drm/i915/gen9: Propagate watermark calculation failures up the call chain
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "intel_dsi.h"
40 #include "i915_trace.h"
41 #include <drm/drm_atomic.h>
42 #include <drm/drm_atomic_helper.h>
43 #include <drm/drm_dp_helper.h>
44 #include <drm/drm_crtc_helper.h>
45 #include <drm/drm_plane_helper.h>
46 #include <drm/drm_rect.h>
47 #include <linux/dma_remapping.h>
48 #include <linux/reservation.h>
49 #include <linux/dma-buf.h>
50
51 /* Primary plane formats for gen <= 3 */
52 static const uint32_t i8xx_primary_formats[] = {
53         DRM_FORMAT_C8,
54         DRM_FORMAT_RGB565,
55         DRM_FORMAT_XRGB1555,
56         DRM_FORMAT_XRGB8888,
57 };
58
59 /* Primary plane formats for gen >= 4 */
60 static const uint32_t i965_primary_formats[] = {
61         DRM_FORMAT_C8,
62         DRM_FORMAT_RGB565,
63         DRM_FORMAT_XRGB8888,
64         DRM_FORMAT_XBGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_XBGR2101010,
67 };
68
69 static const uint32_t skl_primary_formats[] = {
70         DRM_FORMAT_C8,
71         DRM_FORMAT_RGB565,
72         DRM_FORMAT_XRGB8888,
73         DRM_FORMAT_XBGR8888,
74         DRM_FORMAT_ARGB8888,
75         DRM_FORMAT_ABGR8888,
76         DRM_FORMAT_XRGB2101010,
77         DRM_FORMAT_XBGR2101010,
78         DRM_FORMAT_YUYV,
79         DRM_FORMAT_YVYU,
80         DRM_FORMAT_UYVY,
81         DRM_FORMAT_VYUY,
82 };
83
84 /* Cursor formats */
85 static const uint32_t intel_cursor_formats[] = {
86         DRM_FORMAT_ARGB8888,
87 };
88
89 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
90                                 struct intel_crtc_state *pipe_config);
91 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
92                                    struct intel_crtc_state *pipe_config);
93
94 static int intel_framebuffer_init(struct drm_device *dev,
95                                   struct intel_framebuffer *ifb,
96                                   struct drm_mode_fb_cmd2 *mode_cmd,
97                                   struct drm_i915_gem_object *obj);
98 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
99 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
100 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
101 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
102                                          struct intel_link_m_n *m_n,
103                                          struct intel_link_m_n *m2_n2);
104 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
105 static void haswell_set_pipeconf(struct drm_crtc *crtc);
106 static void haswell_set_pipemisc(struct drm_crtc *crtc);
107 static void vlv_prepare_pll(struct intel_crtc *crtc,
108                             const struct intel_crtc_state *pipe_config);
109 static void chv_prepare_pll(struct intel_crtc *crtc,
110                             const struct intel_crtc_state *pipe_config);
111 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
112 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
113 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
114         struct intel_crtc_state *crtc_state);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
120
121 struct intel_limit {
122         struct {
123                 int min, max;
124         } dot, vco, n, m, m1, m2, p, p1;
125
126         struct {
127                 int dot_limit;
128                 int p2_slow, p2_fast;
129         } p2;
130 };
131
132 /* returns HPLL frequency in kHz */
133 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
134 {
135         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
136
137         /* Obtain SKU information */
138         mutex_lock(&dev_priv->sb_lock);
139         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
140                 CCK_FUSE_HPLL_FREQ_MASK;
141         mutex_unlock(&dev_priv->sb_lock);
142
143         return vco_freq[hpll_freq] * 1000;
144 }
145
146 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
147                       const char *name, u32 reg, int ref_freq)
148 {
149         u32 val;
150         int divider;
151
152         mutex_lock(&dev_priv->sb_lock);
153         val = vlv_cck_read(dev_priv, reg);
154         mutex_unlock(&dev_priv->sb_lock);
155
156         divider = val & CCK_FREQUENCY_VALUES;
157
158         WARN((val & CCK_FREQUENCY_STATUS) !=
159              (divider << CCK_FREQUENCY_STATUS_SHIFT),
160              "%s change in progress\n", name);
161
162         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
163 }
164
165 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
166                                   const char *name, u32 reg)
167 {
168         if (dev_priv->hpll_freq == 0)
169                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
170
171         return vlv_get_cck_clock(dev_priv, name, reg,
172                                  dev_priv->hpll_freq);
173 }
174
175 static int
176 intel_pch_rawclk(struct drm_i915_private *dev_priv)
177 {
178         return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
179 }
180
181 static int
182 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
183 {
184         /* RAWCLK_FREQ_VLV register updated from power well code */
185         return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
186                                       CCK_DISPLAY_REF_CLOCK_CONTROL);
187 }
188
189 static int
190 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
191 {
192         uint32_t clkcfg;
193
194         /* hrawclock is 1/4 the FSB frequency */
195         clkcfg = I915_READ(CLKCFG);
196         switch (clkcfg & CLKCFG_FSB_MASK) {
197         case CLKCFG_FSB_400:
198                 return 100000;
199         case CLKCFG_FSB_533:
200                 return 133333;
201         case CLKCFG_FSB_667:
202                 return 166667;
203         case CLKCFG_FSB_800:
204                 return 200000;
205         case CLKCFG_FSB_1067:
206                 return 266667;
207         case CLKCFG_FSB_1333:
208                 return 333333;
209         /* these two are just a guess; one of them might be right */
210         case CLKCFG_FSB_1600:
211         case CLKCFG_FSB_1600_ALT:
212                 return 400000;
213         default:
214                 return 133333;
215         }
216 }
217
218 void intel_update_rawclk(struct drm_i915_private *dev_priv)
219 {
220         if (HAS_PCH_SPLIT(dev_priv))
221                 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
222         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
223                 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
224         else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
225                 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
226         else
227                 return; /* no rawclk on other platforms, or no need to know it */
228
229         DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
230 }
231
232 static void intel_update_czclk(struct drm_i915_private *dev_priv)
233 {
234         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
235                 return;
236
237         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
238                                                       CCK_CZ_CLOCK_CONTROL);
239
240         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
241 }
242
243 static inline u32 /* units of 100MHz */
244 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
245                     const struct intel_crtc_state *pipe_config)
246 {
247         if (HAS_DDI(dev_priv))
248                 return pipe_config->port_clock; /* SPLL */
249         else if (IS_GEN5(dev_priv))
250                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
251         else
252                 return 270000;
253 }
254
255 static const struct intel_limit intel_limits_i8xx_dac = {
256         .dot = { .min = 25000, .max = 350000 },
257         .vco = { .min = 908000, .max = 1512000 },
258         .n = { .min = 2, .max = 16 },
259         .m = { .min = 96, .max = 140 },
260         .m1 = { .min = 18, .max = 26 },
261         .m2 = { .min = 6, .max = 16 },
262         .p = { .min = 4, .max = 128 },
263         .p1 = { .min = 2, .max = 33 },
264         .p2 = { .dot_limit = 165000,
265                 .p2_slow = 4, .p2_fast = 2 },
266 };
267
268 static const struct intel_limit intel_limits_i8xx_dvo = {
269         .dot = { .min = 25000, .max = 350000 },
270         .vco = { .min = 908000, .max = 1512000 },
271         .n = { .min = 2, .max = 16 },
272         .m = { .min = 96, .max = 140 },
273         .m1 = { .min = 18, .max = 26 },
274         .m2 = { .min = 6, .max = 16 },
275         .p = { .min = 4, .max = 128 },
276         .p1 = { .min = 2, .max = 33 },
277         .p2 = { .dot_limit = 165000,
278                 .p2_slow = 4, .p2_fast = 4 },
279 };
280
281 static const struct intel_limit intel_limits_i8xx_lvds = {
282         .dot = { .min = 25000, .max = 350000 },
283         .vco = { .min = 908000, .max = 1512000 },
284         .n = { .min = 2, .max = 16 },
285         .m = { .min = 96, .max = 140 },
286         .m1 = { .min = 18, .max = 26 },
287         .m2 = { .min = 6, .max = 16 },
288         .p = { .min = 4, .max = 128 },
289         .p1 = { .min = 1, .max = 6 },
290         .p2 = { .dot_limit = 165000,
291                 .p2_slow = 14, .p2_fast = 7 },
292 };
293
294 static const struct intel_limit intel_limits_i9xx_sdvo = {
295         .dot = { .min = 20000, .max = 400000 },
296         .vco = { .min = 1400000, .max = 2800000 },
297         .n = { .min = 1, .max = 6 },
298         .m = { .min = 70, .max = 120 },
299         .m1 = { .min = 8, .max = 18 },
300         .m2 = { .min = 3, .max = 7 },
301         .p = { .min = 5, .max = 80 },
302         .p1 = { .min = 1, .max = 8 },
303         .p2 = { .dot_limit = 200000,
304                 .p2_slow = 10, .p2_fast = 5 },
305 };
306
307 static const struct intel_limit intel_limits_i9xx_lvds = {
308         .dot = { .min = 20000, .max = 400000 },
309         .vco = { .min = 1400000, .max = 2800000 },
310         .n = { .min = 1, .max = 6 },
311         .m = { .min = 70, .max = 120 },
312         .m1 = { .min = 8, .max = 18 },
313         .m2 = { .min = 3, .max = 7 },
314         .p = { .min = 7, .max = 98 },
315         .p1 = { .min = 1, .max = 8 },
316         .p2 = { .dot_limit = 112000,
317                 .p2_slow = 14, .p2_fast = 7 },
318 };
319
320
321 static const struct intel_limit intel_limits_g4x_sdvo = {
322         .dot = { .min = 25000, .max = 270000 },
323         .vco = { .min = 1750000, .max = 3500000},
324         .n = { .min = 1, .max = 4 },
325         .m = { .min = 104, .max = 138 },
326         .m1 = { .min = 17, .max = 23 },
327         .m2 = { .min = 5, .max = 11 },
328         .p = { .min = 10, .max = 30 },
329         .p1 = { .min = 1, .max = 3},
330         .p2 = { .dot_limit = 270000,
331                 .p2_slow = 10,
332                 .p2_fast = 10
333         },
334 };
335
336 static const struct intel_limit intel_limits_g4x_hdmi = {
337         .dot = { .min = 22000, .max = 400000 },
338         .vco = { .min = 1750000, .max = 3500000},
339         .n = { .min = 1, .max = 4 },
340         .m = { .min = 104, .max = 138 },
341         .m1 = { .min = 16, .max = 23 },
342         .m2 = { .min = 5, .max = 11 },
343         .p = { .min = 5, .max = 80 },
344         .p1 = { .min = 1, .max = 8},
345         .p2 = { .dot_limit = 165000,
346                 .p2_slow = 10, .p2_fast = 5 },
347 };
348
349 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
350         .dot = { .min = 20000, .max = 115000 },
351         .vco = { .min = 1750000, .max = 3500000 },
352         .n = { .min = 1, .max = 3 },
353         .m = { .min = 104, .max = 138 },
354         .m1 = { .min = 17, .max = 23 },
355         .m2 = { .min = 5, .max = 11 },
356         .p = { .min = 28, .max = 112 },
357         .p1 = { .min = 2, .max = 8 },
358         .p2 = { .dot_limit = 0,
359                 .p2_slow = 14, .p2_fast = 14
360         },
361 };
362
363 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
364         .dot = { .min = 80000, .max = 224000 },
365         .vco = { .min = 1750000, .max = 3500000 },
366         .n = { .min = 1, .max = 3 },
367         .m = { .min = 104, .max = 138 },
368         .m1 = { .min = 17, .max = 23 },
369         .m2 = { .min = 5, .max = 11 },
370         .p = { .min = 14, .max = 42 },
371         .p1 = { .min = 2, .max = 6 },
372         .p2 = { .dot_limit = 0,
373                 .p2_slow = 7, .p2_fast = 7
374         },
375 };
376
377 static const struct intel_limit intel_limits_pineview_sdvo = {
378         .dot = { .min = 20000, .max = 400000},
379         .vco = { .min = 1700000, .max = 3500000 },
380         /* Pineview's Ncounter is a ring counter */
381         .n = { .min = 3, .max = 6 },
382         .m = { .min = 2, .max = 256 },
383         /* Pineview only has one combined m divider, which we treat as m2. */
384         .m1 = { .min = 0, .max = 0 },
385         .m2 = { .min = 0, .max = 254 },
386         .p = { .min = 5, .max = 80 },
387         .p1 = { .min = 1, .max = 8 },
388         .p2 = { .dot_limit = 200000,
389                 .p2_slow = 10, .p2_fast = 5 },
390 };
391
392 static const struct intel_limit intel_limits_pineview_lvds = {
393         .dot = { .min = 20000, .max = 400000 },
394         .vco = { .min = 1700000, .max = 3500000 },
395         .n = { .min = 3, .max = 6 },
396         .m = { .min = 2, .max = 256 },
397         .m1 = { .min = 0, .max = 0 },
398         .m2 = { .min = 0, .max = 254 },
399         .p = { .min = 7, .max = 112 },
400         .p1 = { .min = 1, .max = 8 },
401         .p2 = { .dot_limit = 112000,
402                 .p2_slow = 14, .p2_fast = 14 },
403 };
404
405 /* Ironlake / Sandybridge
406  *
407  * We calculate clock using (register_value + 2) for N/M1/M2, so here
408  * the range value for them is (actual_value - 2).
409  */
410 static const struct intel_limit intel_limits_ironlake_dac = {
411         .dot = { .min = 25000, .max = 350000 },
412         .vco = { .min = 1760000, .max = 3510000 },
413         .n = { .min = 1, .max = 5 },
414         .m = { .min = 79, .max = 127 },
415         .m1 = { .min = 12, .max = 22 },
416         .m2 = { .min = 5, .max = 9 },
417         .p = { .min = 5, .max = 80 },
418         .p1 = { .min = 1, .max = 8 },
419         .p2 = { .dot_limit = 225000,
420                 .p2_slow = 10, .p2_fast = 5 },
421 };
422
423 static const struct intel_limit intel_limits_ironlake_single_lvds = {
424         .dot = { .min = 25000, .max = 350000 },
425         .vco = { .min = 1760000, .max = 3510000 },
426         .n = { .min = 1, .max = 3 },
427         .m = { .min = 79, .max = 118 },
428         .m1 = { .min = 12, .max = 22 },
429         .m2 = { .min = 5, .max = 9 },
430         .p = { .min = 28, .max = 112 },
431         .p1 = { .min = 2, .max = 8 },
432         .p2 = { .dot_limit = 225000,
433                 .p2_slow = 14, .p2_fast = 14 },
434 };
435
436 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
437         .dot = { .min = 25000, .max = 350000 },
438         .vco = { .min = 1760000, .max = 3510000 },
439         .n = { .min = 1, .max = 3 },
440         .m = { .min = 79, .max = 127 },
441         .m1 = { .min = 12, .max = 22 },
442         .m2 = { .min = 5, .max = 9 },
443         .p = { .min = 14, .max = 56 },
444         .p1 = { .min = 2, .max = 8 },
445         .p2 = { .dot_limit = 225000,
446                 .p2_slow = 7, .p2_fast = 7 },
447 };
448
449 /* LVDS 100mhz refclk limits. */
450 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
451         .dot = { .min = 25000, .max = 350000 },
452         .vco = { .min = 1760000, .max = 3510000 },
453         .n = { .min = 1, .max = 2 },
454         .m = { .min = 79, .max = 126 },
455         .m1 = { .min = 12, .max = 22 },
456         .m2 = { .min = 5, .max = 9 },
457         .p = { .min = 28, .max = 112 },
458         .p1 = { .min = 2, .max = 8 },
459         .p2 = { .dot_limit = 225000,
460                 .p2_slow = 14, .p2_fast = 14 },
461 };
462
463 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
464         .dot = { .min = 25000, .max = 350000 },
465         .vco = { .min = 1760000, .max = 3510000 },
466         .n = { .min = 1, .max = 3 },
467         .m = { .min = 79, .max = 126 },
468         .m1 = { .min = 12, .max = 22 },
469         .m2 = { .min = 5, .max = 9 },
470         .p = { .min = 14, .max = 42 },
471         .p1 = { .min = 2, .max = 6 },
472         .p2 = { .dot_limit = 225000,
473                 .p2_slow = 7, .p2_fast = 7 },
474 };
475
476 static const struct intel_limit intel_limits_vlv = {
477          /*
478           * These are the data rate limits (measured in fast clocks)
479           * since those are the strictest limits we have. The fast
480           * clock and actual rate limits are more relaxed, so checking
481           * them would make no difference.
482           */
483         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
484         .vco = { .min = 4000000, .max = 6000000 },
485         .n = { .min = 1, .max = 7 },
486         .m1 = { .min = 2, .max = 3 },
487         .m2 = { .min = 11, .max = 156 },
488         .p1 = { .min = 2, .max = 3 },
489         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
490 };
491
492 static const struct intel_limit intel_limits_chv = {
493         /*
494          * These are the data rate limits (measured in fast clocks)
495          * since those are the strictest limits we have.  The fast
496          * clock and actual rate limits are more relaxed, so checking
497          * them would make no difference.
498          */
499         .dot = { .min = 25000 * 5, .max = 540000 * 5},
500         .vco = { .min = 4800000, .max = 6480000 },
501         .n = { .min = 1, .max = 1 },
502         .m1 = { .min = 2, .max = 2 },
503         .m2 = { .min = 24 << 22, .max = 175 << 22 },
504         .p1 = { .min = 2, .max = 4 },
505         .p2 = { .p2_slow = 1, .p2_fast = 14 },
506 };
507
508 static const struct intel_limit intel_limits_bxt = {
509         /* FIXME: find real dot limits */
510         .dot = { .min = 0, .max = INT_MAX },
511         .vco = { .min = 4800000, .max = 6700000 },
512         .n = { .min = 1, .max = 1 },
513         .m1 = { .min = 2, .max = 2 },
514         /* FIXME: find real m2 limits */
515         .m2 = { .min = 2 << 22, .max = 255 << 22 },
516         .p1 = { .min = 2, .max = 4 },
517         .p2 = { .p2_slow = 1, .p2_fast = 20 },
518 };
519
520 static bool
521 needs_modeset(struct drm_crtc_state *state)
522 {
523         return drm_atomic_crtc_needs_modeset(state);
524 }
525
526 /**
527  * Returns whether any output on the specified pipe is of the specified type
528  */
529 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
530 {
531         struct drm_device *dev = crtc->base.dev;
532         struct intel_encoder *encoder;
533
534         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
535                 if (encoder->type == type)
536                         return true;
537
538         return false;
539 }
540
541 /**
542  * Returns whether any output on the specified pipe will have the specified
543  * type after a staged modeset is complete, i.e., the same as
544  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
545  * encoder->crtc.
546  */
547 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
548                                       int type)
549 {
550         struct drm_atomic_state *state = crtc_state->base.state;
551         struct drm_connector *connector;
552         struct drm_connector_state *connector_state;
553         struct intel_encoder *encoder;
554         int i, num_connectors = 0;
555
556         for_each_connector_in_state(state, connector, connector_state, i) {
557                 if (connector_state->crtc != crtc_state->base.crtc)
558                         continue;
559
560                 num_connectors++;
561
562                 encoder = to_intel_encoder(connector_state->best_encoder);
563                 if (encoder->type == type)
564                         return true;
565         }
566
567         WARN_ON(num_connectors == 0);
568
569         return false;
570 }
571
572 /*
573  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
574  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
575  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
576  * The helpers' return value is the rate of the clock that is fed to the
577  * display engine's pipe which can be the above fast dot clock rate or a
578  * divided-down version of it.
579  */
580 /* m1 is reserved as 0 in Pineview, n is a ring counter */
581 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
582 {
583         clock->m = clock->m2 + 2;
584         clock->p = clock->p1 * clock->p2;
585         if (WARN_ON(clock->n == 0 || clock->p == 0))
586                 return 0;
587         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
588         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
589
590         return clock->dot;
591 }
592
593 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
594 {
595         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
596 }
597
598 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
599 {
600         clock->m = i9xx_dpll_compute_m(clock);
601         clock->p = clock->p1 * clock->p2;
602         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
603                 return 0;
604         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
605         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
606
607         return clock->dot;
608 }
609
610 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
611 {
612         clock->m = clock->m1 * clock->m2;
613         clock->p = clock->p1 * clock->p2;
614         if (WARN_ON(clock->n == 0 || clock->p == 0))
615                 return 0;
616         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
617         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
618
619         return clock->dot / 5;
620 }
621
622 int chv_calc_dpll_params(int refclk, struct dpll *clock)
623 {
624         clock->m = clock->m1 * clock->m2;
625         clock->p = clock->p1 * clock->p2;
626         if (WARN_ON(clock->n == 0 || clock->p == 0))
627                 return 0;
628         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
629                         clock->n << 22);
630         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
631
632         return clock->dot / 5;
633 }
634
635 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
636 /**
637  * Returns whether the given set of divisors are valid for a given refclk with
638  * the given connectors.
639  */
640
641 static bool intel_PLL_is_valid(struct drm_device *dev,
642                                const struct intel_limit *limit,
643                                const struct dpll *clock)
644 {
645         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
646                 INTELPllInvalid("n out of range\n");
647         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
648                 INTELPllInvalid("p1 out of range\n");
649         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
650                 INTELPllInvalid("m2 out of range\n");
651         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
652                 INTELPllInvalid("m1 out of range\n");
653
654         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
655             !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
656                 if (clock->m1 <= clock->m2)
657                         INTELPllInvalid("m1 <= m2\n");
658
659         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
660                 if (clock->p < limit->p.min || limit->p.max < clock->p)
661                         INTELPllInvalid("p out of range\n");
662                 if (clock->m < limit->m.min || limit->m.max < clock->m)
663                         INTELPllInvalid("m out of range\n");
664         }
665
666         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
667                 INTELPllInvalid("vco out of range\n");
668         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
669          * connector, etc., rather than just a single range.
670          */
671         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
672                 INTELPllInvalid("dot out of range\n");
673
674         return true;
675 }
676
677 static int
678 i9xx_select_p2_div(const struct intel_limit *limit,
679                    const struct intel_crtc_state *crtc_state,
680                    int target)
681 {
682         struct drm_device *dev = crtc_state->base.crtc->dev;
683
684         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
685                 /*
686                  * For LVDS just rely on its current settings for dual-channel.
687                  * We haven't figured out how to reliably set up different
688                  * single/dual channel state, if we even can.
689                  */
690                 if (intel_is_dual_link_lvds(dev))
691                         return limit->p2.p2_fast;
692                 else
693                         return limit->p2.p2_slow;
694         } else {
695                 if (target < limit->p2.dot_limit)
696                         return limit->p2.p2_slow;
697                 else
698                         return limit->p2.p2_fast;
699         }
700 }
701
702 /*
703  * Returns a set of divisors for the desired target clock with the given
704  * refclk, or FALSE.  The returned values represent the clock equation:
705  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
706  *
707  * Target and reference clocks are specified in kHz.
708  *
709  * If match_clock is provided, then best_clock P divider must match the P
710  * divider from @match_clock used for LVDS downclocking.
711  */
712 static bool
713 i9xx_find_best_dpll(const struct intel_limit *limit,
714                     struct intel_crtc_state *crtc_state,
715                     int target, int refclk, struct dpll *match_clock,
716                     struct dpll *best_clock)
717 {
718         struct drm_device *dev = crtc_state->base.crtc->dev;
719         struct dpll clock;
720         int err = target;
721
722         memset(best_clock, 0, sizeof(*best_clock));
723
724         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
725
726         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
727              clock.m1++) {
728                 for (clock.m2 = limit->m2.min;
729                      clock.m2 <= limit->m2.max; clock.m2++) {
730                         if (clock.m2 >= clock.m1)
731                                 break;
732                         for (clock.n = limit->n.min;
733                              clock.n <= limit->n.max; clock.n++) {
734                                 for (clock.p1 = limit->p1.min;
735                                         clock.p1 <= limit->p1.max; clock.p1++) {
736                                         int this_err;
737
738                                         i9xx_calc_dpll_params(refclk, &clock);
739                                         if (!intel_PLL_is_valid(dev, limit,
740                                                                 &clock))
741                                                 continue;
742                                         if (match_clock &&
743                                             clock.p != match_clock->p)
744                                                 continue;
745
746                                         this_err = abs(clock.dot - target);
747                                         if (this_err < err) {
748                                                 *best_clock = clock;
749                                                 err = this_err;
750                                         }
751                                 }
752                         }
753                 }
754         }
755
756         return (err != target);
757 }
758
759 /*
760  * Returns a set of divisors for the desired target clock with the given
761  * refclk, or FALSE.  The returned values represent the clock equation:
762  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
763  *
764  * Target and reference clocks are specified in kHz.
765  *
766  * If match_clock is provided, then best_clock P divider must match the P
767  * divider from @match_clock used for LVDS downclocking.
768  */
769 static bool
770 pnv_find_best_dpll(const struct intel_limit *limit,
771                    struct intel_crtc_state *crtc_state,
772                    int target, int refclk, struct dpll *match_clock,
773                    struct dpll *best_clock)
774 {
775         struct drm_device *dev = crtc_state->base.crtc->dev;
776         struct dpll clock;
777         int err = target;
778
779         memset(best_clock, 0, sizeof(*best_clock));
780
781         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
782
783         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
784              clock.m1++) {
785                 for (clock.m2 = limit->m2.min;
786                      clock.m2 <= limit->m2.max; clock.m2++) {
787                         for (clock.n = limit->n.min;
788                              clock.n <= limit->n.max; clock.n++) {
789                                 for (clock.p1 = limit->p1.min;
790                                         clock.p1 <= limit->p1.max; clock.p1++) {
791                                         int this_err;
792
793                                         pnv_calc_dpll_params(refclk, &clock);
794                                         if (!intel_PLL_is_valid(dev, limit,
795                                                                 &clock))
796                                                 continue;
797                                         if (match_clock &&
798                                             clock.p != match_clock->p)
799                                                 continue;
800
801                                         this_err = abs(clock.dot - target);
802                                         if (this_err < err) {
803                                                 *best_clock = clock;
804                                                 err = this_err;
805                                         }
806                                 }
807                         }
808                 }
809         }
810
811         return (err != target);
812 }
813
814 /*
815  * Returns a set of divisors for the desired target clock with the given
816  * refclk, or FALSE.  The returned values represent the clock equation:
817  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
818  *
819  * Target and reference clocks are specified in kHz.
820  *
821  * If match_clock is provided, then best_clock P divider must match the P
822  * divider from @match_clock used for LVDS downclocking.
823  */
824 static bool
825 g4x_find_best_dpll(const struct intel_limit *limit,
826                    struct intel_crtc_state *crtc_state,
827                    int target, int refclk, struct dpll *match_clock,
828                    struct dpll *best_clock)
829 {
830         struct drm_device *dev = crtc_state->base.crtc->dev;
831         struct dpll clock;
832         int max_n;
833         bool found = false;
834         /* approximately equals target * 0.00585 */
835         int err_most = (target >> 8) + (target >> 9);
836
837         memset(best_clock, 0, sizeof(*best_clock));
838
839         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
840
841         max_n = limit->n.max;
842         /* based on hardware requirement, prefer smaller n to precision */
843         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
844                 /* based on hardware requirement, prefere larger m1,m2 */
845                 for (clock.m1 = limit->m1.max;
846                      clock.m1 >= limit->m1.min; clock.m1--) {
847                         for (clock.m2 = limit->m2.max;
848                              clock.m2 >= limit->m2.min; clock.m2--) {
849                                 for (clock.p1 = limit->p1.max;
850                                      clock.p1 >= limit->p1.min; clock.p1--) {
851                                         int this_err;
852
853                                         i9xx_calc_dpll_params(refclk, &clock);
854                                         if (!intel_PLL_is_valid(dev, limit,
855                                                                 &clock))
856                                                 continue;
857
858                                         this_err = abs(clock.dot - target);
859                                         if (this_err < err_most) {
860                                                 *best_clock = clock;
861                                                 err_most = this_err;
862                                                 max_n = clock.n;
863                                                 found = true;
864                                         }
865                                 }
866                         }
867                 }
868         }
869         return found;
870 }
871
872 /*
873  * Check if the calculated PLL configuration is more optimal compared to the
874  * best configuration and error found so far. Return the calculated error.
875  */
876 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
877                                const struct dpll *calculated_clock,
878                                const struct dpll *best_clock,
879                                unsigned int best_error_ppm,
880                                unsigned int *error_ppm)
881 {
882         /*
883          * For CHV ignore the error and consider only the P value.
884          * Prefer a bigger P value based on HW requirements.
885          */
886         if (IS_CHERRYVIEW(dev)) {
887                 *error_ppm = 0;
888
889                 return calculated_clock->p > best_clock->p;
890         }
891
892         if (WARN_ON_ONCE(!target_freq))
893                 return false;
894
895         *error_ppm = div_u64(1000000ULL *
896                                 abs(target_freq - calculated_clock->dot),
897                              target_freq);
898         /*
899          * Prefer a better P value over a better (smaller) error if the error
900          * is small. Ensure this preference for future configurations too by
901          * setting the error to 0.
902          */
903         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
904                 *error_ppm = 0;
905
906                 return true;
907         }
908
909         return *error_ppm + 10 < best_error_ppm;
910 }
911
912 /*
913  * Returns a set of divisors for the desired target clock with the given
914  * refclk, or FALSE.  The returned values represent the clock equation:
915  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
916  */
917 static bool
918 vlv_find_best_dpll(const struct intel_limit *limit,
919                    struct intel_crtc_state *crtc_state,
920                    int target, int refclk, struct dpll *match_clock,
921                    struct dpll *best_clock)
922 {
923         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
924         struct drm_device *dev = crtc->base.dev;
925         struct dpll clock;
926         unsigned int bestppm = 1000000;
927         /* min update 19.2 MHz */
928         int max_n = min(limit->n.max, refclk / 19200);
929         bool found = false;
930
931         target *= 5; /* fast clock */
932
933         memset(best_clock, 0, sizeof(*best_clock));
934
935         /* based on hardware requirement, prefer smaller n to precision */
936         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
937                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
938                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
939                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
940                                 clock.p = clock.p1 * clock.p2;
941                                 /* based on hardware requirement, prefer bigger m1,m2 values */
942                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
943                                         unsigned int ppm;
944
945                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
946                                                                      refclk * clock.m1);
947
948                                         vlv_calc_dpll_params(refclk, &clock);
949
950                                         if (!intel_PLL_is_valid(dev, limit,
951                                                                 &clock))
952                                                 continue;
953
954                                         if (!vlv_PLL_is_optimal(dev, target,
955                                                                 &clock,
956                                                                 best_clock,
957                                                                 bestppm, &ppm))
958                                                 continue;
959
960                                         *best_clock = clock;
961                                         bestppm = ppm;
962                                         found = true;
963                                 }
964                         }
965                 }
966         }
967
968         return found;
969 }
970
971 /*
972  * Returns a set of divisors for the desired target clock with the given
973  * refclk, or FALSE.  The returned values represent the clock equation:
974  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
975  */
976 static bool
977 chv_find_best_dpll(const struct intel_limit *limit,
978                    struct intel_crtc_state *crtc_state,
979                    int target, int refclk, struct dpll *match_clock,
980                    struct dpll *best_clock)
981 {
982         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
983         struct drm_device *dev = crtc->base.dev;
984         unsigned int best_error_ppm;
985         struct dpll clock;
986         uint64_t m2;
987         int found = false;
988
989         memset(best_clock, 0, sizeof(*best_clock));
990         best_error_ppm = 1000000;
991
992         /*
993          * Based on hardware doc, the n always set to 1, and m1 always
994          * set to 2.  If requires to support 200Mhz refclk, we need to
995          * revisit this because n may not 1 anymore.
996          */
997         clock.n = 1, clock.m1 = 2;
998         target *= 5;    /* fast clock */
999
1000         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1001                 for (clock.p2 = limit->p2.p2_fast;
1002                                 clock.p2 >= limit->p2.p2_slow;
1003                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1004                         unsigned int error_ppm;
1005
1006                         clock.p = clock.p1 * clock.p2;
1007
1008                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1009                                         clock.n) << 22, refclk * clock.m1);
1010
1011                         if (m2 > INT_MAX/clock.m1)
1012                                 continue;
1013
1014                         clock.m2 = m2;
1015
1016                         chv_calc_dpll_params(refclk, &clock);
1017
1018                         if (!intel_PLL_is_valid(dev, limit, &clock))
1019                                 continue;
1020
1021                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1022                                                 best_error_ppm, &error_ppm))
1023                                 continue;
1024
1025                         *best_clock = clock;
1026                         best_error_ppm = error_ppm;
1027                         found = true;
1028                 }
1029         }
1030
1031         return found;
1032 }
1033
1034 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1035                         struct dpll *best_clock)
1036 {
1037         int refclk = 100000;
1038         const struct intel_limit *limit = &intel_limits_bxt;
1039
1040         return chv_find_best_dpll(limit, crtc_state,
1041                                   target_clock, refclk, NULL, best_clock);
1042 }
1043
1044 bool intel_crtc_active(struct drm_crtc *crtc)
1045 {
1046         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1047
1048         /* Be paranoid as we can arrive here with only partial
1049          * state retrieved from the hardware during setup.
1050          *
1051          * We can ditch the adjusted_mode.crtc_clock check as soon
1052          * as Haswell has gained clock readout/fastboot support.
1053          *
1054          * We can ditch the crtc->primary->fb check as soon as we can
1055          * properly reconstruct framebuffers.
1056          *
1057          * FIXME: The intel_crtc->active here should be switched to
1058          * crtc->state->active once we have proper CRTC states wired up
1059          * for atomic.
1060          */
1061         return intel_crtc->active && crtc->primary->state->fb &&
1062                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1063 }
1064
1065 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1066                                              enum pipe pipe)
1067 {
1068         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1069         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1070
1071         return intel_crtc->config->cpu_transcoder;
1072 }
1073
1074 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1075 {
1076         struct drm_i915_private *dev_priv = dev->dev_private;
1077         i915_reg_t reg = PIPEDSL(pipe);
1078         u32 line1, line2;
1079         u32 line_mask;
1080
1081         if (IS_GEN2(dev))
1082                 line_mask = DSL_LINEMASK_GEN2;
1083         else
1084                 line_mask = DSL_LINEMASK_GEN3;
1085
1086         line1 = I915_READ(reg) & line_mask;
1087         msleep(5);
1088         line2 = I915_READ(reg) & line_mask;
1089
1090         return line1 == line2;
1091 }
1092
1093 /*
1094  * intel_wait_for_pipe_off - wait for pipe to turn off
1095  * @crtc: crtc whose pipe to wait for
1096  *
1097  * After disabling a pipe, we can't wait for vblank in the usual way,
1098  * spinning on the vblank interrupt status bit, since we won't actually
1099  * see an interrupt when the pipe is disabled.
1100  *
1101  * On Gen4 and above:
1102  *   wait for the pipe register state bit to turn off
1103  *
1104  * Otherwise:
1105  *   wait for the display line value to settle (it usually
1106  *   ends up stopping at the start of the next frame).
