880d44e3835374342a22cce318c9c79d3228f711
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41
42 #include "drm_crtc_helper.h"
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_update_watermarks(struct drm_device *dev);
48 static void intel_increase_pllclock(struct drm_crtc *crtc);
49 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
50
51 typedef struct {
52         /* given values */
53         int n;
54         int m1, m2;
55         int p1, p2;
56         /* derived values */
57         int     dot;
58         int     vco;
59         int     m;
60         int     p;
61 } intel_clock_t;
62
63 typedef struct {
64         int     min, max;
65 } intel_range_t;
66
67 typedef struct {
68         int     dot_limit;
69         int     p2_slow, p2_fast;
70 } intel_p2_t;
71
72 #define INTEL_P2_NUM                  2
73 typedef struct intel_limit intel_limit_t;
74 struct intel_limit {
75         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
76         intel_p2_t          p2;
77         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
78                         int, int, intel_clock_t *);
79 };
80
81 /* FDI */
82 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
83
84 static bool
85 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
86                     int target, int refclk, intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89                         int target, int refclk, intel_clock_t *best_clock);
90
91 static bool
92 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
93                       int target, int refclk, intel_clock_t *best_clock);
94 static bool
95 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
96                            int target, int refclk, intel_clock_t *best_clock);
97
98 static inline u32 /* units of 100MHz */
99 intel_fdi_link_freq(struct drm_device *dev)
100 {
101         if (IS_GEN5(dev)) {
102                 struct drm_i915_private *dev_priv = dev->dev_private;
103                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
104         } else
105                 return 27;
106 }
107
108 static const intel_limit_t intel_limits_i8xx_dvo = {
109         .dot = { .min = 25000, .max = 350000 },
110         .vco = { .min = 930000, .max = 1400000 },
111         .n = { .min = 3, .max = 16 },
112         .m = { .min = 96, .max = 140 },
113         .m1 = { .min = 18, .max = 26 },
114         .m2 = { .min = 6, .max = 16 },
115         .p = { .min = 4, .max = 128 },
116         .p1 = { .min = 2, .max = 33 },
117         .p2 = { .dot_limit = 165000,
118                 .p2_slow = 4, .p2_fast = 2 },
119         .find_pll = intel_find_best_PLL,
120 };
121
122 static const intel_limit_t intel_limits_i8xx_lvds = {
123         .dot = { .min = 25000, .max = 350000 },
124         .vco = { .min = 930000, .max = 1400000 },
125         .n = { .min = 3, .max = 16 },
126         .m = { .min = 96, .max = 140 },
127         .m1 = { .min = 18, .max = 26 },
128         .m2 = { .min = 6, .max = 16 },
129         .p = { .min = 4, .max = 128 },
130         .p1 = { .min = 1, .max = 6 },
131         .p2 = { .dot_limit = 165000,
132                 .p2_slow = 14, .p2_fast = 7 },
133         .find_pll = intel_find_best_PLL,
134 };
135
136 static const intel_limit_t intel_limits_i9xx_sdvo = {
137         .dot = { .min = 20000, .max = 400000 },
138         .vco = { .min = 1400000, .max = 2800000 },
139         .n = { .min = 1, .max = 6 },
140         .m = { .min = 70, .max = 120 },
141         .m1 = { .min = 10, .max = 22 },
142         .m2 = { .min = 5, .max = 9 },
143         .p = { .min = 5, .max = 80 },
144         .p1 = { .min = 1, .max = 8 },
145         .p2 = { .dot_limit = 200000,
146                 .p2_slow = 10, .p2_fast = 5 },
147         .find_pll = intel_find_best_PLL,
148 };
149
150 static const intel_limit_t intel_limits_i9xx_lvds = {
151         .dot = { .min = 20000, .max = 400000 },
152         .vco = { .min = 1400000, .max = 2800000 },
153         .n = { .min = 1, .max = 6 },
154         .m = { .min = 70, .max = 120 },
155         .m1 = { .min = 10, .max = 22 },
156         .m2 = { .min = 5, .max = 9 },
157         .p = { .min = 7, .max = 98 },
158         .p1 = { .min = 1, .max = 8 },
159         .p2 = { .dot_limit = 112000,
160                 .p2_slow = 14, .p2_fast = 7 },
161         .find_pll = intel_find_best_PLL,
162 };
163
164
165 static const intel_limit_t intel_limits_g4x_sdvo = {
166         .dot = { .min = 25000, .max = 270000 },
167         .vco = { .min = 1750000, .max = 3500000},
168         .n = { .min = 1, .max = 4 },
169         .m = { .min = 104, .max = 138 },
170         .m1 = { .min = 17, .max = 23 },
171         .m2 = { .min = 5, .max = 11 },
172         .p = { .min = 10, .max = 30 },
173         .p1 = { .min = 1, .max = 3},
174         .p2 = { .dot_limit = 270000,
175                 .p2_slow = 10,
176                 .p2_fast = 10
177         },
178         .find_pll = intel_g4x_find_best_PLL,
179 };
180
181 static const intel_limit_t intel_limits_g4x_hdmi = {
182         .dot = { .min = 22000, .max = 400000 },
183         .vco = { .min = 1750000, .max = 3500000},
184         .n = { .min = 1, .max = 4 },
185         .m = { .min = 104, .max = 138 },
186         .m1 = { .min = 16, .max = 23 },
187         .m2 = { .min = 5, .max = 11 },
188         .p = { .min = 5, .max = 80 },
189         .p1 = { .min = 1, .max = 8},
190         .p2 = { .dot_limit = 165000,
191                 .p2_slow = 10, .p2_fast = 5 },
192         .find_pll = intel_g4x_find_best_PLL,
193 };
194
195 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
196         .dot = { .min = 20000, .max = 115000 },
197         .vco = { .min = 1750000, .max = 3500000 },
198         .n = { .min = 1, .max = 3 },
199         .m = { .min = 104, .max = 138 },
200         .m1 = { .min = 17, .max = 23 },
201         .m2 = { .min = 5, .max = 11 },
202         .p = { .min = 28, .max = 112 },
203         .p1 = { .min = 2, .max = 8 },
204         .p2 = { .dot_limit = 0,
205                 .p2_slow = 14, .p2_fast = 14
206         },
207         .find_pll = intel_g4x_find_best_PLL,
208 };
209
210 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
211         .dot = { .min = 80000, .max = 224000 },
212         .vco = { .min = 1750000, .max = 3500000 },
213         .n = { .min = 1, .max = 3 },
214         .m = { .min = 104, .max = 138 },
215         .m1 = { .min = 17, .max = 23 },
216         .m2 = { .min = 5, .max = 11 },
217         .p = { .min = 14, .max = 42 },
218         .p1 = { .min = 2, .max = 6 },
219         .p2 = { .dot_limit = 0,
220                 .p2_slow = 7, .p2_fast = 7
221         },
222         .find_pll = intel_g4x_find_best_PLL,
223 };
224
225 static const intel_limit_t intel_limits_g4x_display_port = {
226         .dot = { .min = 161670, .max = 227000 },
227         .vco = { .min = 1750000, .max = 3500000},
228         .n = { .min = 1, .max = 2 },
229         .m = { .min = 97, .max = 108 },
230         .m1 = { .min = 0x10, .max = 0x12 },
231         .m2 = { .min = 0x05, .max = 0x06 },
232         .p = { .min = 10, .max = 20 },
233         .p1 = { .min = 1, .max = 2},
234         .p2 = { .dot_limit = 0,
235                 .p2_slow = 10, .p2_fast = 10 },
236         .find_pll = intel_find_pll_g4x_dp,
237 };
238
239 static const intel_limit_t intel_limits_pineview_sdvo = {
240         .dot = { .min = 20000, .max = 400000},
241         .vco = { .min = 1700000, .max = 3500000 },
242         /* Pineview's Ncounter is a ring counter */
243         .n = { .min = 3, .max = 6 },
244         .m = { .min = 2, .max = 256 },
245         /* Pineview only has one combined m divider, which we treat as m2. */
246         .m1 = { .min = 0, .max = 0 },
247         .m2 = { .min = 0, .max = 254 },
248         .p = { .min = 5, .max = 80 },
249         .p1 = { .min = 1, .max = 8 },
250         .p2 = { .dot_limit = 200000,
251                 .p2_slow = 10, .p2_fast = 5 },
252         .find_pll = intel_find_best_PLL,
253 };
254
255 static const intel_limit_t intel_limits_pineview_lvds = {
256         .dot = { .min = 20000, .max = 400000 },
257         .vco = { .min = 1700000, .max = 3500000 },
258         .n = { .min = 3, .max = 6 },
259         .m = { .min = 2, .max = 256 },
260         .m1 = { .min = 0, .max = 0 },
261         .m2 = { .min = 0, .max = 254 },
262         .p = { .min = 7, .max = 112 },
263         .p1 = { .min = 1, .max = 8 },
264         .p2 = { .dot_limit = 112000,
265                 .p2_slow = 14, .p2_fast = 14 },
266         .find_pll = intel_find_best_PLL,
267 };
268
269 /* Ironlake / Sandybridge
270  *
271  * We calculate clock using (register_value + 2) for N/M1/M2, so here
272  * the range value for them is (actual_value - 2).
273  */
274 static const intel_limit_t intel_limits_ironlake_dac = {
275         .dot = { .min = 25000, .max = 350000 },
276         .vco = { .min = 1760000, .max = 3510000 },
277         .n = { .min = 1, .max = 5 },
278         .m = { .min = 79, .max = 127 },
279         .m1 = { .min = 12, .max = 22 },
280         .m2 = { .min = 5, .max = 9 },
281         .p = { .min = 5, .max = 80 },
282         .p1 = { .min = 1, .max = 8 },
283         .p2 = { .dot_limit = 225000,
284                 .p2_slow = 10, .p2_fast = 5 },
285         .find_pll = intel_g4x_find_best_PLL,
286 };
287
288 static const intel_limit_t intel_limits_ironlake_single_lvds = {
289         .dot = { .min = 25000, .max = 350000 },
290         .vco = { .min = 1760000, .max = 3510000 },
291         .n = { .min = 1, .max = 3 },
292         .m = { .min = 79, .max = 118 },
293         .m1 = { .min = 12, .max = 22 },
294         .m2 = { .min = 5, .max = 9 },
295         .p = { .min = 28, .max = 112 },
296         .p1 = { .min = 2, .max = 8 },
297         .p2 = { .dot_limit = 225000,
298                 .p2_slow = 14, .p2_fast = 14 },
299         .find_pll = intel_g4x_find_best_PLL,
300 };
301
302 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
303         .dot = { .min = 25000, .max = 350000 },
304         .vco = { .min = 1760000, .max = 3510000 },
305         .n = { .min = 1, .max = 3 },
306         .m = { .min = 79, .max = 127 },
307         .m1 = { .min = 12, .max = 22 },
308         .m2 = { .min = 5, .max = 9 },
309         .p = { .min = 14, .max = 56 },
310         .p1 = { .min = 2, .max = 8 },
311         .p2 = { .dot_limit = 225000,
312                 .p2_slow = 7, .p2_fast = 7 },
313         .find_pll = intel_g4x_find_best_PLL,
314 };
315
316 /* LVDS 100mhz refclk limits. */
317 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
318         .dot = { .min = 25000, .max = 350000 },
319         .vco = { .min = 1760000, .max = 3510000 },
320         .n = { .min = 1, .max = 2 },
321         .m = { .min = 79, .max = 126 },
322         .m1 = { .min = 12, .max = 22 },
323         .m2 = { .min = 5, .max = 9 },
324         .p = { .min = 28, .max = 112 },
325         .p1 = { .min = 2, .max = 8 },
326         .p2 = { .dot_limit = 225000,
327                 .p2_slow = 14, .p2_fast = 14 },
328         .find_pll = intel_g4x_find_best_PLL,
329 };
330
331 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
332         .dot = { .min = 25000, .max = 350000 },
333         .vco = { .min = 1760000, .max = 3510000 },
334         .n = { .min = 1, .max = 3 },
335         .m = { .min = 79, .max = 126 },
336         .m1 = { .min = 12, .max = 22 },
337         .m2 = { .min = 5, .max = 9 },
338         .p = { .min = 14, .max = 42 },
339         .p1 = { .min = 2, .max = 6 },
340         .p2 = { .dot_limit = 225000,
341                 .p2_slow = 7, .p2_fast = 7 },
342         .find_pll = intel_g4x_find_best_PLL,
343 };
344
345 static const intel_limit_t intel_limits_ironlake_display_port = {
346         .dot = { .min = 25000, .max = 350000 },
347         .vco = { .min = 1760000, .max = 3510000},
348         .n = { .min = 1, .max = 2 },
349         .m = { .min = 81, .max = 90 },
350         .m1 = { .min = 12, .max = 22 },
351         .m2 = { .min = 5, .max = 9 },
352         .p = { .min = 10, .max = 20 },
353         .p1 = { .min = 1, .max = 2},
354         .p2 = { .dot_limit = 0,
355                 .p2_slow = 10, .p2_fast = 10 },
356         .find_pll = intel_find_pll_ironlake_dp,
357 };
358
359 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
360                                                 int refclk)
361 {
362         struct drm_device *dev = crtc->dev;
363         struct drm_i915_private *dev_priv = dev->dev_private;
364         const intel_limit_t *limit;
365
366         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
367                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
368                     LVDS_CLKB_POWER_UP) {
369                         /* LVDS dual channel */
370                         if (refclk == 100000)
371                                 limit = &intel_limits_ironlake_dual_lvds_100m;
372                         else
373                                 limit = &intel_limits_ironlake_dual_lvds;
374                 } else {
375                         if (refclk == 100000)
376                                 limit = &intel_limits_ironlake_single_lvds_100m;
377                         else
378                                 limit = &intel_limits_ironlake_single_lvds;
379                 }
380         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
381                         HAS_eDP)
382                 limit = &intel_limits_ironlake_display_port;
383         else
384                 limit = &intel_limits_ironlake_dac;
385
386         return limit;
387 }
388
389 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
390 {
391         struct drm_device *dev = crtc->dev;
392         struct drm_i915_private *dev_priv = dev->dev_private;
393         const intel_limit_t *limit;
394
395         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
396                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
397                     LVDS_CLKB_POWER_UP)
398                         /* LVDS with dual channel */
399                         limit = &intel_limits_g4x_dual_channel_lvds;
400                 else
401                         /* LVDS with dual channel */
402                         limit = &intel_limits_g4x_single_channel_lvds;
403         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
404                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
405                 limit = &intel_limits_g4x_hdmi;
406         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
407                 limit = &intel_limits_g4x_sdvo;
408         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
409                 limit = &intel_limits_g4x_display_port;
410         } else /* The option is for other outputs */
411                 limit = &intel_limits_i9xx_sdvo;
412
413         return limit;
414 }
415
416 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
417 {
418         struct drm_device *dev = crtc->dev;
419         const intel_limit_t *limit;
420
421         if (HAS_PCH_SPLIT(dev))
422                 limit = intel_ironlake_limit(crtc, refclk);
423         else if (IS_G4X(dev)) {
424                 limit = intel_g4x_limit(crtc);
425         } else if (IS_PINEVIEW(dev)) {
426                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
427                         limit = &intel_limits_pineview_lvds;
428                 else
429                         limit = &intel_limits_pineview_sdvo;
430         } else if (!IS_GEN2(dev)) {
431                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
432                         limit = &intel_limits_i9xx_lvds;
433                 else
434                         limit = &intel_limits_i9xx_sdvo;
435         } else {
436                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
437                         limit = &intel_limits_i8xx_lvds;
438                 else
439                         limit = &intel_limits_i8xx_dvo;
440         }
441         return limit;
442 }
443
444 /* m1 is reserved as 0 in Pineview, n is a ring counter */
445 static void pineview_clock(int refclk, intel_clock_t *clock)
446 {
447         clock->m = clock->m2 + 2;
448         clock->p = clock->p1 * clock->p2;
449         clock->vco = refclk * clock->m / clock->n;
450         clock->dot = clock->vco / clock->p;
451 }
452
453 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
454 {
455         if (IS_PINEVIEW(dev)) {
456                 pineview_clock(refclk, clock);
457                 return;
458         }
459         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
460         clock->p = clock->p1 * clock->p2;
461         clock->vco = refclk * clock->m / (clock->n + 2);
462         clock->dot = clock->vco / clock->p;
463 }
464
465 /**
466  * Returns whether any output on the specified pipe is of the specified type
467  */
468 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
469 {
470         struct drm_device *dev = crtc->dev;
471         struct drm_mode_config *mode_config = &dev->mode_config;
472         struct intel_encoder *encoder;
473
474         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
475                 if (encoder->base.crtc == crtc && encoder->type == type)
476                         return true;
477
478         return false;
479 }
480
481 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
482 /**
483  * Returns whether the given set of divisors are valid for a given refclk with
484  * the given connectors.
485  */
486
487 static bool intel_PLL_is_valid(struct drm_device *dev,
488                                const intel_limit_t *limit,
489                                const intel_clock_t *clock)
490 {
491         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
492                 INTELPllInvalid("p1 out of range\n");
493         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
494                 INTELPllInvalid("p out of range\n");
495         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
496                 INTELPllInvalid("m2 out of range\n");
497         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
498                 INTELPllInvalid("m1 out of range\n");
499         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
500                 INTELPllInvalid("m1 <= m2\n");
501         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
502                 INTELPllInvalid("m out of range\n");
503         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
504                 INTELPllInvalid("n out of range\n");
505         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
506                 INTELPllInvalid("vco out of range\n");
507         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
508          * connector, etc., rather than just a single range.
509          */
510         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
511                 INTELPllInvalid("dot out of range\n");
512
513         return true;
514 }
515
516 static bool
517 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
518                     int target, int refclk, intel_clock_t *best_clock)
519
520 {
521         struct drm_device *dev = crtc->dev;
522         struct drm_i915_private *dev_priv = dev->dev_private;
523         intel_clock_t clock;
524         int err = target;
525
526         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
527             (I915_READ(LVDS)) != 0) {
528                 /*
529                  * For LVDS, if the panel is on, just rely on its current
530                  * settings for dual-channel.  We haven't figured out how to
531                  * reliably set up different single/dual channel state, if we
532                  * even can.
533                  */
534                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
535                     LVDS_CLKB_POWER_UP)
536                         clock.p2 = limit->p2.p2_fast;
537                 else
538                         clock.p2 = limit->p2.p2_slow;
539         } else {
540                 if (target < limit->p2.dot_limit)
541                         clock.p2 = limit->p2.p2_slow;
542                 else
543                         clock.p2 = limit->p2.p2_fast;
544         }
545
546         memset(best_clock, 0, sizeof(*best_clock));
547
548         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
549              clock.m1++) {
550                 for (clock.m2 = limit->m2.min;
551                      clock.m2 <= limit->m2.max; clock.m2++) {
552                         /* m1 is always 0 in Pineview */
553                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
554                                 break;
555                         for (clock.n = limit->n.min;
556                              clock.n <= limit->n.max; clock.n++) {
557                                 for (clock.p1 = limit->p1.min;
558                                         clock.p1 <= limit->p1.max; clock.p1++) {
559                                         int this_err;
560
561                                         intel_clock(dev, refclk, &clock);
562                                         if (!intel_PLL_is_valid(dev, limit,
563                                                                 &clock))
564                                                 continue;
565
566                                         this_err = abs(clock.dot - target);
567                                         if (this_err < err) {
568                                                 *best_clock = clock;
569                                                 err = this_err;
570                                         }
571                                 }
572                         }
573                 }
574         }
575
576         return (err != target);
577 }
578
579 static bool
580 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
581                         int target, int refclk, intel_clock_t *best_clock)
582 {
583         struct drm_device *dev = crtc->dev;
584         struct drm_i915_private *dev_priv = dev->dev_private;
585         intel_clock_t clock;
586         int max_n;
587         bool found;
588         /* approximately equals target * 0.00585 */
589         int err_most = (target >> 8) + (target >> 9);
590         found = false;
591
592         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
593                 int lvds_reg;
594
595                 if (HAS_PCH_SPLIT(dev))
596                         lvds_reg = PCH_LVDS;
597                 else
598                         lvds_reg = LVDS;
599                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
600                     LVDS_CLKB_POWER_UP)
601                         clock.p2 = limit->p2.p2_fast;
602                 else
603                         clock.p2 = limit->p2.p2_slow;
604         } else {
605                 if (target < limit->p2.dot_limit)
606                         clock.p2 = limit->p2.p2_slow;
607                 else
608                         clock.p2 = limit->p2.p2_fast;
609         }
610
611         memset(best_clock, 0, sizeof(*best_clock));
612         max_n = limit->n.max;
613         /* based on hardware requirement, prefer smaller n to precision */
614         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
615                 /* based on hardware requirement, prefere larger m1,m2 */
616                 for (clock.m1 = limit->m1.max;
617                      clock.m1 >= limit->m1.min; clock.m1--) {
618                         for (clock.m2 = limit->m2.max;
619                              clock.m2 >= limit->m2.min; clock.m2--) {
620                                 for (clock.p1 = limit->p1.max;
621                                      clock.p1 >= limit->p1.min; clock.p1--) {
622                                         int this_err;
623
624                                         intel_clock(dev, refclk, &clock);
625                                         if (!intel_PLL_is_valid(dev, limit,
626                                                                 &clock))
627                                                 continue;
628
629                                         this_err = abs(clock.dot - target);
630                                         if (this_err < err_most) {
631                                                 *best_clock = clock;
632                                                 err_most = this_err;
633                                                 max_n = clock.n;
634                                                 found = true;
635                                         }
636                                 }
637                         }
638                 }
639         }
640         return found;
641 }
642
643 static bool
644 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
645                            int target, int refclk, intel_clock_t *best_clock)
646 {
647         struct drm_device *dev = crtc->dev;
648         intel_clock_t clock;
649
650         if (target < 200000) {
651                 clock.n = 1;
652                 clock.p1 = 2;
653                 clock.p2 = 10;
654                 clock.m1 = 12;
655                 clock.m2 = 9;
656         } else {
657                 clock.n = 2;
658                 clock.p1 = 1;
659                 clock.p2 = 10;
660                 clock.m1 = 14;
661                 clock.m2 = 8;
662         }
663         intel_clock(dev, refclk, &clock);
664         memcpy(best_clock, &clock, sizeof(intel_clock_t));
665         return true;
666 }
667
668 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
669 static bool
670 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
671                       int target, int refclk, intel_clock_t *best_clock)
672 {
673         intel_clock_t clock;
674         if (target < 200000) {
675                 clock.p1 = 2;
676                 clock.p2 = 10;
677                 clock.n = 2;
678                 clock.m1 = 23;
679                 clock.m2 = 8;
680         } else {
681                 clock.p1 = 1;
682                 clock.p2 = 10;
683                 clock.n = 1;
684                 clock.m1 = 14;
685                 clock.m2 = 2;
686         }
687         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
688         clock.p = (clock.p1 * clock.p2);
689         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
690         clock.vco = 0;
691         memcpy(best_clock, &clock, sizeof(intel_clock_t));
692         return true;
693 }
694
695 /**
696  * intel_wait_for_vblank - wait for vblank on a given pipe
697  * @dev: drm device
698  * @pipe: pipe to wait for
699  *
700  * Wait for vblank to occur on a given pipe.  Needed for various bits of
701  * mode setting code.
702  */
703 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
704 {
705         struct drm_i915_private *dev_priv = dev->dev_private;
706         int pipestat_reg = PIPESTAT(pipe);
707
708         /* Clear existing vblank status. Note this will clear any other
709          * sticky status fields as well.
710          *
711          * This races with i915_driver_irq_handler() with the result
712          * that either function could miss a vblank event.  Here it is not
713          * fatal, as we will either wait upon the next vblank interrupt or
714          * timeout.  Generally speaking intel_wait_for_vblank() is only
715          * called during modeset at which time the GPU should be idle and
716          * should *not* be performing page flips and thus not waiting on
717          * vblanks...
718          * Currently, the result of us stealing a vblank from the irq
719          * handler is that a single frame will be skipped during swapbuffers.
720          */
721         I915_WRITE(pipestat_reg,
722                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
723
724         /* Wait for vblank interrupt bit to set */
725         if (wait_for(I915_READ(pipestat_reg) &
726                      PIPE_VBLANK_INTERRUPT_STATUS,
727                      50))
728                 DRM_DEBUG_KMS("vblank wait timed out\n");
729 }
730
731 /*
732  * intel_wait_for_pipe_off - wait for pipe to turn off
733  * @dev: drm device
734  * @pipe: pipe to wait for
735  *
736  * After disabling a pipe, we can't wait for vblank in the usual way,
737  * spinning on the vblank interrupt status bit, since we won't actually
738  * see an interrupt when the pipe is disabled.
739  *
740  * On Gen4 and above:
741  *   wait for the pipe register state bit to turn off
742  *
743  * Otherwise:
744  *   wait for the display line value to settle (it usually
745  *   ends up stopping at the start of the next frame).
746  *
747  */
748 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
749 {
750         struct drm_i915_private *dev_priv = dev->dev_private;
751
752         if (INTEL_INFO(dev)->gen >= 4) {
753                 int reg = PIPECONF(pipe);
754
755                 /* Wait for the Pipe State to go off */
756                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
757                              100))
758                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
759         } else {
760                 u32 last_line;
761                 int reg = PIPEDSL(pipe);
762                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
763
764                 /* Wait for the display line to settle */
765                 do {
766                         last_line = I915_READ(reg) & DSL_LINEMASK;
767                         mdelay(5);
768                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
769                          time_after(timeout, jiffies));
770                 if (time_after(jiffies, timeout))
771                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
772         }
773 }
774
775 static const char *state_string(bool enabled)
776 {
777         return enabled ? "on" : "off";
778 }
779
780 /* Only for pre-ILK configs */
781 static void assert_pll(struct drm_i915_private *dev_priv,
782                        enum pipe pipe, bool state)
783 {
784         int reg;
785         u32 val;
786         bool cur_state;
787
788         reg = DPLL(pipe);
789         val = I915_READ(reg);
790         cur_state = !!(val & DPLL_VCO_ENABLE);
791         WARN(cur_state != state,
792              "PLL state assertion failure (expected %s, current %s)\n",
793              state_string(state), state_string(cur_state));
794 }
795 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
796 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
797
798 /* For ILK+ */
799 static void assert_pch_pll(struct drm_i915_private *dev_priv,
800                            enum pipe pipe, bool state)
801 {
802         int reg;
803         u32 val;
804         bool cur_state;
805
806         if (HAS_PCH_CPT(dev_priv->dev)) {
807                 u32 pch_dpll;
808
809                 pch_dpll = I915_READ(PCH_DPLL_SEL);
810
811                 /* Make sure the selected PLL is enabled to the transcoder */
812                 WARN(!((pch_dpll >> (4 * pipe)) & 8),
813                      "transcoder %d PLL not enabled\n", pipe);
814
815                 /* Convert the transcoder pipe number to a pll pipe number */
816                 pipe = (pch_dpll >> (4 * pipe)) & 1;
817         }
818
819         reg = PCH_DPLL(pipe);
820         val = I915_READ(reg);
821         cur_state = !!(val & DPLL_VCO_ENABLE);
822         WARN(cur_state != state,
823              "PCH PLL state assertion failure (expected %s, current %s)\n",
824              state_string(state), state_string(cur_state));
825 }
826 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
827 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
828
829 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
830                           enum pipe pipe, bool state)
831 {
832         int reg;
833         u32 val;
834         bool cur_state;
835
836         reg = FDI_TX_CTL(pipe);
837         val = I915_READ(reg);
838         cur_state = !!(val & FDI_TX_ENABLE);
839         WARN(cur_state != state,
840              "FDI TX state assertion failure (expected %s, current %s)\n",
841              state_string(state), state_string(cur_state));
842 }
843 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
844 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
845
846 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
847                           enum pipe pipe, bool state)
848 {
849         int reg;
850         u32 val;
851         bool cur_state;
852
853         reg = FDI_RX_CTL(pipe);
854         val = I915_READ(reg);
855         cur_state = !!(val & FDI_RX_ENABLE);
856         WARN(cur_state != state,
857              "FDI RX state assertion failure (expected %s, current %s)\n",
858              state_string(state), state_string(cur_state));
859 }
860 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
861 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
862
863 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
864                                       enum pipe pipe)
865 {
866         int reg;
867         u32 val;
868
869         /* ILK FDI PLL is always enabled */
870         if (dev_priv->info->gen == 5)
871                 return;
872
873         reg = FDI_TX_CTL(pipe);
874         val = I915_READ(reg);
875         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
876 }
877
878 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
879                                       enum pipe pipe)
880 {
881         int reg;
882         u32 val;
883
884         reg = FDI_RX_CTL(pipe);
885         val = I915_READ(reg);
886         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
887 }
888
889 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
890                                   enum pipe pipe)
891 {
892         int pp_reg, lvds_reg;
893         u32 val;
894         enum pipe panel_pipe = PIPE_A;
895         bool locked = true;
896
897         if (HAS_PCH_SPLIT(dev_priv->dev)) {
898                 pp_reg = PCH_PP_CONTROL;
899                 lvds_reg = PCH_LVDS;
900         } else {
901                 pp_reg = PP_CONTROL;
902                 lvds_reg = LVDS;
903         }
904
905         val = I915_READ(pp_reg);
906         if (!(val & PANEL_POWER_ON) ||
907             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
908                 locked = false;
909
910         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
911                 panel_pipe = PIPE_B;
912
913         WARN(panel_pipe == pipe && locked,
914              "panel assertion failure, pipe %c regs locked\n",
915              pipe_name(pipe));
916 }
917
918 static void assert_pipe(struct drm_i915_private *dev_priv,
919                         enum pipe pipe, bool state)
920 {
921         int reg;
922         u32 val;
923         bool cur_state;
924
925         reg = PIPECONF(pipe);
926         val = I915_READ(reg);
927         cur_state = !!(val & PIPECONF_ENABLE);
928         WARN(cur_state != state,
929              "pipe %c assertion failure (expected %s, current %s)\n",
930              pipe_name(pipe), state_string(state), state_string(cur_state));
931 }
932 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
933 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
934
935 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
936                                  enum plane plane)
937 {
938         int reg;
939         u32 val;
940
941         reg = DSPCNTR(plane);
942         val = I915_READ(reg);
943         WARN(!(val & DISPLAY_PLANE_ENABLE),
944              "plane %c assertion failure, should be active but is disabled\n",
945              plane_name(plane));
946 }
947
948 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
949                                    enum pipe pipe)
950 {
951         int reg, i;
952         u32 val;
953         int cur_pipe;
954
955         /* Planes are fixed to pipes on ILK+ */
956         if (HAS_PCH_SPLIT(dev_priv->dev))
957                 return;
958
959         /* Need to check both planes against the pipe */
960         for (i = 0; i < 2; i++) {
961                 reg = DSPCNTR(i);
962                 val = I915_READ(reg);
963                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
964                         DISPPLANE_SEL_PIPE_SHIFT;
965                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
966                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
967                      plane_name(i), pipe_name(pipe));
968         }
969 }
970
971 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
972 {
973         u32 val;
974         bool enabled;
975
976         val = I915_READ(PCH_DREF_CONTROL);
977         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
978                             DREF_SUPERSPREAD_SOURCE_MASK));
979         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
980 }
981
982 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
983                                        enum pipe pipe)
984 {
985         int reg;
986         u32 val;
987         bool enabled;
988
989         reg = TRANSCONF(pipe);
990         val = I915_READ(reg);
991         enabled = !!(val & TRANS_ENABLE);
992         WARN(enabled,
993              "transcoder assertion failed, should be off on pipe %c but is still active\n",
994              pipe_name(pipe));
995 }
996
997 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
998                             enum pipe pipe, u32 port_sel, u32 val)
999 {
1000         if ((val & DP_PORT_EN) == 0)
1001                 return false;
1002
1003         if (HAS_PCH_CPT(dev_priv->dev)) {
1004                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1005                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1006                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1007                         return false;
1008         } else {
1009                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1010                         return false;
1011         }
1012         return true;
1013 }
1014
1015 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1016                               enum pipe pipe, u32 val)
1017 {
1018         if ((val & PORT_ENABLE) == 0)
1019                 return false;
1020
1021         if (HAS_PCH_CPT(dev_priv->dev)) {
1022                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1023                         return false;
1024         } else {
1025                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1026                         return false;
1027         }
1028         return true;
1029 }
1030
1031 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1032                               enum pipe pipe, u32 val)
1033 {
1034         if ((val & LVDS_PORT_EN) == 0)
1035                 return false;
1036
1037         if (HAS_PCH_CPT(dev_priv->dev)) {
1038                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1039                         return false;
1040         } else {
1041                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1042                         return false;
1043         }
1044         return true;
1045 }
1046
1047 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1048                               enum pipe pipe, u32 val)
1049 {
1050         if ((val & ADPA_DAC_ENABLE) == 0)
1051                 return false;
1052         if (HAS_PCH_CPT(dev_priv->dev)) {
1053                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1054                         return false;
1055         } else {
1056                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1057                         return false;
1058         }
1059         return true;
1060 }
1061
1062 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1063                                    enum pipe pipe, int reg, u32 port_sel)
1064 {
1065         u32 val = I915_READ(reg);
1066         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1067              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1068              reg, pipe_name(pipe));
1069 }
1070
1071 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1072                                      enum pipe pipe, int reg)
1073 {
1074         u32 val = I915_READ(reg);
1075         WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1076              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1077              reg, pipe_name(pipe));
1078 }
1079
1080 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1081                                       enum pipe pipe)
1082 {
1083         int reg;
1084         u32 val;
1085
1086         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1087         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1088         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1089
1090         reg = PCH_ADPA;
1091         val = I915_READ(reg);
1092         WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1093              "PCH VGA enabled on transcoder %c, should be disabled\n",
1094              pipe_name(pipe));
1095
1096         reg = PCH_LVDS;
1097         val = I915_READ(reg);
1098         WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1099              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1100              pipe_name(pipe));
1101
1102         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1103         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1104         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1105 }
1106
1107 /**
1108  * intel_enable_pll - enable a PLL
1109  * @dev_priv: i915 private structure
1110  * @pipe: pipe PLL to enable
1111  *
1112  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1113  * make sure the PLL reg is writable first though, since the panel write
1114  * protect mechanism may be enabled.
1115  *
1116  * Note!  This is for pre-ILK only.
