIPECONF_6BPC:
7669                 pipe_config->pipe_bpp = 18;
7670                 break;
7671         case PIPECONF_8BPC:
7672                 pipe_config->pipe_bpp = 24;
7673                 break;
7674         case PIPECONF_10BPC:
7675                 pipe_config->pipe_bpp = 30;
7676                 break;
7677         case PIPECONF_12BPC:
7678                 pipe_config->pipe_bpp = 36;
7679                 break;
7680         default:
7681                 break;
7682         }
7683
7684         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7685                 pipe_config->limited_color_range = true;
7686
7687         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7688                 struct intel_shared_dpll *pll;
7689
7690                 pipe_config->has_pch_encoder = true;
7691
7692                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7693                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7694                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7695
7696                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7697
7698                 if (HAS_PCH_IBX(dev_priv->dev)) {
7699                         pipe_config->shared_dpll =
7700                                 (enum intel_dpll_id) crtc->pipe;
7701                 } else {
7702                         tmp = I915_READ(PCH_DPLL_SEL);
7703                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7704                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7705                         else
7706                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7707                 }
7708
7709                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7710
7711                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7712                                            &pipe_config->dpll_hw_state));
7713
7714                 tmp = pipe_config->dpll_hw_state.dpll;
7715                 pipe_config->pixel_multiplier =
7716                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7717                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7718
7719                 ironlake_pch_clock_get(crtc, pipe_config);
7720         } else {
7721                 pipe_config->pixel_multiplier = 1;
7722         }
7723
7724         intel_get_pipe_timings(crtc, pipe_config);
7725
7726         ironlake_get_pfit_config(crtc, pipe_config);
7727
7728         return true;
7729 }
7730
7731 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7732 {
7733         struct drm_device *dev = dev_priv->dev;
7734         struct intel_crtc *crtc;
7735
7736         for_each_intel_crtc(dev, crtc)
7737                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7738                      pipe_name(crtc->pipe));
7739
7740         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7741         WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7742         WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7743         WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7744         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7745         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7746              "CPU PWM1 enabled\n");
7747         if (IS_HASWELL(dev))
7748                 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7749                      "CPU PWM2 enabled\n");
7750         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7751              "PCH PWM1 enabled\n");
7752         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7753              "Utility pin enabled\n");
7754         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7755
7756         /*
7757          * In theory we can still leave IRQs enabled, as long as only the HPD
7758          * interrupts remain enabled. We used to check for that, but since it's
7759          * gen-specific and since we only disable LCPLL after we fully disable
7760          * the interrupts, the check below should be enough.
7761          */
7762         WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7763 }
7764
7765 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7766 {
7767         struct drm_device *dev = dev_priv->dev;
7768
7769         if (IS_HASWELL(dev))
7770                 return I915_READ(D_COMP_HSW);
7771         else
7772                 return I915_READ(D_COMP_BDW);
7773 }
7774
7775 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7776 {
7777         struct drm_device *dev = dev_priv->dev;
7778
7779         if (IS_HASWELL(dev)) {
7780                 mutex_lock(&dev_priv->rps.hw_lock);
7781                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7782                                             val))
7783                         DRM_ERROR("Failed to write to D_COMP\n");
7784                 mutex_unlock(&dev_priv->rps.hw_lock);
7785         } else {
7786                 I915_WRITE(D_COMP_BDW, val);
7787                 POSTING_READ(D_COMP_BDW);
7788         }
7789 }
7790
7791 /*
7792  * This function implements pieces of two sequences from BSpec:
7793  * - Sequence for display software to disable LCPLL
7794  * - Sequence for display software to allow package C8+
7795  * The steps implemented here are just the steps that actually touch the LCPLL
7796  * register. Callers should take care of disabling all the display engine
7797  * functions, doing the mode unset, fixing interrupts, etc.
7798  */
7799 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7800                               bool switch_to_fclk, bool allow_power_down)
7801 {
7802         uint32_t val;
7803
7804         assert_can_disable_lcpll(dev_priv);
7805
7806         val = I915_READ(LCPLL_CTL);
7807
7808         if (switch_to_fclk) {
7809                 val |= LCPLL_CD_SOURCE_FCLK;
7810                 I915_WRITE(LCPLL_CTL, val);
7811
7812                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7813                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7814                         DRM_ERROR("Switching to FCLK failed\n");
7815
7816                 val = I915_READ(LCPLL_CTL);
7817         }
7818
7819         val |= LCPLL_PLL_DISABLE;
7820         I915_WRITE(LCPLL_CTL, val);
7821         POSTING_READ(LCPLL_CTL);
7822
7823         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7824                 DRM_ERROR("LCPLL still locked\n");
7825
7826         val = hsw_read_dcomp(dev_priv);
7827         val |= D_COMP_COMP_DISABLE;
7828         hsw_write_dcomp(dev_priv, val);
7829         ndelay(100);
7830
7831         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7832                      1))
7833                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7834
7835         if (allow_power_down) {
7836                 val = I915_READ(LCPLL_CTL);
7837                 val |= LCPLL_POWER_DOWN_ALLOW;
7838                 I915_WRITE(LCPLL_CTL, val);
7839                 POSTING_READ(LCPLL_CTL);
7840         }
7841 }
7842
7843 /*
7844  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7845  * source.
7846  */
7847 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7848 {
7849         uint32_t val;
7850
7851         val = I915_READ(LCPLL_CTL);
7852
7853         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7854                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7855                 return;
7856
7857         /*
7858          * Make sure we're not on PC8 state before disabling PC8, otherwise
7859          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7860          *
7861          * The other problem is that hsw_restore_lcpll() is called as part of
7862          * the runtime PM resume sequence, so we can't just call
7863          * gen6_gt_force_wake_get() because that function calls
7864          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7865          * while we are on the resume sequence. So to solve this problem we have
7866          * to call special forcewake code that doesn't touch runtime PM and
7867          * doesn't enable the forcewake delayed work.
7868          */
7869         spin_lock_irq(&dev_priv->uncore.lock);
7870         if (dev_priv->uncore.forcewake_count++ == 0)
7871                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7872         spin_unlock_irq(&dev_priv->uncore.lock);
7873
7874         if (val & LCPLL_POWER_DOWN_ALLOW) {
7875                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7876                 I915_WRITE(LCPLL_CTL, val);
7877                 POSTING_READ(LCPLL_CTL);
7878         }
7879
7880         val = hsw_read_dcomp(dev_priv);
7881         val |= D_COMP_COMP_FORCE;
7882         val &= ~D_COMP_COMP_DISABLE;
7883         hsw_write_dcomp(dev_priv, val);
7884
7885         val = I915_READ(LCPLL_CTL);
7886         val &= ~LCPLL_PLL_DISABLE;
7887         I915_WRITE(LCPLL_CTL, val);
7888
7889         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7890                 DRM_ERROR("LCPLL not locked yet\n");
7891
7892         if (val & LCPLL_CD_SOURCE_FCLK) {
7893                 val = I915_READ(LCPLL_CTL);
7894                 val &= ~LCPLL_CD_SOURCE_FCLK;
7895                 I915_WRITE(LCPLL_CTL, val);
7896
7897                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7898                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7899                         DRM_ERROR("Switching back to LCPLL failed\n");
7900         }
7901
7902         /* See the big comment above. */
7903         spin_lock_irq(&dev_priv->uncore.lock);
7904         if (--dev_priv->uncore.forcewake_count == 0)
7905                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7906         spin_unlock_irq(&dev_priv->uncore.lock);
7907 }
7908
7909 /*
7910  * Package states C8 and deeper are really deep PC states that can only be
7911  * reached when all the devices on the system allow it, so even if the graphics
7912  * device allows PC8+, it doesn't mean the system will actually get to these
7913  * states. Our driver only allows PC8+ when going into runtime PM.
7914  *
7915  * The requirements for PC8+ are that all the outputs are disabled, the power
7916  * well is disabled and most interrupts are disabled, and these are also
7917  * requirements for runtime PM. When these conditions are met, we manually do
7918  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7919  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7920  * hang the machine.
7921  *
7922  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7923  * the state of some registers, so when we come back from PC8+ we need to
7924  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7925  * need to take care of the registers kept by RC6. Notice that this happens even
7926  * if we don't put the device in PCI D3 state (which is what currently happens
7927  * because of the runtime PM support).
7928  *
7929  * For more, read "Display Sequences for Package C8" on the hardware
7930  * documentation.
7931  */
7932 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7933 {
7934         struct drm_device *dev = dev_priv->dev;
7935         uint32_t val;
7936
7937         DRM_DEBUG_KMS("Enabling package C8+\n");
7938
7939         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7940                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7941                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7942                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7943         }
7944
7945         lpt_disable_clkout_dp(dev);
7946         hsw_disable_lcpll(dev_priv, true, true);
7947 }
7948
7949 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7950 {
7951         struct drm_device *dev = dev_priv->dev;
7952         uint32_t val;
7953
7954         DRM_DEBUG_KMS("Disabling package C8+\n");
7955
7956         hsw_restore_lcpll(dev_priv);
7957         lpt_init_pch_refclk(dev);
7958
7959         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7960                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7961                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7962                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7963         }
7964
7965         intel_prepare_ddi(dev);
7966 }
7967
7968 static void snb_modeset_global_resources(struct drm_device *dev)
7969 {
7970         modeset_update_crtc_power_domains(dev);
7971 }
7972
7973 static void haswell_modeset_global_resources(struct drm_device *dev)
7974 {
7975         modeset_update_crtc_power_domains(dev);
7976 }
7977
7978 static int haswell_crtc_mode_set(struct intel_crtc *crtc,
7979                                  int x, int y,
7980                                  struct drm_framebuffer *fb)
7981 {
7982         if (!intel_ddi_pll_select(crtc))
7983                 return -EINVAL;
7984
7985         crtc->lowfreq_avail = false;
7986
7987         return 0;
7988 }
7989
7990 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7991                                 enum port port,
7992                                 struct intel_crtc_config *pipe_config)
7993 {
7994         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7995
7996         switch (pipe_config->ddi_pll_sel) {
7997         case PORT_CLK_SEL_WRPLL1:
7998                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7999                 break;
8000         case PORT_CLK_SEL_WRPLL2:
8001                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8002                 break;
8003         }
8004 }
8005
8006 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8007                                        struct intel_crtc_config *pipe_config)
8008 {
8009         struct drm_device *dev = crtc->base.dev;
8010         struct drm_i915_private *dev_priv = dev->dev_private;
8011         struct intel_shared_dpll *pll;
8012         enum port port;
8013         uint32_t tmp;
8014
8015         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8016
8017         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8018
8019         haswell_get_ddi_pll(dev_priv, port, pipe_config);
8020
8021         if (pipe_config->shared_dpll >= 0) {
8022                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8023
8024                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8025                                            &pipe_config->dpll_hw_state));
8026         }
8027
8028         /*
8029          * Haswell has only FDI/PCH transcoder A. It is which is connected to
8030          * DDI E. So just check whether this pipe is wired to DDI E and whether
8031          * the PCH transcoder is on.
8032          */
8033         if (INTEL_INFO(dev)->gen < 9 &&
8034             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8035                 pipe_config->has_pch_encoder = true;
8036
8037                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8038                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8039                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8040
8041                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8042         }
8043 }
8044
8045 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8046                                     struct intel_crtc_config *pipe_config)
8047 {
8048         struct drm_device *dev = crtc->base.dev;
8049         struct drm_i915_private *dev_priv = dev->dev_private;
8050         enum intel_display_power_domain pfit_domain;
8051         uint32_t tmp;
8052
8053         if (!intel_display_power_is_enabled(dev_priv,
8054                                          POWER_DOMAIN_PIPE(crtc->pipe)))
8055                 return false;
8056
8057         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8058         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8059
8060         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8061         if (tmp & TRANS_DDI_FUNC_ENABLE) {
8062                 enum pipe trans_edp_pipe;
8063                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8064                 default:
8065                         WARN(1, "unknown pipe linked to edp transcoder\n");
8066                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8067                 case TRANS_DDI_EDP_INPUT_A_ON:
8068                         trans_edp_pipe = PIPE_A;
8069                         break;
8070                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8071                         trans_edp_pipe = PIPE_B;
8072                         break;
8073                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8074                         trans_edp_pipe = PIPE_C;
8075                         break;
8076                 }
8077
8078                 if (trans_edp_pipe == crtc->pipe)
8079                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
8080         }
8081
8082         if (!intel_display_power_is_enabled(dev_priv,
8083                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8084                 return false;
8085
8086         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8087         if (!(tmp & PIPECONF_ENABLE))
8088                 return false;
8089
8090         haswell_get_ddi_port_state(crtc, pipe_config);
8091
8092         intel_get_pipe_timings(crtc, pipe_config);
8093
8094         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8095         if (intel_display_power_is_enabled(dev_priv, pfit_domain))
8096                 ironlake_get_pfit_config(crtc, pipe_config);
8097
8098         if (IS_HASWELL(dev))
8099                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8100                         (I915_READ(IPS_CTL) & IPS_ENABLE);
8101
8102         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8103                 pipe_config->pixel_multiplier =
8104                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8105         } else {
8106                 pipe_config->pixel_multiplier = 1;
8107         }
8108
8109         return true;
8110 }
8111
8112 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8113 {
8114         struct drm_device *dev = crtc->dev;
8115         struct drm_i915_private *dev_priv = dev->dev_private;
8116         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8117         uint32_t cntl = 0, size = 0;
8118
8119         if (base) {
8120                 unsigned int width = intel_crtc->cursor_width;
8121                 unsigned int height = intel_crtc->cursor_height;
8122                 unsigned int stride = roundup_pow_of_two(width) * 4;
8123
8124                 switch (stride) {
8125                 default:
8126                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8127                                   width, stride);
8128                         stride = 256;
8129                         /* fallthrough */
8130                 case 256:
8131                 case 512:
8132                 case 1024:
8133                 case 2048:
8134                         break;
8135                 }
8136
8137                 cntl |= CURSOR_ENABLE |
8138                         CURSOR_GAMMA_ENABLE |
8139                         CURSOR_FORMAT_ARGB |
8140                         CURSOR_STRIDE(stride);
8141
8142                 size = (height << 12) | width;
8143         }
8144
8145         if (intel_crtc->cursor_cntl != 0 &&
8146             (intel_crtc->cursor_base != base ||
8147              intel_crtc->cursor_size != size ||
8148              intel_crtc->cursor_cntl != cntl)) {
8149                 /* On these chipsets we can only modify the base/size/stride
8150                  * whilst the cursor is disabled.
8151                  */
8152                 I915_WRITE(_CURACNTR, 0);
8153                 POSTING_READ(_CURACNTR);
8154                 intel_crtc->cursor_cntl = 0;
8155         }
8156
8157         if (intel_crtc->cursor_base != base) {
8158                 I915_WRITE(_CURABASE, base);
8159                 intel_crtc->cursor_base = base;
8160         }
8161
8162         if (intel_crtc->cursor_size != size) {
8163                 I915_WRITE(CURSIZE, size);
8164                 intel_crtc->cursor_size = size;
8165         }
8166
8167         if (intel_crtc->cursor_cntl != cntl) {
8168                 I915_WRITE(_CURACNTR, cntl);
8169                 POSTING_READ(_CURACNTR);
8170                 intel_crtc->cursor_cntl = cntl;
8171         }
8172 }
8173
8174 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8175 {
8176         struct drm_device *dev = crtc->dev;
8177         struct drm_i915_private *dev_priv = dev->dev_private;
8178         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8179         int pipe = intel_crtc->pipe;
8180         uint32_t cntl;
8181
8182         cntl = 0;
8183         if (base) {
8184                 cntl = MCURSOR_GAMMA_ENABLE;
8185                 switch (intel_crtc->cursor_width) {
8186                         case 64:
8187                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8188                                 break;
8189                         case 128:
8190                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8191                                 break;
8192                         case 256:
8193                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8194                                 break;
8195                         default:
8196                                 WARN_ON(1);
8197                                 return;
8198                 }
8199                 cntl |= pipe << 28; /* Connect to correct pipe */
8200
8201                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8202                         cntl |= CURSOR_PIPE_CSC_ENABLE;
8203         }
8204
8205         if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8206                 cntl |= CURSOR_ROTATE_180;
8207
8208         if (intel_crtc->cursor_cntl != cntl) {
8209                 I915_WRITE(CURCNTR(pipe), cntl);
8210                 POSTING_READ(CURCNTR(pipe));
8211                 intel_crtc->cursor_cntl = cntl;
8212         }
8213
8214         /* and commit changes on next vblank */
8215         I915_WRITE(CURBASE(pipe), base);
8216         POSTING_READ(CURBASE(pipe));
8217
8218         intel_crtc->cursor_base = base;
8219 }
8220
8221 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8222 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8223                                      bool on)
8224 {
8225         struct drm_device *dev = crtc->dev;
8226         struct drm_i915_private *dev_priv = dev->dev_private;
8227         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8228         int pipe = intel_crtc->pipe;
8229         int x = crtc->cursor_x;
8230         int y = crtc->cursor_y;
8231         u32 base = 0, pos = 0;
8232
8233         if (on)
8234                 base = intel_crtc->cursor_addr;
8235
8236         if (x >= intel_crtc->config.pipe_src_w)
8237                 base = 0;
8238
8239         if (y >= intel_crtc->config.pipe_src_h)
8240                 base = 0;
8241
8242         if (x < 0) {
8243                 if (x + intel_crtc->cursor_width <= 0)
8244                         base = 0;
8245
8246                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8247                 x = -x;
8248         }
8249         pos |= x << CURSOR_X_SHIFT;
8250
8251         if (y < 0) {
8252                 if (y + intel_crtc->cursor_height <= 0)
8253                         base = 0;
8254
8255                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8256                 y = -y;
8257         }
8258         pos |= y << CURSOR_Y_SHIFT;
8259
8260         if (base == 0 && intel_crtc->cursor_base == 0)
8261                 return;
8262
8263         I915_WRITE(CURPOS(pipe), pos);
8264
8265         /* ILK+ do this automagically */
8266         if (HAS_GMCH_DISPLAY(dev) &&
8267                 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8268                 base += (intel_crtc->cursor_height *
8269                         intel_crtc->cursor_width - 1) * 4;
8270         }
8271
8272         if (IS_845G(dev) || IS_I865G(dev))
8273                 i845_update_cursor(crtc, base);
8274         else
8275                 i9xx_update_cursor(crtc, base);
8276 }
8277
8278 static bool cursor_size_ok(struct drm_device *dev,
8279                            uint32_t width, uint32_t height)
8280 {
8281         if (width == 0 || height == 0)
8282                 return false;
8283
8284         /*
8285          * 845g/865g are special in that they are only limited by
8286          * the width of their cursors, the height is arbitrary up to
8287          * the precision of the register. Everything else requires
8288          * square cursors, limited to a few power-of-two sizes.
8289          */
8290         if (IS_845G(dev) || IS_I865G(dev)) {
8291                 if ((width & 63) != 0)
8292                         return false;
8293
8294                 if (width > (IS_845G(dev) ? 64 : 512))
8295                         return false;
8296
8297                 if (height > 1023)
8298                         return false;
8299         } else {
8300                 switch (width | height) {
8301                 case 256:
8302                 case 128:
8303                         if (IS_GEN2(dev))
8304                                 return false;
8305                 case 64:
8306                         break;
8307                 default:
8308                         return false;
8309                 }
8310         }
8311
8312         return true;
8313 }
8314
8315 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8316                                      struct drm_i915_gem_object *obj,
8317                                      uint32_t width, uint32_t height)
8318 {
8319         struct drm_device *dev = crtc->dev;
8320         struct drm_i915_private *dev_priv = dev->dev_private;
8321         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8322         enum pipe pipe = intel_crtc->pipe;
8323         unsigned old_width;
8324         uint32_t addr;
8325         int ret;
8326
8327         /* if we want to turn off the cursor ignore width and height */
8328         if (!obj) {
8329                 DRM_DEBUG_KMS("cursor off\n");
8330                 addr = 0;
8331                 mutex_lock(&dev->struct_mutex);
8332                 goto finish;
8333         }
8334
8335         /* we only need to pin inside GTT if cursor is non-phy */
8336         mutex_lock(&dev->struct_mutex);
8337         if (!INTEL_INFO(dev)->cursor_needs_physical) {
8338                 unsigned alignment;
8339
8340                 /*
8341                  * Global gtt pte registers are special registers which actually
8342                  * forward writes to a chunk of system memory. Which means that
8343                  * there is no risk that the register values disappear as soon
8344                  * as we call intel_runtime_pm_put(), so it is correct to wrap
8345                  * only the pin/unpin/fence and not more.
8346                  */
8347                 intel_runtime_pm_get(dev_priv);
8348
8349                 /* Note that the w/a also requires 2 PTE of padding following
8350                  * the bo. We currently fill all unused PTE with the shadow
8351                  * page and so we should always have valid PTE following the
8352                  * cursor preventing the VT-d warning.