1107  *
1108  */
1109 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1110 {
1111         struct drm_device *dev = crtc->base.dev;
1112         struct drm_i915_private *dev_priv = dev->dev_private;
1113         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1114         enum pipe pipe = crtc->pipe;
1115
1116         if (INTEL_INFO(dev)->gen >= 4) {
1117                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1118
1119                 /* Wait for the Pipe State to go off */
1120                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1121                              100))
1122                         WARN(1, "pipe_off wait timed out\n");
1123         } else {
1124                 /* Wait for the display line to settle */
1125                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1126                         WARN(1, "pipe_off wait timed out\n");
1127         }
1128 }
1129
1130 /* Only for pre-ILK configs */
1131 void assert_pll(struct drm_i915_private *dev_priv,
1132                 enum pipe pipe, bool state)
1133 {
1134         u32 val;
1135         bool cur_state;
1136
1137         val = I915_READ(DPLL(pipe));
1138         cur_state = !!(val & DPLL_VCO_ENABLE);
1139         I915_STATE_WARN(cur_state != state,
1140              "PLL state assertion failure (expected %s, current %s)\n",
1141                         onoff(state), onoff(cur_state));
1142 }
1143
1144 /* XXX: the dsi pll is shared between MIPI DSI ports */
1145 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1146 {
1147         u32 val;
1148         bool cur_state;
1149
1150         mutex_lock(&dev_priv->sb_lock);
1151         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1152         mutex_unlock(&dev_priv->sb_lock);
1153
1154         cur_state = val & DSI_PLL_VCO_EN;
1155         I915_STATE_WARN(cur_state != state,
1156              "DSI PLL state assertion failure (expected %s, current %s)\n",
1157                         onoff(state), onoff(cur_state));
1158 }
1159
1160 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1161                           enum pipe pipe, bool state)
1162 {
1163         bool cur_state;
1164         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1165                                                                       pipe);
1166
1167         if (HAS_DDI(dev_priv)) {
1168                 /* DDI does not have a specific FDI_TX register */
1169                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1170                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1171         } else {
1172                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1173                 cur_state = !!(val & FDI_TX_ENABLE);
1174         }
1175         I915_STATE_WARN(cur_state != state,
1176              "FDI TX state assertion failure (expected %s, current %s)\n",
1177                         onoff(state), onoff(cur_state));
1178 }
1179 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1180 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1181
1182 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1183                           enum pipe pipe, bool state)
1184 {
1185         u32 val;
1186         bool cur_state;
1187
1188         val = I915_READ(FDI_RX_CTL(pipe));
1189         cur_state = !!(val & FDI_RX_ENABLE);
1190         I915_STATE_WARN(cur_state != state,
1191              "FDI RX state assertion failure (expected %s, current %s)\n",
1192                         onoff(state), onoff(cur_state));
1193 }
1194 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1195 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1196
1197 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1198                                       enum pipe pipe)
1199 {
1200         u32 val;
1201
1202         /* ILK FDI PLL is always enabled */
1203         if (IS_GEN5(dev_priv))
1204                 return;
1205
1206         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1207         if (HAS_DDI(dev_priv))
1208                 return;
1209
1210         val = I915_READ(FDI_TX_CTL(pipe));
1211         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1212 }
1213
1214 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1215                        enum pipe pipe, bool state)
1216 {
1217         u32 val;
1218         bool cur_state;
1219
1220         val = I915_READ(FDI_RX_CTL(pipe));
1221         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1222         I915_STATE_WARN(cur_state != state,
1223              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1224                         onoff(state), onoff(cur_state));
1225 }
1226
1227 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1228                            enum pipe pipe)
1229 {
1230         struct drm_device *dev = dev_priv->dev;
1231         i915_reg_t pp_reg;
1232         u32 val;
1233         enum pipe panel_pipe = PIPE_A;
1234         bool locked = true;
1235
1236         if (WARN_ON(HAS_DDI(dev)))
1237                 return;
1238
1239         if (HAS_PCH_SPLIT(dev)) {
1240                 u32 port_sel;
1241
1242                 pp_reg = PCH_PP_CONTROL;
1243                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1244
1245                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1246                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1247                         panel_pipe = PIPE_B;
1248                 /* XXX: else fix for eDP */
1249         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1250                 /* presumably write lock depends on pipe, not port select */
1251                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1252                 panel_pipe = pipe;
1253         } else {
1254                 pp_reg = PP_CONTROL;
1255                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1256                         panel_pipe = PIPE_B;
1257         }
1258
1259         val = I915_READ(pp_reg);
1260         if (!(val & PANEL_POWER_ON) ||
1261             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1262                 locked = false;
1263
1264         I915_STATE_WARN(panel_pipe == pipe && locked,
1265              "panel assertion failure, pipe %c regs locked\n",
1266              pipe_name(pipe));
1267 }
1268
1269 static void assert_cursor(struct drm_i915_private *dev_priv,
1270                           enum pipe pipe, bool state)
1271 {
1272         struct drm_device *dev = dev_priv->dev;
1273         bool cur_state;
1274
1275         if (IS_845G(dev) || IS_I865G(dev))
1276                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1277         else
1278                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1279
1280         I915_STATE_WARN(cur_state != state,
1281              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1282                         pipe_name(pipe), onoff(state), onoff(cur_state));
1283 }
1284 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1285 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1286
1287 void assert_pipe(struct drm_i915_private *dev_priv,
1288                  enum pipe pipe, bool state)
1289 {
1290         bool cur_state;
1291         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1292                                                                       pipe);
1293         enum intel_display_power_domain power_domain;
1294
1295         /* if we need the pipe quirk it must be always on */
1296         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1297             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1298                 state = true;
1299
1300         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1301         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1302                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1303                 cur_state = !!(val & PIPECONF_ENABLE);
1304
1305                 intel_display_power_put(dev_priv, power_domain);
1306         } else {
1307                 cur_state = false;
1308         }
1309
1310         I915_STATE_WARN(cur_state != state,
1311              "pipe %c assertion failure (expected %s, current %s)\n",
1312                         pipe_name(pipe), onoff(state), onoff(cur_state));
1313 }
1314
1315 static void assert_plane(struct drm_i915_private *dev_priv,
1316                          enum plane plane, bool state)
1317 {
1318         u32 val;
1319         bool cur_state;
1320
1321         val = I915_READ(DSPCNTR(plane));
1322         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1323         I915_STATE_WARN(cur_state != state,
1324              "plane %c assertion failure (expected %s, current %s)\n",
1325                         plane_name(plane), onoff(state), onoff(cur_state));
1326 }
1327
1328 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1329 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1330
1331 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1332                                    enum pipe pipe)
1333 {
1334         struct drm_device *dev = dev_priv->dev;
1335         int i;
1336
1337         /* Primary planes are fixed to pipes on gen4+ */
1338         if (INTEL_INFO(dev)->gen >= 4) {
1339                 u32 val = I915_READ(DSPCNTR(pipe));
1340                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1341                      "plane %c assertion failure, should be disabled but not\n",
1342                      plane_name(pipe));
1343                 return;
1344         }
1345
1346         /* Need to check both planes against the pipe */
1347         for_each_pipe(dev_priv, i) {
1348                 u32 val = I915_READ(DSPCNTR(i));
1349                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1350                         DISPPLANE_SEL_PIPE_SHIFT;
1351                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1352                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1353                      plane_name(i), pipe_name(pipe));
1354         }
1355 }
1356
1357 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1358                                     enum pipe pipe)
1359 {
1360         struct drm_device *dev = dev_priv->dev;
1361         int sprite;
1362
1363         if (INTEL_INFO(dev)->gen >= 9) {
1364                 for_each_sprite(dev_priv, pipe, sprite) {
1365                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1366                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1367                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1368                              sprite, pipe_name(pipe));
1369                 }
1370         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1371                 for_each_sprite(dev_priv, pipe, sprite) {
1372                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1373                         I915_STATE_WARN(val & SP_ENABLE,
1374                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1375                              sprite_name(pipe, sprite), pipe_name(pipe));
1376                 }
1377         } else if (INTEL_INFO(dev)->gen >= 7) {
1378                 u32 val = I915_READ(SPRCTL(pipe));
1379                 I915_STATE_WARN(val & SPRITE_ENABLE,
1380                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1381                      plane_name(pipe), pipe_name(pipe));
1382         } else if (INTEL_INFO(dev)->gen >= 5) {
1383                 u32 val = I915_READ(DVSCNTR(pipe));
1384                 I915_STATE_WARN(val & DVS_ENABLE,
1385                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1386                      plane_name(pipe), pipe_name(pipe));
1387         }
1388 }
1389
1390 static void assert_vblank_disabled(struct drm_crtc *crtc)
1391 {
1392         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1393                 drm_crtc_vblank_put(crtc);
1394 }
1395
1396 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1397                                     enum pipe pipe)
1398 {
1399         u32 val;
1400         bool enabled;
1401
1402         val = I915_READ(PCH_TRANSCONF(pipe));
1403         enabled = !!(val & TRANS_ENABLE);
1404         I915_STATE_WARN(enabled,
1405              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1406              pipe_name(pipe));
1407 }
1408
1409 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1410                             enum pipe pipe, u32 port_sel, u32 val)
1411 {
1412         if ((val & DP_PORT_EN) == 0)
1413                 return false;
1414
1415         if (HAS_PCH_CPT(dev_priv)) {
1416                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1417                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1418                         return false;
1419         } else if (IS_CHERRYVIEW(dev_priv)) {
1420                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1421                         return false;
1422         } else {
1423                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1424                         return false;
1425         }
1426         return true;
1427 }
1428
1429 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1430                               enum pipe pipe, u32 val)
1431 {
1432         if ((val & SDVO_ENABLE) == 0)
1433                 return false;
1434
1435         if (HAS_PCH_CPT(dev_priv)) {
1436                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1437                         return false;
1438         } else if (IS_CHERRYVIEW(dev_priv)) {
1439                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1440                         return false;
1441         } else {
1442                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1443                         return false;
1444         }
1445         return true;
1446 }
1447
1448 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1449                               enum pipe pipe, u32 val)
1450 {
1451         if ((val & LVDS_PORT_EN) == 0)
1452                 return false;
1453
1454         if (HAS_PCH_CPT(dev_priv)) {
1455                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1456                         return false;
1457         } else {
1458                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1459                         return false;
1460         }
1461         return true;
1462 }
1463
1464 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1465                               enum pipe pipe, u32 val)
1466 {
1467         if ((val & ADPA_DAC_ENABLE) == 0)
1468                 return false;
1469         if (HAS_PCH_CPT(dev_priv)) {
1470                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1471                         return false;
1472         } else {
1473                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1474                         return false;
1475         }
1476         return true;
1477 }
1478
1479 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1480                                    enum pipe pipe, i915_reg_t reg,
1481                                    u32 port_sel)
1482 {
1483         u32 val = I915_READ(reg);
1484         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1485              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1486              i915_mmio_reg_offset(reg), pipe_name(pipe));
1487
1488         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1489              && (val & DP_PIPEB_SELECT),
1490              "IBX PCH dp port still using transcoder B\n");
1491 }
1492
1493 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1494                                      enum pipe pipe, i915_reg_t reg)
1495 {
1496         u32 val = I915_READ(reg);
1497         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1498              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1499              i915_mmio_reg_offset(reg), pipe_name(pipe));
1500
1501         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1502              && (val & SDVO_PIPE_B_SELECT),
1503              "IBX PCH hdmi port still using transcoder B\n");
1504 }
1505
1506 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1507                                       enum pipe pipe)
1508 {
1509         u32 val;
1510
1511         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1512         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1513         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1514
1515         val = I915_READ(PCH_ADPA);
1516         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1517              "PCH VGA enabled on transcoder %c, should be disabled\n",
1518              pipe_name(pipe));
1519
1520         val = I915_READ(PCH_LVDS);
1521         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1522              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1523              pipe_name(pipe));
1524
1525         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1526         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1527         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1528 }
1529
1530 static void _vlv_enable_pll(struct intel_crtc *crtc,
1531                             const struct intel_crtc_state *pipe_config)
1532 {
1533         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1534         enum pipe pipe = crtc->pipe;
1535
1536         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1537         POSTING_READ(DPLL(pipe));
1538         udelay(150);
1539
1540         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1541                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1542 }
1543
1544 static void vlv_enable_pll(struct intel_crtc *crtc,
1545                            const struct intel_crtc_state *pipe_config)
1546 {
1547         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1548         enum pipe pipe = crtc->pipe;
1549
1550         assert_pipe_disabled(dev_priv, pipe);
1551
1552         /* PLL is protected by panel, make sure we can write it */
1553         assert_panel_unlocked(dev_priv, pipe);
1554
1555         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1556                 _vlv_enable_pll(crtc, pipe_config);
1557
1558         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1559         POSTING_READ(DPLL_MD(pipe));
1560 }
1561
1562
1563 static void _chv_enable_pll(struct intel_crtc *crtc,
1564                             const struct intel_crtc_state *pipe_config)
1565 {
1566         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1567         enum pipe pipe = crtc->pipe;
1568         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1569         u32 tmp;
1570
1571         mutex_lock(&dev_priv->sb_lock);
1572
1573         /* Enable back the 10bit clock to display controller */
1574         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1575         tmp |= DPIO_DCLKP_EN;
1576         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1577
1578         mutex_unlock(&dev_priv->sb_lock);
1579
1580         /*
1581          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1582          */
1583         udelay(1);
1584
1585         /* Enable PLL */
1586         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1587
1588         /* Check PLL is locked */
1589         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1590                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1591 }
1592
1593 static void chv_enable_pll(struct intel_crtc *crtc,
1594                            const struct intel_crtc_state *pipe_config)
1595 {
1596         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1597         enum pipe pipe = crtc->pipe;
1598
1599         assert_pipe_disabled(dev_priv, pipe);
1600
1601         /* PLL is protected by panel, make sure we can write it */
1602         assert_panel_unlocked(dev_priv, pipe);
1603
1604         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1605                 _chv_enable_pll(crtc, pipe_config);
1606
1607         if (pipe != PIPE_A) {
1608                 /*
1609                  * WaPixelRepeatModeFixForC0:chv
1610                  *
1611                  * DPLLCMD is AWOL. Use chicken bits to propagate
1612                  * the value from DPLLBMD to either pipe B or C.
1613                  */
1614                 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1615                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1616                 I915_WRITE(CBR4_VLV, 0);
1617                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1618
1619                 /*
1620                  * DPLLB VGA mode also seems to cause problems.
1621                  * We should always have it disabled.
1622                  */
1623                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1624         } else {
1625                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1626                 POSTING_READ(DPLL_MD(pipe));
1627         }
1628 }
1629
1630 static int intel_num_dvo_pipes(struct drm_device *dev)
1631 {
1632         struct intel_crtc *crtc;
1633         int count = 0;
1634
1635         for_each_intel_crtc(dev, crtc)
1636                 count += crtc->base.state->active &&
1637                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1638
1639         return count;
1640 }
1641
1642 static void i9xx_enable_pll(struct intel_crtc *crtc)
1643 {
1644         struct drm_device *dev = crtc->base.dev;
1645         struct drm_i915_private *dev_priv = dev->dev_private;
1646         i915_reg_t reg = DPLL(crtc->pipe);
1647         u32 dpll = crtc->config->dpll_hw_state.dpll;
1648
1649         assert_pipe_disabled(dev_priv, crtc->pipe);
1650
1651         /* PLL is protected by panel, make sure we can write it */
1652         if (IS_MOBILE(dev) && !IS_I830(dev))
1653                 assert_panel_unlocked(dev_priv, crtc->pipe);
1654
1655         /* Enable DVO 2x clock on both PLLs if necessary */
1656         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1657                 /*
1658                  * It appears to be important that we don't enable this
1659                  * for the current pipe before otherwise configuring the
1660                  * PLL. No idea how this should be handled if multiple
1661                  * DVO outputs are enabled simultaneosly.
1662                  */
1663                 dpll |= DPLL_DVO_2X_MODE;
1664                 I915_WRITE(DPLL(!crtc->pipe),
1665                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1666         }
1667
1668         /*
1669          * Apparently we need to have VGA mode enabled prior to changing
1670          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1671          * dividers, even though the register value does change.
1672          */
1673         I915_WRITE(reg, 0);
1674
1675         I915_WRITE(reg, dpll);
1676
1677         /* Wait for the clocks to stabilize. */
1678         POSTING_READ(reg);
1679         udelay(150);
1680
1681         if (INTEL_INFO(dev)->gen >= 4) {
1682                 I915_WRITE(DPLL_MD(crtc->pipe),
1683                            crtc->config->dpll_hw_state.dpll_md);
1684         } else {
1685                 /* The pixel multiplier can only be updated once the
1686                  * DPLL is enabled and the clocks are stable.
1687                  *
1688                  * So write it again.
1689                  */
1690                 I915_WRITE(reg, dpll);
1691         }
1692
1693         /* We do this three times for luck */
1694         I915_WRITE(reg, dpll);
1695         POSTING_READ(reg);
1696         udelay(150); /* wait for warmup */
1697         I915_WRITE(reg, dpll);
1698         POSTING_READ(reg);
1699         udelay(150); /* wait for warmup */
1700         I915_WRITE(reg, dpll);
1701         POSTING_READ(reg);
1702         udelay(150); /* wait for warmup */
1703 }
1704
1705 /**
1706  * i9xx_disable_pll - disable a PLL
1707  * @dev_priv: i915 private structure
1708  * @pipe: pipe PLL to disable
1709  *
1710  * Disable the PLL for @pipe, making sure the pipe is off first.
1711  *
1712  * Note!  This is for pre-ILK only.
1713  */
1714 static void i9xx_disable_pll(struct intel_crtc *crtc)
1715 {
1716         struct drm_device *dev = crtc->base.dev;
1717         struct drm_i915_private *dev_priv = dev->dev_private;
1718         enum pipe pipe = crtc->pipe;
1719
1720         /* Disable DVO 2x clock on both PLLs if necessary */
1721         if (IS_I830(dev) &&
1722             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1723             !intel_num_dvo_pipes(dev)) {
1724                 I915_WRITE(DPLL(PIPE_B),
1725                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1726                 I915_WRITE(DPLL(PIPE_A),
1727                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1728         }
1729
1730         /* Don't disable pipe or pipe PLLs if needed */
1731         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1732             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1733                 return;
1734
1735         /* Make sure the pipe isn't still relying on us */
1736         assert_pipe_disabled(dev_priv, pipe);
1737
1738         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1739         POSTING_READ(DPLL(pipe));
1740 }
1741
1742 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1743 {
1744         u32 val;
1745
1746         /* Make sure the pipe isn't still relying on us */
1747         assert_pipe_disabled(dev_priv, pipe);
1748
1749         val = DPLL_INTEGRATED_REF_CLK_VLV |
1750                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1751         if (pipe != PIPE_A)
1752                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1753
1754         I915_WRITE(DPLL(pipe), val);
1755         POSTING_READ(DPLL(pipe));
1756 }
1757
1758 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1759 {
1760         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1761         u32 val;
1762
1763         /* Make sure the pipe isn't still relying on us */
1764         assert_pipe_disabled(dev_priv, pipe);
1765
1766         val = DPLL_SSC_REF_CLK_CHV |
1767                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1768         if (pipe != PIPE_A)
1769                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1770
1771         I915_WRITE(DPLL(pipe), val);
1772         POSTING_READ(DPLL(pipe));
1773
1774         mutex_lock(&dev_priv->sb_lock);
1775
1776         /* Disable 10bit clock to display controller */
1777         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1778         val &= ~DPIO_DCLKP_EN;
1779         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1780
1781         mutex_unlock(&dev_priv->sb_lock);
1782 }
1783
1784 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1785                          struct intel_digital_port *dport,
1786                          unsigned int expected_mask)
1787 {
1788         u32 port_mask;
1789         i915_reg_t dpll_reg;
1790
1791         switch (dport->port) {
1792         case PORT_B:
1793                 port_mask = DPLL_PORTB_READY_MASK;
1794                 dpll_reg = DPLL(0);
1795                 break;
1796         case PORT_C:
1797                 port_mask = DPLL_PORTC_READY_MASK;
1798                 dpll_reg = DPLL(0);
1799                 expected_mask <<= 4;
1800                 break;
1801         case PORT_D:
1802                 port_mask = DPLL_PORTD_READY_MASK;
1803                 dpll_reg = DPIO_PHY_STATUS;
1804                 break;
1805         default:
1806                 BUG();
1807         }
1808
1809         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1810                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1811                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1812 }
1813
1814 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1815                                            enum pipe pipe)
1816 {
1817         struct drm_device *dev = dev_priv->dev;
1818         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1819         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1820         i915_reg_t reg;
1821         uint32_t val, pipeconf_val;
1822
1823         /* Make sure PCH DPLL is enabled */
1824         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1825
1826         /* FDI must be feeding us bits for PCH ports */
1827         assert_fdi_tx_enabled(dev_priv, pipe);
1828         assert_fdi_rx_enabled(dev_priv, pipe);
1829
1830         if (HAS_PCH_CPT(dev)) {
1831                 /* Workaround: Set the timing override bit before enabling the
1832                  * pch transcoder. */
1833                 reg = TRANS_CHICKEN2(pipe);
1834                 val = I915_READ(reg);
1835                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1836                 I915_WRITE(reg, val);
1837         }
1838
1839         reg = PCH_TRANSCONF(pipe);
1840         val = I915_READ(reg);
1841         pipeconf_val = I915_READ(PIPECONF(pipe));
1842
1843         if (HAS_PCH_IBX(dev_priv)) {
1844                 /*
1845                  * Make the BPC in transcoder be consistent with
1846                  * that in pipeconf reg. For HDMI we must use 8bpc
1847                  * here for both 8bpc and 12bpc.
1848                  */
1849                 val &= ~PIPECONF_BPC_MASK;
1850                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1851                         val |= PIPECONF_8BPC;
1852                 else
1853                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1854         }
1855
1856         val &= ~TRANS_INTERLACE_MASK;
1857         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1858                 if (HAS_PCH_IBX(dev_priv) &&
1859                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1860                         val |= TRANS_LEGACY_INTERLACED_ILK;
1861                 else
1862                         val |= TRANS_INTERLACED;
1863         else
1864                 val |= TRANS_PROGRESSIVE;
1865
1866         I915_WRITE(reg, val | TRANS_ENABLE);
1867         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1868                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1869 }
1870
1871 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1872                                       enum transcoder cpu_transcoder)
1873 {
1874         u32 val, pipeconf_val;
1875
1876         /* FDI must be feeding us bits for PCH ports */
1877         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1878         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1879
1880         /* Workaround: set timing override bit. */
1881         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1882         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1883         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1884
1885         val = TRANS_ENABLE;
1886         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1887
1888         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1889             PIPECONF_INTERLACED_ILK)
1890                 val |= TRANS_INTERLACED;
1891         else
1892                 val |= TRANS_PROGRESSIVE;
1893
1894         I915_WRITE(LPT_TRANSCONF, val);
1895         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1896                 DRM_ERROR("Failed to enable PCH transcoder\n");
1897 }
1898
1899 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1900                                             enum pipe pipe)
1901 {
1902         struct drm_device *dev = dev_priv->dev;
1903         i915_reg_t reg;
1904         uint32_t val;
1905
1906         /* FDI relies on the transcoder */
1907         assert_fdi_tx_disabled(dev_priv, pipe);
1908         assert_fdi_rx_disabled(dev_priv, pipe);
1909
1910         /* Ports must be off as well */
1911         assert_pch_ports_disabled(dev_priv, pipe);
1912
1913         reg = PCH_TRANSCONF(pipe);
1914         val = I915_READ(reg);
1915         val &= ~TRANS_ENABLE;
1916         I915_WRITE(reg, val);
1917         /* wait for PCH transcoder off, transcoder state */
1918         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1919                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1920
1921         if (HAS_PCH_CPT(dev)) {
1922                 /* Workaround: Clear the timing override chicken bit again. */
1923                 reg = TRANS_CHICKEN2(pipe);
1924                 val = I915_READ(reg);
1925                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1926                 I915_WRITE(reg, val);
1927         }
1928 }
1929
1930 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1931 {
1932         u32 val;
1933
1934         val = I915_READ(LPT_TRANSCONF);
1935         val &= ~TRANS_ENABLE;
1936         I915_WRITE(LPT_TRANSCONF, val);
1937         /* wait for PCH transcoder off, transcoder state */
1938         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1939                 DRM_ERROR("Failed to disable PCH transcoder\n");
1940
1941         /* Workaround: clear timing override bit. */
1942         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1943         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1944         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1945 }
1946
1947 /**
1948  * intel_enable_pipe - enable a pipe, asserting requirements
1949  * @crtc: crtc responsible for the pipe
1950  *
1951  * Enable @crtc's pipe, making sure that various hardware specific requirements
1952  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1953  */
1954 static void intel_enable_pipe(struct intel_crtc *crtc)
1955 {
1956         struct drm_device *dev = crtc->base.dev;
1957         struct drm_i915_private *dev_priv = dev->dev_private;
1958         enum pipe pipe = crtc->pipe;
1959         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1960         enum pipe pch_transcoder;
1961         i915_reg_t reg;
1962         u32 val;
1963
1964         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1965
1966         assert_planes_disabled(dev_priv, pipe);
1967         assert_cursor_disabled(dev_priv, pipe);
1968         assert_sprites_disabled(dev_priv, pipe);
1969
1970         if (HAS_PCH_LPT(dev_priv))
1971                 pch_transcoder = TRANSCODER_A;
1972         else
1973                 pch_transcoder = pipe;
1974
1975         /*
1976          * A pipe without a PLL won't actually be able to drive bits from
1977          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1978          * need the check.
1979          */
1980         if (HAS_GMCH_DISPLAY(dev_priv))
1981                 if (crtc->config->has_dsi_encoder)
1982                         assert_dsi_pll_enabled(dev_priv);
1983                 else
1984                         assert_pll_enabled(dev_priv, pipe);
1985         else {
1986                 if (crtc->config->has_pch_encoder) {
1987                         /* if driving the PCH, we need FDI enabled */
1988                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1989                         assert_fdi_tx_pll_enabled(dev_priv,
1990                                                   (enum pipe) cpu_transcoder);
1991                 }
1992                 /* FIXME: assert CPU port conditions for SNB+ */
1993         }
1994
1995         reg = PIPECONF(cpu_transcoder);
1996         val = I915_READ(reg);
1997         if (val & PIPECONF_ENABLE) {
1998                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1999                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2000                 return;
2001         }
2002
2003         I915_WRITE(reg, val | PIPECONF_ENABLE);
2004         POSTING_READ(reg);
2005
2006         /*
2007          * Until the pipe starts DSL will read as 0, which would cause
2008          * an apparent vblank timestamp jump, which messes up also the
2009          * frame count when it's derived from the timestamps. So let's
2010          * wait for the pipe to start properly before we call
2011          * drm_crtc_vblank_on()
2012          */
2013         if (dev->max_vblank_count == 0 &&
2014             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2015                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2016 }
2017
2018 /**
2019  * intel_disable_pipe - disable a pipe, asserting requirements
2020  * @crtc: crtc whose pipes is to be disabled
2021  *
2022  * Disable the pipe of @crtc, making sure that various hardware
2023  * specific requirements are met, if applicable, e.g. plane
2024  * disabled, panel fitter off, etc.
2025  *
2026  * Will wait until the pipe has shut down before returning.
2027  */
2028 static void intel_disable_pipe(struct intel_crtc *crtc)
2029 {
2030         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2031         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2032         enum pipe pipe = crtc->pipe;
2033         i915_reg_t reg;
2034         u32 val;
2035
2036         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2037
2038         /*
2039          * Make sure planes won't keep trying to pump pixels to us,
2040          * or we might hang the display.
2041          */
2042         assert_planes_disabled(dev_priv, pipe);
2043         assert_cursor_disabled(dev_priv, pipe);
2044         assert_sprites_disabled(dev_priv, pipe);
2045
2046         reg = PIPECONF(cpu_transcoder);
2047         val = I915_READ(reg);
2048         if ((val & PIPECONF_ENABLE) == 0)
2049                 return;
2050
2051         /*
2052          * Double wide has implications for planes
2053          * so best keep it disabled when not needed.
2054          */
2055         if (crtc->config->double_wide)
2056                 val &= ~PIPECONF_DOUBLE_WIDE;
2057
2058         /* Don't disable pipe or pipe PLLs if needed */
2059         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2060             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2061                 val &= ~PIPECONF_ENABLE;
2062
2063         I915_WRITE(reg, val);
2064         if ((val & PIPECONF_ENABLE) == 0)
2065                 intel_wait_for_pipe_off(crtc);
2066 }
2067
2068 static bool need_vtd_wa(struct drm_device *dev)
2069 {
2070 #ifdef CONFIG_INTEL_IOMMU
2071         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2072                 return true;
2073 #endif
2074         return false;
2075 }
2076
2077 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2078 {
2079         return IS_GEN2(dev_priv) ? 2048 : 4096;
2080 }
2081
2082 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2083                                            uint64_t fb_modifier, unsigned int cpp)
2084 {
2085         switch (fb_modifier) {
2086         case DRM_FORMAT_MOD_NONE:
2087                 return cpp;
2088         case I915_FORMAT_MOD_X_TILED:
2089                 if (IS_GEN2(dev_priv))
2090                         return 128;
2091                 else
2092                         return 512;
2093         case I915_FORMAT_MOD_Y_TILED:
2094                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2095                         return 128;
2096                 else
2097                         return 512;
2098         case I915_FORMAT_MOD_Yf_TILED:
2099                 switch (cpp) {
2100                 case 1:
2101                         return 64;
2102                 case 2:
2103                 case 4:
2104                         return 128;
2105                 case 8:
2106                 case 16:
2107                         return 256;
2108                 default:
2109                         MISSING_CASE(cpp);
2110                         return cpp;
2111                 }
2112                 break;
2113         default:
2114                 MISSING_CASE(fb_modifier);
2115                 return cpp;
2116         }
2117 }
2118
2119 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2120                                uint64_t fb_modifier, unsigned int cpp)
2121 {
2122         if (fb_modifier == DRM_FORMAT_MOD_NONE)
2123                 return 1;
2124         else
2125                 return intel_tile_size(dev_priv) /
2126                         intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2127 }
2128
2129 /* Return the tile dimensions in pixel units */
2130 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2131                             unsigned int *tile_width,
2132                             unsigned int *tile_height,
2133                             uint64_t fb_modifier,
2134                             unsigned int cpp)
2135 {
2136         unsigned int tile_width_bytes =
2137                 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2138
2139         *tile_width = tile_width_bytes / cpp;
2140         *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2141 }
2142
2143 unsigned int
2144 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2145                       uint32_t pixel_format, uint64_t fb_modifier)
2146 {
2147         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2148         unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2149
2150         return ALIGN(height, tile_height);
2151 }
2152
2153 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2154 {
2155         unsigned int size = 0;
2156         int i;
2157
2158         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2159                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2160
2161         return size;
2162 }
2163
2164 static void
2165 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2166                         const struct drm_framebuffer *fb,
2167                         unsigned int rotation)
2168 {
2169         if (intel_rotation_90_or_270(rotation)) {
2170                 *view = i915_ggtt_view_rotated;
2171                 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2172         } else {
2173                 *view = i915_ggtt_view_normal;
2174         }
2175 }
2176
2177 static void
2178 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2179                    struct drm_framebuffer *fb)
2180 {
2181         struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2182         unsigned int tile_size, tile_width, tile_height, cpp;
2183
2184         tile_size = intel_tile_size(dev_priv);
2185
2186         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2187         intel_tile_dims(dev_priv, &tile_width, &tile_height,
2188                         fb->modifier[0], cpp);
2189
2190         info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2191         info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
2192
2193         if (info->pixel_format == DRM_FORMAT_NV12) {
2194                 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2195                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2196                                 fb->modifier[1], cpp);
2197
2198                 info->uv_offset = fb->offsets[1];
2199                 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2200                 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
2201         }
2202 }
2203
2204 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2205 {
2206         if (INTEL_INFO(dev_priv)->gen >= 9)
2207                 return 256 * 1024;
2208         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2209                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2210                 return 128 * 1024;
2211         else if (INTEL_INFO(dev_priv)->gen >= 4)
2212                 return 4 * 1024;
2213         else
2214                 return 0;
2215 }
2216
2217 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2218                                          uint64_t fb_modifier)
2219 {
2220         switch (fb_modifier) {
2221         case DRM_FORMAT_MOD_NONE:
2222                 return intel_linear_alignment(dev_priv);
2223         case I915_FORMAT_MOD_X_TILED:
2224                 if (INTEL_INFO(dev_priv)->gen >= 9)
2225                         return 256 * 1024;
2226                 return 0;
2227         case I915_FORMAT_MOD_Y_TILED:
2228         case I915_FORMAT_MOD_Yf_TILED:
2229                 return 1 * 1024 * 1024;
2230         default:
2231                 MISSING_CASE(fb_modifier);
2232                 return 0;
2233         }
2234 }
2235
2236 int
2237 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2238                            unsigned int rotation)
2239 {
2240         struct drm_device *dev = fb->dev;
2241         struct drm_i915_private *dev_priv = dev->dev_private;
2242         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2243         struct i915_ggtt_view view;
2244         u32 alignment;
2245         int ret;
2246
2247         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2248
2249         alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2250
2251         intel_fill_fb_ggtt_view(&view, fb, rotation);
2252
2253         /* Note that the w/a also requires 64 PTE of padding following the
2254          * bo. We currently fill all unused PTE with the shadow page and so
2255          * we should always have valid PTE following the scanout preventing
2256          * the VT-d warning.
2257          */
2258         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2259                 alignment = 256 * 1024;
2260
2261         /*
2262          * Global gtt pte registers are special registers which actually forward
2263          * writes to a chunk of system memory. Which means that there is no risk
2264          * that the register values disappear as soon as we call
2265          * intel_runtime_pm_put(), so it is correct to wrap only the
2266          * pin/unpin/fence and not more.
2267          */
2268         intel_runtime_pm_get(dev_priv);
2269
2270         ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2271                                                    &view);
2272         if (ret)
2273                 goto err_pm;
2274
2275         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2276          * fence, whereas 965+ only requires a fence if using
2277          * framebuffer compression.  For simplicity, we always install
2278          * a fence as the cost is not that onerous.
2279          */
2280         if (view.type == I915_GGTT_VIEW_NORMAL) {
2281                 ret = i915_gem_object_get_fence(obj);
2282                 if (ret == -EDEADLK) {
2283                         /*
2284                          * -EDEADLK means there are no free fences
2285                          * no pending flips.
2286                          *
2287                          * This is propagated to atomic, but it uses
2288                          * -EDEADLK to force a locking recovery, so
2289                          * change the returned error to -EBUSY.
2290                          */
2291                         ret = -EBUSY;
2292                         goto err_unpin;
2293                 } else if (ret)
2294                         goto err_unpin;
2295
2296                 i915_gem_object_pin_fence(obj);
2297         }
2298
2299         intel_runtime_pm_put(dev_priv);
2300         return 0;
2301
2302 err_unpin:
2303         i915_gem_object_unpin_from_display_plane(obj, &view);
2304 err_pm:
2305         intel_runtime_pm_put(dev_priv);
2306         return ret;
2307 }
2308
2309 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2310 {
2311         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2312         struct i915_ggtt_view view;
2313
2314         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2315
2316         intel_fill_fb_ggtt_view(&view, fb, rotation);
2317
2318         if (view.type == I915_GGTT_VIEW_NORMAL)
2319                 i915_gem_object_unpin_fence(obj);
2320
2321         i915_gem_object_unpin_from_display_plane(obj, &view);
2322 }
2323
2324 /*
2325  * Adjust the tile offset by moving the difference into
2326  * the x/y offsets.
2327  *
2328  * Input tile dimensions and pitch must already be
2329  * rotated to match x and y, and in pixel units.
2330  */
2331 static u32 intel_adjust_tile_offset(int *x, int *y,
2332                                     unsigned int tile_width,
2333                                     unsigned int tile_height,
2334                                     unsigned int tile_size,
2335                                     unsigned int pitch_tiles,
2336                                     u32 old_offset,
2337                                     u32 new_offset)
2338 {
2339         unsigned int tiles;
2340
2341         WARN_ON(old_offset & (tile_size - 1));
2342         WARN_ON(new_offset & (tile_size - 1));
2343         WARN_ON(new_offset > old_offset);
2344
2345         tiles = (old_offset - new_offset) / tile_size;
2346
2347         *y += tiles / pitch_tiles * tile_height;
2348         *x += tiles % pitch_tiles * tile_width;
2349
2350         return new_offset;
2351 }
2352
2353 /*
2354  * Computes the linear offset to the base tile and adjusts
2355  * x, y. bytes per pixel is assumed to be a power-of-two.
2356  *
2357  * In the 90/270 rotated case, x and y are assumed
2358  * to be already rotated to match the rotated GTT view, and
2359  * pitch is the tile_height aligned framebuffer height.
2360  */
2361 u32 intel_compute_tile_offset(int *x, int *y,
2362                               const struct drm_framebuffer *fb, int plane,
2363                               unsigned int pitch,
2364                               unsigned int rotation)
2365 {
2366         const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2367         uint64_t fb_modifier = fb->modifier[plane];
2368         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2369         u32 offset, offset_aligned, alignment;
2370
2371         alignment = intel_surf_alignment(dev_priv, fb_modifier);
2372         if (alignment)
2373                 alignment--;
2374
2375         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2376                 unsigned int tile_size, tile_width, tile_height;
2377                 unsigned int tile_rows, tiles, pitch_tiles;
2378
2379                 tile_size = intel_tile_size(dev_priv);
2380                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2381                                 fb_modifier, cpp);
2382
2383                 if (intel_rotation_90_or_270(rotation)) {
2384                         pitch_tiles = pitch / tile_height;
2385                         swap(tile_width, tile_height);
2386                 } else {
2387                         pitch_tiles = pitch / (tile_width * cpp);
2388                 }
2389
2390                 tile_rows = *y / tile_height;
2391                 *y %= tile_height;
2392
2393                 tiles = *x / tile_width;
2394                 *x %= tile_width;
2395
2396                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2397                 offset_aligned = offset & ~alignment;
2398
2399                 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2400                                          tile_size, pitch_tiles,
2401                                          offset, offset_aligned);
2402         } else {
2403                 offset = *y * pitch + *x * cpp;
2404                 offset_aligned = offset & ~alignment;
2405
2406                 *y = (offset & alignment) / pitch;
2407                 *x = ((offset & alignment) - *y * pitch) / cpp;
2408         }
2409
2410         return offset_aligned;
2411 }
2412
2413 static int i9xx_format_to_fourcc(int format)
2414 {
2415         switch (format) {
2416         case DISPPLANE_8BPP:
2417                 return DRM_FORMAT_C8;
2418         case DISPPLANE_BGRX555:
2419                 return DRM_FORMAT_XRGB1555;
2420         case DISPPLANE_BGRX565:
2421                 return DRM_FORMAT_RGB565;
2422         default:
2423         case DISPPLANE_BGRX888:
2424                 return DRM_FORMAT_XRGB8888;
2425         case DISPPLANE_RGBX888:
2426                 return DRM_FORMAT_XBGR8888;
2427         case DISPPLANE_BGRX101010:
2428                 return DRM_FORMAT_XRGB2101010;
2429         case DISPPLANE_RGBX101010:
2430                 return DRM_FORMAT_XBGR2101010;
2431         }
2432 }
2433
2434 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2435 {
2436         switch (format) {
2437         case PLANE_CTL_FORMAT_RGB_565:
2438                 return DRM_FORMAT_RGB565;
2439         default:
2440         case PLANE_CTL_FORMAT_XRGB_8888:
2441                 if (rgb_order) {
2442                         if (alpha)
2443                                 return DRM_FORMAT_ABGR8888;
2444                         else
2445                                 return DRM_FORMAT_XBGR8888;
2446                 } else {
2447                         if (alpha)
2448                                 return DRM_FORMAT_ARGB8888;
2449                         else
2450                                 return DRM_FORMAT_XRGB8888;
2451                 }
2452         case PLANE_CTL_FORMAT_XRGB_2101010:
2453                 if (rgb_order)
2454                         return DRM_FORMAT_XBGR2101010;
2455                 else
2456                         return DRM_FORMAT_XRGB2101010;
2457         }
2458 }
2459
2460 static bool
2461 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2462                               struct intel_initial_plane_config *plane_config)
2463 {
2464         struct drm_device *dev = crtc->base.dev;
2465         struct drm_i915_private *dev_priv = to_i915(dev);
2466         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2467         struct drm_i915_gem_object *obj = NULL;
2468         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2469         struct drm_framebuffer *fb = &plane_config->fb->base;
2470         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2471         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2472                                     PAGE_SIZE);
2473
2474         size_aligned -= base_aligned;
2475
2476         if (plane_config->size == 0)
2477                 return false;
2478
2479         /* If the FB is too big, just don't use it since fbdev is not very
2480          * important and we should probably use that space with FBC or other
2481          * features. */
2482         if (size_aligned * 2 > ggtt->stolen_usable_size)
2483                 return false;
2484
2485         mutex_lock(&dev->struct_mutex);
2486
2487         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2488                                                              base_aligned,
2489                                                              base_aligned,
2490                                                              size_aligned);
2491         if (!obj) {
2492                 mutex_unlock(&dev->struct_mutex);
2493                 return false;
2494         }
2495
2496         obj->tiling_mode = plane_config->tiling;
2497         if (obj->tiling_mode == I915_TILING_X)
2498                 obj->stride = fb->pitches[0];
2499
2500         mode_cmd.pixel_format = fb->pixel_format;
2501         mode_cmd.width = fb->width;
2502         mode_cmd.height = fb->height;
2503         mode_cmd.pitches[0] = fb->pitches[0];
2504         mode_cmd.modifier[0] = fb->modifier[0];
2505         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2506
2507         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2508                                    &mode_cmd, obj)) {
2509                 DRM_DEBUG_KMS("intel fb init failed\n");
2510                 goto out_unref_obj;
2511         }
2512
2513         mutex_unlock(&dev->struct_mutex);
2514
2515         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2516         return true;
2517
2518 out_unref_obj:
2519         drm_gem_object_unreference(&obj->base);
2520         mutex_unlock(&dev->struct_mutex);
2521         return false;
2522 }
2523
2524 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2525 static void
2526 update_state_fb(struct drm_plane *plane)
2527 {
2528         if (plane->fb == plane->state->fb)
2529                 return;
2530
2531         if (plane->state->fb)
2532                 drm_framebuffer_unreference(plane->state->fb);
2533         plane->state->fb = plane->fb;
2534         if (plane->state->fb)
2535                 drm_framebuffer_reference(plane->state->fb);
2536 }
2537
2538 static void
2539 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2540                              struct intel_initial_plane_config *plane_config)
2541 {
2542         struct drm_device *dev = intel_crtc->base.dev;
2543         struct drm_i915_private *dev_priv = dev->dev_private;
2544         struct drm_crtc *c;
2545         struct intel_crtc *i;
2546         struct drm_i915_gem_object *obj;
2547         struct drm_plane *primary = intel_crtc->base.primary;
2548         struct drm_plane_state *plane_state = primary->state;
2549         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2550         struct intel_plane *intel_plane = to_intel_plane(primary);
2551         struct intel_plane_state *intel_state =
2552                 to_intel_plane_state(plane_state);
2553         struct drm_framebuffer *fb;
2554
2555         if (!plane_config->fb)
2556                 return;
2557
2558         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2559                 fb = &plane_config->fb->base;
2560                 goto valid_fb;
2561         }
2562
2563         kfree(plane_config->fb);
2564
2565         /*
2566          * Failed to alloc the obj, check to see if we should share
2567          * an fb with another CRTC instead
2568          */
2569         for_each_crtc(dev, c) {
2570                 i = to_intel_crtc(c);
2571
2572                 if (c == &intel_crtc->base)
2573                         continue;
2574
2575                 if (!i->active)
2576                         continue;
2577
2578                 fb = c->primary->fb;
2579                 if (!fb)
2580                         continue;
2581
2582                 obj = intel_fb_obj(fb);
2583                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2584                         drm_framebuffer_reference(fb);
2585                         goto valid_fb;
2586                 }
2587         }
2588
2589         /*
2590          * We've failed to reconstruct the BIOS FB.  Current display state
2591          * indicates that the primary plane is visible, but has a NULL FB,
2592          * which will lead to problems later if we don't fix it up.  The
2593          * simplest solution is to just disable the primary plane now and
2594          * pretend the BIOS never had it enabled.
2595          */
2596         to_intel_plane_state(plane_state)->visible = false;
2597         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2598         intel_pre_disable_primary_noatomic(&intel_crtc->base);
2599         intel_plane->disable_plane(primary, &intel_crtc->base);
2600
2601         return;
2602
2603 valid_fb:
2604         plane_state->src_x = 0;
2605         plane_state->src_y = 0;
2606         plane_state->src_w = fb->width << 16;
2607         plane_state->src_h = fb->height << 16;
2608
2609         plane_state->crtc_x = 0;
2610         plane_state->crtc_y = 0;
2611         plane_state->crtc_w = fb->width;
2612         plane_state->crtc_h = fb->height;
2613
2614         intel_state->src.x1 = plane_state->src_x;
2615         intel_state->src.y1 = plane_state->src_y;
2616         intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2617         intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2618         intel_state->dst.x1 = plane_state->crtc_x;
2619         intel_state->dst.y1 = plane_state->crtc_y;
2620         intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2621         intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2622
2623         obj = intel_fb_obj(fb);
2624         if (obj->tiling_mode != I915_TILING_NONE)
2625                 dev_priv->preserve_bios_swizzle = true;
2626
2627         drm_framebuffer_reference(fb);
2628         primary->fb = primary->state->fb = fb;
2629         primary->crtc = primary->state->crtc = &intel_crtc->base;
2630         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2631         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2632 }
2633
2634 static void i9xx_update_primary_plane(struct drm_plane *primary,
2635                                       const struct intel_crtc_state *crtc_state,
2636                                       const struct intel_plane_state *plane_state)
2637 {
2638         struct drm_device *dev = primary->dev;
2639         struct drm_i915_private *dev_priv = dev->dev_private;
2640         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2641         struct drm_framebuffer *fb = plane_state->base.fb;
2642         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2643         int plane = intel_crtc->plane;
2644         u32 linear_offset;
2645         u32 dspcntr;
2646         i915_reg_t reg = DSPCNTR(plane);
2647         unsigned int rotation = plane_state->base.rotation;
2648         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2649         int x = plane_state->src.x1 >> 16;
2650         int y = plane_state->src.y1 >> 16;
2651
2652         dspcntr = DISPPLANE_GAMMA_ENABLE;
2653
2654         dspcntr |= DISPLAY_PLANE_ENABLE;
2655
2656         if (INTEL_INFO(dev)->gen < 4) {
2657                 if (intel_crtc->pipe == PIPE_B)
2658                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2659
2660                 /* pipesrc and dspsize control the size that is scaled from,
2661                  * which should always be the user's requested size.