1117  */
1118 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1119 {
1120         int reg;
1121         u32 val;
1122
1123         /* No really, not for ILK+ */
1124         BUG_ON(dev_priv->info->gen >= 5);
1125
1126         /* PLL is protected by panel, make sure we can write it */
1127         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1128                 assert_panel_unlocked(dev_priv, pipe);
1129
1130         reg = DPLL(pipe);
1131         val = I915_READ(reg);
1132         val |= DPLL_VCO_ENABLE;
1133
1134         /* We do this three times for luck */
1135         I915_WRITE(reg, val);
1136         POSTING_READ(reg);
1137         udelay(150); /* wait for warmup */
1138         I915_WRITE(reg, val);
1139         POSTING_READ(reg);
1140         udelay(150); /* wait for warmup */
1141         I915_WRITE(reg, val);
1142         POSTING_READ(reg);
1143         udelay(150); /* wait for warmup */
1144 }
1145
1146 /**
1147  * intel_disable_pll - disable a PLL
1148  * @dev_priv: i915 private structure
1149  * @pipe: pipe PLL to disable
1150  *
1151  * Disable the PLL for @pipe, making sure the pipe is off first.
1152  *
1153  * Note!  This is for pre-ILK only.
1154  */
1155 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1156 {
1157         int reg;
1158         u32 val;
1159
1160         /* Don't disable pipe A or pipe A PLLs if needed */
1161         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1162                 return;
1163
1164         /* Make sure the pipe isn't still relying on us */
1165         assert_pipe_disabled(dev_priv, pipe);
1166
1167         reg = DPLL(pipe);
1168         val = I915_READ(reg);
1169         val &= ~DPLL_VCO_ENABLE;
1170         I915_WRITE(reg, val);
1171         POSTING_READ(reg);
1172 }
1173
1174 /**
1175  * intel_enable_pch_pll - enable PCH PLL
1176  * @dev_priv: i915 private structure
1177  * @pipe: pipe PLL to enable
1178  *
1179  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1180  * drives the transcoder clock.
1181  */
1182 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1183                                  enum pipe pipe)
1184 {
1185         int reg;
1186         u32 val;
1187
1188         if (pipe > 1)
1189                 return;
1190
1191         /* PCH only available on ILK+ */
1192         BUG_ON(dev_priv->info->gen < 5);
1193
1194         /* PCH refclock must be enabled first */
1195         assert_pch_refclk_enabled(dev_priv);
1196
1197         reg = PCH_DPLL(pipe);
1198         val = I915_READ(reg);
1199         val |= DPLL_VCO_ENABLE;
1200         I915_WRITE(reg, val);
1201         POSTING_READ(reg);
1202         udelay(200);
1203 }
1204
1205 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1206                                   enum pipe pipe)
1207 {
1208         int reg;
1209         u32 val;
1210
1211         if (pipe > 1)
1212                 return;
1213
1214         /* PCH only available on ILK+ */
1215         BUG_ON(dev_priv->info->gen < 5);
1216
1217         /* Make sure transcoder isn't still depending on us */
1218         assert_transcoder_disabled(dev_priv, pipe);
1219
1220         reg = PCH_DPLL(pipe);
1221         val = I915_READ(reg);
1222         val &= ~DPLL_VCO_ENABLE;
1223         I915_WRITE(reg, val);
1224         POSTING_READ(reg);
1225         udelay(200);
1226 }
1227
1228 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1229                                     enum pipe pipe)
1230 {
1231         int reg;
1232         u32 val;
1233
1234         /* PCH only available on ILK+ */
1235         BUG_ON(dev_priv->info->gen < 5);
1236
1237         /* Make sure PCH DPLL is enabled */
1238         assert_pch_pll_enabled(dev_priv, pipe);
1239
1240         /* FDI must be feeding us bits for PCH ports */
1241         assert_fdi_tx_enabled(dev_priv, pipe);
1242         assert_fdi_rx_enabled(dev_priv, pipe);
1243
1244         reg = TRANSCONF(pipe);
1245         val = I915_READ(reg);
1246
1247         if (HAS_PCH_IBX(dev_priv->dev)) {
1248                 /*
1249                  * make the BPC in transcoder be consistent with
1250                  * that in pipeconf reg.
1251                  */
1252                 val &= ~PIPE_BPC_MASK;
1253                 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1254         }
1255         I915_WRITE(reg, val | TRANS_ENABLE);
1256         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1257                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1258 }
1259
1260 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1261                                      enum pipe pipe)
1262 {
1263         int reg;
1264         u32 val;
1265
1266         /* FDI relies on the transcoder */
1267         assert_fdi_tx_disabled(dev_priv, pipe);
1268         assert_fdi_rx_disabled(dev_priv, pipe);
1269
1270         /* Ports must be off as well */
1271         assert_pch_ports_disabled(dev_priv, pipe);
1272
1273         reg = TRANSCONF(pipe);
1274         val = I915_READ(reg);
1275         val &= ~TRANS_ENABLE;
1276         I915_WRITE(reg, val);
1277         /* wait for PCH transcoder off, transcoder state */
1278         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1279                 DRM_ERROR("failed to disable transcoder\n");
1280 }
1281
1282 /**
1283  * intel_enable_pipe - enable a pipe, asserting requirements
1284  * @dev_priv: i915 private structure
1285  * @pipe: pipe to enable
1286  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1287  *
1288  * Enable @pipe, making sure that various hardware specific requirements
1289  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1290  *
1291  * @pipe should be %PIPE_A or %PIPE_B.
1292  *
1293  * Will wait until the pipe is actually running (i.e. first vblank) before
1294  * returning.
1295  */
1296 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1297                               bool pch_port)
1298 {
1299         int reg;
1300         u32 val;
1301
1302         /*
1303          * A pipe without a PLL won't actually be able to drive bits from
1304          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1305          * need the check.
1306          */
1307         if (!HAS_PCH_SPLIT(dev_priv->dev))
1308                 assert_pll_enabled(dev_priv, pipe);
1309         else {
1310                 if (pch_port) {
1311                         /* if driving the PCH, we need FDI enabled */
1312                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1313                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1314                 }
1315                 /* FIXME: assert CPU port conditions for SNB+ */
1316         }
1317
1318         reg = PIPECONF(pipe);
1319         val = I915_READ(reg);
1320         if (val & PIPECONF_ENABLE)
1321                 return;
1322
1323         I915_WRITE(reg, val | PIPECONF_ENABLE);
1324         intel_wait_for_vblank(dev_priv->dev, pipe);
1325 }
1326
1327 /**
1328  * intel_disable_pipe - disable a pipe, asserting requirements
1329  * @dev_priv: i915 private structure
1330  * @pipe: pipe to disable
1331  *
1332  * Disable @pipe, making sure that various hardware specific requirements
1333  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1334  *
1335  * @pipe should be %PIPE_A or %PIPE_B.
1336  *
1337  * Will wait until the pipe has shut down before returning.
1338  */
1339 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1340                                enum pipe pipe)
1341 {
1342         int reg;
1343         u32 val;
1344
1345         /*
1346          * Make sure planes won't keep trying to pump pixels to us,
1347          * or we might hang the display.
1348          */
1349         assert_planes_disabled(dev_priv, pipe);
1350
1351         /* Don't disable pipe A or pipe A PLLs if needed */
1352         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1353                 return;
1354
1355         reg = PIPECONF(pipe);
1356         val = I915_READ(reg);
1357         if ((val & PIPECONF_ENABLE) == 0)
1358                 return;
1359
1360         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1361         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1362 }
1363
1364 /*
1365  * Plane regs are double buffered, going from enabled->disabled needs a
1366  * trigger in order to latch.  The display address reg provides this.
1367  */
1368 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1369                                       enum plane plane)
1370 {
1371         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1372         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1373 }
1374
1375 /**
1376  * intel_enable_plane - enable a display plane on a given pipe
1377  * @dev_priv: i915 private structure
1378  * @plane: plane to enable
1379  * @pipe: pipe being fed
1380  *
1381  * Enable @plane on @pipe, making sure that @pipe is running first.
1382  */
1383 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1384                                enum plane plane, enum pipe pipe)
1385 {
1386         int reg;
1387         u32 val;
1388
1389         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1390         assert_pipe_enabled(dev_priv, pipe);
1391
1392         reg = DSPCNTR(plane);
1393         val = I915_READ(reg);
1394         if (val & DISPLAY_PLANE_ENABLE)
1395                 return;
1396
1397         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1398         intel_flush_display_plane(dev_priv, plane);
1399         intel_wait_for_vblank(dev_priv->dev, pipe);
1400 }
1401
1402 /**
1403  * intel_disable_plane - disable a display plane
1404  * @dev_priv: i915 private structure
1405  * @plane: plane to disable
1406  * @pipe: pipe consuming the data
1407  *
1408  * Disable @plane; should be an independent operation.
1409  */
1410 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1411                                 enum plane plane, enum pipe pipe)
1412 {
1413         int reg;
1414         u32 val;
1415
1416         reg = DSPCNTR(plane);
1417         val = I915_READ(reg);
1418         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1419                 return;
1420
1421         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1422         intel_flush_display_plane(dev_priv, plane);
1423         intel_wait_for_vblank(dev_priv->dev, pipe);
1424 }
1425
1426 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1427                            enum pipe pipe, int reg, u32 port_sel)
1428 {
1429         u32 val = I915_READ(reg);
1430         if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1431                 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1432                 I915_WRITE(reg, val & ~DP_PORT_EN);
1433         }
1434 }
1435
1436 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1437                              enum pipe pipe, int reg)
1438 {
1439         u32 val = I915_READ(reg);
1440         if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1441                 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1442                               reg, pipe);
1443                 I915_WRITE(reg, val & ~PORT_ENABLE);
1444         }
1445 }
1446
1447 /* Disable any ports connected to this transcoder */
1448 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1449                                     enum pipe pipe)
1450 {
1451         u32 reg, val;
1452
1453         val = I915_READ(PCH_PP_CONTROL);
1454         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1455
1456         disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1457         disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1458         disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1459
1460         reg = PCH_ADPA;
1461         val = I915_READ(reg);
1462         if (adpa_pipe_enabled(dev_priv, val, pipe))
1463                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1464
1465         reg = PCH_LVDS;
1466         val = I915_READ(reg);
1467         if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1468                 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1469                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1470                 POSTING_READ(reg);
1471                 udelay(100);
1472         }
1473
1474         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1475         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1476         disable_pch_hdmi(dev_priv, pipe, HDMID);
1477 }
1478
1479 static void i8xx_disable_fbc(struct drm_device *dev)
1480 {
1481         struct drm_i915_private *dev_priv = dev->dev_private;
1482         u32 fbc_ctl;
1483
1484         /* Disable compression */
1485         fbc_ctl = I915_READ(FBC_CONTROL);
1486         if ((fbc_ctl & FBC_CTL_EN) == 0)
1487                 return;
1488
1489         fbc_ctl &= ~FBC_CTL_EN;
1490         I915_WRITE(FBC_CONTROL, fbc_ctl);
1491
1492         /* Wait for compressing bit to clear */
1493         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1494                 DRM_DEBUG_KMS("FBC idle timed out\n");
1495                 return;
1496         }
1497
1498         DRM_DEBUG_KMS("disabled FBC\n");
1499 }
1500
1501 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1502 {
1503         struct drm_device *dev = crtc->dev;
1504         struct drm_i915_private *dev_priv = dev->dev_private;
1505         struct drm_framebuffer *fb = crtc->fb;
1506         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1507         struct drm_i915_gem_object *obj = intel_fb->obj;
1508         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1509         int cfb_pitch;
1510         int plane, i;
1511         u32 fbc_ctl, fbc_ctl2;
1512
1513         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1514         if (fb->pitch < cfb_pitch)
1515                 cfb_pitch = fb->pitch;
1516
1517         /* FBC_CTL wants 64B units */
1518         cfb_pitch = (cfb_pitch / 64) - 1;
1519         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1520
1521         /* Clear old tags */
1522         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1523                 I915_WRITE(FBC_TAG + (i * 4), 0);
1524
1525         /* Set it up... */
1526         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1527         fbc_ctl2 |= plane;
1528         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1529         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1530
1531         /* enable it... */
1532         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1533         if (IS_I945GM(dev))
1534                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1535         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1536         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1537         fbc_ctl |= obj->fence_reg;
1538         I915_WRITE(FBC_CONTROL, fbc_ctl);
1539
1540         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1541                       cfb_pitch, crtc->y, intel_crtc->plane);
1542 }
1543
1544 static bool i8xx_fbc_enabled(struct drm_device *dev)
1545 {
1546         struct drm_i915_private *dev_priv = dev->dev_private;
1547
1548         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1549 }
1550
1551 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1552 {
1553         struct drm_device *dev = crtc->dev;
1554         struct drm_i915_private *dev_priv = dev->dev_private;
1555         struct drm_framebuffer *fb = crtc->fb;
1556         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1557         struct drm_i915_gem_object *obj = intel_fb->obj;
1558         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1559         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1560         unsigned long stall_watermark = 200;
1561         u32 dpfc_ctl;
1562
1563         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1564         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1565         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1566
1567         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1568                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1569                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1570         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1571
1572         /* enable it... */
1573         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1574
1575         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1576 }
1577
1578 static void g4x_disable_fbc(struct drm_device *dev)
1579 {
1580         struct drm_i915_private *dev_priv = dev->dev_private;
1581         u32 dpfc_ctl;
1582
1583         /* Disable compression */
1584         dpfc_ctl = I915_READ(DPFC_CONTROL);
1585         if (dpfc_ctl & DPFC_CTL_EN) {
1586                 dpfc_ctl &= ~DPFC_CTL_EN;
1587                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1588
1589                 DRM_DEBUG_KMS("disabled FBC\n");
1590         }
1591 }
1592
1593 static bool g4x_fbc_enabled(struct drm_device *dev)
1594 {
1595         struct drm_i915_private *dev_priv = dev->dev_private;
1596
1597         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1598 }
1599
1600 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1601 {
1602         struct drm_i915_private *dev_priv = dev->dev_private;
1603         u32 blt_ecoskpd;
1604
1605         /* Make sure blitter notifies FBC of writes */
1606         gen6_gt_force_wake_get(dev_priv);
1607         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1608         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1609                 GEN6_BLITTER_LOCK_SHIFT;
1610         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1611         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1612         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1613         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1614                          GEN6_BLITTER_LOCK_SHIFT);
1615         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1616         POSTING_READ(GEN6_BLITTER_ECOSKPD);
1617         gen6_gt_force_wake_put(dev_priv);
1618 }
1619
1620 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1621 {
1622         struct drm_device *dev = crtc->dev;
1623         struct drm_i915_private *dev_priv = dev->dev_private;
1624         struct drm_framebuffer *fb = crtc->fb;
1625         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1626         struct drm_i915_gem_object *obj = intel_fb->obj;
1627         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1628         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1629         unsigned long stall_watermark = 200;
1630         u32 dpfc_ctl;
1631
1632         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1633         dpfc_ctl &= DPFC_RESERVED;
1634         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1635         /* Set persistent mode for front-buffer rendering, ala X. */
1636         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1637         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1638         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1639
1640         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1641                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1642                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1643         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1644         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1645         /* enable it... */
1646         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1647
1648         if (IS_GEN6(dev)) {
1649                 I915_WRITE(SNB_DPFC_CTL_SA,
1650                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1651                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1652                 sandybridge_blit_fbc_update(dev);
1653         }
1654
1655         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1656 }
1657
1658 static void ironlake_disable_fbc(struct drm_device *dev)
1659 {
1660         struct drm_i915_private *dev_priv = dev->dev_private;
1661         u32 dpfc_ctl;
1662
1663         /* Disable compression */
1664         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1665         if (dpfc_ctl & DPFC_CTL_EN) {
1666                 dpfc_ctl &= ~DPFC_CTL_EN;
1667                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1668
1669                 DRM_DEBUG_KMS("disabled FBC\n");
1670         }
1671 }
1672
1673 static bool ironlake_fbc_enabled(struct drm_device *dev)
1674 {
1675         struct drm_i915_private *dev_priv = dev->dev_private;
1676
1677         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1678 }
1679
1680 bool intel_fbc_enabled(struct drm_device *dev)
1681 {
1682         struct drm_i915_private *dev_priv = dev->dev_private;
1683
1684         if (!dev_priv->display.fbc_enabled)
1685                 return false;
1686
1687         return dev_priv->display.fbc_enabled(dev);
1688 }
1689
1690 static void intel_fbc_work_fn(struct work_struct *__work)
1691 {
1692         struct intel_fbc_work *work =
1693                 container_of(to_delayed_work(__work),
1694                              struct intel_fbc_work, work);
1695         struct drm_device *dev = work->crtc->dev;
1696         struct drm_i915_private *dev_priv = dev->dev_private;
1697
1698         mutex_lock(&dev->struct_mutex);
1699         if (work == dev_priv->fbc_work) {
1700                 /* Double check that we haven't switched fb without cancelling
1701                  * the prior work.
1702                  */
1703                 if (work->crtc->fb == work->fb) {
1704                         dev_priv->display.enable_fbc(work->crtc,
1705                                                      work->interval);
1706
1707                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1708                         dev_priv->cfb_fb = work->crtc->fb->base.id;
1709                         dev_priv->cfb_y = work->crtc->y;
1710                 }
1711
1712                 dev_priv->fbc_work = NULL;
1713         }
1714         mutex_unlock(&dev->struct_mutex);
1715
1716         kfree(work);
1717 }
1718
1719 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1720 {
1721         if (dev_priv->fbc_work == NULL)
1722                 return;
1723
1724         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1725
1726         /* Synchronisation is provided by struct_mutex and checking of
1727          * dev_priv->fbc_work, so we can perform the cancellation
1728          * entirely asynchronously.
1729          */
1730         if (cancel_delayed_work(&dev_priv->fbc_work->work))
1731                 /* tasklet was killed before being run, clean up */
1732                 kfree(dev_priv->fbc_work);
1733
1734         /* Mark the work as no longer wanted so that if it does
1735          * wake-up (because the work was already running and waiting
1736          * for our mutex), it will discover that is no longer
1737          * necessary to run.
1738          */
1739         dev_priv->fbc_work = NULL;
1740 }
1741
1742 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1743 {
1744         struct intel_fbc_work *work;
1745         struct drm_device *dev = crtc->dev;
1746         struct drm_i915_private *dev_priv = dev->dev_private;
1747
1748         if (!dev_priv->display.enable_fbc)
1749                 return;
1750
1751         intel_cancel_fbc_work(dev_priv);
1752
1753         work = kzalloc(sizeof *work, GFP_KERNEL);
1754         if (work == NULL) {
1755                 dev_priv->display.enable_fbc(crtc, interval);
1756                 return;
1757         }
1758
1759         work->crtc = crtc;
1760         work->fb = crtc->fb;
1761         work->interval = interval;
1762         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1763
1764         dev_priv->fbc_work = work;
1765
1766         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1767
1768         /* Delay the actual enabling to let pageflipping cease and the
1769          * display to settle before starting the compression. Note that
1770          * this delay also serves a second purpose: it allows for a
1771          * vblank to pass after disabling the FBC before we attempt
1772          * to modify the control registers.
1773          *
1774          * A more complicated solution would involve tracking vblanks
1775          * following the termination of the page-flipping sequence
1776          * and indeed performing the enable as a co-routine and not
1777          * waiting synchronously upon the vblank.
1778          */
1779         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1780 }
1781
1782 void intel_disable_fbc(struct drm_device *dev)
1783 {
1784         struct drm_i915_private *dev_priv = dev->dev_private;
1785
1786         intel_cancel_fbc_work(dev_priv);
1787
1788         if (!dev_priv->display.disable_fbc)
1789                 return;
1790
1791         dev_priv->display.disable_fbc(dev);
1792         dev_priv->cfb_plane = -1;
1793 }
1794
1795 /**
1796  * intel_update_fbc - enable/disable FBC as needed
1797  * @dev: the drm_device
1798  *
1799  * Set up the framebuffer compression hardware at mode set time.  We
1800  * enable it if possible:
1801  *   - plane A only (on pre-965)
1802  *   - no pixel mulitply/line duplication
1803  *   - no alpha buffer discard
1804  *   - no dual wide
1805  *   - framebuffer <= 2048 in width, 1536 in height
1806  *
1807  * We can't assume that any compression will take place (worst case),
1808  * so the compressed buffer has to be the same size as the uncompressed
1809  * one.  It also must reside (along with the line length buffer) in
1810  * stolen memory.
1811  *
1812  * We need to enable/disable FBC on a global basis.
1813  */
1814 static void intel_update_fbc(struct drm_device *dev)
1815 {
1816         struct drm_i915_private *dev_priv = dev->dev_private;
1817         struct drm_crtc *crtc = NULL, *tmp_crtc;
1818         struct intel_crtc *intel_crtc;
1819         struct drm_framebuffer *fb;
1820         struct intel_framebuffer *intel_fb;
1821         struct drm_i915_gem_object *obj;
1822         int enable_fbc;
1823
1824         DRM_DEBUG_KMS("\n");
1825
1826         if (!i915_powersave)
1827                 return;
1828
1829         if (!I915_HAS_FBC(dev))
1830                 return;
1831
1832         /*
1833          * If FBC is already on, we just have to verify that we can
1834          * keep it that way...
1835          * Need to disable if:
1836          *   - more than one pipe is active
1837          *   - changing FBC params (stride, fence, mode)
1838          *   - new fb is too large to fit in compressed buffer
1839          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1840          */
1841         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1842                 if (tmp_crtc->enabled && tmp_crtc->fb) {
1843                         if (crtc) {
1844                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1845                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1846                                 goto out_disable;
1847                         }
1848                         crtc = tmp_crtc;
1849                 }
1850         }
1851
1852         if (!crtc || crtc->fb == NULL) {
1853                 DRM_DEBUG_KMS("no output, disabling\n");
1854                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1855                 goto out_disable;
1856         }
1857
1858         intel_crtc = to_intel_crtc(crtc);
1859         fb = crtc->fb;
1860         intel_fb = to_intel_framebuffer(fb);
1861         obj = intel_fb->obj;
1862
1863         enable_fbc = i915_enable_fbc;
1864         if (enable_fbc < 0) {
1865                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1866                 enable_fbc = 1;
1867                 if (INTEL_INFO(dev)->gen <= 5)
1868                         enable_fbc = 0;
1869         }
1870         if (!enable_fbc) {
1871                 DRM_DEBUG_KMS("fbc disabled per module param\n");
1872                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1873                 goto out_disable;
1874         }
1875         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1876                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1877                               "compression\n");
1878                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1879                 goto out_disable;
1880         }
1881         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1882             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1883                 DRM_DEBUG_KMS("mode incompatible with compression, "
1884                               "disabling\n");
1885                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1886                 goto out_disable;
1887         }
1888         if ((crtc->mode.hdisplay > 2048) ||
1889             (crtc->mode.vdisplay > 1536)) {
1890                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1891                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1892                 goto out_disable;
1893         }
1894         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1895                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1896                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1897                 goto out_disable;
1898         }
1899
1900         /* The use of a CPU fence is mandatory in order to detect writes
1901          * by the CPU to the scanout and trigger updates to the FBC.
1902          */
1903         if (obj->tiling_mode != I915_TILING_X ||
1904             obj->fence_reg == I915_FENCE_REG_NONE) {
1905                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1906                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1907                 goto out_disable;
1908         }
1909
1910         /* If the kernel debugger is active, always disable compression */
1911         if (in_dbg_master())
1912                 goto out_disable;
1913
1914         /* If the scanout has not changed, don't modify the FBC settings.
1915          * Note that we make the fundamental assumption that the fb->obj
1916          * cannot be unpinned (and have its GTT offset and fence revoked)
1917          * without first being decoupled from the scanout and FBC disabled.
1918          */
1919         if (dev_priv->cfb_plane == intel_crtc->plane &&
1920             dev_priv->cfb_fb == fb->base.id &&
1921             dev_priv->cfb_y == crtc->y)
1922                 return;
1923
1924         if (intel_fbc_enabled(dev)) {
1925                 /* We update FBC along two paths, after changing fb/crtc
1926                  * configuration (modeswitching) and after page-flipping
1927                  * finishes. For the latter, we know that not only did
1928                  * we disable the FBC at the start of the page-flip
1929                  * sequence, but also more than one vblank has passed.
1930                  *
1931                  * For the former case of modeswitching, it is possible
1932                  * to switch between two FBC valid configurations
1933                  * instantaneously so we do need to disable the FBC
1934                  * before we can modify its control registers. We also
1935                  * have to wait for the next vblank for that to take
1936                  * effect. However, since we delay enabling FBC we can
1937                  * assume that a vblank has passed since disabling and
1938                  * that we can safely alter the registers in the deferred
1939                  * callback.
1940                  *
1941                  * In the scenario that we go from a valid to invalid
1942                  * and then back to valid FBC configuration we have
1943                  * no strict enforcement that a vblank occurred since
1944                  * disabling the FBC. However, along all current pipe
1945                  * disabling paths we do need to wait for a vblank at
1946                  * some point. And we wait before enabling FBC anyway.
1947                  */
1948                 DRM_DEBUG_KMS("disabling active FBC for update\n");
1949                 intel_disable_fbc(dev);
1950         }
1951
1952         intel_enable_fbc(crtc, 500);
1953         return;
1954
1955 out_disable:
1956         /* Multiple disables should be harmless */
1957         if (intel_fbc_enabled(dev)) {
1958                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1959                 intel_disable_fbc(dev);
1960         }
1961 }
1962
1963 int
1964 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1965                            struct drm_i915_gem_object *obj,
1966                            struct intel_ring_buffer *pipelined)
1967 {
1968         struct drm_i915_private *dev_priv = dev->dev_private;
1969         u32 alignment;
1970         int ret;
1971
1972         switch (obj->tiling_mode) {
1973         case I915_TILING_NONE:
1974                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1975                         alignment = 128 * 1024;
1976                 else if (INTEL_INFO(dev)->gen >= 4)
1977                         alignment = 4 * 1024;
1978                 else
1979                         alignment = 64 * 1024;
1980                 break;
1981         case I915_TILING_X:
1982                 /* pin() will align the object as required by fence */
1983                 alignment = 0;
1984                 break;
1985         case I915_TILING_Y:
1986                 /* FIXME: Is this true? */
1987                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1988                 return -EINVAL;
1989         default:
1990                 BUG();
1991         }
1992
1993         dev_priv->mm.interruptible = false;
1994         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1995         if (ret)
1996                 goto err_interruptible;
1997
1998         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1999          * fence, whereas 965+ only requires a fence if using
2000          * framebuffer compression.  For simplicity, we always install
2001          * a fence as the cost is not that onerous.
2002          */
2003         if (obj->tiling_mode != I915_TILING_NONE) {
2004                 ret = i915_gem_object_get_fence(obj, pipelined);
2005                 if (ret)
2006                         goto err_unpin;
2007         }
2008
2009         dev_priv->mm.interruptible = true;
2010         return 0;
2011
2012 err_unpin:
2013         i915_gem_object_unpin(obj);
2014 err_interruptible:
2015         dev_priv->mm.interruptible = true;
2016         return ret;
2017 }
2018
2019 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2020                              int x, int y)
2021 {
2022         struct drm_device *dev = crtc->dev;
2023         struct drm_i915_private *dev_priv = dev->dev_private;
2024         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2025         struct intel_framebuffer *intel_fb;
2026         struct drm_i915_gem_object *obj;
2027         int plane = intel_crtc->plane;
2028         unsigned long Start, Offset;
2029         u32 dspcntr;
2030         u32 reg;
2031
2032         switch (plane) {
2033         case 0:
2034         case 1:
2035                 break;
2036         default:
2037                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2038                 return -EINVAL;
2039         }
2040
2041         intel_fb = to_intel_framebuffer(fb);
2042         obj = intel_fb->obj;
2043
2044         reg = DSPCNTR(plane);
2045         dspcntr = I915_READ(reg);
2046         /* Mask out pixel format bits in case we change it */
2047         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2048         switch (fb->bits_per_pixel) {
2049         case 8:
2050                 dspcntr |= DISPPLANE_8BPP;
2051                 break;
2052         case 16:
2053                 if (fb->depth == 15)
2054                         dspcntr |= DISPPLANE_15_16BPP;
2055                 else
2056                         dspcntr |= DISPPLANE_16BPP;
2057                 break;
2058         case 24:
2059         case 32:
2060                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2061                 break;
2062         default:
2063                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2064                 return -EINVAL;
2065         }
2066         if (INTEL_INFO(dev)->gen >= 4) {
2067                 if (obj->tiling_mode != I915_TILING_NONE)
2068                         dspcntr |= DISPPLANE_TILED;
2069                 else
2070                         dspcntr &= ~DISPPLANE_TILED;
2071         }
2072
2073         I915_WRITE(reg, dspcntr);
2074
2075         Start = obj->gtt_offset;
2076         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2077
2078         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2079                       Start, Offset, x, y, fb->pitch);
2080         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2081         if (INTEL_INFO(dev)->gen >= 4) {
2082                 I915_WRITE(DSPSURF(plane), Start);
2083                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2084                 I915_WRITE(DSPADDR(plane), Offset);
2085         } else
2086                 I915_WRITE(DSPADDR(plane), Start + Offset);
2087         POSTING_READ(reg);
2088
2089         return 0;
2090 }
2091
2092 static int ironlake_update_plane(struct drm_crtc *crtc,
2093                                  struct drm_framebuffer *fb, int x, int y)
2094 {
2095         struct drm_device *dev = crtc->dev;
2096         struct drm_i915_private *dev_priv = dev->dev_private;
2097         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2098         struct intel_framebuffer *intel_fb;
2099         struct drm_i915_gem_object *obj;
2100         int plane = intel_crtc->plane;
2101         unsigned long Start, Offset;
2102         u32 dspcntr;
2103         u32 reg;
2104
2105         switch (plane) {
2106         case 0:
2107         case 1:
2108         case 2:
2109                 break;
2110         default:
2111                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2112                 return -EINVAL;
2113         }
2114
2115         intel_fb = to_intel_framebuffer(fb);
2116         obj = intel_fb->obj;
2117
2118         reg = DSPCNTR(plane);
2119         dspcntr = I915_READ(reg);
2120         /* Mask out pixel format bits in case we change it */
2121         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2122         switch (fb->bits_per_pixel) {
2123         case 8:
2124                 dspcntr |= DISPPLANE_8BPP;
2125                 break;
2126         case 16:
2127                 if (fb->depth != 16)
2128                         return -EINVAL;
2129
2130                 dspcntr |= DISPPLANE_16BPP;
2131                 break;
2132         case 24:
2133         case 32:
2134                 if (fb->depth == 24)
2135                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2136                 else if (fb->depth == 30)
2137                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2138                 else
2139                         return -EINVAL;
2140                 break;
2141         default:
2142                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2143                 return -EINVAL;
2144         }
2145
2146         if (obj->tiling_mode != I915_TILING_NONE)
2147                 dspcntr |= DISPPLANE_TILED;
2148         else
2149                 dspcntr &= ~DISPPLANE_TILED;
2150
2151         /* must disable */
2152         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2153
2154         I915_WRITE(reg, dspcntr);
2155
2156         Start = obj->gtt_offset;
2157         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2158
2159         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2160                       Start, Offset, x, y, fb->pitch);
2161         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2162         I915_WRITE(DSPSURF(plane), Start);
2163         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2164         I915_WRITE(DSPADDR(plane), Offset);
2165         POSTING_READ(reg);
2166
2167         return 0;
2168 }
2169
2170 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2171 static int
2172 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2173                            int x, int y, enum mode_set_atomic state)
2174 {
2175         struct drm_device *dev = crtc->dev;
2176         struct drm_i915_private *dev_priv = dev->dev_private;
2177         int ret;
2178
2179         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2180         if (ret)
2181                 return ret;
2182
2183         intel_update_fbc(dev);
2184         intel_increase_pllclock(crtc);
2185
2186         return 0;
2187 }
2188
2189 static int
2190 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2191                     struct drm_framebuffer *old_fb)
2192 {
2193         struct drm_device *dev = crtc->dev;
2194         struct drm_i915_master_private *master_priv;
2195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2196         int ret;
2197
2198         /* no fb bound */
2199         if (!crtc->fb) {
2200                 DRM_ERROR("No FB bound\n");
2201                 return 0;
2202         }
2203
2204         switch (intel_crtc->plane) {
2205         case 0:
2206         case 1:
2207                 break;
2208         case 2:
2209                 if (IS_IVYBRIDGE(dev))
2210                         break;
2211                 /* fall through otherwise */
2212         default:
2213                 DRM_ERROR("no plane for crtc\n");
2214                 return -EINVAL;
2215         }
2216
2217         mutex_lock(&dev->struct_mutex);
2218         ret = intel_pin_and_fence_fb_obj(dev,
2219                                          to_intel_framebuffer(crtc->fb)->obj,
2220                                          NULL);
2221         if (ret != 0) {
2222                 mutex_unlock(&dev->struct_mutex);
2223                 DRM_ERROR("pin & fence failed\n");
2224                 return ret;
2225         }
2226
2227         if (old_fb) {
2228                 struct drm_i915_private *dev_priv = dev->dev_private;
2229                 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2230
2231                 wait_event(dev_priv->pending_flip_queue,
2232                            atomic_read(&dev_priv->mm.wedged) ||
2233                            atomic_read(&obj->pending_flip) == 0);
2234
2235                 /* Big Hammer, we also need to ensure that any pending
2236                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2237                  * current scanout is retired before unpinning the old
2238                  * framebuffer.
2239                  *
2240                  * This should only fail upon a hung GPU, in which case we
2241                  * can safely continue.