8353                  */
8354                 alignment = 0;
8355                 if (need_vtd_wa(dev))
8356                         alignment = 64*1024;
8357
8358                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8359                 if (ret) {
8360                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8361                         intel_runtime_pm_put(dev_priv);
8362                         goto fail_locked;
8363                 }
8364
8365                 ret = i915_gem_object_put_fence(obj);
8366                 if (ret) {
8367                         DRM_DEBUG_KMS("failed to release fence for cursor");
8368                         intel_runtime_pm_put(dev_priv);
8369                         goto fail_unpin;
8370                 }
8371
8372                 addr = i915_gem_obj_ggtt_offset(obj);
8373
8374                 intel_runtime_pm_put(dev_priv);
8375         } else {
8376                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8377                 ret = i915_gem_object_attach_phys(obj, align);
8378                 if (ret) {
8379                         DRM_DEBUG_KMS("failed to attach phys object\n");
8380                         goto fail_locked;
8381                 }
8382                 addr = obj->phys_handle->busaddr;
8383         }
8384
8385  finish:
8386         if (intel_crtc->cursor_bo) {
8387                 if (!INTEL_INFO(dev)->cursor_needs_physical)
8388                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8389         }
8390
8391         i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8392                           INTEL_FRONTBUFFER_CURSOR(pipe));
8393         mutex_unlock(&dev->struct_mutex);
8394
8395         old_width = intel_crtc->cursor_width;
8396
8397         intel_crtc->cursor_addr = addr;
8398         intel_crtc->cursor_bo = obj;
8399         intel_crtc->cursor_width = width;
8400         intel_crtc->cursor_height = height;
8401
8402         if (intel_crtc->active) {
8403                 if (old_width != width)
8404                         intel_update_watermarks(crtc);
8405                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8406
8407                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8408         }
8409
8410         return 0;
8411 fail_unpin:
8412         i915_gem_object_unpin_from_display_plane(obj);
8413 fail_locked:
8414         mutex_unlock(&dev->struct_mutex);
8415         return ret;
8416 }
8417
8418 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8419                                  u16 *blue, uint32_t start, uint32_t size)
8420 {
8421         int end = (start + size > 256) ? 256 : start + size, i;
8422         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8423
8424         for (i = start; i < end; i++) {
8425                 intel_crtc->lut_r[i] = red[i] >> 8;
8426                 intel_crtc->lut_g[i] = green[i] >> 8;
8427                 intel_crtc->lut_b[i] = blue[i] >> 8;
8428         }
8429
8430         intel_crtc_load_lut(crtc);
8431 }
8432
8433 /* VESA 640x480x72Hz mode to set on the pipe */
8434 static struct drm_display_mode load_detect_mode = {
8435         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8436                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8437 };
8438
8439 struct drm_framebuffer *
8440 __intel_framebuffer_create(struct drm_device *dev,
8441                            struct drm_mode_fb_cmd2 *mode_cmd,
8442                            struct drm_i915_gem_object *obj)
8443 {
8444         struct intel_framebuffer *intel_fb;
8445         int ret;
8446
8447         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8448         if (!intel_fb) {
8449                 drm_gem_object_unreference_unlocked(&obj->base);
8450                 return ERR_PTR(-ENOMEM);
8451         }
8452
8453         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8454         if (ret)
8455                 goto err;
8456
8457         return &intel_fb->base;
8458 err:
8459         drm_gem_object_unreference_unlocked(&obj->base);
8460         kfree(intel_fb);
8461
8462         return ERR_PTR(ret);
8463 }
8464
8465 static struct drm_framebuffer *
8466 intel_framebuffer_create(struct drm_device *dev,
8467                          struct drm_mode_fb_cmd2 *mode_cmd,
8468                          struct drm_i915_gem_object *obj)
8469 {
8470         struct drm_framebuffer *fb;
8471         int ret;
8472
8473         ret = i915_mutex_lock_interruptible(dev);
8474         if (ret)
8475                 return ERR_PTR(ret);
8476         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8477         mutex_unlock(&dev->struct_mutex);
8478
8479         return fb;
8480 }
8481
8482 static u32
8483 intel_framebuffer_pitch_for_width(int width, int bpp)
8484 {
8485         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8486         return ALIGN(pitch, 64);
8487 }
8488
8489 static u32
8490 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8491 {
8492         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8493         return PAGE_ALIGN(pitch * mode->vdisplay);
8494 }
8495
8496 static struct drm_framebuffer *
8497 intel_framebuffer_create_for_mode(struct drm_device *dev,
8498                                   struct drm_display_mode *mode,
8499                                   int depth, int bpp)
8500 {
8501         struct drm_i915_gem_object *obj;
8502         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8503
8504         obj = i915_gem_alloc_object(dev,
8505                                     intel_framebuffer_size_for_mode(mode, bpp));
8506         if (obj == NULL)
8507                 return ERR_PTR(-ENOMEM);
8508
8509         mode_cmd.width = mode->hdisplay;
8510         mode_cmd.height = mode->vdisplay;
8511         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8512                                                                 bpp);
8513         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8514
8515         return intel_framebuffer_create(dev, &mode_cmd, obj);
8516 }
8517
8518 static struct drm_framebuffer *
8519 mode_fits_in_fbdev(struct drm_device *dev,
8520                    struct drm_display_mode *mode)
8521 {
8522 #ifdef CONFIG_DRM_I915_FBDEV
8523         struct drm_i915_private *dev_priv = dev->dev_private;
8524         struct drm_i915_gem_object *obj;
8525         struct drm_framebuffer *fb;
8526
8527         if (!dev_priv->fbdev)
8528                 return NULL;
8529
8530         if (!dev_priv->fbdev->fb)
8531                 return NULL;
8532
8533         obj = dev_priv->fbdev->fb->obj;
8534         BUG_ON(!obj);
8535
8536         fb = &dev_priv->fbdev->fb->base;
8537         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8538                                                                fb->bits_per_pixel))
8539                 return NULL;
8540
8541         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8542                 return NULL;
8543
8544         return fb;
8545 #else
8546         return NULL;
8547 #endif
8548 }
8549
8550 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8551                                 struct drm_display_mode *mode,
8552                                 struct intel_load_detect_pipe *old,
8553                                 struct drm_modeset_acquire_ctx *ctx)
8554 {
8555         struct intel_crtc *intel_crtc;
8556         struct intel_encoder *intel_encoder =
8557                 intel_attached_encoder(connector);
8558         struct drm_crtc *possible_crtc;
8559         struct drm_encoder *encoder = &intel_encoder->base;
8560         struct drm_crtc *crtc = NULL;
8561         struct drm_device *dev = encoder->dev;
8562         struct drm_framebuffer *fb;
8563         struct drm_mode_config *config = &dev->mode_config;
8564         int ret, i = -1;
8565
8566         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8567                       connector->base.id, connector->name,
8568                       encoder->base.id, encoder->name);
8569
8570 retry:
8571         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8572         if (ret)
8573                 goto fail_unlock;
8574
8575         /*
8576          * Algorithm gets a little messy:
8577          *
8578          *   - if the connector already has an assigned crtc, use it (but make
8579          *     sure it's on first)
8580          *
8581          *   - try to find the first unused crtc that can drive this connector,
8582          *     and use that if we find one
8583          */
8584
8585         /* See if we already have a CRTC for this connector */
8586         if (encoder->crtc) {
8587                 crtc = encoder->crtc;
8588
8589                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8590                 if (ret)
8591                         goto fail_unlock;
8592
8593                 old->dpms_mode = connector->dpms;
8594                 old->load_detect_temp = false;
8595
8596                 /* Make sure the crtc and connector are running */
8597                 if (connector->dpms != DRM_MODE_DPMS_ON)
8598                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8599
8600                 return true;
8601         }
8602
8603         /* Find an unused one (if possible) */
8604         for_each_crtc(dev, possible_crtc) {
8605                 i++;
8606                 if (!(encoder->possible_crtcs & (1 << i)))
8607                         continue;
8608                 if (possible_crtc->enabled)
8609                         continue;
8610                 /* This can occur when applying the pipe A quirk on resume. */
8611                 if (to_intel_crtc(possible_crtc)->new_enabled)
8612                         continue;
8613
8614                 crtc = possible_crtc;
8615                 break;
8616         }
8617
8618         /*
8619          * If we didn't find an unused CRTC, don't use any.
8620          */
8621         if (!crtc) {
8622                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8623                 goto fail_unlock;
8624         }
8625
8626         ret = drm_modeset_lock(&crtc->mutex, ctx);
8627         if (ret)
8628                 goto fail_unlock;
8629         intel_encoder->new_crtc = to_intel_crtc(crtc);
8630         to_intel_connector(connector)->new_encoder = intel_encoder;
8631
8632         intel_crtc = to_intel_crtc(crtc);
8633         intel_crtc->new_enabled = true;
8634         intel_crtc->new_config = &intel_crtc->config;
8635         old->dpms_mode = connector->dpms;
8636         old->load_detect_temp = true;
8637         old->release_fb = NULL;
8638
8639         if (!mode)
8640                 mode = &load_detect_mode;
8641
8642         /* We need a framebuffer large enough to accommodate all accesses
8643          * that the plane may generate whilst we perform load detection.
8644          * We can not rely on the fbcon either being present (we get called
8645          * during its initialisation to detect all boot displays, or it may
8646          * not even exist) or that it is large enough to satisfy the
8647          * requested mode.
8648          */
8649         fb = mode_fits_in_fbdev(dev, mode);
8650         if (fb == NULL) {
8651                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8652                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8653                 old->release_fb = fb;
8654         } else
8655                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8656         if (IS_ERR(fb)) {
8657                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8658                 goto fail;
8659         }
8660
8661         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8662                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8663                 if (old->release_fb)
8664                         old->release_fb->funcs->destroy(old->release_fb);
8665                 goto fail;
8666         }
8667
8668         /* let the connector get through one full cycle before testing */
8669         intel_wait_for_vblank(dev, intel_crtc->pipe);
8670         return true;
8671
8672  fail:
8673         intel_crtc->new_enabled = crtc->enabled;
8674         if (intel_crtc->new_enabled)
8675                 intel_crtc->new_config = &intel_crtc->config;
8676         else
8677                 intel_crtc->new_config = NULL;
8678 fail_unlock:
8679         if (ret == -EDEADLK) {
8680                 drm_modeset_backoff(ctx);
8681                 goto retry;
8682         }
8683
8684         return false;
8685 }
8686
8687 void intel_release_load_detect_pipe(struct drm_connector *connector,
8688                                     struct intel_load_detect_pipe *old)
8689 {
8690         struct intel_encoder *intel_encoder =
8691                 intel_attached_encoder(connector);
8692         struct drm_encoder *encoder = &intel_encoder->base;
8693         struct drm_crtc *crtc = encoder->crtc;
8694         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8695
8696         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8697                       connector->base.id, connector->name,
8698                       encoder->base.id, encoder->name);
8699
8700         if (old->load_detect_temp) {
8701                 to_intel_connector(connector)->new_encoder = NULL;
8702                 intel_encoder->new_crtc = NULL;
8703                 intel_crtc->new_enabled = false;
8704                 intel_crtc->new_config = NULL;
8705                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8706
8707                 if (old->release_fb) {
8708                         drm_framebuffer_unregister_private(old->release_fb);
8709                         drm_framebuffer_unreference(old->release_fb);
8710                 }
8711
8712                 return;
8713         }
8714
8715         /* Switch crtc and encoder back off if necessary */
8716         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8717                 connector->funcs->dpms(connector, old->dpms_mode);
8718 }
8719
8720 static int i9xx_pll_refclk(struct drm_device *dev,
8721                            const struct intel_crtc_config *pipe_config)
8722 {
8723         struct drm_i915_private *dev_priv = dev->dev_private;
8724         u32 dpll = pipe_config->dpll_hw_state.dpll;
8725
8726         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8727                 return dev_priv->vbt.lvds_ssc_freq;
8728         else if (HAS_PCH_SPLIT(dev))
8729                 return 120000;
8730         else if (!IS_GEN2(dev))
8731                 return 96000;
8732         else
8733                 return 48000;
8734 }
8735
8736 /* Returns the clock of the currently programmed mode of the given pipe. */
8737 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8738                                 struct intel_crtc_config *pipe_config)
8739 {
8740         struct drm_device *dev = crtc->base.dev;
8741         struct drm_i915_private *dev_priv = dev->dev_private;
8742         int pipe = pipe_config->cpu_transcoder;
8743         u32 dpll = pipe_config->dpll_hw_state.dpll;
8744         u32 fp;
8745         intel_clock_t clock;
8746         int refclk = i9xx_pll_refclk(dev, pipe_config);
8747
8748         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8749                 fp = pipe_config->dpll_hw_state.fp0;
8750         else
8751                 fp = pipe_config->dpll_hw_state.fp1;
8752
8753         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8754         if (IS_PINEVIEW(dev)) {
8755                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8756                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8757         } else {
8758                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8759                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8760         }
8761
8762         if (!IS_GEN2(dev)) {
8763                 if (IS_PINEVIEW(dev))
8764                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8765                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8766                 else
8767                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8768                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8769
8770                 switch (dpll & DPLL_MODE_MASK) {
8771                 case DPLLB_MODE_DAC_SERIAL:
8772                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8773                                 5 : 10;
8774                         break;
8775                 case DPLLB_MODE_LVDS:
8776                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8777                                 7 : 14;
8778                         break;
8779                 default:
8780                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8781                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8782                         return;
8783                 }
8784
8785                 if (IS_PINEVIEW(dev))
8786                         pineview_clock(refclk, &clock);
8787                 else
8788                         i9xx_clock(refclk, &clock);
8789         } else {
8790                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8791                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8792
8793                 if (is_lvds) {
8794                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8795                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8796
8797                         if (lvds & LVDS_CLKB_POWER_UP)
8798                                 clock.p2 = 7;
8799                         else
8800                                 clock.p2 = 14;
8801                 } else {
8802                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8803                                 clock.p1 = 2;
8804                         else {
8805                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8806                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8807                         }
8808                         if (dpll & PLL_P2_DIVIDE_BY_4)
8809                                 clock.p2 = 4;
8810                         else
8811                                 clock.p2 = 2;
8812                 }
8813
8814                 i9xx_clock(refclk, &clock);
8815         }
8816
8817         /*
8818          * This value includes pixel_multiplier. We will use
8819          * port_clock to compute adjusted_mode.crtc_clock in the
8820          * encoder's get_config() function.
8821          */
8822         pipe_config->port_clock = clock.dot;
8823 }
8824
8825 int intel_dotclock_calculate(int link_freq,
8826                              const struct intel_link_m_n *m_n)
8827 {
8828         /*
8829          * The calculation for the data clock is:
8830          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8831          * But we want to avoid losing precison if possible, so:
8832          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8833          *
8834          * and the link clock is simpler:
8835          * link_clock = (m * link_clock) / n
8836          */
8837
8838         if (!m_n->link_n)
8839                 return 0;
8840
8841         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8842 }
8843
8844 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8845                                    struct intel_crtc_config *pipe_config)
8846 {
8847         struct drm_device *dev = crtc->base.dev;
8848
8849         /* read out port_clock from the DPLL */
8850         i9xx_crtc_clock_get(crtc, pipe_config);
8851
8852         /*
8853          * This value does not include pixel_multiplier.
8854          * We will check that port_clock and adjusted_mode.crtc_clock
8855          * agree once we know their relationship in the encoder's
8856          * get_config() function.
8857          */
8858         pipe_config->adjusted_mode.crtc_clock =
8859                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8860                                          &pipe_config->fdi_m_n);
8861 }
8862
8863 /** Returns the currently programmed mode of the given pipe. */
8864 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8865                                              struct drm_crtc *crtc)
8866 {
8867         struct drm_i915_private *dev_priv = dev->dev_private;
8868         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8869         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8870         struct drm_display_mode *mode;
8871         struct intel_crtc_config pipe_config;
8872         int htot = I915_READ(HTOTAL(cpu_transcoder));
8873         int hsync = I915_READ(HSYNC(cpu_transcoder));
8874         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8875         int vsync = I915_READ(VSYNC(cpu_transcoder));
8876         enum pipe pipe = intel_crtc->pipe;
8877
8878         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8879         if (!mode)
8880                 return NULL;
8881
8882         /*
8883          * Construct a pipe_config sufficient for getting the clock info
8884          * back out of crtc_clock_get.
8885          *
8886          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8887          * to use a real value here instead.
8888          */
8889         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8890         pipe_config.pixel_multiplier = 1;
8891         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8892         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8893         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8894         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8895
8896         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8897         mode->hdisplay = (htot & 0xffff) + 1;
8898         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8899         mode->hsync_start = (hsync & 0xffff) + 1;
8900         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8901         mode->vdisplay = (vtot & 0xffff) + 1;
8902         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8903         mode->vsync_start = (vsync & 0xffff) + 1;
8904         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8905
8906         drm_mode_set_name(mode);
8907
8908         return mode;
8909 }
8910
8911 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8912 {
8913         struct drm_device *dev = crtc->dev;
8914         struct drm_i915_private *dev_priv = dev->dev_private;
8915         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8916
8917         if (!HAS_GMCH_DISPLAY(dev))
8918                 return;
8919
8920         if (!dev_priv->lvds_downclock_avail)
8921                 return;
8922
8923         /*
8924          * Since this is called by a timer, we should never get here in
8925          * the manual case.
8926          */
8927         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8928                 int pipe = intel_crtc->pipe;
8929                 int dpll_reg = DPLL(pipe);
8930                 int dpll;
8931
8932                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8933
8934                 assert_panel_unlocked(dev_priv, pipe);
8935
8936                 dpll = I915_READ(dpll_reg);
8937                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8938                 I915_WRITE(dpll_reg, dpll);
8939                 intel_wait_for_vblank(dev, pipe);
8940                 dpll = I915_READ(dpll_reg);
8941                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8942                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8943         }
8944
8945 }
8946
8947 void intel_mark_busy(struct drm_device *dev)
8948 {
8949         struct drm_i915_private *dev_priv = dev->dev_private;
8950
8951         if (dev_priv->mm.busy)
8952                 return;
8953
8954         intel_runtime_pm_get(dev_priv);
8955         i915_update_gfx_val(dev_priv);
8956         dev_priv->mm.busy = true;
8957 }
8958
8959 void intel_mark_idle(struct drm_device *dev)
8960 {
8961         struct drm_i915_private *dev_priv = dev->dev_private;
8962         struct drm_crtc *crtc;
8963
8964         if (!dev_priv->mm.busy)
8965                 return;
8966
8967         dev_priv->mm.busy = false;
8968
8969         if (!i915.powersave)
8970                 goto out;
8971
8972         for_each_crtc(dev, crtc) {
8973                 if (!crtc->primary->fb)
8974                         continue;
8975
8976                 intel_decrease_pllclock(crtc);
8977         }
8978
8979         if (INTEL_INFO(dev)->gen >= 6)
8980                 gen6_rps_idle(dev->dev_private);
8981
8982 out:
8983         intel_runtime_pm_put(dev_priv);
8984 }
8985
8986 static void intel_crtc_destroy(struct drm_crtc *crtc)
8987 {
8988         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8989         struct drm_device *dev = crtc->dev;
8990         struct intel_unpin_work *work;
8991
8992         spin_lock_irq(&dev->event_lock);
8993         work = intel_crtc->unpin_work;
8994         intel_crtc->unpin_work = NULL;
8995         spin_unlock_irq(&dev->event_lock);
8996
8997         if (work) {
8998                 cancel_work_sync(&work->work);
8999                 kfree(work);
9000         }
9001
9002         drm_crtc_cleanup(crtc);
9003
9004         kfree(intel_crtc);
9005 }
9006
9007 static void intel_unpin_work_fn(struct work_struct *__work)
9008 {
9009         struct intel_unpin_work *work =
9010                 container_of(__work, struct intel_unpin_work, work);
9011         struct drm_device *dev = work->crtc->dev;
9012         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9013
9014         mutex_lock(&dev->struct_mutex);
9015         intel_unpin_fb_obj(work->old_fb_obj);
9016         drm_gem_object_unreference(&work->pending_flip_obj->base);
9017         drm_gem_object_unreference(&work->old_fb_obj->base);
9018
9019         intel_update_fbc(dev);
9020         mutex_unlock(&dev->struct_mutex);
9021
9022         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9023
9024         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9025         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9026
9027         kfree(work);
9028 }
9029
9030 static void do_intel_finish_page_flip(struct drm_device *dev,
9031                                       struct drm_crtc *crtc)
9032 {
9033         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9034         struct intel_unpin_work *work;
9035         unsigned long flags;
9036
9037         /* Ignore early vblank irqs */
9038         if (intel_crtc == NULL)
9039                 return;
9040
9041         /*
9042          * This is called both by irq handlers and the reset code (to complete
9043          * lost pageflips) so needs the full irqsave spinlocks.
9044          */
9045         spin_lock_irqsave(&dev->event_lock, flags);
9046         work = intel_crtc->unpin_work;
9047
9048         /* Ensure we don't miss a work->pending update ... */
9049         smp_rmb();
9050
9051         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9052                 spin_unlock_irqrestore(&dev->event_lock, flags);
9053                 return;
9054         }
9055
9056         page_flip_completed(intel_crtc);
9057
9058         spin_unlock_irqrestore(&dev->event_lock, flags);
9059 }
9060
9061 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9062 {
9063         struct drm_i915_private *dev_priv = dev->dev_private;
9064         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9065
9066         do_intel_finish_page_flip(dev, crtc);
9067 }
9068
9069 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9070 {
9071         struct drm_i915_private *dev_priv = dev->dev_private;
9072         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9073
9074         do_intel_finish_page_flip(dev, crtc);
9075 }
9076
9077 /* Is 'a' after or equal to 'b'? */
9078 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9079 {
9080         return !((a - b) & 0x80000000);
9081 }
9082
9083 static bool page_flip_finished(struct intel_crtc *crtc)
9084 {
9085         struct drm_device *dev = crtc->base.dev;
9086         struct drm_i915_private *dev_priv = dev->dev_private;
9087
9088         /*
9089          * The relevant registers doen't exist on pre-ctg.
9090          * As the flip done interrupt doesn't trigger for mmio
9091          * flips on gmch platforms, a flip count check isn't
9092          * really needed there. But since ctg has the registers,
9093          * include it in the check anyway.
9094          */
9095         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9096                 return true;
9097
9098         /*
9099          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9100          * used the same base address. In that case the mmio flip might
9101          * have completed, but the CS hasn't even executed the flip yet.
9102          *
9103          * A flip count check isn't enough as the CS might have updated
9104          * the base address just after start of vblank, but before we
9105          * managed to process the interrupt. This means we'd complete the
9106          * CS flip too soon.
9107          *
9108          * Combining both checks should get us a good enough result. It may
9109          * still happen that the CS flip has been executed, but has not
9110          * yet actually completed. But in case the base address is the same
9111          * anyway, we don't really care.
9112          */
9113         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9114                 crtc->unpin_work->gtt_offset &&
9115                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9116                                     crtc->unpin_work->flip_count);
9117 }
9118
9119 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9120 {
9121         struct drm_i915_private *dev_priv = dev->dev_private;
9122         struct intel_crtc *intel_crtc =
9123                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9124         unsigned long flags;
9125
9126
9127         /*
9128          * This is called both by irq handlers and the reset code (to complete
9129          * lost pageflips) so needs the full irqsave spinlocks.
9130          *
9131          * NB: An MMIO update of the plane base pointer will also
9132          * generate a page-flip completion irq, i.e. every modeset
9133          * is also accompanied by a spurious intel_prepare_page_flip().
9134          */
9135         spin_lock_irqsave(&dev->event_lock, flags);
9136         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9137                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9138         spin_unlock_irqrestore(&dev->event_lock, flags);
9139 }
9140
9141 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9142 {
9143         /* Ensure that the work item is consistent when activating it ... */
9144         smp_wmb();
9145         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9146         /* and that it is marked active as soon as the irq could fire. */
9147         smp_wmb();
9148 }
9149
9150 static int intel_gen2_queue_flip(struct drm_device *dev,
9151                                  struct drm_crtc *crtc,
9152                                  struct drm_framebuffer *fb,
9153                                  struct drm_i915_gem_object *obj,
9154                                  struct intel_engine_cs *ring,
9155                                  uint32_t flags)
9156 {
9157         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9158         u32 flip_mask;
9159         int ret;
9160
9161         ret = intel_ring_begin(ring, 6);
9162         if (ret)
9163                 return ret;
9164
9165         /* Can't queue multiple flips, so wait for the previous
9166          * one to finish before executing the next.
9167          */
9168         if (intel_crtc->plane)
9169                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9170         else
9171                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9172         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9173         intel_ring_emit(ring, MI_NOOP);
9174         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9175                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9176         intel_ring_emit(ring, fb->pitches[0]);
9177         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9178         intel_ring_emit(ring, 0); /* aux display base address, unused */
9179
9180         intel_mark_page_flip_active(intel_crtc);
9181         __intel_ring_advance(ring);
9182         return 0;
9183 }
9184
9185 static int intel_gen3_queue_flip(struct drm_device *dev,
9186                                  struct drm_crtc *crtc,
9187                                  struct drm_framebuffer *fb,
9188                                  struct drm_i915_gem_object *obj,
9189                                  struct intel_engine_cs *ring,
9190                                  uint32_t flags)
9191 {
9192         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9193         u32 flip_mask;
9194         int ret;
9195
9196         ret = intel_ring_begin(ring, 6);
9197         if (ret)
9198                 return ret;
9199
9200         if (intel_crtc->plane)
9201                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9202         else
9203                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9204         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9205         intel_ring_emit(ring, MI_NOOP);
9206         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9207                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9208         intel_ring_emit(ring, fb->pitches[0]);
9209         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9210         intel_ring_emit(ring, MI_NOOP);
9211
9212         intel_mark_page_flip_active(intel_crtc);
9213         __intel_ring_advance(ring);
9214         return 0;
9215 }
9216
9217 static int intel_gen4_queue_flip(struct drm_device *dev,
9218                                  struct drm_crtc *crtc,
9219                                  struct drm_framebuffer *fb,
9220                                  struct drm_i915_gem_object *obj,
9221                                  struct intel_engine_cs *ring,
9222                                  uint32_t flags)
9223 {
9224         struct drm_i915_private *dev_priv = dev->dev_private;
9225         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9226         uint32_t pf, pipesrc;
9227         int ret;
9228
9229         ret = intel_ring_begin(ring, 4);
9230         if (ret)
9231                 return ret;
9232
9233         /* i965+ uses the linear or tiled offsets from the
9234          * Display Registers (which do not change across a page-flip)
9235          * so we need only reprogram the base address.