2662                  */
2663                 I915_WRITE(DSPSIZE(plane),
2664                            ((crtc_state->pipe_src_h - 1) << 16) |
2665                            (crtc_state->pipe_src_w - 1));
2666                 I915_WRITE(DSPPOS(plane), 0);
2667         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2668                 I915_WRITE(PRIMSIZE(plane),
2669                            ((crtc_state->pipe_src_h - 1) << 16) |
2670                            (crtc_state->pipe_src_w - 1));
2671                 I915_WRITE(PRIMPOS(plane), 0);
2672                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2673         }
2674
2675         switch (fb->pixel_format) {
2676         case DRM_FORMAT_C8:
2677                 dspcntr |= DISPPLANE_8BPP;
2678                 break;
2679         case DRM_FORMAT_XRGB1555:
2680                 dspcntr |= DISPPLANE_BGRX555;
2681                 break;
2682         case DRM_FORMAT_RGB565:
2683                 dspcntr |= DISPPLANE_BGRX565;
2684                 break;
2685         case DRM_FORMAT_XRGB8888:
2686                 dspcntr |= DISPPLANE_BGRX888;
2687                 break;
2688         case DRM_FORMAT_XBGR8888:
2689                 dspcntr |= DISPPLANE_RGBX888;
2690                 break;
2691         case DRM_FORMAT_XRGB2101010:
2692                 dspcntr |= DISPPLANE_BGRX101010;
2693                 break;
2694         case DRM_FORMAT_XBGR2101010:
2695                 dspcntr |= DISPPLANE_RGBX101010;
2696                 break;
2697         default:
2698                 BUG();
2699         }
2700
2701         if (INTEL_INFO(dev)->gen >= 4 &&
2702             obj->tiling_mode != I915_TILING_NONE)
2703                 dspcntr |= DISPPLANE_TILED;
2704
2705         if (IS_G4X(dev))
2706                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2707
2708         linear_offset = y * fb->pitches[0] + x * cpp;
2709
2710         if (INTEL_INFO(dev)->gen >= 4) {
2711                 intel_crtc->dspaddr_offset =
2712                         intel_compute_tile_offset(&x, &y, fb, 0,
2713                                                   fb->pitches[0], rotation);
2714                 linear_offset -= intel_crtc->dspaddr_offset;
2715         } else {
2716                 intel_crtc->dspaddr_offset = linear_offset;
2717         }
2718
2719         if (rotation == BIT(DRM_ROTATE_180)) {
2720                 dspcntr |= DISPPLANE_ROTATE_180;
2721
2722                 x += (crtc_state->pipe_src_w - 1);
2723                 y += (crtc_state->pipe_src_h - 1);
2724
2725                 /* Finding the last pixel of the last line of the display
2726                 data and adding to linear_offset*/
2727                 linear_offset +=
2728                         (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2729                         (crtc_state->pipe_src_w - 1) * cpp;
2730         }
2731
2732         intel_crtc->adjusted_x = x;
2733         intel_crtc->adjusted_y = y;
2734
2735         I915_WRITE(reg, dspcntr);
2736
2737         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2738         if (INTEL_INFO(dev)->gen >= 4) {
2739                 I915_WRITE(DSPSURF(plane),
2740                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2741                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2742                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2743         } else
2744                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2745         POSTING_READ(reg);
2746 }
2747
2748 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2749                                        struct drm_crtc *crtc)
2750 {
2751         struct drm_device *dev = crtc->dev;
2752         struct drm_i915_private *dev_priv = dev->dev_private;
2753         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2754         int plane = intel_crtc->plane;
2755
2756         I915_WRITE(DSPCNTR(plane), 0);
2757         if (INTEL_INFO(dev_priv)->gen >= 4)
2758                 I915_WRITE(DSPSURF(plane), 0);
2759         else
2760                 I915_WRITE(DSPADDR(plane), 0);
2761         POSTING_READ(DSPCNTR(plane));
2762 }
2763
2764 static void ironlake_update_primary_plane(struct drm_plane *primary,
2765                                           const struct intel_crtc_state *crtc_state,
2766                                           const struct intel_plane_state *plane_state)
2767 {
2768         struct drm_device *dev = primary->dev;
2769         struct drm_i915_private *dev_priv = dev->dev_private;
2770         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2771         struct drm_framebuffer *fb = plane_state->base.fb;
2772         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2773         int plane = intel_crtc->plane;
2774         u32 linear_offset;
2775         u32 dspcntr;
2776         i915_reg_t reg = DSPCNTR(plane);
2777         unsigned int rotation = plane_state->base.rotation;
2778         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2779         int x = plane_state->src.x1 >> 16;
2780         int y = plane_state->src.y1 >> 16;
2781
2782         dspcntr = DISPPLANE_GAMMA_ENABLE;
2783         dspcntr |= DISPLAY_PLANE_ENABLE;
2784
2785         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2786                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2787
2788         switch (fb->pixel_format) {
2789         case DRM_FORMAT_C8:
2790                 dspcntr |= DISPPLANE_8BPP;
2791                 break;
2792         case DRM_FORMAT_RGB565:
2793                 dspcntr |= DISPPLANE_BGRX565;
2794                 break;
2795         case DRM_FORMAT_XRGB8888:
2796                 dspcntr |= DISPPLANE_BGRX888;
2797                 break;
2798         case DRM_FORMAT_XBGR8888:
2799                 dspcntr |= DISPPLANE_RGBX888;
2800                 break;
2801         case DRM_FORMAT_XRGB2101010:
2802                 dspcntr |= DISPPLANE_BGRX101010;
2803                 break;
2804         case DRM_FORMAT_XBGR2101010:
2805                 dspcntr |= DISPPLANE_RGBX101010;
2806                 break;
2807         default:
2808                 BUG();
2809         }
2810
2811         if (obj->tiling_mode != I915_TILING_NONE)
2812                 dspcntr |= DISPPLANE_TILED;
2813
2814         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2815                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2816
2817         linear_offset = y * fb->pitches[0] + x * cpp;
2818         intel_crtc->dspaddr_offset =
2819                 intel_compute_tile_offset(&x, &y, fb, 0,
2820                                           fb->pitches[0], rotation);
2821         linear_offset -= intel_crtc->dspaddr_offset;
2822         if (rotation == BIT(DRM_ROTATE_180)) {
2823                 dspcntr |= DISPPLANE_ROTATE_180;
2824
2825                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2826                         x += (crtc_state->pipe_src_w - 1);
2827                         y += (crtc_state->pipe_src_h - 1);
2828
2829                         /* Finding the last pixel of the last line of the display
2830                         data and adding to linear_offset*/
2831                         linear_offset +=
2832                                 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2833                                 (crtc_state->pipe_src_w - 1) * cpp;
2834                 }
2835         }
2836
2837         intel_crtc->adjusted_x = x;
2838         intel_crtc->adjusted_y = y;
2839
2840         I915_WRITE(reg, dspcntr);
2841
2842         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2843         I915_WRITE(DSPSURF(plane),
2844                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2845         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2846                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2847         } else {
2848                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2849                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2850         }
2851         POSTING_READ(reg);
2852 }
2853
2854 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2855                               uint64_t fb_modifier, uint32_t pixel_format)
2856 {
2857         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2858                 return 64;
2859         } else {
2860                 int cpp = drm_format_plane_cpp(pixel_format, 0);
2861
2862                 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2863         }
2864 }
2865
2866 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2867                            struct drm_i915_gem_object *obj,
2868                            unsigned int plane)
2869 {
2870         struct i915_ggtt_view view;
2871         struct i915_vma *vma;
2872         u64 offset;
2873
2874         intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2875                                 intel_plane->base.state->rotation);
2876
2877         vma = i915_gem_obj_to_ggtt_view(obj, &view);
2878         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2879                 view.type))
2880                 return -1;
2881
2882         offset = vma->node.start;
2883
2884         if (plane == 1) {
2885                 offset += vma->ggtt_view.params.rotated.uv_start_page *
2886                           PAGE_SIZE;
2887         }
2888
2889         WARN_ON(upper_32_bits(offset));
2890
2891         return lower_32_bits(offset);
2892 }
2893
2894 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2895 {
2896         struct drm_device *dev = intel_crtc->base.dev;
2897         struct drm_i915_private *dev_priv = dev->dev_private;
2898
2899         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2900         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2901         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2902 }
2903
2904 /*
2905  * This function detaches (aka. unbinds) unused scalers in hardware
2906  */
2907 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2908 {
2909         struct intel_crtc_scaler_state *scaler_state;
2910         int i;
2911
2912         scaler_state = &intel_crtc->config->scaler_state;
2913
2914         /* loop through and disable scalers that aren't in use */
2915         for (i = 0; i < intel_crtc->num_scalers; i++) {
2916                 if (!scaler_state->scalers[i].in_use)
2917                         skl_detach_scaler(intel_crtc, i);
2918         }
2919 }
2920
2921 u32 skl_plane_ctl_format(uint32_t pixel_format)
2922 {
2923         switch (pixel_format) {
2924         case DRM_FORMAT_C8:
2925                 return PLANE_CTL_FORMAT_INDEXED;
2926         case DRM_FORMAT_RGB565:
2927                 return PLANE_CTL_FORMAT_RGB_565;
2928         case DRM_FORMAT_XBGR8888:
2929                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2930         case DRM_FORMAT_XRGB8888:
2931                 return PLANE_CTL_FORMAT_XRGB_8888;
2932         /*
2933          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2934          * to be already pre-multiplied. We need to add a knob (or a different
2935          * DRM_FORMAT) for user-space to configure that.
2936          */
2937         case DRM_FORMAT_ABGR8888:
2938                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2939                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2940         case DRM_FORMAT_ARGB8888:
2941                 return PLANE_CTL_FORMAT_XRGB_8888 |
2942                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2943         case DRM_FORMAT_XRGB2101010:
2944                 return PLANE_CTL_FORMAT_XRGB_2101010;
2945         case DRM_FORMAT_XBGR2101010:
2946                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2947         case DRM_FORMAT_YUYV:
2948                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2949         case DRM_FORMAT_YVYU:
2950                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2951         case DRM_FORMAT_UYVY:
2952                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2953         case DRM_FORMAT_VYUY:
2954                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2955         default:
2956                 MISSING_CASE(pixel_format);
2957         }
2958
2959         return 0;
2960 }
2961
2962 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2963 {
2964         switch (fb_modifier) {
2965         case DRM_FORMAT_MOD_NONE:
2966                 break;
2967         case I915_FORMAT_MOD_X_TILED:
2968                 return PLANE_CTL_TILED_X;
2969         case I915_FORMAT_MOD_Y_TILED:
2970                 return PLANE_CTL_TILED_Y;
2971         case I915_FORMAT_MOD_Yf_TILED:
2972                 return PLANE_CTL_TILED_YF;
2973         default:
2974                 MISSING_CASE(fb_modifier);
2975         }
2976
2977         return 0;
2978 }
2979
2980 u32 skl_plane_ctl_rotation(unsigned int rotation)
2981 {
2982         switch (rotation) {
2983         case BIT(DRM_ROTATE_0):
2984                 break;
2985         /*
2986          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2987          * while i915 HW rotation is clockwise, thats why this swapping.
2988          */
2989         case BIT(DRM_ROTATE_90):
2990                 return PLANE_CTL_ROTATE_270;
2991         case BIT(DRM_ROTATE_180):
2992                 return PLANE_CTL_ROTATE_180;
2993         case BIT(DRM_ROTATE_270):
2994                 return PLANE_CTL_ROTATE_90;
2995         default:
2996                 MISSING_CASE(rotation);
2997         }
2998
2999         return 0;
3000 }
3001
3002 static void skylake_update_primary_plane(struct drm_plane *plane,
3003                                          const struct intel_crtc_state *crtc_state,
3004                                          const struct intel_plane_state *plane_state)
3005 {
3006         struct drm_device *dev = plane->dev;
3007         struct drm_i915_private *dev_priv = dev->dev_private;
3008         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3009         struct drm_framebuffer *fb = plane_state->base.fb;
3010         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3011         int pipe = intel_crtc->pipe;
3012         u32 plane_ctl, stride_div, stride;
3013         u32 tile_height, plane_offset, plane_size;
3014         unsigned int rotation = plane_state->base.rotation;
3015         int x_offset, y_offset;
3016         u32 surf_addr;
3017         int scaler_id = plane_state->scaler_id;
3018         int src_x = plane_state->src.x1 >> 16;
3019         int src_y = plane_state->src.y1 >> 16;
3020         int src_w = drm_rect_width(&plane_state->src) >> 16;
3021         int src_h = drm_rect_height(&plane_state->src) >> 16;
3022         int dst_x = plane_state->dst.x1;
3023         int dst_y = plane_state->dst.y1;
3024         int dst_w = drm_rect_width(&plane_state->dst);
3025         int dst_h = drm_rect_height(&plane_state->dst);
3026
3027         plane_ctl = PLANE_CTL_ENABLE |
3028                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3029                     PLANE_CTL_PIPE_CSC_ENABLE;
3030
3031         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3032         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3033         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3034         plane_ctl |= skl_plane_ctl_rotation(rotation);
3035
3036         stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3037                                                fb->pixel_format);
3038         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3039
3040         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3041
3042         if (intel_rotation_90_or_270(rotation)) {
3043                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3044
3045                 /* stride = Surface height in tiles */
3046                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3047                 stride = DIV_ROUND_UP(fb->height, tile_height);
3048                 x_offset = stride * tile_height - src_y - src_h;
3049                 y_offset = src_x;
3050                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3051         } else {
3052                 stride = fb->pitches[0] / stride_div;
3053                 x_offset = src_x;
3054                 y_offset = src_y;
3055                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3056         }
3057         plane_offset = y_offset << 16 | x_offset;
3058
3059         intel_crtc->adjusted_x = x_offset;
3060         intel_crtc->adjusted_y = y_offset;
3061
3062         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3063         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3064         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3065         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3066
3067         if (scaler_id >= 0) {
3068                 uint32_t ps_ctrl = 0;
3069
3070                 WARN_ON(!dst_w || !dst_h);
3071                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3072                         crtc_state->scaler_state.scalers[scaler_id].mode;
3073                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3074                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3075                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3076                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3077                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3078         } else {
3079                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3080         }
3081
3082         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3083
3084         POSTING_READ(PLANE_SURF(pipe, 0));
3085 }
3086
3087 static void skylake_disable_primary_plane(struct drm_plane *primary,
3088                                           struct drm_crtc *crtc)
3089 {
3090         struct drm_device *dev = crtc->dev;
3091         struct drm_i915_private *dev_priv = dev->dev_private;
3092         int pipe = to_intel_crtc(crtc)->pipe;
3093
3094         I915_WRITE(PLANE_CTL(pipe, 0), 0);
3095         I915_WRITE(PLANE_SURF(pipe, 0), 0);
3096         POSTING_READ(PLANE_SURF(pipe, 0));
3097 }
3098
3099 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3100 static int
3101 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3102                            int x, int y, enum mode_set_atomic state)
3103 {
3104         /* Support for kgdboc is disabled, this needs a major rework. */
3105         DRM_ERROR("legacy panic handler not supported any more.\n");
3106
3107         return -ENODEV;
3108 }
3109
3110 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3111 {
3112         struct drm_crtc *crtc;
3113
3114         for_each_crtc(dev_priv->dev, crtc) {
3115                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3116                 enum plane plane = intel_crtc->plane;
3117
3118                 intel_prepare_page_flip(dev_priv, plane);
3119                 intel_finish_page_flip_plane(dev_priv, plane);
3120         }
3121 }
3122
3123 static void intel_update_primary_planes(struct drm_device *dev)
3124 {
3125         struct drm_crtc *crtc;
3126
3127         for_each_crtc(dev, crtc) {
3128                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3129                 struct intel_plane_state *plane_state;
3130
3131                 drm_modeset_lock_crtc(crtc, &plane->base);
3132                 plane_state = to_intel_plane_state(plane->base.state);
3133
3134                 if (plane_state->visible)
3135                         plane->update_plane(&plane->base,
3136                                             to_intel_crtc_state(crtc->state),
3137                                             plane_state);
3138
3139                 drm_modeset_unlock_crtc(crtc);
3140         }
3141 }
3142
3143 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3144 {
3145         /* no reset support for gen2 */
3146         if (IS_GEN2(dev_priv))
3147                 return;
3148
3149         /* reset doesn't touch the display */
3150         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
3151                 return;
3152
3153         drm_modeset_lock_all(dev_priv->dev);
3154         /*
3155          * Disabling the crtcs gracefully seems nicer. Also the
3156          * g33 docs say we should at least disable all the planes.
3157          */
3158         intel_display_suspend(dev_priv->dev);
3159 }
3160
3161 void intel_finish_reset(struct drm_i915_private *dev_priv)
3162 {
3163         /*
3164          * Flips in the rings will be nuked by the reset,
3165          * so complete all pending flips so that user space
3166          * will get its events and not get stuck.
3167          */
3168         intel_complete_page_flips(dev_priv);
3169
3170         /* no reset support for gen2 */
3171         if (IS_GEN2(dev_priv))
3172                 return;
3173
3174         /* reset doesn't touch the display */
3175         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
3176                 /*
3177                  * Flips in the rings have been nuked by the reset,
3178                  * so update the base address of all primary
3179                  * planes to the the last fb to make sure we're
3180                  * showing the correct fb after a reset.
3181                  *
3182                  * FIXME: Atomic will make this obsolete since we won't schedule
3183                  * CS-based flips (which might get lost in gpu resets) any more.
3184                  */
3185                 intel_update_primary_planes(dev_priv->dev);
3186                 return;
3187         }
3188
3189         /*
3190          * The display has been reset as well,
3191          * so need a full re-initialization.
3192          */
3193         intel_runtime_pm_disable_interrupts(dev_priv);
3194         intel_runtime_pm_enable_interrupts(dev_priv);
3195
3196         intel_modeset_init_hw(dev_priv->dev);
3197
3198         spin_lock_irq(&dev_priv->irq_lock);
3199         if (dev_priv->display.hpd_irq_setup)
3200                 dev_priv->display.hpd_irq_setup(dev_priv);
3201         spin_unlock_irq(&dev_priv->irq_lock);
3202
3203         intel_display_resume(dev_priv->dev);
3204
3205         intel_hpd_init(dev_priv);
3206
3207         drm_modeset_unlock_all(dev_priv->dev);
3208 }
3209
3210 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3211 {
3212         struct drm_device *dev = crtc->dev;
3213         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3214         unsigned reset_counter;
3215         bool pending;
3216
3217         reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
3218         if (intel_crtc->reset_counter != reset_counter)
3219                 return false;
3220
3221         spin_lock_irq(&dev->event_lock);
3222         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3223         spin_unlock_irq(&dev->event_lock);
3224
3225         return pending;
3226 }
3227
3228 static void intel_update_pipe_config(struct intel_crtc *crtc,
3229                                      struct intel_crtc_state *old_crtc_state)
3230 {
3231         struct drm_device *dev = crtc->base.dev;
3232         struct drm_i915_private *dev_priv = dev->dev_private;
3233         struct intel_crtc_state *pipe_config =
3234                 to_intel_crtc_state(crtc->base.state);
3235
3236         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3237         crtc->base.mode = crtc->base.state->mode;
3238
3239         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3240                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3241                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3242
3243         /*
3244          * Update pipe size and adjust fitter if needed: the reason for this is
3245          * that in compute_mode_changes we check the native mode (not the pfit
3246          * mode) to see if we can flip rather than do a full mode set. In the
3247          * fastboot case, we'll flip, but if we don't update the pipesrc and
3248          * pfit state, we'll end up with a big fb scanned out into the wrong
3249          * sized surface.
3250          */
3251
3252         I915_WRITE(PIPESRC(crtc->pipe),
3253                    ((pipe_config->pipe_src_w - 1) << 16) |
3254                    (pipe_config->pipe_src_h - 1));
3255
3256         /* on skylake this is done by detaching scalers */
3257         if (INTEL_INFO(dev)->gen >= 9) {
3258                 skl_detach_scalers(crtc);
3259
3260                 if (pipe_config->pch_pfit.enabled)
3261                         skylake_pfit_enable(crtc);
3262         } else if (HAS_PCH_SPLIT(dev)) {
3263                 if (pipe_config->pch_pfit.enabled)
3264                         ironlake_pfit_enable(crtc);
3265                 else if (old_crtc_state->pch_pfit.enabled)
3266                         ironlake_pfit_disable(crtc, true);
3267         }
3268 }
3269
3270 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3271 {
3272         struct drm_device *dev = crtc->dev;
3273         struct drm_i915_private *dev_priv = dev->dev_private;
3274         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3275         int pipe = intel_crtc->pipe;
3276         i915_reg_t reg;
3277         u32 temp;
3278
3279         /* enable normal train */
3280         reg = FDI_TX_CTL(pipe);
3281         temp = I915_READ(reg);
3282         if (IS_IVYBRIDGE(dev)) {
3283                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3284                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3285         } else {
3286                 temp &= ~FDI_LINK_TRAIN_NONE;
3287                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3288         }
3289         I915_WRITE(reg, temp);
3290
3291         reg = FDI_RX_CTL(pipe);
3292         temp = I915_READ(reg);
3293         if (HAS_PCH_CPT(dev)) {
3294                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3295                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3296         } else {
3297                 temp &= ~FDI_LINK_TRAIN_NONE;
3298                 temp |= FDI_LINK_TRAIN_NONE;
3299         }
3300         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3301
3302         /* wait one idle pattern time */
3303         POSTING_READ(reg);
3304         udelay(1000);
3305
3306         /* IVB wants error correction enabled */
3307         if (IS_IVYBRIDGE(dev))
3308                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3309                            FDI_FE_ERRC_ENABLE);
3310 }
3311
3312 /* The FDI link training functions for ILK/Ibexpeak. */
3313 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3314 {
3315         struct drm_device *dev = crtc->dev;
3316         struct drm_i915_private *dev_priv = dev->dev_private;
3317         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3318         int pipe = intel_crtc->pipe;
3319         i915_reg_t reg;
3320         u32 temp, tries;
3321
3322         /* FDI needs bits from pipe first */
3323         assert_pipe_enabled(dev_priv, pipe);
3324
3325         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3326            for train result */
3327         reg = FDI_RX_IMR(pipe);
3328         temp = I915_READ(reg);
3329         temp &= ~FDI_RX_SYMBOL_LOCK;
3330         temp &= ~FDI_RX_BIT_LOCK;
3331         I915_WRITE(reg, temp);
3332         I915_READ(reg);
3333         udelay(150);
3334
3335         /* enable CPU FDI TX and PCH FDI RX */
3336         reg = FDI_TX_CTL(pipe);
3337         temp = I915_READ(reg);
3338         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3339         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3340         temp &= ~FDI_LINK_TRAIN_NONE;
3341         temp |= FDI_LINK_TRAIN_PATTERN_1;
3342         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3343
3344         reg = FDI_RX_CTL(pipe);
3345         temp = I915_READ(reg);
3346         temp &= ~FDI_LINK_TRAIN_NONE;
3347         temp |= FDI_LINK_TRAIN_PATTERN_1;
3348         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3349
3350         POSTING_READ(reg);
3351         udelay(150);
3352
3353         /* Ironlake workaround, enable clock pointer after FDI enable*/
3354         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3355         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3356                    FDI_RX_PHASE_SYNC_POINTER_EN);
3357
3358         reg = FDI_RX_IIR(pipe);
3359         for (tries = 0; tries < 5; tries++) {
3360                 temp = I915_READ(reg);
3361                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3362
3363                 if ((temp & FDI_RX_BIT_LOCK)) {
3364                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3365                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3366                         break;
3367                 }
3368         }
3369         if (tries == 5)
3370                 DRM_ERROR("FDI train 1 fail!\n");
3371
3372         /* Train 2 */
3373         reg = FDI_TX_CTL(pipe);
3374         temp = I915_READ(reg);
3375         temp &= ~FDI_LINK_TRAIN_NONE;
3376         temp |= FDI_LINK_TRAIN_PATTERN_2;
3377         I915_WRITE(reg, temp);
3378
3379         reg = FDI_RX_CTL(pipe);
3380         temp = I915_READ(reg);
3381         temp &= ~FDI_LINK_TRAIN_NONE;
3382         temp |= FDI_LINK_TRAIN_PATTERN_2;
3383         I915_WRITE(reg, temp);
3384
3385         POSTING_READ(reg);
3386         udelay(150);
3387
3388         reg = FDI_RX_IIR(pipe);
3389         for (tries = 0; tries < 5; tries++) {
3390                 temp = I915_READ(reg);
3391                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3392
3393                 if (temp & FDI_RX_SYMBOL_LOCK) {
3394                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3395                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3396                         break;
3397                 }
3398         }
3399         if (tries == 5)
3400                 DRM_ERROR("FDI train 2 fail!\n");
3401
3402         DRM_DEBUG_KMS("FDI train done\n");
3403
3404 }
3405
3406 static const int snb_b_fdi_train_param[] = {
3407         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3408         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3409         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3410         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3411 };
3412
3413 /* The FDI link training functions for SNB/Cougarpoint. */
3414 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3415 {
3416         struct drm_device *dev = crtc->dev;
3417         struct drm_i915_private *dev_priv = dev->dev_private;
3418         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3419         int pipe = intel_crtc->pipe;
3420         i915_reg_t reg;
3421         u32 temp, i, retry;
3422
3423         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3424            for train result */
3425         reg = FDI_RX_IMR(pipe);
3426         temp = I915_READ(reg);
3427         temp &= ~FDI_RX_SYMBOL_LOCK;
3428         temp &= ~FDI_RX_BIT_LOCK;
3429         I915_WRITE(reg, temp);
3430
3431         POSTING_READ(reg);
3432         udelay(150);
3433
3434         /* enable CPU FDI TX and PCH FDI RX */
3435         reg = FDI_TX_CTL(pipe);
3436         temp = I915_READ(reg);
3437         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3438         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3439         temp &= ~FDI_LINK_TRAIN_NONE;
3440         temp |= FDI_LINK_TRAIN_PATTERN_1;
3441         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3442         /* SNB-B */
3443         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3444         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3445
3446         I915_WRITE(FDI_RX_MISC(pipe),
3447                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3448
3449         reg = FDI_RX_CTL(pipe);
3450         temp = I915_READ(reg);
3451         if (HAS_PCH_CPT(dev)) {
3452                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3453                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3454         } else {
3455                 temp &= ~FDI_LINK_TRAIN_NONE;
3456                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3457         }
3458         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3459
3460         POSTING_READ(reg);
3461         udelay(150);
3462
3463         for (i = 0; i < 4; i++) {
3464                 reg = FDI_TX_CTL(pipe);
3465                 temp = I915_READ(reg);
3466                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3467                 temp |= snb_b_fdi_train_param[i];
3468                 I915_WRITE(reg, temp);
3469
3470                 POSTING_READ(reg);
3471                 udelay(500);
3472
3473                 for (retry = 0; retry < 5; retry++) {
3474                         reg = FDI_RX_IIR(pipe);
3475                         temp = I915_READ(reg);
3476                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3477                         if (temp & FDI_RX_BIT_LOCK) {
3478                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3479                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3480                                 break;
3481                         }
3482                         udelay(50);
3483                 }
3484                 if (retry < 5)
3485                         break;
3486         }
3487         if (i == 4)
3488                 DRM_ERROR("FDI train 1 fail!\n");
3489
3490         /* Train 2 */
3491         reg = FDI_TX_CTL(pipe);
3492         temp = I915_READ(reg);
3493         temp &= ~FDI_LINK_TRAIN_NONE;
3494         temp |= FDI_LINK_TRAIN_PATTERN_2;
3495         if (IS_GEN6(dev)) {
3496                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3497                 /* SNB-B */
3498                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3499         }
3500         I915_WRITE(reg, temp);
3501
3502         reg = FDI_RX_CTL(pipe);
3503         temp = I915_READ(reg);
3504         if (HAS_PCH_CPT(dev)) {
3505                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3506                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3507         } else {
3508                 temp &= ~FDI_LINK_TRAIN_NONE;
3509                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3510         }
3511         I915_WRITE(reg, temp);
3512
3513         POSTING_READ(reg);
3514         udelay(150);
3515
3516         for (i = 0; i < 4; i++) {
3517                 reg = FDI_TX_CTL(pipe);
3518                 temp = I915_READ(reg);
3519                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3520                 temp |= snb_b_fdi_train_param[i];
3521                 I915_WRITE(reg, temp);
3522
3523                 POSTING_READ(reg);
3524                 udelay(500);
3525
3526                 for (retry = 0; retry < 5; retry++) {
3527                         reg = FDI_RX_IIR(pipe);
3528                         temp = I915_READ(reg);
3529                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3530                         if (temp & FDI_RX_SYMBOL_LOCK) {
3531                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3532                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3533                                 break;
3534                         }
3535                         udelay(50);
3536                 }
3537                 if (retry < 5)
3538                         break;
3539         }
3540         if (i == 4)
3541                 DRM_ERROR("FDI train 2 fail!\n");
3542
3543         DRM_DEBUG_KMS("FDI train done.\n");
3544 }
3545
3546 /* Manual link training for Ivy Bridge A0 parts */
3547 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3548 {
3549         struct drm_device *dev = crtc->dev;
3550         struct drm_i915_private *dev_priv = dev->dev_private;
3551         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3552         int pipe = intel_crtc->pipe;
3553         i915_reg_t reg;
3554         u32 temp, i, j;
3555
3556         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3557            for train result */
3558         reg = FDI_RX_IMR(pipe);
3559         temp = I915_READ(reg);
3560         temp &= ~FDI_RX_SYMBOL_LOCK;
3561         temp &= ~FDI_RX_BIT_LOCK;
3562         I915_WRITE(reg, temp);
3563
3564         POSTING_READ(reg);
3565         udelay(150);
3566
3567         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3568                       I915_READ(FDI_RX_IIR(pipe)));
3569
3570         /* Try each vswing and preemphasis setting twice before moving on */
3571         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3572                 /* disable first in case we need to retry */
3573                 reg = FDI_TX_CTL(pipe);
3574                 temp = I915_READ(reg);
3575                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3576                 temp &= ~FDI_TX_ENABLE;
3577                 I915_WRITE(reg, temp);
3578
3579                 reg = FDI_RX_CTL(pipe);
3580                 temp = I915_READ(reg);
3581                 temp &= ~FDI_LINK_TRAIN_AUTO;
3582                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3583                 temp &= ~FDI_RX_ENABLE;
3584                 I915_WRITE(reg, temp);
3585
3586                 /* enable CPU FDI TX and PCH FDI RX */
3587                 reg = FDI_TX_CTL(pipe);
3588                 temp = I915_READ(reg);
3589                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3590                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3591                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3592                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3593                 temp |= snb_b_fdi_train_param[j/2];
3594                 temp |= FDI_COMPOSITE_SYNC;
3595                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3596
3597                 I915_WRITE(FDI_RX_MISC(pipe),
3598                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3599
3600                 reg = FDI_RX_CTL(pipe);
3601                 temp = I915_READ(reg);
3602                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3603                 temp |= FDI_COMPOSITE_SYNC;
3604                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3605
3606                 POSTING_READ(reg);
3607                 udelay(1); /* should be 0.5us */
3608
3609                 for (i = 0; i < 4; i++) {
3610                         reg = FDI_RX_IIR(pipe);
3611                         temp = I915_READ(reg);
3612                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3613
3614                         if (temp & FDI_RX_BIT_LOCK ||
3615                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3616                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3617                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3618                                               i);
3619                                 break;
3620                         }
3621                         udelay(1); /* should be 0.5us */
3622                 }
3623                 if (i == 4) {
3624                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3625                         continue;
3626                 }
3627
3628                 /* Train 2 */
3629                 reg = FDI_TX_CTL(pipe);
3630                 temp = I915_READ(reg);
3631                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3632                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3633                 I915_WRITE(reg, temp);
3634
3635                 reg = FDI_RX_CTL(pipe);
3636                 temp = I915_READ(reg);
3637                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3638                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3639                 I915_WRITE(reg, temp);
3640
3641                 POSTING_READ(reg);
3642                 udelay(2); /* should be 1.5us */
3643
3644                 for (i = 0; i < 4; i++) {
3645                         reg = FDI_RX_IIR(pipe);
3646                         temp = I915_READ(reg);
3647                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3648
3649                         if (temp & FDI_RX_SYMBOL_LOCK ||
3650                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3651                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3652                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3653                                               i);
3654                                 goto train_done;
3655                         }
3656                         udelay(2); /* should be 1.5us */
3657                 }
3658                 if (i == 4)
3659                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3660         }
3661
3662 train_done:
3663         DRM_DEBUG_KMS("FDI train done.\n");
3664 }
3665
3666 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3667 {
3668         struct drm_device *dev = intel_crtc->base.dev;
3669         struct drm_i915_private *dev_priv = dev->dev_private;
3670         int pipe = intel_crtc->pipe;
3671         i915_reg_t reg;
3672         u32 temp;
3673
3674         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3675         reg = FDI_RX_CTL(pipe);
3676         temp = I915_READ(reg);
3677         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3678         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3679         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3680         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3681
3682         POSTING_READ(reg);
3683         udelay(200);
3684
3685         /* Switch from Rawclk to PCDclk */
3686         temp = I915_READ(reg);
3687         I915_WRITE(reg, temp | FDI_PCDCLK);
3688
3689         POSTING_READ(reg);
3690         udelay(200);
3691
3692         /* Enable CPU FDI TX PLL, always on for Ironlake */
3693         reg = FDI_TX_CTL(pipe);
3694         temp = I915_READ(reg);
3695         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3696                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3697
3698                 POSTING_READ(reg);
3699                 udelay(100);
3700         }
3701 }
3702
3703 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3704 {
3705         struct drm_device *dev = intel_crtc->base.dev;
3706         struct drm_i915_private *dev_priv = dev->dev_private;
3707         int pipe = intel_crtc->pipe;
3708         i915_reg_t reg;
3709         u32 temp;
3710
3711         /* Switch from PCDclk to Rawclk */
3712         reg = FDI_RX_CTL(pipe);
3713         temp = I915_READ(reg);
3714         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3715
3716         /* Disable CPU FDI TX PLL */
3717         reg = FDI_TX_CTL(pipe);
3718         temp = I915_READ(reg);
3719         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3720
3721         POSTING_READ(reg);
3722         udelay(100);
3723
3724         reg = FDI_RX_CTL(pipe);
3725         temp = I915_READ(reg);
3726         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3727
3728         /* Wait for the clocks to turn off. */
3729         POSTING_READ(reg);
3730         udelay(100);
3731 }
3732
3733 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3734 {
3735         struct drm_device *dev = crtc->dev;
3736         struct drm_i915_private *dev_priv = dev->dev_private;
3737         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3738         int pipe = intel_crtc->pipe;
3739         i915_reg_t reg;
3740         u32 temp;
3741
3742         /* disable CPU FDI tx and PCH FDI rx */
3743         reg = FDI_TX_CTL(pipe);
3744         temp = I915_READ(reg);
3745         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3746         POSTING_READ(reg);
3747
3748         reg = FDI_RX_CTL(pipe);
3749         temp = I915_READ(reg);
3750         temp &= ~(0x7 << 16);
3751         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3752         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3753
3754         POSTING_READ(reg);
3755         udelay(100);
3756
3757         /* Ironlake workaround, disable clock pointer after downing FDI */
3758         if (HAS_PCH_IBX(dev))
3759                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3760
3761         /* still set train pattern 1 */
3762         reg = FDI_TX_CTL(pipe);
3763         temp = I915_READ(reg);
3764         temp &= ~FDI_LINK_TRAIN_NONE;
3765         temp |= FDI_LINK_TRAIN_PATTERN_1;
3766         I915_WRITE(reg, temp);
3767
3768         reg = FDI_RX_CTL(pipe);
3769         temp = I915_READ(reg);
3770         if (HAS_PCH_CPT(dev)) {
3771                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3772                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3773         } else {
3774                 temp &= ~FDI_LINK_TRAIN_NONE;
3775                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3776         }
3777         /* BPC in FDI rx is consistent with that in PIPECONF */
3778         temp &= ~(0x07 << 16);
3779         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3780         I915_WRITE(reg, temp);
3781
3782         POSTING_READ(reg);
3783         udelay(100);
3784 }
3785
3786 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3787 {
3788         struct intel_crtc *crtc;
3789
3790         /* Note that we don't need to be called with mode_config.lock here
3791          * as our list of CRTC objects is static for the lifetime of the
3792          * device and so cannot disappear as we iterate. Similarly, we can
3793          * happily treat the predicates as racy, atomic checks as userspace
3794          * cannot claim and pin a new fb without at least acquring the
3795          * struct_mutex and so serialising with us.
3796          */
3797         for_each_intel_crtc(dev, crtc) {
3798                 if (atomic_read(&crtc->unpin_work_count) == 0)
3799                         continue;
3800
3801                 if (crtc->unpin_work)
3802                         intel_wait_for_vblank(dev, crtc->pipe);
3803
3804                 return true;
3805         }
3806
3807         return false;
3808 }
3809
3810 static void page_flip_completed(struct intel_crtc *intel_crtc)
3811 {
3812         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3813         struct intel_unpin_work *work = intel_crtc->unpin_work;
3814
3815         /* ensure that the unpin work is consistent wrt ->pending. */
3816         smp_rmb();
3817         intel_crtc->unpin_work = NULL;
3818
3819         if (work->event)
3820                 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
3821
3822         drm_crtc_vblank_put(&intel_crtc->base);
3823
3824         wake_up_all(&dev_priv->pending_flip_queue);
3825         queue_work(dev_priv->wq, &work->work);
3826
3827         trace_i915_flip_complete(intel_crtc->plane,
3828                                  work->pending_flip_obj);
3829 }
3830
3831 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3832 {
3833         struct drm_device *dev = crtc->dev;
3834         struct drm_i915_private *dev_priv = dev->dev_private;
3835         long ret;
3836
3837         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3838
3839         ret = wait_event_interruptible_timeout(
3840                                         dev_priv->pending_flip_queue,
3841                                         !intel_crtc_has_pending_flip(crtc),
3842                                         60*HZ);
3843
3844         if (ret < 0)
3845                 return ret;
3846
3847         if (ret == 0) {
3848                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3849
3850                 spin_lock_irq(&dev->event_lock);
3851                 if (intel_crtc->unpin_work) {
3852                         WARN_ONCE(1, "Removing stuck page flip\n");
3853                         page_flip_completed(intel_crtc);
3854                 }
3855                 spin_unlock_irq(&dev->event_lock);
3856         }
3857
3858         return 0;
3859 }
3860
3861 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3862 {
3863         u32 temp;
3864
3865         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3866
3867         mutex_lock(&dev_priv->sb_lock);
3868
3869         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3870         temp |= SBI_SSCCTL_DISABLE;
3871         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3872
3873         mutex_unlock(&dev_priv->sb_lock);
3874 }
3875
3876 /* Program iCLKIP clock to the desired frequency */
3877 static void lpt_program_iclkip(struct drm_crtc *crtc)
3878 {
3879         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3880         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3881         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3882         u32 temp;
3883
3884         lpt_disable_iclkip(dev_priv);
3885
3886         /* The iCLK virtual clock root frequency is in MHz,
3887          * but the adjusted_mode->crtc_clock in in KHz. To get the
3888          * divisors, it is necessary to divide one by another, so we
3889          * convert the virtual clock precision to KHz here for higher
3890          * precision.
3891          */
3892         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
3893                 u32 iclk_virtual_root_freq = 172800 * 1000;
3894                 u32 iclk_pi_range = 64;
3895                 u32 desired_divisor;
3896
3897                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3898                                                     clock << auxdiv);
3899                 divsel = (desired_divisor / iclk_pi_range) - 2;
3900                 phaseinc = desired_divisor % iclk_pi_range;
3901
3902                 /*
3903                  * Near 20MHz is a corner case which is
3904                  * out of range for the 7-bit divisor
3905                  */
3906                 if (divsel <= 0x7f)
3907                         break;
3908         }
3909
3910         /* This should not happen with any sane values */
3911         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3912                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3913         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3914                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3915
3916         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3917                         clock,
3918                         auxdiv,
3919                         divsel,
3920                         phasedir,
3921                         phaseinc);
3922
3923         mutex_lock(&dev_priv->sb_lock);
3924
3925         /* Program SSCDIVINTPHASE6 */
3926         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3927         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3928         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3929         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3930         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3931         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3932         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3933         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3934
3935         /* Program SSCAUXDIV */
3936         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3937         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3938         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3939         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3940
3941         /* Enable modulator and associated divider */
3942         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3943         temp &= ~SBI_SSCCTL_DISABLE;
3944         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3945
3946         mutex_unlock(&dev_priv->sb_lock);
3947
3948         /* Wait for initialization time */
3949         udelay(24);
3950
3951         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3952 }
3953
3954 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3955 {
3956         u32 divsel, phaseinc, auxdiv;
3957         u32 iclk_virtual_root_freq = 172800 * 1000;
3958         u32 iclk_pi_range = 64;
3959         u32 desired_divisor;
3960         u32 temp;
3961
3962         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3963                 return 0;
3964
3965         mutex_lock(&dev_priv->sb_lock);
3966
3967         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3968         if (temp & SBI_SSCCTL_DISABLE) {
3969                 mutex_unlock(&dev_priv->sb_lock);
3970                 return 0;
3971         }
3972
3973         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3974         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
3975                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
3976         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
3977                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
3978
3979         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3980         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
3981                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
3982
3983         mutex_unlock(&dev_priv->sb_lock);
3984
3985         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
3986
3987         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3988                                  desired_divisor << auxdiv);
3989 }
3990
3991 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3992                                                 enum pipe pch_transcoder)
3993 {
3994         struct drm_device *dev = crtc->base.dev;
3995         struct drm_i915_private *dev_priv = dev->dev_private;
3996         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3997
3998         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3999                    I915_READ(HTOTAL(cpu_transcoder)));
4000         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4001                    I915_READ(HBLANK(cpu_transcoder)));
4002         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4003                    I915_READ(HSYNC(cpu_transcoder)));
4004
4005         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4006                    I915_READ(VTOTAL(cpu_transcoder)));
4007         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4008                    I915_READ(VBLANK(cpu_transcoder)));
4009         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4010                    I915_READ(VSYNC(cpu_transcoder)));
4011         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4012                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4013 }
4014
4015 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4016 {
4017         struct drm_i915_private *dev_priv = dev->dev_private;
4018         uint32_t temp;
4019
4020         temp = I915_READ(SOUTH_CHICKEN1);
4021         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4022                 return;
4023
4024         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4025         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4026
4027         temp &= ~FDI_BC_BIFURCATION_SELECT;
4028         if (enable)
4029                 temp |= FDI_BC_BIFURCATION_SELECT;
4030
4031         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4032         I915_WRITE(SOUTH_CHICKEN1, temp);
4033         POSTING_READ(SOUTH_CHICKEN1);
4034 }
4035
4036 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4037 {
4038         struct drm_device *dev = intel_crtc->base.dev;
4039
4040         switch (intel_crtc->pipe) {
4041         case PIPE_A:
4042                 break;
4043         case PIPE_B:
4044                 if (intel_crtc->config->fdi_lanes > 2)
4045                         cpt_set_fdi_bc_bifurcation(dev, false);
4046                 else
4047                         cpt_set_fdi_bc_bifurcation(dev, true);
4048
4049                 break;
4050         case PIPE_C:
4051                 cpt_set_fdi_bc_bifurcation(dev, true);
4052
4053                 break;
4054         default:
4055                 BUG();
4056         }
4057 }
4058
4059 /* Return which DP Port should be selected for Transcoder DP control */
4060 static enum port
4061 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4062 {
4063         struct drm_device *dev = crtc->dev;
4064         struct intel_encoder *encoder;
4065
4066         for_each_encoder_on_crtc(dev, crtc, encoder) {
4067                 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4068                     encoder->type == INTEL_OUTPUT_EDP)
4069                         return enc_to_dig_port(&encoder->base)->port;
4070         }
4071
4072         return -1;
4073 }
4074
4075 /*
4076  * Enable PCH resources required for PCH ports:
4077  *   - PCH PLLs
4078  *   - FDI training & RX/TX
4079  *   - update transcoder timings
4080  *   - DP transcoding bits
4081  *   - transcoder
4082  */
4083 static void ironlake_pch_enable(struct drm_crtc *crtc)
4084 {
4085         struct drm_device *dev = crtc->dev;
4086         struct drm_i915_private *dev_priv = dev->dev_private;
4087         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4088         int pipe = intel_crtc->pipe;
4089         u32 temp;
4090
4091         assert_pch_transcoder_disabled(dev_priv, pipe);
4092
4093         if (IS_IVYBRIDGE(dev))
4094                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4095
4096         /* Write the TU size bits before fdi link training, so that error
4097          * detection works. */
4098         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4099                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4100
4101         /* For PCH output, training FDI link */
4102         dev_priv->display.fdi_link_train(crtc);
4103
4104         /* We need to program the right clock selection before writing the pixel
4105          * mutliplier into the DPLL. */
4106         if (HAS_PCH_CPT(dev)) {
4107                 u32 sel;
4108
4109                 temp = I915_READ(PCH_DPLL_SEL);
4110                 temp |= TRANS_DPLL_ENABLE(pipe);
4111                 sel = TRANS_DPLLB_SEL(pipe);
4112                 if (intel_crtc->config->shared_dpll ==
4113                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4114                         temp |= sel;
4115                 else
4116                         temp &= ~sel;
4117                 I915_WRITE(PCH_DPLL_SEL, temp);
4118         }
4119
4120         /* XXX: pch pll's can be enabled any time before we enable the PCH
4121          * transcoder, and we actually should do this to not upset any PCH
4122          * transcoder that already use the clock when we share it.