2242                  */
2243                 ret = i915_gem_object_finish_gpu(obj);
2244                 (void) ret;
2245         }
2246
2247         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2248                                          LEAVE_ATOMIC_MODE_SET);
2249         if (ret) {
2250                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2251                 mutex_unlock(&dev->struct_mutex);
2252                 DRM_ERROR("failed to update base address\n");
2253                 return ret;
2254         }
2255
2256         if (old_fb) {
2257                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2258                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
2259         }
2260
2261         mutex_unlock(&dev->struct_mutex);
2262
2263         if (!dev->primary->master)
2264                 return 0;
2265
2266         master_priv = dev->primary->master->driver_priv;
2267         if (!master_priv->sarea_priv)
2268                 return 0;
2269
2270         if (intel_crtc->pipe) {
2271                 master_priv->sarea_priv->pipeB_x = x;
2272                 master_priv->sarea_priv->pipeB_y = y;
2273         } else {
2274                 master_priv->sarea_priv->pipeA_x = x;
2275                 master_priv->sarea_priv->pipeA_y = y;
2276         }
2277
2278         return 0;
2279 }
2280
2281 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2282 {
2283         struct drm_device *dev = crtc->dev;
2284         struct drm_i915_private *dev_priv = dev->dev_private;
2285         u32 dpa_ctl;
2286
2287         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2288         dpa_ctl = I915_READ(DP_A);
2289         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2290
2291         if (clock < 200000) {
2292                 u32 temp;
2293                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2294                 /* workaround for 160Mhz:
2295                    1) program 0x4600c bits 15:0 = 0x8124
2296                    2) program 0x46010 bit 0 = 1
2297                    3) program 0x46034 bit 24 = 1
2298                    4) program 0x64000 bit 14 = 1
2299                    */
2300                 temp = I915_READ(0x4600c);
2301                 temp &= 0xffff0000;
2302                 I915_WRITE(0x4600c, temp | 0x8124);
2303
2304                 temp = I915_READ(0x46010);
2305                 I915_WRITE(0x46010, temp | 1);
2306
2307                 temp = I915_READ(0x46034);
2308                 I915_WRITE(0x46034, temp | (1 << 24));
2309         } else {
2310                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2311         }
2312         I915_WRITE(DP_A, dpa_ctl);
2313
2314         POSTING_READ(DP_A);
2315         udelay(500);
2316 }
2317
2318 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2319 {
2320         struct drm_device *dev = crtc->dev;
2321         struct drm_i915_private *dev_priv = dev->dev_private;
2322         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2323         int pipe = intel_crtc->pipe;
2324         u32 reg, temp;
2325
2326         /* enable normal train */
2327         reg = FDI_TX_CTL(pipe);
2328         temp = I915_READ(reg);
2329         if (IS_IVYBRIDGE(dev)) {
2330                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2331                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2332         } else {
2333                 temp &= ~FDI_LINK_TRAIN_NONE;
2334                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2335         }
2336         I915_WRITE(reg, temp);
2337
2338         reg = FDI_RX_CTL(pipe);
2339         temp = I915_READ(reg);
2340         if (HAS_PCH_CPT(dev)) {
2341                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2342                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2343         } else {
2344                 temp &= ~FDI_LINK_TRAIN_NONE;
2345                 temp |= FDI_LINK_TRAIN_NONE;
2346         }
2347         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2348
2349         /* wait one idle pattern time */
2350         POSTING_READ(reg);
2351         udelay(1000);
2352
2353         /* IVB wants error correction enabled */
2354         if (IS_IVYBRIDGE(dev))
2355                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2356                            FDI_FE_ERRC_ENABLE);
2357 }
2358
2359 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2360 {
2361         struct drm_i915_private *dev_priv = dev->dev_private;
2362         u32 flags = I915_READ(SOUTH_CHICKEN1);
2363
2364         flags |= FDI_PHASE_SYNC_OVR(pipe);
2365         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2366         flags |= FDI_PHASE_SYNC_EN(pipe);
2367         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2368         POSTING_READ(SOUTH_CHICKEN1);
2369 }
2370
2371 /* The FDI link training functions for ILK/Ibexpeak. */
2372 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2373 {
2374         struct drm_device *dev = crtc->dev;
2375         struct drm_i915_private *dev_priv = dev->dev_private;
2376         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2377         int pipe = intel_crtc->pipe;
2378         int plane = intel_crtc->plane;
2379         u32 reg, temp, tries;
2380
2381         /* FDI needs bits from pipe & plane first */
2382         assert_pipe_enabled(dev_priv, pipe);
2383         assert_plane_enabled(dev_priv, plane);
2384
2385         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2386            for train result */
2387         reg = FDI_RX_IMR(pipe);
2388         temp = I915_READ(reg);
2389         temp &= ~FDI_RX_SYMBOL_LOCK;
2390         temp &= ~FDI_RX_BIT_LOCK;
2391         I915_WRITE(reg, temp);
2392         I915_READ(reg);
2393         udelay(150);
2394
2395         /* enable CPU FDI TX and PCH FDI RX */
2396         reg = FDI_TX_CTL(pipe);
2397         temp = I915_READ(reg);
2398         temp &= ~(7 << 19);
2399         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2400         temp &= ~FDI_LINK_TRAIN_NONE;
2401         temp |= FDI_LINK_TRAIN_PATTERN_1;
2402         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2403
2404         reg = FDI_RX_CTL(pipe);
2405         temp = I915_READ(reg);
2406         temp &= ~FDI_LINK_TRAIN_NONE;
2407         temp |= FDI_LINK_TRAIN_PATTERN_1;
2408         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2409
2410         POSTING_READ(reg);
2411         udelay(150);
2412
2413         /* Ironlake workaround, enable clock pointer after FDI enable*/
2414         if (HAS_PCH_IBX(dev)) {
2415                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2416                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2417                            FDI_RX_PHASE_SYNC_POINTER_EN);
2418         }
2419
2420         reg = FDI_RX_IIR(pipe);
2421         for (tries = 0; tries < 5; tries++) {
2422                 temp = I915_READ(reg);
2423                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2424
2425                 if ((temp & FDI_RX_BIT_LOCK)) {
2426                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2427                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2428                         break;
2429                 }
2430         }
2431         if (tries == 5)
2432                 DRM_ERROR("FDI train 1 fail!\n");
2433
2434         /* Train 2 */
2435         reg = FDI_TX_CTL(pipe);
2436         temp = I915_READ(reg);
2437         temp &= ~FDI_LINK_TRAIN_NONE;
2438         temp |= FDI_LINK_TRAIN_PATTERN_2;
2439         I915_WRITE(reg, temp);
2440
2441         reg = FDI_RX_CTL(pipe);
2442         temp = I915_READ(reg);
2443         temp &= ~FDI_LINK_TRAIN_NONE;
2444         temp |= FDI_LINK_TRAIN_PATTERN_2;
2445         I915_WRITE(reg, temp);
2446
2447         POSTING_READ(reg);
2448         udelay(150);
2449
2450         reg = FDI_RX_IIR(pipe);
2451         for (tries = 0; tries < 5; tries++) {
2452                 temp = I915_READ(reg);
2453                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2454
2455                 if (temp & FDI_RX_SYMBOL_LOCK) {
2456                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2457                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2458                         break;
2459                 }
2460         }
2461         if (tries == 5)
2462                 DRM_ERROR("FDI train 2 fail!\n");
2463
2464         DRM_DEBUG_KMS("FDI train done\n");
2465
2466 }
2467
2468 static const int snb_b_fdi_train_param[] = {
2469         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2470         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2471         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2472         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2473 };
2474
2475 /* The FDI link training functions for SNB/Cougarpoint. */
2476 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2477 {
2478         struct drm_device *dev = crtc->dev;
2479         struct drm_i915_private *dev_priv = dev->dev_private;
2480         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2481         int pipe = intel_crtc->pipe;
2482         u32 reg, temp, i;
2483
2484         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2485            for train result */
2486         reg = FDI_RX_IMR(pipe);
2487         temp = I915_READ(reg);
2488         temp &= ~FDI_RX_SYMBOL_LOCK;
2489         temp &= ~FDI_RX_BIT_LOCK;
2490         I915_WRITE(reg, temp);
2491
2492         POSTING_READ(reg);
2493         udelay(150);
2494
2495         /* enable CPU FDI TX and PCH FDI RX */
2496         reg = FDI_TX_CTL(pipe);
2497         temp = I915_READ(reg);
2498         temp &= ~(7 << 19);
2499         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2500         temp &= ~FDI_LINK_TRAIN_NONE;
2501         temp |= FDI_LINK_TRAIN_PATTERN_1;
2502         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2503         /* SNB-B */
2504         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2505         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2506
2507         reg = FDI_RX_CTL(pipe);
2508         temp = I915_READ(reg);
2509         if (HAS_PCH_CPT(dev)) {
2510                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2511                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2512         } else {
2513                 temp &= ~FDI_LINK_TRAIN_NONE;
2514                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2515         }
2516         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2517
2518         POSTING_READ(reg);
2519         udelay(150);
2520
2521         if (HAS_PCH_CPT(dev))
2522                 cpt_phase_pointer_enable(dev, pipe);
2523
2524         for (i = 0; i < 4; i++) {
2525                 reg = FDI_TX_CTL(pipe);
2526                 temp = I915_READ(reg);
2527                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2528                 temp |= snb_b_fdi_train_param[i];
2529                 I915_WRITE(reg, temp);
2530
2531                 POSTING_READ(reg);
2532                 udelay(500);
2533
2534                 reg = FDI_RX_IIR(pipe);
2535                 temp = I915_READ(reg);
2536                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537
2538                 if (temp & FDI_RX_BIT_LOCK) {
2539                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2540                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2541                         break;
2542                 }
2543         }
2544         if (i == 4)
2545                 DRM_ERROR("FDI train 1 fail!\n");
2546
2547         /* Train 2 */
2548         reg = FDI_TX_CTL(pipe);
2549         temp = I915_READ(reg);
2550         temp &= ~FDI_LINK_TRAIN_NONE;
2551         temp |= FDI_LINK_TRAIN_PATTERN_2;
2552         if (IS_GEN6(dev)) {
2553                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2554                 /* SNB-B */
2555                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2556         }
2557         I915_WRITE(reg, temp);
2558
2559         reg = FDI_RX_CTL(pipe);
2560         temp = I915_READ(reg);
2561         if (HAS_PCH_CPT(dev)) {
2562                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2563                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2564         } else {
2565                 temp &= ~FDI_LINK_TRAIN_NONE;
2566                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2567         }
2568         I915_WRITE(reg, temp);
2569
2570         POSTING_READ(reg);
2571         udelay(150);
2572
2573         for (i = 0; i < 4; i++) {
2574                 reg = FDI_TX_CTL(pipe);
2575                 temp = I915_READ(reg);
2576                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2577                 temp |= snb_b_fdi_train_param[i];
2578                 I915_WRITE(reg, temp);
2579
2580                 POSTING_READ(reg);
2581                 udelay(500);
2582
2583                 reg = FDI_RX_IIR(pipe);
2584                 temp = I915_READ(reg);
2585                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2586
2587                 if (temp & FDI_RX_SYMBOL_LOCK) {
2588                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2589                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2590                         break;
2591                 }
2592         }
2593         if (i == 4)
2594                 DRM_ERROR("FDI train 2 fail!\n");
2595
2596         DRM_DEBUG_KMS("FDI train done.\n");
2597 }
2598
2599 /* Manual link training for Ivy Bridge A0 parts */
2600 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2601 {
2602         struct drm_device *dev = crtc->dev;
2603         struct drm_i915_private *dev_priv = dev->dev_private;
2604         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2605         int pipe = intel_crtc->pipe;
2606         u32 reg, temp, i;
2607
2608         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2609            for train result */
2610         reg = FDI_RX_IMR(pipe);
2611         temp = I915_READ(reg);
2612         temp &= ~FDI_RX_SYMBOL_LOCK;
2613         temp &= ~FDI_RX_BIT_LOCK;
2614         I915_WRITE(reg, temp);
2615
2616         POSTING_READ(reg);
2617         udelay(150);
2618
2619         /* enable CPU FDI TX and PCH FDI RX */
2620         reg = FDI_TX_CTL(pipe);
2621         temp = I915_READ(reg);
2622         temp &= ~(7 << 19);
2623         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2624         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2625         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2626         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2627         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2628         temp |= FDI_COMPOSITE_SYNC;
2629         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2630
2631         reg = FDI_RX_CTL(pipe);
2632         temp = I915_READ(reg);
2633         temp &= ~FDI_LINK_TRAIN_AUTO;
2634         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2635         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2636         temp |= FDI_COMPOSITE_SYNC;
2637         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2638
2639         POSTING_READ(reg);
2640         udelay(150);
2641
2642         if (HAS_PCH_CPT(dev))
2643                 cpt_phase_pointer_enable(dev, pipe);
2644
2645         for (i = 0; i < 4; i++) {
2646                 reg = FDI_TX_CTL(pipe);
2647                 temp = I915_READ(reg);
2648                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2649                 temp |= snb_b_fdi_train_param[i];
2650                 I915_WRITE(reg, temp);
2651
2652                 POSTING_READ(reg);
2653                 udelay(500);
2654
2655                 reg = FDI_RX_IIR(pipe);
2656                 temp = I915_READ(reg);
2657                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2658
2659                 if (temp & FDI_RX_BIT_LOCK ||
2660                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2661                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2662                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2663                         break;
2664                 }
2665         }
2666         if (i == 4)
2667                 DRM_ERROR("FDI train 1 fail!\n");
2668
2669         /* Train 2 */
2670         reg = FDI_TX_CTL(pipe);
2671         temp = I915_READ(reg);
2672         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2673         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2674         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2675         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2676         I915_WRITE(reg, temp);
2677
2678         reg = FDI_RX_CTL(pipe);
2679         temp = I915_READ(reg);
2680         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2681         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2682         I915_WRITE(reg, temp);
2683
2684         POSTING_READ(reg);
2685         udelay(150);
2686
2687         for (i = 0; i < 4; i++) {
2688                 reg = FDI_TX_CTL(pipe);
2689                 temp = I915_READ(reg);
2690                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2691                 temp |= snb_b_fdi_train_param[i];
2692                 I915_WRITE(reg, temp);
2693
2694                 POSTING_READ(reg);
2695                 udelay(500);
2696
2697                 reg = FDI_RX_IIR(pipe);
2698                 temp = I915_READ(reg);
2699                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2700
2701                 if (temp & FDI_RX_SYMBOL_LOCK) {
2702                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2703                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2704                         break;
2705                 }
2706         }
2707         if (i == 4)
2708                 DRM_ERROR("FDI train 2 fail!\n");
2709
2710         DRM_DEBUG_KMS("FDI train done.\n");
2711 }
2712
2713 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2714 {
2715         struct drm_device *dev = crtc->dev;
2716         struct drm_i915_private *dev_priv = dev->dev_private;
2717         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2718         int pipe = intel_crtc->pipe;
2719         u32 reg, temp;
2720
2721         /* Write the TU size bits so error detection works */
2722         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2723                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2724
2725         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2726         reg = FDI_RX_CTL(pipe);
2727         temp = I915_READ(reg);
2728         temp &= ~((0x7 << 19) | (0x7 << 16));
2729         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2730         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2731         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2732
2733         POSTING_READ(reg);
2734         udelay(200);
2735
2736         /* Switch from Rawclk to PCDclk */
2737         temp = I915_READ(reg);
2738         I915_WRITE(reg, temp | FDI_PCDCLK);
2739
2740         POSTING_READ(reg);
2741         udelay(200);
2742
2743         /* Enable CPU FDI TX PLL, always on for Ironlake */
2744         reg = FDI_TX_CTL(pipe);
2745         temp = I915_READ(reg);
2746         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2747                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2748
2749                 POSTING_READ(reg);
2750                 udelay(100);
2751         }
2752 }
2753
2754 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2755 {
2756         struct drm_i915_private *dev_priv = dev->dev_private;
2757         u32 flags = I915_READ(SOUTH_CHICKEN1);
2758
2759         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2760         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2761         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2762         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2763         POSTING_READ(SOUTH_CHICKEN1);
2764 }
2765 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2766 {
2767         struct drm_device *dev = crtc->dev;
2768         struct drm_i915_private *dev_priv = dev->dev_private;
2769         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2770         int pipe = intel_crtc->pipe;
2771         u32 reg, temp;
2772
2773         /* disable CPU FDI tx and PCH FDI rx */
2774         reg = FDI_TX_CTL(pipe);
2775         temp = I915_READ(reg);
2776         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2777         POSTING_READ(reg);
2778
2779         reg = FDI_RX_CTL(pipe);
2780         temp = I915_READ(reg);
2781         temp &= ~(0x7 << 16);
2782         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2783         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2784
2785         POSTING_READ(reg);
2786         udelay(100);
2787
2788         /* Ironlake workaround, disable clock pointer after downing FDI */
2789         if (HAS_PCH_IBX(dev)) {
2790                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2791                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2792                            I915_READ(FDI_RX_CHICKEN(pipe) &
2793                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2794         } else if (HAS_PCH_CPT(dev)) {
2795                 cpt_phase_pointer_disable(dev, pipe);
2796         }
2797
2798         /* still set train pattern 1 */
2799         reg = FDI_TX_CTL(pipe);
2800         temp = I915_READ(reg);
2801         temp &= ~FDI_LINK_TRAIN_NONE;
2802         temp |= FDI_LINK_TRAIN_PATTERN_1;
2803         I915_WRITE(reg, temp);
2804
2805         reg = FDI_RX_CTL(pipe);
2806         temp = I915_READ(reg);
2807         if (HAS_PCH_CPT(dev)) {
2808                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2809                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2810         } else {
2811                 temp &= ~FDI_LINK_TRAIN_NONE;
2812                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2813         }
2814         /* BPC in FDI rx is consistent with that in PIPECONF */
2815         temp &= ~(0x07 << 16);
2816         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2817         I915_WRITE(reg, temp);
2818
2819         POSTING_READ(reg);
2820         udelay(100);
2821 }
2822
2823 /*
2824  * When we disable a pipe, we need to clear any pending scanline wait events
2825  * to avoid hanging the ring, which we assume we are waiting on.
2826  */
2827 static void intel_clear_scanline_wait(struct drm_device *dev)
2828 {
2829         struct drm_i915_private *dev_priv = dev->dev_private;
2830         struct intel_ring_buffer *ring;
2831         u32 tmp;
2832
2833         if (IS_GEN2(dev))
2834                 /* Can't break the hang on i8xx */
2835                 return;
2836
2837         ring = LP_RING(dev_priv);
2838         tmp = I915_READ_CTL(ring);
2839         if (tmp & RING_WAIT)
2840                 I915_WRITE_CTL(ring, tmp);
2841 }
2842
2843 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2844 {
2845         struct drm_i915_gem_object *obj;
2846         struct drm_i915_private *dev_priv;
2847
2848         if (crtc->fb == NULL)
2849                 return;
2850
2851         obj = to_intel_framebuffer(crtc->fb)->obj;
2852         dev_priv = crtc->dev->dev_private;
2853         wait_event(dev_priv->pending_flip_queue,
2854                    atomic_read(&obj->pending_flip) == 0);
2855 }
2856
2857 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2858 {
2859         struct drm_device *dev = crtc->dev;
2860         struct drm_mode_config *mode_config = &dev->mode_config;
2861         struct intel_encoder *encoder;
2862
2863         /*
2864          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2865          * must be driven by its own crtc; no sharing is possible.
2866          */
2867         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2868                 if (encoder->base.crtc != crtc)
2869                         continue;
2870
2871                 switch (encoder->type) {
2872                 case INTEL_OUTPUT_EDP:
2873                         if (!intel_encoder_is_pch_edp(&encoder->base))
2874                                 return false;
2875                         continue;
2876                 }
2877         }
2878
2879         return true;
2880 }
2881
2882 /*
2883  * Enable PCH resources required for PCH ports:
2884  *   - PCH PLLs
2885  *   - FDI training & RX/TX
2886  *   - update transcoder timings
2887  *   - DP transcoding bits
2888  *   - transcoder
2889  */
2890 static void ironlake_pch_enable(struct drm_crtc *crtc)
2891 {
2892         struct drm_device *dev = crtc->dev;
2893         struct drm_i915_private *dev_priv = dev->dev_private;
2894         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2895         int pipe = intel_crtc->pipe;
2896         u32 reg, temp, transc_sel;
2897
2898         /* For PCH output, training FDI link */
2899         dev_priv->display.fdi_link_train(crtc);
2900
2901         intel_enable_pch_pll(dev_priv, pipe);
2902
2903         if (HAS_PCH_CPT(dev)) {
2904                 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2905                         TRANSC_DPLLB_SEL;
2906
2907                 /* Be sure PCH DPLL SEL is set */
2908                 temp = I915_READ(PCH_DPLL_SEL);
2909                 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2910                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2911                 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2912                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2913                 else if (pipe == 2 && (temp & TRANSC_DPLL_ENABLE) == 0)
2914                         temp |= (TRANSC_DPLL_ENABLE | transc_sel);
2915                 I915_WRITE(PCH_DPLL_SEL, temp);
2916         }
2917
2918         /* set transcoder timing, panel must allow it */
2919         assert_panel_unlocked(dev_priv, pipe);
2920         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2921         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2922         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2923
2924         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2925         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2926         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2927
2928         intel_fdi_normal_train(crtc);
2929
2930         /* For PCH DP, enable TRANS_DP_CTL */
2931         if (HAS_PCH_CPT(dev) &&
2932             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2933                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2934                 reg = TRANS_DP_CTL(pipe);
2935                 temp = I915_READ(reg);
2936                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2937                           TRANS_DP_SYNC_MASK |
2938                           TRANS_DP_BPC_MASK);
2939                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2940                          TRANS_DP_ENH_FRAMING);
2941                 temp |= bpc << 9; /* same format but at 11:9 */
2942
2943                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2944                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2945                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2946                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2947
2948                 switch (intel_trans_dp_port_sel(crtc)) {
2949                 case PCH_DP_B:
2950                         temp |= TRANS_DP_PORT_SEL_B;
2951                         break;
2952                 case PCH_DP_C:
2953                         temp |= TRANS_DP_PORT_SEL_C;
2954                         break;
2955                 case PCH_DP_D:
2956                         temp |= TRANS_DP_PORT_SEL_D;
2957                         break;
2958                 default:
2959                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2960                         temp |= TRANS_DP_PORT_SEL_B;
2961                         break;
2962                 }
2963
2964                 I915_WRITE(reg, temp);
2965         }
2966
2967         intel_enable_transcoder(dev_priv, pipe);
2968 }
2969
2970 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2971 {
2972         struct drm_device *dev = crtc->dev;
2973         struct drm_i915_private *dev_priv = dev->dev_private;
2974         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2975         int pipe = intel_crtc->pipe;
2976         int plane = intel_crtc->plane;
2977         u32 temp;
2978         bool is_pch_port;
2979
2980         if (intel_crtc->active)
2981                 return;
2982
2983         intel_crtc->active = true;
2984         intel_update_watermarks(dev);
2985
2986         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2987                 temp = I915_READ(PCH_LVDS);
2988                 if ((temp & LVDS_PORT_EN) == 0)
2989                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2990         }
2991
2992         is_pch_port = intel_crtc_driving_pch(crtc);
2993
2994         if (is_pch_port)
2995                 ironlake_fdi_pll_enable(crtc);
2996         else
2997                 ironlake_fdi_disable(crtc);
2998
2999         /* Enable panel fitting for LVDS */
3000         if (dev_priv->pch_pf_size &&
3001             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3002                 /* Force use of hard-coded filter coefficients
3003                  * as some pre-programmed values are broken,
3004                  * e.g. x201.
3005                  */
3006                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3007                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3008                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3009         }
3010
3011         /*
3012          * On ILK+ LUT must be loaded before the pipe is running but with
3013          * clocks enabled
3014          */
3015         intel_crtc_load_lut(crtc);
3016
3017         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3018         intel_enable_plane(dev_priv, plane, pipe);
3019
3020         if (is_pch_port)
3021                 ironlake_pch_enable(crtc);
3022
3023         mutex_lock(&dev->struct_mutex);
3024         intel_update_fbc(dev);
3025         mutex_unlock(&dev->struct_mutex);
3026
3027         intel_crtc_update_cursor(crtc, true);
3028 }
3029
3030 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3031 {
3032         struct drm_device *dev = crtc->dev;
3033         struct drm_i915_private *dev_priv = dev->dev_private;
3034         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3035         int pipe = intel_crtc->pipe;
3036         int plane = intel_crtc->plane;
3037         u32 reg, temp;
3038
3039         if (!intel_crtc->active)
3040                 return;
3041
3042         intel_crtc_wait_for_pending_flips(crtc);
3043         drm_vblank_off(dev, pipe);
3044         intel_crtc_update_cursor(crtc, false);
3045
3046         intel_disable_plane(dev_priv, plane, pipe);
3047
3048         if (dev_priv->cfb_plane == plane)
3049                 intel_disable_fbc(dev);
3050
3051         intel_disable_pipe(dev_priv, pipe);
3052
3053         /* Disable PF */
3054         I915_WRITE(PF_CTL(pipe), 0);
3055         I915_WRITE(PF_WIN_SZ(pipe), 0);
3056
3057         ironlake_fdi_disable(crtc);
3058
3059         /* This is a horrible layering violation; we should be doing this in
3060          * the connector/encoder ->prepare instead, but we don't always have
3061          * enough information there about the config to know whether it will
3062          * actually be necessary or just cause undesired flicker.
3063          */
3064         intel_disable_pch_ports(dev_priv, pipe);
3065
3066         intel_disable_transcoder(dev_priv, pipe);
3067
3068         if (HAS_PCH_CPT(dev)) {
3069                 /* disable TRANS_DP_CTL */
3070                 reg = TRANS_DP_CTL(pipe);
3071                 temp = I915_READ(reg);
3072                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3073                 temp |= TRANS_DP_PORT_SEL_NONE;
3074                 I915_WRITE(reg, temp);
3075
3076                 /* disable DPLL_SEL */
3077                 temp = I915_READ(PCH_DPLL_SEL);
3078                 switch (pipe) {
3079                 case 0:
3080                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3081                         break;
3082                 case 1:
3083                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3084                         break;
3085                 case 2:
3086                         /* C shares PLL A or B */
3087                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3088                         break;
3089                 default:
3090                         BUG(); /* wtf */
3091                 }
3092                 I915_WRITE(PCH_DPLL_SEL, temp);
3093         }
3094
3095         /* disable PCH DPLL */
3096         if (!intel_crtc->no_pll)
3097                 intel_disable_pch_pll(dev_priv, pipe);
3098
3099         /* Switch from PCDclk to Rawclk */
3100         reg = FDI_RX_CTL(pipe);
3101         temp = I915_READ(reg);
3102         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3103
3104         /* Disable CPU FDI TX PLL */
3105         reg = FDI_TX_CTL(pipe);
3106         temp = I915_READ(reg);
3107         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3108
3109         POSTING_READ(reg);
3110         udelay(100);
3111
3112         reg = FDI_RX_CTL(pipe);
3113         temp = I915_READ(reg);
3114         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3115
3116         /* Wait for the clocks to turn off. */
3117         POSTING_READ(reg);
3118         udelay(100);
3119
3120         intel_crtc->active = false;
3121         intel_update_watermarks(dev);
3122
3123         mutex_lock(&dev->struct_mutex);
3124         intel_update_fbc(dev);
3125         intel_clear_scanline_wait(dev);
3126         mutex_unlock(&dev->struct_mutex);
3127 }
3128
3129 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3130 {
3131         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3132         int pipe = intel_crtc->pipe;
3133         int plane = intel_crtc->plane;
3134
3135         /* XXX: When our outputs are all unaware of DPMS modes other than off
3136          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3137          */
3138         switch (mode) {
3139         case DRM_MODE_DPMS_ON:
3140         case DRM_MODE_DPMS_STANDBY:
3141         case DRM_MODE_DPMS_SUSPEND:
3142                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3143                 ironlake_crtc_enable(crtc);
3144                 break;
3145
3146         case DRM_MODE_DPMS_OFF:
3147                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3148                 ironlake_crtc_disable(crtc);
3149                 break;
3150         }
3151 }
3152
3153 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3154 {
3155         if (!enable && intel_crtc->overlay) {
3156                 struct drm_device *dev = intel_crtc->base.dev;
3157                 struct drm_i915_private *dev_priv = dev->dev_private;
3158
3159                 mutex_lock(&dev->struct_mutex);
3160                 dev_priv->mm.interruptible = false;
3161                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3162                 dev_priv->mm.interruptible = true;
3163                 mutex_unlock(&dev->struct_mutex);
3164         }
3165
3166         /* Let userspace switch the overlay on again. In most cases userspace
3167          * has to recompute where to put it anyway.
3168          */
3169 }
3170
3171 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3172 {
3173         struct drm_device *dev = crtc->dev;
3174         struct drm_i915_private *dev_priv = dev->dev_private;
3175         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3176         int pipe = intel_crtc->pipe;
3177         int plane = intel_crtc->plane;
3178
3179         if (intel_crtc->active)
3180                 return;
3181
3182         intel_crtc->active = true;
3183         intel_update_watermarks(dev);
3184
3185         intel_enable_pll(dev_priv, pipe);
3186         intel_enable_pipe(dev_priv, pipe, false);
3187         intel_enable_plane(dev_priv, plane, pipe);
3188
3189         intel_crtc_load_lut(crtc);
3190         intel_update_fbc(dev);
3191
3192         /* Give the overlay scaler a chance to enable if it's on this pipe */
3193         intel_crtc_dpms_overlay(intel_crtc, true);
3194         intel_crtc_update_cursor(crtc, true);
3195 }
3196
3197 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3198 {
3199         struct drm_device *dev = crtc->dev;
3200         struct drm_i915_private *dev_priv = dev->dev_private;
3201         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3202         int pipe = intel_crtc->pipe;
3203         int plane = intel_crtc->plane;
3204
3205         if (!intel_crtc->active)
3206                 return;
3207
3208         /* Give the overlay scaler a chance to disable if it's on this pipe */
3209         intel_crtc_wait_for_pending_flips(crtc);
3210         drm_vblank_off(dev, pipe);
3211         intel_crtc_dpms_overlay(intel_crtc, false);
3212         intel_crtc_update_cursor(crtc, false);
3213
3214         if (dev_priv->cfb_plane == plane)
3215                 intel_disable_fbc(dev);
3216
3217         intel_disable_plane(dev_priv, plane, pipe);
3218         intel_disable_pipe(dev_priv, pipe);
3219         intel_disable_pll(dev_priv, pipe);
3220
3221         intel_crtc->active = false;
3222         intel_update_fbc(dev);
3223         intel_update_watermarks(dev);
3224         intel_clear_scanline_wait(dev);
3225 }
3226
3227 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3228 {
3229         /* XXX: When our outputs are all unaware of DPMS modes other than off
3230          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3231          */
3232         switch (mode) {
3233         case DRM_MODE_DPMS_ON:
3234         case DRM_MODE_DPMS_STANDBY:
3235         case DRM_MODE_DPMS_SUSPEND:
3236                 i9xx_crtc_enable(crtc);
3237                 break;
3238         case DRM_MODE_DPMS_OFF:
3239                 i9xx_crtc_disable(crtc);
3240                 break;
3241         }
3242 }
3243
3244 /**
3245  * Sets the power management mode of the pipe and plane.
3246  */
3247 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3248 {
3249         struct drm_device *dev = crtc->dev;
3250         struct drm_i915_private *dev_priv = dev->dev_private;
3251         struct drm_i915_master_private *master_priv;
3252         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3253         int pipe = intel_crtc->pipe;
3254         bool enabled;
3255
3256         if (intel_crtc->dpms_mode == mode)
3257                 return;
3258
3259         intel_crtc->dpms_mode = mode;
3260
3261         dev_priv->display.dpms(crtc, mode);
3262
3263         if (!dev->primary->master)
3264                 return;
3265
3266         master_priv = dev->primary->master->driver_priv;
3267         if (!master_priv->sarea_priv)
3268                 return;
3269
3270         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3271
3272         switch (pipe) {
3273         case 0:
3274                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3275                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3276                 break;
3277         case 1:
3278                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3279                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3280                 break;
3281         default:
3282                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3283                 break;
3284         }
3285 }
3286
3287 static void intel_crtc_disable(struct drm_crtc *crtc)
3288 {
3289         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3290         struct drm_device *dev = crtc->dev;
3291
3292         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3293
3294         if (crtc->fb) {
3295                 mutex_lock(&dev->struct_mutex);
3296                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3297                 mutex_unlock(&dev->struct_mutex);
3298         }
3299 }
3300
3301 /* Prepare for a mode set.
3302  *
3303  * Note we could be a lot smarter here.  We need to figure out which outputs
3304  * will be enabled, which disabled (in short, how the config will changes)
3305  * and perform the minimum necessary steps to accomplish that, e.g. updating
3306  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3307  * panel fitting is in the proper state, etc.
3308  */
3309 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3310 {
3311         i9xx_crtc_disable(crtc);
3312 }
3313
3314 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3315 {
3316         i9xx_crtc_enable(crtc);
3317 }
3318
3319 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3320 {
3321         ironlake_crtc_disable(crtc);
3322 }
3323
3324 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3325 {
3326         ironlake_crtc_enable(crtc);
3327 }
3328
3329 void intel_encoder_prepare(struct drm_encoder *encoder)
3330 {
3331         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3332         /* lvds has its own version of prepare see intel_lvds_prepare */
3333         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3334 }
3335
3336 void intel_encoder_commit(struct drm_encoder *encoder)
3337 {
3338         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3339         /* lvds has its own version of commit see intel_lvds_commit */
3340         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3341 }
3342
3343 void intel_encoder_destroy(struct drm_encoder *encoder)
3344 {
3345         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3346
3347         drm_encoder_cleanup(encoder);
3348         kfree(intel_encoder);
3349 }
3350
3351 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3352                                   struct drm_display_mode *mode,
3353                                   struct drm_display_mode *adjusted_mode)
3354 {
3355         struct drm_device *dev = crtc->dev;
3356
3357         if (HAS_PCH_SPLIT(dev)) {
3358                 /* FDI link clock is fixed at 2.7G */
3359                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3360                         return false;
3361         }
3362
3363         /* XXX some encoders set the crtcinfo, others don't.
3364          * Obviously we need some form of conflict resolution here...
3365          */
3366         if (adjusted_mode->crtc_htotal == 0)
3367                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3368
3369         return true;
3370 }
3371
3372 static int i945_get_display_clock_speed(struct drm_device *dev)
3373 {
3374         return 400000;
3375 }
3376
3377 static int i915_get_display_clock_speed(struct drm_device *dev)
3378 {
3379         return 333000;
3380 }
3381
3382 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3383 {
3384         return 200000;
3385 }
3386
3387 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3388 {
3389         u16 gcfgc = 0;
3390
3391         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3392
3393         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3394                 return 133000;
3395         else {
3396                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3397                 case GC_DISPLAY_CLOCK_333_MHZ:
3398                         return 333000;
3399                 default:
3400                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3401                         return 190000;
3402                 }
3403         }
3404 }
3405
3406 static int i865_get_display_clock_speed(struct drm_device *dev)
3407 {
3408         return 266000;
3409 }
3410
3411 static int i855_get_display_clock_speed(struct drm_device *dev)
3412 {
3413         u16 hpllcc = 0;
3414         /* Assume that the hardware is in the high speed state.  This
3415          * should be the default.