9236          */
9237         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9238                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9239         intel_ring_emit(ring, fb->pitches[0]);
9240         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9241                         obj->tiling_mode);
9242
9243         /* XXX Enabling the panel-fitter across page-flip is so far
9244          * untested on non-native modes, so ignore it for now.
9245          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9246          */
9247         pf = 0;
9248         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9249         intel_ring_emit(ring, pf | pipesrc);
9250
9251         intel_mark_page_flip_active(intel_crtc);
9252         __intel_ring_advance(ring);
9253         return 0;
9254 }
9255
9256 static int intel_gen6_queue_flip(struct drm_device *dev,
9257                                  struct drm_crtc *crtc,
9258                                  struct drm_framebuffer *fb,
9259                                  struct drm_i915_gem_object *obj,
9260                                  struct intel_engine_cs *ring,
9261                                  uint32_t flags)
9262 {
9263         struct drm_i915_private *dev_priv = dev->dev_private;
9264         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9265         uint32_t pf, pipesrc;
9266         int ret;
9267
9268         ret = intel_ring_begin(ring, 4);
9269         if (ret)
9270                 return ret;
9271
9272         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9273                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9274         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9275         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9276
9277         /* Contrary to the suggestions in the documentation,
9278          * "Enable Panel Fitter" does not seem to be required when page
9279          * flipping with a non-native mode, and worse causes a normal
9280          * modeset to fail.
9281          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9282          */
9283         pf = 0;
9284         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9285         intel_ring_emit(ring, pf | pipesrc);
9286
9287         intel_mark_page_flip_active(intel_crtc);
9288         __intel_ring_advance(ring);
9289         return 0;
9290 }
9291
9292 static int intel_gen7_queue_flip(struct drm_device *dev,
9293                                  struct drm_crtc *crtc,
9294                                  struct drm_framebuffer *fb,
9295                                  struct drm_i915_gem_object *obj,
9296                                  struct intel_engine_cs *ring,
9297                                  uint32_t flags)
9298 {
9299         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9300         uint32_t plane_bit = 0;
9301         int len, ret;
9302
9303         switch (intel_crtc->plane) {
9304         case PLANE_A:
9305                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9306                 break;
9307         case PLANE_B:
9308                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9309                 break;
9310         case PLANE_C:
9311                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9312                 break;
9313         default:
9314                 WARN_ONCE(1, "unknown plane in flip command\n");
9315                 return -ENODEV;
9316         }
9317
9318         len = 4;
9319         if (ring->id == RCS) {
9320                 len += 6;
9321                 /*
9322                  * On Gen 8, SRM is now taking an extra dword to accommodate
9323                  * 48bits addresses, and we need a NOOP for the batch size to
9324                  * stay even.
9325                  */
9326                 if (IS_GEN8(dev))
9327                         len += 2;
9328         }
9329
9330         /*
9331          * BSpec MI_DISPLAY_FLIP for IVB:
9332          * "The full packet must be contained within the same cache line."
9333          *
9334          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9335          * cacheline, if we ever start emitting more commands before
9336          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9337          * then do the cacheline alignment, and finally emit the
9338          * MI_DISPLAY_FLIP.
9339          */
9340         ret = intel_ring_cacheline_align(ring);
9341         if (ret)
9342                 return ret;
9343
9344         ret = intel_ring_begin(ring, len);
9345         if (ret)
9346                 return ret;
9347
9348         /* Unmask the flip-done completion message. Note that the bspec says that
9349          * we should do this for both the BCS and RCS, and that we must not unmask
9350          * more than one flip event at any time (or ensure that one flip message
9351          * can be sent by waiting for flip-done prior to queueing new flips).
9352          * Experimentation says that BCS works despite DERRMR masking all
9353          * flip-done completion events and that unmasking all planes at once
9354          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9355          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9356          */
9357         if (ring->id == RCS) {
9358                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9359                 intel_ring_emit(ring, DERRMR);
9360                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9361                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9362                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9363                 if (IS_GEN8(dev))
9364                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9365                                               MI_SRM_LRM_GLOBAL_GTT);
9366                 else
9367                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9368                                               MI_SRM_LRM_GLOBAL_GTT);
9369                 intel_ring_emit(ring, DERRMR);
9370                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9371                 if (IS_GEN8(dev)) {
9372                         intel_ring_emit(ring, 0);
9373                         intel_ring_emit(ring, MI_NOOP);
9374                 }
9375         }
9376
9377         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9378         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9379         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9380         intel_ring_emit(ring, (MI_NOOP));
9381
9382         intel_mark_page_flip_active(intel_crtc);
9383         __intel_ring_advance(ring);
9384         return 0;
9385 }
9386
9387 static bool use_mmio_flip(struct intel_engine_cs *ring,
9388                           struct drm_i915_gem_object *obj)
9389 {
9390         /*
9391          * This is not being used for older platforms, because
9392          * non-availability of flip done interrupt forces us to use
9393          * CS flips. Older platforms derive flip done using some clever
9394          * tricks involving the flip_pending status bits and vblank irqs.
9395          * So using MMIO flips there would disrupt this mechanism.
9396          */
9397
9398         if (ring == NULL)
9399                 return true;
9400
9401         if (INTEL_INFO(ring->dev)->gen < 5)
9402                 return false;
9403
9404         if (i915.use_mmio_flip < 0)
9405                 return false;
9406         else if (i915.use_mmio_flip > 0)
9407                 return true;
9408         else if (i915.enable_execlists)
9409                 return true;
9410         else
9411                 return ring != obj->ring;
9412 }
9413
9414 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9415 {
9416         struct drm_device *dev = intel_crtc->base.dev;
9417         struct drm_i915_private *dev_priv = dev->dev_private;
9418         struct intel_framebuffer *intel_fb =
9419                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9420         struct drm_i915_gem_object *obj = intel_fb->obj;
9421         u32 dspcntr;
9422         u32 reg;
9423
9424         intel_mark_page_flip_active(intel_crtc);
9425
9426         reg = DSPCNTR(intel_crtc->plane);
9427         dspcntr = I915_READ(reg);
9428
9429         if (obj->tiling_mode != I915_TILING_NONE)
9430                 dspcntr |= DISPPLANE_TILED;
9431         else
9432                 dspcntr &= ~DISPPLANE_TILED;
9433
9434         I915_WRITE(reg, dspcntr);
9435
9436         I915_WRITE(DSPSURF(intel_crtc->plane),
9437                    intel_crtc->unpin_work->gtt_offset);
9438         POSTING_READ(DSPSURF(intel_crtc->plane));
9439 }
9440
9441 static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9442 {
9443         struct intel_engine_cs *ring;
9444         int ret;
9445
9446         lockdep_assert_held(&obj->base.dev->struct_mutex);
9447
9448         if (!obj->last_write_seqno)
9449                 return 0;
9450
9451         ring = obj->ring;
9452
9453         if (i915_seqno_passed(ring->get_seqno(ring, true),
9454                               obj->last_write_seqno))
9455                 return 0;
9456
9457         ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9458         if (ret)
9459                 return ret;
9460
9461         if (WARN_ON(!ring->irq_get(ring)))
9462                 return 0;
9463
9464         return 1;
9465 }
9466
9467 void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9468 {
9469         struct drm_i915_private *dev_priv = to_i915(ring->dev);
9470         struct intel_crtc *intel_crtc;
9471         unsigned long irq_flags;
9472         u32 seqno;
9473
9474         seqno = ring->get_seqno(ring, false);
9475
9476         spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9477         for_each_intel_crtc(ring->dev, intel_crtc) {
9478                 struct intel_mmio_flip *mmio_flip;
9479
9480                 mmio_flip = &intel_crtc->mmio_flip;
9481                 if (mmio_flip->seqno == 0)
9482                         continue;
9483
9484                 if (ring->id != mmio_flip->ring_id)
9485                         continue;
9486
9487                 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9488                         intel_do_mmio_flip(intel_crtc);
9489                         mmio_flip->seqno = 0;
9490                         ring->irq_put(ring);
9491                 }
9492         }
9493         spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9494 }
9495
9496 static int intel_queue_mmio_flip(struct drm_device *dev,
9497                                  struct drm_crtc *crtc,
9498                                  struct drm_framebuffer *fb,
9499                                  struct drm_i915_gem_object *obj,
9500                                  struct intel_engine_cs *ring,
9501                                  uint32_t flags)
9502 {
9503         struct drm_i915_private *dev_priv = dev->dev_private;
9504         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9505         int ret;
9506
9507         if (WARN_ON(intel_crtc->mmio_flip.seqno))
9508                 return -EBUSY;
9509
9510         ret = intel_postpone_flip(obj);
9511         if (ret < 0)
9512                 return ret;
9513         if (ret == 0) {
9514                 intel_do_mmio_flip(intel_crtc);
9515                 return 0;
9516         }
9517
9518         spin_lock_irq(&dev_priv->mmio_flip_lock);
9519         intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9520         intel_crtc->mmio_flip.ring_id = obj->ring->id;
9521         spin_unlock_irq(&dev_priv->mmio_flip_lock);
9522
9523         /*
9524          * Double check to catch cases where irq fired before
9525          * mmio flip data was ready
9526          */
9527         intel_notify_mmio_flip(obj->ring);
9528         return 0;
9529 }
9530
9531 static int intel_default_queue_flip(struct drm_device *dev,
9532                                     struct drm_crtc *crtc,
9533                                     struct drm_framebuffer *fb,
9534                                     struct drm_i915_gem_object *obj,
9535                                     struct intel_engine_cs *ring,
9536                                     uint32_t flags)
9537 {
9538         return -ENODEV;
9539 }
9540
9541 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9542                                          struct drm_crtc *crtc)
9543 {
9544         struct drm_i915_private *dev_priv = dev->dev_private;
9545         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9546         struct intel_unpin_work *work = intel_crtc->unpin_work;
9547         u32 addr;
9548
9549         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9550                 return true;
9551
9552         if (!work->enable_stall_check)
9553                 return false;
9554
9555         if (work->flip_ready_vblank == 0) {
9556                 if (work->flip_queued_ring &&
9557                     !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9558                                        work->flip_queued_seqno))
9559                         return false;
9560
9561                 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9562         }
9563
9564         if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9565                 return false;
9566
9567         /* Potential stall - if we see that the flip has happened,
9568          * assume a missed interrupt. */
9569         if (INTEL_INFO(dev)->gen >= 4)
9570                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9571         else
9572                 addr = I915_READ(DSPADDR(intel_crtc->plane));
9573
9574         /* There is a potential issue here with a false positive after a flip
9575          * to the same address. We could address this by checking for a
9576          * non-incrementing frame counter.
9577          */
9578         return addr == work->gtt_offset;
9579 }
9580
9581 void intel_check_page_flip(struct drm_device *dev, int pipe)
9582 {
9583         struct drm_i915_private *dev_priv = dev->dev_private;
9584         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9585         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9586
9587         WARN_ON(!in_irq());
9588
9589         if (crtc == NULL)
9590                 return;
9591
9592         spin_lock(&dev->event_lock);
9593         if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9594                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9595                          intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9596                 page_flip_completed(intel_crtc);
9597         }
9598         spin_unlock(&dev->event_lock);
9599 }
9600
9601 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9602                                 struct drm_framebuffer *fb,
9603                                 struct drm_pending_vblank_event *event,
9604                                 uint32_t page_flip_flags)
9605 {
9606         struct drm_device *dev = crtc->dev;
9607         struct drm_i915_private *dev_priv = dev->dev_private;
9608         struct drm_framebuffer *old_fb = crtc->primary->fb;
9609         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9610         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9611         enum pipe pipe = intel_crtc->pipe;
9612         struct intel_unpin_work *work;
9613         struct intel_engine_cs *ring;
9614         int ret;
9615
9616         /*
9617          * drm_mode_page_flip_ioctl() should already catch this, but double
9618          * check to be safe.  In the future we may enable pageflipping from
9619          * a disabled primary plane.
9620          */
9621         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9622                 return -EBUSY;
9623
9624         /* Can't change pixel format via MI display flips. */
9625         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9626                 return -EINVAL;
9627
9628         /*
9629          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9630          * Note that pitch changes could also affect these register.
9631          */
9632         if (INTEL_INFO(dev)->gen > 3 &&
9633             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9634              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9635                 return -EINVAL;
9636
9637         if (i915_terminally_wedged(&dev_priv->gpu_error))
9638                 goto out_hang;
9639
9640         work = kzalloc(sizeof(*work), GFP_KERNEL);
9641         if (work == NULL)
9642                 return -ENOMEM;
9643
9644         work->event = event;
9645         work->crtc = crtc;
9646         work->old_fb_obj = intel_fb_obj(old_fb);
9647         INIT_WORK(&work->work, intel_unpin_work_fn);
9648
9649         ret = drm_crtc_vblank_get(crtc);
9650         if (ret)
9651                 goto free_work;
9652
9653         /* We borrow the event spin lock for protecting unpin_work */
9654         spin_lock_irq(&dev->event_lock);
9655         if (intel_crtc->unpin_work) {
9656                 /* Before declaring the flip queue wedged, check if
9657                  * the hardware completed the operation behind our backs.
9658                  */
9659                 if (__intel_pageflip_stall_check(dev, crtc)) {
9660                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9661                         page_flip_completed(intel_crtc);
9662                 } else {
9663                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9664                         spin_unlock_irq(&dev->event_lock);
9665
9666                         drm_crtc_vblank_put(crtc);
9667                         kfree(work);
9668                         return -EBUSY;
9669                 }
9670         }
9671         intel_crtc->unpin_work = work;
9672         spin_unlock_irq(&dev->event_lock);
9673
9674         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9675                 flush_workqueue(dev_priv->wq);
9676
9677         ret = i915_mutex_lock_interruptible(dev);
9678         if (ret)
9679                 goto cleanup;
9680
9681         /* Reference the objects for the scheduled work. */
9682         drm_gem_object_reference(&work->old_fb_obj->base);
9683         drm_gem_object_reference(&obj->base);
9684
9685         crtc->primary->fb = fb;
9686
9687         work->pending_flip_obj = obj;
9688
9689         atomic_inc(&intel_crtc->unpin_work_count);
9690         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9691
9692         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9693                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9694
9695         if (IS_VALLEYVIEW(dev)) {
9696                 ring = &dev_priv->ring[BCS];
9697                 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9698                         /* vlv: DISPLAY_FLIP fails to change tiling */
9699                         ring = NULL;
9700         } else if (IS_IVYBRIDGE(dev)) {
9701                 ring = &dev_priv->ring[BCS];
9702         } else if (INTEL_INFO(dev)->gen >= 7) {
9703                 ring = obj->ring;
9704                 if (ring == NULL || ring->id != RCS)
9705                         ring = &dev_priv->ring[BCS];
9706         } else {
9707                 ring = &dev_priv->ring[RCS];
9708         }
9709
9710         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9711         if (ret)
9712                 goto cleanup_pending;
9713
9714         work->gtt_offset =
9715                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9716
9717         if (use_mmio_flip(ring, obj)) {
9718                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9719                                             page_flip_flags);
9720                 if (ret)
9721                         goto cleanup_unpin;
9722
9723                 work->flip_queued_seqno = obj->last_write_seqno;
9724                 work->flip_queued_ring = obj->ring;
9725         } else {
9726                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9727                                                    page_flip_flags);
9728                 if (ret)
9729                         goto cleanup_unpin;
9730
9731                 work->flip_queued_seqno = intel_ring_get_seqno(ring);
9732                 work->flip_queued_ring = ring;
9733         }
9734
9735         work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9736         work->enable_stall_check = true;
9737
9738         i915_gem_track_fb(work->old_fb_obj, obj,
9739                           INTEL_FRONTBUFFER_PRIMARY(pipe));
9740
9741         intel_disable_fbc(dev);
9742         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9743         mutex_unlock(&dev->struct_mutex);
9744
9745         trace_i915_flip_request(intel_crtc->plane, obj);
9746
9747         return 0;
9748
9749 cleanup_unpin:
9750         intel_unpin_fb_obj(obj);
9751 cleanup_pending:
9752         atomic_dec(&intel_crtc->unpin_work_count);
9753         crtc->primary->fb = old_fb;
9754         drm_gem_object_unreference(&work->old_fb_obj->base);
9755         drm_gem_object_unreference(&obj->base);
9756         mutex_unlock(&dev->struct_mutex);
9757
9758 cleanup:
9759         spin_lock_irq(&dev->event_lock);
9760         intel_crtc->unpin_work = NULL;
9761         spin_unlock_irq(&dev->event_lock);
9762
9763         drm_crtc_vblank_put(crtc);
9764 free_work:
9765         kfree(work);
9766
9767         if (ret == -EIO) {
9768 out_hang:
9769                 intel_crtc_wait_for_pending_flips(crtc);
9770                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9771                 if (ret == 0 && event) {
9772                         spin_lock_irq(&dev->event_lock);
9773                         drm_send_vblank_event(dev, pipe, event);
9774                         spin_unlock_irq(&dev->event_lock);
9775                 }
9776         }
9777         return ret;
9778 }
9779
9780 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9781         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9782         .load_lut = intel_crtc_load_lut,
9783 };
9784
9785 /**
9786  * intel_modeset_update_staged_output_state
9787  *
9788  * Updates the staged output configuration state, e.g. after we've read out the
9789  * current hw state.
9790  */
9791 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9792 {
9793         struct intel_crtc *crtc;
9794         struct intel_encoder *encoder;
9795         struct intel_connector *connector;
9796
9797         list_for_each_entry(connector, &dev->mode_config.connector_list,
9798                             base.head) {
9799                 connector->new_encoder =
9800                         to_intel_encoder(connector->base.encoder);
9801         }
9802
9803         for_each_intel_encoder(dev, encoder) {
9804                 encoder->new_crtc =
9805                         to_intel_crtc(encoder->base.crtc);
9806         }
9807
9808         for_each_intel_crtc(dev, crtc) {
9809                 crtc->new_enabled = crtc->base.enabled;
9810
9811                 if (crtc->new_enabled)
9812                         crtc->new_config = &crtc->config;
9813                 else
9814                         crtc->new_config = NULL;
9815         }
9816 }
9817
9818 /**
9819  * intel_modeset_commit_output_state
9820  *
9821  * This function copies the stage display pipe configuration to the real one.
9822  */
9823 static void intel_modeset_commit_output_state(struct drm_device *dev)
9824 {
9825         struct intel_crtc *crtc;
9826         struct intel_encoder *encoder;
9827         struct intel_connector *connector;
9828
9829         list_for_each_entry(connector, &dev->mode_config.connector_list,
9830                             base.head) {
9831                 connector->base.encoder = &connector->new_encoder->base;
9832         }
9833
9834         for_each_intel_encoder(dev, encoder) {
9835                 encoder->base.crtc = &encoder->new_crtc->base;
9836         }
9837
9838         for_each_intel_crtc(dev, crtc) {
9839                 crtc->base.enabled = crtc->new_enabled;
9840         }
9841 }
9842
9843 static void
9844 connected_sink_compute_bpp(struct intel_connector *connector,
9845                            struct intel_crtc_config *pipe_config)
9846 {
9847         int bpp = pipe_config->pipe_bpp;
9848
9849         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9850                 connector->base.base.id,
9851                 connector->base.name);
9852
9853         /* Don't use an invalid EDID bpc value */
9854         if (connector->base.display_info.bpc &&
9855             connector->base.display_info.bpc * 3 < bpp) {
9856                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9857                               bpp, connector->base.display_info.bpc*3);
9858                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9859         }
9860
9861         /* Clamp bpp to 8 on screens without EDID 1.4 */
9862         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9863                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9864                               bpp);
9865                 pipe_config->pipe_bpp = 24;
9866         }
9867 }
9868
9869 static int
9870 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9871                           struct drm_framebuffer *fb,
9872                           struct intel_crtc_config *pipe_config)
9873 {
9874         struct drm_device *dev = crtc->base.dev;
9875         struct intel_connector *connector;
9876         int bpp;
9877
9878         switch (fb->pixel_format) {
9879         case DRM_FORMAT_C8:
9880                 bpp = 8*3; /* since we go through a colormap */
9881                 break;
9882         case DRM_FORMAT_XRGB1555:
9883         case DRM_FORMAT_ARGB1555:
9884                 /* checked in intel_framebuffer_init already */
9885                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9886                         return -EINVAL;
9887         case DRM_FORMAT_RGB565:
9888                 bpp = 6*3; /* min is 18bpp */
9889                 break;
9890         case DRM_FORMAT_XBGR8888:
9891         case DRM_FORMAT_ABGR8888:
9892                 /* checked in intel_framebuffer_init already */
9893                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9894                         return -EINVAL;
9895         case DRM_FORMAT_XRGB8888:
9896         case DRM_FORMAT_ARGB8888:
9897                 bpp = 8*3;
9898                 break;
9899         case DRM_FORMAT_XRGB2101010:
9900         case DRM_FORMAT_ARGB2101010:
9901         case DRM_FORMAT_XBGR2101010:
9902         case DRM_FORMAT_ABGR2101010:
9903                 /* checked in intel_framebuffer_init already */
9904                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9905                         return -EINVAL;
9906                 bpp = 10*3;
9907                 break;
9908         /* TODO: gen4+ supports 16 bpc floating point, too. */
9909         default:
9910                 DRM_DEBUG_KMS("unsupported depth\n");
9911                 return -EINVAL;
9912         }
9913
9914         pipe_config->pipe_bpp = bpp;
9915
9916         /* Clamp display bpp to EDID value */
9917         list_for_each_entry(connector, &dev->mode_config.connector_list,
9918                             base.head) {
9919                 if (!connector->new_encoder ||
9920                     connector->new_encoder->new_crtc != crtc)
9921                         continue;
9922
9923                 connected_sink_compute_bpp(connector, pipe_config);
9924         }
9925
9926         return bpp;
9927 }
9928
9929 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9930 {
9931         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9932                         "type: 0x%x flags: 0x%x\n",
9933                 mode->crtc_clock,
9934                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9935                 mode->crtc_hsync_end, mode->crtc_htotal,
9936                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9937                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9938 }
9939
9940 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9941                                    struct intel_crtc_config *pipe_config,
9942                                    const char *context)
9943 {
9944         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9945                       context, pipe_name(crtc->pipe));
9946
9947         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9948         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9949                       pipe_config->pipe_bpp, pipe_config->dither);
9950         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9951                       pipe_config->has_pch_encoder,
9952                       pipe_config->fdi_lanes,
9953                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9954                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9955                       pipe_config->fdi_m_n.tu);
9956         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9957                       pipe_config->has_dp_encoder,
9958                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9959                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9960                       pipe_config->dp_m_n.tu);
9961
9962         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
9963                       pipe_config->has_dp_encoder,
9964                       pipe_config->dp_m2_n2.gmch_m,
9965                       pipe_config->dp_m2_n2.gmch_n,
9966                       pipe_config->dp_m2_n2.link_m,
9967                       pipe_config->dp_m2_n2.link_n,
9968                       pipe_config->dp_m2_n2.tu);
9969
9970         DRM_DEBUG_KMS("requested mode:\n");
9971         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9972         DRM_DEBUG_KMS("adjusted mode:\n");
9973         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9974         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9975         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9976         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9977                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9978         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9979                       pipe_config->gmch_pfit.control,
9980                       pipe_config->gmch_pfit.pgm_ratios,
9981                       pipe_config->gmch_pfit.lvds_border_bits);
9982         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9983                       pipe_config->pch_pfit.pos,
9984                       pipe_config->pch_pfit.size,
9985                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9986         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9987         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9988 }
9989
9990 static bool encoders_cloneable(const struct intel_encoder *a,
9991                                const struct intel_encoder *b)
9992 {
9993         /* masks could be asymmetric, so check both ways */
9994         return a == b || (a->cloneable & (1 << b->type) &&
9995                           b->cloneable & (1 << a->type));
9996 }
9997
9998 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9999                                          struct intel_encoder *encoder)
10000 {
10001         struct drm_device *dev = crtc->base.dev;
10002         struct intel_encoder *source_encoder;
10003
10004         for_each_intel_encoder(dev, source_encoder) {
10005                 if (source_encoder->new_crtc != crtc)
10006                         continue;
10007
10008                 if (!encoders_cloneable(encoder, source_encoder))
10009                         return false;
10010         }
10011
10012         return true;
10013 }
10014
10015 static bool check_encoder_cloning(struct intel_crtc *crtc)
10016 {
10017         struct drm_device *dev = crtc->base.dev;
10018         struct intel_encoder *encoder;
10019
10020         for_each_intel_encoder(dev, encoder) {
10021                 if (encoder->new_crtc != crtc)
10022                         continue;
10023
10024                 if (!check_single_encoder_cloning(crtc, encoder))
10025                         return false;
10026         }
10027
10028         return true;
10029 }
10030
10031 static struct intel_crtc_config *
10032 intel_modeset_pipe_config(struct drm_crtc *crtc,
10033                           struct drm_framebuffer *fb,
10034                           struct drm_display_mode *mode)
10035 {
10036         struct drm_device *dev = crtc->dev;
10037         struct intel_encoder *encoder;
10038         struct intel_crtc_config *pipe_config;
10039         int plane_bpp, ret = -EINVAL;
10040         bool retry = true;
10041
10042         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10043                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10044                 return ERR_PTR(-EINVAL);
10045         }
10046
10047         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10048         if (!pipe_config)
10049                 return ERR_PTR(-ENOMEM);
10050
10051         drm_mode_copy(&pipe_config->adjusted_mode, mode);
10052         drm_mode_copy(&pipe_config->requested_mode, mode);
10053
10054         pipe_config->cpu_transcoder =
10055                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10056         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10057
10058         /*
10059          * Sanitize sync polarity flags based on requested ones. If neither
10060          * positive or negative polarity is requested, treat this as meaning
10061          * negative polarity.