4123          *
4124          * Note that enable_shared_dpll tries to do the right thing, but
4125          * get_shared_dpll unconditionally resets the pll - we need that to have
4126          * the right LVDS enable sequence. */
4127         intel_enable_shared_dpll(intel_crtc);
4128
4129         /* set transcoder timing, panel must allow it */
4130         assert_panel_unlocked(dev_priv, pipe);
4131         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4132
4133         intel_fdi_normal_train(crtc);
4134
4135         /* For PCH DP, enable TRANS_DP_CTL */
4136         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4137                 const struct drm_display_mode *adjusted_mode =
4138                         &intel_crtc->config->base.adjusted_mode;
4139                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4140                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4141                 temp = I915_READ(reg);
4142                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4143                           TRANS_DP_SYNC_MASK |
4144                           TRANS_DP_BPC_MASK);
4145                 temp |= TRANS_DP_OUTPUT_ENABLE;
4146                 temp |= bpc << 9; /* same format but at 11:9 */
4147
4148                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4149                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4150                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4151                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4152
4153                 switch (intel_trans_dp_port_sel(crtc)) {
4154                 case PORT_B:
4155                         temp |= TRANS_DP_PORT_SEL_B;
4156                         break;
4157                 case PORT_C:
4158                         temp |= TRANS_DP_PORT_SEL_C;
4159                         break;
4160                 case PORT_D:
4161                         temp |= TRANS_DP_PORT_SEL_D;
4162                         break;
4163                 default:
4164                         BUG();
4165                 }
4166
4167                 I915_WRITE(reg, temp);
4168         }
4169
4170         ironlake_enable_pch_transcoder(dev_priv, pipe);
4171 }
4172
4173 static void lpt_pch_enable(struct drm_crtc *crtc)
4174 {
4175         struct drm_device *dev = crtc->dev;
4176         struct drm_i915_private *dev_priv = dev->dev_private;
4177         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4178         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4179
4180         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4181
4182         lpt_program_iclkip(crtc);
4183
4184         /* Set transcoder timing. */
4185         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4186
4187         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4188 }
4189
4190 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4191 {
4192         struct drm_i915_private *dev_priv = dev->dev_private;
4193         i915_reg_t dslreg = PIPEDSL(pipe);
4194         u32 temp;
4195
4196         temp = I915_READ(dslreg);
4197         udelay(500);
4198         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4199                 if (wait_for(I915_READ(dslreg) != temp, 5))
4200                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4201         }
4202 }
4203
4204 static int
4205 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4206                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4207                   int src_w, int src_h, int dst_w, int dst_h)
4208 {
4209         struct intel_crtc_scaler_state *scaler_state =
4210                 &crtc_state->scaler_state;
4211         struct intel_crtc *intel_crtc =
4212                 to_intel_crtc(crtc_state->base.crtc);
4213         int need_scaling;
4214
4215         need_scaling = intel_rotation_90_or_270(rotation) ?
4216                 (src_h != dst_w || src_w != dst_h):
4217                 (src_w != dst_w || src_h != dst_h);
4218
4219         /*
4220          * if plane is being disabled or scaler is no more required or force detach
4221          *  - free scaler binded to this plane/crtc
4222          *  - in order to do this, update crtc->scaler_usage
4223          *
4224          * Here scaler state in crtc_state is set free so that
4225          * scaler can be assigned to other user. Actual register
4226          * update to free the scaler is done in plane/panel-fit programming.
4227          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4228          */
4229         if (force_detach || !need_scaling) {
4230                 if (*scaler_id >= 0) {
4231                         scaler_state->scaler_users &= ~(1 << scaler_user);
4232                         scaler_state->scalers[*scaler_id].in_use = 0;
4233
4234                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4235                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4236                                 intel_crtc->pipe, scaler_user, *scaler_id,
4237                                 scaler_state->scaler_users);
4238                         *scaler_id = -1;
4239                 }
4240                 return 0;
4241         }
4242
4243         /* range checks */
4244         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4245                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4246
4247                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4248                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4249                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4250                         "size is out of scaler range\n",
4251                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4252                 return -EINVAL;
4253         }
4254
4255         /* mark this plane as a scaler user in crtc_state */
4256         scaler_state->scaler_users |= (1 << scaler_user);
4257         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4258                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4259                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4260                 scaler_state->scaler_users);
4261
4262         return 0;
4263 }
4264
4265 /**
4266  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4267  *
4268  * @state: crtc's scaler state
4269  *
4270  * Return
4271  *     0 - scaler_usage updated successfully
4272  *    error - requested scaling cannot be supported or other error condition
4273  */
4274 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4275 {
4276         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4277         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4278
4279         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4280                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4281
4282         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4283                 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4284                 state->pipe_src_w, state->pipe_src_h,
4285                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4286 }
4287
4288 /**
4289  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4290  *
4291  * @state: crtc's scaler state
4292  * @plane_state: atomic plane state to update
4293  *
4294  * Return
4295  *     0 - scaler_usage updated successfully
4296  *    error - requested scaling cannot be supported or other error condition
4297  */
4298 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4299                                    struct intel_plane_state *plane_state)
4300 {
4301
4302         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4303         struct intel_plane *intel_plane =
4304                 to_intel_plane(plane_state->base.plane);
4305         struct drm_framebuffer *fb = plane_state->base.fb;
4306         int ret;
4307
4308         bool force_detach = !fb || !plane_state->visible;
4309
4310         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4311                       intel_plane->base.base.id, intel_crtc->pipe,
4312                       drm_plane_index(&intel_plane->base));
4313
4314         ret = skl_update_scaler(crtc_state, force_detach,
4315                                 drm_plane_index(&intel_plane->base),
4316                                 &plane_state->scaler_id,
4317                                 plane_state->base.rotation,
4318                                 drm_rect_width(&plane_state->src) >> 16,
4319                                 drm_rect_height(&plane_state->src) >> 16,
4320                                 drm_rect_width(&plane_state->dst),
4321                                 drm_rect_height(&plane_state->dst));
4322
4323         if (ret || plane_state->scaler_id < 0)
4324                 return ret;
4325
4326         /* check colorkey */
4327         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4328                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4329                               intel_plane->base.base.id);
4330                 return -EINVAL;
4331         }
4332
4333         /* Check src format */
4334         switch (fb->pixel_format) {
4335         case DRM_FORMAT_RGB565:
4336         case DRM_FORMAT_XBGR8888:
4337         case DRM_FORMAT_XRGB8888:
4338         case DRM_FORMAT_ABGR8888:
4339         case DRM_FORMAT_ARGB8888:
4340         case DRM_FORMAT_XRGB2101010:
4341         case DRM_FORMAT_XBGR2101010:
4342         case DRM_FORMAT_YUYV:
4343         case DRM_FORMAT_YVYU:
4344         case DRM_FORMAT_UYVY:
4345         case DRM_FORMAT_VYUY:
4346                 break;
4347         default:
4348                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4349                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4350                 return -EINVAL;
4351         }
4352
4353         return 0;
4354 }
4355
4356 static void skylake_scaler_disable(struct intel_crtc *crtc)
4357 {
4358         int i;
4359
4360         for (i = 0; i < crtc->num_scalers; i++)
4361                 skl_detach_scaler(crtc, i);
4362 }
4363
4364 static void skylake_pfit_enable(struct intel_crtc *crtc)
4365 {
4366         struct drm_device *dev = crtc->base.dev;
4367         struct drm_i915_private *dev_priv = dev->dev_private;
4368         int pipe = crtc->pipe;
4369         struct intel_crtc_scaler_state *scaler_state =
4370                 &crtc->config->scaler_state;
4371
4372         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4373
4374         if (crtc->config->pch_pfit.enabled) {
4375                 int id;
4376
4377                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4378                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4379                         return;
4380                 }
4381
4382                 id = scaler_state->scaler_id;
4383                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4384                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4385                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4386                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4387
4388                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4389         }
4390 }
4391
4392 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4393 {
4394         struct drm_device *dev = crtc->base.dev;
4395         struct drm_i915_private *dev_priv = dev->dev_private;
4396         int pipe = crtc->pipe;
4397
4398         if (crtc->config->pch_pfit.enabled) {
4399                 /* Force use of hard-coded filter coefficients
4400                  * as some pre-programmed values are broken,
4401                  * e.g. x201.
4402                  */
4403                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4404                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4405                                                  PF_PIPE_SEL_IVB(pipe));
4406                 else
4407                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4408                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4409                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4410         }
4411 }
4412
4413 void hsw_enable_ips(struct intel_crtc *crtc)
4414 {
4415         struct drm_device *dev = crtc->base.dev;
4416         struct drm_i915_private *dev_priv = dev->dev_private;
4417
4418         if (!crtc->config->ips_enabled)
4419                 return;
4420
4421         /*
4422          * We can only enable IPS after we enable a plane and wait for a vblank
4423          * This function is called from post_plane_update, which is run after
4424          * a vblank wait.
4425          */
4426
4427         assert_plane_enabled(dev_priv, crtc->plane);
4428         if (IS_BROADWELL(dev)) {
4429                 mutex_lock(&dev_priv->rps.hw_lock);
4430                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4431                 mutex_unlock(&dev_priv->rps.hw_lock);
4432                 /* Quoting Art Runyan: "its not safe to expect any particular
4433                  * value in IPS_CTL bit 31 after enabling IPS through the
4434                  * mailbox." Moreover, the mailbox may return a bogus state,
4435                  * so we need to just enable it and continue on.
4436                  */
4437         } else {
4438                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4439                 /* The bit only becomes 1 in the next vblank, so this wait here
4440                  * is essentially intel_wait_for_vblank. If we don't have this
4441                  * and don't wait for vblanks until the end of crtc_enable, then
4442                  * the HW state readout code will complain that the expected
4443                  * IPS_CTL value is not the one we read. */
4444                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4445                         DRM_ERROR("Timed out waiting for IPS enable\n");
4446         }
4447 }
4448
4449 void hsw_disable_ips(struct intel_crtc *crtc)
4450 {
4451         struct drm_device *dev = crtc->base.dev;
4452         struct drm_i915_private *dev_priv = dev->dev_private;
4453
4454         if (!crtc->config->ips_enabled)
4455                 return;
4456
4457         assert_plane_enabled(dev_priv, crtc->plane);
4458         if (IS_BROADWELL(dev)) {
4459                 mutex_lock(&dev_priv->rps.hw_lock);
4460                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4461                 mutex_unlock(&dev_priv->rps.hw_lock);
4462                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4463                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4464                         DRM_ERROR("Timed out waiting for IPS disable\n");
4465         } else {
4466                 I915_WRITE(IPS_CTL, 0);
4467                 POSTING_READ(IPS_CTL);
4468         }
4469
4470         /* We need to wait for a vblank before we can disable the plane. */
4471         intel_wait_for_vblank(dev, crtc->pipe);
4472 }
4473
4474 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4475 {
4476         if (intel_crtc->overlay) {
4477                 struct drm_device *dev = intel_crtc->base.dev;
4478                 struct drm_i915_private *dev_priv = dev->dev_private;
4479
4480                 mutex_lock(&dev->struct_mutex);
4481                 dev_priv->mm.interruptible = false;
4482                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4483                 dev_priv->mm.interruptible = true;
4484                 mutex_unlock(&dev->struct_mutex);
4485         }
4486
4487         /* Let userspace switch the overlay on again. In most cases userspace
4488          * has to recompute where to put it anyway.
4489          */
4490 }
4491
4492 /**
4493  * intel_post_enable_primary - Perform operations after enabling primary plane
4494  * @crtc: the CRTC whose primary plane was just enabled
4495  *
4496  * Performs potentially sleeping operations that must be done after the primary
4497  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4498  * called due to an explicit primary plane update, or due to an implicit
4499  * re-enable that is caused when a sprite plane is updated to no longer
4500  * completely hide the primary plane.
4501  */
4502 static void
4503 intel_post_enable_primary(struct drm_crtc *crtc)
4504 {
4505         struct drm_device *dev = crtc->dev;
4506         struct drm_i915_private *dev_priv = dev->dev_private;
4507         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4508         int pipe = intel_crtc->pipe;
4509
4510         /*
4511          * FIXME IPS should be fine as long as one plane is
4512          * enabled, but in practice it seems to have problems
4513          * when going from primary only to sprite only and vice
4514          * versa.
4515          */
4516         hsw_enable_ips(intel_crtc);
4517
4518         /*
4519          * Gen2 reports pipe underruns whenever all planes are disabled.
4520          * So don't enable underrun reporting before at least some planes
4521          * are enabled.
4522          * FIXME: Need to fix the logic to work when we turn off all planes
4523          * but leave the pipe running.
4524          */
4525         if (IS_GEN2(dev))
4526                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4527
4528         /* Underruns don't always raise interrupts, so check manually. */
4529         intel_check_cpu_fifo_underruns(dev_priv);
4530         intel_check_pch_fifo_underruns(dev_priv);
4531 }
4532
4533 /* FIXME move all this to pre_plane_update() with proper state tracking */
4534 static void
4535 intel_pre_disable_primary(struct drm_crtc *crtc)
4536 {
4537         struct drm_device *dev = crtc->dev;
4538         struct drm_i915_private *dev_priv = dev->dev_private;
4539         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4540         int pipe = intel_crtc->pipe;
4541
4542         /*
4543          * Gen2 reports pipe underruns whenever all planes are disabled.
4544          * So diasble underrun reporting before all the planes get disabled.
4545          * FIXME: Need to fix the logic to work when we turn off all planes
4546          * but leave the pipe running.
4547          */
4548         if (IS_GEN2(dev))
4549                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4550
4551         /*
4552          * FIXME IPS should be fine as long as one plane is
4553          * enabled, but in practice it seems to have problems
4554          * when going from primary only to sprite only and vice
4555          * versa.
4556          */
4557         hsw_disable_ips(intel_crtc);
4558 }
4559
4560 /* FIXME get rid of this and use pre_plane_update */
4561 static void
4562 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4563 {
4564         struct drm_device *dev = crtc->dev;
4565         struct drm_i915_private *dev_priv = dev->dev_private;
4566         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4567         int pipe = intel_crtc->pipe;
4568
4569         intel_pre_disable_primary(crtc);
4570
4571         /*
4572          * Vblank time updates from the shadow to live plane control register
4573          * are blocked if the memory self-refresh mode is active at that
4574          * moment. So to make sure the plane gets truly disabled, disable
4575          * first the self-refresh mode. The self-refresh enable bit in turn
4576          * will be checked/applied by the HW only at the next frame start
4577          * event which is after the vblank start event, so we need to have a
4578          * wait-for-vblank between disabling the plane and the pipe.
4579          */
4580         if (HAS_GMCH_DISPLAY(dev)) {
4581                 intel_set_memory_cxsr(dev_priv, false);
4582                 dev_priv->wm.vlv.cxsr = false;
4583                 intel_wait_for_vblank(dev, pipe);
4584         }
4585 }
4586
4587 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4588 {
4589         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4590         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4591         struct intel_crtc_state *pipe_config =
4592                 to_intel_crtc_state(crtc->base.state);
4593         struct drm_device *dev = crtc->base.dev;
4594         struct drm_plane *primary = crtc->base.primary;
4595         struct drm_plane_state *old_pri_state =
4596                 drm_atomic_get_existing_plane_state(old_state, primary);
4597
4598         intel_frontbuffer_flip(dev, pipe_config->fb_bits);
4599
4600         crtc->wm.cxsr_allowed = true;
4601
4602         if (pipe_config->update_wm_post && pipe_config->base.active)
4603                 intel_update_watermarks(&crtc->base);
4604
4605         if (old_pri_state) {
4606                 struct intel_plane_state *primary_state =
4607                         to_intel_plane_state(primary->state);
4608                 struct intel_plane_state *old_primary_state =
4609                         to_intel_plane_state(old_pri_state);
4610
4611                 intel_fbc_post_update(crtc);
4612
4613                 if (primary_state->visible &&
4614                     (needs_modeset(&pipe_config->base) ||
4615                      !old_primary_state->visible))
4616                         intel_post_enable_primary(&crtc->base);
4617         }
4618 }
4619
4620 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4621 {
4622         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4623         struct drm_device *dev = crtc->base.dev;
4624         struct drm_i915_private *dev_priv = dev->dev_private;
4625         struct intel_crtc_state *pipe_config =
4626                 to_intel_crtc_state(crtc->base.state);
4627         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4628         struct drm_plane *primary = crtc->base.primary;
4629         struct drm_plane_state *old_pri_state =
4630                 drm_atomic_get_existing_plane_state(old_state, primary);
4631         bool modeset = needs_modeset(&pipe_config->base);
4632
4633         if (old_pri_state) {
4634                 struct intel_plane_state *primary_state =
4635                         to_intel_plane_state(primary->state);
4636                 struct intel_plane_state *old_primary_state =
4637                         to_intel_plane_state(old_pri_state);
4638
4639                 intel_fbc_pre_update(crtc);
4640
4641                 if (old_primary_state->visible &&
4642                     (modeset || !primary_state->visible))
4643                         intel_pre_disable_primary(&crtc->base);
4644         }
4645
4646         if (pipe_config->disable_cxsr) {
4647                 crtc->wm.cxsr_allowed = false;
4648
4649                 /*
4650                  * Vblank time updates from the shadow to live plane control register
4651                  * are blocked if the memory self-refresh mode is active at that
4652                  * moment. So to make sure the plane gets truly disabled, disable
4653                  * first the self-refresh mode. The self-refresh enable bit in turn
4654                  * will be checked/applied by the HW only at the next frame start
4655                  * event which is after the vblank start event, so we need to have a
4656                  * wait-for-vblank between disabling the plane and the pipe.
4657                  */
4658                 if (old_crtc_state->base.active) {
4659                         intel_set_memory_cxsr(dev_priv, false);
4660                         dev_priv->wm.vlv.cxsr = false;
4661                         intel_wait_for_vblank(dev, crtc->pipe);
4662                 }
4663         }
4664
4665         /*
4666          * IVB workaround: must disable low power watermarks for at least
4667          * one frame before enabling scaling.  LP watermarks can be re-enabled
4668          * when scaling is disabled.
4669          *
4670          * WaCxSRDisabledForSpriteScaling:ivb
4671          */
4672         if (pipe_config->disable_lp_wm) {
4673                 ilk_disable_lp_wm(dev);
4674                 intel_wait_for_vblank(dev, crtc->pipe);
4675         }
4676
4677         /*
4678          * If we're doing a modeset, we're done.  No need to do any pre-vblank
4679          * watermark programming here.
4680          */
4681         if (needs_modeset(&pipe_config->base))
4682                 return;
4683
4684         /*
4685          * For platforms that support atomic watermarks, program the
4686          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
4687          * will be the intermediate values that are safe for both pre- and
4688          * post- vblank; when vblank happens, the 'active' values will be set
4689          * to the final 'target' values and we'll do this again to get the
4690          * optimal watermarks.  For gen9+ platforms, the values we program here
4691          * will be the final target values which will get automatically latched
4692          * at vblank time; no further programming will be necessary.
4693          *
4694          * If a platform hasn't been transitioned to atomic watermarks yet,
4695          * we'll continue to update watermarks the old way, if flags tell
4696          * us to.
4697          */
4698         if (dev_priv->display.initial_watermarks != NULL)
4699                 dev_priv->display.initial_watermarks(pipe_config);
4700         else if (pipe_config->update_wm_pre)
4701                 intel_update_watermarks(&crtc->base);
4702 }
4703
4704 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4705 {
4706         struct drm_device *dev = crtc->dev;
4707         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4708         struct drm_plane *p;
4709         int pipe = intel_crtc->pipe;
4710
4711         intel_crtc_dpms_overlay_disable(intel_crtc);
4712
4713         drm_for_each_plane_mask(p, dev, plane_mask)
4714                 to_intel_plane(p)->disable_plane(p, crtc);
4715
4716         /*
4717          * FIXME: Once we grow proper nuclear flip support out of this we need
4718          * to compute the mask of flip planes precisely. For the time being
4719          * consider this a flip to a NULL plane.
4720          */
4721         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4722 }
4723
4724 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4725 {
4726         struct drm_device *dev = crtc->dev;
4727         struct drm_i915_private *dev_priv = dev->dev_private;
4728         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4729         struct intel_encoder *encoder;
4730         int pipe = intel_crtc->pipe;
4731         struct intel_crtc_state *pipe_config =
4732                 to_intel_crtc_state(crtc->state);
4733
4734         if (WARN_ON(intel_crtc->active))
4735                 return;
4736
4737         /*
4738          * Sometimes spurious CPU pipe underruns happen during FDI
4739          * training, at least with VGA+HDMI cloning. Suppress them.
4740          *
4741          * On ILK we get an occasional spurious CPU pipe underruns
4742          * between eDP port A enable and vdd enable. Also PCH port
4743          * enable seems to result in the occasional CPU pipe underrun.
4744          *
4745          * Spurious PCH underruns also occur during PCH enabling.
4746          */
4747         if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
4748                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4749         if (intel_crtc->config->has_pch_encoder)
4750                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4751
4752         if (intel_crtc->config->has_pch_encoder)
4753                 intel_prepare_shared_dpll(intel_crtc);
4754
4755         if (intel_crtc->config->has_dp_encoder)
4756                 intel_dp_set_m_n(intel_crtc, M1_N1);
4757
4758         intel_set_pipe_timings(intel_crtc);
4759         intel_set_pipe_src_size(intel_crtc);
4760
4761         if (intel_crtc->config->has_pch_encoder) {
4762                 intel_cpu_transcoder_set_m_n(intel_crtc,
4763                                      &intel_crtc->config->fdi_m_n, NULL);
4764         }
4765
4766         ironlake_set_pipeconf(crtc);
4767
4768         intel_crtc->active = true;
4769
4770         for_each_encoder_on_crtc(dev, crtc, encoder)
4771                 if (encoder->pre_enable)
4772                         encoder->pre_enable(encoder);
4773
4774         if (intel_crtc->config->has_pch_encoder) {
4775                 /* Note: FDI PLL enabling _must_ be done before we enable the
4776                  * cpu pipes, hence this is separate from all the other fdi/pch
4777                  * enabling. */
4778                 ironlake_fdi_pll_enable(intel_crtc);
4779         } else {
4780                 assert_fdi_tx_disabled(dev_priv, pipe);
4781                 assert_fdi_rx_disabled(dev_priv, pipe);
4782         }
4783
4784         ironlake_pfit_enable(intel_crtc);
4785
4786         /*
4787          * On ILK+ LUT must be loaded before the pipe is running but with
4788          * clocks enabled
4789          */
4790         intel_color_load_luts(&pipe_config->base);
4791
4792         if (dev_priv->display.initial_watermarks != NULL)
4793                 dev_priv->display.initial_watermarks(intel_crtc->config);
4794         intel_enable_pipe(intel_crtc);
4795
4796         if (intel_crtc->config->has_pch_encoder)
4797                 ironlake_pch_enable(crtc);
4798
4799         assert_vblank_disabled(crtc);
4800         drm_crtc_vblank_on(crtc);
4801
4802         for_each_encoder_on_crtc(dev, crtc, encoder)
4803                 encoder->enable(encoder);
4804
4805         if (HAS_PCH_CPT(dev))
4806                 cpt_verify_modeset(dev, intel_crtc->pipe);
4807
4808         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4809         if (intel_crtc->config->has_pch_encoder)
4810                 intel_wait_for_vblank(dev, pipe);
4811         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4812         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4813 }
4814
4815 /* IPS only exists on ULT machines and is tied to pipe A. */
4816 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4817 {
4818         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4819 }
4820
4821 static void haswell_crtc_enable(struct drm_crtc *crtc)
4822 {
4823         struct drm_device *dev = crtc->dev;
4824         struct drm_i915_private *dev_priv = dev->dev_private;
4825         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4826         struct intel_encoder *encoder;
4827         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4828         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4829         struct intel_crtc_state *pipe_config =
4830                 to_intel_crtc_state(crtc->state);
4831
4832         if (WARN_ON(intel_crtc->active))
4833                 return;
4834
4835         if (intel_crtc->config->has_pch_encoder)
4836                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4837                                                       false);
4838
4839         if (intel_crtc->config->shared_dpll)
4840                 intel_enable_shared_dpll(intel_crtc);
4841
4842         if (intel_crtc->config->has_dp_encoder)
4843                 intel_dp_set_m_n(intel_crtc, M1_N1);
4844
4845         if (!intel_crtc->config->has_dsi_encoder)
4846                 intel_set_pipe_timings(intel_crtc);
4847
4848         intel_set_pipe_src_size(intel_crtc);
4849
4850         if (cpu_transcoder != TRANSCODER_EDP &&
4851             !transcoder_is_dsi(cpu_transcoder)) {
4852                 I915_WRITE(PIPE_MULT(cpu_transcoder),
4853                            intel_crtc->config->pixel_multiplier - 1);
4854         }
4855
4856         if (intel_crtc->config->has_pch_encoder) {
4857                 intel_cpu_transcoder_set_m_n(intel_crtc,
4858                                      &intel_crtc->config->fdi_m_n, NULL);
4859         }
4860
4861         if (!intel_crtc->config->has_dsi_encoder)
4862                 haswell_set_pipeconf(crtc);
4863
4864         haswell_set_pipemisc(crtc);
4865
4866         intel_color_set_csc(&pipe_config->base);
4867
4868         intel_crtc->active = true;
4869
4870         if (intel_crtc->config->has_pch_encoder)
4871                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4872         else
4873                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4874
4875         for_each_encoder_on_crtc(dev, crtc, encoder) {
4876                 if (encoder->pre_enable)
4877                         encoder->pre_enable(encoder);
4878         }
4879
4880         if (intel_crtc->config->has_pch_encoder)
4881                 dev_priv->display.fdi_link_train(crtc);
4882
4883         if (!intel_crtc->config->has_dsi_encoder)
4884                 intel_ddi_enable_pipe_clock(intel_crtc);
4885
4886         if (INTEL_INFO(dev)->gen >= 9)
4887                 skylake_pfit_enable(intel_crtc);
4888         else
4889                 ironlake_pfit_enable(intel_crtc);
4890
4891         /*
4892          * On ILK+ LUT must be loaded before the pipe is running but with
4893          * clocks enabled
4894          */
4895         intel_color_load_luts(&pipe_config->base);
4896
4897         intel_ddi_set_pipe_settings(crtc);
4898         if (!intel_crtc->config->has_dsi_encoder)
4899                 intel_ddi_enable_transcoder_func(crtc);
4900
4901         if (dev_priv->display.initial_watermarks != NULL)
4902                 dev_priv->display.initial_watermarks(pipe_config);
4903         else
4904                 intel_update_watermarks(crtc);
4905
4906         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4907         if (!intel_crtc->config->has_dsi_encoder)
4908                 intel_enable_pipe(intel_crtc);
4909
4910         if (intel_crtc->config->has_pch_encoder)
4911                 lpt_pch_enable(crtc);
4912
4913         if (intel_crtc->config->dp_encoder_is_mst)
4914                 intel_ddi_set_vc_payload_alloc(crtc, true);
4915
4916         assert_vblank_disabled(crtc);
4917         drm_crtc_vblank_on(crtc);
4918
4919         for_each_encoder_on_crtc(dev, crtc, encoder) {
4920                 encoder->enable(encoder);
4921                 intel_opregion_notify_encoder(encoder, true);
4922         }
4923
4924         if (intel_crtc->config->has_pch_encoder) {
4925                 intel_wait_for_vblank(dev, pipe);
4926                 intel_wait_for_vblank(dev, pipe);
4927                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4928                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4929                                                       true);
4930         }
4931
4932         /* If we change the relative order between pipe/planes enabling, we need
4933          * to change the workaround. */
4934         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4935         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4936                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4937                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4938         }
4939 }
4940
4941 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4942 {
4943         struct drm_device *dev = crtc->base.dev;
4944         struct drm_i915_private *dev_priv = dev->dev_private;
4945         int pipe = crtc->pipe;
4946
4947         /* To avoid upsetting the power well on haswell only disable the pfit if
4948          * it's in use. The hw state code will make sure we get this right. */
4949         if (force || crtc->config->pch_pfit.enabled) {
4950                 I915_WRITE(PF_CTL(pipe), 0);
4951                 I915_WRITE(PF_WIN_POS(pipe), 0);
4952                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4953         }
4954 }
4955
4956 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4957 {
4958         struct drm_device *dev = crtc->dev;
4959         struct drm_i915_private *dev_priv = dev->dev_private;
4960         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4961         struct intel_encoder *encoder;
4962         int pipe = intel_crtc->pipe;
4963
4964         /*
4965          * Sometimes spurious CPU pipe underruns happen when the
4966          * pipe is already disabled, but FDI RX/TX is still enabled.
4967          * Happens at least with VGA+HDMI cloning. Suppress them.
4968          */
4969         if (intel_crtc->config->has_pch_encoder) {
4970                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4971                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4972         }
4973
4974         for_each_encoder_on_crtc(dev, crtc, encoder)
4975                 encoder->disable(encoder);
4976
4977         drm_crtc_vblank_off(crtc);
4978         assert_vblank_disabled(crtc);
4979
4980         intel_disable_pipe(intel_crtc);
4981
4982         ironlake_pfit_disable(intel_crtc, false);
4983
4984         if (intel_crtc->config->has_pch_encoder)
4985                 ironlake_fdi_disable(crtc);
4986
4987         for_each_encoder_on_crtc(dev, crtc, encoder)
4988                 if (encoder->post_disable)
4989                         encoder->post_disable(encoder);
4990
4991         if (intel_crtc->config->has_pch_encoder) {
4992                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4993
4994                 if (HAS_PCH_CPT(dev)) {
4995                         i915_reg_t reg;
4996                         u32 temp;
4997
4998                         /* disable TRANS_DP_CTL */
4999                         reg = TRANS_DP_CTL(pipe);
5000                         temp = I915_READ(reg);
5001                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5002                                   TRANS_DP_PORT_SEL_MASK);
5003                         temp |= TRANS_DP_PORT_SEL_NONE;
5004                         I915_WRITE(reg, temp);
5005
5006                         /* disable DPLL_SEL */
5007                         temp = I915_READ(PCH_DPLL_SEL);
5008                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5009                         I915_WRITE(PCH_DPLL_SEL, temp);
5010                 }
5011
5012                 ironlake_fdi_pll_disable(intel_crtc);
5013         }
5014
5015         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5016         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5017 }
5018
5019 static void haswell_crtc_disable(struct drm_crtc *crtc)
5020 {
5021         struct drm_device *dev = crtc->dev;
5022         struct drm_i915_private *dev_priv = dev->dev_private;
5023         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5024         struct intel_encoder *encoder;
5025         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5026
5027         if (intel_crtc->config->has_pch_encoder)
5028                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5029                                                       false);
5030
5031         for_each_encoder_on_crtc(dev, crtc, encoder) {
5032                 intel_opregion_notify_encoder(encoder, false);
5033                 encoder->disable(encoder);
5034         }
5035
5036         drm_crtc_vblank_off(crtc);
5037         assert_vblank_disabled(crtc);
5038
5039         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5040         if (!intel_crtc->config->has_dsi_encoder)
5041                 intel_disable_pipe(intel_crtc);
5042
5043         if (intel_crtc->config->dp_encoder_is_mst)
5044                 intel_ddi_set_vc_payload_alloc(crtc, false);
5045
5046         if (!intel_crtc->config->has_dsi_encoder)
5047                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5048
5049         if (INTEL_INFO(dev)->gen >= 9)
5050                 skylake_scaler_disable(intel_crtc);
5051         else
5052                 ironlake_pfit_disable(intel_crtc, false);
5053
5054         if (!intel_crtc->config->has_dsi_encoder)
5055                 intel_ddi_disable_pipe_clock(intel_crtc);
5056
5057         for_each_encoder_on_crtc(dev, crtc, encoder)
5058                 if (encoder->post_disable)
5059                         encoder->post_disable(encoder);
5060
5061         if (intel_crtc->config->has_pch_encoder) {
5062                 lpt_disable_pch_transcoder(dev_priv);
5063                 lpt_disable_iclkip(dev_priv);
5064                 intel_ddi_fdi_disable(crtc);
5065
5066                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5067                                                       true);
5068         }
5069 }
5070
5071 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5072 {
5073         struct drm_device *dev = crtc->base.dev;
5074         struct drm_i915_private *dev_priv = dev->dev_private;
5075         struct intel_crtc_state *pipe_config = crtc->config;
5076
5077         if (!pipe_config->gmch_pfit.control)
5078                 return;
5079
5080         /*
5081          * The panel fitter should only be adjusted whilst the pipe is disabled,
5082          * according to register description and PRM.
5083          */
5084         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5085         assert_pipe_disabled(dev_priv, crtc->pipe);
5086
5087         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5088         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5089
5090         /* Border color in case we don't scale up to the full screen. Black by
5091          * default, change to something else for debugging. */
5092         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5093 }
5094
5095 static enum intel_display_power_domain port_to_power_domain(enum port port)
5096 {
5097         switch (port) {
5098         case PORT_A:
5099                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5100         case PORT_B:
5101                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5102         case PORT_C:
5103                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5104         case PORT_D:
5105                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5106         case PORT_E:
5107                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5108         default:
5109                 MISSING_CASE(port);
5110                 return POWER_DOMAIN_PORT_OTHER;
5111         }
5112 }
5113
5114 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5115 {
5116         switch (port) {
5117         case PORT_A:
5118                 return POWER_DOMAIN_AUX_A;
5119         case PORT_B:
5120                 return POWER_DOMAIN_AUX_B;
5121         case PORT_C:
5122                 return POWER_DOMAIN_AUX_C;
5123         case PORT_D:
5124                 return POWER_DOMAIN_AUX_D;
5125         case PORT_E:
5126                 /* FIXME: Check VBT for actual wiring of PORT E */
5127                 return POWER_DOMAIN_AUX_D;
5128         default:
5129                 MISSING_CASE(port);
5130                 return POWER_DOMAIN_AUX_A;
5131         }
5132 }
5133
5134 enum intel_display_power_domain
5135 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5136 {
5137         struct drm_device *dev = intel_encoder->base.dev;
5138         struct intel_digital_port *intel_dig_port;
5139
5140         switch (intel_encoder->type) {
5141         case INTEL_OUTPUT_UNKNOWN:
5142                 /* Only DDI platforms should ever use this output type */
5143                 WARN_ON_ONCE(!HAS_DDI(dev));
5144         case INTEL_OUTPUT_DISPLAYPORT:
5145         case INTEL_OUTPUT_HDMI:
5146         case INTEL_OUTPUT_EDP:
5147                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5148                 return port_to_power_domain(intel_dig_port->port);
5149         case INTEL_OUTPUT_DP_MST:
5150                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5151                 return port_to_power_domain(intel_dig_port->port);
5152         case INTEL_OUTPUT_ANALOG:
5153                 return POWER_DOMAIN_PORT_CRT;
5154         case INTEL_OUTPUT_DSI:
5155                 return POWER_DOMAIN_PORT_DSI;
5156         default:
5157                 return POWER_DOMAIN_PORT_OTHER;
5158         }
5159 }
5160
5161 enum intel_display_power_domain
5162 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5163 {
5164         struct drm_device *dev = intel_encoder->base.dev;
5165         struct intel_digital_port *intel_dig_port;
5166
5167         switch (intel_encoder->type) {
5168         case INTEL_OUTPUT_UNKNOWN:
5169         case INTEL_OUTPUT_HDMI:
5170                 /*
5171                  * Only DDI platforms should ever use these output types.
5172                  * We can get here after the HDMI detect code has already set
5173                  * the type of the shared encoder. Since we can't be sure
5174                  * what's the status of the given connectors, play safe and
5175                  * run the DP detection too.
5176                  */
5177                 WARN_ON_ONCE(!HAS_DDI(dev));
5178         case INTEL_OUTPUT_DISPLAYPORT:
5179         case INTEL_OUTPUT_EDP:
5180                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5181                 return port_to_aux_power_domain(intel_dig_port->port);
5182         case INTEL_OUTPUT_DP_MST:
5183                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5184                 return port_to_aux_power_domain(intel_dig_port->port);
5185         default:
5186                 MISSING_CASE(intel_encoder->type);
5187                 return POWER_DOMAIN_AUX_A;
5188         }
5189 }
5190
5191 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5192                                             struct intel_crtc_state *crtc_state)
5193 {
5194         struct drm_device *dev = crtc->dev;
5195         struct drm_encoder *encoder;
5196         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5197         enum pipe pipe = intel_crtc->pipe;
5198         unsigned long mask;
5199         enum transcoder transcoder = crtc_state->cpu_transcoder;
5200
5201         if (!crtc_state->base.active)
5202                 return 0;
5203
5204         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5205         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5206         if (crtc_state->pch_pfit.enabled ||
5207             crtc_state->pch_pfit.force_thru)
5208                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5209
5210         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5211                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5212
5213                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5214         }
5215
5216         if (crtc_state->shared_dpll)
5217                 mask |= BIT(POWER_DOMAIN_PLLS);
5218
5219         return mask;
5220 }
5221
5222 static unsigned long
5223 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5224                                struct intel_crtc_state *crtc_state)
5225 {
5226         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5227         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5228         enum intel_display_power_domain domain;
5229         unsigned long domains, new_domains, old_domains;
5230
5231         old_domains = intel_crtc->enabled_power_domains;
5232         intel_crtc->enabled_power_domains = new_domains =
5233                 get_crtc_power_domains(crtc, crtc_state);
5234
5235         domains = new_domains & ~old_domains;
5236
5237         for_each_power_domain(domain, domains)
5238                 intel_display_power_get(dev_priv, domain);
5239
5240         return old_domains & ~new_domains;
5241 }
5242
5243 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5244                                       unsigned long domains)
5245 {
5246         enum intel_display_power_domain domain;
5247
5248         for_each_power_domain(domain, domains)
5249                 intel_display_power_put(dev_priv, domain);
5250 }
5251
5252 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5253 {
5254         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5255
5256         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5257             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5258                 return max_cdclk_freq;
5259         else if (IS_CHERRYVIEW(dev_priv))
5260                 return max_cdclk_freq*95/100;
5261         else if (INTEL_INFO(dev_priv)->gen < 4)
5262                 return 2*max_cdclk_freq*90/100;
5263         else
5264                 return max_cdclk_freq*90/100;
5265 }
5266
5267 static void intel_update_max_cdclk(struct drm_device *dev)
5268 {
5269         struct drm_i915_private *dev_priv = dev->dev_private;
5270
5271         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5272                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5273
5274                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5275                         dev_priv->max_cdclk_freq = 675000;
5276                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5277                         dev_priv->max_cdclk_freq = 540000;
5278                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5279                         dev_priv->max_cdclk_freq = 450000;
5280                 else
5281                         dev_priv->max_cdclk_freq = 337500;
5282         } else if (IS_BROXTON(dev)) {
5283                 dev_priv->max_cdclk_freq = 624000;
5284         } else if (IS_BROADWELL(dev))  {
5285                 /*
5286                  * FIXME with extra cooling we can allow
5287                  * 540 MHz for ULX and 675 Mhz for ULT.