3416          */
3417         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3418         case GC_CLOCK_133_200:
3419         case GC_CLOCK_100_200:
3420                 return 200000;
3421         case GC_CLOCK_166_250:
3422                 return 250000;
3423         case GC_CLOCK_100_133:
3424                 return 133000;
3425         }
3426
3427         /* Shouldn't happen */
3428         return 0;
3429 }
3430
3431 static int i830_get_display_clock_speed(struct drm_device *dev)
3432 {
3433         return 133000;
3434 }
3435
3436 struct fdi_m_n {
3437         u32        tu;
3438         u32        gmch_m;
3439         u32        gmch_n;
3440         u32        link_m;
3441         u32        link_n;
3442 };
3443
3444 static void
3445 fdi_reduce_ratio(u32 *num, u32 *den)
3446 {
3447         while (*num > 0xffffff || *den > 0xffffff) {
3448                 *num >>= 1;
3449                 *den >>= 1;
3450         }
3451 }
3452
3453 static void
3454 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3455                      int link_clock, struct fdi_m_n *m_n)
3456 {
3457         m_n->tu = 64; /* default size */
3458
3459         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3460         m_n->gmch_m = bits_per_pixel * pixel_clock;
3461         m_n->gmch_n = link_clock * nlanes * 8;
3462         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3463
3464         m_n->link_m = pixel_clock;
3465         m_n->link_n = link_clock;
3466         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3467 }
3468
3469
3470 struct intel_watermark_params {
3471         unsigned long fifo_size;
3472         unsigned long max_wm;
3473         unsigned long default_wm;
3474         unsigned long guard_size;
3475         unsigned long cacheline_size;
3476 };
3477
3478 /* Pineview has different values for various configs */
3479 static const struct intel_watermark_params pineview_display_wm = {
3480         PINEVIEW_DISPLAY_FIFO,
3481         PINEVIEW_MAX_WM,
3482         PINEVIEW_DFT_WM,
3483         PINEVIEW_GUARD_WM,
3484         PINEVIEW_FIFO_LINE_SIZE
3485 };
3486 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3487         PINEVIEW_DISPLAY_FIFO,
3488         PINEVIEW_MAX_WM,
3489         PINEVIEW_DFT_HPLLOFF_WM,
3490         PINEVIEW_GUARD_WM,
3491         PINEVIEW_FIFO_LINE_SIZE
3492 };
3493 static const struct intel_watermark_params pineview_cursor_wm = {
3494         PINEVIEW_CURSOR_FIFO,
3495         PINEVIEW_CURSOR_MAX_WM,
3496         PINEVIEW_CURSOR_DFT_WM,
3497         PINEVIEW_CURSOR_GUARD_WM,
3498         PINEVIEW_FIFO_LINE_SIZE,
3499 };
3500 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3501         PINEVIEW_CURSOR_FIFO,
3502         PINEVIEW_CURSOR_MAX_WM,
3503         PINEVIEW_CURSOR_DFT_WM,
3504         PINEVIEW_CURSOR_GUARD_WM,
3505         PINEVIEW_FIFO_LINE_SIZE
3506 };
3507 static const struct intel_watermark_params g4x_wm_info = {
3508         G4X_FIFO_SIZE,
3509         G4X_MAX_WM,
3510         G4X_MAX_WM,
3511         2,
3512         G4X_FIFO_LINE_SIZE,
3513 };
3514 static const struct intel_watermark_params g4x_cursor_wm_info = {
3515         I965_CURSOR_FIFO,
3516         I965_CURSOR_MAX_WM,
3517         I965_CURSOR_DFT_WM,
3518         2,
3519         G4X_FIFO_LINE_SIZE,
3520 };
3521 static const struct intel_watermark_params i965_cursor_wm_info = {
3522         I965_CURSOR_FIFO,
3523         I965_CURSOR_MAX_WM,
3524         I965_CURSOR_DFT_WM,
3525         2,
3526         I915_FIFO_LINE_SIZE,
3527 };
3528 static const struct intel_watermark_params i945_wm_info = {
3529         I945_FIFO_SIZE,
3530         I915_MAX_WM,
3531         1,
3532         2,
3533         I915_FIFO_LINE_SIZE
3534 };
3535 static const struct intel_watermark_params i915_wm_info = {
3536         I915_FIFO_SIZE,
3537         I915_MAX_WM,
3538         1,
3539         2,
3540         I915_FIFO_LINE_SIZE
3541 };
3542 static const struct intel_watermark_params i855_wm_info = {
3543         I855GM_FIFO_SIZE,
3544         I915_MAX_WM,
3545         1,
3546         2,
3547         I830_FIFO_LINE_SIZE
3548 };
3549 static const struct intel_watermark_params i830_wm_info = {
3550         I830_FIFO_SIZE,
3551         I915_MAX_WM,
3552         1,
3553         2,
3554         I830_FIFO_LINE_SIZE
3555 };
3556
3557 static const struct intel_watermark_params ironlake_display_wm_info = {
3558         ILK_DISPLAY_FIFO,
3559         ILK_DISPLAY_MAXWM,
3560         ILK_DISPLAY_DFTWM,
3561         2,
3562         ILK_FIFO_LINE_SIZE
3563 };
3564 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3565         ILK_CURSOR_FIFO,
3566         ILK_CURSOR_MAXWM,
3567         ILK_CURSOR_DFTWM,
3568         2,
3569         ILK_FIFO_LINE_SIZE
3570 };
3571 static const struct intel_watermark_params ironlake_display_srwm_info = {
3572         ILK_DISPLAY_SR_FIFO,
3573         ILK_DISPLAY_MAX_SRWM,
3574         ILK_DISPLAY_DFT_SRWM,
3575         2,
3576         ILK_FIFO_LINE_SIZE
3577 };
3578 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3579         ILK_CURSOR_SR_FIFO,
3580         ILK_CURSOR_MAX_SRWM,
3581         ILK_CURSOR_DFT_SRWM,
3582         2,
3583         ILK_FIFO_LINE_SIZE
3584 };
3585
3586 static const struct intel_watermark_params sandybridge_display_wm_info = {
3587         SNB_DISPLAY_FIFO,
3588         SNB_DISPLAY_MAXWM,
3589         SNB_DISPLAY_DFTWM,
3590         2,
3591         SNB_FIFO_LINE_SIZE
3592 };
3593 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3594         SNB_CURSOR_FIFO,
3595         SNB_CURSOR_MAXWM,
3596         SNB_CURSOR_DFTWM,
3597         2,
3598         SNB_FIFO_LINE_SIZE
3599 };
3600 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3601         SNB_DISPLAY_SR_FIFO,
3602         SNB_DISPLAY_MAX_SRWM,
3603         SNB_DISPLAY_DFT_SRWM,
3604         2,
3605         SNB_FIFO_LINE_SIZE
3606 };
3607 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3608         SNB_CURSOR_SR_FIFO,
3609         SNB_CURSOR_MAX_SRWM,
3610         SNB_CURSOR_DFT_SRWM,
3611         2,
3612         SNB_FIFO_LINE_SIZE
3613 };
3614
3615
3616 /**
3617  * intel_calculate_wm - calculate watermark level
3618  * @clock_in_khz: pixel clock
3619  * @wm: chip FIFO params
3620  * @pixel_size: display pixel size
3621  * @latency_ns: memory latency for the platform
3622  *
3623  * Calculate the watermark level (the level at which the display plane will
3624  * start fetching from memory again).  Each chip has a different display
3625  * FIFO size and allocation, so the caller needs to figure that out and pass
3626  * in the correct intel_watermark_params structure.
3627  *
3628  * As the pixel clock runs, the FIFO will be drained at a rate that depends
3629  * on the pixel size.  When it reaches the watermark level, it'll start
3630  * fetching FIFO line sized based chunks from memory until the FIFO fills
3631  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3632  * will occur, and a display engine hang could result.
3633  */
3634 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3635                                         const struct intel_watermark_params *wm,
3636                                         int fifo_size,
3637                                         int pixel_size,
3638                                         unsigned long latency_ns)
3639 {
3640         long entries_required, wm_size;
3641
3642         /*
3643          * Note: we need to make sure we don't overflow for various clock &
3644          * latency values.
3645          * clocks go from a few thousand to several hundred thousand.
3646          * latency is usually a few thousand
3647          */
3648         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3649                 1000;
3650         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3651
3652         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3653
3654         wm_size = fifo_size - (entries_required + wm->guard_size);
3655
3656         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3657
3658         /* Don't promote wm_size to unsigned... */
3659         if (wm_size > (long)wm->max_wm)
3660                 wm_size = wm->max_wm;
3661         if (wm_size <= 0)
3662                 wm_size = wm->default_wm;
3663         return wm_size;
3664 }
3665
3666 struct cxsr_latency {
3667         int is_desktop;
3668         int is_ddr3;
3669         unsigned long fsb_freq;
3670         unsigned long mem_freq;
3671         unsigned long display_sr;
3672         unsigned long display_hpll_disable;
3673         unsigned long cursor_sr;
3674         unsigned long cursor_hpll_disable;
3675 };
3676
3677 static const struct cxsr_latency cxsr_latency_table[] = {
3678         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3679         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3680         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3681         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3682         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3683
3684         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3685         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3686         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3687         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3688         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3689
3690         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3691         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3692         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3693         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3694         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3695
3696         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3697         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3698         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3699         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3700         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3701
3702         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3703         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3704         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3705         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3706         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3707
3708         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3709         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3710         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3711         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3712         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3713 };
3714
3715 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3716                                                          int is_ddr3,
3717                                                          int fsb,
3718                                                          int mem)
3719 {
3720         const struct cxsr_latency *latency;
3721         int i;
3722
3723         if (fsb == 0 || mem == 0)
3724                 return NULL;
3725
3726         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3727                 latency = &cxsr_latency_table[i];
3728                 if (is_desktop == latency->is_desktop &&
3729                     is_ddr3 == latency->is_ddr3 &&
3730                     fsb == latency->fsb_freq && mem == latency->mem_freq)
3731                         return latency;
3732         }
3733
3734         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3735
3736         return NULL;
3737 }
3738
3739 static void pineview_disable_cxsr(struct drm_device *dev)
3740 {
3741         struct drm_i915_private *dev_priv = dev->dev_private;
3742
3743         /* deactivate cxsr */
3744         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3745 }
3746
3747 /*
3748  * Latency for FIFO fetches is dependent on several factors:
3749  *   - memory configuration (speed, channels)
3750  *   - chipset
3751  *   - current MCH state
3752  * It can be fairly high in some situations, so here we assume a fairly
3753  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3754  * set this value too high, the FIFO will fetch frequently to stay full)
3755  * and power consumption (set it too low to save power and we might see
3756  * FIFO underruns and display "flicker").
3757  *
3758  * A value of 5us seems to be a good balance; safe for very low end
3759  * platforms but not overly aggressive on lower latency configs.
3760  */
3761 static const int latency_ns = 5000;
3762
3763 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3764 {
3765         struct drm_i915_private *dev_priv = dev->dev_private;
3766         uint32_t dsparb = I915_READ(DSPARB);
3767         int size;
3768
3769         size = dsparb & 0x7f;
3770         if (plane)
3771                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3772
3773         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3774                       plane ? "B" : "A", size);
3775
3776         return size;
3777 }
3778
3779 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3780 {
3781         struct drm_i915_private *dev_priv = dev->dev_private;
3782         uint32_t dsparb = I915_READ(DSPARB);
3783         int size;
3784
3785         size = dsparb & 0x1ff;
3786         if (plane)
3787                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3788         size >>= 1; /* Convert to cachelines */
3789
3790         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3791                       plane ? "B" : "A", size);
3792
3793         return size;
3794 }
3795
3796 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3797 {
3798         struct drm_i915_private *dev_priv = dev->dev_private;
3799         uint32_t dsparb = I915_READ(DSPARB);
3800         int size;
3801
3802         size = dsparb & 0x7f;
3803         size >>= 2; /* Convert to cachelines */
3804
3805         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3806                       plane ? "B" : "A",
3807                       size);
3808
3809         return size;
3810 }
3811
3812 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3813 {
3814         struct drm_i915_private *dev_priv = dev->dev_private;
3815         uint32_t dsparb = I915_READ(DSPARB);
3816         int size;
3817
3818         size = dsparb & 0x7f;
3819         size >>= 1; /* Convert to cachelines */
3820
3821         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3822                       plane ? "B" : "A", size);
3823
3824         return size;
3825 }
3826
3827 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3828 {
3829         struct drm_crtc *crtc, *enabled = NULL;
3830
3831         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3832                 if (crtc->enabled && crtc->fb) {
3833                         if (enabled)
3834                                 return NULL;
3835                         enabled = crtc;
3836                 }
3837         }
3838
3839         return enabled;
3840 }
3841
3842 static void pineview_update_wm(struct drm_device *dev)
3843 {
3844         struct drm_i915_private *dev_priv = dev->dev_private;
3845         struct drm_crtc *crtc;
3846         const struct cxsr_latency *latency;
3847         u32 reg;
3848         unsigned long wm;
3849
3850         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3851                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3852         if (!latency) {
3853                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3854                 pineview_disable_cxsr(dev);
3855                 return;
3856         }
3857
3858         crtc = single_enabled_crtc(dev);
3859         if (crtc) {
3860                 int clock = crtc->mode.clock;
3861                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3862
3863                 /* Display SR */
3864                 wm = intel_calculate_wm(clock, &pineview_display_wm,
3865                                         pineview_display_wm.fifo_size,
3866                                         pixel_size, latency->display_sr);
3867                 reg = I915_READ(DSPFW1);
3868                 reg &= ~DSPFW_SR_MASK;
3869                 reg |= wm << DSPFW_SR_SHIFT;
3870                 I915_WRITE(DSPFW1, reg);
3871                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3872
3873                 /* cursor SR */
3874                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3875                                         pineview_display_wm.fifo_size,
3876                                         pixel_size, latency->cursor_sr);
3877                 reg = I915_READ(DSPFW3);
3878                 reg &= ~DSPFW_CURSOR_SR_MASK;
3879                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3880                 I915_WRITE(DSPFW3, reg);
3881
3882                 /* Display HPLL off SR */
3883                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3884                                         pineview_display_hplloff_wm.fifo_size,
3885                                         pixel_size, latency->display_hpll_disable);
3886                 reg = I915_READ(DSPFW3);
3887                 reg &= ~DSPFW_HPLL_SR_MASK;
3888                 reg |= wm & DSPFW_HPLL_SR_MASK;
3889                 I915_WRITE(DSPFW3, reg);
3890
3891                 /* cursor HPLL off SR */
3892                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3893                                         pineview_display_hplloff_wm.fifo_size,
3894                                         pixel_size, latency->cursor_hpll_disable);
3895                 reg = I915_READ(DSPFW3);
3896                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3897                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3898                 I915_WRITE(DSPFW3, reg);
3899                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3900
3901                 /* activate cxsr */
3902                 I915_WRITE(DSPFW3,
3903                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3904                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3905         } else {
3906                 pineview_disable_cxsr(dev);
3907                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3908         }
3909 }
3910
3911 static bool g4x_compute_wm0(struct drm_device *dev,
3912                             int plane,
3913                             const struct intel_watermark_params *display,
3914                             int display_latency_ns,
3915                             const struct intel_watermark_params *cursor,
3916                             int cursor_latency_ns,
3917                             int *plane_wm,
3918                             int *cursor_wm)
3919 {
3920         struct drm_crtc *crtc;
3921         int htotal, hdisplay, clock, pixel_size;
3922         int line_time_us, line_count;
3923         int entries, tlb_miss;
3924
3925         crtc = intel_get_crtc_for_plane(dev, plane);
3926         if (crtc->fb == NULL || !crtc->enabled) {
3927                 *cursor_wm = cursor->guard_size;
3928                 *plane_wm = display->guard_size;
3929                 return false;
3930         }
3931
3932         htotal = crtc->mode.htotal;
3933         hdisplay = crtc->mode.hdisplay;
3934         clock = crtc->mode.clock;
3935         pixel_size = crtc->fb->bits_per_pixel / 8;
3936
3937         /* Use the small buffer method to calculate plane watermark */
3938         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3939         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3940         if (tlb_miss > 0)
3941                 entries += tlb_miss;
3942         entries = DIV_ROUND_UP(entries, display->cacheline_size);
3943         *plane_wm = entries + display->guard_size;
3944         if (*plane_wm > (int)display->max_wm)
3945                 *plane_wm = display->max_wm;
3946
3947         /* Use the large buffer method to calculate cursor watermark */
3948         line_time_us = ((htotal * 1000) / clock);
3949         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3950         entries = line_count * 64 * pixel_size;
3951         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3952         if (tlb_miss > 0)
3953                 entries += tlb_miss;
3954         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3955         *cursor_wm = entries + cursor->guard_size;
3956         if (*cursor_wm > (int)cursor->max_wm)
3957                 *cursor_wm = (int)cursor->max_wm;
3958
3959         return true;
3960 }
3961
3962 /*
3963  * Check the wm result.
3964  *
3965  * If any calculated watermark values is larger than the maximum value that
3966  * can be programmed into the associated watermark register, that watermark
3967  * must be disabled.
3968  */
3969 static bool g4x_check_srwm(struct drm_device *dev,
3970                            int display_wm, int cursor_wm,
3971                            const struct intel_watermark_params *display,
3972                            const struct intel_watermark_params *cursor)
3973 {
3974         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3975                       display_wm, cursor_wm);
3976
3977         if (display_wm > display->max_wm) {
3978                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
3979                               display_wm, display->max_wm);
3980                 return false;
3981         }
3982
3983         if (cursor_wm > cursor->max_wm) {
3984                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
3985                               cursor_wm, cursor->max_wm);
3986                 return false;
3987         }
3988
3989         if (!(display_wm || cursor_wm)) {
3990                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3991                 return false;
3992         }
3993
3994         return true;
3995 }
3996
3997 static bool g4x_compute_srwm(struct drm_device *dev,
3998                              int plane,
3999                              int latency_ns,
4000                              const struct intel_watermark_params *display,
4001                              const struct intel_watermark_params *cursor,
4002                              int *display_wm, int *cursor_wm)
4003 {
4004         struct drm_crtc *crtc;
4005         int hdisplay, htotal, pixel_size, clock;
4006         unsigned long line_time_us;
4007         int line_count, line_size;
4008         int small, large;
4009         int entries;
4010
4011         if (!latency_ns) {
4012                 *display_wm = *cursor_wm = 0;
4013                 return false;
4014         }
4015
4016         crtc = intel_get_crtc_for_plane(dev, plane);
4017         hdisplay = crtc->mode.hdisplay;
4018         htotal = crtc->mode.htotal;
4019         clock = crtc->mode.clock;
4020         pixel_size = crtc->fb->bits_per_pixel / 8;
4021
4022         line_time_us = (htotal * 1000) / clock;
4023         line_count = (latency_ns / line_time_us + 1000) / 1000;
4024         line_size = hdisplay * pixel_size;
4025
4026         /* Use the minimum of the small and large buffer method for primary */
4027         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4028         large = line_count * line_size;
4029
4030         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4031         *display_wm = entries + display->guard_size;
4032
4033         /* calculate the self-refresh watermark for display cursor */
4034         entries = line_count * pixel_size * 64;
4035         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4036         *cursor_wm = entries + cursor->guard_size;
4037
4038         return g4x_check_srwm(dev,
4039                               *display_wm, *cursor_wm,
4040                               display, cursor);
4041 }
4042
4043 #define single_plane_enabled(mask) is_power_of_2(mask)
4044
4045 static void g4x_update_wm(struct drm_device *dev)
4046 {
4047         static const int sr_latency_ns = 12000;
4048         struct drm_i915_private *dev_priv = dev->dev_private;
4049         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4050         int plane_sr, cursor_sr;
4051         unsigned int enabled = 0;
4052
4053         if (g4x_compute_wm0(dev, 0,
4054                             &g4x_wm_info, latency_ns,
4055                             &g4x_cursor_wm_info, latency_ns,
4056                             &planea_wm, &cursora_wm))
4057                 enabled |= 1;
4058
4059         if (g4x_compute_wm0(dev, 1,
4060                             &g4x_wm_info, latency_ns,
4061                             &g4x_cursor_wm_info, latency_ns,
4062                             &planeb_wm, &cursorb_wm))
4063                 enabled |= 2;
4064
4065         plane_sr = cursor_sr = 0;
4066         if (single_plane_enabled(enabled) &&
4067             g4x_compute_srwm(dev, ffs(enabled) - 1,
4068                              sr_latency_ns,
4069                              &g4x_wm_info,
4070                              &g4x_cursor_wm_info,
4071                              &plane_sr, &cursor_sr))
4072                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4073         else
4074                 I915_WRITE(FW_BLC_SELF,
4075                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4076
4077         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4078                       planea_wm, cursora_wm,
4079                       planeb_wm, cursorb_wm,
4080                       plane_sr, cursor_sr);
4081
4082         I915_WRITE(DSPFW1,
4083                    (plane_sr << DSPFW_SR_SHIFT) |
4084                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4085                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
4086                    planea_wm);
4087         I915_WRITE(DSPFW2,
4088                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4089                    (cursora_wm << DSPFW_CURSORA_SHIFT));
4090         /* HPLL off in SR has some issues on G4x... disable it */
4091         I915_WRITE(DSPFW3,
4092                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4093                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4094 }
4095
4096 static void i965_update_wm(struct drm_device *dev)
4097 {
4098         struct drm_i915_private *dev_priv = dev->dev_private;
4099         struct drm_crtc *crtc;
4100         int srwm = 1;
4101         int cursor_sr = 16;
4102
4103         /* Calc sr entries for one plane configs */
4104         crtc = single_enabled_crtc(dev);
4105         if (crtc) {
4106                 /* self-refresh has much higher latency */
4107                 static const int sr_latency_ns = 12000;
4108                 int clock = crtc->mode.clock;
4109                 int htotal = crtc->mode.htotal;
4110                 int hdisplay = crtc->mode.hdisplay;
4111                 int pixel_size = crtc->fb->bits_per_pixel / 8;
4112                 unsigned long line_time_us;
4113                 int entries;
4114
4115                 line_time_us = ((htotal * 1000) / clock);
4116
4117                 /* Use ns/us then divide to preserve precision */
4118                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4119                         pixel_size * hdisplay;
4120                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4121                 srwm = I965_FIFO_SIZE - entries;
4122                 if (srwm < 0)
4123                         srwm = 1;
4124                 srwm &= 0x1ff;
4125                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4126                               entries, srwm);
4127
4128                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4129                         pixel_size * 64;
4130                 entries = DIV_ROUND_UP(entries,
4131                                           i965_cursor_wm_info.cacheline_size);
4132                 cursor_sr = i965_cursor_wm_info.fifo_size -
4133                         (entries + i965_cursor_wm_info.guard_size);
4134
4135                 if (cursor_sr > i965_cursor_wm_info.max_wm)
4136                         cursor_sr = i965_cursor_wm_info.max_wm;
4137
4138                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4139                               "cursor %d\n", srwm, cursor_sr);
4140
4141                 if (IS_CRESTLINE(dev))
4142                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4143         } else {
4144                 /* Turn off self refresh if both pipes are enabled */
4145                 if (IS_CRESTLINE(dev))
4146                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4147                                    & ~FW_BLC_SELF_EN);
4148         }
4149
4150         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4151                       srwm);
4152
4153         /* 965 has limitations... */
4154         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4155                    (8 << 16) | (8 << 8) | (8 << 0));
4156         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4157         /* update cursor SR watermark */
4158         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4159 }
4160
4161 static void i9xx_update_wm(struct drm_device *dev)
4162 {
4163         struct drm_i915_private *dev_priv = dev->dev_private;
4164         const struct intel_watermark_params *wm_info;
4165         uint32_t fwater_lo;
4166         uint32_t fwater_hi;
4167         int cwm, srwm = 1;
4168         int fifo_size;
4169         int planea_wm, planeb_wm;
4170         struct drm_crtc *crtc, *enabled = NULL;
4171
4172         if (IS_I945GM(dev))
4173                 wm_info = &i945_wm_info;
4174         else if (!IS_GEN2(dev))
4175                 wm_info = &i915_wm_info;
4176         else
4177                 wm_info = &i855_wm_info;
4178
4179         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4180         crtc = intel_get_crtc_for_plane(dev, 0);
4181         if (crtc->enabled && crtc->fb) {
4182                 planea_wm = intel_calculate_wm(crtc->mode.clock,
4183                                                wm_info, fifo_size,
4184                                                crtc->fb->bits_per_pixel / 8,
4185                                                latency_ns);
4186                 enabled = crtc;
4187         } else
4188                 planea_wm = fifo_size - wm_info->guard_size;
4189
4190         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4191         crtc = intel_get_crtc_for_plane(dev, 1);
4192         if (crtc->enabled && crtc->fb) {
4193                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4194                                                wm_info, fifo_size,
4195                                                crtc->fb->bits_per_pixel / 8,
4196                                                latency_ns);
4197                 if (enabled == NULL)
4198                         enabled = crtc;
4199                 else
4200                         enabled = NULL;
4201         } else
4202                 planeb_wm = fifo_size - wm_info->guard_size;
4203
4204         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4205
4206         /*
4207          * Overlay gets an aggressive default since video jitter is bad.
4208          */
4209         cwm = 2;
4210
4211         /* Play safe and disable self-refresh before adjusting watermarks. */
4212         if (IS_I945G(dev) || IS_I945GM(dev))
4213                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4214         else if (IS_I915GM(dev))
4215                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4216
4217         /* Calc sr entries for one plane configs */
4218         if (HAS_FW_BLC(dev) && enabled) {
4219                 /* self-refresh has much higher latency */
4220                 static const int sr_latency_ns = 6000;
4221                 int clock = enabled->mode.clock;
4222                 int htotal = enabled->mode.htotal;
4223                 int hdisplay = enabled->mode.hdisplay;
4224                 int pixel_size = enabled->fb->bits_per_pixel / 8;
4225                 unsigned long line_time_us;
4226                 int entries;
4227
4228                 line_time_us = (htotal * 1000) / clock;
4229
4230                 /* Use ns/us then divide to preserve precision */
4231                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4232                         pixel_size * hdisplay;
4233                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4234                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4235                 srwm = wm_info->fifo_size - entries;
4236                 if (srwm < 0)
4237                         srwm = 1;
4238
4239                 if (IS_I945G(dev) || IS_I945GM(dev))
4240                         I915_WRITE(FW_BLC_SELF,
4241                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4242                 else if (IS_I915GM(dev))
4243                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4244         }
4245
4246         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4247                       planea_wm, planeb_wm, cwm, srwm);
4248
4249         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4250         fwater_hi = (cwm & 0x1f);
4251
4252         /* Set request length to 8 cachelines per fetch */
4253         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4254         fwater_hi = fwater_hi | (1 << 8);
4255
4256         I915_WRITE(FW_BLC, fwater_lo);
4257         I915_WRITE(FW_BLC2, fwater_hi);
4258
4259         if (HAS_FW_BLC(dev)) {
4260                 if (enabled) {
4261                         if (IS_I945G(dev) || IS_I945GM(dev))
4262                                 I915_WRITE(FW_BLC_SELF,
4263                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4264                         else if (IS_I915GM(dev))
4265                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4266                         DRM_DEBUG_KMS("memory self refresh enabled\n");
4267                 } else
4268                         DRM_DEBUG_KMS("memory self refresh disabled\n");
4269         }
4270 }
4271
4272 static void i830_update_wm(struct drm_device *dev)
4273 {
4274         struct drm_i915_private *dev_priv = dev->dev_private;
4275         struct drm_crtc *crtc;
4276         uint32_t fwater_lo;
4277         int planea_wm;
4278
4279         crtc = single_enabled_crtc(dev);
4280         if (crtc == NULL)
4281                 return;
4282
4283         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4284                                        dev_priv->display.get_fifo_size(dev, 0),
4285                                        crtc->fb->bits_per_pixel / 8,
4286                                        latency_ns);
4287         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4288         fwater_lo |= (3<<8) | planea_wm;
4289
4290         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4291
4292         I915_WRITE(FW_BLC, fwater_lo);
4293 }
4294
4295 #define ILK_LP0_PLANE_LATENCY           700
4296 #define ILK_LP0_CURSOR_LATENCY          1300
4297
4298 /*
4299  * Check the wm result.
4300  *
4301  * If any calculated watermark values is larger than the maximum value that
4302  * can be programmed into the associated watermark register, that watermark
4303  * must be disabled.
4304  */
4305 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4306                                 int fbc_wm, int display_wm, int cursor_wm,
4307                                 const struct intel_watermark_params *display,
4308                                 const struct intel_watermark_params *cursor)
4309 {
4310         struct drm_i915_private *dev_priv = dev->dev_private;
4311
4312         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4313                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4314
4315         if (fbc_wm > SNB_FBC_MAX_SRWM) {
4316                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4317                               fbc_wm, SNB_FBC_MAX_SRWM, level);
4318
4319                 /* fbc has it's own way to disable FBC WM */
4320                 I915_WRITE(DISP_ARB_CTL,
4321                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4322                 return false;
4323         }
4324
4325         if (display_wm > display->max_wm) {
4326                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4327                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
4328                 return false;
4329         }
4330
4331         if (cursor_wm > cursor->max_wm) {
4332                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4333                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4334                 return false;
4335         }
4336
4337         if (!(fbc_wm || display_wm || cursor_wm)) {
4338                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4339                 return false;
4340         }
4341
4342         return true;
4343 }
4344
4345 /*
4346  * Compute watermark values of WM[1-3],
4347  */
4348 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4349                                   int latency_ns,
4350                                   const struct intel_watermark_params *display,
4351                                   const struct intel_watermark_params *cursor,
4352                                   int *fbc_wm, int *display_wm, int *cursor_wm)
4353 {
4354         struct drm_crtc *crtc;
4355         unsigned long line_time_us;
4356         int hdisplay, htotal, pixel_size, clock;
4357         int line_count, line_size;
4358         int small, large;
4359         int entries;
4360
4361         if (!latency_ns) {
4362                 *fbc_wm = *display_wm = *cursor_wm = 0;
4363                 return false;
4364         }
4365
4366         crtc = intel_get_crtc_for_plane(dev, plane);
4367         hdisplay = crtc->mode.hdisplay;
4368         htotal = crtc->mode.htotal;
4369         clock = crtc->mode.clock;
4370         pixel_size = crtc->fb->bits_per_pixel / 8;
4371
4372         line_time_us = (htotal * 1000) / clock;
4373         line_count = (latency_ns / line_time_us + 1000) / 1000;
4374         line_size = hdisplay * pixel_size;
4375
4376         /* Use the minimum of the small and large buffer method for primary */
4377         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4378         large = line_count * line_size;
4379
4380         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4381         *display_wm = entries + display->guard_size;
4382
4383         /*
4384          * Spec says:
4385          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4386          */
4387         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4388
4389         /* calculate the self-refresh watermark for display cursor */
4390         entries = line_count * pixel_size * 64;
4391         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4392         *cursor_wm = entries + cursor->guard_size;
4393
4394         return ironlake_check_srwm(dev, level,
4395                                    *fbc_wm, *display_wm, *cursor_wm,
4396                                    display, cursor);
4397 }
4398
4399 static void ironlake_update_wm(struct drm_device *dev)
4400 {
4401         struct drm_i915_private *dev_priv = dev->dev_private;
4402         int fbc_wm, plane_wm, cursor_wm;
4403         unsigned int enabled;
4404
4405         enabled = 0;
4406         if (g4x_compute_wm0(dev, 0,
4407                             &ironlake_display_wm_info,
4408                             ILK_LP0_PLANE_LATENCY,
4409                             &ironlake_cursor_wm_info,
4410                             ILK_LP0_CURSOR_LATENCY,
4411                             &plane_wm, &cursor_wm)) {
4412                 I915_WRITE(WM0_PIPEA_ILK,
4413                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4414                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4415                               " plane %d, " "cursor: %d\n",
4416                               plane_wm, cursor_wm);
4417                 enabled |= 1;
4418         }
4419
4420         if (g4x_compute_wm0(dev, 1,
4421                             &ironlake_display_wm_info,
4422                             ILK_LP0_PLANE_LATENCY,
4423                             &ironlake_cursor_wm_info,
4424                             ILK_LP0_CURSOR_LATENCY,
4425                             &plane_wm, &cursor_wm)) {
4426                 I915_WRITE(WM0_PIPEB_ILK,
4427                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4428                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4429                               " plane %d, cursor: %d\n",
4430                               plane_wm, cursor_wm);
4431                 enabled |= 2;
4432         }
4433
4434         /*
4435          * Calculate and update the self-refresh watermark only when one
4436          * display plane is used.
4437          */
4438         I915_WRITE(WM3_LP_ILK, 0);
4439         I915_WRITE(WM2_LP_ILK, 0);
4440         I915_WRITE(WM1_LP_ILK, 0);
4441
4442         if (!single_plane_enabled(enabled))
4443                 return;
4444         enabled = ffs(enabled) - 1;
4445
4446         /* WM1 */
4447         if (!ironlake_compute_srwm(dev, 1, enabled,
4448                                    ILK_READ_WM1_LATENCY() * 500,
4449                                    &ironlake_display_srwm_info,
4450                                    &ironlake_cursor_srwm_info,
4451                                    &fbc_wm, &plane_wm, &cursor_wm))
4452                 return;
4453
4454         I915_WRITE(WM1_LP_ILK,
4455                    WM1_LP_SR_EN |
4456                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4457                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4458                    (plane_wm << WM1_LP_SR_SHIFT) |
4459                    cursor_wm);
4460
4461         /* WM2 */
4462         if (!ironlake_compute_srwm(dev, 2, enabled,
4463                                    ILK_READ_WM2_LATENCY() * 500,
4464                                    &ironlake_display_srwm_info,
4465                                    &ironlake_cursor_srwm_info,
4466                                    &fbc_wm, &plane_wm, &cursor_wm))
4467                 return;
4468
4469         I915_WRITE(WM2_LP_ILK,
4470                    WM2_LP_EN |
4471                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4472                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4473                    (plane_wm << WM1_LP_SR_SHIFT) |
4474                    cursor_wm);
4475
4476         /*
4477          * WM3 is unsupported on ILK, probably because we don't have latency
4478          * data for that power state
4479          */
4480 }
4481
4482 static void sandybridge_update_wm(struct drm_device *dev)
4483 {
4484         struct drm_i915_private *dev_priv = dev->dev_private;
4485         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4486         int fbc_wm, plane_wm, cursor_wm;
4487         unsigned int enabled;
4488
4489         enabled = 0;
4490         if (g4x_compute_wm0(dev, 0,
4491                             &sandybridge_display_wm_info, latency,
4492                             &sandybridge_cursor_wm_info, latency,
4493                             &plane_wm, &cursor_wm)) {
4494                 I915_WRITE(WM0_PIPEA_ILK,
4495                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4496                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4497                               " plane %d, " "cursor: %d\n",
4498                               plane_wm, cursor_wm);
4499                 enabled |= 1;
4500         }
4501
4502         if (g4x_compute_wm0(dev, 1,
4503                             &sandybridge_display_wm_info, latency,
4504                             &sandybridge_cursor_wm_info, latency,
4505                             &plane_wm, &cursor_wm)) {
4506                 I915_WRITE(WM0_PIPEB_ILK,
4507                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4508                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4509                               " plane %d, cursor: %d\n",
4510                               plane_wm, cursor_wm);
4511                 enabled |= 2;
4512         }
4513
4514         /*
4515          * Calculate and update the self-refresh watermark only when one
4516          * display plane is used.
4517          *
4518          * SNB support 3 levels of watermark.