10062          */
10063         if (!(pipe_config->adjusted_mode.flags &
10064               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10065                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10066
10067         if (!(pipe_config->adjusted_mode.flags &
10068               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10069                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10070
10071         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10072          * plane pixel format and any sink constraints into account. Returns the
10073          * source plane bpp so that dithering can be selected on mismatches
10074          * after encoders and crtc also have had their say. */
10075         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10076                                               fb, pipe_config);
10077         if (plane_bpp < 0)
10078                 goto fail;
10079
10080         /*
10081          * Determine the real pipe dimensions. Note that stereo modes can
10082          * increase the actual pipe size due to the frame doubling and
10083          * insertion of additional space for blanks between the frame. This
10084          * is stored in the crtc timings. We use the requested mode to do this
10085          * computation to clearly distinguish it from the adjusted mode, which
10086          * can be changed by the connectors in the below retry loop.
10087          */
10088         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10089         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10090         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10091
10092 encoder_retry:
10093         /* Ensure the port clock defaults are reset when retrying. */
10094         pipe_config->port_clock = 0;
10095         pipe_config->pixel_multiplier = 1;
10096
10097         /* Fill in default crtc timings, allow encoders to overwrite them. */
10098         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10099
10100         /* Pass our mode to the connectors and the CRTC to give them a chance to
10101          * adjust it according to limitations or connector properties, and also
10102          * a chance to reject the mode entirely.
10103          */
10104         for_each_intel_encoder(dev, encoder) {
10105
10106                 if (&encoder->new_crtc->base != crtc)
10107                         continue;
10108
10109                 if (!(encoder->compute_config(encoder, pipe_config))) {
10110                         DRM_DEBUG_KMS("Encoder config failure\n");
10111                         goto fail;
10112                 }
10113         }
10114
10115         /* Set default port clock if not overwritten by the encoder. Needs to be
10116          * done afterwards in case the encoder adjusts the mode. */
10117         if (!pipe_config->port_clock)
10118                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10119                         * pipe_config->pixel_multiplier;
10120
10121         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10122         if (ret < 0) {
10123                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10124                 goto fail;
10125         }
10126
10127         if (ret == RETRY) {
10128                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10129                         ret = -EINVAL;
10130                         goto fail;
10131                 }
10132
10133                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10134                 retry = false;
10135                 goto encoder_retry;
10136         }
10137
10138         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10139         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10140                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10141
10142         return pipe_config;
10143 fail:
10144         kfree(pipe_config);
10145         return ERR_PTR(ret);
10146 }
10147
10148 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10149  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10150 static void
10151 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10152                              unsigned *prepare_pipes, unsigned *disable_pipes)
10153 {
10154         struct intel_crtc *intel_crtc;
10155         struct drm_device *dev = crtc->dev;
10156         struct intel_encoder *encoder;
10157         struct intel_connector *connector;
10158         struct drm_crtc *tmp_crtc;
10159
10160         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10161
10162         /* Check which crtcs have changed outputs connected to them, these need
10163          * to be part of the prepare_pipes mask. We don't (yet) support global
10164          * modeset across multiple crtcs, so modeset_pipes will only have one
10165          * bit set at most. */
10166         list_for_each_entry(connector, &dev->mode_config.connector_list,
10167                             base.head) {
10168                 if (connector->base.encoder == &connector->new_encoder->base)
10169                         continue;
10170
10171                 if (connector->base.encoder) {
10172                         tmp_crtc = connector->base.encoder->crtc;
10173
10174                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10175                 }
10176
10177                 if (connector->new_encoder)
10178                         *prepare_pipes |=
10179                                 1 << connector->new_encoder->new_crtc->pipe;
10180         }
10181
10182         for_each_intel_encoder(dev, encoder) {
10183                 if (encoder->base.crtc == &encoder->new_crtc->base)
10184                         continue;
10185
10186                 if (encoder->base.crtc) {
10187                         tmp_crtc = encoder->base.crtc;
10188
10189                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10190                 }
10191
10192                 if (encoder->new_crtc)
10193                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10194         }
10195
10196         /* Check for pipes that will be enabled/disabled ... */
10197         for_each_intel_crtc(dev, intel_crtc) {
10198                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10199                         continue;
10200
10201                 if (!intel_crtc->new_enabled)
10202                         *disable_pipes |= 1 << intel_crtc->pipe;
10203                 else
10204                         *prepare_pipes |= 1 << intel_crtc->pipe;
10205         }
10206
10207
10208         /* set_mode is also used to update properties on life display pipes. */
10209         intel_crtc = to_intel_crtc(crtc);
10210         if (intel_crtc->new_enabled)
10211                 *prepare_pipes |= 1 << intel_crtc->pipe;
10212
10213         /*
10214          * For simplicity do a full modeset on any pipe where the output routing
10215          * changed. We could be more clever, but that would require us to be
10216          * more careful with calling the relevant encoder->mode_set functions.
10217          */
10218         if (*prepare_pipes)
10219                 *modeset_pipes = *prepare_pipes;
10220
10221         /* ... and mask these out. */
10222         *modeset_pipes &= ~(*disable_pipes);
10223         *prepare_pipes &= ~(*disable_pipes);
10224
10225         /*
10226          * HACK: We don't (yet) fully support global modesets. intel_set_config
10227          * obies this rule, but the modeset restore mode of
10228          * intel_modeset_setup_hw_state does not.
10229          */
10230         *modeset_pipes &= 1 << intel_crtc->pipe;
10231         *prepare_pipes &= 1 << intel_crtc->pipe;
10232
10233         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10234                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10235 }
10236
10237 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10238 {
10239         struct drm_encoder *encoder;
10240         struct drm_device *dev = crtc->dev;
10241
10242         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10243                 if (encoder->crtc == crtc)
10244                         return true;
10245
10246         return false;
10247 }
10248
10249 static void
10250 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10251 {
10252         struct intel_encoder *intel_encoder;
10253         struct intel_crtc *intel_crtc;
10254         struct drm_connector *connector;
10255
10256         for_each_intel_encoder(dev, intel_encoder) {
10257                 if (!intel_encoder->base.crtc)
10258                         continue;
10259
10260                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10261
10262                 if (prepare_pipes & (1 << intel_crtc->pipe))
10263                         intel_encoder->connectors_active = false;
10264         }
10265
10266         intel_modeset_commit_output_state(dev);
10267
10268         /* Double check state. */
10269         for_each_intel_crtc(dev, intel_crtc) {
10270                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10271                 WARN_ON(intel_crtc->new_config &&
10272                         intel_crtc->new_config != &intel_crtc->config);
10273                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10274         }
10275
10276         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10277                 if (!connector->encoder || !connector->encoder->crtc)
10278                         continue;
10279
10280                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10281
10282                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10283                         struct drm_property *dpms_property =
10284                                 dev->mode_config.dpms_property;
10285
10286                         connector->dpms = DRM_MODE_DPMS_ON;
10287                         drm_object_property_set_value(&connector->base,
10288                                                          dpms_property,
10289                                                          DRM_MODE_DPMS_ON);
10290
10291                         intel_encoder = to_intel_encoder(connector->encoder);
10292                         intel_encoder->connectors_active = true;
10293                 }
10294         }
10295
10296 }
10297
10298 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10299 {
10300         int diff;
10301
10302         if (clock1 == clock2)
10303                 return true;
10304
10305         if (!clock1 || !clock2)
10306                 return false;
10307
10308         diff = abs(clock1 - clock2);
10309
10310         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10311                 return true;
10312
10313         return false;
10314 }
10315
10316 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10317         list_for_each_entry((intel_crtc), \
10318                             &(dev)->mode_config.crtc_list, \
10319                             base.head) \
10320                 if (mask & (1 <<(intel_crtc)->pipe))
10321
10322 static bool
10323 intel_pipe_config_compare(struct drm_device *dev,
10324                           struct intel_crtc_config *current_config,
10325                           struct intel_crtc_config *pipe_config)
10326 {
10327 #define PIPE_CONF_CHECK_X(name) \
10328         if (current_config->name != pipe_config->name) { \
10329                 DRM_ERROR("mismatch in " #name " " \
10330                           "(expected 0x%08x, found 0x%08x)\n", \
10331                           current_config->name, \
10332                           pipe_config->name); \
10333                 return false; \
10334         }
10335
10336 #define PIPE_CONF_CHECK_I(name) \
10337         if (current_config->name != pipe_config->name) { \
10338                 DRM_ERROR("mismatch in " #name " " \
10339                           "(expected %i, found %i)\n", \
10340                           current_config->name, \
10341                           pipe_config->name); \
10342                 return false; \
10343         }
10344
10345 /* This is required for BDW+ where there is only one set of registers for
10346  * switching between high and low RR.
10347  * This macro can be used whenever a comparison has to be made between one
10348  * hw state and multiple sw state variables.
10349  */
10350 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10351         if ((current_config->name != pipe_config->name) && \
10352                 (current_config->alt_name != pipe_config->name)) { \
10353                         DRM_ERROR("mismatch in " #name " " \
10354                                   "(expected %i or %i, found %i)\n", \
10355                                   current_config->name, \
10356                                   current_config->alt_name, \
10357                                   pipe_config->name); \
10358                         return false; \
10359         }
10360
10361 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10362         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10363                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10364                           "(expected %i, found %i)\n", \
10365                           current_config->name & (mask), \
10366                           pipe_config->name & (mask)); \
10367                 return false; \
10368         }
10369
10370 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10371         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10372                 DRM_ERROR("mismatch in " #name " " \
10373                           "(expected %i, found %i)\n", \
10374                           current_config->name, \
10375                           pipe_config->name); \
10376                 return false; \
10377         }
10378
10379 #define PIPE_CONF_QUIRK(quirk)  \
10380         ((current_config->quirks | pipe_config->quirks) & (quirk))
10381
10382         PIPE_CONF_CHECK_I(cpu_transcoder);
10383
10384         PIPE_CONF_CHECK_I(has_pch_encoder);
10385         PIPE_CONF_CHECK_I(fdi_lanes);
10386         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10387         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10388         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10389         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10390         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10391
10392         PIPE_CONF_CHECK_I(has_dp_encoder);
10393
10394         if (INTEL_INFO(dev)->gen < 8) {
10395                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10396                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10397                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10398                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10399                 PIPE_CONF_CHECK_I(dp_m_n.tu);
10400
10401                 if (current_config->has_drrs) {
10402                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10403                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10404                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10405                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10406                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10407                 }
10408         } else {
10409                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10410                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10411                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10412                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10413                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10414         }
10415
10416         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10417         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10418         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10419         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10420         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10421         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10422
10423         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10424         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10425         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10426         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10427         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10428         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10429
10430         PIPE_CONF_CHECK_I(pixel_multiplier);
10431         PIPE_CONF_CHECK_I(has_hdmi_sink);
10432         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10433             IS_VALLEYVIEW(dev))
10434                 PIPE_CONF_CHECK_I(limited_color_range);
10435
10436         PIPE_CONF_CHECK_I(has_audio);
10437
10438         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10439                               DRM_MODE_FLAG_INTERLACE);
10440
10441         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10442                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10443                                       DRM_MODE_FLAG_PHSYNC);
10444                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10445                                       DRM_MODE_FLAG_NHSYNC);
10446                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10447                                       DRM_MODE_FLAG_PVSYNC);
10448                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10449                                       DRM_MODE_FLAG_NVSYNC);
10450         }
10451
10452         PIPE_CONF_CHECK_I(pipe_src_w);
10453         PIPE_CONF_CHECK_I(pipe_src_h);
10454
10455         /*
10456          * FIXME: BIOS likes to set up a cloned config with lvds+external
10457          * screen. Since we don't yet re-compute the pipe config when moving
10458          * just the lvds port away to another pipe the sw tracking won't match.
10459          *
10460          * Proper atomic modesets with recomputed global state will fix this.
10461          * Until then just don't check gmch state for inherited modes.
10462          */
10463         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10464                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10465                 /* pfit ratios are autocomputed by the hw on gen4+ */
10466                 if (INTEL_INFO(dev)->gen < 4)
10467                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10468                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10469         }
10470
10471         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10472         if (current_config->pch_pfit.enabled) {
10473                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10474                 PIPE_CONF_CHECK_I(pch_pfit.size);
10475         }
10476
10477         /* BDW+ don't expose a synchronous way to read the state */
10478         if (IS_HASWELL(dev))
10479                 PIPE_CONF_CHECK_I(ips_enabled);
10480
10481         PIPE_CONF_CHECK_I(double_wide);
10482
10483         PIPE_CONF_CHECK_X(ddi_pll_sel);
10484
10485         PIPE_CONF_CHECK_I(shared_dpll);
10486         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10487         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10488         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10489         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10490         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10491
10492         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10493                 PIPE_CONF_CHECK_I(pipe_bpp);
10494
10495         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10496         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10497
10498 #undef PIPE_CONF_CHECK_X
10499 #undef PIPE_CONF_CHECK_I
10500 #undef PIPE_CONF_CHECK_I_ALT
10501 #undef PIPE_CONF_CHECK_FLAGS
10502 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10503 #undef PIPE_CONF_QUIRK
10504
10505         return true;
10506 }
10507
10508 static void
10509 check_connector_state(struct drm_device *dev)
10510 {
10511         struct intel_connector *connector;
10512
10513         list_for_each_entry(connector, &dev->mode_config.connector_list,
10514                             base.head) {
10515                 /* This also checks the encoder/connector hw state with the
10516                  * ->get_hw_state callbacks. */
10517                 intel_connector_check_state(connector);
10518
10519                 WARN(&connector->new_encoder->base != connector->base.encoder,
10520                      "connector's staged encoder doesn't match current encoder\n");
10521         }
10522 }
10523
10524 static void
10525 check_encoder_state(struct drm_device *dev)
10526 {
10527         struct intel_encoder *encoder;
10528         struct intel_connector *connector;
10529
10530         for_each_intel_encoder(dev, encoder) {
10531                 bool enabled = false;
10532                 bool active = false;
10533                 enum pipe pipe, tracked_pipe;
10534
10535                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10536                               encoder->base.base.id,
10537                               encoder->base.name);
10538
10539                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10540                      "encoder's stage crtc doesn't match current crtc\n");
10541                 WARN(encoder->connectors_active && !encoder->base.crtc,
10542                      "encoder's active_connectors set, but no crtc\n");
10543
10544                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10545                                     base.head) {
10546                         if (connector->base.encoder != &encoder->base)
10547                                 continue;
10548                         enabled = true;
10549                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10550                                 active = true;
10551                 }
10552                 /*
10553                  * for MST connectors if we unplug the connector is gone
10554                  * away but the encoder is still connected to a crtc
10555                  * until a modeset happens in response to the hotplug.
10556                  */
10557                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10558                         continue;
10559
10560                 WARN(!!encoder->base.crtc != enabled,
10561                      "encoder's enabled state mismatch "
10562                      "(expected %i, found %i)\n",
10563                      !!encoder->base.crtc, enabled);
10564                 WARN(active && !encoder->base.crtc,
10565                      "active encoder with no crtc\n");
10566
10567                 WARN(encoder->connectors_active != active,
10568                      "encoder's computed active state doesn't match tracked active state "
10569                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10570
10571                 active = encoder->get_hw_state(encoder, &pipe);
10572                 WARN(active != encoder->connectors_active,
10573                      "encoder's hw state doesn't match sw tracking "
10574                      "(expected %i, found %i)\n",
10575                      encoder->connectors_active, active);
10576
10577                 if (!encoder->base.crtc)
10578                         continue;
10579
10580                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10581                 WARN(active && pipe != tracked_pipe,
10582                      "active encoder's pipe doesn't match"
10583                      "(expected %i, found %i)\n",
10584                      tracked_pipe, pipe);
10585
10586         }
10587 }
10588
10589 static void
10590 check_crtc_state(struct drm_device *dev)
10591 {
10592         struct drm_i915_private *dev_priv = dev->dev_private;
10593         struct intel_crtc *crtc;
10594         struct intel_encoder *encoder;
10595         struct intel_crtc_config pipe_config;
10596
10597         for_each_intel_crtc(dev, crtc) {
10598                 bool enabled = false;
10599                 bool active = false;
10600
10601                 memset(&pipe_config, 0, sizeof(pipe_config));
10602
10603                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10604                               crtc->base.base.id);
10605
10606                 WARN(crtc->active && !crtc->base.enabled,
10607                      "active crtc, but not enabled in sw tracking\n");
10608
10609                 for_each_intel_encoder(dev, encoder) {
10610                         if (encoder->base.crtc != &crtc->base)
10611                                 continue;
10612                         enabled = true;
10613                         if (encoder->connectors_active)
10614                                 active = true;
10615                 }
10616
10617                 WARN(active != crtc->active,
10618                      "crtc's computed active state doesn't match tracked active state "
10619                      "(expected %i, found %i)\n", active, crtc->active);
10620                 WARN(enabled != crtc->base.enabled,
10621                      "crtc's computed enabled state doesn't match tracked enabled state "
10622                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10623
10624                 active = dev_priv->display.get_pipe_config(crtc,
10625                                                            &pipe_config);
10626
10627                 /* hw state is inconsistent with the pipe quirk */
10628                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10629                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10630                         active = crtc->active;
10631
10632                 for_each_intel_encoder(dev, encoder) {
10633                         enum pipe pipe;
10634                         if (encoder->base.crtc != &crtc->base)
10635                                 continue;
10636                         if (encoder->get_hw_state(encoder, &pipe))
10637                                 encoder->get_config(encoder, &pipe_config);
10638                 }
10639
10640                 WARN(crtc->active != active,
10641                      "crtc active state doesn't match with hw state "
10642                      "(expected %i, found %i)\n", crtc->active, active);
10643
10644                 if (active &&
10645                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10646                         WARN(1, "pipe state doesn't match!\n");
10647                         intel_dump_pipe_config(crtc, &pipe_config,
10648                                                "[hw state]");
10649                         intel_dump_pipe_config(crtc, &crtc->config,
10650                                                "[sw state]");
10651                 }
10652         }
10653 }
10654
10655 static void
10656 check_shared_dpll_state(struct drm_device *dev)
10657 {
10658         struct drm_i915_private *dev_priv = dev->dev_private;
10659         struct intel_crtc *crtc;
10660         struct intel_dpll_hw_state dpll_hw_state;
10661         int i;
10662
10663         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10664                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10665                 int enabled_crtcs = 0, active_crtcs = 0;
10666                 bool active;
10667
10668                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10669
10670                 DRM_DEBUG_KMS("%s\n", pll->name);
10671
10672                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10673
10674                 WARN(pll->active > hweight32(pll->config.crtc_mask),
10675                      "more active pll users than references: %i vs %i\n",
10676                      pll->active, hweight32(pll->config.crtc_mask));
10677                 WARN(pll->active && !pll->on,
10678                      "pll in active use but not on in sw tracking\n");
10679                 WARN(pll->on && !pll->active,
10680                      "pll in on but not on in use in sw tracking\n");
10681                 WARN(pll->on != active,
10682                      "pll on state mismatch (expected %i, found %i)\n",
10683                      pll->on, active);
10684
10685                 for_each_intel_crtc(dev, crtc) {
10686                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10687                                 enabled_crtcs++;
10688                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10689                                 active_crtcs++;
10690                 }
10691                 WARN(pll->active != active_crtcs,
10692                      "pll active crtcs mismatch (expected %i, found %i)\n",
10693                      pll->active, active_crtcs);
10694                 WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
10695                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10696                      hweight32(pll->config.crtc_mask), enabled_crtcs);
10697
10698                 WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
10699                                        sizeof(dpll_hw_state)),
10700                      "pll hw state mismatch\n");
10701         }
10702 }
10703
10704 void
10705 intel_modeset_check_state(struct drm_device *dev)
10706 {
10707         check_connector_state(dev);
10708         check_encoder_state(dev);
10709         check_crtc_state(dev);
10710         check_shared_dpll_state(dev);
10711 }
10712
10713 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10714                                      int dotclock)
10715 {
10716         /*
10717          * FDI already provided one idea for the dotclock.