5288                  * How can we know if extra cooling is
5289                  * available? PCI ID, VTB, something else?
5290                  */
5291                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5292                         dev_priv->max_cdclk_freq = 450000;
5293                 else if (IS_BDW_ULX(dev))
5294                         dev_priv->max_cdclk_freq = 450000;
5295                 else if (IS_BDW_ULT(dev))
5296                         dev_priv->max_cdclk_freq = 540000;
5297                 else
5298                         dev_priv->max_cdclk_freq = 675000;
5299         } else if (IS_CHERRYVIEW(dev)) {
5300                 dev_priv->max_cdclk_freq = 320000;
5301         } else if (IS_VALLEYVIEW(dev)) {
5302                 dev_priv->max_cdclk_freq = 400000;
5303         } else {
5304                 /* otherwise assume cdclk is fixed */
5305                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5306         }
5307
5308         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5309
5310         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5311                          dev_priv->max_cdclk_freq);
5312
5313         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5314                          dev_priv->max_dotclk_freq);
5315 }
5316
5317 static void intel_update_cdclk(struct drm_device *dev)
5318 {
5319         struct drm_i915_private *dev_priv = dev->dev_private;
5320
5321         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5322         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5323                          dev_priv->cdclk_freq);
5324
5325         /*
5326          * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5327          * Programmng [sic] note: bit[9:2] should be programmed to the number
5328          * of cdclk that generates 4MHz reference clock freq which is used to
5329          * generate GMBus clock. This will vary with the cdclk freq.
5330          */
5331         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5332                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5333
5334         if (dev_priv->max_cdclk_freq == 0)
5335                 intel_update_max_cdclk(dev);
5336 }
5337
5338 static void broxton_set_cdclk(struct drm_i915_private *dev_priv, int frequency)
5339 {
5340         uint32_t divider;
5341         uint32_t ratio;
5342         uint32_t current_freq;
5343         int ret;
5344
5345         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5346         switch (frequency) {
5347         case 144000:
5348                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5349                 ratio = BXT_DE_PLL_RATIO(60);
5350                 break;
5351         case 288000:
5352                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5353                 ratio = BXT_DE_PLL_RATIO(60);
5354                 break;
5355         case 384000:
5356                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5357                 ratio = BXT_DE_PLL_RATIO(60);
5358                 break;
5359         case 576000:
5360                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5361                 ratio = BXT_DE_PLL_RATIO(60);
5362                 break;
5363         case 624000:
5364                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5365                 ratio = BXT_DE_PLL_RATIO(65);
5366                 break;
5367         case 19200:
5368                 /*
5369                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5370                  * to suppress GCC warning.
5371                  */
5372                 ratio = 0;
5373                 divider = 0;
5374                 break;
5375         default:
5376                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5377
5378                 return;
5379         }
5380
5381         mutex_lock(&dev_priv->rps.hw_lock);
5382         /* Inform power controller of upcoming frequency change */
5383         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5384                                       0x80000000);
5385         mutex_unlock(&dev_priv->rps.hw_lock);
5386
5387         if (ret) {
5388                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5389                           ret, frequency);
5390                 return;
5391         }
5392
5393         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5394         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5395         current_freq = current_freq * 500 + 1000;
5396
5397         /*
5398          * DE PLL has to be disabled when
5399          * - setting to 19.2MHz (bypass, PLL isn't used)
5400          * - before setting to 624MHz (PLL needs toggling)
5401          * - before setting to any frequency from 624MHz (PLL needs toggling)
5402          */
5403         if (frequency == 19200 || frequency == 624000 ||
5404             current_freq == 624000) {
5405                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5406                 /* Timeout 200us */
5407                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5408                              1))
5409                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5410         }
5411
5412         if (frequency != 19200) {
5413                 uint32_t val;
5414
5415                 val = I915_READ(BXT_DE_PLL_CTL);
5416                 val &= ~BXT_DE_PLL_RATIO_MASK;
5417                 val |= ratio;
5418                 I915_WRITE(BXT_DE_PLL_CTL, val);
5419
5420                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5421                 /* Timeout 200us */
5422                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5423                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5424
5425                 val = I915_READ(CDCLK_CTL);
5426                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5427                 val |= divider;
5428                 /*
5429                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5430                  * enable otherwise.
5431                  */
5432                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5433                 if (frequency >= 500000)
5434                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5435
5436                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5437                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5438                 val |= (frequency - 1000) / 500;
5439                 I915_WRITE(CDCLK_CTL, val);
5440         }
5441
5442         mutex_lock(&dev_priv->rps.hw_lock);
5443         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5444                                       DIV_ROUND_UP(frequency, 25000));
5445         mutex_unlock(&dev_priv->rps.hw_lock);
5446
5447         if (ret) {
5448                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5449                           ret, frequency);
5450                 return;
5451         }
5452
5453         intel_update_cdclk(dev_priv->dev);
5454 }
5455
5456 static bool broxton_cdclk_is_enabled(struct drm_i915_private *dev_priv)
5457 {
5458         if (!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE))
5459                 return false;
5460
5461         /* TODO: Check for a valid CDCLK rate */
5462
5463         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_REQUEST)) {
5464                 DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power not requested\n");
5465
5466                 return false;
5467         }
5468
5469         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE)) {
5470                 DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power hasn't settled\n");
5471
5472                 return false;
5473         }
5474
5475         return true;
5476 }
5477
5478 bool broxton_cdclk_verify_state(struct drm_i915_private *dev_priv)
5479 {
5480         return broxton_cdclk_is_enabled(dev_priv);
5481 }
5482
5483 void broxton_init_cdclk(struct drm_i915_private *dev_priv)
5484 {
5485         /* check if cd clock is enabled */
5486         if (broxton_cdclk_is_enabled(dev_priv)) {
5487                 DRM_DEBUG_KMS("CDCLK already enabled, won't reprogram it\n");
5488                 return;
5489         }
5490
5491         DRM_DEBUG_KMS("CDCLK not enabled, enabling it\n");
5492
5493         /*
5494          * FIXME:
5495          * - The initial CDCLK needs to be read from VBT.
5496          *   Need to make this change after VBT has changes for BXT.
5497          * - check if setting the max (or any) cdclk freq is really necessary
5498          *   here, it belongs to modeset time
5499          */
5500         broxton_set_cdclk(dev_priv, 624000);
5501
5502         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5503         POSTING_READ(DBUF_CTL);
5504
5505         udelay(10);
5506
5507         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5508                 DRM_ERROR("DBuf power enable timeout!\n");
5509 }
5510
5511 void broxton_uninit_cdclk(struct drm_i915_private *dev_priv)
5512 {
5513         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5514         POSTING_READ(DBUF_CTL);
5515
5516         udelay(10);
5517
5518         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5519                 DRM_ERROR("DBuf power disable timeout!\n");
5520
5521         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5522         broxton_set_cdclk(dev_priv, 19200);
5523 }
5524
5525 static const struct skl_cdclk_entry {
5526         unsigned int freq;
5527         unsigned int vco;
5528 } skl_cdclk_frequencies[] = {
5529         { .freq = 308570, .vco = 8640 },
5530         { .freq = 337500, .vco = 8100 },
5531         { .freq = 432000, .vco = 8640 },
5532         { .freq = 450000, .vco = 8100 },
5533         { .freq = 540000, .vco = 8100 },
5534         { .freq = 617140, .vco = 8640 },
5535         { .freq = 675000, .vco = 8100 },
5536 };
5537
5538 static unsigned int skl_cdclk_decimal(unsigned int freq)
5539 {
5540         return (freq - 1000) / 500;
5541 }
5542
5543 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5544 {
5545         unsigned int i;
5546
5547         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5548                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5549
5550                 if (e->freq == freq)
5551                         return e->vco;
5552         }
5553
5554         return 8100;
5555 }
5556
5557 static void
5558 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5559 {
5560         unsigned int min_freq;
5561         u32 val;
5562
5563         /* select the minimum CDCLK before enabling DPLL 0 */
5564         val = I915_READ(CDCLK_CTL);
5565         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5566         val |= CDCLK_FREQ_337_308;
5567
5568         if (required_vco == 8640)
5569                 min_freq = 308570;
5570         else
5571                 min_freq = 337500;
5572
5573         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5574
5575         I915_WRITE(CDCLK_CTL, val);
5576         POSTING_READ(CDCLK_CTL);
5577
5578         /*
5579          * We always enable DPLL0 with the lowest link rate possible, but still
5580          * taking into account the VCO required to operate the eDP panel at the
5581          * desired frequency. The usual DP link rates operate with a VCO of
5582          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5583          * The modeset code is responsible for the selection of the exact link
5584          * rate later on, with the constraint of choosing a frequency that
5585          * works with required_vco.
5586          */
5587         val = I915_READ(DPLL_CTRL1);
5588
5589         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5590                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5591         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5592         if (required_vco == 8640)
5593                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5594                                             SKL_DPLL0);
5595         else
5596                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5597                                             SKL_DPLL0);
5598
5599         I915_WRITE(DPLL_CTRL1, val);
5600         POSTING_READ(DPLL_CTRL1);
5601
5602         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5603
5604         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5605                 DRM_ERROR("DPLL0 not locked\n");
5606 }
5607
5608 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5609 {
5610         int ret;
5611         u32 val;
5612
5613         /* inform PCU we want to change CDCLK */
5614         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5615         mutex_lock(&dev_priv->rps.hw_lock);
5616         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5617         mutex_unlock(&dev_priv->rps.hw_lock);
5618
5619         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5620 }
5621
5622 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5623 {
5624         unsigned int i;
5625
5626         for (i = 0; i < 15; i++) {
5627                 if (skl_cdclk_pcu_ready(dev_priv))
5628                         return true;
5629                 udelay(10);
5630         }
5631
5632         return false;
5633 }
5634
5635 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5636 {
5637         struct drm_device *dev = dev_priv->dev;
5638         u32 freq_select, pcu_ack;
5639
5640         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5641
5642         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5643                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5644                 return;
5645         }
5646
5647         /* set CDCLK_CTL */
5648         switch(freq) {
5649         case 450000:
5650         case 432000:
5651                 freq_select = CDCLK_FREQ_450_432;
5652                 pcu_ack = 1;
5653                 break;
5654         case 540000:
5655                 freq_select = CDCLK_FREQ_540;
5656                 pcu_ack = 2;
5657                 break;
5658         case 308570:
5659         case 337500:
5660         default:
5661                 freq_select = CDCLK_FREQ_337_308;
5662                 pcu_ack = 0;
5663                 break;
5664         case 617140:
5665         case 675000:
5666                 freq_select = CDCLK_FREQ_675_617;
5667                 pcu_ack = 3;
5668                 break;
5669         }
5670
5671         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5672         POSTING_READ(CDCLK_CTL);
5673
5674         /* inform PCU of the change */
5675         mutex_lock(&dev_priv->rps.hw_lock);
5676         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5677         mutex_unlock(&dev_priv->rps.hw_lock);
5678
5679         intel_update_cdclk(dev);
5680 }
5681
5682 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5683 {
5684         /* disable DBUF power */
5685         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5686         POSTING_READ(DBUF_CTL);
5687
5688         udelay(10);
5689
5690         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5691                 DRM_ERROR("DBuf power disable timeout\n");
5692
5693         /* disable DPLL0 */
5694         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5695         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5696                 DRM_ERROR("Couldn't disable DPLL0\n");
5697 }
5698
5699 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5700 {
5701         unsigned int required_vco;
5702
5703         /* DPLL0 not enabled (happens on early BIOS versions) */
5704         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5705                 /* enable DPLL0 */
5706                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5707                 skl_dpll0_enable(dev_priv, required_vco);
5708         }
5709
5710         /* set CDCLK to the frequency the BIOS chose */
5711         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5712
5713         /* enable DBUF power */
5714         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5715         POSTING_READ(DBUF_CTL);
5716
5717         udelay(10);
5718
5719         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5720                 DRM_ERROR("DBuf power enable timeout\n");
5721 }
5722
5723 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5724 {
5725         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5726         uint32_t cdctl = I915_READ(CDCLK_CTL);
5727         int freq = dev_priv->skl_boot_cdclk;
5728
5729         /*
5730          * check if the pre-os intialized the display
5731          * There is SWF18 scratchpad register defined which is set by the
5732          * pre-os which can be used by the OS drivers to check the status
5733          */
5734         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5735                 goto sanitize;
5736
5737         /* Is PLL enabled and locked ? */
5738         if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5739                 goto sanitize;
5740
5741         /* DPLL okay; verify the cdclock
5742          *
5743          * Noticed in some instances that the freq selection is correct but
5744          * decimal part is programmed wrong from BIOS where pre-os does not
5745          * enable display. Verify the same as well.
5746          */
5747         if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5748                 /* All well; nothing to sanitize */
5749                 return false;
5750 sanitize:
5751         /*
5752          * As of now initialize with max cdclk till
5753          * we get dynamic cdclk support
5754          * */
5755         dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5756         skl_init_cdclk(dev_priv);
5757
5758         /* we did have to sanitize */
5759         return true;
5760 }
5761
5762 /* Adjust CDclk dividers to allow high res or save power if possible */
5763 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5764 {
5765         struct drm_i915_private *dev_priv = dev->dev_private;
5766         u32 val, cmd;
5767
5768         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5769                                         != dev_priv->cdclk_freq);
5770
5771         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5772                 cmd = 2;
5773         else if (cdclk == 266667)
5774                 cmd = 1;
5775         else
5776                 cmd = 0;
5777
5778         mutex_lock(&dev_priv->rps.hw_lock);
5779         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5780         val &= ~DSPFREQGUAR_MASK;
5781         val |= (cmd << DSPFREQGUAR_SHIFT);
5782         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5783         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5784                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5785                      50)) {
5786                 DRM_ERROR("timed out waiting for CDclk change\n");
5787         }
5788         mutex_unlock(&dev_priv->rps.hw_lock);
5789
5790         mutex_lock(&dev_priv->sb_lock);
5791
5792         if (cdclk == 400000) {
5793                 u32 divider;
5794
5795                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5796
5797                 /* adjust cdclk divider */
5798                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5799                 val &= ~CCK_FREQUENCY_VALUES;
5800                 val |= divider;
5801                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5802
5803                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5804                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5805                              50))
5806                         DRM_ERROR("timed out waiting for CDclk change\n");
5807         }
5808
5809         /* adjust self-refresh exit latency value */
5810         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5811         val &= ~0x7f;
5812
5813         /*
5814          * For high bandwidth configs, we set a higher latency in the bunit
5815          * so that the core display fetch happens in time to avoid underruns.
5816          */
5817         if (cdclk == 400000)
5818                 val |= 4500 / 250; /* 4.5 usec */
5819         else
5820                 val |= 3000 / 250; /* 3.0 usec */
5821         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5822
5823         mutex_unlock(&dev_priv->sb_lock);
5824
5825         intel_update_cdclk(dev);
5826 }
5827
5828 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5829 {
5830         struct drm_i915_private *dev_priv = dev->dev_private;
5831         u32 val, cmd;
5832
5833         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5834                                                 != dev_priv->cdclk_freq);
5835
5836         switch (cdclk) {
5837         case 333333:
5838         case 320000:
5839         case 266667:
5840         case 200000:
5841                 break;
5842         default:
5843                 MISSING_CASE(cdclk);
5844                 return;
5845         }
5846
5847         /*
5848          * Specs are full of misinformation, but testing on actual
5849          * hardware has shown that we just need to write the desired
5850          * CCK divider into the Punit register.
5851          */
5852         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5853
5854         mutex_lock(&dev_priv->rps.hw_lock);
5855         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5856         val &= ~DSPFREQGUAR_MASK_CHV;
5857         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5858         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5859         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5860                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5861                      50)) {
5862                 DRM_ERROR("timed out waiting for CDclk change\n");
5863         }
5864         mutex_unlock(&dev_priv->rps.hw_lock);
5865
5866         intel_update_cdclk(dev);
5867 }
5868
5869 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5870                                  int max_pixclk)
5871 {
5872         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5873         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5874
5875         /*
5876          * Really only a few cases to deal with, as only 4 CDclks are supported:
5877          *   200MHz
5878          *   267MHz
5879          *   320/333MHz (depends on HPLL freq)
5880          *   400MHz (VLV only)
5881          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5882          * of the lower bin and adjust if needed.
5883          *
5884          * We seem to get an unstable or solid color picture at 200MHz.
5885          * Not sure what's wrong. For now use 200MHz only when all pipes
5886          * are off.
5887          */
5888         if (!IS_CHERRYVIEW(dev_priv) &&
5889             max_pixclk > freq_320*limit/100)
5890                 return 400000;
5891         else if (max_pixclk > 266667*limit/100)
5892                 return freq_320;
5893         else if (max_pixclk > 0)
5894                 return 266667;
5895         else
5896                 return 200000;
5897 }
5898
5899 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5900                               int max_pixclk)
5901 {
5902         /*
5903          * FIXME:
5904          * - remove the guardband, it's not needed on BXT
5905          * - set 19.2MHz bypass frequency if there are no active pipes
5906          */
5907         if (max_pixclk > 576000*9/10)
5908                 return 624000;
5909         else if (max_pixclk > 384000*9/10)
5910                 return 576000;
5911         else if (max_pixclk > 288000*9/10)
5912                 return 384000;
5913         else if (max_pixclk > 144000*9/10)
5914                 return 288000;
5915         else
5916                 return 144000;
5917 }
5918
5919 /* Compute the max pixel clock for new configuration. */
5920 static int intel_mode_max_pixclk(struct drm_device *dev,
5921                                  struct drm_atomic_state *state)
5922 {
5923         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5924         struct drm_i915_private *dev_priv = dev->dev_private;
5925         struct drm_crtc *crtc;
5926         struct drm_crtc_state *crtc_state;
5927         unsigned max_pixclk = 0, i;
5928         enum pipe pipe;
5929
5930         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
5931                sizeof(intel_state->min_pixclk));
5932
5933         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5934                 int pixclk = 0;
5935
5936                 if (crtc_state->enable)
5937                         pixclk = crtc_state->adjusted_mode.crtc_clock;
5938
5939                 intel_state->min_pixclk[i] = pixclk;
5940         }
5941
5942         for_each_pipe(dev_priv, pipe)
5943                 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
5944
5945         return max_pixclk;
5946 }
5947
5948 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5949 {
5950         struct drm_device *dev = state->dev;
5951         struct drm_i915_private *dev_priv = dev->dev_private;
5952         int max_pixclk = intel_mode_max_pixclk(dev, state);
5953         struct intel_atomic_state *intel_state =
5954                 to_intel_atomic_state(state);
5955
5956         if (max_pixclk < 0)
5957                 return max_pixclk;
5958
5959         intel_state->cdclk = intel_state->dev_cdclk =
5960                 valleyview_calc_cdclk(dev_priv, max_pixclk);
5961
5962         if (!intel_state->active_crtcs)
5963                 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
5964
5965         return 0;
5966 }
5967
5968 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5969 {
5970         struct drm_device *dev = state->dev;
5971         struct drm_i915_private *dev_priv = dev->dev_private;
5972         int max_pixclk = intel_mode_max_pixclk(dev, state);
5973         struct intel_atomic_state *intel_state =
5974                 to_intel_atomic_state(state);
5975
5976         if (max_pixclk < 0)
5977                 return max_pixclk;
5978
5979         intel_state->cdclk = intel_state->dev_cdclk =
5980                 broxton_calc_cdclk(dev_priv, max_pixclk);
5981
5982         if (!intel_state->active_crtcs)
5983                 intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0);
5984
5985         return 0;
5986 }
5987
5988 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5989 {
5990         unsigned int credits, default_credits;
5991
5992         if (IS_CHERRYVIEW(dev_priv))
5993                 default_credits = PFI_CREDIT(12);
5994         else
5995                 default_credits = PFI_CREDIT(8);
5996
5997         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
5998                 /* CHV suggested value is 31 or 63 */
5999                 if (IS_CHERRYVIEW(dev_priv))
6000                         credits = PFI_CREDIT_63;
6001                 else
6002                         credits = PFI_CREDIT(15);
6003         } else {
6004                 credits = default_credits;
6005         }
6006
6007         /*
6008          * WA - write default credits before re-programming
6009          * FIXME: should we also set the resend bit here?
6010          */
6011         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6012                    default_credits);
6013
6014         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6015                    credits | PFI_CREDIT_RESEND);
6016
6017         /*
6018          * FIXME is this guaranteed to clear
6019          * immediately or should we poll for it?
6020          */
6021         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6022 }
6023
6024 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6025 {
6026         struct drm_device *dev = old_state->dev;
6027         struct drm_i915_private *dev_priv = dev->dev_private;
6028         struct intel_atomic_state *old_intel_state =
6029                 to_intel_atomic_state(old_state);
6030         unsigned req_cdclk = old_intel_state->dev_cdclk;
6031
6032         /*
6033          * FIXME: We can end up here with all power domains off, yet
6034          * with a CDCLK frequency other than the minimum. To account
6035          * for this take the PIPE-A power domain, which covers the HW
6036          * blocks needed for the following programming. This can be
6037          * removed once it's guaranteed that we get here either with
6038          * the minimum CDCLK set, or the required power domains
6039          * enabled.
6040          */
6041         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6042
6043         if (IS_CHERRYVIEW(dev))
6044                 cherryview_set_cdclk(dev, req_cdclk);
6045         else
6046                 valleyview_set_cdclk(dev, req_cdclk);
6047
6048         vlv_program_pfi_credits(dev_priv);
6049
6050         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6051 }
6052
6053 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6054 {
6055         struct drm_device *dev = crtc->dev;
6056         struct drm_i915_private *dev_priv = to_i915(dev);
6057         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6058         struct intel_encoder *encoder;
6059         struct intel_crtc_state *pipe_config =
6060                 to_intel_crtc_state(crtc->state);
6061         int pipe = intel_crtc->pipe;
6062
6063         if (WARN_ON(intel_crtc->active))
6064                 return;
6065
6066         if (intel_crtc->config->has_dp_encoder)
6067                 intel_dp_set_m_n(intel_crtc, M1_N1);
6068
6069         intel_set_pipe_timings(intel_crtc);
6070         intel_set_pipe_src_size(intel_crtc);
6071
6072         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6073                 struct drm_i915_private *dev_priv = dev->dev_private;
6074
6075                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6076                 I915_WRITE(CHV_CANVAS(pipe), 0);
6077         }
6078
6079         i9xx_set_pipeconf(intel_crtc);
6080
6081         intel_crtc->active = true;
6082
6083         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6084
6085         for_each_encoder_on_crtc(dev, crtc, encoder)
6086                 if (encoder->pre_pll_enable)
6087                         encoder->pre_pll_enable(encoder);
6088
6089         if (IS_CHERRYVIEW(dev)) {
6090                 chv_prepare_pll(intel_crtc, intel_crtc->config);
6091                 chv_enable_pll(intel_crtc, intel_crtc->config);
6092         } else {
6093                 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6094                 vlv_enable_pll(intel_crtc, intel_crtc->config);
6095         }
6096
6097         for_each_encoder_on_crtc(dev, crtc, encoder)
6098                 if (encoder->pre_enable)
6099                         encoder->pre_enable(encoder);
6100
6101         i9xx_pfit_enable(intel_crtc);
6102
6103         intel_color_load_luts(&pipe_config->base);
6104
6105         intel_update_watermarks(crtc);
6106         intel_enable_pipe(intel_crtc);
6107
6108         assert_vblank_disabled(crtc);
6109         drm_crtc_vblank_on(crtc);
6110
6111         for_each_encoder_on_crtc(dev, crtc, encoder)
6112                 encoder->enable(encoder);
6113 }
6114
6115 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6116 {
6117         struct drm_device *dev = crtc->base.dev;
6118         struct drm_i915_private *dev_priv = dev->dev_private;
6119
6120         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6121         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6122 }
6123
6124 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6125 {
6126         struct drm_device *dev = crtc->dev;
6127         struct drm_i915_private *dev_priv = to_i915(dev);
6128         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6129         struct intel_encoder *encoder;
6130         struct intel_crtc_state *pipe_config =
6131                 to_intel_crtc_state(crtc->state);
6132         enum pipe pipe = intel_crtc->pipe;
6133
6134         if (WARN_ON(intel_crtc->active))
6135                 return;
6136
6137         i9xx_set_pll_dividers(intel_crtc);
6138
6139         if (intel_crtc->config->has_dp_encoder)
6140                 intel_dp_set_m_n(intel_crtc, M1_N1);
6141
6142         intel_set_pipe_timings(intel_crtc);
6143         intel_set_pipe_src_size(intel_crtc);
6144
6145         i9xx_set_pipeconf(intel_crtc);
6146
6147         intel_crtc->active = true;
6148
6149         if (!IS_GEN2(dev))
6150                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6151
6152         for_each_encoder_on_crtc(dev, crtc, encoder)
6153                 if (encoder->pre_enable)
6154                         encoder->pre_enable(encoder);
6155
6156         i9xx_enable_pll(intel_crtc);
6157
6158         i9xx_pfit_enable(intel_crtc);
6159
6160         intel_color_load_luts(&pipe_config->base);
6161
6162         intel_update_watermarks(crtc);
6163         intel_enable_pipe(intel_crtc);
6164
6165         assert_vblank_disabled(crtc);
6166         drm_crtc_vblank_on(crtc);
6167
6168         for_each_encoder_on_crtc(dev, crtc, encoder)
6169                 encoder->enable(encoder);
6170 }
6171
6172 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6173 {
6174         struct drm_device *dev = crtc->base.dev;
6175         struct drm_i915_private *dev_priv = dev->dev_private;
6176
6177         if (!crtc->config->gmch_pfit.control)
6178                 return;
6179
6180         assert_pipe_disabled(dev_priv, crtc->pipe);
6181
6182         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6183                          I915_READ(PFIT_CONTROL));
6184         I915_WRITE(PFIT_CONTROL, 0);
6185 }
6186
6187 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6188 {
6189         struct drm_device *dev = crtc->dev;
6190         struct drm_i915_private *dev_priv = dev->dev_private;
6191         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6192         struct intel_encoder *encoder;
6193         int pipe = intel_crtc->pipe;
6194
6195         /*
6196          * On gen2 planes are double buffered but the pipe isn't, so we must
6197          * wait for planes to fully turn off before disabling the pipe.
6198          */
6199         if (IS_GEN2(dev))
6200                 intel_wait_for_vblank(dev, pipe);
6201
6202         for_each_encoder_on_crtc(dev, crtc, encoder)
6203                 encoder->disable(encoder);
6204
6205         drm_crtc_vblank_off(crtc);
6206         assert_vblank_disabled(crtc);
6207
6208         intel_disable_pipe(intel_crtc);
6209
6210         i9xx_pfit_disable(intel_crtc);
6211
6212         for_each_encoder_on_crtc(dev, crtc, encoder)
6213                 if (encoder->post_disable)
6214                         encoder->post_disable(encoder);
6215
6216         if (!intel_crtc->config->has_dsi_encoder) {
6217                 if (IS_CHERRYVIEW(dev))
6218                         chv_disable_pll(dev_priv, pipe);
6219                 else if (IS_VALLEYVIEW(dev))
6220                         vlv_disable_pll(dev_priv, pipe);
6221                 else
6222                         i9xx_disable_pll(intel_crtc);
6223         }
6224
6225         for_each_encoder_on_crtc(dev, crtc, encoder)
6226                 if (encoder->post_pll_disable)
6227                         encoder->post_pll_disable(encoder);
6228
6229         if (!IS_GEN2(dev))
6230                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6231 }
6232
6233 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6234 {
6235         struct intel_encoder *encoder;
6236         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6237         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6238         enum intel_display_power_domain domain;
6239         unsigned long domains;
6240
6241         if (!intel_crtc->active)
6242                 return;
6243
6244         if (to_intel_plane_state(crtc->primary->state)->visible) {
6245                 WARN_ON(intel_crtc->unpin_work);
6246
6247                 intel_pre_disable_primary_noatomic(crtc);
6248
6249                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6250                 to_intel_plane_state(crtc->primary->state)->visible = false;
6251         }
6252
6253         dev_priv->display.crtc_disable(crtc);
6254
6255         DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was enabled, now disabled\n",
6256                       crtc->base.id);
6257
6258         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6259         crtc->state->active = false;
6260         intel_crtc->active = false;
6261         crtc->enabled = false;
6262         crtc->state->connector_mask = 0;
6263         crtc->state->encoder_mask = 0;
6264
6265         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6266                 encoder->base.crtc = NULL;
6267
6268         intel_fbc_disable(intel_crtc);
6269         intel_update_watermarks(crtc);
6270         intel_disable_shared_dpll(intel_crtc);
6271
6272         domains = intel_crtc->enabled_power_domains;
6273         for_each_power_domain(domain, domains)
6274                 intel_display_power_put(dev_priv, domain);
6275         intel_crtc->enabled_power_domains = 0;
6276
6277         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6278         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6279 }
6280
6281 /*
6282  * turn all crtc's off, but do not adjust state
6283  * This has to be paired with a call to intel_modeset_setup_hw_state.
6284  */
6285 int intel_display_suspend(struct drm_device *dev)
6286 {
6287         struct drm_i915_private *dev_priv = to_i915(dev);
6288         struct drm_atomic_state *state;
6289         int ret;
6290
6291         state = drm_atomic_helper_suspend(dev);
6292         ret = PTR_ERR_OR_ZERO(state);
6293         if (ret)
6294                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6295         else
6296                 dev_priv->modeset_restore_state = state;
6297         return ret;
6298 }
6299
6300 void intel_encoder_destroy(struct drm_encoder *encoder)
6301 {
6302         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6303
6304         drm_encoder_cleanup(encoder);
6305         kfree(intel_encoder);
6306 }
6307
6308 /* Cross check the actual hw state with our own modeset state tracking (and it's
6309  * internal consistency). */
6310 static void intel_connector_verify_state(struct intel_connector *connector)
6311 {
6312         struct drm_crtc *crtc = connector->base.state->crtc;
6313
6314         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6315                       connector->base.base.id,
6316                       connector->base.name);
6317
6318         if (connector->get_hw_state(connector)) {
6319                 struct intel_encoder *encoder = connector->encoder;
6320                 struct drm_connector_state *conn_state = connector->base.state;
6321
6322                 I915_STATE_WARN(!crtc,
6323                          "connector enabled without attached crtc\n");
6324
6325                 if (!crtc)
6326                         return;
6327
6328                 I915_STATE_WARN(!crtc->state->active,
6329                       "connector is active, but attached crtc isn't\n");
6330
6331                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6332                         return;
6333
6334                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6335                         "atomic encoder doesn't match attached encoder\n");
6336
6337                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6338                         "attached encoder crtc differs from connector crtc\n");
6339         } else {
6340                 I915_STATE_WARN(crtc && crtc->state->active,
6341                         "attached crtc is active, but connector isn't\n");
6342                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6343                         "best encoder set without crtc!\n");
6344         }
6345 }
6346
6347 int intel_connector_init(struct intel_connector *connector)
6348 {
6349         drm_atomic_helper_connector_reset(&connector->base);
6350
6351         if (!connector->base.state)
6352                 return -ENOMEM;
6353
6354         return 0;
6355 }
6356
6357 struct intel_connector *intel_connector_alloc(void)
6358 {
6359         struct intel_connector *connector;
6360
6361         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6362         if (!connector)
6363                 return NULL;
6364
6365         if (intel_connector_init(connector) < 0) {
6366                 kfree(connector);
6367                 return NULL;
6368         }
6369
6370         return connector;
6371 }
6372
6373 /* Simple connector->get_hw_state implementation for encoders that support only
6374  * one connector and no cloning and hence the encoder state determines the state
6375  * of the connector. */
6376 bool intel_connector_get_hw_state(struct intel_connector *connector)
6377 {
6378         enum pipe pipe = 0;
6379         struct intel_encoder *encoder = connector->encoder;
6380
6381         return encoder->get_hw_state(encoder, &pipe);
6382 }
6383
6384 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6385 {
6386         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6387                 return crtc_state->fdi_lanes;
6388
6389         return 0;
6390 }
6391
6392 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6393                                      struct intel_crtc_state *pipe_config)
6394 {
6395         struct drm_atomic_state *state = pipe_config->base.state;
6396         struct intel_crtc *other_crtc;
6397         struct intel_crtc_state *other_crtc_state;
6398
6399         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6400                       pipe_name(pipe), pipe_config->fdi_lanes);
6401         if (pipe_config->fdi_lanes > 4) {
6402                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6403                               pipe_name(pipe), pipe_config->fdi_lanes);
6404                 return -EINVAL;
6405         }
6406
6407         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6408                 if (pipe_config->fdi_lanes > 2) {
6409                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6410                                       pipe_config->fdi_lanes);
6411                         return -EINVAL;
6412                 } else {
6413                         return 0;
6414                 }
6415         }
6416
6417         if (INTEL_INFO(dev)->num_pipes == 2)
6418                 return 0;
6419
6420         /* Ivybridge 3 pipe is really complicated */
6421         switch (pipe) {
6422         case PIPE_A:
6423                 return 0;
6424         case PIPE_B:
6425                 if (pipe_config->fdi_lanes <= 2)
6426                         return 0;
6427
6428                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6429                 other_crtc_state =
6430                         intel_atomic_get_crtc_state(state, other_crtc);
6431                 if (IS_ERR(other_crtc_state))
6432                         return PTR_ERR(other_crtc_state);
6433
6434                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6435                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6436                                       pipe_name(pipe), pipe_config->fdi_lanes);
6437                         return -EINVAL;
6438                 }
6439                 return 0;
6440         case PIPE_C:
6441                 if (pipe_config->fdi_lanes > 2) {
6442                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6443                                       pipe_name(pipe), pipe_config->fdi_lanes);
6444                         return -EINVAL;
6445                 }
6446
6447                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6448                 other_crtc_state =
6449                         intel_atomic_get_crtc_state(state, other_crtc);
6450                 if (IS_ERR(other_crtc_state))
6451                         return PTR_ERR(other_crtc_state);
6452
6453                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6454                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6455                         return -EINVAL;
6456                 }
6457                 return 0;
6458         default:
6459                 BUG();
6460         }
6461 }
6462
6463 #define RETRY 1
6464 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6465                                        struct intel_crtc_state *pipe_config)
6466 {
6467         struct drm_device *dev = intel_crtc->base.dev;
6468         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6469         int lane, link_bw, fdi_dotclock, ret;
6470         bool needs_recompute = false;
6471
6472 retry:
6473         /* FDI is a binary signal running at ~2.7GHz, encoding
6474          * each output octet as 10 bits. The actual frequency
6475          * is stored as a divider into a 100MHz clock, and the
6476          * mode pixel clock is stored in units of 1KHz.
6477          * Hence the bw of each lane in terms of the mode signal
6478          * is:
6479          */
6480         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6481
6482         fdi_dotclock = adjusted_mode->crtc_clock;
6483
6484         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6485                                            pipe_config->pipe_bpp);
6486
6487         pipe_config->fdi_lanes = lane;
6488
6489         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6490                                link_bw, &pipe_config->fdi_m_n);
6491
6492         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6493         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6494                 pipe_config->pipe_bpp -= 2*3;
6495                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6496                               pipe_config->pipe_bpp);
6497                 needs_recompute = true;
6498                 pipe_config->bw_constrained = true;
6499
6500                 goto retry;
6501         }
6502
6503         if (needs_recompute)
6504                 return RETRY;
6505
6506         return ret;
6507 }
6508
6509 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6510                                      struct intel_crtc_state *pipe_config)
6511 {
6512         if (pipe_config->pipe_bpp > 24)
6513                 return false;
6514
6515         /* HSW can handle pixel rate up to cdclk? */
6516         if (IS_HASWELL(dev_priv))
6517                 return true;
6518
6519         /*
6520          * We compare against max which means we must take
6521          * the increased cdclk requirement into account when
6522          * calculating the new cdclk.
6523          *
6524          * Should measure whether using a lower cdclk w/o IPS
6525          */
6526         return ilk_pipe_pixel_rate(pipe_config) <=
6527                 dev_priv->max_cdclk_freq * 95 / 100;
6528 }
6529
6530 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6531                                    struct intel_crtc_state *pipe_config)
6532 {
6533         struct drm_device *dev = crtc->base.dev;
6534         struct drm_i915_private *dev_priv = dev->dev_private;
6535
6536         pipe_config->ips_enabled = i915.enable_ips &&
6537                 hsw_crtc_supports_ips(crtc) &&
6538                 pipe_config_supports_ips(dev_priv, pipe_config);
6539 }
6540
6541 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6542 {
6543         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6544
6545         /* GDG double wide on either pipe, otherwise pipe A only */
6546         return INTEL_INFO(dev_priv)->gen < 4 &&
6547                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6548 }
6549
6550 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6551                                      struct intel_crtc_state *pipe_config)
6552 {
6553         struct drm_device *dev = crtc->base.dev;
6554         struct drm_i915_private *dev_priv = dev->dev_private;
6555         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6556
6557         /* FIXME should check pixel clock limits on all platforms */
6558         if (INTEL_INFO(dev)->gen < 4) {
6559                 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6560
6561                 /*
6562                  * Enable double wide mode when the dot clock
6563                  * is > 90% of the (display) core speed.
6564                  */
6565                 if (intel_crtc_supports_double_wide(crtc) &&
6566                     adjusted_mode->crtc_clock > clock_limit) {
6567                         clock_limit *= 2;
6568                         pipe_config->double_wide = true;
6569                 }
6570
6571                 if (adjusted_mode->crtc_clock > clock_limit) {
6572                         DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6573                                       adjusted_mode->crtc_clock, clock_limit,
6574                                       yesno(pipe_config->double_wide));
6575                         return -EINVAL;
6576                 }
6577         }
6578
6579         /*
6580          * Pipe horizontal size must be even in:
6581          * - DVO ganged mode
6582          * - LVDS dual channel mode
6583          * - Double wide pipe
6584          */
6585         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6586              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6587                 pipe_config->pipe_src_w &= ~1;
6588
6589         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6590          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6591          */
6592         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6593                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6594                 return -EINVAL;
6595
6596         if (HAS_IPS(dev))
6597                 hsw_compute_ips_config(crtc, pipe_config);
6598
6599         if (pipe_config->has_pch_encoder)
6600                 return ironlake_fdi_compute_config(crtc, pipe_config);
6601
6602         return 0;
6603 }
6604
6605 static int skylake_get_display_clock_speed(struct drm_device *dev)
6606 {
6607         struct drm_i915_private *dev_priv = to_i915(dev);
6608         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6609         uint32_t cdctl = I915_READ(CDCLK_CTL);
6610         uint32_t linkrate;
6611
6612         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6613                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6614
6615         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6616                 return 540000;
6617
6618         linkrate = (I915_READ(DPLL_CTRL1) &
6619                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6620
6621         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6622             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6623                 /* vco 8640 */
6624                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6625                 case CDCLK_FREQ_450_432:
6626                         return 432000;
6627                 case CDCLK_FREQ_337_308:
6628                         return 308570;
6629                 case CDCLK_FREQ_675_617:
6630                         return 617140;
6631                 default:
6632                         WARN(1, "Unknown cd freq selection\n");
6633                 }
6634         } else {
6635                 /* vco 8100 */
6636                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6637                 case CDCLK_FREQ_450_432:
6638                         return 450000;
6639                 case CDCLK_FREQ_337_308:
6640                         return 337500;
6641                 case CDCLK_FREQ_675_617:
6642                         return 675000;
6643                 default:
6644                         WARN(1, "Unknown cd freq selection\n");
6645                 }
6646         }
6647
6648         /* error case, do as if DPLL0 isn't enabled */
6649         return 24000;
6650 }
6651
6652 static int broxton_get_display_clock_speed(struct drm_device *dev)
6653 {
6654         struct drm_i915_private *dev_priv = to_i915(dev);
6655         uint32_t cdctl = I915_READ(CDCLK_CTL);
6656         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6657         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6658         int cdclk;
6659
6660         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6661                 return 19200;
6662
6663         cdclk = 19200 * pll_ratio / 2;
6664
6665         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6666         case BXT_CDCLK_CD2X_DIV_SEL_1:
6667                 return cdclk;  /* 576MHz or 624MHz */
6668         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6669                 return cdclk * 2 / 3; /* 384MHz */
6670         case BXT_CDCLK_CD2X_DIV_SEL_2:
6671                 return cdclk / 2; /* 288MHz */
6672         case BXT_CDCLK_CD2X_DIV_SEL_4:
6673                 return cdclk / 4; /* 144MHz */
6674         }
6675
6676         /* error case, do as if DE PLL isn't enabled */
6677         return 19200;
6678 }
6679
6680 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6681 {
6682         struct drm_i915_private *dev_priv = dev->dev_private;
6683         uint32_t lcpll = I915_READ(LCPLL_CTL);
6684         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6685
6686         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6687                 return 800000;
6688         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6689                 return 450000;
6690         else if (freq == LCPLL_CLK_FREQ_450)
6691                 return 450000;
6692         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6693                 return 540000;
6694         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6695                 return 337500;
6696         else
6697                 return 675000;
6698 }
6699
6700 static int haswell_get_display_clock_speed(struct drm_device *dev)
6701 {
6702         struct drm_i915_private *dev_priv = dev->dev_private;
6703         uint32_t lcpll = I915_READ(LCPLL_CTL);
6704         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6705
6706         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6707                 return 800000;
6708         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6709                 return 450000;
6710         else if (freq == LCPLL_CLK_FREQ_450)
6711                 return 450000;
6712         else if (IS_HSW_ULT(dev))
6713                 return 337500;
6714         else
6715                 return 540000;
6716 }
6717
6718 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6719 {
6720         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6721                                       CCK_DISPLAY_CLOCK_CONTROL);
6722 }
6723
6724 static int ilk_get_display_clock_speed(struct drm_device *dev)
6725 {
6726         return 450000;
6727 }
6728
6729 static int i945_get_display_clock_speed(struct drm_device *dev)
6730 {
6731         return 400000;
6732 }
6733
6734 static int i915_get_display_clock_speed(struct drm_device *dev)
6735 {
6736         return 333333;
6737 }
6738
6739 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6740 {
6741         return 200000;
6742 }
6743
6744 static int pnv_get_display_clock_speed(struct drm_device *dev)
6745 {
6746         u16 gcfgc = 0;
6747
6748         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6749
6750         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6751         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6752                 return 266667;
6753         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6754                 return 333333;
6755         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6756                 return 444444;
6757         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6758                 return 200000;
6759         default:
6760                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6761         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6762                 return 133333;
6763         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6764                 return 166667;
6765         }
6766 }
6767
6768 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6769 {
6770         u16 gcfgc = 0;
6771
6772         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6773
6774         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6775                 return 133333;
6776         else {
6777                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6778                 case GC_DISPLAY_CLOCK_333_MHZ:
6779                         return 333333;
6780                 default:
6781                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6782                         return 190000;
6783                 }
6784         }
6785 }
6786
6787 static int i865_get_display_clock_speed(struct drm_device *dev)
6788 {
6789         return 266667;
6790 }
6791
6792 static int i85x_get_display_clock_speed(struct drm_device *dev)
6793 {
6794         u16 hpllcc = 0;
6795
6796         /*
6797          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6798          * encoding is different :(
6799          * FIXME is this the right way to detect 852GM/852GMV?