4519          *
4520          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4521          * and disabled in the descending order
4522          *
4523          */
4524         I915_WRITE(WM3_LP_ILK, 0);
4525         I915_WRITE(WM2_LP_ILK, 0);
4526         I915_WRITE(WM1_LP_ILK, 0);
4527
4528         if (!single_plane_enabled(enabled))
4529                 return;
4530         enabled = ffs(enabled) - 1;
4531
4532         /* WM1 */
4533         if (!ironlake_compute_srwm(dev, 1, enabled,
4534                                    SNB_READ_WM1_LATENCY() * 500,
4535                                    &sandybridge_display_srwm_info,
4536                                    &sandybridge_cursor_srwm_info,
4537                                    &fbc_wm, &plane_wm, &cursor_wm))
4538                 return;
4539
4540         I915_WRITE(WM1_LP_ILK,
4541                    WM1_LP_SR_EN |
4542                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4543                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4544                    (plane_wm << WM1_LP_SR_SHIFT) |
4545                    cursor_wm);
4546
4547         /* WM2 */
4548         if (!ironlake_compute_srwm(dev, 2, enabled,
4549                                    SNB_READ_WM2_LATENCY() * 500,
4550                                    &sandybridge_display_srwm_info,
4551                                    &sandybridge_cursor_srwm_info,
4552                                    &fbc_wm, &plane_wm, &cursor_wm))
4553                 return;
4554
4555         I915_WRITE(WM2_LP_ILK,
4556                    WM2_LP_EN |
4557                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4558                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4559                    (plane_wm << WM1_LP_SR_SHIFT) |
4560                    cursor_wm);
4561
4562         /* WM3 */
4563         if (!ironlake_compute_srwm(dev, 3, enabled,
4564                                    SNB_READ_WM3_LATENCY() * 500,
4565                                    &sandybridge_display_srwm_info,
4566                                    &sandybridge_cursor_srwm_info,
4567                                    &fbc_wm, &plane_wm, &cursor_wm))
4568                 return;
4569
4570         I915_WRITE(WM3_LP_ILK,
4571                    WM3_LP_EN |
4572                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4573                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4574                    (plane_wm << WM1_LP_SR_SHIFT) |
4575                    cursor_wm);
4576 }
4577
4578 /**
4579  * intel_update_watermarks - update FIFO watermark values based on current modes
4580  *
4581  * Calculate watermark values for the various WM regs based on current mode
4582  * and plane configuration.
4583  *
4584  * There are several cases to deal with here:
4585  *   - normal (i.e. non-self-refresh)
4586  *   - self-refresh (SR) mode
4587  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4588  *   - lines are small relative to FIFO size (buffer can hold more than 2
4589  *     lines), so need to account for TLB latency
4590  *
4591  *   The normal calculation is:
4592  *     watermark = dotclock * bytes per pixel * latency
4593  *   where latency is platform & configuration dependent (we assume pessimal
4594  *   values here).
4595  *
4596  *   The SR calculation is:
4597  *     watermark = (trunc(latency/line time)+1) * surface width *
4598  *       bytes per pixel
4599  *   where
4600  *     line time = htotal / dotclock
4601  *     surface width = hdisplay for normal plane and 64 for cursor
4602  *   and latency is assumed to be high, as above.
4603  *
4604  * The final value programmed to the register should always be rounded up,
4605  * and include an extra 2 entries to account for clock crossings.
4606  *
4607  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4608  * to set the non-SR watermarks to 8.
4609  */
4610 static void intel_update_watermarks(struct drm_device *dev)
4611 {
4612         struct drm_i915_private *dev_priv = dev->dev_private;
4613
4614         if (dev_priv->display.update_wm)
4615                 dev_priv->display.update_wm(dev);
4616 }
4617
4618 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4619 {
4620         if (i915_panel_use_ssc >= 0)
4621                 return i915_panel_use_ssc != 0;
4622         return dev_priv->lvds_use_ssc
4623                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4624 }
4625
4626 /**
4627  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4628  * @crtc: CRTC structure
4629  *
4630  * A pipe may be connected to one or more outputs.  Based on the depth of the
4631  * attached framebuffer, choose a good color depth to use on the pipe.
4632  *
4633  * If possible, match the pipe depth to the fb depth.  In some cases, this
4634  * isn't ideal, because the connected output supports a lesser or restricted
4635  * set of depths.  Resolve that here:
4636  *    LVDS typically supports only 6bpc, so clamp down in that case
4637  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4638  *    Displays may support a restricted set as well, check EDID and clamp as
4639  *      appropriate.
4640  *
4641  * RETURNS:
4642  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4643  * true if they don't match).
4644  */
4645 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4646                                          unsigned int *pipe_bpp)
4647 {
4648         struct drm_device *dev = crtc->dev;
4649         struct drm_i915_private *dev_priv = dev->dev_private;
4650         struct drm_encoder *encoder;
4651         struct drm_connector *connector;
4652         unsigned int display_bpc = UINT_MAX, bpc;
4653
4654         /* Walk the encoders & connectors on this crtc, get min bpc */
4655         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4656                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4657
4658                 if (encoder->crtc != crtc)
4659                         continue;
4660
4661                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4662                         unsigned int lvds_bpc;
4663
4664                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4665                             LVDS_A3_POWER_UP)
4666                                 lvds_bpc = 8;
4667                         else
4668                                 lvds_bpc = 6;
4669
4670                         if (lvds_bpc < display_bpc) {
4671                                 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4672                                 display_bpc = lvds_bpc;
4673                         }
4674                         continue;
4675                 }
4676
4677                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4678                         /* Use VBT settings if we have an eDP panel */
4679                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4680
4681                         if (edp_bpc < display_bpc) {
4682                                 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4683                                 display_bpc = edp_bpc;
4684                         }
4685                         continue;
4686                 }
4687
4688                 /* Not one of the known troublemakers, check the EDID */
4689                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4690                                     head) {
4691                         if (connector->encoder != encoder)
4692                                 continue;
4693
4694                         /* Don't use an invalid EDID bpc value */
4695                         if (connector->display_info.bpc &&
4696                             connector->display_info.bpc < display_bpc) {
4697                                 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4698                                 display_bpc = connector->display_info.bpc;
4699                         }
4700                 }
4701
4702                 /*
4703                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4704                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4705                  */
4706                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4707                         if (display_bpc > 8 && display_bpc < 12) {
4708                                 DRM_DEBUG_DRIVER("forcing bpc to 12 for HDMI\n");
4709                                 display_bpc = 12;
4710                         } else {
4711                                 DRM_DEBUG_DRIVER("forcing bpc to 8 for HDMI\n");
4712                                 display_bpc = 8;
4713                         }
4714                 }
4715         }
4716
4717         /*
4718          * We could just drive the pipe at the highest bpc all the time and
4719          * enable dithering as needed, but that costs bandwidth.  So choose
4720          * the minimum value that expresses the full color range of the fb but
4721          * also stays within the max display bpc discovered above.
4722          */
4723
4724         switch (crtc->fb->depth) {
4725         case 8:
4726                 bpc = 8; /* since we go through a colormap */
4727                 break;
4728         case 15:
4729         case 16:
4730                 bpc = 6; /* min is 18bpp */
4731                 break;
4732         case 24:
4733                 bpc = 8;
4734                 break;
4735         case 30:
4736                 bpc = 10;
4737                 break;
4738         case 48:
4739                 bpc = 12;
4740                 break;
4741         default:
4742                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4743                 bpc = min((unsigned int)8, display_bpc);
4744                 break;
4745         }
4746
4747         display_bpc = min(display_bpc, bpc);
4748
4749         DRM_DEBUG_DRIVER("setting pipe bpc to %d (max display bpc %d)\n",
4750                          bpc, display_bpc);
4751
4752         *pipe_bpp = display_bpc * 3;
4753
4754         return display_bpc != bpc;
4755 }
4756
4757 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4758                               struct drm_display_mode *mode,
4759                               struct drm_display_mode *adjusted_mode,
4760                               int x, int y,
4761                               struct drm_framebuffer *old_fb)
4762 {
4763         struct drm_device *dev = crtc->dev;
4764         struct drm_i915_private *dev_priv = dev->dev_private;
4765         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4766         int pipe = intel_crtc->pipe;
4767         int plane = intel_crtc->plane;
4768         int refclk, num_connectors = 0;
4769         intel_clock_t clock, reduced_clock;
4770         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4771         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4772         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4773         struct drm_mode_config *mode_config = &dev->mode_config;
4774         struct intel_encoder *encoder;
4775         const intel_limit_t *limit;
4776         int ret;
4777         u32 temp;
4778         u32 lvds_sync = 0;
4779
4780         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4781                 if (encoder->base.crtc != crtc)
4782                         continue;
4783
4784                 switch (encoder->type) {
4785                 case INTEL_OUTPUT_LVDS:
4786                         is_lvds = true;
4787                         break;
4788                 case INTEL_OUTPUT_SDVO:
4789                 case INTEL_OUTPUT_HDMI:
4790                         is_sdvo = true;
4791                         if (encoder->needs_tv_clock)
4792                                 is_tv = true;
4793                         break;
4794                 case INTEL_OUTPUT_DVO:
4795                         is_dvo = true;
4796                         break;
4797                 case INTEL_OUTPUT_TVOUT:
4798                         is_tv = true;
4799                         break;
4800                 case INTEL_OUTPUT_ANALOG:
4801                         is_crt = true;
4802                         break;
4803                 case INTEL_OUTPUT_DISPLAYPORT:
4804                         is_dp = true;
4805                         break;
4806                 }
4807
4808                 num_connectors++;
4809         }
4810
4811         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4812                 refclk = dev_priv->lvds_ssc_freq * 1000;
4813                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4814                               refclk / 1000);
4815         } else if (!IS_GEN2(dev)) {
4816                 refclk = 96000;
4817         } else {
4818                 refclk = 48000;
4819         }
4820
4821         /*
4822          * Returns a set of divisors for the desired target clock with the given
4823          * refclk, or FALSE.  The returned values represent the clock equation:
4824          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4825          */
4826         limit = intel_limit(crtc, refclk);
4827         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4828         if (!ok) {
4829                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4830                 return -EINVAL;
4831         }
4832
4833         /* Ensure that the cursor is valid for the new mode before changing... */
4834         intel_crtc_update_cursor(crtc, true);
4835
4836         if (is_lvds && dev_priv->lvds_downclock_avail) {
4837                 has_reduced_clock = limit->find_pll(limit, crtc,
4838                                                     dev_priv->lvds_downclock,
4839                                                     refclk,
4840                                                     &reduced_clock);
4841                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4842                         /*
4843                          * If the different P is found, it means that we can't
4844                          * switch the display clock by using the FP0/FP1.
4845                          * In such case we will disable the LVDS downclock
4846                          * feature.
4847                          */
4848                         DRM_DEBUG_KMS("Different P is found for "
4849                                       "LVDS clock/downclock\n");
4850                         has_reduced_clock = 0;
4851                 }
4852         }
4853         /* SDVO TV has fixed PLL values depend on its clock range,
4854            this mirrors vbios setting. */
4855         if (is_sdvo && is_tv) {
4856                 if (adjusted_mode->clock >= 100000
4857                     && adjusted_mode->clock < 140500) {
4858                         clock.p1 = 2;
4859                         clock.p2 = 10;
4860                         clock.n = 3;
4861                         clock.m1 = 16;
4862                         clock.m2 = 8;
4863                 } else if (adjusted_mode->clock >= 140500
4864                            && adjusted_mode->clock <= 200000) {
4865                         clock.p1 = 1;
4866                         clock.p2 = 10;
4867                         clock.n = 6;
4868                         clock.m1 = 12;
4869                         clock.m2 = 8;
4870                 }
4871         }
4872
4873         if (IS_PINEVIEW(dev)) {
4874                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4875                 if (has_reduced_clock)
4876                         fp2 = (1 << reduced_clock.n) << 16 |
4877                                 reduced_clock.m1 << 8 | reduced_clock.m2;
4878         } else {
4879                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4880                 if (has_reduced_clock)
4881                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4882                                 reduced_clock.m2;
4883         }
4884
4885         dpll = DPLL_VGA_MODE_DIS;
4886
4887         if (!IS_GEN2(dev)) {
4888                 if (is_lvds)
4889                         dpll |= DPLLB_MODE_LVDS;
4890                 else
4891                         dpll |= DPLLB_MODE_DAC_SERIAL;
4892                 if (is_sdvo) {
4893                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4894                         if (pixel_multiplier > 1) {
4895                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4896                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4897                         }
4898                         dpll |= DPLL_DVO_HIGH_SPEED;
4899                 }
4900                 if (is_dp)
4901                         dpll |= DPLL_DVO_HIGH_SPEED;
4902
4903                 /* compute bitmask from p1 value */
4904                 if (IS_PINEVIEW(dev))
4905                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4906                 else {
4907                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4908                         if (IS_G4X(dev) && has_reduced_clock)
4909                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4910                 }
4911                 switch (clock.p2) {
4912                 case 5:
4913                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4914                         break;
4915                 case 7:
4916                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4917                         break;
4918                 case 10:
4919                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4920                         break;
4921                 case 14:
4922                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4923                         break;
4924                 }
4925                 if (INTEL_INFO(dev)->gen >= 4)
4926                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4927         } else {
4928                 if (is_lvds) {
4929                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4930                 } else {
4931                         if (clock.p1 == 2)
4932                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
4933                         else
4934                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4935                         if (clock.p2 == 4)
4936                                 dpll |= PLL_P2_DIVIDE_BY_4;
4937                 }
4938         }
4939
4940         if (is_sdvo && is_tv)
4941                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4942         else if (is_tv)
4943                 /* XXX: just matching BIOS for now */
4944                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4945                 dpll |= 3;
4946         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4947                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4948         else
4949                 dpll |= PLL_REF_INPUT_DREFCLK;
4950
4951         /* setup pipeconf */
4952         pipeconf = I915_READ(PIPECONF(pipe));
4953
4954         /* Set up the display plane register */
4955         dspcntr = DISPPLANE_GAMMA_ENABLE;
4956
4957         /* Ironlake's plane is forced to pipe, bit 24 is to
4958            enable color space conversion */
4959         if (pipe == 0)
4960                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4961         else
4962                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4963
4964         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4965                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4966                  * core speed.
4967                  *
4968                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4969                  * pipe == 0 check?
4970                  */
4971                 if (mode->clock >
4972                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4973                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4974                 else
4975                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4976         }
4977
4978         dpll |= DPLL_VCO_ENABLE;
4979
4980         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4981         drm_mode_debug_printmodeline(mode);
4982
4983         I915_WRITE(FP0(pipe), fp);
4984         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4985
4986         POSTING_READ(DPLL(pipe));
4987         udelay(150);
4988
4989         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4990          * This is an exception to the general rule that mode_set doesn't turn
4991          * things on.
4992          */
4993         if (is_lvds) {
4994                 temp = I915_READ(LVDS);
4995                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4996                 if (pipe == 1) {
4997                         temp |= LVDS_PIPEB_SELECT;
4998                 } else {
4999                         temp &= ~LVDS_PIPEB_SELECT;
5000                 }
5001                 /* set the corresponsding LVDS_BORDER bit */
5002                 temp |= dev_priv->lvds_border_bits;
5003                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5004                  * set the DPLLs for dual-channel mode or not.
5005                  */
5006                 if (clock.p2 == 7)
5007                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5008                 else
5009                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5010
5011                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5012                  * appropriately here, but we need to look more thoroughly into how
5013                  * panels behave in the two modes.
5014                  */
5015                 /* set the dithering flag on LVDS as needed */
5016                 if (INTEL_INFO(dev)->gen >= 4) {
5017                         if (dev_priv->lvds_dither)
5018                                 temp |= LVDS_ENABLE_DITHER;
5019                         else
5020                                 temp &= ~LVDS_ENABLE_DITHER;
5021                 }
5022                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5023                         lvds_sync |= LVDS_HSYNC_POLARITY;
5024                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5025                         lvds_sync |= LVDS_VSYNC_POLARITY;
5026                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5027                     != lvds_sync) {
5028                         char flags[2] = "-+";
5029                         DRM_INFO("Changing LVDS panel from "
5030                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5031                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5032                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5033                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5034                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5035                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5036                         temp |= lvds_sync;
5037                 }
5038                 I915_WRITE(LVDS, temp);
5039         }
5040
5041         if (is_dp) {
5042                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5043         }
5044
5045         I915_WRITE(DPLL(pipe), dpll);
5046
5047         /* Wait for the clocks to stabilize. */
5048         POSTING_READ(DPLL(pipe));
5049         udelay(150);
5050
5051         if (INTEL_INFO(dev)->gen >= 4) {
5052                 temp = 0;
5053                 if (is_sdvo) {
5054                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5055                         if (temp > 1)
5056                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5057                         else
5058                                 temp = 0;
5059                 }
5060                 I915_WRITE(DPLL_MD(pipe), temp);
5061         } else {
5062                 /* The pixel multiplier can only be updated once the
5063                  * DPLL is enabled and the clocks are stable.
5064                  *
5065                  * So write it again.
5066                  */
5067                 I915_WRITE(DPLL(pipe), dpll);
5068         }
5069
5070         intel_crtc->lowfreq_avail = false;
5071         if (is_lvds && has_reduced_clock && i915_powersave) {
5072                 I915_WRITE(FP1(pipe), fp2);
5073                 intel_crtc->lowfreq_avail = true;
5074                 if (HAS_PIPE_CXSR(dev)) {
5075                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5076                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5077                 }
5078         } else {
5079                 I915_WRITE(FP1(pipe), fp);
5080                 if (HAS_PIPE_CXSR(dev)) {
5081                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5082                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5083                 }
5084         }
5085
5086         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5087                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5088                 /* the chip adds 2 halflines automatically */
5089                 adjusted_mode->crtc_vdisplay -= 1;
5090                 adjusted_mode->crtc_vtotal -= 1;
5091                 adjusted_mode->crtc_vblank_start -= 1;
5092                 adjusted_mode->crtc_vblank_end -= 1;
5093                 adjusted_mode->crtc_vsync_end -= 1;
5094                 adjusted_mode->crtc_vsync_start -= 1;
5095         } else
5096                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5097
5098         I915_WRITE(HTOTAL(pipe),
5099                    (adjusted_mode->crtc_hdisplay - 1) |
5100                    ((adjusted_mode->crtc_htotal - 1) << 16));
5101         I915_WRITE(HBLANK(pipe),
5102                    (adjusted_mode->crtc_hblank_start - 1) |
5103                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5104         I915_WRITE(HSYNC(pipe),
5105                    (adjusted_mode->crtc_hsync_start - 1) |
5106                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5107
5108         I915_WRITE(VTOTAL(pipe),
5109                    (adjusted_mode->crtc_vdisplay - 1) |
5110                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5111         I915_WRITE(VBLANK(pipe),
5112                    (adjusted_mode->crtc_vblank_start - 1) |
5113                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5114         I915_WRITE(VSYNC(pipe),
5115                    (adjusted_mode->crtc_vsync_start - 1) |
5116                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5117
5118         /* pipesrc and dspsize control the size that is scaled from,
5119          * which should always be the user's requested size.
5120          */
5121         I915_WRITE(DSPSIZE(plane),
5122                    ((mode->vdisplay - 1) << 16) |
5123                    (mode->hdisplay - 1));
5124         I915_WRITE(DSPPOS(plane), 0);
5125         I915_WRITE(PIPESRC(pipe),
5126                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5127
5128         I915_WRITE(PIPECONF(pipe), pipeconf);
5129         POSTING_READ(PIPECONF(pipe));
5130         intel_enable_pipe(dev_priv, pipe, false);
5131
5132         intel_wait_for_vblank(dev, pipe);
5133
5134         I915_WRITE(DSPCNTR(plane), dspcntr);
5135         POSTING_READ(DSPCNTR(plane));
5136         intel_enable_plane(dev_priv, plane, pipe);
5137
5138         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5139
5140         intel_update_watermarks(dev);
5141
5142         return ret;
5143 }
5144
5145 /*
5146  * Initialize reference clocks when the driver loads
5147  */
5148 void ironlake_init_pch_refclk(struct drm_device *dev)
5149 {
5150         struct drm_i915_private *dev_priv = dev->dev_private;
5151         struct drm_mode_config *mode_config = &dev->mode_config;
5152         struct intel_encoder *encoder;
5153         u32 temp;
5154         bool has_lvds = false;
5155         bool has_cpu_edp = false;
5156         bool has_pch_edp = false;
5157         bool has_panel = false;
5158         bool has_ck505 = false;
5159         bool can_ssc = false;
5160
5161         /* We need to take the global config into account */
5162         list_for_each_entry(encoder, &mode_config->encoder_list,
5163                             base.head) {
5164                 switch (encoder->type) {
5165                 case INTEL_OUTPUT_LVDS:
5166                         has_panel = true;
5167                         has_lvds = true;
5168                         break;
5169                 case INTEL_OUTPUT_EDP:
5170                         has_panel = true;
5171                         if (intel_encoder_is_pch_edp(&encoder->base))
5172                                 has_pch_edp = true;
5173                         else
5174                                 has_cpu_edp = true;
5175                         break;
5176                 }
5177         }
5178
5179         if (HAS_PCH_IBX(dev)) {
5180                 has_ck505 = dev_priv->display_clock_mode;
5181                 can_ssc = has_ck505;
5182         } else {
5183                 has_ck505 = false;
5184                 can_ssc = true;
5185         }
5186
5187         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5188                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5189                       has_ck505);
5190
5191         /* Ironlake: try to setup display ref clock before DPLL
5192          * enabling. This is only under driver's control after
5193          * PCH B stepping, previous chipset stepping should be
5194          * ignoring this setting.
5195          */
5196         temp = I915_READ(PCH_DREF_CONTROL);
5197         /* Always enable nonspread source */
5198         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5199
5200         if (has_ck505)
5201                 temp |= DREF_NONSPREAD_CK505_ENABLE;
5202         else
5203                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5204
5205         if (has_panel) {
5206                 temp &= ~DREF_SSC_SOURCE_MASK;
5207                 temp |= DREF_SSC_SOURCE_ENABLE;
5208
5209                 /* SSC must be turned on before enabling the CPU output  */
5210                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5211                         DRM_DEBUG_KMS("Using SSC on panel\n");
5212                         temp |= DREF_SSC1_ENABLE;
5213                 }
5214
5215                 /* Get SSC going before enabling the outputs */
5216                 I915_WRITE(PCH_DREF_CONTROL, temp);
5217                 POSTING_READ(PCH_DREF_CONTROL);
5218                 udelay(200);
5219
5220                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5221
5222                 /* Enable CPU source on CPU attached eDP */
5223                 if (has_cpu_edp) {
5224                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5225                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5226                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5227                         }
5228                         else
5229                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5230                 } else
5231                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5232
5233                 I915_WRITE(PCH_DREF_CONTROL, temp);
5234                 POSTING_READ(PCH_DREF_CONTROL);
5235                 udelay(200);
5236         } else {
5237                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5238
5239                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5240
5241                 /* Turn off CPU output */
5242                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5243
5244                 I915_WRITE(PCH_DREF_CONTROL, temp);
5245                 POSTING_READ(PCH_DREF_CONTROL);
5246                 udelay(200);
5247
5248                 /* Turn off the SSC source */
5249                 temp &= ~DREF_SSC_SOURCE_MASK;
5250                 temp |= DREF_SSC_SOURCE_DISABLE;
5251
5252                 /* Turn off SSC1 */
5253                 temp &= ~ DREF_SSC1_ENABLE;
5254
5255                 I915_WRITE(PCH_DREF_CONTROL, temp);
5256                 POSTING_READ(PCH_DREF_CONTROL);
5257                 udelay(200);
5258         }
5259 }
5260
5261 static int ironlake_get_refclk(struct drm_crtc *crtc)
5262 {
5263         struct drm_device *dev = crtc->dev;
5264         struct drm_i915_private *dev_priv = dev->dev_private;
5265         struct intel_encoder *encoder;
5266         struct drm_mode_config *mode_config = &dev->mode_config;
5267         struct intel_encoder *edp_encoder = NULL;
5268         int num_connectors = 0;
5269         bool is_lvds = false;
5270
5271         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5272                 if (encoder->base.crtc != crtc)
5273                         continue;
5274
5275                 switch (encoder->type) {
5276                 case INTEL_OUTPUT_LVDS:
5277                         is_lvds = true;
5278                         break;
5279                 case INTEL_OUTPUT_EDP:
5280                         edp_encoder = encoder;
5281                         break;
5282                 }
5283                 num_connectors++;
5284         }
5285
5286         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5287                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5288                               dev_priv->lvds_ssc_freq);
5289                 return dev_priv->lvds_ssc_freq * 1000;
5290         }
5291
5292         return 120000;
5293 }
5294
5295 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5296                                   struct drm_display_mode *mode,
5297                                   struct drm_display_mode *adjusted_mode,
5298                                   int x, int y,
5299                                   struct drm_framebuffer *old_fb)
5300 {
5301         struct drm_device *dev = crtc->dev;
5302         struct drm_i915_private *dev_priv = dev->dev_private;
5303         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5304         int pipe = intel_crtc->pipe;
5305         int plane = intel_crtc->plane;
5306         int refclk, num_connectors = 0;
5307         intel_clock_t clock, reduced_clock;
5308         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5309         bool ok, has_reduced_clock = false, is_sdvo = false;
5310         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5311         struct intel_encoder *has_edp_encoder = NULL;
5312         struct drm_mode_config *mode_config = &dev->mode_config;
5313         struct intel_encoder *encoder;
5314         const intel_limit_t *limit;
5315         int ret;
5316         struct fdi_m_n m_n = {0};
5317         u32 temp;
5318         u32 lvds_sync = 0;
5319         int target_clock, pixel_multiplier, lane, link_bw, factor;
5320         unsigned int pipe_bpp;
5321         bool dither;
5322
5323         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5324                 if (encoder->base.crtc != crtc)
5325                         continue;
5326
5327                 switch (encoder->type) {
5328                 case INTEL_OUTPUT_LVDS:
5329                         is_lvds = true;
5330                         break;
5331                 case INTEL_OUTPUT_SDVO:
5332                 case INTEL_OUTPUT_HDMI:
5333                         is_sdvo = true;
5334                         if (encoder->needs_tv_clock)
5335                                 is_tv = true;
5336                         break;
5337                 case INTEL_OUTPUT_TVOUT:
5338                         is_tv = true;
5339                         break;
5340                 case INTEL_OUTPUT_ANALOG:
5341                         is_crt = true;
5342                         break;
5343                 case INTEL_OUTPUT_DISPLAYPORT:
5344                         is_dp = true;
5345                         break;
5346                 case INTEL_OUTPUT_EDP:
5347                         has_edp_encoder = encoder;
5348                         break;
5349                 }
5350
5351                 num_connectors++;
5352         }
5353
5354         refclk = ironlake_get_refclk(crtc);
5355
5356         /*
5357          * Returns a set of divisors for the desired target clock with the given
5358          * refclk, or FALSE.  The returned values represent the clock equation:
5359          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5360          */
5361         limit = intel_limit(crtc, refclk);
5362         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
5363         if (!ok) {
5364                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5365                 return -EINVAL;
5366         }
5367
5368         /* Ensure that the cursor is valid for the new mode before changing... */
5369         intel_crtc_update_cursor(crtc, true);
5370
5371         if (is_lvds && dev_priv->lvds_downclock_avail) {
5372                 has_reduced_clock = limit->find_pll(limit, crtc,
5373                                                     dev_priv->lvds_downclock,
5374                                                     refclk,
5375                                                     &reduced_clock);
5376                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5377                         /*
5378                          * If the different P is found, it means that we can't
5379                          * switch the display clock by using the FP0/FP1.
5380                          * In such case we will disable the LVDS downclock
5381                          * feature.
5382                          */
5383                         DRM_DEBUG_KMS("Different P is found for "
5384                                       "LVDS clock/downclock\n");
5385                         has_reduced_clock = 0;
5386                 }
5387         }
5388         /* SDVO TV has fixed PLL values depend on its clock range,
5389            this mirrors vbios setting. */
5390         if (is_sdvo && is_tv) {
5391                 if (adjusted_mode->clock >= 100000
5392                     && adjusted_mode->clock < 140500) {
5393                         clock.p1 = 2;
5394                         clock.p2 = 10;
5395                         clock.n = 3;
5396                         clock.m1 = 16;
5397                         clock.m2 = 8;
5398                 } else if (adjusted_mode->clock >= 140500
5399                            && adjusted_mode->clock <= 200000) {
5400                         clock.p1 = 1;
5401                         clock.p2 = 10;
5402                         clock.n = 6;
5403                         clock.m1 = 12;
5404                         clock.m2 = 8;
5405                 }
5406         }
5407
5408         /* FDI link */
5409         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5410         lane = 0;
5411         /* CPU eDP doesn't require FDI link, so just set DP M/N
5412            according to current link config */
5413         if (has_edp_encoder &&
5414             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5415                 target_clock = mode->clock;
5416                 intel_edp_link_config(has_edp_encoder,
5417                                       &lane, &link_bw);
5418         } else {
5419                 /* [e]DP over FDI requires target mode clock
5420                    instead of link clock */
5421                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5422                         target_clock = mode->clock;
5423                 else
5424                         target_clock = adjusted_mode->clock;
5425
5426                 /* FDI is a binary signal running at ~2.7GHz, encoding
5427                  * each output octet as 10 bits. The actual frequency
5428                  * is stored as a divider into a 100MHz clock, and the
5429                  * mode pixel clock is stored in units of 1KHz.
5430                  * Hence the bw of each lane in terms of the mode signal
5431                  * is:
5432                  */
5433                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5434         }
5435
5436         /* determine panel color depth */
5437         temp = I915_READ(PIPECONF(pipe));
5438         temp &= ~PIPE_BPC_MASK;
5439         dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp);
5440         switch (pipe_bpp) {
5441         case 18:
5442                 temp |= PIPE_6BPC;
5443                 break;
5444         case 24:
5445                 temp |= PIPE_8BPC;
5446                 break;
5447         case 30:
5448                 temp |= PIPE_10BPC;
5449                 break;
5450         case 36:
5451                 temp |= PIPE_12BPC;
5452                 break;
5453         default:
5454                 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5455                         pipe_bpp);
5456                 temp |= PIPE_8BPC;
5457                 pipe_bpp = 24;
5458                 break;
5459         }
5460
5461         intel_crtc->bpp = pipe_bpp;
5462         I915_WRITE(PIPECONF(pipe), temp);
5463
5464         if (!lane) {
5465                 /*
5466                  * Account for spread spectrum to avoid
5467                  * oversubscribing the link. Max center spread
5468                  * is 2.5%; use 5% for safety's sake.
5469                  */
5470                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5471                 lane = bps / (link_bw * 8) + 1;
5472         }
5473
5474         intel_crtc->fdi_lanes = lane;
5475
5476         if (pixel_multiplier > 1)
5477                 link_bw *= pixel_multiplier;
5478         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5479                              &m_n);
5480
5481         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5482         if (has_reduced_clock)
5483                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5484                         reduced_clock.m2;
5485
5486         /* Enable autotuning of the PLL clock (if permissible) */
5487         factor = 21;
5488         if (is_lvds) {
5489                 if ((intel_panel_use_ssc(dev_priv) &&
5490                      dev_priv->lvds_ssc_freq == 100) ||
5491                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5492                         factor = 25;
5493         } else if (is_sdvo && is_tv)
5494                 factor = 20;
5495
5496         if (clock.m < factor * clock.n)
5497                 fp |= FP_CB_TUNE;
5498
5499         dpll = 0;
5500
5501         if (is_lvds)
5502                 dpll |= DPLLB_MODE_LVDS;
5503         else
5504                 dpll |= DPLLB_MODE_DAC_SERIAL;
5505         if (is_sdvo) {
5506                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5507                 if (pixel_multiplier > 1) {
5508                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5509                 }
5510                 dpll |= DPLL_DVO_HIGH_SPEED;
5511         }
5512         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5513                 dpll |= DPLL_DVO_HIGH_SPEED;
5514
5515         /* compute bitmask from p1 value */
5516         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5517         /* also FPA1 */
5518         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5519
5520         switch (clock.p2) {
5521         case 5:
5522                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5523                 break;
5524         case 7:
5525                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5526                 break;
5527         case 10:
5528                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5529                 break;
5530         case 14:
5531                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5532                 break;
5533         }
5534
5535         if (is_sdvo && is_tv)
5536                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5537         else if (is_tv)
5538                 /* XXX: just matching BIOS for now */
5539                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5540                 dpll |= 3;
5541         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5542                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5543         else
5544                 dpll |= PLL_REF_INPUT_DREFCLK;
5545
5546         /* setup pipeconf */
5547         pipeconf = I915_READ(PIPECONF(pipe));
5548
5549         /* Set up the display plane register */
5550         dspcntr = DISPPLANE_GAMMA_ENABLE;
5551
5552         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5553         drm_mode_debug_printmodeline(mode);
5554
5555         /* PCH eDP needs FDI, but CPU eDP does not */
5556         if (!intel_crtc->no_pll) {
5557                 if (!has_edp_encoder ||
5558                     intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5559                         I915_WRITE(PCH_FP0(pipe), fp);
5560                         I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5561
5562                         POSTING_READ(PCH_DPLL(pipe));
5563                         udelay(150);
5564                 }
5565         } else {
5566                 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5567                     fp == I915_READ(PCH_FP0(0))) {
5568                         intel_crtc->use_pll_a = true;
5569                         DRM_DEBUG_KMS("using pipe a dpll\n");
5570                 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5571                            fp == I915_READ(PCH_FP0(1))) {
5572                         intel_crtc->use_pll_a = false;
5573                         DRM_DEBUG_KMS("using pipe b dpll\n");
5574                 } else {
5575                         DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5576                         return -EINVAL;
5577                 }
5578         }
5579
5580         /* enable transcoder DPLL */
5581         if (HAS_PCH_CPT(dev)) {
5582                 u32 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
5583                         TRANSC_DPLLB_SEL;
5584                 temp = I915_READ(PCH_DPLL_SEL);
5585                 switch (pipe) {
5586                 case 0:
5587                         temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
5588                         break;
5589                 case 1:
5590                         temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
5591                         break;
5592                 case 2:
5593                         temp |= TRANSC_DPLL_ENABLE | transc_sel;
5594                         break;
5595                 default:
5596                         BUG();
5597                 }
5598                 I915_WRITE(PCH_DPLL_SEL, temp);
5599
5600                 POSTING_READ(PCH_DPLL_SEL);
5601                 udelay(150);
5602         }
5603
5604         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5605          * This is an exception to the general rule that mode_set doesn't turn
5606          * things on.
5607          */
5608         if (is_lvds) {
5609                 temp = I915_READ(PCH_LVDS);
5610                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5611                 if (HAS_PCH_CPT(dev))
5612                         temp |= PORT_TRANS_SEL_CPT(pipe);
5613                 else if (pipe == 1)
5614                         temp |= LVDS_PIPEB_SELECT;
5615                 else
5616                         temp &= ~LVDS_PIPEB_SELECT;
5617
5618                 /* set the corresponsding LVDS_BORDER bit */
5619                 temp |= dev_priv->lvds_border_bits;
5620                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5621                  * set the DPLLs for dual-channel mode or not.