10718          * Yell if the encoder disagrees.
10719          */
10720         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10721              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10722              pipe_config->adjusted_mode.crtc_clock, dotclock);
10723 }
10724
10725 static void update_scanline_offset(struct intel_crtc *crtc)
10726 {
10727         struct drm_device *dev = crtc->base.dev;
10728
10729         /*
10730          * The scanline counter increments at the leading edge of hsync.
10731          *
10732          * On most platforms it starts counting from vtotal-1 on the
10733          * first active line. That means the scanline counter value is
10734          * always one less than what we would expect. Ie. just after
10735          * start of vblank, which also occurs at start of hsync (on the
10736          * last active line), the scanline counter will read vblank_start-1.
10737          *
10738          * On gen2 the scanline counter starts counting from 1 instead
10739          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10740          * to keep the value positive), instead of adding one.
10741          *
10742          * On HSW+ the behaviour of the scanline counter depends on the output
10743          * type. For DP ports it behaves like most other platforms, but on HDMI
10744          * there's an extra 1 line difference. So we need to add two instead of
10745          * one to the value.
10746          */
10747         if (IS_GEN2(dev)) {
10748                 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10749                 int vtotal;
10750
10751                 vtotal = mode->crtc_vtotal;
10752                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10753                         vtotal /= 2;
10754
10755                 crtc->scanline_offset = vtotal - 1;
10756         } else if (HAS_DDI(dev) &&
10757                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
10758                 crtc->scanline_offset = 2;
10759         } else
10760                 crtc->scanline_offset = 1;
10761 }
10762
10763 static int __intel_set_mode(struct drm_crtc *crtc,
10764                             struct drm_display_mode *mode,
10765                             int x, int y, struct drm_framebuffer *fb)
10766 {
10767         struct drm_device *dev = crtc->dev;
10768         struct drm_i915_private *dev_priv = dev->dev_private;
10769         struct drm_display_mode *saved_mode;
10770         struct intel_crtc_config *pipe_config = NULL;
10771         struct intel_crtc *intel_crtc;
10772         unsigned disable_pipes, prepare_pipes, modeset_pipes;
10773         int ret = 0;
10774
10775         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10776         if (!saved_mode)
10777                 return -ENOMEM;
10778
10779         intel_modeset_affected_pipes(crtc, &modeset_pipes,
10780                                      &prepare_pipes, &disable_pipes);
10781
10782         *saved_mode = crtc->mode;
10783
10784         /* Hack: Because we don't (yet) support global modeset on multiple
10785          * crtcs, we don't keep track of the new mode for more than one crtc.
10786          * Hence simply check whether any bit is set in modeset_pipes in all the
10787          * pieces of code that are not yet converted to deal with mutliple crtcs
10788          * changing their mode at the same time. */
10789         if (modeset_pipes) {
10790                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10791                 if (IS_ERR(pipe_config)) {
10792                         ret = PTR_ERR(pipe_config);
10793                         pipe_config = NULL;
10794
10795                         goto out;
10796                 }
10797                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10798                                        "[modeset]");
10799                 to_intel_crtc(crtc)->new_config = pipe_config;
10800         }
10801
10802         /*
10803          * See if the config requires any additional preparation, e.g.
10804          * to adjust global state with pipes off.  We need to do this
10805          * here so we can get the modeset_pipe updated config for the new
10806          * mode set on this crtc.  For other crtcs we need to use the
10807          * adjusted_mode bits in the crtc directly.
10808          */
10809         if (IS_VALLEYVIEW(dev)) {
10810                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10811
10812                 /* may have added more to prepare_pipes than we should */
10813                 prepare_pipes &= ~disable_pipes;
10814         }
10815
10816         if (dev_priv->display.crtc_compute_clock) {
10817                 unsigned clear_pipes = modeset_pipes | disable_pipes;
10818
10819                 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
10820                 if (ret)
10821                         goto done;
10822
10823                 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10824                         ret = dev_priv->display.crtc_compute_clock(intel_crtc);
10825                         if (ret) {
10826                                 intel_shared_dpll_abort_config(dev_priv);
10827                                 goto done;
10828                         }
10829                 }
10830         }
10831
10832         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10833                 intel_crtc_disable(&intel_crtc->base);
10834
10835         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10836                 if (intel_crtc->base.enabled)
10837                         dev_priv->display.crtc_disable(&intel_crtc->base);
10838         }
10839
10840         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10841          * to set it here already despite that we pass it down the callchain.
10842          */
10843         if (modeset_pipes) {
10844                 crtc->mode = *mode;
10845                 /* mode_set/enable/disable functions rely on a correct pipe
10846                  * config. */
10847                 to_intel_crtc(crtc)->config = *pipe_config;
10848                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10849
10850                 /*
10851                  * Calculate and store various constants which
10852                  * are later needed by vblank and swap-completion
10853                  * timestamping. They are derived from true hwmode.
10854                  */
10855                 drm_calc_timestamping_constants(crtc,
10856                                                 &pipe_config->adjusted_mode);
10857         }
10858
10859         if (dev_priv->display.crtc_compute_clock)
10860                 intel_shared_dpll_commit(dev_priv);
10861
10862         /* Only after disabling all output pipelines that will be changed can we
10863          * update the the output configuration. */
10864         intel_modeset_update_state(dev, prepare_pipes);
10865
10866         if (dev_priv->display.modeset_global_resources)
10867                 dev_priv->display.modeset_global_resources(dev);
10868
10869         /* Set up the DPLL and any encoders state that needs to adjust or depend
10870          * on the DPLL.
10871          */
10872         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10873                 struct drm_framebuffer *old_fb = crtc->primary->fb;
10874                 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10875                 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10876
10877                 mutex_lock(&dev->struct_mutex);
10878                 ret = intel_pin_and_fence_fb_obj(dev,
10879                                                  obj,
10880                                                  NULL);
10881                 if (ret != 0) {
10882                         DRM_ERROR("pin & fence failed\n");
10883                         mutex_unlock(&dev->struct_mutex);
10884                         goto done;
10885                 }
10886                 if (old_fb)
10887                         intel_unpin_fb_obj(old_obj);
10888                 i915_gem_track_fb(old_obj, obj,
10889                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
10890                 mutex_unlock(&dev->struct_mutex);
10891
10892                 crtc->primary->fb = fb;
10893                 crtc->x = x;
10894                 crtc->y = y;
10895
10896                 if (dev_priv->display.crtc_mode_set) {
10897                         ret = dev_priv->display.crtc_mode_set(intel_crtc,
10898                                                               x, y, fb);
10899                         if (ret)
10900                                 goto done;
10901                 }
10902         }
10903
10904         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10905         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10906                 update_scanline_offset(intel_crtc);
10907
10908                 dev_priv->display.crtc_enable(&intel_crtc->base);
10909         }
10910
10911         /* FIXME: add subpixel order */
10912 done:
10913         if (ret && crtc->enabled)
10914                 crtc->mode = *saved_mode;
10915
10916 out:
10917         kfree(pipe_config);
10918         kfree(saved_mode);
10919         return ret;
10920 }
10921
10922 static int intel_set_mode(struct drm_crtc *crtc,
10923                           struct drm_display_mode *mode,
10924                           int x, int y, struct drm_framebuffer *fb)
10925 {
10926         int ret;
10927
10928         ret = __intel_set_mode(crtc, mode, x, y, fb);
10929
10930         if (ret == 0)
10931                 intel_modeset_check_state(crtc->dev);
10932
10933         return ret;
10934 }
10935
10936 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10937 {
10938         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10939 }
10940
10941 #undef for_each_intel_crtc_masked
10942
10943 static void intel_set_config_free(struct intel_set_config *config)
10944 {
10945         if (!config)
10946                 return;
10947
10948         kfree(config->save_connector_encoders);
10949         kfree(config->save_encoder_crtcs);
10950         kfree(config->save_crtc_enabled);
10951         kfree(config);
10952 }
10953
10954 static int intel_set_config_save_state(struct drm_device *dev,
10955                                        struct intel_set_config *config)
10956 {
10957         struct drm_crtc *crtc;
10958         struct drm_encoder *encoder;
10959         struct drm_connector *connector;
10960         int count;
10961
10962         config->save_crtc_enabled =
10963                 kcalloc(dev->mode_config.num_crtc,
10964                         sizeof(bool), GFP_KERNEL);
10965         if (!config->save_crtc_enabled)
10966                 return -ENOMEM;
10967
10968         config->save_encoder_crtcs =
10969                 kcalloc(dev->mode_config.num_encoder,
10970                         sizeof(struct drm_crtc *), GFP_KERNEL);
10971         if (!config->save_encoder_crtcs)
10972                 return -ENOMEM;
10973
10974         config->save_connector_encoders =
10975                 kcalloc(dev->mode_config.num_connector,
10976                         sizeof(struct drm_encoder *), GFP_KERNEL);
10977         if (!config->save_connector_encoders)
10978                 return -ENOMEM;
10979
10980         /* Copy data. Note that driver private data is not affected.
10981          * Should anything bad happen only the expected state is
10982          * restored, not the drivers personal bookkeeping.
10983          */
10984         count = 0;
10985         for_each_crtc(dev, crtc) {
10986                 config->save_crtc_enabled[count++] = crtc->enabled;
10987         }
10988
10989         count = 0;
10990         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10991                 config->save_encoder_crtcs[count++] = encoder->crtc;
10992         }
10993
10994         count = 0;
10995         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10996                 config->save_connector_encoders[count++] = connector->encoder;
10997         }
10998
10999         return 0;
11000 }
11001
11002 static void intel_set_config_restore_state(struct drm_device *dev,
11003                                            struct intel_set_config *config)
11004 {
11005         struct intel_crtc *crtc;
11006         struct intel_encoder *encoder;
11007         struct intel_connector *connector;
11008         int count;
11009
11010         count = 0;
11011         for_each_intel_crtc(dev, crtc) {
11012                 crtc->new_enabled = config->save_crtc_enabled[count++];
11013
11014                 if (crtc->new_enabled)
11015                         crtc->new_config = &crtc->config;
11016                 else
11017                         crtc->new_config = NULL;
11018         }
11019
11020         count = 0;
11021         for_each_intel_encoder(dev, encoder) {
11022                 encoder->new_crtc =
11023                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11024         }
11025
11026         count = 0;
11027         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11028                 connector->new_encoder =
11029                         to_intel_encoder(config->save_connector_encoders[count++]);
11030         }
11031 }
11032
11033 static bool
11034 is_crtc_connector_off(struct drm_mode_set *set)
11035 {
11036         int i;
11037
11038         if (set->num_connectors == 0)
11039                 return false;
11040
11041         if (WARN_ON(set->connectors == NULL))
11042                 return false;
11043
11044         for (i = 0; i < set->num_connectors; i++)
11045                 if (set->connectors[i]->encoder &&
11046                     set->connectors[i]->encoder->crtc == set->crtc &&
11047                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11048                         return true;
11049
11050         return false;
11051 }
11052
11053 static void
11054 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11055                                       struct intel_set_config *config)
11056 {
11057
11058         /* We should be able to check here if the fb has the same properties
11059          * and then just flip_or_move it */
11060         if (is_crtc_connector_off(set)) {
11061                 config->mode_changed = true;
11062         } else if (set->crtc->primary->fb != set->fb) {
11063                 /*
11064                  * If we have no fb, we can only flip as long as the crtc is
11065                  * active, otherwise we need a full mode set.  The crtc may
11066                  * be active if we've only disabled the primary plane, or
11067                  * in fastboot situations.
11068                  */
11069                 if (set->crtc->primary->fb == NULL) {
11070                         struct intel_crtc *intel_crtc =
11071                                 to_intel_crtc(set->crtc);
11072
11073                         if (intel_crtc->active) {
11074                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11075                                 config->fb_changed = true;
11076                         } else {
11077                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11078                                 config->mode_changed = true;
11079                         }
11080                 } else if (set->fb == NULL) {
11081                         config->mode_changed = true;
11082                 } else if (set->fb->pixel_format !=
11083                            set->crtc->primary->fb->pixel_format) {
11084                         config->mode_changed = true;
11085                 } else {
11086                         config->fb_changed = true;
11087                 }
11088         }
11089
11090         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11091                 config->fb_changed = true;
11092
11093         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11094                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11095                 drm_mode_debug_printmodeline(&set->crtc->mode);
11096                 drm_mode_debug_printmodeline(set->mode);
11097                 config->mode_changed = true;
11098         }
11099
11100         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11101                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11102 }
11103
11104 static int
11105 intel_modeset_stage_output_state(struct drm_device *dev,
11106                                  struct drm_mode_set *set,
11107                                  struct intel_set_config *config)
11108 {
11109         struct intel_connector *connector;
11110         struct intel_encoder *encoder;
11111         struct intel_crtc *crtc;
11112         int ro;
11113
11114         /* The upper layers ensure that we either disable a crtc or have a list
11115          * of connectors. For paranoia, double-check this. */
11116         WARN_ON(!set->fb && (set->num_connectors != 0));
11117         WARN_ON(set->fb && (set->num_connectors == 0));
11118
11119         list_for_each_entry(connector, &dev->mode_config.connector_list,
11120                             base.head) {
11121                 /* Otherwise traverse passed in connector list and get encoders
11122                  * for them. */
11123                 for (ro = 0; ro < set->num_connectors; ro++) {
11124                         if (set->connectors[ro] == &connector->base) {
11125                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11126                                 break;
11127                         }
11128                 }
11129
11130                 /* If we disable the crtc, disable all its connectors. Also, if
11131                  * the connector is on the changing crtc but not on the new
11132                  * connector list, disable it. */
11133                 if ((!set->fb || ro == set->num_connectors) &&
11134                     connector->base.encoder &&
11135                     connector->base.encoder->crtc == set->crtc) {
11136                         connector->new_encoder = NULL;
11137
11138                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11139                                 connector->base.base.id,
11140                                 connector->base.name);
11141                 }
11142
11143
11144                 if (&connector->new_encoder->base != connector->base.encoder) {
11145                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11146                         config->mode_changed = true;
11147                 }
11148         }
11149         /* connector->new_encoder is now updated for all connectors. */
11150
11151         /* Update crtc of enabled connectors. */
11152         list_for_each_entry(connector, &dev->mode_config.connector_list,
11153                             base.head) {
11154                 struct drm_crtc *new_crtc;
11155
11156                 if (!connector->new_encoder)
11157                         continue;
11158
11159                 new_crtc = connector->new_encoder->base.crtc;
11160
11161                 for (ro = 0; ro < set->num_connectors; ro++) {
11162                         if (set->connectors[ro] == &connector->base)
11163                                 new_crtc = set->crtc;
11164                 }
11165
11166                 /* Make sure the new CRTC will work with the encoder */
11167                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11168                                          new_crtc)) {
11169                         return -EINVAL;
11170                 }
11171                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11172
11173                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11174                         connector->base.base.id,
11175                         connector->base.name,
11176                         new_crtc->base.id);
11177         }
11178
11179         /* Check for any encoders that needs to be disabled. */
11180         for_each_intel_encoder(dev, encoder) {
11181                 int num_connectors = 0;
11182                 list_for_each_entry(connector,
11183                                     &dev->mode_config.connector_list,
11184                                     base.head) {
11185                         if (connector->new_encoder == encoder) {
11186                                 WARN_ON(!connector->new_encoder->new_crtc);
11187                                 num_connectors++;
11188                         }
11189                 }
11190
11191                 if (num_connectors == 0)
11192                         encoder->new_crtc = NULL;
11193                 else if (num_connectors > 1)
11194                         return -EINVAL;
11195
11196                 /* Only now check for crtc changes so we don't miss encoders
11197                  * that will be disabled. */
11198                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11199                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11200                         config->mode_changed = true;
11201                 }
11202         }
11203         /* Now we've also updated encoder->new_crtc for all encoders. */
11204         list_for_each_entry(connector, &dev->mode_config.connector_list,
11205                             base.head) {
11206                 if (connector->new_encoder)
11207                         if (connector->new_encoder != connector->encoder)
11208                                 connector->encoder = connector->new_encoder;
11209         }
11210         for_each_intel_crtc(dev, crtc) {
11211                 crtc->new_enabled = false;
11212
11213                 for_each_intel_encoder(dev, encoder) {
11214                         if (encoder->new_crtc == crtc) {
11215                                 crtc->new_enabled = true;
11216                                 break;
11217                         }
11218                 }
11219
11220                 if (crtc->new_enabled != crtc->base.enabled) {
11221                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11222                                       crtc->new_enabled ? "en" : "dis");
11223                         config->mode_changed = true;
11224                 }
11225
11226                 if (crtc->new_enabled)
11227                         crtc->new_config = &crtc->config;
11228                 else
11229                         crtc->new_config = NULL;
11230         }
11231
11232         return 0;
11233 }
11234
11235 static void disable_crtc_nofb(struct intel_crtc *crtc)
11236 {
11237         struct drm_device *dev = crtc->base.dev;
11238         struct intel_encoder *encoder;
11239         struct intel_connector *connector;
11240
11241         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11242                       pipe_name(crtc->pipe));
11243
11244         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11245                 if (connector->new_encoder &&
11246                     connector->new_encoder->new_crtc == crtc)
11247                         connector->new_encoder = NULL;
11248         }
11249
11250         for_each_intel_encoder(dev, encoder) {
11251                 if (encoder->new_crtc == crtc)
11252                         encoder->new_crtc = NULL;
11253         }
11254
11255         crtc->new_enabled = false;
11256         crtc->new_config = NULL;
11257 }
11258
11259 static int intel_crtc_set_config(struct drm_mode_set *set)
11260 {
11261         struct drm_device *dev;
11262         struct drm_mode_set save_set;
11263         struct intel_set_config *config;
11264         int ret;
11265
11266         BUG_ON(!set);
11267         BUG_ON(!set->crtc);
11268         BUG_ON(!set->crtc->helper_private);
11269
11270         /* Enforce sane interface api - has been abused by the fb helper. */
11271         BUG_ON(!set->mode && set->fb);
11272         BUG_ON(set->fb && set->num_connectors == 0);
11273
11274         if (set->fb) {
11275                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11276                                 set->crtc->base.id, set->fb->base.id,
11277                                 (int)set->num_connectors, set->x, set->y);
11278         } else {
11279                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11280         }
11281
11282         dev = set->crtc->dev;
11283
11284         ret = -ENOMEM;
11285         config = kzalloc(sizeof(*config), GFP_KERNEL);
11286         if (!config)
11287                 goto out_config;
11288
11289         ret = intel_set_config_save_state(dev, config);
11290         if (ret)
11291                 goto out_config;
11292
11293         save_set.crtc = set->crtc;
11294         save_set.mode = &set->crtc->mode;
11295         save_set.x = set->crtc->x;
11296         save_set.y = set->crtc->y;
11297         save_set.fb = set->crtc->primary->fb;
11298
11299         /* Compute whether we need a full modeset, only an fb base update or no
11300          * change at all. In the future we might also check whether only the
11301          * mode changed, e.g. for LVDS where we only change the panel fitter in
11302          * such cases. */
11303         intel_set_config_compute_mode_changes(set, config);
11304
11305         ret = intel_modeset_stage_output_state(dev, set, config);
11306         if (ret)
11307                 goto fail;
11308
11309         if (config->mode_changed) {
11310                 ret = intel_set_mode(set->crtc, set->mode,
11311                                      set->x, set->y, set->fb);
11312         } else if (config->fb_changed) {
11313                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11314
11315                 intel_crtc_wait_for_pending_flips(set->crtc);
11316
11317                 ret = intel_pipe_set_base(set->crtc,
11318                                           set->x, set->y, set->fb);
11319
11320                 /*
11321                  * We need to make sure the primary plane is re-enabled if it
11322                  * has previously been turned off.
11323                  */
11324                 if (!intel_crtc->primary_enabled && ret == 0) {
11325                         WARN_ON(!intel_crtc->active);
11326                         intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11327                 }
11328
11329                 /*
11330                  * In the fastboot case this may be our only check of the
11331                  * state after boot.  It would be better to only do it on
11332                  * the first update, but we don't have a nice way of doing that
11333                  * (and really, set_config isn't used much for high freq page
11334                  * flipping, so increasing its cost here shouldn't be a big
11335                  * deal).
11336                  */
11337                 if (i915.fastboot && ret == 0)
11338                         intel_modeset_check_state(set->crtc->dev);
11339         }
11340
11341         if (ret) {
11342                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11343                               set->crtc->base.id, ret);
11344 fail:
11345                 intel_set_config_restore_state(dev, config);
11346
11347                 /*
11348                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11349                  * force the pipe off to avoid oopsing in the modeset code
11350                  * due to fb==NULL. This should only happen during boot since
11351                  * we don't yet reconstruct the FB from the hardware state.
11352                  */
11353                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11354                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11355
11356                 /* Try to restore the config */
11357                 if (config->mode_changed &&
11358                     intel_set_mode(save_set.crtc, save_set.mode,
11359                                    save_set.x, save_set.y, save_set.fb))
11360                         DRM_ERROR("failed to restore config after modeset failure\n");
11361         }
11362
11363 out_config:
11364         intel_set_config_free(config);
11365         return ret;
11366 }
11367
11368 static const struct drm_crtc_funcs intel_crtc_funcs = {
11369         .gamma_set = intel_crtc_gamma_set,
11370         .set_config = intel_crtc_set_config,
11371         .destroy = intel_crtc_destroy,
11372         .page_flip = intel_crtc_page_flip,
11373 };
11374
11375 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11376                                       struct intel_shared_dpll *pll,
11377                                       struct intel_dpll_hw_state *hw_state)
11378 {
11379         uint32_t val;
11380
11381         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11382                 return false;
11383
11384         val = I915_READ(PCH_DPLL(pll->id));
11385         hw_state->dpll = val;
11386         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11387         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11388
11389         return val & DPLL_VCO_ENABLE;
11390 }
11391
11392 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11393                                   struct intel_shared_dpll *pll)
11394 {
11395         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11396         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11397 }
11398
11399 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11400                                 struct intel_shared_dpll *pll)
11401 {
11402         /* PCH refclock must be enabled first */
11403         ibx_assert_pch_refclk_enabled(dev_priv);
11404
11405         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11406
11407         /* Wait for the clocks to stabilize. */
11408         POSTING_READ(PCH_DPLL(pll->id));
11409         udelay(150);
11410
11411         /* The pixel multiplier can only be updated once the
11412          * DPLL is enabled and the clocks are stable.
11413          *
11414          * So write it again.