6800          */
6801         if (dev->pdev->revision == 0x1)
6802                 return 133333;
6803
6804         pci_bus_read_config_word(dev->pdev->bus,
6805                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6806
6807         /* Assume that the hardware is in the high speed state.  This
6808          * should be the default.
6809          */
6810         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6811         case GC_CLOCK_133_200:
6812         case GC_CLOCK_133_200_2:
6813         case GC_CLOCK_100_200:
6814                 return 200000;
6815         case GC_CLOCK_166_250:
6816                 return 250000;
6817         case GC_CLOCK_100_133:
6818                 return 133333;
6819         case GC_CLOCK_133_266:
6820         case GC_CLOCK_133_266_2:
6821         case GC_CLOCK_166_266:
6822                 return 266667;
6823         }
6824
6825         /* Shouldn't happen */
6826         return 0;
6827 }
6828
6829 static int i830_get_display_clock_speed(struct drm_device *dev)
6830 {
6831         return 133333;
6832 }
6833
6834 static unsigned int intel_hpll_vco(struct drm_device *dev)
6835 {
6836         struct drm_i915_private *dev_priv = dev->dev_private;
6837         static const unsigned int blb_vco[8] = {
6838                 [0] = 3200000,
6839                 [1] = 4000000,
6840                 [2] = 5333333,
6841                 [3] = 4800000,
6842                 [4] = 6400000,
6843         };
6844         static const unsigned int pnv_vco[8] = {
6845                 [0] = 3200000,
6846                 [1] = 4000000,
6847                 [2] = 5333333,
6848                 [3] = 4800000,
6849                 [4] = 2666667,
6850         };
6851         static const unsigned int cl_vco[8] = {
6852                 [0] = 3200000,
6853                 [1] = 4000000,
6854                 [2] = 5333333,
6855                 [3] = 6400000,
6856                 [4] = 3333333,
6857                 [5] = 3566667,
6858                 [6] = 4266667,
6859         };
6860         static const unsigned int elk_vco[8] = {
6861                 [0] = 3200000,
6862                 [1] = 4000000,
6863                 [2] = 5333333,
6864                 [3] = 4800000,
6865         };
6866         static const unsigned int ctg_vco[8] = {
6867                 [0] = 3200000,
6868                 [1] = 4000000,
6869                 [2] = 5333333,
6870                 [3] = 6400000,
6871                 [4] = 2666667,
6872                 [5] = 4266667,
6873         };
6874         const unsigned int *vco_table;
6875         unsigned int vco;
6876         uint8_t tmp = 0;
6877
6878         /* FIXME other chipsets? */
6879         if (IS_GM45(dev))
6880                 vco_table = ctg_vco;
6881         else if (IS_G4X(dev))
6882                 vco_table = elk_vco;
6883         else if (IS_CRESTLINE(dev))
6884                 vco_table = cl_vco;
6885         else if (IS_PINEVIEW(dev))
6886                 vco_table = pnv_vco;
6887         else if (IS_G33(dev))
6888                 vco_table = blb_vco;
6889         else
6890                 return 0;
6891
6892         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6893
6894         vco = vco_table[tmp & 0x7];
6895         if (vco == 0)
6896                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6897         else
6898                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6899
6900         return vco;
6901 }
6902
6903 static int gm45_get_display_clock_speed(struct drm_device *dev)
6904 {
6905         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6906         uint16_t tmp = 0;
6907
6908         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6909
6910         cdclk_sel = (tmp >> 12) & 0x1;
6911
6912         switch (vco) {
6913         case 2666667:
6914         case 4000000:
6915         case 5333333:
6916                 return cdclk_sel ? 333333 : 222222;
6917         case 3200000:
6918                 return cdclk_sel ? 320000 : 228571;
6919         default:
6920                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6921                 return 222222;
6922         }
6923 }
6924
6925 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6926 {
6927         static const uint8_t div_3200[] = { 16, 10,  8 };
6928         static const uint8_t div_4000[] = { 20, 12, 10 };
6929         static const uint8_t div_5333[] = { 24, 16, 14 };
6930         const uint8_t *div_table;
6931         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6932         uint16_t tmp = 0;
6933
6934         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6935
6936         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6937
6938         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6939                 goto fail;
6940
6941         switch (vco) {
6942         case 3200000:
6943                 div_table = div_3200;
6944                 break;
6945         case 4000000:
6946                 div_table = div_4000;
6947                 break;
6948         case 5333333:
6949                 div_table = div_5333;
6950                 break;
6951         default:
6952                 goto fail;
6953         }
6954
6955         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6956
6957 fail:
6958         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6959         return 200000;
6960 }
6961
6962 static int g33_get_display_clock_speed(struct drm_device *dev)
6963 {
6964         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
6965         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
6966         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6967         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6968         const uint8_t *div_table;
6969         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6970         uint16_t tmp = 0;
6971
6972         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6973
6974         cdclk_sel = (tmp >> 4) & 0x7;
6975
6976         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6977                 goto fail;
6978
6979         switch (vco) {
6980         case 3200000:
6981                 div_table = div_3200;
6982                 break;
6983         case 4000000:
6984                 div_table = div_4000;
6985                 break;
6986         case 4800000:
6987                 div_table = div_4800;
6988                 break;
6989         case 5333333:
6990                 div_table = div_5333;
6991                 break;
6992         default:
6993                 goto fail;
6994         }
6995
6996         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6997
6998 fail:
6999         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7000         return 190476;
7001 }
7002
7003 static void
7004 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7005 {
7006         while (*num > DATA_LINK_M_N_MASK ||
7007                *den > DATA_LINK_M_N_MASK) {
7008                 *num >>= 1;
7009                 *den >>= 1;
7010         }
7011 }
7012
7013 static void compute_m_n(unsigned int m, unsigned int n,
7014                         uint32_t *ret_m, uint32_t *ret_n)
7015 {
7016         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7017         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7018         intel_reduce_m_n_ratio(ret_m, ret_n);
7019 }
7020
7021 void
7022 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7023                        int pixel_clock, int link_clock,
7024                        struct intel_link_m_n *m_n)
7025 {
7026         m_n->tu = 64;
7027
7028         compute_m_n(bits_per_pixel * pixel_clock,
7029                     link_clock * nlanes * 8,
7030                     &m_n->gmch_m, &m_n->gmch_n);
7031
7032         compute_m_n(pixel_clock, link_clock,
7033                     &m_n->link_m, &m_n->link_n);
7034 }
7035
7036 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7037 {
7038         if (i915.panel_use_ssc >= 0)
7039                 return i915.panel_use_ssc != 0;
7040         return dev_priv->vbt.lvds_use_ssc
7041                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7042 }
7043
7044 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7045 {
7046         return (1 << dpll->n) << 16 | dpll->m2;
7047 }
7048
7049 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7050 {
7051         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7052 }
7053
7054 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7055                                      struct intel_crtc_state *crtc_state,
7056                                      struct dpll *reduced_clock)
7057 {
7058         struct drm_device *dev = crtc->base.dev;
7059         u32 fp, fp2 = 0;
7060
7061         if (IS_PINEVIEW(dev)) {
7062                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7063                 if (reduced_clock)
7064                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7065         } else {
7066                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7067                 if (reduced_clock)
7068                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7069         }
7070
7071         crtc_state->dpll_hw_state.fp0 = fp;
7072
7073         crtc->lowfreq_avail = false;
7074         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7075             reduced_clock) {
7076                 crtc_state->dpll_hw_state.fp1 = fp2;
7077                 crtc->lowfreq_avail = true;
7078         } else {
7079                 crtc_state->dpll_hw_state.fp1 = fp;
7080         }
7081 }
7082
7083 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7084                 pipe)
7085 {
7086         u32 reg_val;
7087
7088         /*
7089          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7090          * and set it to a reasonable value instead.
7091          */
7092         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7093         reg_val &= 0xffffff00;
7094         reg_val |= 0x00000030;
7095         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7096
7097         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7098         reg_val &= 0x8cffffff;
7099         reg_val = 0x8c000000;
7100         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7101
7102         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7103         reg_val &= 0xffffff00;
7104         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7105
7106         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7107         reg_val &= 0x00ffffff;
7108         reg_val |= 0xb0000000;
7109         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7110 }
7111
7112 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7113                                          struct intel_link_m_n *m_n)
7114 {
7115         struct drm_device *dev = crtc->base.dev;
7116         struct drm_i915_private *dev_priv = dev->dev_private;
7117         int pipe = crtc->pipe;
7118
7119         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7120         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7121         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7122         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7123 }
7124
7125 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7126                                          struct intel_link_m_n *m_n,
7127                                          struct intel_link_m_n *m2_n2)
7128 {
7129         struct drm_device *dev = crtc->base.dev;
7130         struct drm_i915_private *dev_priv = dev->dev_private;
7131         int pipe = crtc->pipe;
7132         enum transcoder transcoder = crtc->config->cpu_transcoder;
7133
7134         if (INTEL_INFO(dev)->gen >= 5) {
7135                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7136                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7137                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7138                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7139                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7140                  * for gen < 8) and if DRRS is supported (to make sure the
7141                  * registers are not unnecessarily accessed).
7142                  */
7143                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7144                         crtc->config->has_drrs) {
7145                         I915_WRITE(PIPE_DATA_M2(transcoder),
7146                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7147                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7148                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7149                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7150                 }
7151         } else {
7152                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7153                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7154                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7155                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7156         }
7157 }
7158
7159 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7160 {
7161         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7162
7163         if (m_n == M1_N1) {
7164                 dp_m_n = &crtc->config->dp_m_n;
7165                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7166         } else if (m_n == M2_N2) {
7167
7168                 /*
7169                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7170                  * needs to be programmed into M1_N1.
7171                  */
7172                 dp_m_n = &crtc->config->dp_m2_n2;
7173         } else {
7174                 DRM_ERROR("Unsupported divider value\n");
7175                 return;
7176         }
7177
7178         if (crtc->config->has_pch_encoder)
7179                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7180         else
7181                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7182 }
7183
7184 static void vlv_compute_dpll(struct intel_crtc *crtc,
7185                              struct intel_crtc_state *pipe_config)
7186 {
7187         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7188                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7189         if (crtc->pipe != PIPE_A)
7190                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7191
7192         /* DPLL not used with DSI, but still need the rest set up */
7193         if (!pipe_config->has_dsi_encoder)
7194                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7195                         DPLL_EXT_BUFFER_ENABLE_VLV;
7196
7197         pipe_config->dpll_hw_state.dpll_md =
7198                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7199 }
7200
7201 static void chv_compute_dpll(struct intel_crtc *crtc,
7202                              struct intel_crtc_state *pipe_config)
7203 {
7204         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7205                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7206         if (crtc->pipe != PIPE_A)
7207                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7208
7209         /* DPLL not used with DSI, but still need the rest set up */
7210         if (!pipe_config->has_dsi_encoder)
7211                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7212
7213         pipe_config->dpll_hw_state.dpll_md =
7214                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7215 }
7216
7217 static void vlv_prepare_pll(struct intel_crtc *crtc,
7218                             const struct intel_crtc_state *pipe_config)
7219 {
7220         struct drm_device *dev = crtc->base.dev;
7221         struct drm_i915_private *dev_priv = dev->dev_private;
7222         enum pipe pipe = crtc->pipe;
7223         u32 mdiv;
7224         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7225         u32 coreclk, reg_val;
7226
7227         /* Enable Refclk */
7228         I915_WRITE(DPLL(pipe),
7229                    pipe_config->dpll_hw_state.dpll &
7230                    ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7231
7232         /* No need to actually set up the DPLL with DSI */
7233         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7234                 return;
7235
7236         mutex_lock(&dev_priv->sb_lock);
7237
7238         bestn = pipe_config->dpll.n;
7239         bestm1 = pipe_config->dpll.m1;
7240         bestm2 = pipe_config->dpll.m2;
7241         bestp1 = pipe_config->dpll.p1;
7242         bestp2 = pipe_config->dpll.p2;
7243
7244         /* See eDP HDMI DPIO driver vbios notes doc */
7245
7246         /* PLL B needs special handling */
7247         if (pipe == PIPE_B)
7248                 vlv_pllb_recal_opamp(dev_priv, pipe);
7249
7250         /* Set up Tx target for periodic Rcomp update */
7251         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7252
7253         /* Disable target IRef on PLL */
7254         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7255         reg_val &= 0x00ffffff;
7256         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7257
7258         /* Disable fast lock */
7259         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7260
7261         /* Set idtafcrecal before PLL is enabled */
7262         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7263         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7264         mdiv |= ((bestn << DPIO_N_SHIFT));
7265         mdiv |= (1 << DPIO_K_SHIFT);
7266
7267         /*
7268          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7269          * but we don't support that).
7270          * Note: don't use the DAC post divider as it seems unstable.
7271          */
7272         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7273         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7274
7275         mdiv |= DPIO_ENABLE_CALIBRATION;
7276         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7277
7278         /* Set HBR and RBR LPF coefficients */
7279         if (pipe_config->port_clock == 162000 ||
7280             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7281             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7282                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7283                                  0x009f0003);
7284         else
7285                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7286                                  0x00d0000f);
7287
7288         if (pipe_config->has_dp_encoder) {
7289                 /* Use SSC source */
7290                 if (pipe == PIPE_A)
7291                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7292                                          0x0df40000);
7293                 else
7294                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7295                                          0x0df70000);
7296         } else { /* HDMI or VGA */
7297                 /* Use bend source */
7298                 if (pipe == PIPE_A)
7299                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7300                                          0x0df70000);
7301                 else
7302                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7303                                          0x0df40000);
7304         }
7305
7306         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7307         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7308         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7309             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7310                 coreclk |= 0x01000000;
7311         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7312
7313         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7314         mutex_unlock(&dev_priv->sb_lock);
7315 }
7316
7317 static void chv_prepare_pll(struct intel_crtc *crtc,
7318                             const struct intel_crtc_state *pipe_config)
7319 {
7320         struct drm_device *dev = crtc->base.dev;
7321         struct drm_i915_private *dev_priv = dev->dev_private;
7322         enum pipe pipe = crtc->pipe;
7323         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7324         u32 loopfilter, tribuf_calcntr;
7325         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7326         u32 dpio_val;
7327         int vco;
7328
7329         /* Enable Refclk and SSC */
7330         I915_WRITE(DPLL(pipe),
7331                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7332
7333         /* No need to actually set up the DPLL with DSI */
7334         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7335                 return;
7336
7337         bestn = pipe_config->dpll.n;
7338         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7339         bestm1 = pipe_config->dpll.m1;
7340         bestm2 = pipe_config->dpll.m2 >> 22;
7341         bestp1 = pipe_config->dpll.p1;
7342         bestp2 = pipe_config->dpll.p2;
7343         vco = pipe_config->dpll.vco;
7344         dpio_val = 0;
7345         loopfilter = 0;
7346
7347         mutex_lock(&dev_priv->sb_lock);
7348
7349         /* p1 and p2 divider */
7350         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7351                         5 << DPIO_CHV_S1_DIV_SHIFT |
7352                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7353                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7354                         1 << DPIO_CHV_K_DIV_SHIFT);
7355
7356         /* Feedback post-divider - m2 */
7357         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7358
7359         /* Feedback refclk divider - n and m1 */
7360         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7361                         DPIO_CHV_M1_DIV_BY_2 |
7362                         1 << DPIO_CHV_N_DIV_SHIFT);
7363
7364         /* M2 fraction division */
7365         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7366
7367         /* M2 fraction division enable */
7368         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7369         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7370         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7371         if (bestm2_frac)
7372                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7373         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7374
7375         /* Program digital lock detect threshold */
7376         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7377         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7378                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7379         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7380         if (!bestm2_frac)
7381                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7382         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7383
7384         /* Loop filter */
7385         if (vco == 5400000) {
7386                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7387                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7388                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7389                 tribuf_calcntr = 0x9;
7390         } else if (vco <= 6200000) {
7391                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7392                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7393                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7394                 tribuf_calcntr = 0x9;
7395         } else if (vco <= 6480000) {
7396                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7397                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7398                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7399                 tribuf_calcntr = 0x8;
7400         } else {
7401                 /* Not supported. Apply the same limits as in the max case */
7402                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7403                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7404                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7405                 tribuf_calcntr = 0;
7406         }
7407         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7408
7409         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7410         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7411         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7412         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7413
7414         /* AFC Recal */
7415         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7416                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7417                         DPIO_AFC_RECAL);
7418
7419         mutex_unlock(&dev_priv->sb_lock);
7420 }
7421
7422 /**
7423  * vlv_force_pll_on - forcibly enable just the PLL
7424  * @dev_priv: i915 private structure
7425  * @pipe: pipe PLL to enable
7426  * @dpll: PLL configuration
7427  *
7428  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7429  * in cases where we need the PLL enabled even when @pipe is not going to
7430  * be enabled.
7431  */
7432 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7433                      const struct dpll *dpll)
7434 {
7435         struct intel_crtc *crtc =
7436                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7437         struct intel_crtc_state *pipe_config;
7438
7439         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7440         if (!pipe_config)
7441                 return -ENOMEM;
7442
7443         pipe_config->base.crtc = &crtc->base;
7444         pipe_config->pixel_multiplier = 1;
7445         pipe_config->dpll = *dpll;
7446
7447         if (IS_CHERRYVIEW(dev)) {
7448                 chv_compute_dpll(crtc, pipe_config);
7449                 chv_prepare_pll(crtc, pipe_config);
7450                 chv_enable_pll(crtc, pipe_config);
7451         } else {
7452                 vlv_compute_dpll(crtc, pipe_config);
7453                 vlv_prepare_pll(crtc, pipe_config);
7454                 vlv_enable_pll(crtc, pipe_config);
7455         }
7456
7457         kfree(pipe_config);
7458
7459         return 0;
7460 }
7461
7462 /**
7463  * vlv_force_pll_off - forcibly disable just the PLL
7464  * @dev_priv: i915 private structure
7465  * @pipe: pipe PLL to disable
7466  *
7467  * Disable the PLL for @pipe. To be used in cases where we need
7468  * the PLL enabled even when @pipe is not going to be enabled.
7469  */
7470 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7471 {
7472         if (IS_CHERRYVIEW(dev))
7473                 chv_disable_pll(to_i915(dev), pipe);
7474         else
7475                 vlv_disable_pll(to_i915(dev), pipe);
7476 }
7477
7478 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7479                               struct intel_crtc_state *crtc_state,
7480                               struct dpll *reduced_clock)
7481 {
7482         struct drm_device *dev = crtc->base.dev;
7483         struct drm_i915_private *dev_priv = dev->dev_private;
7484         u32 dpll;
7485         bool is_sdvo;
7486         struct dpll *clock = &crtc_state->dpll;
7487
7488         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7489
7490         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7491                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7492
7493         dpll = DPLL_VGA_MODE_DIS;
7494
7495         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7496                 dpll |= DPLLB_MODE_LVDS;
7497         else
7498                 dpll |= DPLLB_MODE_DAC_SERIAL;
7499
7500         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7501                 dpll |= (crtc_state->pixel_multiplier - 1)
7502                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7503         }
7504
7505         if (is_sdvo)
7506                 dpll |= DPLL_SDVO_HIGH_SPEED;
7507
7508         if (crtc_state->has_dp_encoder)
7509                 dpll |= DPLL_SDVO_HIGH_SPEED;
7510
7511         /* compute bitmask from p1 value */
7512         if (IS_PINEVIEW(dev))
7513                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7514         else {
7515                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7516                 if (IS_G4X(dev) && reduced_clock)
7517                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7518         }
7519         switch (clock->p2) {
7520         case 5:
7521                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7522                 break;
7523         case 7:
7524                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7525                 break;
7526         case 10:
7527                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7528                 break;
7529         case 14:
7530                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7531                 break;
7532         }
7533         if (INTEL_INFO(dev)->gen >= 4)
7534                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7535
7536         if (crtc_state->sdvo_tv_clock)
7537                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7538         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7539                  intel_panel_use_ssc(dev_priv))
7540                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7541         else
7542                 dpll |= PLL_REF_INPUT_DREFCLK;
7543
7544         dpll |= DPLL_VCO_ENABLE;
7545         crtc_state->dpll_hw_state.dpll = dpll;
7546
7547         if (INTEL_INFO(dev)->gen >= 4) {
7548                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7549                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7550                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7551         }
7552 }
7553
7554 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7555                               struct intel_crtc_state *crtc_state,
7556                               struct dpll *reduced_clock)
7557 {
7558         struct drm_device *dev = crtc->base.dev;
7559         struct drm_i915_private *dev_priv = dev->dev_private;
7560         u32 dpll;
7561         struct dpll *clock = &crtc_state->dpll;
7562
7563         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7564
7565         dpll = DPLL_VGA_MODE_DIS;
7566
7567         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7568                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7569         } else {
7570                 if (clock->p1 == 2)
7571                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7572                 else
7573                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7574                 if (clock->p2 == 4)
7575                         dpll |= PLL_P2_DIVIDE_BY_4;
7576         }
7577
7578         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7579                 dpll |= DPLL_DVO_2X_MODE;
7580
7581         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7582             intel_panel_use_ssc(dev_priv))
7583                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7584         else
7585                 dpll |= PLL_REF_INPUT_DREFCLK;
7586
7587         dpll |= DPLL_VCO_ENABLE;
7588         crtc_state->dpll_hw_state.dpll = dpll;
7589 }
7590
7591 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7592 {
7593         struct drm_device *dev = intel_crtc->base.dev;
7594         struct drm_i915_private *dev_priv = dev->dev_private;
7595         enum pipe pipe = intel_crtc->pipe;
7596         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7597         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7598         uint32_t crtc_vtotal, crtc_vblank_end;
7599         int vsyncshift = 0;
7600
7601         /* We need to be careful not to changed the adjusted mode, for otherwise
7602          * the hw state checker will get angry at the mismatch. */
7603         crtc_vtotal = adjusted_mode->crtc_vtotal;
7604         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7605
7606         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7607                 /* the chip adds 2 halflines automatically */
7608                 crtc_vtotal -= 1;
7609                 crtc_vblank_end -= 1;
7610
7611                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7612                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7613                 else
7614                         vsyncshift = adjusted_mode->crtc_hsync_start -
7615                                 adjusted_mode->crtc_htotal / 2;
7616                 if (vsyncshift < 0)
7617                         vsyncshift += adjusted_mode->crtc_htotal;
7618         }
7619
7620         if (INTEL_INFO(dev)->gen > 3)
7621                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7622
7623         I915_WRITE(HTOTAL(cpu_transcoder),
7624                    (adjusted_mode->crtc_hdisplay - 1) |
7625                    ((adjusted_mode->crtc_htotal - 1) << 16));
7626         I915_WRITE(HBLANK(cpu_transcoder),
7627                    (adjusted_mode->crtc_hblank_start - 1) |
7628                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7629         I915_WRITE(HSYNC(cpu_transcoder),
7630                    (adjusted_mode->crtc_hsync_start - 1) |
7631                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7632
7633         I915_WRITE(VTOTAL(cpu_transcoder),
7634                    (adjusted_mode->crtc_vdisplay - 1) |
7635                    ((crtc_vtotal - 1) << 16));
7636         I915_WRITE(VBLANK(cpu_transcoder),
7637                    (adjusted_mode->crtc_vblank_start - 1) |
7638                    ((crtc_vblank_end - 1) << 16));
7639         I915_WRITE(VSYNC(cpu_transcoder),
7640                    (adjusted_mode->crtc_vsync_start - 1) |
7641                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7642
7643         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7644          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7645          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7646          * bits. */
7647         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7648             (pipe == PIPE_B || pipe == PIPE_C))
7649                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7650
7651 }
7652
7653 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7654 {
7655         struct drm_device *dev = intel_crtc->base.dev;
7656         struct drm_i915_private *dev_priv = dev->dev_private;
7657         enum pipe pipe = intel_crtc->pipe;
7658
7659         /* pipesrc controls the size that is scaled from, which should
7660          * always be the user's requested size.
7661          */
7662         I915_WRITE(PIPESRC(pipe),
7663                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7664                    (intel_crtc->config->pipe_src_h - 1));
7665 }
7666
7667 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7668                                    struct intel_crtc_state *pipe_config)
7669 {
7670         struct drm_device *dev = crtc->base.dev;
7671         struct drm_i915_private *dev_priv = dev->dev_private;
7672         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7673         uint32_t tmp;
7674
7675         tmp = I915_READ(HTOTAL(cpu_transcoder));
7676         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7677         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7678         tmp = I915_READ(HBLANK(cpu_transcoder));
7679         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7680         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7681         tmp = I915_READ(HSYNC(cpu_transcoder));
7682         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7683         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7684
7685         tmp = I915_READ(VTOTAL(cpu_transcoder));
7686         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7687         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7688         tmp = I915_READ(VBLANK(cpu_transcoder));
7689         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7690         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7691         tmp = I915_READ(VSYNC(cpu_transcoder));
7692         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7693         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7694
7695         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7696                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7697                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7698                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7699         }
7700 }
7701
7702 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7703                                     struct intel_crtc_state *pipe_config)
7704 {
7705         struct drm_device *dev = crtc->base.dev;
7706         struct drm_i915_private *dev_priv = dev->dev_private;
7707         u32 tmp;
7708
7709         tmp = I915_READ(PIPESRC(crtc->pipe));
7710         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7711         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7712
7713         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7714         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7715 }
7716
7717 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7718                                  struct intel_crtc_state *pipe_config)
7719 {
7720         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7721         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7722         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7723         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7724
7725         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7726         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7727         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7728         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7729
7730         mode->flags = pipe_config->base.adjusted_mode.flags;
7731         mode->type = DRM_MODE_TYPE_DRIVER;
7732
7733         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7734         mode->flags |= pipe_config->base.adjusted_mode.flags;
7735
7736         mode->hsync = drm_mode_hsync(mode);
7737         mode->vrefresh = drm_mode_vrefresh(mode);
7738         drm_mode_set_name(mode);
7739 }
7740
7741 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7742 {
7743         struct drm_device *dev = intel_crtc->base.dev;
7744         struct drm_i915_private *dev_priv = dev->dev_private;
7745         uint32_t pipeconf;
7746
7747         pipeconf = 0;
7748
7749         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7750             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7751                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7752
7753         if (intel_crtc->config->double_wide)
7754                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7755
7756         /* only g4x and later have fancy bpc/dither controls */
7757         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7758                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7759                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7760                         pipeconf |= PIPECONF_DITHER_EN |
7761                                     PIPECONF_DITHER_TYPE_SP;
7762
7763                 switch (intel_crtc->config->pipe_bpp) {
7764                 case 18:
7765                         pipeconf |= PIPECONF_6BPC;
7766                         break;
7767                 case 24:
7768                         pipeconf |= PIPECONF_8BPC;
7769                         break;
7770                 case 30:
7771                         pipeconf |= PIPECONF_10BPC;
7772                         break;
7773                 default:
7774                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7775                         BUG();
7776                 }
7777         }
7778
7779         if (HAS_PIPE_CXSR(dev)) {
7780                 if (intel_crtc->lowfreq_avail) {
7781                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7782                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7783                 } else {
7784                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7785                 }
7786         }
7787
7788         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7789                 if (INTEL_INFO(dev)->gen < 4 ||
7790                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7791                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7792                 else
7793                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7794         } else
7795                 pipeconf |= PIPECONF_PROGRESSIVE;
7796
7797         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7798              intel_crtc->config->limited_color_range)
7799                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7800
7801         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7802         POSTING_READ(PIPECONF(intel_crtc->pipe));
7803 }
7804
7805 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7806                                    struct intel_crtc_state *crtc_state)
7807 {
7808         struct drm_device *dev = crtc->base.dev;
7809         struct drm_i915_private *dev_priv = dev->dev_private;
7810         const struct intel_limit *limit;
7811         int refclk = 48000;
7812
7813         memset(&crtc_state->dpll_hw_state, 0,
7814                sizeof(crtc_state->dpll_hw_state));
7815
7816         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7817                 if (intel_panel_use_ssc(dev_priv)) {
7818                         refclk = dev_priv->vbt.lvds_ssc_freq;
7819                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7820                 }
7821
7822                 limit = &intel_limits_i8xx_lvds;
7823         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO)) {
7824                 limit = &intel_limits_i8xx_dvo;
7825         } else {
7826                 limit = &intel_limits_i8xx_dac;
7827         }
7828
7829         if (!crtc_state->clock_set &&
7830             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7831                                  refclk, NULL, &crtc_state->dpll)) {
7832                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7833                 return -EINVAL;
7834         }
7835
7836         i8xx_compute_dpll(crtc, crtc_state, NULL);
7837
7838         return 0;
7839 }
7840
7841 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7842                                   struct intel_crtc_state *crtc_state)
7843 {
7844         struct drm_device *dev = crtc->base.dev;
7845         struct drm_i915_private *dev_priv = dev->dev_private;
7846         const struct intel_limit *limit;
7847         int refclk = 96000;
7848
7849         memset(&crtc_state->dpll_hw_state, 0,
7850                sizeof(crtc_state->dpll_hw_state));
7851
7852         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7853                 if (intel_panel_use_ssc(dev_priv)) {
7854                         refclk = dev_priv->vbt.lvds_ssc_freq;
7855                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7856                 }
7857
7858                 if (intel_is_dual_link_lvds(dev))
7859                         limit = &intel_limits_g4x_dual_channel_lvds;
7860                 else
7861                         limit = &intel_limits_g4x_single_channel_lvds;
7862         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7863                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7864                 limit = &intel_limits_g4x_hdmi;
7865         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7866                 limit = &intel_limits_g4x_sdvo;
7867         } else {
7868                 /* The option is for other outputs */
7869                 limit = &intel_limits_i9xx_sdvo;
7870         }
7871
7872         if (!crtc_state->clock_set &&
7873             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7874                                 refclk, NULL, &crtc_state->dpll)) {
7875                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7876                 return -EINVAL;
7877         }
7878
7879         i9xx_compute_dpll(crtc, crtc_state, NULL);
7880
7881         return 0;
7882 }
7883
7884 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7885                                   struct intel_crtc_state *crtc_state)
7886 {
7887         struct drm_device *dev = crtc->base.dev;
7888         struct drm_i915_private *dev_priv = dev->dev_private;
7889         const struct intel_limit *limit;
7890         int refclk = 96000;
7891
7892         memset(&crtc_state->dpll_hw_state, 0,
7893                sizeof(crtc_state->dpll_hw_state));
7894
7895         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7896                 if (intel_panel_use_ssc(dev_priv)) {
7897                         refclk = dev_priv->vbt.lvds_ssc_freq;
7898                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7899                 }
7900
7901                 limit = &intel_limits_pineview_lvds;
7902         } else {
7903                 limit = &intel_limits_pineview_sdvo;
7904         }
7905
7906         if (!crtc_state->clock_set &&
7907             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7908                                 refclk, NULL, &crtc_state->dpll)) {
7909                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7910                 return -EINVAL;
7911         }
7912
7913         i9xx_compute_dpll(crtc, crtc_state, NULL);
7914
7915         return 0;
7916 }
7917
7918 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7919                                    struct intel_crtc_state *crtc_state)
7920 {
7921         struct drm_device *dev = crtc->base.dev;
7922         struct drm_i915_private *dev_priv = dev->dev_private;
7923         const struct intel_limit *limit;
7924         int refclk = 96000;
7925
7926         memset(&crtc_state->dpll_hw_state, 0,
7927                sizeof(crtc_state->dpll_hw_state));
7928
7929         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7930                 if (intel_panel_use_ssc(dev_priv)) {
7931                         refclk = dev_priv->vbt.lvds_ssc_freq;
7932                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7933                 }
7934
7935                 limit = &intel_limits_i9xx_lvds;
7936         } else {
7937                 limit = &intel_limits_i9xx_sdvo;
7938         }
7939
7940         if (!crtc_state->clock_set &&
7941             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7942                                  refclk, NULL, &crtc_state->dpll)) {
7943                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7944                 return -EINVAL;
7945         }
7946
7947         i9xx_compute_dpll(crtc, crtc_state, NULL);
7948
7949         return 0;
7950 }
7951
7952 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7953                                   struct intel_crtc_state *crtc_state)
7954 {
7955         int refclk = 100000;
7956         const struct intel_limit *limit = &intel_limits_chv;
7957
7958         memset(&crtc_state->dpll_hw_state, 0,
7959                sizeof(crtc_state->dpll_hw_state));
7960
7961         if (!crtc_state->clock_set &&
7962             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7963                                 refclk, NULL, &crtc_state->dpll)) {
7964                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7965                 return -EINVAL;
7966         }
7967
7968         chv_compute_dpll(crtc, crtc_state);
7969
7970         return 0;
7971 }
7972
7973 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7974                                   struct intel_crtc_state *crtc_state)
7975 {
7976         int refclk = 100000;
7977         const struct intel_limit *limit = &intel_limits_vlv;
7978
7979         memset(&crtc_state->dpll_hw_state, 0,
7980                sizeof(crtc_state->dpll_hw_state));
7981
7982         if (!crtc_state->clock_set &&
7983             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7984                                 refclk, NULL, &crtc_state->dpll)) {
7985                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7986                 return -EINVAL;
7987         }
7988
7989         vlv_compute_dpll(crtc, crtc_state);
7990
7991         return 0;
7992 }
7993
7994 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7995                                  struct intel_crtc_state *pipe_config)
7996 {
7997         struct drm_device *dev = crtc->base.dev;
7998         struct drm_i915_private *dev_priv = dev->dev_private;
7999         uint32_t tmp;
8000
8001         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8002                 return;
8003
8004         tmp = I915_READ(PFIT_CONTROL);
8005         if (!(tmp & PFIT_ENABLE))
8006                 return;
8007
8008         /* Check whether the pfit is attached to our pipe. */
8009         if (INTEL_INFO(dev)->gen < 4) {
8010                 if (crtc->pipe != PIPE_B)
8011                         return;
8012         } else {
8013                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8014                         return;
8015         }
8016
8017         pipe_config->gmch_pfit.control = tmp;
8018         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8019 }
8020
8021 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8022                                struct intel_crtc_state *pipe_config)
8023 {
8024         struct drm_device *dev = crtc->base.dev;
8025         struct drm_i915_private *dev_priv = dev->dev_private;
8026         int pipe = pipe_config->cpu_transcoder;
8027         struct dpll clock;
8028         u32 mdiv;
8029         int refclk = 100000;
8030
8031         /* In case of DSI, DPLL will not be used */
8032         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8033                 return;
8034
8035         mutex_lock(&dev_priv->sb_lock);
8036         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8037         mutex_unlock(&dev_priv->sb_lock);
8038
8039         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8040         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8041         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8042         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8043         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8044
8045         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8046 }
8047
8048 static void
8049 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8050                               struct intel_initial_plane_config *plane_config)
8051 {
8052         struct drm_device *dev = crtc->base.dev;
8053         struct drm_i915_private *dev_priv = dev->dev_private;
8054         u32 val, base, offset;
8055         int pipe = crtc->pipe, plane = crtc->plane;
8056         int fourcc, pixel_format;
8057         unsigned int aligned_height;
8058         struct drm_framebuffer *fb;
8059         struct intel_framebuffer *intel_fb;
8060
8061         val = I915_READ(DSPCNTR(plane));
8062         if (!(val & DISPLAY_PLANE_ENABLE))
8063                 return;
8064
8065         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8066         if (!intel_fb) {
8067                 DRM_DEBUG_KMS("failed to alloc fb\n");
8068                 return;
8069         }
8070
8071         fb = &intel_fb->base;
8072
8073         if (INTEL_INFO(dev)->gen >= 4) {
8074                 if (val & DISPPLANE_TILED) {
8075                         plane_config->tiling = I915_TILING_X;
8076                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8077                 }
8078         }
8079
8080         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8081         fourcc = i9xx_format_to_fourcc(pixel_format);
8082         fb->pixel_format = fourcc;
8083         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8084
8085         if (INTEL_INFO(dev)->gen >= 4) {
8086                 if (plane_config->tiling)
8087                         offset = I915_READ(DSPTILEOFF(plane));
8088                 else
8089                         offset = I915_READ(DSPLINOFF(plane));
8090                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8091         } else {
8092                 base = I915_READ(DSPADDR(plane));
8093         }
8094         plane_config->base = base;
8095
8096         val = I915_READ(PIPESRC(pipe));
8097         fb->width = ((val >> 16) & 0xfff) + 1;
8098         fb->height = ((val >> 0) & 0xfff) + 1;
8099
8100         val = I915_READ(DSPSTRIDE(pipe));
8101         fb->pitches[0] = val & 0xffffffc0;
8102
8103         aligned_height = intel_fb_align_height(dev, fb->height,
8104                                                fb->pixel_format,
8105                                                fb->modifier[0]);
8106
8107         plane_config->size = fb->pitches[0] * aligned_height;
8108
8109         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8110                       pipe_name(pipe), plane, fb->width, fb->height,
8111                       fb->bits_per_pixel, base, fb->pitches[0],
8112                       plane_config->size);
8113
8114         plane_config->fb = intel_fb;
8115 }
8116
8117 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8118                                struct intel_crtc_state *pipe_config)
8119 {
8120         struct drm_device *dev = crtc->base.dev;
8121         struct drm_i915_private *dev_priv = dev->dev_private;
8122         int pipe = pipe_config->cpu_transcoder;
8123         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8124         struct dpll clock;
8125         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8126         int refclk = 100000;
8127
8128         /* In case of DSI, DPLL will not be used */
8129         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8130                 return;
8131
8132         mutex_lock(&dev_priv->sb_lock);
8133         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8134         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8135         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8136         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8137         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8138         mutex_unlock(&dev_priv->sb_lock);
8139
8140         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8141         clock.m2 = (pll_dw0 & 0xff) << 22;
8142         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8143                 clock.m2 |= pll_dw2 & 0x3fffff;
8144         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8145         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8146         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8147
8148         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8149 }
8150
8151 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8152                                  struct intel_crtc_state *pipe_config)
8153 {
8154         struct drm_device *dev = crtc->base.dev;
8155         struct drm_i915_private *dev_priv = dev->dev_private;
8156         enum intel_display_power_domain power_domain;
8157         uint32_t tmp;
8158         bool ret;
8159
8160         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8161         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8162                 return false;
8163
8164         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8165         pipe_config->shared_dpll = NULL;
8166
8167         ret = false;
8168
8169         tmp = I915_READ(PIPECONF(crtc->pipe));
8170         if (!(tmp & PIPECONF_ENABLE))
8171                 goto out;
8172
8173         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8174                 switch (tmp & PIPECONF_BPC_MASK) {
8175                 case PIPECONF_6BPC:
8176                         pipe_config->pipe_bpp = 18;
8177                         break;
8178                 case PIPECONF_8BPC:
8179                         pipe_config->pipe_bpp = 24;
8180                         break;
8181                 case PIPECONF_10BPC:
8182                         pipe_config->pipe_bpp = 30;
8183                         break;
8184                 default:
8185                         break;
8186                 }
8187         }
8188
8189         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8190             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8191                 pipe_config->limited_color_range = true;
8192
8193         if (INTEL_INFO(dev)->gen < 4)
8194                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8195
8196         intel_get_pipe_timings(crtc, pipe_config);
8197         intel_get_pipe_src_size(crtc, pipe_config);
8198
8199         i9xx_get_pfit_config(crtc, pipe_config);
8200
8201         if (INTEL_INFO(dev)->gen >= 4) {
8202                 /* No way to read it out on pipes B and C */
8203                 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8204                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
8205                 else
8206                         tmp = I915_READ(DPLL_MD(crtc->pipe));
8207                 pipe_config->pixel_multiplier =
8208                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8209                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8210                 pipe_config->dpll_hw_state.dpll_md = tmp;
8211         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8212                 tmp = I915_READ(DPLL(crtc->pipe));
8213                 pipe_config->pixel_multiplier =
8214                         ((tmp & SDVO_MULTIPLIER_MASK)
8215                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8216         } else {
8217                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8218                  * port and will be fixed up in the encoder->get_config
8219                  * function. */
8220                 pipe_config->pixel_multiplier = 1;
8221         }
8222         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8223         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8224                 /*
8225                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8226                  * on 830. Filter it out here so that we don't
8227                  * report errors due to that.