5622                  */
5623                 if (clock.p2 == 7)
5624                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5625                 else
5626                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5627
5628                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5629                  * appropriately here, but we need to look more thoroughly into how
5630                  * panels behave in the two modes.
5631                  */
5632                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5633                         lvds_sync |= LVDS_HSYNC_POLARITY;
5634                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5635                         lvds_sync |= LVDS_VSYNC_POLARITY;
5636                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5637                     != lvds_sync) {
5638                         char flags[2] = "-+";
5639                         DRM_INFO("Changing LVDS panel from "
5640                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5641                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5642                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5643                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5644                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5645                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5646                         temp |= lvds_sync;
5647                 }
5648                 I915_WRITE(PCH_LVDS, temp);
5649         }
5650
5651         pipeconf &= ~PIPECONF_DITHER_EN;
5652         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5653         if ((is_lvds && dev_priv->lvds_dither) || dither) {
5654                 pipeconf |= PIPECONF_DITHER_EN;
5655                 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
5656         }
5657         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5658                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5659         } else {
5660                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5661                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5662                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5663                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5664                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5665         }
5666
5667         if (!intel_crtc->no_pll &&
5668             (!has_edp_encoder ||
5669              intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
5670                 I915_WRITE(PCH_DPLL(pipe), dpll);
5671
5672                 /* Wait for the clocks to stabilize. */
5673                 POSTING_READ(PCH_DPLL(pipe));
5674                 udelay(150);
5675
5676                 /* The pixel multiplier can only be updated once the
5677                  * DPLL is enabled and the clocks are stable.
5678                  *
5679                  * So write it again.
5680                  */
5681                 I915_WRITE(PCH_DPLL(pipe), dpll);
5682         }
5683
5684         intel_crtc->lowfreq_avail = false;
5685         if (!intel_crtc->no_pll) {
5686                 if (is_lvds && has_reduced_clock && i915_powersave) {
5687                         I915_WRITE(PCH_FP1(pipe), fp2);
5688                         intel_crtc->lowfreq_avail = true;
5689                         if (HAS_PIPE_CXSR(dev)) {
5690                                 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5691                                 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5692                         }
5693                 } else {
5694                         I915_WRITE(PCH_FP1(pipe), fp);
5695                         if (HAS_PIPE_CXSR(dev)) {
5696                                 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5697                                 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5698                         }
5699                 }
5700         }
5701
5702         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5703                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5704                 /* the chip adds 2 halflines automatically */
5705                 adjusted_mode->crtc_vdisplay -= 1;
5706                 adjusted_mode->crtc_vtotal -= 1;
5707                 adjusted_mode->crtc_vblank_start -= 1;
5708                 adjusted_mode->crtc_vblank_end -= 1;
5709                 adjusted_mode->crtc_vsync_end -= 1;
5710                 adjusted_mode->crtc_vsync_start -= 1;
5711         } else
5712                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5713
5714         I915_WRITE(HTOTAL(pipe),
5715                    (adjusted_mode->crtc_hdisplay - 1) |
5716                    ((adjusted_mode->crtc_htotal - 1) << 16));
5717         I915_WRITE(HBLANK(pipe),
5718                    (adjusted_mode->crtc_hblank_start - 1) |
5719                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5720         I915_WRITE(HSYNC(pipe),
5721                    (adjusted_mode->crtc_hsync_start - 1) |
5722                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5723
5724         I915_WRITE(VTOTAL(pipe),
5725                    (adjusted_mode->crtc_vdisplay - 1) |
5726                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5727         I915_WRITE(VBLANK(pipe),
5728                    (adjusted_mode->crtc_vblank_start - 1) |
5729                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5730         I915_WRITE(VSYNC(pipe),
5731                    (adjusted_mode->crtc_vsync_start - 1) |
5732                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5733
5734         /* pipesrc controls the size that is scaled from, which should
5735          * always be the user's requested size.
5736          */
5737         I915_WRITE(PIPESRC(pipe),
5738                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5739
5740         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5741         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5742         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5743         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5744
5745         if (has_edp_encoder &&
5746             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5747                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5748         }
5749
5750         I915_WRITE(PIPECONF(pipe), pipeconf);
5751         POSTING_READ(PIPECONF(pipe));
5752
5753         intel_wait_for_vblank(dev, pipe);
5754
5755         if (IS_GEN5(dev)) {
5756                 /* enable address swizzle for tiling buffer */
5757                 temp = I915_READ(DISP_ARB_CTL);
5758                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5759         }
5760
5761         I915_WRITE(DSPCNTR(plane), dspcntr);
5762         POSTING_READ(DSPCNTR(plane));
5763
5764         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5765
5766         intel_update_watermarks(dev);
5767
5768         return ret;
5769 }
5770
5771 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5772                                struct drm_display_mode *mode,
5773                                struct drm_display_mode *adjusted_mode,
5774                                int x, int y,
5775                                struct drm_framebuffer *old_fb)
5776 {
5777         struct drm_device *dev = crtc->dev;
5778         struct drm_i915_private *dev_priv = dev->dev_private;
5779         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5780         int pipe = intel_crtc->pipe;
5781         int ret;
5782
5783         drm_vblank_pre_modeset(dev, pipe);
5784
5785         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5786                                               x, y, old_fb);
5787
5788         drm_vblank_post_modeset(dev, pipe);
5789
5790         intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
5791
5792         return ret;
5793 }
5794
5795 static void g4x_write_eld(struct drm_connector *connector,
5796                           struct drm_crtc *crtc)
5797 {
5798         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5799         uint8_t *eld = connector->eld;
5800         uint32_t eldv;
5801         uint32_t len;
5802         uint32_t i;
5803
5804         i = I915_READ(G4X_AUD_VID_DID);
5805
5806         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5807                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5808         else
5809                 eldv = G4X_ELDV_DEVCTG;
5810
5811         i = I915_READ(G4X_AUD_CNTL_ST);
5812         i &= ~(eldv | G4X_ELD_ADDR);
5813         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5814         I915_WRITE(G4X_AUD_CNTL_ST, i);
5815
5816         if (!eld[0])
5817                 return;
5818
5819         len = min_t(uint8_t, eld[2], len);
5820         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5821         for (i = 0; i < len; i++)
5822                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5823
5824         i = I915_READ(G4X_AUD_CNTL_ST);
5825         i |= eldv;
5826         I915_WRITE(G4X_AUD_CNTL_ST, i);
5827 }
5828
5829 static void ironlake_write_eld(struct drm_connector *connector,
5830                                      struct drm_crtc *crtc)
5831 {
5832         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5833         uint8_t *eld = connector->eld;
5834         uint32_t eldv;
5835         uint32_t i;
5836         int len;
5837         int hdmiw_hdmiedid;
5838         int aud_cntl_st;
5839         int aud_cntrl_st2;
5840
5841         if (IS_IVYBRIDGE(connector->dev)) {
5842                 hdmiw_hdmiedid = GEN7_HDMIW_HDMIEDID_A;
5843                 aud_cntl_st = GEN7_AUD_CNTRL_ST_A;
5844                 aud_cntrl_st2 = GEN7_AUD_CNTRL_ST2;
5845         } else {
5846                 hdmiw_hdmiedid = GEN5_HDMIW_HDMIEDID_A;
5847                 aud_cntl_st = GEN5_AUD_CNTL_ST_A;
5848                 aud_cntrl_st2 = GEN5_AUD_CNTL_ST2;
5849         }
5850
5851         i = to_intel_crtc(crtc)->pipe;
5852         hdmiw_hdmiedid += i * 0x100;
5853         aud_cntl_st += i * 0x100;
5854
5855         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
5856
5857         i = I915_READ(aud_cntl_st);
5858         i = (i >> 29) & 0x3;            /* DIP_Port_Select, 0x1 = PortB */
5859         if (!i) {
5860                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5861                 /* operate blindly on all ports */
5862                 eldv = GEN5_ELD_VALIDB;
5863                 eldv |= GEN5_ELD_VALIDB << 4;
5864                 eldv |= GEN5_ELD_VALIDB << 8;
5865         } else {
5866                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5867                 eldv = GEN5_ELD_VALIDB << ((i - 1) * 4);
5868         }
5869
5870         i = I915_READ(aud_cntrl_st2);
5871         i &= ~eldv;
5872         I915_WRITE(aud_cntrl_st2, i);
5873
5874         if (!eld[0])
5875                 return;
5876
5877         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5878                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5879                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5880         }
5881
5882         i = I915_READ(aud_cntl_st);
5883         i &= ~GEN5_ELD_ADDRESS;
5884         I915_WRITE(aud_cntl_st, i);
5885
5886         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5887         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5888         for (i = 0; i < len; i++)
5889                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5890
5891         i = I915_READ(aud_cntrl_st2);
5892         i |= eldv;
5893         I915_WRITE(aud_cntrl_st2, i);
5894 }
5895
5896 void intel_write_eld(struct drm_encoder *encoder,
5897                      struct drm_display_mode *mode)
5898 {
5899         struct drm_crtc *crtc = encoder->crtc;
5900         struct drm_connector *connector;
5901         struct drm_device *dev = encoder->dev;
5902         struct drm_i915_private *dev_priv = dev->dev_private;
5903
5904         connector = drm_select_eld(encoder, mode);
5905         if (!connector)
5906                 return;
5907
5908         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5909                          connector->base.id,
5910                          drm_get_connector_name(connector),
5911                          connector->encoder->base.id,
5912                          drm_get_encoder_name(connector->encoder));
5913
5914         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5915
5916         if (dev_priv->display.write_eld)
5917                 dev_priv->display.write_eld(connector, crtc);
5918 }
5919
5920 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5921 void intel_crtc_load_lut(struct drm_crtc *crtc)
5922 {
5923         struct drm_device *dev = crtc->dev;
5924         struct drm_i915_private *dev_priv = dev->dev_private;
5925         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5926         int palreg = PALETTE(intel_crtc->pipe);
5927         int i;
5928
5929         /* The clocks have to be on to load the palette. */
5930         if (!crtc->enabled)
5931                 return;
5932
5933         /* use legacy palette for Ironlake */
5934         if (HAS_PCH_SPLIT(dev))
5935                 palreg = LGC_PALETTE(intel_crtc->pipe);
5936
5937         for (i = 0; i < 256; i++) {
5938                 I915_WRITE(palreg + 4 * i,
5939                            (intel_crtc->lut_r[i] << 16) |
5940                            (intel_crtc->lut_g[i] << 8) |
5941                            intel_crtc->lut_b[i]);
5942         }
5943 }
5944
5945 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5946 {
5947         struct drm_device *dev = crtc->dev;
5948         struct drm_i915_private *dev_priv = dev->dev_private;
5949         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5950         bool visible = base != 0;
5951         u32 cntl;
5952
5953         if (intel_crtc->cursor_visible == visible)
5954                 return;
5955
5956         cntl = I915_READ(_CURACNTR);
5957         if (visible) {
5958                 /* On these chipsets we can only modify the base whilst
5959                  * the cursor is disabled.
5960                  */
5961                 I915_WRITE(_CURABASE, base);
5962
5963                 cntl &= ~(CURSOR_FORMAT_MASK);
5964                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5965                 cntl |= CURSOR_ENABLE |
5966                         CURSOR_GAMMA_ENABLE |
5967                         CURSOR_FORMAT_ARGB;
5968         } else
5969                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5970         I915_WRITE(_CURACNTR, cntl);
5971
5972         intel_crtc->cursor_visible = visible;
5973 }
5974
5975 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5976 {
5977         struct drm_device *dev = crtc->dev;
5978         struct drm_i915_private *dev_priv = dev->dev_private;
5979         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5980         int pipe = intel_crtc->pipe;
5981         bool visible = base != 0;
5982
5983         if (intel_crtc->cursor_visible != visible) {
5984                 uint32_t cntl = I915_READ(CURCNTR(pipe));
5985                 if (base) {
5986                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5987                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5988                         cntl |= pipe << 28; /* Connect to correct pipe */
5989                 } else {
5990                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5991                         cntl |= CURSOR_MODE_DISABLE;
5992                 }
5993                 I915_WRITE(CURCNTR(pipe), cntl);
5994
5995                 intel_crtc->cursor_visible = visible;
5996         }
5997         /* and commit changes on next vblank */
5998         I915_WRITE(CURBASE(pipe), base);
5999 }
6000
6001 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6002 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6003                                      bool on)
6004 {
6005         struct drm_device *dev = crtc->dev;
6006         struct drm_i915_private *dev_priv = dev->dev_private;
6007         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6008         int pipe = intel_crtc->pipe;
6009         int x = intel_crtc->cursor_x;
6010         int y = intel_crtc->cursor_y;
6011         u32 base, pos;
6012         bool visible;
6013
6014         pos = 0;
6015
6016         if (on && crtc->enabled && crtc->fb) {
6017                 base = intel_crtc->cursor_addr;
6018                 if (x > (int) crtc->fb->width)
6019                         base = 0;
6020
6021                 if (y > (int) crtc->fb->height)
6022                         base = 0;
6023         } else
6024                 base = 0;
6025
6026         if (x < 0) {
6027                 if (x + intel_crtc->cursor_width < 0)
6028                         base = 0;
6029
6030                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6031                 x = -x;
6032         }
6033         pos |= x << CURSOR_X_SHIFT;
6034
6035         if (y < 0) {
6036                 if (y + intel_crtc->cursor_height < 0)
6037                         base = 0;
6038
6039                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6040                 y = -y;
6041         }
6042         pos |= y << CURSOR_Y_SHIFT;
6043
6044         visible = base != 0;
6045         if (!visible && !intel_crtc->cursor_visible)
6046                 return;
6047
6048         I915_WRITE(CURPOS(pipe), pos);
6049         if (IS_845G(dev) || IS_I865G(dev))
6050                 i845_update_cursor(crtc, base);
6051         else
6052                 i9xx_update_cursor(crtc, base);
6053
6054         if (visible)
6055                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6056 }
6057
6058 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6059                                  struct drm_file *file,
6060                                  uint32_t handle,
6061                                  uint32_t width, uint32_t height)
6062 {
6063         struct drm_device *dev = crtc->dev;
6064         struct drm_i915_private *dev_priv = dev->dev_private;
6065         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6066         struct drm_i915_gem_object *obj;
6067         uint32_t addr;
6068         int ret;
6069
6070         DRM_DEBUG_KMS("\n");
6071
6072         /* if we want to turn off the cursor ignore width and height */
6073         if (!handle) {
6074                 DRM_DEBUG_KMS("cursor off\n");
6075                 addr = 0;
6076                 obj = NULL;
6077                 mutex_lock(&dev->struct_mutex);
6078                 goto finish;
6079         }
6080
6081         /* Currently we only support 64x64 cursors */
6082         if (width != 64 || height != 64) {
6083                 DRM_ERROR("we currently only support 64x64 cursors\n");
6084                 return -EINVAL;
6085         }
6086
6087         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6088         if (&obj->base == NULL)
6089                 return -ENOENT;
6090
6091         if (obj->base.size < width * height * 4) {
6092                 DRM_ERROR("buffer is to small\n");
6093                 ret = -ENOMEM;
6094                 goto fail;
6095         }
6096
6097         /* we only need to pin inside GTT if cursor is non-phy */
6098         mutex_lock(&dev->struct_mutex);
6099         if (!dev_priv->info->cursor_needs_physical) {
6100                 if (obj->tiling_mode) {
6101                         DRM_ERROR("cursor cannot be tiled\n");
6102                         ret = -EINVAL;
6103                         goto fail_locked;
6104                 }
6105
6106                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6107                 if (ret) {
6108                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6109                         goto fail_locked;
6110                 }
6111
6112                 ret = i915_gem_object_put_fence(obj);
6113                 if (ret) {
6114                         DRM_ERROR("failed to release fence for cursor");
6115                         goto fail_unpin;
6116                 }
6117
6118                 addr = obj->gtt_offset;
6119         } else {
6120                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6121                 ret = i915_gem_attach_phys_object(dev, obj,
6122                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6123                                                   align);
6124                 if (ret) {
6125                         DRM_ERROR("failed to attach phys object\n");
6126                         goto fail_locked;
6127                 }
6128                 addr = obj->phys_obj->handle->busaddr;
6129         }
6130
6131         if (IS_GEN2(dev))
6132                 I915_WRITE(CURSIZE, (height << 12) | width);
6133
6134  finish:
6135         if (intel_crtc->cursor_bo) {
6136                 if (dev_priv->info->cursor_needs_physical) {
6137                         if (intel_crtc->cursor_bo != obj)
6138                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6139                 } else
6140                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6141                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6142         }
6143
6144         mutex_unlock(&dev->struct_mutex);
6145
6146         intel_crtc->cursor_addr = addr;
6147         intel_crtc->cursor_bo = obj;
6148         intel_crtc->cursor_width = width;
6149         intel_crtc->cursor_height = height;
6150
6151         intel_crtc_update_cursor(crtc, true);
6152
6153         return 0;
6154 fail_unpin:
6155         i915_gem_object_unpin(obj);
6156 fail_locked:
6157         mutex_unlock(&dev->struct_mutex);
6158 fail:
6159         drm_gem_object_unreference_unlocked(&obj->base);
6160         return ret;
6161 }
6162
6163 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6164 {
6165         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6166
6167         intel_crtc->cursor_x = x;
6168         intel_crtc->cursor_y = y;
6169
6170         intel_crtc_update_cursor(crtc, true);
6171
6172         return 0;
6173 }
6174
6175 /** Sets the color ramps on behalf of RandR */
6176 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6177                                  u16 blue, int regno)
6178 {
6179         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6180
6181         intel_crtc->lut_r[regno] = red >> 8;
6182         intel_crtc->lut_g[regno] = green >> 8;
6183         intel_crtc->lut_b[regno] = blue >> 8;
6184 }
6185
6186 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6187                              u16 *blue, int regno)
6188 {
6189         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6190
6191         *red = intel_crtc->lut_r[regno] << 8;
6192         *green = intel_crtc->lut_g[regno] << 8;
6193         *blue = intel_crtc->lut_b[regno] << 8;
6194 }
6195
6196 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6197                                  u16 *blue, uint32_t start, uint32_t size)
6198 {
6199         int end = (start + size > 256) ? 256 : start + size, i;
6200         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6201
6202         for (i = start; i < end; i++) {
6203                 intel_crtc->lut_r[i] = red[i] >> 8;
6204                 intel_crtc->lut_g[i] = green[i] >> 8;
6205                 intel_crtc->lut_b[i] = blue[i] >> 8;
6206         }
6207
6208         intel_crtc_load_lut(crtc);
6209 }
6210
6211 /**
6212  * Get a pipe with a simple mode set on it for doing load-based monitor
6213  * detection.
6214  *
6215  * It will be up to the load-detect code to adjust the pipe as appropriate for
6216  * its requirements.  The pipe will be connected to no other encoders.
6217  *
6218  * Currently this code will only succeed if there is a pipe with no encoders
6219  * configured for it.  In the future, it could choose to temporarily disable
6220  * some outputs to free up a pipe for its use.
6221  *
6222  * \return crtc, or NULL if no pipes are available.
6223  */
6224
6225 /* VESA 640x480x72Hz mode to set on the pipe */
6226 static struct drm_display_mode load_detect_mode = {
6227         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6228                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6229 };
6230
6231 static struct drm_framebuffer *
6232 intel_framebuffer_create(struct drm_device *dev,
6233                          struct drm_mode_fb_cmd *mode_cmd,
6234                          struct drm_i915_gem_object *obj)
6235 {
6236         struct intel_framebuffer *intel_fb;
6237         int ret;
6238
6239         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6240         if (!intel_fb) {
6241                 drm_gem_object_unreference_unlocked(&obj->base);
6242                 return ERR_PTR(-ENOMEM);
6243         }
6244
6245         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6246         if (ret) {
6247                 drm_gem_object_unreference_unlocked(&obj->base);
6248                 kfree(intel_fb);
6249                 return ERR_PTR(ret);
6250         }
6251
6252         return &intel_fb->base;
6253 }
6254
6255 static u32
6256 intel_framebuffer_pitch_for_width(int width, int bpp)
6257 {
6258         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6259         return ALIGN(pitch, 64);
6260 }
6261
6262 static u32
6263 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6264 {
6265         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6266         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6267 }
6268
6269 static struct drm_framebuffer *
6270 intel_framebuffer_create_for_mode(struct drm_device *dev,
6271                                   struct drm_display_mode *mode,
6272                                   int depth, int bpp)
6273 {
6274         struct drm_i915_gem_object *obj;
6275         struct drm_mode_fb_cmd mode_cmd;
6276
6277         obj = i915_gem_alloc_object(dev,
6278                                     intel_framebuffer_size_for_mode(mode, bpp));
6279         if (obj == NULL)
6280                 return ERR_PTR(-ENOMEM);
6281
6282         mode_cmd.width = mode->hdisplay;
6283         mode_cmd.height = mode->vdisplay;
6284         mode_cmd.depth = depth;
6285         mode_cmd.bpp = bpp;
6286         mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
6287
6288         return intel_framebuffer_create(dev, &mode_cmd, obj);
6289 }
6290
6291 static struct drm_framebuffer *
6292 mode_fits_in_fbdev(struct drm_device *dev,
6293                    struct drm_display_mode *mode)
6294 {
6295         struct drm_i915_private *dev_priv = dev->dev_private;
6296         struct drm_i915_gem_object *obj;
6297         struct drm_framebuffer *fb;
6298
6299         if (dev_priv->fbdev == NULL)
6300                 return NULL;
6301
6302         obj = dev_priv->fbdev->ifb.obj;
6303         if (obj == NULL)
6304                 return NULL;
6305
6306         fb = &dev_priv->fbdev->ifb.base;
6307         if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
6308                                                           fb->bits_per_pixel))
6309                 return NULL;
6310
6311         if (obj->base.size < mode->vdisplay * fb->pitch)
6312                 return NULL;
6313
6314         return fb;
6315 }
6316
6317 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6318                                 struct drm_connector *connector,
6319                                 struct drm_display_mode *mode,
6320                                 struct intel_load_detect_pipe *old)
6321 {
6322         struct intel_crtc *intel_crtc;
6323         struct drm_crtc *possible_crtc;
6324         struct drm_encoder *encoder = &intel_encoder->base;
6325         struct drm_crtc *crtc = NULL;
6326         struct drm_device *dev = encoder->dev;
6327         struct drm_framebuffer *old_fb;
6328         int i = -1;
6329
6330         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6331                       connector->base.id, drm_get_connector_name(connector),
6332                       encoder->base.id, drm_get_encoder_name(encoder));
6333
6334         /*
6335          * Algorithm gets a little messy:
6336          *
6337          *   - if the connector already has an assigned crtc, use it (but make
6338          *     sure it's on first)
6339          *
6340          *   - try to find the first unused crtc that can drive this connector,
6341          *     and use that if we find one
6342          */
6343
6344         /* See if we already have a CRTC for this connector */
6345         if (encoder->crtc) {
6346                 crtc = encoder->crtc;
6347
6348                 intel_crtc = to_intel_crtc(crtc);
6349                 old->dpms_mode = intel_crtc->dpms_mode;
6350                 old->load_detect_temp = false;
6351
6352                 /* Make sure the crtc and connector are running */
6353                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6354                         struct drm_encoder_helper_funcs *encoder_funcs;
6355                         struct drm_crtc_helper_funcs *crtc_funcs;
6356
6357                         crtc_funcs = crtc->helper_private;
6358                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6359
6360                         encoder_funcs = encoder->helper_private;
6361                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6362                 }
6363
6364                 return true;
6365         }
6366
6367         /* Find an unused one (if possible) */
6368         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6369                 i++;
6370                 if (!(encoder->possible_crtcs & (1 << i)))
6371                         continue;
6372                 if (!possible_crtc->enabled) {
6373                         crtc = possible_crtc;
6374                         break;
6375                 }
6376         }
6377
6378         /*
6379          * If we didn't find an unused CRTC, don't use any.
6380          */
6381         if (!crtc) {
6382                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6383                 return false;
6384         }
6385
6386         encoder->crtc = crtc;
6387         connector->encoder = encoder;
6388
6389         intel_crtc = to_intel_crtc(crtc);
6390         old->dpms_mode = intel_crtc->dpms_mode;
6391         old->load_detect_temp = true;
6392         old->release_fb = NULL;
6393
6394         if (!mode)
6395                 mode = &load_detect_mode;
6396
6397         old_fb = crtc->fb;
6398
6399         /* We need a framebuffer large enough to accommodate all accesses
6400          * that the plane may generate whilst we perform load detection.
6401          * We can not rely on the fbcon either being present (we get called
6402          * during its initialisation to detect all boot displays, or it may
6403          * not even exist) or that it is large enough to satisfy the
6404          * requested mode.
6405          */
6406         crtc->fb = mode_fits_in_fbdev(dev, mode);
6407         if (crtc->fb == NULL) {
6408                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6409                 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6410                 old->release_fb = crtc->fb;
6411         } else
6412                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6413         if (IS_ERR(crtc->fb)) {
6414                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6415                 crtc->fb = old_fb;
6416                 return false;
6417         }
6418
6419         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6420                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6421                 if (old->release_fb)
6422                         old->release_fb->funcs->destroy(old->release_fb);
6423                 crtc->fb = old_fb;
6424                 return false;
6425         }
6426
6427         /* let the connector get through one full cycle before testing */
6428         intel_wait_for_vblank(dev, intel_crtc->pipe);
6429
6430         return true;
6431 }
6432
6433 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6434                                     struct drm_connector *connector,
6435                                     struct intel_load_detect_pipe *old)
6436 {
6437         struct drm_encoder *encoder = &intel_encoder->base;
6438         struct drm_device *dev = encoder->dev;
6439         struct drm_crtc *crtc = encoder->crtc;
6440         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6441         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6442
6443         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6444                       connector->base.id, drm_get_connector_name(connector),
6445                       encoder->base.id, drm_get_encoder_name(encoder));
6446
6447         if (old->load_detect_temp) {
6448                 connector->encoder = NULL;
6449                 drm_helper_disable_unused_functions(dev);
6450
6451                 if (old->release_fb)
6452                         old->release_fb->funcs->destroy(old->release_fb);
6453
6454                 return;
6455         }
6456
6457         /* Switch crtc and encoder back off if necessary */
6458         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6459                 encoder_funcs->dpms(encoder, old->dpms_mode);
6460                 crtc_funcs->dpms(crtc, old->dpms_mode);
6461         }
6462 }
6463
6464 /* Returns the clock of the currently programmed mode of the given pipe. */
6465 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6466 {
6467         struct drm_i915_private *dev_priv = dev->dev_private;
6468         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6469         int pipe = intel_crtc->pipe;
6470         u32 dpll = I915_READ(DPLL(pipe));
6471         u32 fp;
6472         intel_clock_t clock;
6473
6474         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6475                 fp = I915_READ(FP0(pipe));
6476         else
6477                 fp = I915_READ(FP1(pipe));
6478
6479         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6480         if (IS_PINEVIEW(dev)) {
6481                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6482                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6483         } else {
6484                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6485                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6486         }
6487
6488         if (!IS_GEN2(dev)) {
6489                 if (IS_PINEVIEW(dev))
6490                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6491                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6492                 else
6493                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6494                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6495
6496                 switch (dpll & DPLL_MODE_MASK) {
6497                 case DPLLB_MODE_DAC_SERIAL:
6498                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6499                                 5 : 10;
6500                         break;
6501                 case DPLLB_MODE_LVDS:
6502                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6503                                 7 : 14;
6504                         break;
6505                 default:
6506                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6507                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6508                         return 0;
6509                 }
6510
6511                 /* XXX: Handle the 100Mhz refclk */
6512                 intel_clock(dev, 96000, &clock);
6513         } else {
6514                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6515
6516                 if (is_lvds) {
6517                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6518                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6519                         clock.p2 = 14;
6520
6521                         if ((dpll & PLL_REF_INPUT_MASK) ==
6522                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6523                                 /* XXX: might not be 66MHz */
6524                                 intel_clock(dev, 66000, &clock);
6525                         } else
6526                                 intel_clock(dev, 48000, &clock);
6527                 } else {
6528                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6529                                 clock.p1 = 2;
6530                         else {
6531                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6532                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6533                         }
6534                         if (dpll & PLL_P2_DIVIDE_BY_4)
6535                                 clock.p2 = 4;
6536                         else
6537                                 clock.p2 = 2;
6538
6539                         intel_clock(dev, 48000, &clock);
6540                 }
6541         }
6542
6543         /* XXX: It would be nice to validate the clocks, but we can't reuse
6544          * i830PllIsValid() because it relies on the xf86_config connector
6545          * configuration being accurate, which it isn't necessarily.
6546          */
6547
6548         return clock.dot;
6549 }
6550
6551 /** Returns the currently programmed mode of the given pipe. */
6552 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6553                                              struct drm_crtc *crtc)
6554 {
6555         struct drm_i915_private *dev_priv = dev->dev_private;
6556         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6557         int pipe = intel_crtc->pipe;
6558         struct drm_display_mode *mode;
6559         int htot = I915_READ(HTOTAL(pipe));
6560         int hsync = I915_READ(HSYNC(pipe));
6561         int vtot = I915_READ(VTOTAL(pipe));
6562         int vsync = I915_READ(VSYNC(pipe));
6563
6564         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6565         if (!mode)
6566                 return NULL;
6567
6568         mode->clock = intel_crtc_clock_get(dev, crtc);
6569         mode->hdisplay = (htot & 0xffff) + 1;
6570         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6571         mode->hsync_start = (hsync & 0xffff) + 1;
6572         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6573         mode->vdisplay = (vtot & 0xffff) + 1;
6574         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6575         mode->vsync_start = (vsync & 0xffff) + 1;
6576         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6577
6578         drm_mode_set_name(mode);
6579         drm_mode_set_crtcinfo(mode, 0);
6580
6581         return mode;
6582 }
6583
6584 #define GPU_IDLE_TIMEOUT 500 /* ms */
6585
6586 /* When this timer fires, we've been idle for awhile */
6587 static void intel_gpu_idle_timer(unsigned long arg)
6588 {
6589         struct drm_device *dev = (struct drm_device *)arg;
6590         drm_i915_private_t *dev_priv = dev->dev_private;
6591
6592         if (!list_empty(&dev_priv->mm.active_list)) {
6593                 /* Still processing requests, so just re-arm the timer. */
6594                 mod_timer(&dev_priv->idle_timer, jiffies +
6595                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6596                 return;
6597         }
6598
6599         dev_priv->busy = false;
6600         queue_work(dev_priv->wq, &dev_priv->idle_work);
6601 }
6602
6603 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6604
6605 static void intel_crtc_idle_timer(unsigned long arg)
6606 {
6607         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6608         struct drm_crtc *crtc = &intel_crtc->base;
6609         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6610         struct intel_framebuffer *intel_fb;
6611
6612         intel_fb = to_intel_framebuffer(crtc->fb);
6613         if (intel_fb && intel_fb->obj->active) {
6614                 /* The framebuffer is still being accessed by the GPU. */
6615                 mod_timer(&intel_crtc->idle_timer, jiffies +
6616                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6617                 return;
6618         }
6619
6620         intel_crtc->busy = false;
6621         queue_work(dev_priv->wq, &dev_priv->idle_work);
6622 }
6623
6624 static void intel_increase_pllclock(struct drm_crtc *crtc)
6625 {
6626         struct drm_device *dev = crtc->dev;
6627         drm_i915_private_t *dev_priv = dev->dev_private;
6628         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6629         int pipe = intel_crtc->pipe;
6630         int dpll_reg = DPLL(pipe);
6631         int dpll;
6632
6633         if (HAS_PCH_SPLIT(dev))
6634                 return;
6635
6636         if (!dev_priv->lvds_downclock_avail)
6637                 return;
6638
6639         dpll = I915_READ(dpll_reg);
6640         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6641                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6642
6643                 /* Unlock panel regs */
6644                 I915_WRITE(PP_CONTROL,
6645                            I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6646
6647                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6648                 I915_WRITE(dpll_reg, dpll);
6649                 intel_wait_for_vblank(dev, pipe);
6650
6651                 dpll = I915_READ(dpll_reg);
6652                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6653                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6654
6655                 /* ...and lock them again */
6656                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6657         }
6658
6659         /* Schedule downclock */
6660         mod_timer(&intel_crtc->idle_timer, jiffies +
6661                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6662 }
6663
6664 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6665 {
6666         struct drm_device *dev = crtc->dev;
6667         drm_i915_private_t *dev_priv = dev->dev_private;
6668         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6669         int pipe = intel_crtc->pipe;
6670         int dpll_reg = DPLL(pipe);
6671         int dpll = I915_READ(dpll_reg);
6672
6673         if (HAS_PCH_SPLIT(dev))
6674                 return;
6675
6676         if (!dev_priv->lvds_downclock_avail)
6677                 return;
6678
6679         /*
6680          * Since this is called by a timer, we should never get here in
6681          * the manual case.
6682          */
6683         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6684                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6685
6686                 /* Unlock panel regs */
6687                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6688                            PANEL_UNLOCK_REGS);
6689
6690                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6691                 I915_WRITE(dpll_reg, dpll);
6692                 intel_wait_for_vblank(dev, pipe);
6693                 dpll = I915_READ(dpll_reg);
6694                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6695                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6696
6697                 /* ...and lock them again */
6698                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6699         }
6700
6701 }
6702
6703 /**
6704  * intel_idle_update - adjust clocks for idleness
6705  * @work: work struct
6706  *
6707  * Either the GPU or display (or both) went idle.  Check the busy status
6708  * here and adjust the CRTC and GPU clocks as necessary.
6709  */
6710 static void intel_idle_update(struct work_struct *work)
6711 {
6712         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6713                                                     idle_work);
6714         struct drm_device *dev = dev_priv->dev;
6715         struct drm_crtc *crtc;
6716         struct intel_crtc *intel_crtc;
6717
6718         if (!i915_powersave)
6719                 return;
6720
6721         mutex_lock(&dev->struct_mutex);
6722
6723         i915_update_gfx_val(dev_priv);
6724
6725         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6726                 /* Skip inactive CRTCs */
6727                 if (!crtc->fb)
6728                         continue;
6729
6730                 intel_crtc = to_intel_crtc(crtc);
6731                 if (!intel_crtc->busy)
6732                         intel_decrease_pllclock(crtc);
6733         }
6734
6735
6736         mutex_unlock(&dev->struct_mutex);
6737 }
6738
6739 /**
6740  * intel_mark_busy - mark the GPU and possibly the display busy
6741  * @dev: drm device
6742  * @obj: object we're operating on
6743  *
6744  * Callers can use this function to indicate that the GPU is busy processing
6745  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
6746  * buffer), we'll also mark the display as busy, so we know to increase its
6747  * clock frequency.