11415          */
11416         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11417         POSTING_READ(PCH_DPLL(pll->id));
11418         udelay(200);
11419 }
11420
11421 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11422                                  struct intel_shared_dpll *pll)
11423 {
11424         struct drm_device *dev = dev_priv->dev;
11425         struct intel_crtc *crtc;
11426
11427         /* Make sure no transcoder isn't still depending on us. */
11428         for_each_intel_crtc(dev, crtc) {
11429                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11430                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11431         }
11432
11433         I915_WRITE(PCH_DPLL(pll->id), 0);
11434         POSTING_READ(PCH_DPLL(pll->id));
11435         udelay(200);
11436 }
11437
11438 static char *ibx_pch_dpll_names[] = {
11439         "PCH DPLL A",
11440         "PCH DPLL B",
11441 };
11442
11443 static void ibx_pch_dpll_init(struct drm_device *dev)
11444 {
11445         struct drm_i915_private *dev_priv = dev->dev_private;
11446         int i;
11447
11448         dev_priv->num_shared_dpll = 2;
11449
11450         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11451                 dev_priv->shared_dplls[i].id = i;
11452                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11453                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11454                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11455                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11456                 dev_priv->shared_dplls[i].get_hw_state =
11457                         ibx_pch_dpll_get_hw_state;
11458         }
11459 }
11460
11461 static void intel_shared_dpll_init(struct drm_device *dev)
11462 {
11463         struct drm_i915_private *dev_priv = dev->dev_private;
11464
11465         if (HAS_DDI(dev))
11466                 intel_ddi_pll_init(dev);
11467         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11468                 ibx_pch_dpll_init(dev);
11469         else
11470                 dev_priv->num_shared_dpll = 0;
11471
11472         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11473 }
11474
11475 static int
11476 intel_primary_plane_disable(struct drm_plane *plane)
11477 {
11478         struct drm_device *dev = plane->dev;
11479         struct intel_crtc *intel_crtc;
11480
11481         if (!plane->fb)
11482                 return 0;
11483
11484         BUG_ON(!plane->crtc);
11485
11486         intel_crtc = to_intel_crtc(plane->crtc);
11487
11488         /*
11489          * Even though we checked plane->fb above, it's still possible that
11490          * the primary plane has been implicitly disabled because the crtc
11491          * coordinates given weren't visible, or because we detected
11492          * that it was 100% covered by a sprite plane.  Or, the CRTC may be
11493          * off and we've set a fb, but haven't actually turned on the CRTC yet.
11494          * In either case, we need to unpin the FB and let the fb pointer get
11495          * updated, but otherwise we don't need to touch the hardware.
11496          */
11497         if (!intel_crtc->primary_enabled)
11498                 goto disable_unpin;
11499
11500         intel_crtc_wait_for_pending_flips(plane->crtc);
11501         intel_disable_primary_hw_plane(plane, plane->crtc);
11502
11503 disable_unpin:
11504         mutex_lock(&dev->struct_mutex);
11505         i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11506                           INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11507         intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11508         mutex_unlock(&dev->struct_mutex);
11509         plane->fb = NULL;
11510
11511         return 0;
11512 }
11513
11514 static int
11515 intel_check_primary_plane(struct drm_plane *plane,
11516                           struct intel_plane_state *state)
11517 {
11518         struct drm_crtc *crtc = state->crtc;
11519         struct drm_framebuffer *fb = state->fb;
11520         struct drm_rect *dest = &state->dst;
11521         struct drm_rect *src = &state->src;
11522         const struct drm_rect *clip = &state->clip;
11523
11524         return drm_plane_helper_check_update(plane, crtc, fb,
11525                                              src, dest, clip,
11526                                              DRM_PLANE_HELPER_NO_SCALING,
11527                                              DRM_PLANE_HELPER_NO_SCALING,
11528                                              false, true, &state->visible);
11529 }
11530
11531 static int
11532 intel_prepare_primary_plane(struct drm_plane *plane,
11533                             struct intel_plane_state *state)
11534 {
11535         struct drm_crtc *crtc = state->crtc;
11536         struct drm_framebuffer *fb = state->fb;
11537         struct drm_device *dev = crtc->dev;
11538         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11539         enum pipe pipe = intel_crtc->pipe;
11540         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11541         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11542         int ret;
11543
11544         intel_crtc_wait_for_pending_flips(crtc);
11545
11546         if (intel_crtc_has_pending_flip(crtc)) {
11547                 DRM_ERROR("pipe is still busy with an old pageflip\n");
11548                 return -EBUSY;
11549         }
11550
11551         if (old_obj != obj) {
11552                 mutex_lock(&dev->struct_mutex);
11553                 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11554                 if (ret == 0)
11555                         i915_gem_track_fb(old_obj, obj,
11556                                           INTEL_FRONTBUFFER_PRIMARY(pipe));
11557                 mutex_unlock(&dev->struct_mutex);
11558                 if (ret != 0) {
11559                         DRM_DEBUG_KMS("pin & fence failed\n");
11560                         return ret;
11561                 }
11562         }
11563
11564         return 0;
11565 }
11566
11567 static void
11568 intel_commit_primary_plane(struct drm_plane *plane,
11569                            struct intel_plane_state *state)
11570 {
11571         struct drm_crtc *crtc = state->crtc;
11572         struct drm_framebuffer *fb = state->fb;
11573         struct drm_device *dev = crtc->dev;
11574         struct drm_i915_private *dev_priv = dev->dev_private;
11575         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11576         enum pipe pipe = intel_crtc->pipe;
11577         struct drm_framebuffer *old_fb = plane->fb;
11578         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11579         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11580         struct intel_plane *intel_plane = to_intel_plane(plane);
11581         struct drm_rect *src = &state->src;
11582
11583         crtc->primary->fb = fb;
11584         crtc->x = src->x1;
11585         crtc->y = src->y1;
11586
11587         intel_plane->crtc_x = state->orig_dst.x1;
11588         intel_plane->crtc_y = state->orig_dst.y1;
11589         intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11590         intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11591         intel_plane->src_x = state->orig_src.x1;
11592         intel_plane->src_y = state->orig_src.y1;
11593         intel_plane->src_w = drm_rect_width(&state->orig_src);
11594         intel_plane->src_h = drm_rect_height(&state->orig_src);
11595         intel_plane->obj = obj;
11596
11597         if (intel_crtc->active) {
11598                 /*
11599                  * FBC does not work on some platforms for rotated
11600                  * planes, so disable it when rotation is not 0 and
11601                  * update it when rotation is set back to 0.
11602                  *
11603                  * FIXME: This is redundant with the fbc update done in
11604                  * the primary plane enable function except that that
11605                  * one is done too late. We eventually need to unify
11606                  * this.
11607                  */
11608                 if (intel_crtc->primary_enabled &&
11609                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11610                     dev_priv->fbc.plane == intel_crtc->plane &&
11611                     intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11612                         intel_disable_fbc(dev);
11613                 }
11614
11615                 if (state->visible) {
11616                         bool was_enabled = intel_crtc->primary_enabled;
11617
11618                         /* FIXME: kill this fastboot hack */
11619                         intel_update_pipe_size(intel_crtc);
11620
11621                         intel_crtc->primary_enabled = true;
11622
11623                         dev_priv->display.update_primary_plane(crtc, plane->fb,
11624                                         crtc->x, crtc->y);
11625
11626                         /*
11627                          * BDW signals flip done immediately if the plane
11628                          * is disabled, even if the plane enable is already
11629                          * armed to occur at the next vblank :(
11630                          */
11631                         if (IS_BROADWELL(dev) && !was_enabled)
11632                                 intel_wait_for_vblank(dev, intel_crtc->pipe);
11633                 } else {
11634                         /*
11635                          * If clipping results in a non-visible primary plane,
11636                          * we'll disable the primary plane.  Note that this is
11637                          * a bit different than what happens if userspace
11638                          * explicitly disables the plane by passing fb=0
11639                          * because plane->fb still gets set and pinned.
11640                          */
11641                         intel_disable_primary_hw_plane(plane, crtc);
11642                 }
11643
11644                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11645
11646                 mutex_lock(&dev->struct_mutex);
11647                 intel_update_fbc(dev);
11648                 mutex_unlock(&dev->struct_mutex);
11649         }
11650
11651         if (old_fb && old_fb != fb) {
11652                 if (intel_crtc->active)
11653                         intel_wait_for_vblank(dev, intel_crtc->pipe);
11654
11655                 mutex_lock(&dev->struct_mutex);
11656                 intel_unpin_fb_obj(old_obj);
11657                 mutex_unlock(&dev->struct_mutex);
11658         }
11659 }
11660
11661 static int
11662 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11663                              struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11664                              unsigned int crtc_w, unsigned int crtc_h,
11665                              uint32_t src_x, uint32_t src_y,
11666                              uint32_t src_w, uint32_t src_h)
11667 {
11668         struct intel_plane_state state;
11669         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11670         int ret;
11671
11672         state.crtc = crtc;
11673         state.fb = fb;
11674
11675         /* sample coordinates in 16.16 fixed point */
11676         state.src.x1 = src_x;
11677         state.src.x2 = src_x + src_w;
11678         state.src.y1 = src_y;
11679         state.src.y2 = src_y + src_h;
11680
11681         /* integer pixels */
11682         state.dst.x1 = crtc_x;
11683         state.dst.x2 = crtc_x + crtc_w;
11684         state.dst.y1 = crtc_y;
11685         state.dst.y2 = crtc_y + crtc_h;
11686
11687         state.clip.x1 = 0;
11688         state.clip.y1 = 0;
11689         state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11690         state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11691
11692         state.orig_src = state.src;
11693         state.orig_dst = state.dst;
11694
11695         ret = intel_check_primary_plane(plane, &state);
11696         if (ret)
11697                 return ret;
11698
11699         ret = intel_prepare_primary_plane(plane, &state);
11700         if (ret)
11701                 return ret;
11702
11703         intel_commit_primary_plane(plane, &state);
11704
11705         return 0;
11706 }
11707
11708 /* Common destruction function for both primary and cursor planes */
11709 static void intel_plane_destroy(struct drm_plane *plane)
11710 {
11711         struct intel_plane *intel_plane = to_intel_plane(plane);
11712         drm_plane_cleanup(plane);
11713         kfree(intel_plane);
11714 }
11715
11716 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11717         .update_plane = intel_primary_plane_setplane,
11718         .disable_plane = intel_primary_plane_disable,
11719         .destroy = intel_plane_destroy,
11720         .set_property = intel_plane_set_property
11721 };
11722
11723 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11724                                                     int pipe)
11725 {
11726         struct intel_plane *primary;
11727         const uint32_t *intel_primary_formats;
11728         int num_formats;
11729
11730         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11731         if (primary == NULL)
11732                 return NULL;
11733
11734         primary->can_scale = false;
11735         primary->max_downscale = 1;
11736         primary->pipe = pipe;
11737         primary->plane = pipe;
11738         primary->rotation = BIT(DRM_ROTATE_0);
11739         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11740                 primary->plane = !pipe;
11741
11742         if (INTEL_INFO(dev)->gen <= 3) {
11743                 intel_primary_formats = intel_primary_formats_gen2;
11744                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11745         } else {
11746                 intel_primary_formats = intel_primary_formats_gen4;
11747                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11748         }
11749
11750         drm_universal_plane_init(dev, &primary->base, 0,
11751                                  &intel_primary_plane_funcs,
11752                                  intel_primary_formats, num_formats,
11753                                  DRM_PLANE_TYPE_PRIMARY);
11754
11755         if (INTEL_INFO(dev)->gen >= 4) {
11756                 if (!dev->mode_config.rotation_property)
11757                         dev->mode_config.rotation_property =
11758                                 drm_mode_create_rotation_property(dev,
11759                                                         BIT(DRM_ROTATE_0) |
11760                                                         BIT(DRM_ROTATE_180));
11761                 if (dev->mode_config.rotation_property)
11762                         drm_object_attach_property(&primary->base.base,
11763                                 dev->mode_config.rotation_property,
11764                                 primary->rotation);
11765         }
11766
11767         return &primary->base;
11768 }
11769
11770 static int
11771 intel_cursor_plane_disable(struct drm_plane *plane)
11772 {
11773         if (!plane->fb)
11774                 return 0;
11775
11776         BUG_ON(!plane->crtc);
11777
11778         return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11779 }
11780
11781 static int
11782 intel_check_cursor_plane(struct drm_plane *plane,
11783                          struct intel_plane_state *state)
11784 {
11785         struct drm_crtc *crtc = state->crtc;
11786         struct drm_device *dev = crtc->dev;
11787         struct drm_framebuffer *fb = state->fb;
11788         struct drm_rect *dest = &state->dst;
11789         struct drm_rect *src = &state->src;
11790         const struct drm_rect *clip = &state->clip;
11791         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11792         int crtc_w, crtc_h;
11793         unsigned stride;
11794         int ret;
11795
11796         ret = drm_plane_helper_check_update(plane, crtc, fb,
11797                                             src, dest, clip,
11798                                             DRM_PLANE_HELPER_NO_SCALING,
11799                                             DRM_PLANE_HELPER_NO_SCALING,
11800                                             true, true, &state->visible);
11801         if (ret)
11802                 return ret;
11803
11804
11805         /* if we want to turn off the cursor ignore width and height */
11806         if (!obj)
11807                 return 0;
11808
11809         /* Check for which cursor types we support */
11810         crtc_w = drm_rect_width(&state->orig_dst);
11811         crtc_h = drm_rect_height(&state->orig_dst);
11812         if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
11813                 DRM_DEBUG("Cursor dimension not supported\n");
11814                 return -EINVAL;
11815         }
11816
11817         stride = roundup_pow_of_two(crtc_w) * 4;
11818         if (obj->base.size < stride * crtc_h) {
11819                 DRM_DEBUG_KMS("buffer is too small\n");
11820                 return -ENOMEM;
11821         }
11822
11823         if (fb == crtc->cursor->fb)
11824                 return 0;
11825
11826         /* we only need to pin inside GTT if cursor is non-phy */
11827         mutex_lock(&dev->struct_mutex);
11828         if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
11829                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
11830                 ret = -EINVAL;
11831         }
11832         mutex_unlock(&dev->struct_mutex);
11833
11834         return ret;
11835 }
11836
11837 static int
11838 intel_commit_cursor_plane(struct drm_plane *plane,
11839                           struct intel_plane_state *state)
11840 {
11841         struct drm_crtc *crtc = state->crtc;
11842         struct drm_framebuffer *fb = state->fb;
11843         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11844         struct intel_plane *intel_plane = to_intel_plane(plane);
11845         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11846         struct drm_i915_gem_object *obj = intel_fb->obj;
11847         int crtc_w, crtc_h;
11848
11849         crtc->cursor_x = state->orig_dst.x1;
11850         crtc->cursor_y = state->orig_dst.y1;
11851
11852         intel_plane->crtc_x = state->orig_dst.x1;
11853         intel_plane->crtc_y = state->orig_dst.y1;
11854         intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11855         intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11856         intel_plane->src_x = state->orig_src.x1;
11857         intel_plane->src_y = state->orig_src.y1;
11858         intel_plane->src_w = drm_rect_width(&state->orig_src);
11859         intel_plane->src_h = drm_rect_height(&state->orig_src);
11860         intel_plane->obj = obj;
11861
11862         if (fb != crtc->cursor->fb) {
11863                 crtc_w = drm_rect_width(&state->orig_dst);
11864                 crtc_h = drm_rect_height(&state->orig_dst);
11865                 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11866         } else {
11867                 intel_crtc_update_cursor(crtc, state->visible);
11868
11869                 intel_frontbuffer_flip(crtc->dev,
11870                                        INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
11871
11872                 return 0;
11873         }
11874 }
11875
11876 static int
11877 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11878                           struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11879                           unsigned int crtc_w, unsigned int crtc_h,
11880                           uint32_t src_x, uint32_t src_y,
11881                           uint32_t src_w, uint32_t src_h)
11882 {
11883         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11884         struct intel_plane_state state;
11885         int ret;
11886
11887         state.crtc = crtc;
11888         state.fb = fb;
11889
11890         /* sample coordinates in 16.16 fixed point */
11891         state.src.x1 = src_x;
11892         state.src.x2 = src_x + src_w;
11893         state.src.y1 = src_y;
11894         state.src.y2 = src_y + src_h;
11895
11896         /* integer pixels */
11897         state.dst.x1 = crtc_x;
11898         state.dst.x2 = crtc_x + crtc_w;
11899         state.dst.y1 = crtc_y;
11900         state.dst.y2 = crtc_y + crtc_h;
11901
11902         state.clip.x1 = 0;
11903         state.clip.y1 = 0;
11904         state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11905         state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11906
11907         state.orig_src = state.src;
11908         state.orig_dst = state.dst;
11909
11910         ret = intel_check_cursor_plane(plane, &state);
11911         if (ret)
11912                 return ret;
11913
11914         return intel_commit_cursor_plane(plane, &state);
11915 }
11916
11917 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11918         .update_plane = intel_cursor_plane_update,
11919         .disable_plane = intel_cursor_plane_disable,
11920         .destroy = intel_plane_destroy,
11921         .set_property = intel_plane_set_property,
11922 };
11923
11924 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11925                                                    int pipe)
11926 {
11927         struct intel_plane *cursor;
11928
11929         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11930         if (cursor == NULL)
11931                 return NULL;
11932
11933         cursor->can_scale = false;
11934         cursor->max_downscale = 1;
11935         cursor->pipe = pipe;
11936         cursor->plane = pipe;
11937         cursor->rotation = BIT(DRM_ROTATE_0);
11938
11939         drm_universal_plane_init(dev, &cursor->base, 0,
11940                                  &intel_cursor_plane_funcs,
11941                                  intel_cursor_formats,
11942                                  ARRAY_SIZE(intel_cursor_formats),
11943                                  DRM_PLANE_TYPE_CURSOR);
11944
11945         if (INTEL_INFO(dev)->gen >= 4) {
11946                 if (!dev->mode_config.rotation_property)
11947                         dev->mode_config.rotation_property =
11948                                 drm_mode_create_rotation_property(dev,
11949                                                         BIT(DRM_ROTATE_0) |
11950                                                         BIT(DRM_ROTATE_180));
11951                 if (dev->mode_config.rotation_property)
11952                         drm_object_attach_property(&cursor->base.base,
11953                                 dev->mode_config.rotation_property,
11954                                 cursor->rotation);
11955         }
11956
11957         return &cursor->base;
11958 }
11959
11960 static void intel_crtc_init(struct drm_device *dev, int pipe)
11961 {
11962         struct drm_i915_private *dev_priv = dev->dev_private;
11963         struct intel_crtc *intel_crtc;
11964         struct drm_plane *primary = NULL;
11965         struct drm_plane *cursor = NULL;
11966         int i, ret;
11967
11968         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
11969         if (intel_crtc == NULL)
11970                 return;
11971
11972         primary = intel_primary_plane_create(dev, pipe);
11973         if (!primary)
11974                 goto fail;
11975
11976         cursor = intel_cursor_plane_create(dev, pipe);
11977         if (!cursor)
11978                 goto fail;
11979
11980         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
11981                                         cursor, &intel_crtc_funcs);
11982         if (ret)
11983                 goto fail;
11984
11985         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
11986         for (i = 0; i < 256; i++) {
11987                 intel_crtc->lut_r[i] = i;
11988                 intel_crtc->lut_g[i] = i;
11989                 intel_crtc->lut_b[i] = i;
11990         }
11991
11992         /*
11993          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
11994          * is hooked to pipe B. Hence we want plane A feeding pipe B.
11995          */
11996         intel_crtc->pipe = pipe;
11997         intel_crtc->plane = pipe;
11998         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
11999                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12000                 intel_crtc->plane = !pipe;
12001         }
12002
12003         intel_crtc->cursor_base = ~0;
12004         intel_crtc->cursor_cntl = ~0;
12005         intel_crtc->cursor_size = ~0;
12006
12007         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12008                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12009         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12010         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12011
12012         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12013
12014         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12015         return;
12016
12017 fail:
12018         if (primary)
12019                 drm_plane_cleanup(primary);
12020         if (cursor)
12021                 drm_plane_cleanup(cursor);
12022         kfree(intel_crtc);
12023 }
12024
12025 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12026 {
12027         struct drm_encoder *encoder = connector->base.encoder;
12028         struct drm_device *dev = connector->base.dev;
12029
12030         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12031
12032         if (!encoder)
12033                 return INVALID_PIPE;
12034
12035         return to_intel_crtc(encoder->crtc)->pipe;
12036 }
12037
12038 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12039                                 struct drm_file *file)
12040 {
12041         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12042         struct drm_crtc *drmmode_crtc;
12043         struct intel_crtc *crtc;
12044
12045         if (!drm_core_check_feature(dev, DRIVER_MODESET))
12046                 return -ENODEV;
12047
12048         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12049
12050         if (!drmmode_crtc) {
12051                 DRM_ERROR("no such CRTC id\n");
12052                 return -ENOENT;
12053         }
12054
12055         crtc = to_intel_crtc(drmmode_crtc);
12056         pipe_from_crtc_id->pipe = crtc->pipe;
12057
12058         return 0;
12059 }
12060
12061 static int intel_encoder_clones(struct intel_encoder *encoder)
12062 {
12063         struct drm_device *dev = encoder->base.dev;
12064         struct intel_encoder *source_encoder;
12065         int index_mask = 0;
12066         int entry = 0;
12067
12068         for_each_intel_encoder(dev, source_encoder) {
12069                 if (encoders_cloneable(encoder, source_encoder))
12070                         index_mask |= (1 << entry);
12071
12072                 entry++;
12073         }
12074
12075         return index_mask;
12076 }
12077
12078 static bool has_edp_a(struct drm_device *dev)
12079 {
12080         struct drm_i915_private *dev_priv = dev->dev_private;
12081
12082         if (!IS_MOBILE(dev))
12083                 return false;
12084
12085         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12086                 return false;
12087
12088         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12089                 return false;
12090
12091         return true;
12092 }
12093
12094 const char *intel_output_name(int output)
12095 {
12096         static const char *names[] = {
12097                 [INTEL_OUTPUT_UNUSED] = "Unused",
12098                 [INTEL_OUTPUT_ANALOG] = "Analog",
12099                 [INTEL_OUTPUT_DVO] = "DVO",
12100                 [INTEL_OUTPUT_SDVO] = "SDVO",
12101                 [INTEL_OUTPUT_LVDS] = "LVDS",
12102                 [INTEL_OUTPUT_TVOUT] = "TV",
12103                 [INTEL_OUTPUT_HDMI] = "HDMI",
12104                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12105                 [INTEL_OUTPUT_EDP] = "eDP",
12106                 [INTEL_OUTPUT_DSI] = "DSI",
12107                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12108         };
12109
12110         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12111                 return "Invalid";
12112
12113         return names[output];
12114 }
12115
12116 static bool intel_crt_present(struct drm_device *dev)
12117 {
12118         struct drm_i915_private *dev_priv = dev->dev_private;
12119
12120         if (INTEL_INFO(dev)->gen >= 9)
12121                 return false;
12122
12123         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12124                 return false;
12125
12126         if (IS_CHERRYVIEW(dev))
12127                 return false;
12128
12129         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12130                 return false;
12131
12132         return true;
12133 }
12134
12135 static void intel_setup_outputs(struct drm_device *dev)
12136 {
12137         struct drm_i915_private *dev_priv = dev->dev_private;
12138         struct intel_encoder *encoder;
12139         bool dpd_is_edp = false;
12140
12141         intel_lvds_init(dev);
12142
12143         if (intel_crt_present(dev))
12144                 intel_crt_init(dev);
12145
12146         if (HAS_DDI(dev)) {
12147                 int found;
12148
12149                 /* Haswell uses DDI functions to detect digital outputs */
12150                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12151                 /* DDI A only supports eDP */
12152                 if (found)
12153                         intel_ddi_init(dev, PORT_A);
12154
12155                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12156                  * register */
12157                 found = I915_READ(SFUSE_STRAP);
12158
12159                 if (found & SFUSE_STRAP_DDIB_DETECTED)
12160                         intel_ddi_init(dev, PORT_B);
12161                 if (found & SFUSE_STRAP_DDIC_DETECTED)
12162                         intel_ddi_init(dev, PORT_C);
12163                 if (found & SFUSE_STRAP_DDID_DETECTED)
12164                         intel_ddi_init(dev, PORT_D);
12165         } else if (HAS_PCH_SPLIT(dev)) {
12166                 int found;
12167                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12168
12169                 if (has_edp_a(dev))
12170                         intel_dp_init(dev, DP_A, PORT_A);
12171
12172                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12173                         /* PCH SDVOB multiplex with HDMIB */
12174                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
12175                         if (!found)
12176                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12177                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12178                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
12179                 }
12180
12181                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12182                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12183
12184                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12185                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12186
12187                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12188                         intel_dp_init(dev, PCH_DP_C, PORT_C);
12189
12190                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12191                         intel_dp_init(dev, PCH_DP_D, PORT_D);
12192         } else if (IS_VALLEYVIEW(dev)) {
12193                 /*
12194                  * The DP_DETECTED bit is the latched state of the DDC
12195                  * SDA pin at boot. However since eDP doesn't require DDC
12196                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
12197                  * eDP ports may have been muxed to an alternate function.