8228                  */
8229                 if (IS_I830(dev))
8230                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8231
8232                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8233                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8234         } else {
8235                 /* Mask out read-only status bits. */
8236                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8237                                                      DPLL_PORTC_READY_MASK |
8238                                                      DPLL_PORTB_READY_MASK);
8239         }
8240
8241         if (IS_CHERRYVIEW(dev))
8242                 chv_crtc_clock_get(crtc, pipe_config);
8243         else if (IS_VALLEYVIEW(dev))
8244                 vlv_crtc_clock_get(crtc, pipe_config);
8245         else
8246                 i9xx_crtc_clock_get(crtc, pipe_config);
8247
8248         /*
8249          * Normally the dotclock is filled in by the encoder .get_config()
8250          * but in case the pipe is enabled w/o any ports we need a sane
8251          * default.
8252          */
8253         pipe_config->base.adjusted_mode.crtc_clock =
8254                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8255
8256         ret = true;
8257
8258 out:
8259         intel_display_power_put(dev_priv, power_domain);
8260
8261         return ret;
8262 }
8263
8264 static void ironlake_init_pch_refclk(struct drm_device *dev)
8265 {
8266         struct drm_i915_private *dev_priv = dev->dev_private;
8267         struct intel_encoder *encoder;
8268         u32 val, final;
8269         bool has_lvds = false;
8270         bool has_cpu_edp = false;
8271         bool has_panel = false;
8272         bool has_ck505 = false;
8273         bool can_ssc = false;
8274
8275         /* We need to take the global config into account */
8276         for_each_intel_encoder(dev, encoder) {
8277                 switch (encoder->type) {
8278                 case INTEL_OUTPUT_LVDS:
8279                         has_panel = true;
8280                         has_lvds = true;
8281                         break;
8282                 case INTEL_OUTPUT_EDP:
8283                         has_panel = true;
8284                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8285                                 has_cpu_edp = true;
8286                         break;
8287                 default:
8288                         break;
8289                 }
8290         }
8291
8292         if (HAS_PCH_IBX(dev)) {
8293                 has_ck505 = dev_priv->vbt.display_clock_mode;
8294                 can_ssc = has_ck505;
8295         } else {
8296                 has_ck505 = false;
8297                 can_ssc = true;
8298         }
8299
8300         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8301                       has_panel, has_lvds, has_ck505);
8302
8303         /* Ironlake: try to setup display ref clock before DPLL
8304          * enabling. This is only under driver's control after
8305          * PCH B stepping, previous chipset stepping should be
8306          * ignoring this setting.
8307          */
8308         val = I915_READ(PCH_DREF_CONTROL);
8309
8310         /* As we must carefully and slowly disable/enable each source in turn,
8311          * compute the final state we want first and check if we need to
8312          * make any changes at all.
8313          */
8314         final = val;
8315         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8316         if (has_ck505)
8317                 final |= DREF_NONSPREAD_CK505_ENABLE;
8318         else
8319                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8320
8321         final &= ~DREF_SSC_SOURCE_MASK;
8322         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8323         final &= ~DREF_SSC1_ENABLE;
8324
8325         if (has_panel) {
8326                 final |= DREF_SSC_SOURCE_ENABLE;
8327
8328                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8329                         final |= DREF_SSC1_ENABLE;
8330
8331                 if (has_cpu_edp) {
8332                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8333                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8334                         else
8335                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8336                 } else
8337                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8338         } else {
8339                 final |= DREF_SSC_SOURCE_DISABLE;
8340                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8341         }
8342
8343         if (final == val)
8344                 return;
8345
8346         /* Always enable nonspread source */
8347         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8348
8349         if (has_ck505)
8350                 val |= DREF_NONSPREAD_CK505_ENABLE;
8351         else
8352                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8353
8354         if (has_panel) {
8355                 val &= ~DREF_SSC_SOURCE_MASK;
8356                 val |= DREF_SSC_SOURCE_ENABLE;
8357
8358                 /* SSC must be turned on before enabling the CPU output  */
8359                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8360                         DRM_DEBUG_KMS("Using SSC on panel\n");
8361                         val |= DREF_SSC1_ENABLE;
8362                 } else
8363                         val &= ~DREF_SSC1_ENABLE;
8364
8365                 /* Get SSC going before enabling the outputs */
8366                 I915_WRITE(PCH_DREF_CONTROL, val);
8367                 POSTING_READ(PCH_DREF_CONTROL);
8368                 udelay(200);
8369
8370                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8371
8372                 /* Enable CPU source on CPU attached eDP */
8373                 if (has_cpu_edp) {
8374                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8375                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8376                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8377                         } else
8378                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8379                 } else
8380                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8381
8382                 I915_WRITE(PCH_DREF_CONTROL, val);
8383                 POSTING_READ(PCH_DREF_CONTROL);
8384                 udelay(200);
8385         } else {
8386                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8387
8388                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8389
8390                 /* Turn off CPU output */
8391                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8392
8393                 I915_WRITE(PCH_DREF_CONTROL, val);
8394                 POSTING_READ(PCH_DREF_CONTROL);
8395                 udelay(200);
8396
8397                 /* Turn off the SSC source */
8398                 val &= ~DREF_SSC_SOURCE_MASK;
8399                 val |= DREF_SSC_SOURCE_DISABLE;
8400
8401                 /* Turn off SSC1 */
8402                 val &= ~DREF_SSC1_ENABLE;
8403
8404                 I915_WRITE(PCH_DREF_CONTROL, val);
8405                 POSTING_READ(PCH_DREF_CONTROL);
8406                 udelay(200);
8407         }
8408
8409         BUG_ON(val != final);
8410 }
8411
8412 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8413 {
8414         uint32_t tmp;
8415
8416         tmp = I915_READ(SOUTH_CHICKEN2);
8417         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8418         I915_WRITE(SOUTH_CHICKEN2, tmp);
8419
8420         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8421                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8422                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8423
8424         tmp = I915_READ(SOUTH_CHICKEN2);
8425         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8426         I915_WRITE(SOUTH_CHICKEN2, tmp);
8427
8428         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8429                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8430                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8431 }
8432
8433 /* WaMPhyProgramming:hsw */
8434 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8435 {
8436         uint32_t tmp;
8437
8438         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8439         tmp &= ~(0xFF << 24);
8440         tmp |= (0x12 << 24);
8441         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8442
8443         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8444         tmp |= (1 << 11);
8445         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8446
8447         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8448         tmp |= (1 << 11);
8449         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8450
8451         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8452         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8453         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8454
8455         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8456         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8457         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8458
8459         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8460         tmp &= ~(7 << 13);
8461         tmp |= (5 << 13);
8462         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8463
8464         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8465         tmp &= ~(7 << 13);
8466         tmp |= (5 << 13);
8467         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8468
8469         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8470         tmp &= ~0xFF;
8471         tmp |= 0x1C;
8472         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8473
8474         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8475         tmp &= ~0xFF;
8476         tmp |= 0x1C;
8477         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8478
8479         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8480         tmp &= ~(0xFF << 16);
8481         tmp |= (0x1C << 16);
8482         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8483
8484         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8485         tmp &= ~(0xFF << 16);
8486         tmp |= (0x1C << 16);
8487         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8488
8489         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8490         tmp |= (1 << 27);
8491         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8492
8493         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8494         tmp |= (1 << 27);
8495         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8496
8497         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8498         tmp &= ~(0xF << 28);
8499         tmp |= (4 << 28);
8500         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8501
8502         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8503         tmp &= ~(0xF << 28);
8504         tmp |= (4 << 28);
8505         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8506 }
8507
8508 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8509  * Programming" based on the parameters passed:
8510  * - Sequence to enable CLKOUT_DP
8511  * - Sequence to enable CLKOUT_DP without spread
8512  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8513  */
8514 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8515                                  bool with_fdi)
8516 {
8517         struct drm_i915_private *dev_priv = dev->dev_private;
8518         uint32_t reg, tmp;
8519
8520         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8521                 with_spread = true;
8522         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8523                 with_fdi = false;
8524
8525         mutex_lock(&dev_priv->sb_lock);
8526
8527         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8528         tmp &= ~SBI_SSCCTL_DISABLE;
8529         tmp |= SBI_SSCCTL_PATHALT;
8530         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8531
8532         udelay(24);
8533
8534         if (with_spread) {
8535                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8536                 tmp &= ~SBI_SSCCTL_PATHALT;
8537                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8538
8539                 if (with_fdi) {
8540                         lpt_reset_fdi_mphy(dev_priv);
8541                         lpt_program_fdi_mphy(dev_priv);
8542                 }
8543         }
8544
8545         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8546         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8547         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8548         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8549
8550         mutex_unlock(&dev_priv->sb_lock);
8551 }
8552
8553 /* Sequence to disable CLKOUT_DP */
8554 static void lpt_disable_clkout_dp(struct drm_device *dev)
8555 {
8556         struct drm_i915_private *dev_priv = dev->dev_private;
8557         uint32_t reg, tmp;
8558
8559         mutex_lock(&dev_priv->sb_lock);
8560
8561         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8562         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8563         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8564         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8565
8566         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8567         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8568                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8569                         tmp |= SBI_SSCCTL_PATHALT;
8570                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8571                         udelay(32);
8572                 }
8573                 tmp |= SBI_SSCCTL_DISABLE;
8574                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8575         }
8576
8577         mutex_unlock(&dev_priv->sb_lock);
8578 }
8579
8580 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8581
8582 static const uint16_t sscdivintphase[] = {
8583         [BEND_IDX( 50)] = 0x3B23,
8584         [BEND_IDX( 45)] = 0x3B23,
8585         [BEND_IDX( 40)] = 0x3C23,
8586         [BEND_IDX( 35)] = 0x3C23,
8587         [BEND_IDX( 30)] = 0x3D23,
8588         [BEND_IDX( 25)] = 0x3D23,
8589         [BEND_IDX( 20)] = 0x3E23,
8590         [BEND_IDX( 15)] = 0x3E23,
8591         [BEND_IDX( 10)] = 0x3F23,
8592         [BEND_IDX(  5)] = 0x3F23,
8593         [BEND_IDX(  0)] = 0x0025,
8594         [BEND_IDX( -5)] = 0x0025,
8595         [BEND_IDX(-10)] = 0x0125,
8596         [BEND_IDX(-15)] = 0x0125,
8597         [BEND_IDX(-20)] = 0x0225,
8598         [BEND_IDX(-25)] = 0x0225,
8599         [BEND_IDX(-30)] = 0x0325,
8600         [BEND_IDX(-35)] = 0x0325,
8601         [BEND_IDX(-40)] = 0x0425,
8602         [BEND_IDX(-45)] = 0x0425,
8603         [BEND_IDX(-50)] = 0x0525,
8604 };
8605
8606 /*
8607  * Bend CLKOUT_DP
8608  * steps -50 to 50 inclusive, in steps of 5
8609  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8610  * change in clock period = -(steps / 10) * 5.787 ps
8611  */
8612 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8613 {
8614         uint32_t tmp;
8615         int idx = BEND_IDX(steps);
8616
8617         if (WARN_ON(steps % 5 != 0))
8618                 return;
8619
8620         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8621                 return;
8622
8623         mutex_lock(&dev_priv->sb_lock);
8624
8625         if (steps % 10 != 0)
8626                 tmp = 0xAAAAAAAB;
8627         else
8628                 tmp = 0x00000000;
8629         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8630
8631         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8632         tmp &= 0xffff0000;
8633         tmp |= sscdivintphase[idx];
8634         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8635
8636         mutex_unlock(&dev_priv->sb_lock);
8637 }
8638
8639 #undef BEND_IDX
8640
8641 static void lpt_init_pch_refclk(struct drm_device *dev)
8642 {
8643         struct intel_encoder *encoder;
8644         bool has_vga = false;
8645
8646         for_each_intel_encoder(dev, encoder) {
8647                 switch (encoder->type) {
8648                 case INTEL_OUTPUT_ANALOG:
8649                         has_vga = true;
8650                         break;
8651                 default:
8652                         break;
8653                 }
8654         }
8655
8656         if (has_vga) {
8657                 lpt_bend_clkout_dp(to_i915(dev), 0);
8658                 lpt_enable_clkout_dp(dev, true, true);
8659         } else {
8660                 lpt_disable_clkout_dp(dev);
8661         }
8662 }
8663
8664 /*
8665  * Initialize reference clocks when the driver loads
8666  */
8667 void intel_init_pch_refclk(struct drm_device *dev)
8668 {
8669         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8670                 ironlake_init_pch_refclk(dev);
8671         else if (HAS_PCH_LPT(dev))
8672                 lpt_init_pch_refclk(dev);
8673 }
8674
8675 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8676 {
8677         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8678         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8679         int pipe = intel_crtc->pipe;
8680         uint32_t val;
8681
8682         val = 0;
8683
8684         switch (intel_crtc->config->pipe_bpp) {
8685         case 18:
8686                 val |= PIPECONF_6BPC;
8687                 break;
8688         case 24:
8689                 val |= PIPECONF_8BPC;
8690                 break;
8691         case 30:
8692                 val |= PIPECONF_10BPC;
8693                 break;
8694         case 36:
8695                 val |= PIPECONF_12BPC;
8696                 break;
8697         default:
8698                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8699                 BUG();
8700         }
8701
8702         if (intel_crtc->config->dither)
8703                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8704
8705         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8706                 val |= PIPECONF_INTERLACED_ILK;
8707         else
8708                 val |= PIPECONF_PROGRESSIVE;
8709
8710         if (intel_crtc->config->limited_color_range)
8711                 val |= PIPECONF_COLOR_RANGE_SELECT;
8712
8713         I915_WRITE(PIPECONF(pipe), val);
8714         POSTING_READ(PIPECONF(pipe));
8715 }
8716
8717 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8718 {
8719         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8720         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8721         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8722         u32 val = 0;
8723
8724         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8725                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8726
8727         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8728                 val |= PIPECONF_INTERLACED_ILK;
8729         else
8730                 val |= PIPECONF_PROGRESSIVE;
8731
8732         I915_WRITE(PIPECONF(cpu_transcoder), val);
8733         POSTING_READ(PIPECONF(cpu_transcoder));
8734 }
8735
8736 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8737 {
8738         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8739         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8740
8741         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8742                 u32 val = 0;
8743
8744                 switch (intel_crtc->config->pipe_bpp) {
8745                 case 18:
8746                         val |= PIPEMISC_DITHER_6_BPC;
8747                         break;
8748                 case 24:
8749                         val |= PIPEMISC_DITHER_8_BPC;
8750                         break;
8751                 case 30:
8752                         val |= PIPEMISC_DITHER_10_BPC;
8753                         break;
8754                 case 36:
8755                         val |= PIPEMISC_DITHER_12_BPC;
8756                         break;
8757                 default:
8758                         /* Case prevented by pipe_config_set_bpp. */
8759                         BUG();
8760                 }
8761
8762                 if (intel_crtc->config->dither)
8763                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8764
8765                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8766         }
8767 }
8768
8769 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8770 {
8771         /*
8772          * Account for spread spectrum to avoid
8773          * oversubscribing the link. Max center spread
8774          * is 2.5%; use 5% for safety's sake.
8775          */
8776         u32 bps = target_clock * bpp * 21 / 20;
8777         return DIV_ROUND_UP(bps, link_bw * 8);
8778 }
8779
8780 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8781 {
8782         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8783 }
8784
8785 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8786                                   struct intel_crtc_state *crtc_state,
8787                                   struct dpll *reduced_clock)
8788 {
8789         struct drm_crtc *crtc = &intel_crtc->base;
8790         struct drm_device *dev = crtc->dev;
8791         struct drm_i915_private *dev_priv = dev->dev_private;
8792         struct drm_atomic_state *state = crtc_state->base.state;
8793         struct drm_connector *connector;
8794         struct drm_connector_state *connector_state;
8795         struct intel_encoder *encoder;
8796         u32 dpll, fp, fp2;
8797         int factor, i;
8798         bool is_lvds = false, is_sdvo = false;
8799
8800         for_each_connector_in_state(state, connector, connector_state, i) {
8801                 if (connector_state->crtc != crtc_state->base.crtc)
8802                         continue;
8803
8804                 encoder = to_intel_encoder(connector_state->best_encoder);
8805
8806                 switch (encoder->type) {
8807                 case INTEL_OUTPUT_LVDS:
8808                         is_lvds = true;
8809                         break;
8810                 case INTEL_OUTPUT_SDVO:
8811                 case INTEL_OUTPUT_HDMI:
8812                         is_sdvo = true;
8813                         break;
8814                 default:
8815                         break;
8816                 }
8817         }
8818
8819         /* Enable autotuning of the PLL clock (if permissible) */
8820         factor = 21;
8821         if (is_lvds) {
8822                 if ((intel_panel_use_ssc(dev_priv) &&
8823                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8824                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8825                         factor = 25;
8826         } else if (crtc_state->sdvo_tv_clock)
8827                 factor = 20;
8828
8829         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8830
8831         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8832                 fp |= FP_CB_TUNE;
8833
8834         if (reduced_clock) {
8835                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8836
8837                 if (reduced_clock->m < factor * reduced_clock->n)
8838                         fp2 |= FP_CB_TUNE;
8839         } else {
8840                 fp2 = fp;
8841         }
8842
8843         dpll = 0;
8844
8845         if (is_lvds)
8846                 dpll |= DPLLB_MODE_LVDS;
8847         else
8848                 dpll |= DPLLB_MODE_DAC_SERIAL;
8849
8850         dpll |= (crtc_state->pixel_multiplier - 1)
8851                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8852
8853         if (is_sdvo)
8854                 dpll |= DPLL_SDVO_HIGH_SPEED;
8855         if (crtc_state->has_dp_encoder)
8856                 dpll |= DPLL_SDVO_HIGH_SPEED;
8857
8858         /* compute bitmask from p1 value */
8859         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8860         /* also FPA1 */
8861         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8862
8863         switch (crtc_state->dpll.p2) {
8864         case 5:
8865                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8866                 break;
8867         case 7:
8868                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8869                 break;
8870         case 10:
8871                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8872                 break;
8873         case 14:
8874                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8875                 break;
8876         }
8877
8878         if (is_lvds && intel_panel_use_ssc(dev_priv))
8879                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8880         else
8881                 dpll |= PLL_REF_INPUT_DREFCLK;
8882
8883         dpll |= DPLL_VCO_ENABLE;
8884
8885         crtc_state->dpll_hw_state.dpll = dpll;
8886         crtc_state->dpll_hw_state.fp0 = fp;
8887         crtc_state->dpll_hw_state.fp1 = fp2;
8888 }
8889
8890 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8891                                        struct intel_crtc_state *crtc_state)
8892 {
8893         struct drm_device *dev = crtc->base.dev;
8894         struct drm_i915_private *dev_priv = dev->dev_private;
8895         struct dpll reduced_clock;
8896         bool has_reduced_clock = false;
8897         struct intel_shared_dpll *pll;
8898         const struct intel_limit *limit;
8899         int refclk = 120000;
8900
8901         memset(&crtc_state->dpll_hw_state, 0,
8902                sizeof(crtc_state->dpll_hw_state));
8903
8904         crtc->lowfreq_avail = false;
8905
8906         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8907         if (!crtc_state->has_pch_encoder)
8908                 return 0;
8909
8910         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8911                 if (intel_panel_use_ssc(dev_priv)) {
8912                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8913                                       dev_priv->vbt.lvds_ssc_freq);
8914                         refclk = dev_priv->vbt.lvds_ssc_freq;
8915                 }
8916
8917                 if (intel_is_dual_link_lvds(dev)) {
8918                         if (refclk == 100000)
8919                                 limit = &intel_limits_ironlake_dual_lvds_100m;
8920                         else
8921                                 limit = &intel_limits_ironlake_dual_lvds;
8922                 } else {
8923                         if (refclk == 100000)
8924                                 limit = &intel_limits_ironlake_single_lvds_100m;
8925                         else
8926                                 limit = &intel_limits_ironlake_single_lvds;
8927                 }
8928         } else {
8929                 limit = &intel_limits_ironlake_dac;
8930         }
8931
8932         if (!crtc_state->clock_set &&
8933             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8934                                 refclk, NULL, &crtc_state->dpll)) {
8935                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8936                 return -EINVAL;
8937         }
8938
8939         ironlake_compute_dpll(crtc, crtc_state,
8940                               has_reduced_clock ? &reduced_clock : NULL);
8941
8942         pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
8943         if (pll == NULL) {
8944                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8945                                  pipe_name(crtc->pipe));
8946                 return -EINVAL;
8947         }
8948
8949         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8950             has_reduced_clock)
8951                 crtc->lowfreq_avail = true;
8952
8953         return 0;
8954 }
8955
8956 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8957                                          struct intel_link_m_n *m_n)
8958 {
8959         struct drm_device *dev = crtc->base.dev;
8960         struct drm_i915_private *dev_priv = dev->dev_private;
8961         enum pipe pipe = crtc->pipe;
8962
8963         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8964         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8965         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8966                 & ~TU_SIZE_MASK;
8967         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8968         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8969                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8970 }
8971
8972 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8973                                          enum transcoder transcoder,
8974                                          struct intel_link_m_n *m_n,
8975                                          struct intel_link_m_n *m2_n2)
8976 {
8977         struct drm_device *dev = crtc->base.dev;
8978         struct drm_i915_private *dev_priv = dev->dev_private;
8979         enum pipe pipe = crtc->pipe;
8980
8981         if (INTEL_INFO(dev)->gen >= 5) {
8982                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8983                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8984                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8985                         & ~TU_SIZE_MASK;
8986                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8987                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8988                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8989                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8990                  * gen < 8) and if DRRS is supported (to make sure the
8991                  * registers are not unnecessarily read).
8992                  */
8993                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8994                         crtc->config->has_drrs) {
8995                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8996                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8997                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8998                                         & ~TU_SIZE_MASK;
8999                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9000                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9001                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9002                 }
9003         } else {
9004                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9005                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9006                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9007                         & ~TU_SIZE_MASK;
9008                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9009                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9010                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9011         }
9012 }
9013
9014 void intel_dp_get_m_n(struct intel_crtc *crtc,
9015                       struct intel_crtc_state *pipe_config)
9016 {
9017         if (pipe_config->has_pch_encoder)
9018                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9019         else
9020                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9021                                              &pipe_config->dp_m_n,
9022                                              &pipe_config->dp_m2_n2);
9023 }
9024
9025 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9026                                         struct intel_crtc_state *pipe_config)
9027 {
9028         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9029                                      &pipe_config->fdi_m_n, NULL);
9030 }
9031
9032 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9033                                     struct intel_crtc_state *pipe_config)
9034 {
9035         struct drm_device *dev = crtc->base.dev;
9036         struct drm_i915_private *dev_priv = dev->dev_private;
9037         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9038         uint32_t ps_ctrl = 0;
9039         int id = -1;
9040         int i;
9041
9042         /* find scaler attached to this pipe */
9043         for (i = 0; i < crtc->num_scalers; i++) {
9044                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9045                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9046                         id = i;
9047                         pipe_config->pch_pfit.enabled = true;
9048                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9049                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9050                         break;
9051                 }
9052         }
9053
9054         scaler_state->scaler_id = id;
9055         if (id >= 0) {
9056                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9057         } else {
9058                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9059         }
9060 }
9061
9062 static void
9063 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9064                                  struct intel_initial_plane_config *plane_config)
9065 {
9066         struct drm_device *dev = crtc->base.dev;
9067         struct drm_i915_private *dev_priv = dev->dev_private;
9068         u32 val, base, offset, stride_mult, tiling;
9069         int pipe = crtc->pipe;
9070         int fourcc, pixel_format;
9071         unsigned int aligned_height;
9072         struct drm_framebuffer *fb;
9073         struct intel_framebuffer *intel_fb;
9074
9075         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9076         if (!intel_fb) {
9077                 DRM_DEBUG_KMS("failed to alloc fb\n");
9078                 return;
9079         }
9080
9081         fb = &intel_fb->base;
9082
9083         val = I915_READ(PLANE_CTL(pipe, 0));
9084         if (!(val & PLANE_CTL_ENABLE))
9085                 goto error;
9086
9087         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9088         fourcc = skl_format_to_fourcc(pixel_format,
9089                                       val & PLANE_CTL_ORDER_RGBX,
9090                                       val & PLANE_CTL_ALPHA_MASK);
9091         fb->pixel_format = fourcc;
9092         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9093
9094         tiling = val & PLANE_CTL_TILED_MASK;
9095         switch (tiling) {
9096         case PLANE_CTL_TILED_LINEAR:
9097                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9098                 break;
9099         case PLANE_CTL_TILED_X:
9100                 plane_config->tiling = I915_TILING_X;
9101                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9102                 break;
9103         case PLANE_CTL_TILED_Y:
9104                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9105                 break;
9106         case PLANE_CTL_TILED_YF:
9107                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9108                 break;
9109         default:
9110                 MISSING_CASE(tiling);
9111                 goto error;
9112         }
9113
9114         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9115         plane_config->base = base;
9116
9117         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9118
9119         val = I915_READ(PLANE_SIZE(pipe, 0));
9120         fb->height = ((val >> 16) & 0xfff) + 1;
9121         fb->width = ((val >> 0) & 0x1fff) + 1;
9122
9123         val = I915_READ(PLANE_STRIDE(pipe, 0));
9124         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9125                                                 fb->pixel_format);
9126         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9127
9128         aligned_height = intel_fb_align_height(dev, fb->height,
9129                                                fb->pixel_format,
9130                                                fb->modifier[0]);
9131
9132         plane_config->size = fb->pitches[0] * aligned_height;
9133
9134         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9135                       pipe_name(pipe), fb->width, fb->height,
9136                       fb->bits_per_pixel, base, fb->pitches[0],
9137                       plane_config->size);
9138
9139         plane_config->fb = intel_fb;
9140         return;
9141
9142 error:
9143         kfree(fb);
9144 }
9145
9146 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9147                                      struct intel_crtc_state *pipe_config)
9148 {
9149         struct drm_device *dev = crtc->base.dev;
9150         struct drm_i915_private *dev_priv = dev->dev_private;
9151         uint32_t tmp;
9152
9153         tmp = I915_READ(PF_CTL(crtc->pipe));
9154
9155         if (tmp & PF_ENABLE) {
9156                 pipe_config->pch_pfit.enabled = true;
9157                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9158                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9159
9160                 /* We currently do not free assignements of panel fitters on
9161                  * ivb/hsw (since we don't use the higher upscaling modes which
9162                  * differentiates them) so just WARN about this case for now. */
9163                 if (IS_GEN7(dev)) {
9164                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9165                                 PF_PIPE_SEL_IVB(crtc->pipe));
9166                 }
9167         }
9168 }
9169
9170 static void
9171 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9172                                   struct intel_initial_plane_config *plane_config)
9173 {
9174         struct drm_device *dev = crtc->base.dev;
9175         struct drm_i915_private *dev_priv = dev->dev_private;
9176         u32 val, base, offset;
9177         int pipe = crtc->pipe;
9178         int fourcc, pixel_format;
9179         unsigned int aligned_height;
9180         struct drm_framebuffer *fb;
9181         struct intel_framebuffer *intel_fb;
9182
9183         val = I915_READ(DSPCNTR(pipe));
9184         if (!(val & DISPLAY_PLANE_ENABLE))
9185                 return;
9186
9187         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9188         if (!intel_fb) {
9189                 DRM_DEBUG_KMS("failed to alloc fb\n");
9190                 return;
9191         }
9192
9193         fb = &intel_fb->base;
9194
9195         if (INTEL_INFO(dev)->gen >= 4) {
9196                 if (val & DISPPLANE_TILED) {
9197                         plane_config->tiling = I915_TILING_X;
9198                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9199                 }
9200         }
9201
9202         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9203         fourcc = i9xx_format_to_fourcc(pixel_format);
9204         fb->pixel_format = fourcc;
9205         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9206
9207         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9208         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9209                 offset = I915_READ(DSPOFFSET(pipe));
9210         } else {
9211                 if (plane_config->tiling)
9212                         offset = I915_READ(DSPTILEOFF(pipe));
9213                 else
9214                         offset = I915_READ(DSPLINOFF(pipe));
9215         }
9216         plane_config->base = base;
9217
9218         val = I915_READ(PIPESRC(pipe));
9219         fb->width = ((val >> 16) & 0xfff) + 1;
9220         fb->height = ((val >> 0) & 0xfff) + 1;
9221
9222         val = I915_READ(DSPSTRIDE(pipe));
9223         fb->pitches[0] = val & 0xffffffc0;
9224
9225         aligned_height = intel_fb_align_height(dev, fb->height,
9226                                                fb->pixel_format,
9227                                                fb->modifier[0]);
9228
9229         plane_config->size = fb->pitches[0] * aligned_height;
9230
9231         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9232                       pipe_name(pipe), fb->width, fb->height,
9233                       fb->bits_per_pixel, base, fb->pitches[0],
9234                       plane_config->size);
9235
9236         plane_config->fb = intel_fb;
9237 }
9238
9239 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9240                                      struct intel_crtc_state *pipe_config)
9241 {
9242         struct drm_device *dev = crtc->base.dev;
9243         struct drm_i915_private *dev_priv = dev->dev_private;
9244         enum intel_display_power_domain power_domain;
9245         uint32_t tmp;
9246         bool ret;
9247
9248         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9249         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9250                 return false;
9251
9252         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9253         pipe_config->shared_dpll = NULL;
9254
9255         ret = false;
9256         tmp = I915_READ(PIPECONF(crtc->pipe));
9257         if (!(tmp & PIPECONF_ENABLE))
9258                 goto out;
9259
9260         switch (tmp & PIPECONF_BPC_MASK) {
9261         case PIPECONF_6BPC:
9262                 pipe_config->pipe_bpp = 18;
9263                 break;
9264         case PIPECONF_8BPC:
9265                 pipe_config->pipe_bpp = 24;
9266                 break;
9267         case PIPECONF_10BPC:
9268                 pipe_config->pipe_bpp = 30;
9269                 break;
9270         case PIPECONF_12BPC:
9271                 pipe_config->pipe_bpp = 36;
9272                 break;
9273         default:
9274                 break;
9275         }
9276
9277         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9278                 pipe_config->limited_color_range = true;
9279
9280         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9281                 struct intel_shared_dpll *pll;
9282                 enum intel_dpll_id pll_id;
9283
9284                 pipe_config->has_pch_encoder = true;
9285
9286                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9287                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9288                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9289
9290                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9291
9292                 if (HAS_PCH_IBX(dev_priv)) {
9293                         /*
9294                          * The pipe->pch transcoder and pch transcoder->pll
9295                          * mapping is fixed.
9296                          */
9297                         pll_id = (enum intel_dpll_id) crtc->pipe;
9298                 } else {
9299                         tmp = I915_READ(PCH_DPLL_SEL);
9300                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9301                                 pll_id = DPLL_ID_PCH_PLL_B;
9302                         else
9303                                 pll_id= DPLL_ID_PCH_PLL_A;
9304                 }
9305
9306                 pipe_config->shared_dpll =
9307                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
9308                 pll = pipe_config->shared_dpll;
9309
9310                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9311                                                  &pipe_config->dpll_hw_state));
9312
9313                 tmp = pipe_config->dpll_hw_state.dpll;
9314                 pipe_config->pixel_multiplier =
9315                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9316                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9317
9318                 ironlake_pch_clock_get(crtc, pipe_config);
9319         } else {
9320                 pipe_config->pixel_multiplier = 1;
9321         }
9322
9323         intel_get_pipe_timings(crtc, pipe_config);
9324         intel_get_pipe_src_size(crtc, pipe_config);
9325
9326         ironlake_get_pfit_config(crtc, pipe_config);
9327
9328         ret = true;
9329
9330 out:
9331         intel_display_power_put(dev_priv, power_domain);
9332
9333         return ret;
9334 }
9335
9336 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9337 {
9338         struct drm_device *dev = dev_priv->dev;
9339         struct intel_crtc *crtc;
9340
9341         for_each_intel_crtc(dev, crtc)
9342                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9343                      pipe_name(crtc->pipe));
9344
9345         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9346         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9347         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9348         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9349         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9350         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9351              "CPU PWM1 enabled\n");
9352         if (IS_HASWELL(dev))
9353                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9354                      "CPU PWM2 enabled\n");
9355         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9356              "PCH PWM1 enabled\n");
9357         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9358              "Utility pin enabled\n");
9359         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9360
9361         /*
9362          * In theory we can still leave IRQs enabled, as long as only the HPD
9363          * interrupts remain enabled. We used to check for that, but since it's
9364          * gen-specific and since we only disable LCPLL after we fully disable
9365          * the interrupts, the check below should be enough.
9366          */
9367         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9368 }
9369
9370 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9371 {
9372         struct drm_device *dev = dev_priv->dev;
9373
9374         if (IS_HASWELL(dev))
9375                 return I915_READ(D_COMP_HSW);
9376         else
9377                 return I915_READ(D_COMP_BDW);
9378 }
9379
9380 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9381 {
9382         struct drm_device *dev = dev_priv->dev;
9383
9384         if (IS_HASWELL(dev)) {
9385                 mutex_lock(&dev_priv->rps.hw_lock);
9386                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9387                                             val))
9388                         DRM_ERROR("Failed to write to D_COMP\n");
9389                 mutex_unlock(&dev_priv->rps.hw_lock);
9390         } else {
9391                 I915_WRITE(D_COMP_BDW, val);
9392                 POSTING_READ(D_COMP_BDW);
9393         }
9394 }
9395
9396 /*
9397  * This function implements pieces of two sequences from BSpec:
9398  * - Sequence for display software to disable LCPLL
9399  * - Sequence for display software to allow package C8+
9400  * The steps implemented here are just the steps that actually touch the LCPLL
9401  * register. Callers should take care of disabling all the display engine
9402  * functions, doing the mode unset, fixing interrupts, etc.
9403  */
9404 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9405                               bool switch_to_fclk, bool allow_power_down)
9406 {
9407         uint32_t val;
9408
9409         assert_can_disable_lcpll(dev_priv);
9410
9411         val = I915_READ(LCPLL_CTL);
9412
9413         if (switch_to_fclk) {
9414                 val |= LCPLL_CD_SOURCE_FCLK;
9415                 I915_WRITE(LCPLL_CTL, val);
9416
9417                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9418                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9419                         DRM_ERROR("Switching to FCLK failed\n");
9420
9421                 val = I915_READ(LCPLL_CTL);
9422         }
9423
9424         val |= LCPLL_PLL_DISABLE;
9425         I915_WRITE(LCPLL_CTL, val);
9426         POSTING_READ(LCPLL_CTL);
9427
9428         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9429                 DRM_ERROR("LCPLL still locked\n");
9430
9431         val = hsw_read_dcomp(dev_priv);
9432         val |= D_COMP_COMP_DISABLE;
9433         hsw_write_dcomp(dev_priv, val);
9434         ndelay(100);
9435
9436         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9437                      1))
9438                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9439
9440         if (allow_power_down) {
9441                 val = I915_READ(LCPLL_CTL);
9442                 val |= LCPLL_POWER_DOWN_ALLOW;
9443                 I915_WRITE(LCPLL_CTL, val);
9444                 POSTING_READ(LCPLL_CTL);
9445         }
9446 }
9447
9448 /*
9449  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9450  * source.
9451  */
9452 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9453 {
9454         uint32_t val;
9455
9456         val = I915_READ(LCPLL_CTL);
9457
9458         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9459                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9460                 return;
9461
9462         /*
9463          * Make sure we're not on PC8 state before disabling PC8, otherwise
9464          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9465          */
9466         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9467
9468         if (val & LCPLL_POWER_DOWN_ALLOW) {
9469                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9470                 I915_WRITE(LCPLL_CTL, val);
9471                 POSTING_READ(LCPLL_CTL);
9472         }
9473
9474         val = hsw_read_dcomp(dev_priv);
9475         val |= D_COMP_COMP_FORCE;
9476         val &= ~D_COMP_COMP_DISABLE;
9477         hsw_write_dcomp(dev_priv, val);
9478
9479         val = I915_READ(LCPLL_CTL);
9480         val &= ~LCPLL_PLL_DISABLE;
9481         I915_WRITE(LCPLL_CTL, val);
9482
9483         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9484                 DRM_ERROR("LCPLL not locked yet\n");
9485
9486         if (val & LCPLL_CD_SOURCE_FCLK) {
9487                 val = I915_READ(LCPLL_CTL);
9488                 val &= ~LCPLL_CD_SOURCE_FCLK;
9489                 I915_WRITE(LCPLL_CTL, val);
9490
9491                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9492                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9493                         DRM_ERROR("Switching back to LCPLL failed\n");
9494         }
9495
9496         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9497         intel_update_cdclk(dev_priv->dev);
9498 }
9499
9500 /*
9501  * Package states C8 and deeper are really deep PC states that can only be
9502  * reached when all the devices on the system allow it, so even if the graphics
9503  * device allows PC8+, it doesn't mean the system will actually get to these
9504  * states. Our driver only allows PC8+ when going into runtime PM.
9505  *
9506  * The requirements for PC8+ are that all the outputs are disabled, the power
9507  * well is disabled and most interrupts are disabled, and these are also
9508  * requirements for runtime PM. When these conditions are met, we manually do
9509  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9510  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9511  * hang the machine.
9512  *
9513  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9514  * the state of some registers, so when we come back from PC8+ we need to
9515  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9516  * need to take care of the registers kept by RC6. Notice that this happens even
9517  * if we don't put the device in PCI D3 state (which is what currently happens
9518  * because of the runtime PM support).
9519  *
9520  * For more, read "Display Sequences for Package C8" on the hardware
9521  * documentation.
9522  */
9523 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9524 {
9525         struct drm_device *dev = dev_priv->dev;
9526         uint32_t val;
9527
9528         DRM_DEBUG_KMS("Enabling package C8+\n");
9529
9530         if (HAS_PCH_LPT_LP(dev)) {
9531                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9532                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9533                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9534         }
9535
9536         lpt_disable_clkout_dp(dev);
9537         hsw_disable_lcpll(dev_priv, true, true);
9538 }
9539
9540 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9541 {
9542         struct drm_device *dev = dev_priv->dev;
9543         uint32_t val;
9544
9545         DRM_DEBUG_KMS("Disabling package C8+\n");
9546
9547         hsw_restore_lcpll(dev_priv);
9548         lpt_init_pch_refclk(dev);
9549
9550         if (HAS_PCH_LPT_LP(dev)) {
9551                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9552                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9553                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9554         }
9555 }
9556
9557 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9558 {
9559         struct drm_device *dev = old_state->dev;
9560         struct intel_atomic_state *old_intel_state =
9561                 to_intel_atomic_state(old_state);
9562         unsigned int req_cdclk = old_intel_state->dev_cdclk;
9563
9564         broxton_set_cdclk(to_i915(dev), req_cdclk);
9565 }
9566
9567 /* compute the max rate for new configuration */
9568 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9569 {
9570         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9571         struct drm_i915_private *dev_priv = state->dev->dev_private;
9572         struct drm_crtc *crtc;
9573         struct drm_crtc_state *cstate;
9574         struct intel_crtc_state *crtc_state;
9575         unsigned max_pixel_rate = 0, i;
9576         enum pipe pipe;
9577
9578         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9579                sizeof(intel_state->min_pixclk));
9580
9581         for_each_crtc_in_state(state, crtc, cstate, i) {
9582                 int pixel_rate;
9583
9584                 crtc_state = to_intel_crtc_state(cstate);
9585                 if (!crtc_state->base.enable) {
9586                         intel_state->min_pixclk[i] = 0;
9587                         continue;
9588                 }
9589
9590                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9591
9592                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9593                 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9594                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9595
9596                 intel_state->min_pixclk[i] = pixel_rate;
9597         }
9598
9599         for_each_pipe(dev_priv, pipe)
9600                 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9601
9602         return max_pixel_rate;
9603 }
9604
9605 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9606 {
9607         struct drm_i915_private *dev_priv = dev->dev_private;
9608         uint32_t val, data;
9609         int ret;
9610
9611         if (WARN((I915_READ(LCPLL_CTL) &
9612                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9613                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9614                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9615                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9616                  "trying to change cdclk frequency with cdclk not enabled\n"))
9617                 return;
9618
9619         mutex_lock(&dev_priv->rps.hw_lock);
9620         ret = sandybridge_pcode_write(dev_priv,
9621                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9622         mutex_unlock(&dev_priv->rps.hw_lock);
9623         if (ret) {
9624                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9625                 return;
9626         }
9627
9628         val = I915_READ(LCPLL_CTL);
9629         val |= LCPLL_CD_SOURCE_FCLK;
9630         I915_WRITE(LCPLL_CTL, val);
9631
9632         if (wait_for_us(I915_READ(LCPLL_CTL) &
9633                         LCPLL_CD_SOURCE_FCLK_DONE, 1))
9634                 DRM_ERROR("Switching to FCLK failed\n");
9635
9636         val = I915_READ(LCPLL_CTL);
9637         val &= ~LCPLL_CLK_FREQ_MASK;
9638
9639         switch (cdclk) {
9640         case 450000:
9641                 val |= LCPLL_CLK_FREQ_450;
9642                 data = 0;
9643                 break;
9644         case 540000:
9645                 val |= LCPLL_CLK_FREQ_54O_BDW;
9646                 data = 1;
9647                 break;
9648         case 337500:
9649                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9650                 data = 2;
9651                 break;
9652         case 675000:
9653                 val |= LCPLL_CLK_FREQ_675_BDW;
9654                 data = 3;
9655                 break;
9656         default:
9657                 WARN(1, "invalid cdclk frequency\n");
9658                 return;
9659         }
9660
9661         I915_WRITE(LCPLL_CTL, val);
9662
9663         val = I915_READ(LCPLL_CTL);
9664         val &= ~LCPLL_CD_SOURCE_FCLK;
9665         I915_WRITE(LCPLL_CTL, val);
9666
9667         if (wait_for_us((I915_READ(LCPLL_CTL) &
9668                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9669                 DRM_ERROR("Switching back to LCPLL failed\n");
9670
9671         mutex_lock(&dev_priv->rps.hw_lock);
9672         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9673         mutex_unlock(&dev_priv->rps.hw_lock);
9674
9675         I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9676
9677         intel_update_cdclk(dev);
9678
9679         WARN(cdclk != dev_priv->cdclk_freq,
9680              "cdclk requested %d kHz but got %d kHz\n",
9681              cdclk, dev_priv->cdclk_freq);
9682 }
9683
9684 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9685 {
9686         struct drm_i915_private *dev_priv = to_i915(state->dev);
9687         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9688         int max_pixclk = ilk_max_pixel_rate(state);
9689         int cdclk;
9690
9691         /*
9692          * FIXME should also account for plane ratio
9693          * once 64bpp pixel formats are supported.