6748  */
6749 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6750 {
6751         drm_i915_private_t *dev_priv = dev->dev_private;
6752         struct drm_crtc *crtc = NULL;
6753         struct intel_framebuffer *intel_fb;
6754         struct intel_crtc *intel_crtc;
6755
6756         if (!drm_core_check_feature(dev, DRIVER_MODESET))
6757                 return;
6758
6759         if (!dev_priv->busy)
6760                 dev_priv->busy = true;
6761         else
6762                 mod_timer(&dev_priv->idle_timer, jiffies +
6763                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6764
6765         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6766                 if (!crtc->fb)
6767                         continue;
6768
6769                 intel_crtc = to_intel_crtc(crtc);
6770                 intel_fb = to_intel_framebuffer(crtc->fb);
6771                 if (intel_fb->obj == obj) {
6772                         if (!intel_crtc->busy) {
6773                                 /* Non-busy -> busy, upclock */
6774                                 intel_increase_pllclock(crtc);
6775                                 intel_crtc->busy = true;
6776                         } else {
6777                                 /* Busy -> busy, put off timer */
6778                                 mod_timer(&intel_crtc->idle_timer, jiffies +
6779                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6780                         }
6781                 }
6782         }
6783 }
6784
6785 static void intel_crtc_destroy(struct drm_crtc *crtc)
6786 {
6787         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6788         struct drm_device *dev = crtc->dev;
6789         struct intel_unpin_work *work;
6790         unsigned long flags;
6791
6792         spin_lock_irqsave(&dev->event_lock, flags);
6793         work = intel_crtc->unpin_work;
6794         intel_crtc->unpin_work = NULL;
6795         spin_unlock_irqrestore(&dev->event_lock, flags);
6796
6797         if (work) {
6798                 cancel_work_sync(&work->work);
6799                 kfree(work);
6800         }
6801
6802         drm_crtc_cleanup(crtc);
6803
6804         kfree(intel_crtc);
6805 }
6806
6807 static void intel_unpin_work_fn(struct work_struct *__work)
6808 {
6809         struct intel_unpin_work *work =
6810                 container_of(__work, struct intel_unpin_work, work);
6811
6812         mutex_lock(&work->dev->struct_mutex);
6813         i915_gem_object_unpin(work->old_fb_obj);
6814         drm_gem_object_unreference(&work->pending_flip_obj->base);
6815         drm_gem_object_unreference(&work->old_fb_obj->base);
6816
6817         intel_update_fbc(work->dev);
6818         mutex_unlock(&work->dev->struct_mutex);
6819         kfree(work);
6820 }
6821
6822 static void do_intel_finish_page_flip(struct drm_device *dev,
6823                                       struct drm_crtc *crtc)
6824 {
6825         drm_i915_private_t *dev_priv = dev->dev_private;
6826         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6827         struct intel_unpin_work *work;
6828         struct drm_i915_gem_object *obj;
6829         struct drm_pending_vblank_event *e;
6830         struct timeval tnow, tvbl;
6831         unsigned long flags;
6832
6833         /* Ignore early vblank irqs */
6834         if (intel_crtc == NULL)
6835                 return;
6836
6837         do_gettimeofday(&tnow);
6838
6839         spin_lock_irqsave(&dev->event_lock, flags);
6840         work = intel_crtc->unpin_work;
6841         if (work == NULL || !work->pending) {
6842                 spin_unlock_irqrestore(&dev->event_lock, flags);
6843                 return;
6844         }
6845
6846         intel_crtc->unpin_work = NULL;
6847
6848         if (work->event) {
6849                 e = work->event;
6850                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6851
6852                 /* Called before vblank count and timestamps have
6853                  * been updated for the vblank interval of flip
6854                  * completion? Need to increment vblank count and
6855                  * add one videorefresh duration to returned timestamp
6856                  * to account for this. We assume this happened if we
6857                  * get called over 0.9 frame durations after the last
6858                  * timestamped vblank.
6859                  *
6860                  * This calculation can not be used with vrefresh rates
6861                  * below 5Hz (10Hz to be on the safe side) without
6862                  * promoting to 64 integers.
6863                  */
6864                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6865                     9 * crtc->framedur_ns) {
6866                         e->event.sequence++;
6867                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6868                                              crtc->framedur_ns);
6869                 }
6870
6871                 e->event.tv_sec = tvbl.tv_sec;
6872                 e->event.tv_usec = tvbl.tv_usec;
6873
6874                 list_add_tail(&e->base.link,
6875                               &e->base.file_priv->event_list);
6876                 wake_up_interruptible(&e->base.file_priv->event_wait);
6877         }
6878
6879         drm_vblank_put(dev, intel_crtc->pipe);
6880
6881         spin_unlock_irqrestore(&dev->event_lock, flags);
6882
6883         obj = work->old_fb_obj;
6884
6885         atomic_clear_mask(1 << intel_crtc->plane,
6886                           &obj->pending_flip.counter);
6887         if (atomic_read(&obj->pending_flip) == 0)
6888                 wake_up(&dev_priv->pending_flip_queue);
6889
6890         schedule_work(&work->work);
6891
6892         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6893 }
6894
6895 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6896 {
6897         drm_i915_private_t *dev_priv = dev->dev_private;
6898         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6899
6900         do_intel_finish_page_flip(dev, crtc);
6901 }
6902
6903 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6904 {
6905         drm_i915_private_t *dev_priv = dev->dev_private;
6906         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6907
6908         do_intel_finish_page_flip(dev, crtc);
6909 }
6910
6911 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6912 {
6913         drm_i915_private_t *dev_priv = dev->dev_private;
6914         struct intel_crtc *intel_crtc =
6915                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6916         unsigned long flags;
6917
6918         spin_lock_irqsave(&dev->event_lock, flags);
6919         if (intel_crtc->unpin_work) {
6920                 if ((++intel_crtc->unpin_work->pending) > 1)
6921                         DRM_ERROR("Prepared flip multiple times\n");
6922         } else {
6923                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6924         }
6925         spin_unlock_irqrestore(&dev->event_lock, flags);
6926 }
6927
6928 static int intel_gen2_queue_flip(struct drm_device *dev,
6929                                  struct drm_crtc *crtc,
6930                                  struct drm_framebuffer *fb,
6931                                  struct drm_i915_gem_object *obj)
6932 {
6933         struct drm_i915_private *dev_priv = dev->dev_private;
6934         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6935         unsigned long offset;
6936         u32 flip_mask;
6937         int ret;
6938
6939         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6940         if (ret)
6941                 goto out;
6942
6943         /* Offset into the new buffer for cases of shared fbs between CRTCs */
6944         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6945
6946         ret = BEGIN_LP_RING(6);
6947         if (ret)
6948                 goto out;
6949
6950         /* Can't queue multiple flips, so wait for the previous
6951          * one to finish before executing the next.
6952          */
6953         if (intel_crtc->plane)
6954                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6955         else
6956                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6957         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6958         OUT_RING(MI_NOOP);
6959         OUT_RING(MI_DISPLAY_FLIP |
6960                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6961         OUT_RING(fb->pitch);
6962         OUT_RING(obj->gtt_offset + offset);
6963         OUT_RING(MI_NOOP);
6964         ADVANCE_LP_RING();
6965 out:
6966         return ret;
6967 }
6968
6969 static int intel_gen3_queue_flip(struct drm_device *dev,
6970                                  struct drm_crtc *crtc,
6971                                  struct drm_framebuffer *fb,
6972                                  struct drm_i915_gem_object *obj)
6973 {
6974         struct drm_i915_private *dev_priv = dev->dev_private;
6975         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6976         unsigned long offset;
6977         u32 flip_mask;
6978         int ret;
6979
6980         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6981         if (ret)
6982                 goto out;
6983
6984         /* Offset into the new buffer for cases of shared fbs between CRTCs */
6985         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6986
6987         ret = BEGIN_LP_RING(6);
6988         if (ret)
6989                 goto out;
6990
6991         if (intel_crtc->plane)
6992                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6993         else
6994                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6995         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6996         OUT_RING(MI_NOOP);
6997         OUT_RING(MI_DISPLAY_FLIP_I915 |
6998                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6999         OUT_RING(fb->pitch);
7000         OUT_RING(obj->gtt_offset + offset);
7001         OUT_RING(MI_NOOP);
7002
7003         ADVANCE_LP_RING();
7004 out:
7005         return ret;
7006 }
7007
7008 static int intel_gen4_queue_flip(struct drm_device *dev,
7009                                  struct drm_crtc *crtc,
7010                                  struct drm_framebuffer *fb,
7011                                  struct drm_i915_gem_object *obj)
7012 {
7013         struct drm_i915_private *dev_priv = dev->dev_private;
7014         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7015         uint32_t pf, pipesrc;
7016         int ret;
7017
7018         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7019         if (ret)
7020                 goto out;
7021
7022         ret = BEGIN_LP_RING(4);
7023         if (ret)
7024                 goto out;
7025
7026         /* i965+ uses the linear or tiled offsets from the
7027          * Display Registers (which do not change across a page-flip)
7028          * so we need only reprogram the base address.
7029          */
7030         OUT_RING(MI_DISPLAY_FLIP |
7031                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7032         OUT_RING(fb->pitch);
7033         OUT_RING(obj->gtt_offset | obj->tiling_mode);
7034
7035         /* XXX Enabling the panel-fitter across page-flip is so far
7036          * untested on non-native modes, so ignore it for now.
7037          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7038          */
7039         pf = 0;
7040         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7041         OUT_RING(pf | pipesrc);
7042         ADVANCE_LP_RING();
7043 out:
7044         return ret;
7045 }
7046
7047 static int intel_gen6_queue_flip(struct drm_device *dev,
7048                                  struct drm_crtc *crtc,
7049                                  struct drm_framebuffer *fb,
7050                                  struct drm_i915_gem_object *obj)
7051 {
7052         struct drm_i915_private *dev_priv = dev->dev_private;
7053         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7054         uint32_t pf, pipesrc;
7055         int ret;
7056
7057         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7058         if (ret)
7059                 goto out;
7060
7061         ret = BEGIN_LP_RING(4);
7062         if (ret)
7063                 goto out;
7064
7065         OUT_RING(MI_DISPLAY_FLIP |
7066                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7067         OUT_RING(fb->pitch | obj->tiling_mode);
7068         OUT_RING(obj->gtt_offset);
7069
7070         pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7071         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7072         OUT_RING(pf | pipesrc);
7073         ADVANCE_LP_RING();
7074 out:
7075         return ret;
7076 }
7077
7078 /*
7079  * On gen7 we currently use the blit ring because (in early silicon at least)
7080  * the render ring doesn't give us interrpts for page flip completion, which
7081  * means clients will hang after the first flip is queued.  Fortunately the
7082  * blit ring generates interrupts properly, so use it instead.
7083  */
7084 static int intel_gen7_queue_flip(struct drm_device *dev,
7085                                  struct drm_crtc *crtc,
7086                                  struct drm_framebuffer *fb,
7087                                  struct drm_i915_gem_object *obj)
7088 {
7089         struct drm_i915_private *dev_priv = dev->dev_private;
7090         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7091         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7092         int ret;
7093
7094         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7095         if (ret)
7096                 goto out;
7097
7098         ret = intel_ring_begin(ring, 4);
7099         if (ret)
7100                 goto out;
7101
7102         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7103         intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
7104         intel_ring_emit(ring, (obj->gtt_offset));
7105         intel_ring_emit(ring, (MI_NOOP));
7106         intel_ring_advance(ring);
7107 out:
7108         return ret;
7109 }
7110
7111 static int intel_default_queue_flip(struct drm_device *dev,
7112                                     struct drm_crtc *crtc,
7113                                     struct drm_framebuffer *fb,
7114                                     struct drm_i915_gem_object *obj)
7115 {
7116         return -ENODEV;
7117 }
7118
7119 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7120                                 struct drm_framebuffer *fb,
7121                                 struct drm_pending_vblank_event *event)
7122 {
7123         struct drm_device *dev = crtc->dev;
7124         struct drm_i915_private *dev_priv = dev->dev_private;
7125         struct intel_framebuffer *intel_fb;
7126         struct drm_i915_gem_object *obj;
7127         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7128         struct intel_unpin_work *work;
7129         unsigned long flags;
7130         int ret;
7131
7132         work = kzalloc(sizeof *work, GFP_KERNEL);
7133         if (work == NULL)
7134                 return -ENOMEM;
7135
7136         work->event = event;
7137         work->dev = crtc->dev;
7138         intel_fb = to_intel_framebuffer(crtc->fb);
7139         work->old_fb_obj = intel_fb->obj;
7140         INIT_WORK(&work->work, intel_unpin_work_fn);
7141
7142         /* We borrow the event spin lock for protecting unpin_work */
7143         spin_lock_irqsave(&dev->event_lock, flags);
7144         if (intel_crtc->unpin_work) {
7145                 spin_unlock_irqrestore(&dev->event_lock, flags);
7146                 kfree(work);
7147
7148                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7149                 return -EBUSY;
7150         }
7151         intel_crtc->unpin_work = work;
7152         spin_unlock_irqrestore(&dev->event_lock, flags);
7153
7154         intel_fb = to_intel_framebuffer(fb);
7155         obj = intel_fb->obj;
7156
7157         mutex_lock(&dev->struct_mutex);
7158
7159         /* Reference the objects for the scheduled work. */
7160         drm_gem_object_reference(&work->old_fb_obj->base);
7161         drm_gem_object_reference(&obj->base);
7162
7163         crtc->fb = fb;
7164
7165         ret = drm_vblank_get(dev, intel_crtc->pipe);
7166         if (ret)
7167                 goto cleanup_objs;
7168
7169         work->pending_flip_obj = obj;
7170
7171         work->enable_stall_check = true;
7172
7173         /* Block clients from rendering to the new back buffer until
7174          * the flip occurs and the object is no longer visible.
7175          */
7176         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7177
7178         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7179         if (ret)
7180                 goto cleanup_pending;
7181
7182         intel_disable_fbc(dev);
7183         mutex_unlock(&dev->struct_mutex);
7184
7185         trace_i915_flip_request(intel_crtc->plane, obj);
7186
7187         return 0;
7188
7189 cleanup_pending:
7190         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7191 cleanup_objs:
7192         drm_gem_object_unreference(&work->old_fb_obj->base);
7193         drm_gem_object_unreference(&obj->base);
7194         mutex_unlock(&dev->struct_mutex);
7195
7196         spin_lock_irqsave(&dev->event_lock, flags);
7197         intel_crtc->unpin_work = NULL;
7198         spin_unlock_irqrestore(&dev->event_lock, flags);
7199
7200         kfree(work);
7201
7202         return ret;
7203 }
7204
7205 static void intel_sanitize_modesetting(struct drm_device *dev,
7206                                        int pipe, int plane)
7207 {
7208         struct drm_i915_private *dev_priv = dev->dev_private;
7209         u32 reg, val;
7210
7211         if (HAS_PCH_SPLIT(dev))
7212                 return;
7213
7214         /* Who knows what state these registers were left in by the BIOS or
7215          * grub?
7216          *
7217          * If we leave the registers in a conflicting state (e.g. with the
7218          * display plane reading from the other pipe than the one we intend
7219          * to use) then when we attempt to teardown the active mode, we will
7220          * not disable the pipes and planes in the correct order -- leaving
7221          * a plane reading from a disabled pipe and possibly leading to
7222          * undefined behaviour.
7223          */
7224
7225         reg = DSPCNTR(plane);
7226         val = I915_READ(reg);
7227
7228         if ((val & DISPLAY_PLANE_ENABLE) == 0)
7229                 return;
7230         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7231                 return;
7232
7233         /* This display plane is active and attached to the other CPU pipe. */
7234         pipe = !pipe;
7235
7236         /* Disable the plane and wait for it to stop reading from the pipe. */
7237         intel_disable_plane(dev_priv, plane, pipe);
7238         intel_disable_pipe(dev_priv, pipe);
7239 }
7240
7241 static void intel_crtc_reset(struct drm_crtc *crtc)
7242 {
7243         struct drm_device *dev = crtc->dev;
7244         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7245
7246         /* Reset flags back to the 'unknown' status so that they
7247          * will be correctly set on the initial modeset.
7248          */
7249         intel_crtc->dpms_mode = -1;
7250
7251         /* We need to fix up any BIOS configuration that conflicts with
7252          * our expectations.
7253          */
7254         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7255 }
7256
7257 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7258         .dpms = intel_crtc_dpms,
7259         .mode_fixup = intel_crtc_mode_fixup,
7260         .mode_set = intel_crtc_mode_set,
7261         .mode_set_base = intel_pipe_set_base,
7262         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7263         .load_lut = intel_crtc_load_lut,
7264         .disable = intel_crtc_disable,
7265 };
7266
7267 static const struct drm_crtc_funcs intel_crtc_funcs = {
7268         .reset = intel_crtc_reset,
7269         .cursor_set = intel_crtc_cursor_set,
7270         .cursor_move = intel_crtc_cursor_move,
7271         .gamma_set = intel_crtc_gamma_set,
7272         .set_config = drm_crtc_helper_set_config,
7273         .destroy = intel_crtc_destroy,
7274         .page_flip = intel_crtc_page_flip,
7275 };
7276
7277 static void intel_crtc_init(struct drm_device *dev, int pipe)
7278 {
7279         drm_i915_private_t *dev_priv = dev->dev_private;
7280         struct intel_crtc *intel_crtc;
7281         int i;
7282
7283         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7284         if (intel_crtc == NULL)
7285                 return;
7286
7287         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7288
7289         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7290         for (i = 0; i < 256; i++) {
7291                 intel_crtc->lut_r[i] = i;
7292                 intel_crtc->lut_g[i] = i;
7293                 intel_crtc->lut_b[i] = i;
7294         }
7295
7296         /* Swap pipes & planes for FBC on pre-965 */
7297         intel_crtc->pipe = pipe;
7298         intel_crtc->plane = pipe;
7299         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7300                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7301                 intel_crtc->plane = !pipe;
7302         }
7303
7304         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7305                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7306         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7307         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7308
7309         intel_crtc_reset(&intel_crtc->base);
7310         intel_crtc->active = true; /* force the pipe off on setup_init_config */
7311         intel_crtc->bpp = 24; /* default for pre-Ironlake */
7312
7313         if (HAS_PCH_SPLIT(dev)) {
7314                 if (pipe == 2 && IS_IVYBRIDGE(dev))
7315                         intel_crtc->no_pll = true;
7316                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7317                 intel_helper_funcs.commit = ironlake_crtc_commit;
7318         } else {
7319                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7320                 intel_helper_funcs.commit = i9xx_crtc_commit;
7321         }
7322
7323         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7324
7325         intel_crtc->busy = false;
7326
7327         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7328                     (unsigned long)intel_crtc);
7329 }
7330
7331 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7332                                 struct drm_file *file)
7333 {
7334         drm_i915_private_t *dev_priv = dev->dev_private;
7335         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7336         struct drm_mode_object *drmmode_obj;
7337         struct intel_crtc *crtc;
7338
7339         if (!dev_priv) {
7340                 DRM_ERROR("called with no initialization\n");
7341                 return -EINVAL;
7342         }
7343
7344         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7345                         DRM_MODE_OBJECT_CRTC);
7346
7347         if (!drmmode_obj) {
7348                 DRM_ERROR("no such CRTC id\n");
7349                 return -EINVAL;
7350         }
7351
7352         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7353         pipe_from_crtc_id->pipe = crtc->pipe;
7354
7355         return 0;
7356 }
7357
7358 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7359 {
7360         struct intel_encoder *encoder;
7361         int index_mask = 0;
7362         int entry = 0;
7363
7364         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7365                 if (type_mask & encoder->clone_mask)
7366                         index_mask |= (1 << entry);
7367                 entry++;
7368         }
7369
7370         return index_mask;
7371 }
7372
7373 static bool has_edp_a(struct drm_device *dev)
7374 {
7375         struct drm_i915_private *dev_priv = dev->dev_private;
7376
7377         if (!IS_MOBILE(dev))
7378                 return false;
7379
7380         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7381                 return false;
7382
7383         if (IS_GEN5(dev) &&
7384             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7385                 return false;
7386
7387         return true;
7388 }
7389
7390 static void intel_setup_outputs(struct drm_device *dev)
7391 {
7392         struct drm_i915_private *dev_priv = dev->dev_private;
7393         struct intel_encoder *encoder;
7394         bool dpd_is_edp = false;
7395         bool has_lvds = false;
7396
7397         if (IS_MOBILE(dev) && !IS_I830(dev))
7398                 has_lvds = intel_lvds_init(dev);
7399         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7400                 /* disable the panel fitter on everything but LVDS */
7401                 I915_WRITE(PFIT_CONTROL, 0);
7402         }
7403
7404         if (HAS_PCH_SPLIT(dev)) {
7405                 dpd_is_edp = intel_dpd_is_edp(dev);
7406
7407                 if (has_edp_a(dev))
7408                         intel_dp_init(dev, DP_A);
7409
7410                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7411                         intel_dp_init(dev, PCH_DP_D);
7412         }
7413
7414         intel_crt_init(dev);
7415
7416         if (HAS_PCH_SPLIT(dev)) {
7417                 int found;
7418
7419                 if (I915_READ(HDMIB) & PORT_DETECTED) {
7420                         /* PCH SDVOB multiplex with HDMIB */
7421                         found = intel_sdvo_init(dev, PCH_SDVOB);
7422                         if (!found)
7423                                 intel_hdmi_init(dev, HDMIB);
7424                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7425                                 intel_dp_init(dev, PCH_DP_B);
7426                 }
7427
7428                 if (I915_READ(HDMIC) & PORT_DETECTED)
7429                         intel_hdmi_init(dev, HDMIC);
7430
7431                 if (I915_READ(HDMID) & PORT_DETECTED)
7432                         intel_hdmi_init(dev, HDMID);
7433
7434                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7435                         intel_dp_init(dev, PCH_DP_C);
7436
7437                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7438                         intel_dp_init(dev, PCH_DP_D);
7439
7440         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7441                 bool found = false;
7442
7443                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7444                         DRM_DEBUG_KMS("probing SDVOB\n");
7445                         found = intel_sdvo_init(dev, SDVOB);
7446                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7447                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7448                                 intel_hdmi_init(dev, SDVOB);
7449                         }
7450
7451                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7452                                 DRM_DEBUG_KMS("probing DP_B\n");
7453                                 intel_dp_init(dev, DP_B);
7454                         }
7455                 }
7456
7457                 /* Before G4X SDVOC doesn't have its own detect register */
7458
7459                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7460                         DRM_DEBUG_KMS("probing SDVOC\n");
7461                         found = intel_sdvo_init(dev, SDVOC);
7462                 }
7463
7464                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7465
7466                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7467                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7468                                 intel_hdmi_init(dev, SDVOC);
7469                         }
7470                         if (SUPPORTS_INTEGRATED_DP(dev)) {
7471                                 DRM_DEBUG_KMS("probing DP_C\n");
7472                                 intel_dp_init(dev, DP_C);
7473                         }
7474                 }
7475
7476                 if (SUPPORTS_INTEGRATED_DP(dev) &&
7477                     (I915_READ(DP_D) & DP_DETECTED)) {
7478                         DRM_DEBUG_KMS("probing DP_D\n");
7479                         intel_dp_init(dev, DP_D);
7480                 }
7481         } else if (IS_GEN2(dev))
7482                 intel_dvo_init(dev);
7483
7484         if (SUPPORTS_TV(dev))
7485                 intel_tv_init(dev);
7486
7487         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7488                 encoder->base.possible_crtcs = encoder->crtc_mask;
7489                 encoder->base.possible_clones =
7490                         intel_encoder_clones(dev, encoder->clone_mask);
7491         }
7492
7493         /* disable all the possible outputs/crtcs before entering KMS mode */
7494         drm_helper_disable_unused_functions(dev);
7495
7496         if (HAS_PCH_SPLIT(dev))
7497                 ironlake_init_pch_refclk(dev);
7498 }
7499
7500 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7501 {
7502         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7503
7504         drm_framebuffer_cleanup(fb);
7505         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7506
7507         kfree(intel_fb);
7508 }
7509
7510 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7511                                                 struct drm_file *file,
7512                                                 unsigned int *handle)
7513 {
7514         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7515         struct drm_i915_gem_object *obj = intel_fb->obj;
7516
7517         return drm_gem_handle_create(file, &obj->base, handle);
7518 }
7519
7520 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7521         .destroy = intel_user_framebuffer_destroy,
7522         .create_handle = intel_user_framebuffer_create_handle,
7523 };
7524
7525 int intel_framebuffer_init(struct drm_device *dev,
7526                            struct intel_framebuffer *intel_fb,
7527                            struct drm_mode_fb_cmd *mode_cmd,
7528                            struct drm_i915_gem_object *obj)
7529 {
7530         int ret;
7531
7532         if (obj->tiling_mode == I915_TILING_Y)
7533                 return -EINVAL;
7534
7535         if (mode_cmd->pitch & 63)
7536                 return -EINVAL;
7537
7538         switch (mode_cmd->bpp) {
7539         case 8:
7540         case 16:
7541                 /* Only pre-ILK can handle 5:5:5 */
7542                 if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev))
7543                         return -EINVAL;
7544                 break;
7545
7546         case 24:
7547         case 32:
7548                 break;
7549         default:
7550                 return -EINVAL;
7551         }
7552
7553         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7554         if (ret) {
7555                 DRM_ERROR("framebuffer init failed %d\n", ret);
7556                 return ret;
7557         }
7558
7559         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7560         intel_fb->obj = obj;
7561         return 0;
7562 }
7563
7564 static struct drm_framebuffer *
7565 intel_user_framebuffer_create(struct drm_device *dev,
7566                               struct drm_file *filp,
7567                               struct drm_mode_fb_cmd *mode_cmd)
7568 {
7569         struct drm_i915_gem_object *obj;
7570
7571         obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
7572         if (&obj->base == NULL)
7573                 return ERR_PTR(-ENOENT);
7574
7575         return intel_framebuffer_create(dev, mode_cmd, obj);
7576 }
7577
7578 static const struct drm_mode_config_funcs intel_mode_funcs = {
7579         .fb_create = intel_user_framebuffer_create,
7580         .output_poll_changed = intel_fb_output_poll_changed,
7581 };
7582
7583 static struct drm_i915_gem_object *
7584 intel_alloc_context_page(struct drm_device *dev)
7585 {
7586         struct drm_i915_gem_object *ctx;
7587         int ret;
7588
7589         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7590
7591         ctx = i915_gem_alloc_object(dev, 4096);
7592         if (!ctx) {
7593                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7594                 return NULL;
7595         }
7596
7597         ret = i915_gem_object_pin(ctx, 4096, true);
7598         if (ret) {
7599                 DRM_ERROR("failed to pin power context: %d\n", ret);
7600                 goto err_unref;
7601         }
7602
7603         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7604         if (ret) {
7605                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7606                 goto err_unpin;
7607         }
7608
7609         return ctx;
7610
7611 err_unpin:
7612         i915_gem_object_unpin(ctx);
7613 err_unref:
7614         drm_gem_object_unreference(&ctx->base);
7615         mutex_unlock(&dev->struct_mutex);
7616         return NULL;
7617 }
7618
7619 bool ironlake_set_drps(struct drm_device *dev, u8 val)
7620 {
7621         struct drm_i915_private *dev_priv = dev->dev_private;
7622         u16 rgvswctl;
7623
7624         rgvswctl = I915_READ16(MEMSWCTL);
7625         if (rgvswctl & MEMCTL_CMD_STS) {
7626                 DRM_DEBUG("gpu busy, RCS change rejected\n");
7627                 return false; /* still busy with another command */
7628         }
7629
7630         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7631                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7632         I915_WRITE16(MEMSWCTL, rgvswctl);
7633         POSTING_READ16(MEMSWCTL);
7634
7635         rgvswctl |= MEMCTL_CMD_STS;
7636         I915_WRITE16(MEMSWCTL, rgvswctl);
7637
7638         return true;
7639 }
7640
7641 void ironlake_enable_drps(struct drm_device *dev)
7642 {
7643         struct drm_i915_private *dev_priv = dev->dev_private;
7644         u32 rgvmodectl = I915_READ(MEMMODECTL);
7645         u8 fmax, fmin, fstart, vstart;
7646
7647         /* Enable temp reporting */
7648         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7649         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7650
7651         /* 100ms RC evaluation intervals */
7652         I915_WRITE(RCUPEI, 100000);
7653         I915_WRITE(RCDNEI, 100000);
7654
7655         /* Set max/min thresholds to 90ms and 80ms respectively */
7656         I915_WRITE(RCBMAXAVG, 90000);
7657         I915_WRITE(RCBMINAVG, 80000);
7658
7659         I915_WRITE(MEMIHYST, 1);
7660
7661         /* Set up min, max, and cur for interrupt handling */
7662         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7663         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7664         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7665                 MEMMODE_FSTART_SHIFT;
7666
7667         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7668                 PXVFREQ_PX_SHIFT;
7669
7670         dev_priv->fmax = fmax; /* IPS callback will increase this */
7671         dev_priv->fstart = fstart;
7672
7673         dev_priv->max_delay = fstart;
7674         dev_priv->min_delay = fmin;
7675         dev_priv->cur_delay = fstart;
7676
7677         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7678                          fmax, fmin, fstart);
7679
7680         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7681
7682         /*
7683          * Interrupts will be enabled in ironlake_irq_postinstall
7684          */
7685
7686         I915_WRITE(VIDSTART, vstart);
7687         POSTING_READ(VIDSTART);
7688
7689         rgvmodectl |= MEMMODE_SWMODE_EN;
7690         I915_WRITE(MEMMODECTL, rgvmodectl);
7691
7692         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7693                 DRM_ERROR("stuck trying to change perf mode\n");
7694         msleep(1);
7695
7696         ironlake_set_drps(dev, fstart);
7697
7698         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7699                 I915_READ(0x112e0);
7700         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7701         dev_priv->last_count2 = I915_READ(0x112f4);
7702         getrawmonotonic(&dev_priv->last_time2);
7703 }
7704
7705 void ironlake_disable_drps(struct drm_device *dev)
7706 {
7707         struct drm_i915_private *dev_priv = dev->dev_private;
7708         u16 rgvswctl = I915_READ16(MEMSWCTL);
7709
7710         /* Ack interrupts, disable EFC interrupt */
7711         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7712         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7713         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7714         I915_WRITE(DEIIR, DE_PCU_EVENT);
7715         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7716
7717         /* Go back to the starting frequency */
7718         ironlake_set_drps(dev, dev_priv->fstart);
7719         msleep(1);
7720         rgvswctl |= MEMCTL_CMD_STS;
7721         I915_WRITE(MEMSWCTL, rgvswctl);
7722         msleep(1);
7723
7724 }
7725
7726 void gen6_set_rps(struct drm_device *dev, u8 val)
7727 {
7728         struct drm_i915_private *dev_priv = dev->dev_private;
7729         u32 swreq;
7730
7731         swreq = (val & 0x3ff) << 25;
7732         I915_WRITE(GEN6_RPNSWREQ, swreq);
7733 }
7734
7735 void gen6_disable_rps(struct drm_device *dev)
7736 {
7737         struct drm_i915_private *dev_priv = dev->dev_private;
7738
7739         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7740         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7741         I915_WRITE(GEN6_PMIER, 0);
7742         /* Complete PM interrupt masking here doesn't race with the rps work
7743          * item again unmasking PM interrupts because that is using a different
7744          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
7745          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
7746
7747         spin_lock_irq(&dev_priv->rps_lock);
7748         dev_priv->pm_iir = 0;
7749         spin_unlock_irq(&dev_priv->rps_lock);
7750
7751         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7752 }
7753
7754 static unsigned long intel_pxfreq(u32 vidfreq)
7755 {
7756         unsigned long freq;
7757         int div = (vidfreq & 0x3f0000) >> 16;
7758         int post = (vidfreq & 0x3000) >> 12;
7759         int pre = (vidfreq & 0x7);
7760
7761         if (!pre)
7762                 return 0;
7763
7764         freq = ((div * 133333) / ((1<<post) * pre));
7765
7766         return freq;
7767 }
7768
7769 void intel_init_emon(struct drm_device *dev)
7770 {
7771         struct drm_i915_private *dev_priv = dev->dev_private;
7772         u32 lcfuse;
7773         u8 pxw[16];
7774         int i;
7775
7776         /* Disable to program */
7777         I915_WRITE(ECR, 0);
7778         POSTING_READ(ECR);
7779
7780         /* Program energy weights for various events */
7781         I915_WRITE(SDEW, 0x15040d00);
7782         I915_WRITE(CSIEW0, 0x007f0000);
7783         I915_WRITE(CSIEW1, 0x1e220004);
7784         I915_WRITE(CSIEW2, 0x04000004);
7785
7786         for (i = 0; i < 5; i++)
7787                 I915_WRITE(PEW + (i * 4), 0);
7788         for (i = 0; i < 3; i++)
7789                 I915_WRITE(DEW + (i * 4), 0);
7790
7791         /* Program P-state weights to account for frequency power adjustment */
7792         for (i = 0; i < 16; i++) {
7793                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7794                 unsigned long freq = intel_pxfreq(pxvidfreq);
7795                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7796                         PXVFREQ_PX_SHIFT;
7797                 unsigned long val;
7798
7799                 val = vid * vid;
7800                 val *= (freq / 1000);
7801                 val *= 255;
7802                 val /= (127*127*900);
7803                 if (val > 0xff)
7804                         DRM_ERROR("bad pxval: %ld\n", val);
7805                 pxw[i] = val;
7806         }
7807         /* Render standby states get 0 weight */
7808         pxw[14] = 0;
7809         pxw[15] = 0;
7810
7811         for (i = 0; i < 4; i++) {
7812                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7813                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7814                 I915_WRITE(PXW + (i * 4), val);
7815         }
7816
7817         /* Adjust magic regs to magic values (more experimental results) */
7818         I915_WRITE(OGW0, 0);
7819         I915_WRITE(OGW1, 0);
7820         I915_WRITE(EG0, 0x00007f00);
7821         I915_WRITE(EG1, 0x0000000e);
7822         I915_WRITE(EG2, 0x000e0000);
7823         I915_WRITE(EG3, 0x68000300);
7824         I915_WRITE(EG4, 0x42000000);
7825         I915_WRITE(EG5, 0x00140031);
7826         I915_WRITE(EG6, 0);
7827         I915_WRITE(EG7, 0);
7828
7829         for (i = 0; i < 8; i++)
7830                 I915_WRITE(PXWL + (i * 4), 0);
7831
7832         /* Enable PMON + select events */
7833         I915_WRITE(ECR, 0x80000019);
7834
7835         lcfuse = I915_READ(LCFUSE02);
7836
7837         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7838 }
7839
7840 void gen6_enable_rps(struct drm_i915_private *dev_priv)
7841 {
7842         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7843         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7844         u32 pcu_mbox, rc6_mask = 0;
7845         int cur_freq, min_freq, max_freq;
7846         int i;
7847
7848         /* Here begins a magic sequence of register writes to enable
7849          * auto-downclocking.
7850          *
7851          * Perhaps there might be some value in exposing these to
7852          * userspace...