12198                  * Thus we can't rely on the DP_DETECTED bit alone to detect
12199                  * eDP ports. Consult the VBT as well as DP_DETECTED to
12200                  * detect eDP ports.
12201                  */
12202                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
12203                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12204                                         PORT_B);
12205                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12206                     intel_dp_is_edp(dev, PORT_B))
12207                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12208
12209                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
12210                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12211                                         PORT_C);
12212                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12213                     intel_dp_is_edp(dev, PORT_C))
12214                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12215
12216                 if (IS_CHERRYVIEW(dev)) {
12217                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12218                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12219                                                 PORT_D);
12220                         /* eDP not supported on port D, so don't check VBT */
12221                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12222                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12223                 }
12224
12225                 intel_dsi_init(dev);
12226         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12227                 bool found = false;
12228
12229                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12230                         DRM_DEBUG_KMS("probing SDVOB\n");
12231                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12232                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12233                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12234                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12235                         }
12236
12237                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12238                                 intel_dp_init(dev, DP_B, PORT_B);
12239                 }
12240
12241                 /* Before G4X SDVOC doesn't have its own detect register */
12242
12243                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12244                         DRM_DEBUG_KMS("probing SDVOC\n");
12245                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12246                 }
12247
12248                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12249
12250                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12251                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12252                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12253                         }
12254                         if (SUPPORTS_INTEGRATED_DP(dev))
12255                                 intel_dp_init(dev, DP_C, PORT_C);
12256                 }
12257
12258                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12259                     (I915_READ(DP_D) & DP_DETECTED))
12260                         intel_dp_init(dev, DP_D, PORT_D);
12261         } else if (IS_GEN2(dev))
12262                 intel_dvo_init(dev);
12263
12264         if (SUPPORTS_TV(dev))
12265                 intel_tv_init(dev);
12266
12267         intel_edp_psr_init(dev);
12268
12269         for_each_intel_encoder(dev, encoder) {
12270                 encoder->base.possible_crtcs = encoder->crtc_mask;
12271                 encoder->base.possible_clones =
12272                         intel_encoder_clones(encoder);
12273         }
12274
12275         intel_init_pch_refclk(dev);
12276
12277         drm_helper_move_panel_connectors_to_head(dev);
12278 }
12279
12280 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12281 {
12282         struct drm_device *dev = fb->dev;
12283         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12284
12285         drm_framebuffer_cleanup(fb);
12286         mutex_lock(&dev->struct_mutex);
12287         WARN_ON(!intel_fb->obj->framebuffer_references--);
12288         drm_gem_object_unreference(&intel_fb->obj->base);
12289         mutex_unlock(&dev->struct_mutex);
12290         kfree(intel_fb);
12291 }
12292
12293 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12294                                                 struct drm_file *file,
12295                                                 unsigned int *handle)
12296 {
12297         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12298         struct drm_i915_gem_object *obj = intel_fb->obj;
12299
12300         return drm_gem_handle_create(file, &obj->base, handle);
12301 }
12302
12303 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12304         .destroy = intel_user_framebuffer_destroy,
12305         .create_handle = intel_user_framebuffer_create_handle,
12306 };
12307
12308 static int intel_framebuffer_init(struct drm_device *dev,
12309                                   struct intel_framebuffer *intel_fb,
12310                                   struct drm_mode_fb_cmd2 *mode_cmd,
12311                                   struct drm_i915_gem_object *obj)
12312 {
12313         int aligned_height;
12314         int pitch_limit;
12315         int ret;
12316
12317         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12318
12319         if (obj->tiling_mode == I915_TILING_Y) {
12320                 DRM_DEBUG("hardware does not support tiling Y\n");
12321                 return -EINVAL;
12322         }
12323
12324         if (mode_cmd->pitches[0] & 63) {
12325                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12326                           mode_cmd->pitches[0]);
12327                 return -EINVAL;
12328         }
12329
12330         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12331                 pitch_limit = 32*1024;
12332         } else if (INTEL_INFO(dev)->gen >= 4) {
12333                 if (obj->tiling_mode)
12334                         pitch_limit = 16*1024;
12335                 else
12336                         pitch_limit = 32*1024;
12337         } else if (INTEL_INFO(dev)->gen >= 3) {
12338                 if (obj->tiling_mode)
12339                         pitch_limit = 8*1024;
12340                 else
12341                         pitch_limit = 16*1024;
12342         } else
12343                 /* XXX DSPC is limited to 4k tiled */
12344                 pitch_limit = 8*1024;
12345
12346         if (mode_cmd->pitches[0] > pitch_limit) {
12347                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12348                           obj->tiling_mode ? "tiled" : "linear",
12349                           mode_cmd->pitches[0], pitch_limit);
12350                 return -EINVAL;
12351         }
12352
12353         if (obj->tiling_mode != I915_TILING_NONE &&
12354             mode_cmd->pitches[0] != obj->stride) {
12355                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12356                           mode_cmd->pitches[0], obj->stride);
12357                 return -EINVAL;
12358         }
12359
12360         /* Reject formats not supported by any plane early. */
12361         switch (mode_cmd->pixel_format) {
12362         case DRM_FORMAT_C8:
12363         case DRM_FORMAT_RGB565:
12364         case DRM_FORMAT_XRGB8888:
12365         case DRM_FORMAT_ARGB8888:
12366                 break;
12367         case DRM_FORMAT_XRGB1555:
12368         case DRM_FORMAT_ARGB1555:
12369                 if (INTEL_INFO(dev)->gen > 3) {
12370                         DRM_DEBUG("unsupported pixel format: %s\n",
12371                                   drm_get_format_name(mode_cmd->pixel_format));
12372                         return -EINVAL;
12373                 }
12374                 break;
12375         case DRM_FORMAT_XBGR8888:
12376         case DRM_FORMAT_ABGR8888:
12377         case DRM_FORMAT_XRGB2101010:
12378         case DRM_FORMAT_ARGB2101010:
12379         case DRM_FORMAT_XBGR2101010:
12380         case DRM_FORMAT_ABGR2101010:
12381                 if (INTEL_INFO(dev)->gen < 4) {
12382                         DRM_DEBUG("unsupported pixel format: %s\n",
12383                                   drm_get_format_name(mode_cmd->pixel_format));
12384                         return -EINVAL;
12385                 }
12386                 break;
12387         case DRM_FORMAT_YUYV:
12388         case DRM_FORMAT_UYVY:
12389         case DRM_FORMAT_YVYU:
12390         case DRM_FORMAT_VYUY:
12391                 if (INTEL_INFO(dev)->gen < 5) {
12392                         DRM_DEBUG("unsupported pixel format: %s\n",
12393                                   drm_get_format_name(mode_cmd->pixel_format));
12394                         return -EINVAL;
12395                 }
12396                 break;
12397         default:
12398                 DRM_DEBUG("unsupported pixel format: %s\n",
12399                           drm_get_format_name(mode_cmd->pixel_format));
12400                 return -EINVAL;
12401         }
12402
12403         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12404         if (mode_cmd->offsets[0] != 0)
12405                 return -EINVAL;
12406
12407         aligned_height = intel_align_height(dev, mode_cmd->height,
12408                                             obj->tiling_mode);
12409         /* FIXME drm helper for size checks (especially planar formats)? */
12410         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12411                 return -EINVAL;
12412
12413         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12414         intel_fb->obj = obj;
12415         intel_fb->obj->framebuffer_references++;
12416
12417         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12418         if (ret) {
12419                 DRM_ERROR("framebuffer init failed %d\n", ret);
12420                 return ret;
12421         }
12422
12423         return 0;
12424 }
12425
12426 static struct drm_framebuffer *
12427 intel_user_framebuffer_create(struct drm_device *dev,
12428                               struct drm_file *filp,
12429                               struct drm_mode_fb_cmd2 *mode_cmd)
12430 {
12431         struct drm_i915_gem_object *obj;
12432
12433         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12434                                                 mode_cmd->handles[0]));
12435         if (&obj->base == NULL)
12436                 return ERR_PTR(-ENOENT);
12437
12438         return intel_framebuffer_create(dev, mode_cmd, obj);
12439 }
12440
12441 #ifndef CONFIG_DRM_I915_FBDEV
12442 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12443 {
12444 }
12445 #endif
12446
12447 static const struct drm_mode_config_funcs intel_mode_funcs = {
12448         .fb_create = intel_user_framebuffer_create,
12449         .output_poll_changed = intel_fbdev_output_poll_changed,
12450 };
12451
12452 /* Set up chip specific display functions */
12453 static void intel_init_display(struct drm_device *dev)
12454 {
12455         struct drm_i915_private *dev_priv = dev->dev_private;
12456
12457         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12458                 dev_priv->display.find_dpll = g4x_find_best_dpll;
12459         else if (IS_CHERRYVIEW(dev))
12460                 dev_priv->display.find_dpll = chv_find_best_dpll;
12461         else if (IS_VALLEYVIEW(dev))
12462                 dev_priv->display.find_dpll = vlv_find_best_dpll;
12463         else if (IS_PINEVIEW(dev))
12464                 dev_priv->display.find_dpll = pnv_find_best_dpll;
12465         else
12466                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12467
12468         if (HAS_DDI(dev)) {
12469                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12470                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12471                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
12472                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12473                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12474                 dev_priv->display.off = ironlake_crtc_off;
12475                 if (INTEL_INFO(dev)->gen >= 9)
12476                         dev_priv->display.update_primary_plane =
12477                                 skylake_update_primary_plane;
12478                 else
12479                         dev_priv->display.update_primary_plane =
12480                                 ironlake_update_primary_plane;
12481         } else if (HAS_PCH_SPLIT(dev)) {
12482                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12483                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12484                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
12485                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12486                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12487                 dev_priv->display.off = ironlake_crtc_off;
12488                 dev_priv->display.update_primary_plane =
12489                         ironlake_update_primary_plane;
12490         } else if (IS_VALLEYVIEW(dev)) {
12491                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12492                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12493                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12494                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12495                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12496                 dev_priv->display.off = i9xx_crtc_off;
12497                 dev_priv->display.update_primary_plane =
12498                         i9xx_update_primary_plane;
12499         } else {
12500                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12501                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12502                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12503                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12504                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12505                 dev_priv->display.off = i9xx_crtc_off;
12506                 dev_priv->display.update_primary_plane =
12507                         i9xx_update_primary_plane;
12508         }
12509
12510         /* Returns the core display clock speed */
12511         if (IS_VALLEYVIEW(dev))
12512                 dev_priv->display.get_display_clock_speed =
12513                         valleyview_get_display_clock_speed;
12514         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12515                 dev_priv->display.get_display_clock_speed =
12516                         i945_get_display_clock_speed;
12517         else if (IS_I915G(dev))
12518                 dev_priv->display.get_display_clock_speed =
12519                         i915_get_display_clock_speed;
12520         else if (IS_I945GM(dev) || IS_845G(dev))
12521                 dev_priv->display.get_display_clock_speed =
12522                         i9xx_misc_get_display_clock_speed;
12523         else if (IS_PINEVIEW(dev))
12524                 dev_priv->display.get_display_clock_speed =
12525                         pnv_get_display_clock_speed;
12526         else if (IS_I915GM(dev))
12527                 dev_priv->display.get_display_clock_speed =
12528                         i915gm_get_display_clock_speed;
12529         else if (IS_I865G(dev))
12530                 dev_priv->display.get_display_clock_speed =
12531                         i865_get_display_clock_speed;
12532         else if (IS_I85X(dev))
12533                 dev_priv->display.get_display_clock_speed =
12534                         i855_get_display_clock_speed;
12535         else /* 852, 830 */
12536                 dev_priv->display.get_display_clock_speed =
12537                         i830_get_display_clock_speed;
12538
12539         if (IS_GEN5(dev)) {
12540                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12541         } else if (IS_GEN6(dev)) {
12542                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12543                 dev_priv->display.modeset_global_resources =
12544                         snb_modeset_global_resources;
12545         } else if (IS_IVYBRIDGE(dev)) {
12546                 /* FIXME: detect B0+ stepping and use auto training */
12547                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12548                 dev_priv->display.modeset_global_resources =
12549                         ivb_modeset_global_resources;
12550         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12551                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12552                 dev_priv->display.modeset_global_resources =
12553                         haswell_modeset_global_resources;
12554         } else if (IS_VALLEYVIEW(dev)) {
12555                 dev_priv->display.modeset_global_resources =
12556                         valleyview_modeset_global_resources;
12557         } else if (INTEL_INFO(dev)->gen >= 9) {
12558                 dev_priv->display.modeset_global_resources =
12559                         haswell_modeset_global_resources;
12560         }
12561
12562         /* Default just returns -ENODEV to indicate unsupported */
12563         dev_priv->display.queue_flip = intel_default_queue_flip;
12564
12565         switch (INTEL_INFO(dev)->gen) {
12566         case 2:
12567                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12568                 break;
12569
12570         case 3:
12571                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12572                 break;
12573
12574         case 4:
12575         case 5:
12576                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12577                 break;
12578
12579         case 6:
12580                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12581                 break;
12582         case 7:
12583         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12584                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12585                 break;
12586         }
12587
12588         intel_panel_init_backlight_funcs(dev);
12589
12590         mutex_init(&dev_priv->pps_mutex);
12591 }
12592
12593 /*
12594  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12595  * resume, or other times.  This quirk makes sure that's the case for
12596  * affected systems.
12597  */
12598 static void quirk_pipea_force(struct drm_device *dev)
12599 {
12600         struct drm_i915_private *dev_priv = dev->dev_private;
12601
12602         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12603         DRM_INFO("applying pipe a force quirk\n");
12604 }
12605
12606 static void quirk_pipeb_force(struct drm_device *dev)
12607 {
12608         struct drm_i915_private *dev_priv = dev->dev_private;
12609
12610         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12611         DRM_INFO("applying pipe b force quirk\n");
12612 }
12613
12614 /*
12615  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12616  */
12617 static void quirk_ssc_force_disable(struct drm_device *dev)
12618 {
12619         struct drm_i915_private *dev_priv = dev->dev_private;
12620         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12621         DRM_INFO("applying lvds SSC disable quirk\n");
12622 }
12623
12624 /*
12625  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12626  * brightness value
12627  */
12628 static void quirk_invert_brightness(struct drm_device *dev)
12629 {
12630         struct drm_i915_private *dev_priv = dev->dev_private;
12631         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12632         DRM_INFO("applying inverted panel brightness quirk\n");
12633 }
12634
12635 /* Some VBT's incorrectly indicate no backlight is present */
12636 static void quirk_backlight_present(struct drm_device *dev)
12637 {
12638         struct drm_i915_private *dev_priv = dev->dev_private;
12639         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12640         DRM_INFO("applying backlight present quirk\n");
12641 }
12642
12643 struct intel_quirk {
12644         int device;
12645         int subsystem_vendor;
12646         int subsystem_device;
12647         void (*hook)(struct drm_device *dev);
12648 };
12649
12650 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12651 struct intel_dmi_quirk {
12652         void (*hook)(struct drm_device *dev);
12653         const struct dmi_system_id (*dmi_id_list)[];
12654 };
12655
12656 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12657 {
12658         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12659         return 1;
12660 }
12661
12662 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12663         {
12664                 .dmi_id_list = &(const struct dmi_system_id[]) {
12665                         {
12666                                 .callback = intel_dmi_reverse_brightness,
12667                                 .ident = "NCR Corporation",
12668                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12669                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
12670                                 },
12671                         },
12672                         { }  /* terminating entry */
12673                 },
12674                 .hook = quirk_invert_brightness,
12675         },
12676 };
12677
12678 static struct intel_quirk intel_quirks[] = {
12679         /* HP Mini needs pipe A force quirk (LP: #322104) */
12680         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12681
12682         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12683         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12684
12685         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12686         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12687
12688         /* 830 needs to leave pipe A & dpll A up */
12689         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12690
12691         /* 830 needs to leave pipe B & dpll B up */
12692         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12693
12694         /* Lenovo U160 cannot use SSC on LVDS */
12695         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12696
12697         /* Sony Vaio Y cannot use SSC on LVDS */
12698         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12699
12700         /* Acer Aspire 5734Z must invert backlight brightness */
12701         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12702
12703         /* Acer/eMachines G725 */
12704         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12705
12706         /* Acer/eMachines e725 */
12707         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12708
12709         /* Acer/Packard Bell NCL20 */
12710         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12711
12712         /* Acer Aspire 4736Z */
12713         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12714
12715         /* Acer Aspire 5336 */
12716         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12717
12718         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12719         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12720
12721         /* Acer C720 Chromebook (Core i3 4005U) */
12722         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12723
12724         /* Toshiba CB35 Chromebook (Celeron 2955U) */
12725         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12726
12727         /* HP Chromebook 14 (Celeron 2955U) */
12728         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12729 };
12730
12731 static void intel_init_quirks(struct drm_device *dev)
12732 {
12733         struct pci_dev *d = dev->pdev;
12734         int i;
12735
12736         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12737                 struct intel_quirk *q = &intel_quirks[i];
12738
12739                 if (d->device == q->device &&
12740                     (d->subsystem_vendor == q->subsystem_vendor ||
12741                      q->subsystem_vendor == PCI_ANY_ID) &&
12742                     (d->subsystem_device == q->subsystem_device ||
12743                      q->subsystem_device == PCI_ANY_ID))
12744                         q->hook(dev);
12745         }
12746         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12747                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12748                         intel_dmi_quirks[i].hook(dev);
12749         }
12750 }
12751
12752 /* Disable the VGA plane that we never use */
12753 static void i915_disable_vga(struct drm_device *dev)
12754 {
12755         struct drm_i915_private *dev_priv = dev->dev_private;
12756         u8 sr1;
12757         u32 vga_reg = i915_vgacntrl_reg(dev);
12758
12759         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12760         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12761         outb(SR01, VGA_SR_INDEX);
12762         sr1 = inb(VGA_SR_DATA);
12763         outb(sr1 | 1<<5, VGA_SR_DATA);
12764         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12765         udelay(300);
12766
12767         /*
12768          * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12769          * from S3 without preserving (some of?) the other bits.
12770          */
12771         I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
12772         POSTING_READ(vga_reg);
12773 }
12774
12775 void intel_modeset_init_hw(struct drm_device *dev)
12776 {
12777         intel_prepare_ddi(dev);
12778
12779         if (IS_VALLEYVIEW(dev))
12780                 vlv_update_cdclk(dev);
12781
12782         intel_init_clock_gating(dev);
12783
12784         intel_enable_gt_powersave(dev);
12785 }
12786
12787 void intel_modeset_init(struct drm_device *dev)
12788 {
12789         struct drm_i915_private *dev_priv = dev->dev_private;
12790         int sprite, ret;
12791         enum pipe pipe;
12792         struct intel_crtc *crtc;
12793
12794         drm_mode_config_init(dev);
12795
12796         dev->mode_config.min_width = 0;
12797         dev->mode_config.min_height = 0;
12798
12799         dev->mode_config.preferred_depth = 24;
12800         dev->mode_config.prefer_shadow = 1;
12801
12802         dev->mode_config.funcs = &intel_mode_funcs;
12803
12804         intel_init_quirks(dev);
12805
12806         intel_init_pm(dev);
12807
12808         if (INTEL_INFO(dev)->num_pipes == 0)
12809                 return;
12810
12811         intel_init_display(dev);
12812         intel_init_audio(dev);
12813
12814         if (IS_GEN2(dev)) {
12815                 dev->mode_config.max_width = 2048;
12816                 dev->mode_config.max_height = 2048;
12817         } else if (IS_GEN3(dev)) {
12818                 dev->mode_config.max_width = 4096;
12819                 dev->mode_config.max_height = 4096;
12820         } else {
12821                 dev->mode_config.max_width = 8192;
12822                 dev->mode_config.max_height = 8192;
12823         }
12824
12825         if (IS_845G(dev) || IS_I865G(dev)) {
12826                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12827                 dev->mode_config.cursor_height = 1023;
12828         } else if (IS_GEN2(dev)) {
12829                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12830                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12831         } else {
12832                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12833                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12834         }
12835
12836         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
12837
12838         DRM_DEBUG_KMS("%d display pipe%s available.\n",
12839                       INTEL_INFO(dev)->num_pipes,
12840                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
12841
12842         for_each_pipe(dev_priv, pipe) {
12843                 intel_crtc_init(dev, pipe);
12844                 for_each_sprite(pipe, sprite) {
12845                         ret = intel_plane_init(dev, pipe, sprite);
12846                         if (ret)
12847                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
12848                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
12849                 }
12850         }
12851
12852         intel_init_dpio(dev);
12853
12854         intel_shared_dpll_init(dev);
12855
12856         /* save the BIOS value before clobbering it */
12857         dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
12858         /* Just disable it once at startup */
12859         i915_disable_vga(dev);
12860         intel_setup_outputs(dev);
12861
12862         /* Just in case the BIOS is doing something questionable. */
12863         intel_disable_fbc(dev);
12864
12865         drm_modeset_lock_all(dev);
12866         intel_modeset_setup_hw_state(dev, false);
12867         drm_modeset_unlock_all(dev);
12868
12869         for_each_intel_crtc(dev, crtc) {
12870                 if (!crtc->active)
12871                         continue;
12872
12873                 /*
12874                  * Note that reserving the BIOS fb up front prevents us
12875                  * from stuffing other stolen allocations like the ring
12876                  * on top.  This prevents some ugliness at boot time, and
12877                  * can even allow for smooth boot transitions if the BIOS
12878                  * fb is large enough for the active pipe configuration.
12879                  */
12880                 if (dev_priv->display.get_plane_config) {
12881                         dev_priv->display.get_plane_config(crtc,
12882                                                            &crtc->plane_config);
12883                         /*
12884                          * If the fb is shared between multiple heads, we'll
12885                          * just get the first one.