7853          */
7854         I915_WRITE(GEN6_RC_STATE, 0);
7855         mutex_lock(&dev_priv->dev->struct_mutex);
7856         gen6_gt_force_wake_get(dev_priv);
7857
7858         /* disable the counters and set deterministic thresholds */
7859         I915_WRITE(GEN6_RC_CONTROL, 0);
7860
7861         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7862         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7863         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7864         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7865         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7866
7867         for (i = 0; i < I915_NUM_RINGS; i++)
7868                 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7869
7870         I915_WRITE(GEN6_RC_SLEEP, 0);
7871         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7872         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7873         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7874         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7875
7876         if (i915_enable_rc6)
7877                 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7878                         GEN6_RC_CTL_RC6_ENABLE;
7879
7880         I915_WRITE(GEN6_RC_CONTROL,
7881                    rc6_mask |
7882                    GEN6_RC_CTL_EI_MODE(1) |
7883                    GEN6_RC_CTL_HW_ENABLE);
7884
7885         I915_WRITE(GEN6_RPNSWREQ,
7886                    GEN6_FREQUENCY(10) |
7887                    GEN6_OFFSET(0) |
7888                    GEN6_AGGRESSIVE_TURBO);
7889         I915_WRITE(GEN6_RC_VIDEO_FREQ,
7890                    GEN6_FREQUENCY(12));
7891
7892         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7893         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7894                    18 << 24 |
7895                    6 << 16);
7896         I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7897         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7898         I915_WRITE(GEN6_RP_UP_EI, 100000);
7899         I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7900         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7901         I915_WRITE(GEN6_RP_CONTROL,
7902                    GEN6_RP_MEDIA_TURBO |
7903                    GEN6_RP_USE_NORMAL_FREQ |
7904                    GEN6_RP_MEDIA_IS_GFX |
7905                    GEN6_RP_ENABLE |
7906                    GEN6_RP_UP_BUSY_AVG |
7907                    GEN6_RP_DOWN_IDLE_CONT);
7908
7909         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7910                      500))
7911                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7912
7913         I915_WRITE(GEN6_PCODE_DATA, 0);
7914         I915_WRITE(GEN6_PCODE_MAILBOX,
7915                    GEN6_PCODE_READY |
7916                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7917         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7918                      500))
7919                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7920
7921         min_freq = (rp_state_cap & 0xff0000) >> 16;
7922         max_freq = rp_state_cap & 0xff;
7923         cur_freq = (gt_perf_status & 0xff00) >> 8;
7924
7925         /* Check for overclock support */
7926         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7927                      500))
7928                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7929         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7930         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7931         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7932                      500))
7933                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7934         if (pcu_mbox & (1<<31)) { /* OC supported */
7935                 max_freq = pcu_mbox & 0xff;
7936                 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
7937         }
7938
7939         /* In units of 100MHz */
7940         dev_priv->max_delay = max_freq;
7941         dev_priv->min_delay = min_freq;
7942         dev_priv->cur_delay = cur_freq;
7943
7944         /* requires MSI enabled */
7945         I915_WRITE(GEN6_PMIER,
7946                    GEN6_PM_MBOX_EVENT |
7947                    GEN6_PM_THERMAL_EVENT |
7948                    GEN6_PM_RP_DOWN_TIMEOUT |
7949                    GEN6_PM_RP_UP_THRESHOLD |
7950                    GEN6_PM_RP_DOWN_THRESHOLD |
7951                    GEN6_PM_RP_UP_EI_EXPIRED |
7952                    GEN6_PM_RP_DOWN_EI_EXPIRED);
7953         spin_lock_irq(&dev_priv->rps_lock);
7954         WARN_ON(dev_priv->pm_iir != 0);
7955         I915_WRITE(GEN6_PMIMR, 0);
7956         spin_unlock_irq(&dev_priv->rps_lock);
7957         /* enable all PM interrupts */
7958         I915_WRITE(GEN6_PMINTRMSK, 0);
7959
7960         gen6_gt_force_wake_put(dev_priv);
7961         mutex_unlock(&dev_priv->dev->struct_mutex);
7962 }
7963
7964 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7965 {
7966         int min_freq = 15;
7967         int gpu_freq, ia_freq, max_ia_freq;
7968         int scaling_factor = 180;
7969
7970         max_ia_freq = cpufreq_quick_get_max(0);
7971         /*
7972          * Default to measured freq if none found, PCU will ensure we don't go
7973          * over
7974          */
7975         if (!max_ia_freq)
7976                 max_ia_freq = tsc_khz;
7977
7978         /* Convert from kHz to MHz */
7979         max_ia_freq /= 1000;
7980
7981         mutex_lock(&dev_priv->dev->struct_mutex);
7982
7983         /*
7984          * For each potential GPU frequency, load a ring frequency we'd like
7985          * to use for memory access.  We do this by specifying the IA frequency
7986          * the PCU should use as a reference to determine the ring frequency.
7987          */
7988         for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
7989              gpu_freq--) {
7990                 int diff = dev_priv->max_delay - gpu_freq;
7991
7992                 /*
7993                  * For GPU frequencies less than 750MHz, just use the lowest
7994                  * ring freq.
7995                  */
7996                 if (gpu_freq < min_freq)
7997                         ia_freq = 800;
7998                 else
7999                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8000                 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8001
8002                 I915_WRITE(GEN6_PCODE_DATA,
8003                            (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8004                            gpu_freq);
8005                 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8006                            GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8007                 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8008                               GEN6_PCODE_READY) == 0, 10)) {
8009                         DRM_ERROR("pcode write of freq table timed out\n");
8010                         continue;
8011                 }
8012         }
8013
8014         mutex_unlock(&dev_priv->dev->struct_mutex);
8015 }
8016
8017 static void ironlake_init_clock_gating(struct drm_device *dev)
8018 {
8019         struct drm_i915_private *dev_priv = dev->dev_private;
8020         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8021
8022         /* Required for FBC */
8023         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8024                 DPFCRUNIT_CLOCK_GATE_DISABLE |
8025                 DPFDUNIT_CLOCK_GATE_DISABLE;
8026         /* Required for CxSR */
8027         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8028
8029         I915_WRITE(PCH_3DCGDIS0,
8030                    MARIUNIT_CLOCK_GATE_DISABLE |
8031                    SVSMUNIT_CLOCK_GATE_DISABLE);
8032         I915_WRITE(PCH_3DCGDIS1,
8033                    VFMUNIT_CLOCK_GATE_DISABLE);
8034
8035         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8036
8037         /*
8038          * According to the spec the following bits should be set in
8039          * order to enable memory self-refresh
8040          * The bit 22/21 of 0x42004
8041          * The bit 5 of 0x42020
8042          * The bit 15 of 0x45000
8043          */
8044         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8045                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
8046                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8047         I915_WRITE(ILK_DSPCLK_GATE,
8048                    (I915_READ(ILK_DSPCLK_GATE) |
8049                     ILK_DPARB_CLK_GATE));
8050         I915_WRITE(DISP_ARB_CTL,
8051                    (I915_READ(DISP_ARB_CTL) |
8052                     DISP_FBC_WM_DIS));
8053         I915_WRITE(WM3_LP_ILK, 0);
8054         I915_WRITE(WM2_LP_ILK, 0);
8055         I915_WRITE(WM1_LP_ILK, 0);
8056
8057         /*
8058          * Based on the document from hardware guys the following bits
8059          * should be set unconditionally in order to enable FBC.
8060          * The bit 22 of 0x42000
8061          * The bit 22 of 0x42004
8062          * The bit 7,8,9 of 0x42020.
8063          */
8064         if (IS_IRONLAKE_M(dev)) {
8065                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8066                            I915_READ(ILK_DISPLAY_CHICKEN1) |
8067                            ILK_FBCQ_DIS);
8068                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8069                            I915_READ(ILK_DISPLAY_CHICKEN2) |
8070                            ILK_DPARB_GATE);
8071                 I915_WRITE(ILK_DSPCLK_GATE,
8072                            I915_READ(ILK_DSPCLK_GATE) |
8073                            ILK_DPFC_DIS1 |
8074                            ILK_DPFC_DIS2 |
8075                            ILK_CLK_FBC);
8076         }
8077
8078         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8079                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8080                    ILK_ELPIN_409_SELECT);
8081         I915_WRITE(_3D_CHICKEN2,
8082                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8083                    _3D_CHICKEN2_WM_READ_PIPELINED);
8084 }
8085
8086 static void gen6_init_clock_gating(struct drm_device *dev)
8087 {
8088         struct drm_i915_private *dev_priv = dev->dev_private;
8089         int pipe;
8090         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8091
8092         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8093
8094         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8095                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8096                    ILK_ELPIN_409_SELECT);
8097
8098         I915_WRITE(WM3_LP_ILK, 0);
8099         I915_WRITE(WM2_LP_ILK, 0);
8100         I915_WRITE(WM1_LP_ILK, 0);
8101
8102         /*
8103          * According to the spec the following bits should be
8104          * set in order to enable memory self-refresh and fbc:
8105          * The bit21 and bit22 of 0x42000
8106          * The bit21 and bit22 of 0x42004
8107          * The bit5 and bit7 of 0x42020
8108          * The bit14 of 0x70180
8109          * The bit14 of 0x71180
8110          */
8111         I915_WRITE(ILK_DISPLAY_CHICKEN1,
8112                    I915_READ(ILK_DISPLAY_CHICKEN1) |
8113                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8114         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8115                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8116                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8117         I915_WRITE(ILK_DSPCLK_GATE,
8118                    I915_READ(ILK_DSPCLK_GATE) |
8119                    ILK_DPARB_CLK_GATE  |
8120                    ILK_DPFD_CLK_GATE);
8121
8122         for_each_pipe(pipe) {
8123                 I915_WRITE(DSPCNTR(pipe),
8124                            I915_READ(DSPCNTR(pipe)) |
8125                            DISPPLANE_TRICKLE_FEED_DISABLE);
8126                 intel_flush_display_plane(dev_priv, pipe);
8127         }
8128 }
8129
8130 static void ivybridge_init_clock_gating(struct drm_device *dev)
8131 {
8132         struct drm_i915_private *dev_priv = dev->dev_private;
8133         int pipe;
8134         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8135
8136         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8137
8138         I915_WRITE(WM3_LP_ILK, 0);
8139         I915_WRITE(WM2_LP_ILK, 0);
8140         I915_WRITE(WM1_LP_ILK, 0);
8141
8142         I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8143
8144         for_each_pipe(pipe) {
8145                 I915_WRITE(DSPCNTR(pipe),
8146                            I915_READ(DSPCNTR(pipe)) |
8147                            DISPPLANE_TRICKLE_FEED_DISABLE);
8148                 intel_flush_display_plane(dev_priv, pipe);
8149         }
8150 }
8151
8152 static void g4x_init_clock_gating(struct drm_device *dev)
8153 {
8154         struct drm_i915_private *dev_priv = dev->dev_private;
8155         uint32_t dspclk_gate;
8156
8157         I915_WRITE(RENCLK_GATE_D1, 0);
8158         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8159                    GS_UNIT_CLOCK_GATE_DISABLE |
8160                    CL_UNIT_CLOCK_GATE_DISABLE);
8161         I915_WRITE(RAMCLK_GATE_D, 0);
8162         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8163                 OVRUNIT_CLOCK_GATE_DISABLE |
8164                 OVCUNIT_CLOCK_GATE_DISABLE;
8165         if (IS_GM45(dev))
8166                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8167         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8168 }
8169
8170 static void crestline_init_clock_gating(struct drm_device *dev)
8171 {
8172         struct drm_i915_private *dev_priv = dev->dev_private;
8173
8174         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8175         I915_WRITE(RENCLK_GATE_D2, 0);
8176         I915_WRITE(DSPCLK_GATE_D, 0);
8177         I915_WRITE(RAMCLK_GATE_D, 0);
8178         I915_WRITE16(DEUC, 0);
8179 }
8180
8181 static void broadwater_init_clock_gating(struct drm_device *dev)
8182 {
8183         struct drm_i915_private *dev_priv = dev->dev_private;
8184
8185         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8186                    I965_RCC_CLOCK_GATE_DISABLE |
8187                    I965_RCPB_CLOCK_GATE_DISABLE |
8188                    I965_ISC_CLOCK_GATE_DISABLE |
8189                    I965_FBC_CLOCK_GATE_DISABLE);
8190         I915_WRITE(RENCLK_GATE_D2, 0);
8191 }
8192
8193 static void gen3_init_clock_gating(struct drm_device *dev)
8194 {
8195         struct drm_i915_private *dev_priv = dev->dev_private;
8196         u32 dstate = I915_READ(D_STATE);
8197
8198         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8199                 DSTATE_DOT_CLOCK_GATING;
8200         I915_WRITE(D_STATE, dstate);
8201 }
8202
8203 static void i85x_init_clock_gating(struct drm_device *dev)
8204 {
8205         struct drm_i915_private *dev_priv = dev->dev_private;
8206
8207         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8208 }
8209
8210 static void i830_init_clock_gating(struct drm_device *dev)
8211 {
8212         struct drm_i915_private *dev_priv = dev->dev_private;
8213
8214         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
8215 }
8216
8217 static void ibx_init_clock_gating(struct drm_device *dev)
8218 {
8219         struct drm_i915_private *dev_priv = dev->dev_private;
8220
8221         /*
8222          * On Ibex Peak and Cougar Point, we need to disable clock
8223          * gating for the panel power sequencer or it will fail to
8224          * start up when no ports are active.
8225          */
8226         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8227 }
8228
8229 static void cpt_init_clock_gating(struct drm_device *dev)
8230 {
8231         struct drm_i915_private *dev_priv = dev->dev_private;
8232         int pipe;
8233
8234         /*
8235          * On Ibex Peak and Cougar Point, we need to disable clock
8236          * gating for the panel power sequencer or it will fail to
8237          * start up when no ports are active.
8238          */
8239         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8240         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8241                    DPLS_EDP_PPS_FIX_DIS);
8242         /* Without this, mode sets may fail silently on FDI */
8243         for_each_pipe(pipe)
8244                 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
8245 }
8246
8247 static void ironlake_teardown_rc6(struct drm_device *dev)
8248 {
8249         struct drm_i915_private *dev_priv = dev->dev_private;
8250
8251         if (dev_priv->renderctx) {
8252                 i915_gem_object_unpin(dev_priv->renderctx);
8253                 drm_gem_object_unreference(&dev_priv->renderctx->base);
8254                 dev_priv->renderctx = NULL;
8255         }
8256
8257         if (dev_priv->pwrctx) {
8258                 i915_gem_object_unpin(dev_priv->pwrctx);
8259                 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8260                 dev_priv->pwrctx = NULL;
8261         }
8262 }
8263
8264 static void ironlake_disable_rc6(struct drm_device *dev)
8265 {
8266         struct drm_i915_private *dev_priv = dev->dev_private;
8267
8268         if (I915_READ(PWRCTXA)) {
8269                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8270                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8271                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8272                          50);
8273
8274                 I915_WRITE(PWRCTXA, 0);
8275                 POSTING_READ(PWRCTXA);
8276
8277                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8278                 POSTING_READ(RSTDBYCTL);
8279         }
8280
8281         ironlake_teardown_rc6(dev);
8282 }
8283
8284 static int ironlake_setup_rc6(struct drm_device *dev)
8285 {
8286         struct drm_i915_private *dev_priv = dev->dev_private;
8287
8288         if (dev_priv->renderctx == NULL)
8289                 dev_priv->renderctx = intel_alloc_context_page(dev);
8290         if (!dev_priv->renderctx)
8291                 return -ENOMEM;
8292
8293         if (dev_priv->pwrctx == NULL)
8294                 dev_priv->pwrctx = intel_alloc_context_page(dev);
8295         if (!dev_priv->pwrctx) {
8296                 ironlake_teardown_rc6(dev);
8297                 return -ENOMEM;
8298         }
8299
8300         return 0;
8301 }
8302
8303 void ironlake_enable_rc6(struct drm_device *dev)
8304 {
8305         struct drm_i915_private *dev_priv = dev->dev_private;
8306         int ret;
8307
8308         /* rc6 disabled by default due to repeated reports of hanging during
8309          * boot and resume.
8310          */
8311         if (!i915_enable_rc6)
8312                 return;
8313
8314         mutex_lock(&dev->struct_mutex);
8315         ret = ironlake_setup_rc6(dev);
8316         if (ret) {
8317                 mutex_unlock(&dev->struct_mutex);
8318                 return;
8319         }
8320
8321         /*
8322          * GPU can automatically power down the render unit if given a page
8323          * to save state.
8324          */
8325         ret = BEGIN_LP_RING(6);
8326         if (ret) {
8327                 ironlake_teardown_rc6(dev);
8328                 mutex_unlock(&dev->struct_mutex);
8329                 return;
8330         }
8331
8332         OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8333         OUT_RING(MI_SET_CONTEXT);
8334         OUT_RING(dev_priv->renderctx->gtt_offset |
8335                  MI_MM_SPACE_GTT |
8336                  MI_SAVE_EXT_STATE_EN |
8337                  MI_RESTORE_EXT_STATE_EN |
8338                  MI_RESTORE_INHIBIT);
8339         OUT_RING(MI_SUSPEND_FLUSH);
8340         OUT_RING(MI_NOOP);
8341         OUT_RING(MI_FLUSH);
8342         ADVANCE_LP_RING();
8343
8344         /*
8345          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8346          * does an implicit flush, combined with MI_FLUSH above, it should be
8347          * safe to assume that renderctx is valid
8348          */
8349         ret = intel_wait_ring_idle(LP_RING(dev_priv));
8350         if (ret) {
8351                 DRM_ERROR("failed to enable ironlake power power savings\n");
8352                 ironlake_teardown_rc6(dev);
8353                 mutex_unlock(&dev->struct_mutex);
8354                 return;
8355         }
8356
8357         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8358         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8359         mutex_unlock(&dev->struct_mutex);
8360 }
8361
8362 void intel_init_clock_gating(struct drm_device *dev)
8363 {
8364         struct drm_i915_private *dev_priv = dev->dev_private;
8365
8366         dev_priv->display.init_clock_gating(dev);
8367
8368         if (dev_priv->display.init_pch_clock_gating)
8369                 dev_priv->display.init_pch_clock_gating(dev);
8370 }
8371
8372 /* Set up chip specific display functions */
8373 static void intel_init_display(struct drm_device *dev)
8374 {
8375         struct drm_i915_private *dev_priv = dev->dev_private;
8376
8377         /* We always want a DPMS function */
8378         if (HAS_PCH_SPLIT(dev)) {
8379                 dev_priv->display.dpms = ironlake_crtc_dpms;
8380                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8381                 dev_priv->display.update_plane = ironlake_update_plane;
8382         } else {
8383                 dev_priv->display.dpms = i9xx_crtc_dpms;
8384                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8385                 dev_priv->display.update_plane = i9xx_update_plane;
8386         }
8387
8388         if (I915_HAS_FBC(dev)) {
8389                 if (HAS_PCH_SPLIT(dev)) {
8390                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8391                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
8392                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
8393                 } else if (IS_GM45(dev)) {
8394                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8395                         dev_priv->display.enable_fbc = g4x_enable_fbc;
8396                         dev_priv->display.disable_fbc = g4x_disable_fbc;
8397                 } else if (IS_CRESTLINE(dev)) {
8398                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8399                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
8400                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
8401                 }
8402                 /* 855GM needs testing */
8403         }
8404
8405         /* Returns the core display clock speed */
8406         if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8407                 dev_priv->display.get_display_clock_speed =
8408                         i945_get_display_clock_speed;
8409         else if (IS_I915G(dev))
8410                 dev_priv->display.get_display_clock_speed =
8411                         i915_get_display_clock_speed;
8412         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8413                 dev_priv->display.get_display_clock_speed =
8414                         i9xx_misc_get_display_clock_speed;
8415         else if (IS_I915GM(dev))
8416                 dev_priv->display.get_display_clock_speed =
8417                         i915gm_get_display_clock_speed;
8418         else if (IS_I865G(dev))
8419                 dev_priv->display.get_display_clock_speed =
8420                         i865_get_display_clock_speed;
8421         else if (IS_I85X(dev))
8422                 dev_priv->display.get_display_clock_speed =
8423                         i855_get_display_clock_speed;
8424         else /* 852, 830 */
8425                 dev_priv->display.get_display_clock_speed =
8426                         i830_get_display_clock_speed;
8427
8428         /* For FIFO watermark updates */
8429         if (HAS_PCH_SPLIT(dev)) {
8430                 if (HAS_PCH_IBX(dev))
8431                         dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8432                 else if (HAS_PCH_CPT(dev))
8433                         dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8434
8435                 if (IS_GEN5(dev)) {
8436                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8437                                 dev_priv->display.update_wm = ironlake_update_wm;
8438                         else {
8439                                 DRM_DEBUG_KMS("Failed to get proper latency. "
8440                                               "Disable CxSR\n");
8441                                 dev_priv->display.update_wm = NULL;
8442                         }
8443                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8444                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8445                         dev_priv->display.write_eld = ironlake_write_eld;
8446                 } else if (IS_GEN6(dev)) {
8447                         if (SNB_READ_WM0_LATENCY()) {
8448                                 dev_priv->display.update_wm = sandybridge_update_wm;
8449                         } else {
8450                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
8451                                               "Disable CxSR\n");
8452                                 dev_priv->display.update_wm = NULL;
8453                         }
8454                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8455                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8456                         dev_priv->display.write_eld = ironlake_write_eld;
8457                 } else if (IS_IVYBRIDGE(dev)) {
8458                         /* FIXME: detect B0+ stepping and use auto training */
8459                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8460                         if (SNB_READ_WM0_LATENCY()) {
8461                                 dev_priv->display.update_wm = sandybridge_update_wm;
8462                         } else {
8463                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
8464                                               "Disable CxSR\n");
8465                                 dev_priv->display.update_wm = NULL;
8466                         }
8467                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8468                         dev_priv->display.write_eld = ironlake_write_eld;
8469                 } else
8470                         dev_priv->display.update_wm = NULL;
8471         } else if (IS_PINEVIEW(dev)) {
8472                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
8473                                             dev_priv->is_ddr3,
8474                                             dev_priv->fsb_freq,
8475                                             dev_priv->mem_freq)) {
8476                         DRM_INFO("failed to find known CxSR latency "
8477                                  "(found ddr%s fsb freq %d, mem freq %d), "
8478                                  "disabling CxSR\n",
8479                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
8480                                  dev_priv->fsb_freq, dev_priv->mem_freq);
8481                         /* Disable CxSR and never update its watermark again */
8482                         pineview_disable_cxsr(dev);
8483                         dev_priv->display.update_wm = NULL;
8484                 } else
8485                         dev_priv->display.update_wm = pineview_update_wm;
8486                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8487         } else if (IS_G4X(dev)) {
8488                 dev_priv->display.write_eld = g4x_write_eld;
8489                 dev_priv->display.update_wm = g4x_update_wm;
8490                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8491         } else if (IS_GEN4(dev)) {
8492                 dev_priv->display.update_wm = i965_update_wm;
8493                 if (IS_CRESTLINE(dev))
8494                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8495                 else if (IS_BROADWATER(dev))
8496                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8497         } else if (IS_GEN3(dev)) {
8498                 dev_priv->display.update_wm = i9xx_update_wm;
8499                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8500                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8501         } else if (IS_I865G(dev)) {
8502                 dev_priv->display.update_wm = i830_update_wm;
8503                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8504                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8505         } else if (IS_I85X(dev)) {
8506                 dev_priv->display.update_wm = i9xx_update_wm;
8507                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
8508                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8509         } else {
8510                 dev_priv->display.update_wm = i830_update_wm;
8511                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8512                 if (IS_845G(dev))
8513                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
8514                 else
8515                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
8516         }
8517
8518         /* Default just returns -ENODEV to indicate unsupported */
8519         dev_priv->display.queue_flip = intel_default_queue_flip;
8520
8521         switch (INTEL_INFO(dev)->gen) {
8522         case 2:
8523                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8524                 break;
8525
8526         case 3:
8527                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8528                 break;
8529
8530         case 4:
8531         case 5:
8532                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8533                 break;
8534
8535         case 6:
8536                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8537                 break;
8538         case 7:
8539                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8540                 break;
8541         }
8542 }
8543
8544 /*
8545  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8546  * resume, or other times.  This quirk makes sure that's the case for
8547  * affected systems.
8548  */
8549 static void quirk_pipea_force(struct drm_device *dev)
8550 {
8551         struct drm_i915_private *dev_priv = dev->dev_private;
8552
8553         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8554         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8555 }
8556
8557 /*
8558  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8559  */
8560 static void quirk_ssc_force_disable(struct drm_device *dev)
8561 {
8562         struct drm_i915_private *dev_priv = dev->dev_private;
8563         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8564 }
8565
8566 struct intel_quirk {
8567         int device;
8568         int subsystem_vendor;
8569         int subsystem_device;
8570         void (*hook)(struct drm_device *dev);
8571 };
8572
8573 struct intel_quirk intel_quirks[] = {
8574         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8575         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8576         /* HP Mini needs pipe A force quirk (LP: #322104) */
8577         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8578
8579         /* Thinkpad R31 needs pipe A force quirk */
8580         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8581         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8582         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8583
8584         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8585         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
8586         /* ThinkPad X40 needs pipe A force quirk */
8587
8588         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8589         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8590
8591         /* 855 & before need to leave pipe A & dpll A up */
8592         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8593         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8594
8595         /* Lenovo U160 cannot use SSC on LVDS */
8596         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8597
8598         /* Sony Vaio Y cannot use SSC on LVDS */
8599         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8600 };
8601
8602 static void intel_init_quirks(struct drm_device *dev)
8603 {
8604         struct pci_dev *d = dev->pdev;
8605         int i;
8606
8607         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8608                 struct intel_quirk *q = &intel_quirks[i];
8609
8610                 if (d->device == q->device &&
8611                     (d->subsystem_vendor == q->subsystem_vendor ||
8612                      q->subsystem_vendor == PCI_ANY_ID) &&
8613                     (d->subsystem_device == q->subsystem_device ||
8614                      q->subsystem_device == PCI_ANY_ID))
8615                         q->hook(dev);
8616         }
8617 }
8618
8619 /* Disable the VGA plane that we never use */
8620 static void i915_disable_vga(struct drm_device *dev)
8621 {
8622         struct drm_i915_private *dev_priv = dev->dev_private;
8623         u8 sr1;
8624         u32 vga_reg;
8625
8626         if (HAS_PCH_SPLIT(dev))
8627                 vga_reg = CPU_VGACNTRL;
8628         else
8629                 vga_reg = VGACNTRL;
8630
8631         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8632         outb(1, VGA_SR_INDEX);
8633         sr1 = inb(VGA_SR_DATA);
8634         outb(sr1 | 1<<5, VGA_SR_DATA);
8635         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8636         udelay(300);
8637
8638         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8639         POSTING_READ(vga_reg);
8640 }
8641
8642 void intel_modeset_init(struct drm_device *dev)
8643 {
8644         struct drm_i915_private *dev_priv = dev->dev_private;
8645         int i;
8646
8647         drm_mode_config_init(dev);
8648
8649         dev->mode_config.min_width = 0;
8650         dev->mode_config.min_height = 0;
8651
8652         dev->mode_config.funcs = (void *)&intel_mode_funcs;
8653
8654         intel_init_quirks(dev);
8655
8656         intel_init_display(dev);
8657
8658         if (IS_GEN2(dev)) {
8659                 dev->mode_config.max_width = 2048;
8660                 dev->mode_config.max_height = 2048;
8661         } else if (IS_GEN3(dev)) {
8662                 dev->mode_config.max_width = 4096;
8663                 dev->mode_config.max_height = 4096;
8664         } else {
8665                 dev->mode_config.max_width = 8192;
8666                 dev->mode_config.max_height = 8192;
8667         }
8668         dev->mode_config.fb_base = dev->agp->base;
8669
8670         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8671                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8672
8673         for (i = 0; i < dev_priv->num_pipe; i++) {
8674                 intel_crtc_init(dev, i);
8675         }
8676
8677         /* Just disable it once at startup */
8678         i915_disable_vga(dev);
8679         intel_setup_outputs(dev);
8680
8681         intel_init_clock_gating(dev);
8682
8683         if (IS_IRONLAKE_M(dev)) {
8684                 ironlake_enable_drps(dev);
8685                 intel_init_emon(dev);
8686         }
8687
8688         if (IS_GEN6(dev) || IS_GEN7(dev)) {
8689                 gen6_enable_rps(dev_priv);
8690                 gen6_update_ring_freq(dev_priv);
8691         }
8692
8693         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
8694         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
8695                     (unsigned long)dev);
8696 }
8697
8698 void intel_modeset_gem_init(struct drm_device *dev)
8699 {
8700         if (IS_IRONLAKE_M(dev))
8701                 ironlake_enable_rc6(dev);
8702
8703         intel_setup_overlay(dev);
8704 }
8705
8706 void intel_modeset_cleanup(struct drm_device *dev)
8707 {
8708         struct drm_i915_private *dev_priv = dev->dev_private;
8709         struct drm_crtc *crtc;
8710         struct intel_crtc *intel_crtc;
8711
8712         drm_kms_helper_poll_fini(dev);
8713         mutex_lock(&dev->struct_mutex);
8714
8715         intel_unregister_dsm_handler();
8716
8717
8718         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8719                 /* Skip inactive CRTCs */
8720                 if (!crtc->fb)
8721                         continue;
8722
8723                 intel_crtc = to_intel_crtc(crtc);
8724                 intel_increase_pllclock(crtc);
8725         }
8726
8727         intel_disable_fbc(dev);
8728
8729         if (IS_IRONLAKE_M(dev))
8730                 ironlake_disable_drps(dev);
8731         if (IS_GEN6(dev) || IS_GEN7(dev))
8732                 gen6_disable_rps(dev);
8733
8734         if (IS_IRONLAKE_M(dev))
8735                 ironlake_disable_rc6(dev);
8736
8737         mutex_unlock(&dev->struct_mutex);
8738
8739         /* Disable the irq before mode object teardown, for the irq might
8740          * enqueue unpin/hotplug work. */
8741         drm_irq_uninstall(dev);
8742         cancel_work_sync(&dev_priv->hotplug_work);
8743         cancel_work_sync(&dev_priv->rps_work);
8744
8745         /* flush any delayed tasks or pending work */
8746         flush_scheduled_work();
8747
8748         /* Shut off idle work before the crtcs get freed. */
8749         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8750                 intel_crtc = to_intel_crtc(crtc);
8751                 del_timer_sync(&intel_crtc->idle_timer);
8752         }
8753         del_timer_sync(&dev_priv->idle_timer);
8754         cancel_work_sync(&dev_priv->idle_work);
8755
8756         drm_mode_config_cleanup(dev);
8757 }
8758
8759 /*
8760  * Return which encoder is currently attached for connector.
8761  */
8762 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8763 {
8764         return &intel_attached_encoder(connector)->base;
8765 }
8766
8767 void intel_connector_attach_encoder(struct intel_connector *connector,
8768                                     struct intel_encoder *encoder)
8769 {
8770         connector->encoder = encoder;
8771         drm_mode_connector_attach_encoder(&connector->base,
8772                                           &encoder->base);
8773 }
8774
8775 /*
8776  * set vga decode state - true == enable VGA decode
8777  */
8778 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8779 {
8780         struct drm_i915_private *dev_priv = dev->dev_private;
8781         u16 gmch_ctrl;
8782
8783         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8784         if (state)
8785                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8786         else
8787                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8788         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8789         return 0;
8790 }
8791
8792 #ifdef CONFIG_DEBUG_FS
8793 #include <linux/seq_file.h>
8794
8795 struct intel_display_error_state {
8796         struct intel_cursor_error_state {
8797                 u32 control;
8798                 u32 position;
8799                 u32 base;
8800                 u32 size;
8801         } cursor[2];
8802
8803         struct intel_pipe_error_state {
8804                 u32 conf;
8805                 u32 source;
8806
8807                 u32 htotal;
8808                 u32 hblank;
8809                 u32 hsync;
8810                 u32 vtotal;
8811                 u32 vblank;
8812                 u32 vsync;
8813         } pipe[2];
8814
8815         struct intel_plane_error_state {
8816                 u32 control;
8817                 u32 stride;
8818                 u32 size;
8819                 u32 pos;
8820                 u32 addr;
8821                 u32 surface;
8822                 u32 tile_offset;
8823         } plane[2];
8824 };
8825
8826 struct intel_display_error_state *
8827 intel_display_capture_error_state(struct drm_device *dev)
8828 {
8829         drm_i915_private_t *dev_priv = dev->dev_private;
8830         struct intel_display_error_state *error;
8831         int i;
8832
8833         error = kmalloc(sizeof(*error), GFP_ATOMIC);
8834         if (error == NULL)
8835                 return NULL;
8836
8837         for (i = 0; i < 2; i++) {
8838                 error->cursor[i].control = I915_READ(CURCNTR(i));
8839                 error->cursor[i].position = I915_READ(CURPOS(i));
8840                 error->cursor[i].base = I915_READ(CURBASE(i));
8841
8842                 error->plane[i].control = I915_READ(DSPCNTR(i));
8843                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8844                 error->plane[i].size = I915_READ(DSPSIZE(i));
8845                 error->plane[i].pos = I915_READ(DSPPOS(i));
8846                 error->plane[i].addr = I915_READ(DSPADDR(i));
8847                 if (INTEL_INFO(dev)->gen >= 4) {
8848                         error->plane[i].surface = I915_READ(DSPSURF(i));
8849                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8850                 }
8851
8852                 error->pipe[i].conf = I915_READ(PIPECONF(i));
8853                 error->pipe[i].source = I915_READ(PIPESRC(i));
8854                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8855                 error->pipe[i].hblank = I915_READ(HBLANK(i));
8856                 error->pipe[i].hsync = I915_READ(HSYNC(i));
8857                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8858                 error->pipe[i].vblank = I915_READ(VBLANK(i));
8859                 error->pipe[i].vsync = I915_READ(VSYNC(i));
8860         }
8861
8862         return error;
8863 }
8864
8865 void
8866 intel_display_print_error_state(struct seq_file *m,
8867                                 struct drm_device *dev,
8868                                 struct intel_display_error_state *error)
8869 {
8870         int i;
8871
8872         for (i = 0; i < 2; i++) {
8873                 seq_printf(m, "Pipe [%d]:\n", i);
8874                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
8875                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
8876                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
8877                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
8878                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
8879                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
8880                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
8881                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
8882
8883                 seq_printf(m, "Plane [%d]:\n", i);
8884                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
8885                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
8886                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
8887                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
8888                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
8889                 if (INTEL_INFO(dev)->gen >= 4) {
8890                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
8891                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
8892                 }
8893
8894                 seq_printf(m, "Cursor [%d]:\n", i);
8895                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
8896                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
8897                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
8898         }
8899 }
8900 #endif