12886                          */
12887                         intel_find_plane_obj(crtc, &crtc->plane_config);
12888                 }
12889         }
12890 }
12891
12892 static void intel_enable_pipe_a(struct drm_device *dev)
12893 {
12894         struct intel_connector *connector;
12895         struct drm_connector *crt = NULL;
12896         struct intel_load_detect_pipe load_detect_temp;
12897         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
12898
12899         /* We can't just switch on the pipe A, we need to set things up with a
12900          * proper mode and output configuration. As a gross hack, enable pipe A
12901          * by enabling the load detect pipe once. */
12902         list_for_each_entry(connector,
12903                             &dev->mode_config.connector_list,
12904                             base.head) {
12905                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12906                         crt = &connector->base;
12907                         break;
12908                 }
12909         }
12910
12911         if (!crt)
12912                 return;
12913
12914         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
12915                 intel_release_load_detect_pipe(crt, &load_detect_temp);
12916 }
12917
12918 static bool
12919 intel_check_plane_mapping(struct intel_crtc *crtc)
12920 {
12921         struct drm_device *dev = crtc->base.dev;
12922         struct drm_i915_private *dev_priv = dev->dev_private;
12923         u32 reg, val;
12924
12925         if (INTEL_INFO(dev)->num_pipes == 1)
12926                 return true;
12927
12928         reg = DSPCNTR(!crtc->plane);
12929         val = I915_READ(reg);
12930
12931         if ((val & DISPLAY_PLANE_ENABLE) &&
12932             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12933                 return false;
12934
12935         return true;
12936 }
12937
12938 static void intel_sanitize_crtc(struct intel_crtc *crtc)
12939 {
12940         struct drm_device *dev = crtc->base.dev;
12941         struct drm_i915_private *dev_priv = dev->dev_private;
12942         u32 reg;
12943
12944         /* Clear any frame start delays used for debugging left by the BIOS */
12945         reg = PIPECONF(crtc->config.cpu_transcoder);
12946         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12947
12948         /* restore vblank interrupts to correct state */
12949         if (crtc->active) {
12950                 update_scanline_offset(crtc);
12951                 drm_vblank_on(dev, crtc->pipe);
12952         } else
12953                 drm_vblank_off(dev, crtc->pipe);
12954
12955         /* We need to sanitize the plane -> pipe mapping first because this will
12956          * disable the crtc (and hence change the state) if it is wrong. Note
12957          * that gen4+ has a fixed plane -> pipe mapping.  */
12958         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
12959                 struct intel_connector *connector;
12960                 bool plane;
12961
12962                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12963                               crtc->base.base.id);
12964
12965                 /* Pipe has the wrong plane attached and the plane is active.
12966                  * Temporarily change the plane mapping and disable everything
12967                  * ...  */
12968                 plane = crtc->plane;
12969                 crtc->plane = !plane;
12970                 crtc->primary_enabled = true;
12971                 dev_priv->display.crtc_disable(&crtc->base);
12972                 crtc->plane = plane;
12973
12974                 /* ... and break all links. */
12975                 list_for_each_entry(connector, &dev->mode_config.connector_list,
12976                                     base.head) {
12977                         if (connector->encoder->base.crtc != &crtc->base)
12978                                 continue;
12979
12980                         connector->base.dpms = DRM_MODE_DPMS_OFF;
12981                         connector->base.encoder = NULL;
12982                 }
12983                 /* multiple connectors may have the same encoder:
12984                  *  handle them and break crtc link separately */
12985                 list_for_each_entry(connector, &dev->mode_config.connector_list,
12986                                     base.head)
12987                         if (connector->encoder->base.crtc == &crtc->base) {
12988                                 connector->encoder->base.crtc = NULL;
12989                                 connector->encoder->connectors_active = false;
12990                         }
12991
12992                 WARN_ON(crtc->active);
12993                 crtc->base.enabled = false;
12994         }
12995
12996         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12997             crtc->pipe == PIPE_A && !crtc->active) {
12998                 /* BIOS forgot to enable pipe A, this mostly happens after
12999                  * resume. Force-enable the pipe to fix this, the update_dpms
13000                  * call below we restore the pipe to the right state, but leave
13001                  * the required bits on. */
13002                 intel_enable_pipe_a(dev);
13003         }
13004
13005         /* Adjust the state of the output pipe according to whether we
13006          * have active connectors/encoders. */
13007         intel_crtc_update_dpms(&crtc->base);
13008
13009         if (crtc->active != crtc->base.enabled) {
13010                 struct intel_encoder *encoder;
13011
13012                 /* This can happen either due to bugs in the get_hw_state
13013                  * functions or because the pipe is force-enabled due to the
13014                  * pipe A quirk. */
13015                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13016                               crtc->base.base.id,
13017                               crtc->base.enabled ? "enabled" : "disabled",
13018                               crtc->active ? "enabled" : "disabled");
13019
13020                 crtc->base.enabled = crtc->active;
13021
13022                 /* Because we only establish the connector -> encoder ->
13023                  * crtc links if something is active, this means the
13024                  * crtc is now deactivated. Break the links. connector
13025                  * -> encoder links are only establish when things are
13026                  *  actually up, hence no need to break them. */
13027                 WARN_ON(crtc->active);
13028
13029                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13030                         WARN_ON(encoder->connectors_active);
13031                         encoder->base.crtc = NULL;
13032                 }
13033         }
13034
13035         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13036                 /*
13037                  * We start out with underrun reporting disabled to avoid races.
13038                  * For correct bookkeeping mark this on active crtcs.
13039                  *
13040                  * Also on gmch platforms we dont have any hardware bits to
13041                  * disable the underrun reporting. Which means we need to start
13042                  * out with underrun reporting disabled also on inactive pipes,
13043                  * since otherwise we'll complain about the garbage we read when
13044                  * e.g. coming up after runtime pm.
13045                  *
13046                  * No protection against concurrent access is required - at
13047                  * worst a fifo underrun happens which also sets this to false.
13048                  */
13049                 crtc->cpu_fifo_underrun_disabled = true;
13050                 crtc->pch_fifo_underrun_disabled = true;
13051         }
13052 }
13053
13054 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13055 {
13056         struct intel_connector *connector;
13057         struct drm_device *dev = encoder->base.dev;
13058
13059         /* We need to check both for a crtc link (meaning that the
13060          * encoder is active and trying to read from a pipe) and the
13061          * pipe itself being active. */
13062         bool has_active_crtc = encoder->base.crtc &&
13063                 to_intel_crtc(encoder->base.crtc)->active;
13064
13065         if (encoder->connectors_active && !has_active_crtc) {
13066                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13067                               encoder->base.base.id,
13068                               encoder->base.name);
13069
13070                 /* Connector is active, but has no active pipe. This is
13071                  * fallout from our resume register restoring. Disable
13072                  * the encoder manually again. */
13073                 if (encoder->base.crtc) {
13074                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13075                                       encoder->base.base.id,
13076                                       encoder->base.name);
13077                         encoder->disable(encoder);
13078                         if (encoder->post_disable)
13079                                 encoder->post_disable(encoder);
13080                 }
13081                 encoder->base.crtc = NULL;
13082                 encoder->connectors_active = false;
13083
13084                 /* Inconsistent output/port/pipe state happens presumably due to
13085                  * a bug in one of the get_hw_state functions. Or someplace else
13086                  * in our code, like the register restore mess on resume. Clamp
13087                  * things to off as a safer default. */
13088                 list_for_each_entry(connector,
13089                                     &dev->mode_config.connector_list,
13090                                     base.head) {
13091                         if (connector->encoder != encoder)
13092                                 continue;
13093                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13094                         connector->base.encoder = NULL;
13095                 }
13096         }
13097         /* Enabled encoders without active connectors will be fixed in
13098          * the crtc fixup. */
13099 }
13100
13101 void i915_redisable_vga_power_on(struct drm_device *dev)
13102 {
13103         struct drm_i915_private *dev_priv = dev->dev_private;
13104         u32 vga_reg = i915_vgacntrl_reg(dev);
13105
13106         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13107                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13108                 i915_disable_vga(dev);
13109         }
13110 }
13111
13112 void i915_redisable_vga(struct drm_device *dev)
13113 {
13114         struct drm_i915_private *dev_priv = dev->dev_private;
13115
13116         /* This function can be called both from intel_modeset_setup_hw_state or
13117          * at a very early point in our resume sequence, where the power well
13118          * structures are not yet restored. Since this function is at a very
13119          * paranoid "someone might have enabled VGA while we were not looking"
13120          * level, just check if the power well is enabled instead of trying to
13121          * follow the "don't touch the power well if we don't need it" policy
13122          * the rest of the driver uses. */
13123         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13124                 return;
13125
13126         i915_redisable_vga_power_on(dev);
13127 }
13128
13129 static bool primary_get_hw_state(struct intel_crtc *crtc)
13130 {
13131         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13132
13133         if (!crtc->active)
13134                 return false;
13135
13136         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13137 }
13138
13139 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13140 {
13141         struct drm_i915_private *dev_priv = dev->dev_private;
13142         enum pipe pipe;
13143         struct intel_crtc *crtc;
13144         struct intel_encoder *encoder;
13145         struct intel_connector *connector;
13146         int i;
13147
13148         for_each_intel_crtc(dev, crtc) {
13149                 memset(&crtc->config, 0, sizeof(crtc->config));
13150
13151                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13152
13153                 crtc->active = dev_priv->display.get_pipe_config(crtc,
13154                                                                  &crtc->config);
13155
13156                 crtc->base.enabled = crtc->active;
13157                 crtc->primary_enabled = primary_get_hw_state(crtc);
13158
13159                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13160                               crtc->base.base.id,
13161                               crtc->active ? "enabled" : "disabled");
13162         }
13163
13164         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13165                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13166
13167                 pll->on = pll->get_hw_state(dev_priv, pll,
13168                                             &pll->config.hw_state);
13169                 pll->active = 0;
13170                 pll->config.crtc_mask = 0;
13171                 for_each_intel_crtc(dev, crtc) {
13172                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13173                                 pll->active++;
13174                                 pll->config.crtc_mask |= 1 << crtc->pipe;
13175                         }
13176                 }
13177
13178                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13179                               pll->name, pll->config.crtc_mask, pll->on);
13180
13181                 if (pll->config.crtc_mask)
13182                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13183         }
13184
13185         for_each_intel_encoder(dev, encoder) {
13186                 pipe = 0;
13187
13188                 if (encoder->get_hw_state(encoder, &pipe)) {
13189                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13190                         encoder->base.crtc = &crtc->base;
13191                         encoder->get_config(encoder, &crtc->config);
13192                 } else {
13193                         encoder->base.crtc = NULL;
13194                 }
13195
13196                 encoder->connectors_active = false;
13197                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13198                               encoder->base.base.id,
13199                               encoder->base.name,
13200                               encoder->base.crtc ? "enabled" : "disabled",
13201                               pipe_name(pipe));
13202         }
13203
13204         list_for_each_entry(connector, &dev->mode_config.connector_list,
13205                             base.head) {
13206                 if (connector->get_hw_state(connector)) {
13207                         connector->base.dpms = DRM_MODE_DPMS_ON;
13208                         connector->encoder->connectors_active = true;
13209                         connector->base.encoder = &connector->encoder->base;
13210                 } else {
13211                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13212                         connector->base.encoder = NULL;
13213                 }
13214                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13215                               connector->base.base.id,
13216                               connector->base.name,
13217                               connector->base.encoder ? "enabled" : "disabled");
13218         }
13219 }
13220
13221 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13222  * and i915 state tracking structures. */
13223 void intel_modeset_setup_hw_state(struct drm_device *dev,
13224                                   bool force_restore)
13225 {
13226         struct drm_i915_private *dev_priv = dev->dev_private;
13227         enum pipe pipe;
13228         struct intel_crtc *crtc;
13229         struct intel_encoder *encoder;
13230         int i;
13231
13232         intel_modeset_readout_hw_state(dev);
13233
13234         /*
13235          * Now that we have the config, copy it to each CRTC struct
13236          * Note that this could go away if we move to using crtc_config
13237          * checking everywhere.
13238          */
13239         for_each_intel_crtc(dev, crtc) {
13240                 if (crtc->active && i915.fastboot) {
13241                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13242                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13243                                       crtc->base.base.id);
13244                         drm_mode_debug_printmodeline(&crtc->base.mode);
13245                 }
13246         }
13247
13248         /* HW state is read out, now we need to sanitize this mess. */
13249         for_each_intel_encoder(dev, encoder) {
13250                 intel_sanitize_encoder(encoder);
13251         }
13252
13253         for_each_pipe(dev_priv, pipe) {
13254                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13255                 intel_sanitize_crtc(crtc);
13256                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13257         }
13258
13259         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13260                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13261
13262                 if (!pll->on || pll->active)
13263                         continue;
13264
13265                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13266
13267                 pll->disable(dev_priv, pll);
13268                 pll->on = false;
13269         }
13270
13271         if (HAS_PCH_SPLIT(dev))
13272                 ilk_wm_get_hw_state(dev);
13273
13274         if (force_restore) {
13275                 i915_redisable_vga(dev);
13276
13277                 /*
13278                  * We need to use raw interfaces for restoring state to avoid
13279                  * checking (bogus) intermediate states.
13280                  */
13281                 for_each_pipe(dev_priv, pipe) {
13282                         struct drm_crtc *crtc =
13283                                 dev_priv->pipe_to_crtc_mapping[pipe];
13284
13285                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13286                                          crtc->primary->fb);
13287                 }
13288         } else {
13289                 intel_modeset_update_staged_output_state(dev);
13290         }
13291
13292         intel_modeset_check_state(dev);
13293 }
13294
13295 void intel_modeset_gem_init(struct drm_device *dev)
13296 {
13297         struct drm_crtc *c;
13298         struct drm_i915_gem_object *obj;
13299
13300         mutex_lock(&dev->struct_mutex);
13301         intel_init_gt_powersave(dev);
13302         mutex_unlock(&dev->struct_mutex);
13303
13304         intel_modeset_init_hw(dev);
13305
13306         intel_setup_overlay(dev);
13307
13308         /*
13309          * Make sure any fbs we allocated at startup are properly
13310          * pinned & fenced.  When we do the allocation it's too early
13311          * for this.
13312          */
13313         mutex_lock(&dev->struct_mutex);
13314         for_each_crtc(dev, c) {
13315                 obj = intel_fb_obj(c->primary->fb);
13316                 if (obj == NULL)
13317                         continue;
13318
13319                 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
13320                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
13321                                   to_intel_crtc(c)->pipe);
13322                         drm_framebuffer_unreference(c->primary->fb);
13323                         c->primary->fb = NULL;
13324                 }
13325         }
13326         mutex_unlock(&dev->struct_mutex);
13327 }
13328
13329 void intel_connector_unregister(struct intel_connector *intel_connector)
13330 {
13331         struct drm_connector *connector = &intel_connector->base;
13332
13333         intel_panel_destroy_backlight(connector);
13334         drm_connector_unregister(connector);
13335 }
13336
13337 void intel_modeset_cleanup(struct drm_device *dev)
13338 {
13339         struct drm_i915_private *dev_priv = dev->dev_private;
13340         struct drm_connector *connector;
13341
13342         /*
13343          * Interrupts and polling as the first thing to avoid creating havoc.
13344          * Too much stuff here (turning of rps, connectors, ...) would
13345          * experience fancy races otherwise.
13346          */
13347         intel_irq_uninstall(dev_priv);
13348
13349         /*
13350          * Due to the hpd irq storm handling the hotplug work can re-arm the
13351          * poll handlers. Hence disable polling after hpd handling is shut down.
13352          */
13353         drm_kms_helper_poll_fini(dev);
13354
13355         mutex_lock(&dev->struct_mutex);
13356
13357         intel_unregister_dsm_handler();
13358
13359         intel_disable_fbc(dev);
13360
13361         intel_disable_gt_powersave(dev);
13362
13363         ironlake_teardown_rc6(dev);
13364
13365         mutex_unlock(&dev->struct_mutex);
13366
13367         /* flush any delayed tasks or pending work */
13368         flush_scheduled_work();
13369
13370         /* destroy the backlight and sysfs files before encoders/connectors */
13371         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13372                 struct intel_connector *intel_connector;
13373
13374                 intel_connector = to_intel_connector(connector);
13375                 intel_connector->unregister(intel_connector);
13376         }
13377
13378         drm_mode_config_cleanup(dev);
13379
13380         intel_cleanup_overlay(dev);
13381
13382         mutex_lock(&dev->struct_mutex);
13383         intel_cleanup_gt_powersave(dev);
13384         mutex_unlock(&dev->struct_mutex);
13385 }
13386
13387 /*
13388  * Return which encoder is currently attached for connector.
13389  */
13390 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13391 {
13392         return &intel_attached_encoder(connector)->base;
13393 }
13394
13395 void intel_connector_attach_encoder(struct intel_connector *connector,
13396                                     struct intel_encoder *encoder)
13397 {
13398         connector->encoder = encoder;
13399         drm_mode_connector_attach_encoder(&connector->base,
13400                                           &encoder->base);
13401 }
13402
13403 /*
13404  * set vga decode state - true == enable VGA decode
13405  */
13406 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13407 {
13408         struct drm_i915_private *dev_priv = dev->dev_private;
13409         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13410         u16 gmch_ctrl;
13411
13412         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13413                 DRM_ERROR("failed to read control word\n");
13414                 return -EIO;
13415         }
13416
13417         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13418                 return 0;
13419
13420         if (state)
13421                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13422         else
13423                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13424
13425         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13426                 DRM_ERROR("failed to write control word\n");
13427                 return -EIO;
13428         }
13429
13430         return 0;
13431 }
13432
13433 struct intel_display_error_state {
13434
13435         u32 power_well_driver;
13436
13437         int num_transcoders;
13438
13439         struct intel_cursor_error_state {
13440                 u32 control;
13441                 u32 position;
13442                 u32 base;
13443                 u32 size;
13444         } cursor[I915_MAX_PIPES];
13445
13446         struct intel_pipe_error_state {
13447                 bool power_domain_on;
13448                 u32 source;
13449                 u32 stat;
13450         } pipe[I915_MAX_PIPES];
13451
13452         struct intel_plane_error_state {
13453                 u32 control;
13454                 u32 stride;
13455                 u32 size;
13456                 u32 pos;
13457                 u32 addr;
13458                 u32 surface;
13459                 u32 tile_offset;
13460         } plane[I915_MAX_PIPES];
13461
13462         struct intel_transcoder_error_state {
13463                 bool power_domain_on;
13464                 enum transcoder cpu_transcoder;
13465
13466                 u32 conf;
13467
13468                 u32 htotal;
13469                 u32 hblank;
13470                 u32 hsync;
13471                 u32 vtotal;
13472                 u32 vblank;
13473                 u32 vsync;
13474         } transcoder[4];
13475 };
13476
13477 struct intel_display_error_state *
13478 intel_display_capture_error_state(struct drm_device *dev)
13479 {
13480         struct drm_i915_private *dev_priv = dev->dev_private;
13481         struct intel_display_error_state *error;
13482         int transcoders[] = {
13483                 TRANSCODER_A,
13484                 TRANSCODER_B,
13485                 TRANSCODER_C,
13486                 TRANSCODER_EDP,
13487         };
13488         int i;
13489
13490         if (INTEL_INFO(dev)->num_pipes == 0)
13491                 return NULL;
13492
13493         error = kzalloc(sizeof(*error), GFP_ATOMIC);
13494         if (error == NULL)
13495                 return NULL;
13496
13497         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13498                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13499
13500         for_each_pipe(dev_priv, i) {
13501                 error->pipe[i].power_domain_on =
13502                         __intel_display_power_is_enabled(dev_priv,
13503                                                          POWER_DOMAIN_PIPE(i));
13504                 if (!error->pipe[i].power_domain_on)
13505                         continue;
13506
13507                 error->cursor[i].control = I915_READ(CURCNTR(i));
13508                 error->cursor[i].position = I915_READ(CURPOS(i));
13509                 error->cursor[i].base = I915_READ(CURBASE(i));
13510
13511                 error->plane[i].control = I915_READ(DSPCNTR(i));
13512                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13513                 if (INTEL_INFO(dev)->gen <= 3) {
13514                         error->plane[i].size = I915_READ(DSPSIZE(i));
13515                         error->plane[i].pos = I915_READ(DSPPOS(i));
13516                 }
13517                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13518                         error->plane[i].addr = I915_READ(DSPADDR(i));
13519                 if (INTEL_INFO(dev)->gen >= 4) {
13520                         error->plane[i].surface = I915_READ(DSPSURF(i));
13521                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13522                 }
13523
13524                 error->pipe[i].source = I915_READ(PIPESRC(i));
13525
13526                 if (HAS_GMCH_DISPLAY(dev))
13527                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
13528         }
13529
13530         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13531         if (HAS_DDI(dev_priv->dev))
13532                 error->num_transcoders++; /* Account for eDP. */
13533
13534         for (i = 0; i < error->num_transcoders; i++) {
13535                 enum transcoder cpu_transcoder = transcoders[i];
13536
13537                 error->transcoder[i].power_domain_on =
13538                         __intel_display_power_is_enabled(dev_priv,
13539                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13540                 if (!error->transcoder[i].power_domain_on)
13541                         continue;
13542
13543                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13544
13545                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13546                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13547                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13548                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13549                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13550                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13551                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13552         }
13553
13554         return error;
13555 }
13556
13557 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13558
13559 void
13560 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13561                                 struct drm_device *dev,
13562                                 struct intel_display_error_state *error)
13563 {
13564         struct drm_i915_private *dev_priv = dev->dev_private;
13565         int i;
13566
13567         if (!error)
13568                 return;
13569
13570         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13571         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13572                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13573                            error->power_well_driver);
13574         for_each_pipe(dev_priv, i) {
13575                 err_printf(m, "Pipe [%d]:\n", i);
13576                 err_printf(m, "  Power: %s\n",
13577                            error->pipe[i].power_domain_on ? "on" : "off");
13578                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
13579                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
13580
13581                 err_printf(m, "Plane [%d]:\n", i);
13582                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13583                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
13584                 if (INTEL_INFO(dev)->gen <= 3) {
13585                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13586                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
13587                 }
13588                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13589                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
13590                 if (INTEL_INFO(dev)->gen >= 4) {
13591                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13592                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
13593                 }
13594
13595                 err_printf(m, "Cursor [%d]:\n", i);
13596                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13597                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13598                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
13599         }
13600
13601         for (i = 0; i < error->num_transcoders; i++) {
13602                 err_printf(m, "CPU transcoder: %c\n",
13603                            transcoder_name(error->transcoder[i].cpu_transcoder));
13604                 err_printf(m, "  Power: %s\n",
13605                            error->transcoder[i].power_domain_on ? "on" : "off");
13606                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13607                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13608                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13609                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13610                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13611                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13612                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13613         }
13614 }
13615
13616 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13617 {
13618         struct intel_crtc *crtc;
13619
13620         for_each_intel_crtc(dev, crtc) {
13621                 struct intel_unpin_work *work;
13622
13623                 spin_lock_irq(&dev->event_lock);
13624
13625                 work = crtc->unpin_work;
13626
13627                 if (work && work->event &&
13628                     work->event->base.file_priv == file) {
13629                         kfree(work->event);
13630                         work->event = NULL;
13631                 }
13632
13633                 spin_unlock_irq(&dev->event_lock);
13634         }
13635 }