9694          */
9695         if (max_pixclk > 540000)
9696                 cdclk = 675000;
9697         else if (max_pixclk > 450000)
9698                 cdclk = 540000;
9699         else if (max_pixclk > 337500)
9700                 cdclk = 450000;
9701         else
9702                 cdclk = 337500;
9703
9704         if (cdclk > dev_priv->max_cdclk_freq) {
9705                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9706                               cdclk, dev_priv->max_cdclk_freq);
9707                 return -EINVAL;
9708         }
9709
9710         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9711         if (!intel_state->active_crtcs)
9712                 intel_state->dev_cdclk = 337500;
9713
9714         return 0;
9715 }
9716
9717 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9718 {
9719         struct drm_device *dev = old_state->dev;
9720         struct intel_atomic_state *old_intel_state =
9721                 to_intel_atomic_state(old_state);
9722         unsigned req_cdclk = old_intel_state->dev_cdclk;
9723
9724         broadwell_set_cdclk(dev, req_cdclk);
9725 }
9726
9727 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9728                                       struct intel_crtc_state *crtc_state)
9729 {
9730         struct intel_encoder *intel_encoder =
9731                 intel_ddi_get_crtc_new_encoder(crtc_state);
9732
9733         if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9734                 if (!intel_ddi_pll_select(crtc, crtc_state))
9735                         return -EINVAL;
9736         }
9737
9738         crtc->lowfreq_avail = false;
9739
9740         return 0;
9741 }
9742
9743 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9744                                 enum port port,
9745                                 struct intel_crtc_state *pipe_config)
9746 {
9747         enum intel_dpll_id id;
9748
9749         switch (port) {
9750         case PORT_A:
9751                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9752                 id = DPLL_ID_SKL_DPLL0;
9753                 break;
9754         case PORT_B:
9755                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9756                 id = DPLL_ID_SKL_DPLL1;
9757                 break;
9758         case PORT_C:
9759                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9760                 id = DPLL_ID_SKL_DPLL2;
9761                 break;
9762         default:
9763                 DRM_ERROR("Incorrect port type\n");
9764                 return;
9765         }
9766
9767         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9768 }
9769
9770 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9771                                 enum port port,
9772                                 struct intel_crtc_state *pipe_config)
9773 {
9774         enum intel_dpll_id id;
9775         u32 temp;
9776
9777         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9778         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9779
9780         switch (pipe_config->ddi_pll_sel) {
9781         case SKL_DPLL0:
9782                 id = DPLL_ID_SKL_DPLL0;
9783                 break;
9784         case SKL_DPLL1:
9785                 id = DPLL_ID_SKL_DPLL1;
9786                 break;
9787         case SKL_DPLL2:
9788                 id = DPLL_ID_SKL_DPLL2;
9789                 break;
9790         case SKL_DPLL3:
9791                 id = DPLL_ID_SKL_DPLL3;
9792                 break;
9793         default:
9794                 MISSING_CASE(pipe_config->ddi_pll_sel);
9795                 return;
9796         }
9797
9798         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9799 }
9800
9801 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9802                                 enum port port,
9803                                 struct intel_crtc_state *pipe_config)
9804 {
9805         enum intel_dpll_id id;
9806
9807         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9808
9809         switch (pipe_config->ddi_pll_sel) {
9810         case PORT_CLK_SEL_WRPLL1:
9811                 id = DPLL_ID_WRPLL1;
9812                 break;
9813         case PORT_CLK_SEL_WRPLL2:
9814                 id = DPLL_ID_WRPLL2;
9815                 break;
9816         case PORT_CLK_SEL_SPLL:
9817                 id = DPLL_ID_SPLL;
9818                 break;
9819         case PORT_CLK_SEL_LCPLL_810:
9820                 id = DPLL_ID_LCPLL_810;
9821                 break;
9822         case PORT_CLK_SEL_LCPLL_1350:
9823                 id = DPLL_ID_LCPLL_1350;
9824                 break;
9825         case PORT_CLK_SEL_LCPLL_2700:
9826                 id = DPLL_ID_LCPLL_2700;
9827                 break;
9828         default:
9829                 MISSING_CASE(pipe_config->ddi_pll_sel);
9830                 /* fall through */
9831         case PORT_CLK_SEL_NONE:
9832                 return;
9833         }
9834
9835         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9836 }
9837
9838 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9839                                      struct intel_crtc_state *pipe_config,
9840                                      unsigned long *power_domain_mask)
9841 {
9842         struct drm_device *dev = crtc->base.dev;
9843         struct drm_i915_private *dev_priv = dev->dev_private;
9844         enum intel_display_power_domain power_domain;
9845         u32 tmp;
9846
9847         /*
9848          * The pipe->transcoder mapping is fixed with the exception of the eDP
9849          * transcoder handled below.
9850          */
9851         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9852
9853         /*
9854          * XXX: Do intel_display_power_get_if_enabled before reading this (for
9855          * consistency and less surprising code; it's in always on power).
9856          */
9857         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9858         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9859                 enum pipe trans_edp_pipe;
9860                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9861                 default:
9862                         WARN(1, "unknown pipe linked to edp transcoder\n");
9863                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9864                 case TRANS_DDI_EDP_INPUT_A_ON:
9865                         trans_edp_pipe = PIPE_A;
9866                         break;
9867                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9868                         trans_edp_pipe = PIPE_B;
9869                         break;
9870                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9871                         trans_edp_pipe = PIPE_C;
9872                         break;
9873                 }
9874
9875                 if (trans_edp_pipe == crtc->pipe)
9876                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9877         }
9878
9879         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9880         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9881                 return false;
9882         *power_domain_mask |= BIT(power_domain);
9883
9884         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9885
9886         return tmp & PIPECONF_ENABLE;
9887 }
9888
9889 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9890                                          struct intel_crtc_state *pipe_config,
9891                                          unsigned long *power_domain_mask)
9892 {
9893         struct drm_device *dev = crtc->base.dev;
9894         struct drm_i915_private *dev_priv = dev->dev_private;
9895         enum intel_display_power_domain power_domain;
9896         enum port port;
9897         enum transcoder cpu_transcoder;
9898         u32 tmp;
9899
9900         pipe_config->has_dsi_encoder = false;
9901
9902         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9903                 if (port == PORT_A)
9904                         cpu_transcoder = TRANSCODER_DSI_A;
9905                 else
9906                         cpu_transcoder = TRANSCODER_DSI_C;
9907
9908                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9909                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9910                         continue;
9911                 *power_domain_mask |= BIT(power_domain);
9912
9913                 /*
9914                  * The PLL needs to be enabled with a valid divider
9915                  * configuration, otherwise accessing DSI registers will hang
9916                  * the machine. See BSpec North Display Engine
9917                  * registers/MIPI[BXT]. We can break out here early, since we
9918                  * need the same DSI PLL to be enabled for both DSI ports.
9919                  */
9920                 if (!intel_dsi_pll_is_enabled(dev_priv))
9921                         break;
9922
9923                 /* XXX: this works for video mode only */
9924                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9925                 if (!(tmp & DPI_ENABLE))
9926                         continue;
9927
9928                 tmp = I915_READ(MIPI_CTRL(port));
9929                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9930                         continue;
9931
9932                 pipe_config->cpu_transcoder = cpu_transcoder;
9933                 pipe_config->has_dsi_encoder = true;
9934                 break;
9935         }
9936
9937         return pipe_config->has_dsi_encoder;
9938 }
9939
9940 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9941                                        struct intel_crtc_state *pipe_config)
9942 {
9943         struct drm_device *dev = crtc->base.dev;
9944         struct drm_i915_private *dev_priv = dev->dev_private;
9945         struct intel_shared_dpll *pll;
9946         enum port port;
9947         uint32_t tmp;
9948
9949         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9950
9951         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9952
9953         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9954                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9955         else if (IS_BROXTON(dev))
9956                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9957         else
9958                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9959
9960         pll = pipe_config->shared_dpll;
9961         if (pll) {
9962                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9963                                                  &pipe_config->dpll_hw_state));
9964         }
9965
9966         /*
9967          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9968          * DDI E. So just check whether this pipe is wired to DDI E and whether
9969          * the PCH transcoder is on.
9970          */
9971         if (INTEL_INFO(dev)->gen < 9 &&
9972             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9973                 pipe_config->has_pch_encoder = true;
9974
9975                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9976                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9977                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9978
9979                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9980         }
9981 }
9982
9983 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9984                                     struct intel_crtc_state *pipe_config)
9985 {
9986         struct drm_device *dev = crtc->base.dev;
9987         struct drm_i915_private *dev_priv = dev->dev_private;
9988         enum intel_display_power_domain power_domain;
9989         unsigned long power_domain_mask;
9990         bool active;
9991
9992         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9993         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9994                 return false;
9995         power_domain_mask = BIT(power_domain);
9996
9997         pipe_config->shared_dpll = NULL;
9998
9999         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10000
10001         if (IS_BROXTON(dev_priv)) {
10002                 bxt_get_dsi_transcoder_state(crtc, pipe_config,
10003                                              &power_domain_mask);
10004                 WARN_ON(active && pipe_config->has_dsi_encoder);
10005                 if (pipe_config->has_dsi_encoder)
10006                         active = true;
10007         }
10008
10009         if (!active)
10010                 goto out;
10011
10012         if (!pipe_config->has_dsi_encoder) {
10013                 haswell_get_ddi_port_state(crtc, pipe_config);
10014                 intel_get_pipe_timings(crtc, pipe_config);
10015         }
10016
10017         intel_get_pipe_src_size(crtc, pipe_config);
10018
10019         pipe_config->gamma_mode =
10020                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10021
10022         if (INTEL_INFO(dev)->gen >= 9) {
10023                 skl_init_scalers(dev, crtc, pipe_config);
10024         }
10025
10026         if (INTEL_INFO(dev)->gen >= 9) {
10027                 pipe_config->scaler_state.scaler_id = -1;
10028                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10029         }
10030
10031         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10032         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10033                 power_domain_mask |= BIT(power_domain);
10034                 if (INTEL_INFO(dev)->gen >= 9)
10035                         skylake_get_pfit_config(crtc, pipe_config);
10036                 else
10037                         ironlake_get_pfit_config(crtc, pipe_config);
10038         }
10039
10040         if (IS_HASWELL(dev))
10041                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10042                         (I915_READ(IPS_CTL) & IPS_ENABLE);
10043
10044         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10045             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10046                 pipe_config->pixel_multiplier =
10047                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10048         } else {
10049                 pipe_config->pixel_multiplier = 1;
10050         }
10051
10052 out:
10053         for_each_power_domain(power_domain, power_domain_mask)
10054                 intel_display_power_put(dev_priv, power_domain);
10055
10056         return active;
10057 }
10058
10059 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10060                                const struct intel_plane_state *plane_state)
10061 {
10062         struct drm_device *dev = crtc->dev;
10063         struct drm_i915_private *dev_priv = dev->dev_private;
10064         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10065         uint32_t cntl = 0, size = 0;
10066
10067         if (plane_state && plane_state->visible) {
10068                 unsigned int width = plane_state->base.crtc_w;
10069                 unsigned int height = plane_state->base.crtc_h;
10070                 unsigned int stride = roundup_pow_of_two(width) * 4;
10071
10072                 switch (stride) {
10073                 default:
10074                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10075                                   width, stride);
10076                         stride = 256;
10077                         /* fallthrough */
10078                 case 256:
10079                 case 512:
10080                 case 1024:
10081                 case 2048:
10082                         break;
10083                 }
10084
10085                 cntl |= CURSOR_ENABLE |
10086                         CURSOR_GAMMA_ENABLE |
10087                         CURSOR_FORMAT_ARGB |
10088                         CURSOR_STRIDE(stride);
10089
10090                 size = (height << 12) | width;
10091         }
10092
10093         if (intel_crtc->cursor_cntl != 0 &&
10094             (intel_crtc->cursor_base != base ||
10095              intel_crtc->cursor_size != size ||
10096              intel_crtc->cursor_cntl != cntl)) {
10097                 /* On these chipsets we can only modify the base/size/stride
10098                  * whilst the cursor is disabled.
10099                  */
10100                 I915_WRITE(CURCNTR(PIPE_A), 0);
10101                 POSTING_READ(CURCNTR(PIPE_A));
10102                 intel_crtc->cursor_cntl = 0;
10103         }
10104
10105         if (intel_crtc->cursor_base != base) {
10106                 I915_WRITE(CURBASE(PIPE_A), base);
10107                 intel_crtc->cursor_base = base;
10108         }
10109
10110         if (intel_crtc->cursor_size != size) {
10111                 I915_WRITE(CURSIZE, size);
10112                 intel_crtc->cursor_size = size;
10113         }
10114
10115         if (intel_crtc->cursor_cntl != cntl) {
10116                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10117                 POSTING_READ(CURCNTR(PIPE_A));
10118                 intel_crtc->cursor_cntl = cntl;
10119         }
10120 }
10121
10122 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10123                                const struct intel_plane_state *plane_state)
10124 {
10125         struct drm_device *dev = crtc->dev;
10126         struct drm_i915_private *dev_priv = dev->dev_private;
10127         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10128         int pipe = intel_crtc->pipe;
10129         uint32_t cntl = 0;
10130
10131         if (plane_state && plane_state->visible) {
10132                 cntl = MCURSOR_GAMMA_ENABLE;
10133                 switch (plane_state->base.crtc_w) {
10134                         case 64:
10135                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10136                                 break;
10137                         case 128:
10138                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10139                                 break;
10140                         case 256:
10141                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10142                                 break;
10143                         default:
10144                                 MISSING_CASE(plane_state->base.crtc_w);
10145                                 return;
10146                 }
10147                 cntl |= pipe << 28; /* Connect to correct pipe */
10148
10149                 if (HAS_DDI(dev))
10150                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10151
10152                 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10153                         cntl |= CURSOR_ROTATE_180;
10154         }
10155
10156         if (intel_crtc->cursor_cntl != cntl) {
10157                 I915_WRITE(CURCNTR(pipe), cntl);
10158                 POSTING_READ(CURCNTR(pipe));
10159                 intel_crtc->cursor_cntl = cntl;
10160         }
10161
10162         /* and commit changes on next vblank */
10163         I915_WRITE(CURBASE(pipe), base);
10164         POSTING_READ(CURBASE(pipe));
10165
10166         intel_crtc->cursor_base = base;
10167 }
10168
10169 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10170 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10171                                      const struct intel_plane_state *plane_state)
10172 {
10173         struct drm_device *dev = crtc->dev;
10174         struct drm_i915_private *dev_priv = dev->dev_private;
10175         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10176         int pipe = intel_crtc->pipe;
10177         u32 base = intel_crtc->cursor_addr;
10178         u32 pos = 0;
10179
10180         if (plane_state) {
10181                 int x = plane_state->base.crtc_x;
10182                 int y = plane_state->base.crtc_y;
10183
10184                 if (x < 0) {
10185                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10186                         x = -x;
10187                 }
10188                 pos |= x << CURSOR_X_SHIFT;
10189
10190                 if (y < 0) {
10191                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10192                         y = -y;
10193                 }
10194                 pos |= y << CURSOR_Y_SHIFT;
10195
10196                 /* ILK+ do this automagically */
10197                 if (HAS_GMCH_DISPLAY(dev) &&
10198                     plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10199                         base += (plane_state->base.crtc_h *
10200                                  plane_state->base.crtc_w - 1) * 4;
10201                 }
10202         }
10203
10204         I915_WRITE(CURPOS(pipe), pos);
10205
10206         if (IS_845G(dev) || IS_I865G(dev))
10207                 i845_update_cursor(crtc, base, plane_state);
10208         else
10209                 i9xx_update_cursor(crtc, base, plane_state);
10210 }
10211
10212 static bool cursor_size_ok(struct drm_device *dev,
10213                            uint32_t width, uint32_t height)
10214 {
10215         if (width == 0 || height == 0)
10216                 return false;
10217
10218         /*
10219          * 845g/865g are special in that they are only limited by
10220          * the width of their cursors, the height is arbitrary up to
10221          * the precision of the register. Everything else requires
10222          * square cursors, limited to a few power-of-two sizes.
10223          */
10224         if (IS_845G(dev) || IS_I865G(dev)) {
10225                 if ((width & 63) != 0)
10226                         return false;
10227
10228                 if (width > (IS_845G(dev) ? 64 : 512))
10229                         return false;
10230
10231                 if (height > 1023)
10232                         return false;
10233         } else {
10234                 switch (width | height) {
10235                 case 256:
10236                 case 128:
10237                         if (IS_GEN2(dev))
10238                                 return false;
10239                 case 64:
10240                         break;
10241                 default:
10242                         return false;
10243                 }
10244         }
10245
10246         return true;
10247 }
10248
10249 /* VESA 640x480x72Hz mode to set on the pipe */
10250 static struct drm_display_mode load_detect_mode = {
10251         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10252                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10253 };
10254
10255 struct drm_framebuffer *
10256 __intel_framebuffer_create(struct drm_device *dev,
10257                            struct drm_mode_fb_cmd2 *mode_cmd,
10258                            struct drm_i915_gem_object *obj)
10259 {
10260         struct intel_framebuffer *intel_fb;
10261         int ret;
10262
10263         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10264         if (!intel_fb)
10265                 return ERR_PTR(-ENOMEM);
10266
10267         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10268         if (ret)
10269                 goto err;
10270
10271         return &intel_fb->base;
10272
10273 err:
10274         kfree(intel_fb);
10275         return ERR_PTR(ret);
10276 }
10277
10278 static struct drm_framebuffer *
10279 intel_framebuffer_create(struct drm_device *dev,
10280                          struct drm_mode_fb_cmd2 *mode_cmd,
10281                          struct drm_i915_gem_object *obj)
10282 {
10283         struct drm_framebuffer *fb;
10284         int ret;
10285
10286         ret = i915_mutex_lock_interruptible(dev);
10287         if (ret)
10288                 return ERR_PTR(ret);
10289         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10290         mutex_unlock(&dev->struct_mutex);
10291
10292         return fb;
10293 }
10294
10295 static u32
10296 intel_framebuffer_pitch_for_width(int width, int bpp)
10297 {
10298         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10299         return ALIGN(pitch, 64);
10300 }
10301
10302 static u32
10303 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10304 {
10305         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10306         return PAGE_ALIGN(pitch * mode->vdisplay);
10307 }
10308
10309 static struct drm_framebuffer *
10310 intel_framebuffer_create_for_mode(struct drm_device *dev,
10311                                   struct drm_display_mode *mode,
10312                                   int depth, int bpp)
10313 {
10314         struct drm_framebuffer *fb;
10315         struct drm_i915_gem_object *obj;
10316         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10317
10318         obj = i915_gem_object_create(dev,
10319                                     intel_framebuffer_size_for_mode(mode, bpp));
10320         if (IS_ERR(obj))
10321                 return ERR_CAST(obj);
10322
10323         mode_cmd.width = mode->hdisplay;
10324         mode_cmd.height = mode->vdisplay;
10325         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10326                                                                 bpp);
10327         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10328
10329         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10330         if (IS_ERR(fb))
10331                 drm_gem_object_unreference_unlocked(&obj->base);
10332
10333         return fb;
10334 }
10335
10336 static struct drm_framebuffer *
10337 mode_fits_in_fbdev(struct drm_device *dev,
10338                    struct drm_display_mode *mode)
10339 {
10340 #ifdef CONFIG_DRM_FBDEV_EMULATION
10341         struct drm_i915_private *dev_priv = dev->dev_private;
10342         struct drm_i915_gem_object *obj;
10343         struct drm_framebuffer *fb;
10344
10345         if (!dev_priv->fbdev)
10346                 return NULL;
10347
10348         if (!dev_priv->fbdev->fb)
10349                 return NULL;
10350
10351         obj = dev_priv->fbdev->fb->obj;
10352         BUG_ON(!obj);
10353
10354         fb = &dev_priv->fbdev->fb->base;
10355         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10356                                                                fb->bits_per_pixel))
10357                 return NULL;
10358
10359         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10360                 return NULL;
10361
10362         drm_framebuffer_reference(fb);
10363         return fb;
10364 #else
10365         return NULL;
10366 #endif
10367 }
10368
10369 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10370                                            struct drm_crtc *crtc,
10371                                            struct drm_display_mode *mode,
10372                                            struct drm_framebuffer *fb,
10373                                            int x, int y)
10374 {
10375         struct drm_plane_state *plane_state;
10376         int hdisplay, vdisplay;
10377         int ret;
10378
10379         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10380         if (IS_ERR(plane_state))
10381                 return PTR_ERR(plane_state);
10382
10383         if (mode)
10384                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10385         else
10386                 hdisplay = vdisplay = 0;
10387
10388         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10389         if (ret)
10390                 return ret;
10391         drm_atomic_set_fb_for_plane(plane_state, fb);
10392         plane_state->crtc_x = 0;
10393         plane_state->crtc_y = 0;
10394         plane_state->crtc_w = hdisplay;
10395         plane_state->crtc_h = vdisplay;
10396         plane_state->src_x = x << 16;
10397         plane_state->src_y = y << 16;
10398         plane_state->src_w = hdisplay << 16;
10399         plane_state->src_h = vdisplay << 16;
10400
10401         return 0;
10402 }
10403
10404 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10405                                 struct drm_display_mode *mode,
10406                                 struct intel_load_detect_pipe *old,
10407                                 struct drm_modeset_acquire_ctx *ctx)
10408 {
10409         struct intel_crtc *intel_crtc;
10410         struct intel_encoder *intel_encoder =
10411                 intel_attached_encoder(connector);
10412         struct drm_crtc *possible_crtc;
10413         struct drm_encoder *encoder = &intel_encoder->base;
10414         struct drm_crtc *crtc = NULL;
10415         struct drm_device *dev = encoder->dev;
10416         struct drm_framebuffer *fb;
10417         struct drm_mode_config *config = &dev->mode_config;
10418         struct drm_atomic_state *state = NULL, *restore_state = NULL;
10419         struct drm_connector_state *connector_state;
10420         struct intel_crtc_state *crtc_state;
10421         int ret, i = -1;
10422
10423         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10424                       connector->base.id, connector->name,
10425                       encoder->base.id, encoder->name);
10426
10427         old->restore_state = NULL;
10428
10429 retry:
10430         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10431         if (ret)
10432                 goto fail;
10433
10434         /*
10435          * Algorithm gets a little messy:
10436          *
10437          *   - if the connector already has an assigned crtc, use it (but make
10438          *     sure it's on first)
10439          *
10440          *   - try to find the first unused crtc that can drive this connector,
10441          *     and use that if we find one
10442          */
10443
10444         /* See if we already have a CRTC for this connector */
10445         if (connector->state->crtc) {
10446                 crtc = connector->state->crtc;
10447
10448                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10449                 if (ret)
10450                         goto fail;
10451
10452                 /* Make sure the crtc and connector are running */
10453                 goto found;
10454         }
10455
10456         /* Find an unused one (if possible) */
10457         for_each_crtc(dev, possible_crtc) {
10458                 i++;
10459                 if (!(encoder->possible_crtcs & (1 << i)))
10460                         continue;
10461
10462                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10463                 if (ret)
10464                         goto fail;
10465
10466                 if (possible_crtc->state->enable) {
10467                         drm_modeset_unlock(&possible_crtc->mutex);
10468                         continue;
10469                 }
10470
10471                 crtc = possible_crtc;
10472                 break;
10473         }
10474
10475         /*
10476          * If we didn't find an unused CRTC, don't use any.
10477          */
10478         if (!crtc) {
10479                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10480                 goto fail;
10481         }
10482
10483 found:
10484         intel_crtc = to_intel_crtc(crtc);
10485
10486         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10487         if (ret)
10488                 goto fail;
10489
10490         state = drm_atomic_state_alloc(dev);
10491         restore_state = drm_atomic_state_alloc(dev);
10492         if (!state || !restore_state) {
10493                 ret = -ENOMEM;
10494                 goto fail;
10495         }
10496
10497         state->acquire_ctx = ctx;
10498         restore_state->acquire_ctx = ctx;
10499
10500         connector_state = drm_atomic_get_connector_state(state, connector);
10501         if (IS_ERR(connector_state)) {
10502                 ret = PTR_ERR(connector_state);
10503                 goto fail;
10504         }
10505
10506         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10507         if (ret)
10508                 goto fail;
10509
10510         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10511         if (IS_ERR(crtc_state)) {
10512                 ret = PTR_ERR(crtc_state);
10513                 goto fail;
10514         }
10515
10516         crtc_state->base.active = crtc_state->base.enable = true;
10517
10518         if (!mode)
10519                 mode = &load_detect_mode;
10520
10521         /* We need a framebuffer large enough to accommodate all accesses
10522          * that the plane may generate whilst we perform load detection.
10523          * We can not rely on the fbcon either being present (we get called
10524          * during its initialisation to detect all boot displays, or it may
10525          * not even exist) or that it is large enough to satisfy the
10526          * requested mode.
10527          */
10528         fb = mode_fits_in_fbdev(dev, mode);
10529         if (fb == NULL) {
10530                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10531                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10532         } else
10533                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10534         if (IS_ERR(fb)) {
10535                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10536                 goto fail;
10537         }
10538
10539         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10540         if (ret)
10541                 goto fail;
10542
10543         drm_framebuffer_unreference(fb);
10544
10545         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10546         if (ret)
10547                 goto fail;
10548
10549         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10550         if (!ret)
10551                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10552         if (!ret)
10553                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10554         if (ret) {
10555                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10556                 goto fail;
10557         }
10558
10559         ret = drm_atomic_commit(state);
10560         if (ret) {
10561                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10562                 goto fail;
10563         }
10564
10565         old->restore_state = restore_state;
10566
10567         /* let the connector get through one full cycle before testing */
10568         intel_wait_for_vblank(dev, intel_crtc->pipe);
10569         return true;
10570
10571 fail:
10572         drm_atomic_state_free(state);
10573         drm_atomic_state_free(restore_state);
10574         restore_state = state = NULL;
10575
10576         if (ret == -EDEADLK) {
10577                 drm_modeset_backoff(ctx);
10578                 goto retry;
10579         }
10580
10581         return false;
10582 }
10583
10584 void intel_release_load_detect_pipe(struct drm_connector *connector,
10585                                     struct intel_load_detect_pipe *old,
10586                                     struct drm_modeset_acquire_ctx *ctx)
10587 {
10588         struct intel_encoder *intel_encoder =
10589                 intel_attached_encoder(connector);
10590         struct drm_encoder *encoder = &intel_encoder->base;
10591         struct drm_atomic_state *state = old->restore_state;
10592         int ret;
10593
10594         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10595                       connector->base.id, connector->name,
10596                       encoder->base.id, encoder->name);
10597
10598         if (!state)
10599                 return;
10600
10601         ret = drm_atomic_commit(state);
10602         if (ret) {
10603                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10604                 drm_atomic_state_free(state);
10605         }
10606 }
10607
10608 static int i9xx_pll_refclk(struct drm_device *dev,
10609                            const struct intel_crtc_state *pipe_config)
10610 {
10611         struct drm_i915_private *dev_priv = dev->dev_private;
10612         u32 dpll = pipe_config->dpll_hw_state.dpll;
10613
10614         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10615                 return dev_priv->vbt.lvds_ssc_freq;
10616         else if (HAS_PCH_SPLIT(dev))
10617                 return 120000;
10618         else if (!IS_GEN2(dev))
10619                 return 96000;
10620         else
10621                 return 48000;
10622 }
10623
10624 /* Returns the clock of the currently programmed mode of the given pipe. */
10625 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10626                                 struct intel_crtc_state *pipe_config)
10627 {
10628         struct drm_device *dev = crtc->base.dev;
10629         struct drm_i915_private *dev_priv = dev->dev_private;
10630         int pipe = pipe_config->cpu_transcoder;
10631         u32 dpll = pipe_config->dpll_hw_state.dpll;
10632         u32 fp;
10633         struct dpll clock;
10634         int port_clock;
10635         int refclk = i9xx_pll_refclk(dev, pipe_config);
10636
10637         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10638                 fp = pipe_config->dpll_hw_state.fp0;
10639         else
10640                 fp = pipe_config->dpll_hw_state.fp1;
10641
10642         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10643         if (IS_PINEVIEW(dev)) {
10644                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10645                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10646         } else {
10647                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10648                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10649         }
10650
10651         if (!IS_GEN2(dev)) {
10652                 if (IS_PINEVIEW(dev))
10653                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10654                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10655                 else
10656                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10657                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10658
10659                 switch (dpll & DPLL_MODE_MASK) {
10660                 case DPLLB_MODE_DAC_SERIAL:
10661                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10662                                 5 : 10;
10663                         break;
10664                 case DPLLB_MODE_LVDS:
10665                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10666                                 7 : 14;
10667                         break;
10668                 default:
10669                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10670                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10671                         return;
10672                 }
10673
10674                 if (IS_PINEVIEW(dev))
10675                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10676                 else
10677                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10678         } else {
10679                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10680                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10681
10682                 if (is_lvds) {
10683                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10684                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10685
10686                         if (lvds & LVDS_CLKB_POWER_UP)
10687                                 clock.p2 = 7;
10688                         else
10689                                 clock.p2 = 14;
10690                 } else {
10691                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10692                                 clock.p1 = 2;
10693                         else {
10694                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10695                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10696                         }
10697                         if (dpll & PLL_P2_DIVIDE_BY_4)
10698                                 clock.p2 = 4;
10699                         else
10700                                 clock.p2 = 2;
10701                 }
10702
10703                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10704         }
10705
10706         /*
10707          * This value includes pixel_multiplier. We will use
10708          * port_clock to compute adjusted_mode.crtc_clock in the
10709          * encoder's get_config() function.
10710          */
10711         pipe_config->port_clock = port_clock;
10712 }
10713
10714 int intel_dotclock_calculate(int link_freq,
10715                              const struct intel_link_m_n *m_n)
10716 {
10717         /*
10718          * The calculation for the data clock is:
10719          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10720          * But we want to avoid losing precison if possible, so:
10721          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10722          *
10723          * and the link clock is simpler:
10724          * link_clock = (m * link_clock) / n
10725          */
10726
10727         if (!m_n->link_n)
10728                 return 0;
10729
10730         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10731 }
10732
10733 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10734                                    struct intel_crtc_state *pipe_config)
10735 {
10736         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10737
10738         /* read out port_clock from the DPLL */
10739         i9xx_crtc_clock_get(crtc, pipe_config);
10740
10741         /*
10742          * In case there is an active pipe without active ports,
10743          * we may need some idea for the dotclock anyway.
10744          * Calculate one based on the FDI configuration.
10745          */
10746         pipe_config->base.adjusted_mode.crtc_clock =
10747                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10748                                          &pipe_config->fdi_m_n);
10749 }
10750
10751 /** Returns the currently programmed mode of the given pipe. */
10752 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10753                                              struct drm_crtc *crtc)
10754 {
10755         struct drm_i915_private *dev_priv = dev->dev_private;
10756         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10757         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10758         struct drm_display_mode *mode;
10759         struct intel_crtc_state *pipe_config;
10760         int htot = I915_READ(HTOTAL(cpu_transcoder));
10761         int hsync = I915_READ(HSYNC(cpu_transcoder));
10762         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10763         int vsync = I915_READ(VSYNC(cpu_transcoder));
10764         enum pipe pipe = intel_crtc->pipe;
10765
10766         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10767         if (!mode)
10768                 return NULL;
10769
10770         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10771         if (!pipe_config) {
10772                 kfree(mode);
10773                 return NULL;
10774         }
10775
10776         /*
10777          * Construct a pipe_config sufficient for getting the clock info
10778          * back out of crtc_clock_get.
10779          *
10780          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10781          * to use a real value here instead.
10782          */
10783         pipe_config->cpu_transcoder = (enum transcoder) pipe;
10784         pipe_config->pixel_multiplier = 1;
10785         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10786         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10787         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10788         i9xx_crtc_clock_get(intel_crtc, pipe_config);
10789
10790         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10791         mode->hdisplay = (htot & 0xffff) + 1;
10792         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10793         mode->hsync_start = (hsync & 0xffff) + 1;
10794         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10795         mode->vdisplay = (vtot & 0xffff) + 1;
10796         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10797         mode->vsync_start = (vsync & 0xffff) + 1;
10798         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10799
10800         drm_mode_set_name(mode);
10801
10802         kfree(pipe_config);
10803
10804         return mode;
10805 }
10806
10807 void intel_mark_busy(struct drm_i915_private *dev_priv)
10808 {
10809         if (dev_priv->mm.busy)
10810                 return;
10811
10812         intel_runtime_pm_get(dev_priv);
10813         i915_update_gfx_val(dev_priv);
10814         if (INTEL_GEN(dev_priv) >= 6)
10815                 gen6_rps_busy(dev_priv);
10816         dev_priv->mm.busy = true;
10817 }
10818
10819 void intel_mark_idle(struct drm_i915_private *dev_priv)
10820 {
10821         if (!dev_priv->mm.busy)
10822                 return;
10823
10824         dev_priv->mm.busy = false;
10825
10826         if (INTEL_GEN(dev_priv) >= 6)
10827                 gen6_rps_idle(dev_priv);
10828
10829         intel_runtime_pm_put(dev_priv);
10830 }
10831
10832 static void intel_crtc_destroy(struct drm_crtc *crtc)
10833 {
10834         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10835         struct drm_device *dev = crtc->dev;
10836         struct intel_unpin_work *work;
10837
10838         spin_lock_irq(&dev->event_lock);
10839         work = intel_crtc->unpin_work;
10840         intel_crtc->unpin_work = NULL;
10841         spin_unlock_irq(&dev->event_lock);
10842
10843         if (work) {
10844                 cancel_work_sync(&work->work);
10845                 kfree(work);
10846         }
10847
10848         drm_crtc_cleanup(crtc);
10849
10850         kfree(intel_crtc);
10851 }
10852
10853 static void intel_unpin_work_fn(struct work_struct *__work)
10854 {
10855         struct intel_unpin_work *work =
10856                 container_of(__work, struct intel_unpin_work, work);
10857         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10858         struct drm_device *dev = crtc->base.dev;
10859         struct drm_plane *primary = crtc->base.primary;
10860
10861         mutex_lock(&dev->struct_mutex);
10862         intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
10863         drm_gem_object_unreference(&work->pending_flip_obj->base);
10864
10865         if (work->flip_queued_req)
10866                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10867         mutex_unlock(&dev->struct_mutex);
10868
10869         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10870         intel_fbc_post_update(crtc);
10871         drm_framebuffer_unreference(work->old_fb);
10872
10873         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10874         atomic_dec(&crtc->unpin_work_count);
10875
10876         kfree(work);
10877 }
10878
10879 static void do_intel_finish_page_flip(struct drm_i915_private *dev_priv,
10880                                       struct drm_crtc *crtc)
10881 {
10882         struct drm_device *dev = dev_priv->dev;
10883         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10884         struct intel_unpin_work *work;
10885         unsigned long flags;
10886
10887         /* Ignore early vblank irqs */
10888         if (intel_crtc == NULL)
10889                 return;
10890
10891         /*
10892          * This is called both by irq handlers and the reset code (to complete
10893          * lost pageflips) so needs the full irqsave spinlocks.
10894          */
10895         spin_lock_irqsave(&dev->event_lock, flags);
10896         work = intel_crtc->unpin_work;
10897
10898         /* Ensure we don't miss a work->pending update ... */
10899         smp_rmb();
10900
10901         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10902                 spin_unlock_irqrestore(&dev->event_lock, flags);
10903                 return;
10904         }
10905
10906         page_flip_completed(intel_crtc);
10907
10908         spin_unlock_irqrestore(&dev->event_lock, flags);
10909 }
10910
10911 void intel_finish_page_flip(struct drm_i915_private *dev_priv, int pipe)
10912 {
10913         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10914
10915         do_intel_finish_page_flip(dev_priv, crtc);
10916 }
10917
10918 void intel_finish_page_flip_plane(struct drm_i915_private *dev_priv, int plane)
10919 {
10920         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10921
10922         do_intel_finish_page_flip(dev_priv, crtc);
10923 }
10924
10925 /* Is 'a' after or equal to 'b'? */
10926 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10927 {
10928         return !((a - b) & 0x80000000);
10929 }
10930
10931 static bool page_flip_finished(struct intel_crtc *crtc)
10932 {
10933         struct drm_device *dev = crtc->base.dev;
10934         struct drm_i915_private *dev_priv = dev->dev_private;
10935         unsigned reset_counter;
10936
10937         reset_counter = i915_reset_counter(&dev_priv->gpu_error);
10938         if (crtc->reset_counter != reset_counter)
10939                 return true;
10940
10941         /*
10942          * The relevant registers doen't exist on pre-ctg.
10943          * As the flip done interrupt doesn't trigger for mmio
10944          * flips on gmch platforms, a flip count check isn't
10945          * really needed there. But since ctg has the registers,
10946          * include it in the check anyway.
10947          */
10948         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10949                 return true;
10950
10951         /*
10952          * BDW signals flip done immediately if the plane
10953          * is disabled, even if the plane enable is already
10954          * armed to occur at the next vblank :(
10955          */
10956
10957         /*
10958          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10959          * used the same base address. In that case the mmio flip might
10960          * have completed, but the CS hasn't even executed the flip yet.
10961          *
10962          * A flip count check isn't enough as the CS might have updated
10963          * the base address just after start of vblank, but before we
10964          * managed to process the interrupt. This means we'd complete the
10965          * CS flip too soon.
10966          *
10967          * Combining both checks should get us a good enough result. It may
10968          * still happen that the CS flip has been executed, but has not
10969          * yet actually completed. But in case the base address is the same
10970          * anyway, we don't really care.
10971          */
10972         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10973                 crtc->unpin_work->gtt_offset &&
10974                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10975                                     crtc->unpin_work->flip_count);
10976 }
10977
10978 void intel_prepare_page_flip(struct drm_i915_private *dev_priv, int plane)
10979 {
10980         struct drm_device *dev = dev_priv->dev;
10981         struct intel_crtc *intel_crtc =
10982                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10983         unsigned long flags;
10984
10985
10986         /*
10987          * This is called both by irq handlers and the reset code (to complete
10988          * lost pageflips) so needs the full irqsave spinlocks.
10989          *
10990          * NB: An MMIO update of the plane base pointer will also
10991          * generate a page-flip completion irq, i.e. every modeset
10992          * is also accompanied by a spurious intel_prepare_page_flip().
10993          */
10994         spin_lock_irqsave(&dev->event_lock, flags);
10995         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10996                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10997         spin_unlock_irqrestore(&dev->event_lock, flags);
10998 }
10999
11000 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
11001 {
11002         /* Ensure that the work item is consistent when activating it ... */
11003         smp_wmb();
11004         atomic_set(&work->pending, INTEL_FLIP_PENDING);
11005         /* and that it is marked active as soon as the irq could fire. */
11006         smp_wmb();
11007 }
11008
11009 static int intel_gen2_queue_flip(struct drm_device *dev,
11010                                  struct drm_crtc *crtc,
11011                                  struct drm_framebuffer *fb,
11012                                  struct drm_i915_gem_object *obj,
11013                                  struct drm_i915_gem_request *req,
11014                                  uint32_t flags)
11015 {
11016         struct intel_engine_cs *engine = req->engine;
11017         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11018         u32 flip_mask;
11019         int ret;
11020
11021         ret = intel_ring_begin(req, 6);
11022         if (ret)
11023                 return ret;
11024
11025         /* Can't queue multiple flips, so wait for the previous
11026          * one to finish before executing the next.
11027          */
11028         if (intel_crtc->plane)
11029                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11030         else
11031                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11032         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11033         intel_ring_emit(engine, MI_NOOP);
11034         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11035                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11036         intel_ring_emit(engine, fb->pitches[0]);
11037         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11038         intel_ring_emit(engine, 0); /* aux display base address, unused */
11039
11040         intel_mark_page_flip_active(intel_crtc->unpin_work);
11041         return 0;
11042 }
11043
11044 static int intel_gen3_queue_flip(struct drm_device *dev,
11045                                  struct drm_crtc *crtc,
11046                                  struct drm_framebuffer *fb,
11047                                  struct drm_i915_gem_object *obj,
11048                                  struct drm_i915_gem_request *req,
11049                                  uint32_t flags)
11050 {
11051         struct intel_engine_cs *engine = req->engine;
11052         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11053         u32 flip_mask;
11054         int ret;
11055
11056         ret = intel_ring_begin(req, 6);
11057         if (ret)
11058                 return ret;
11059
11060         if (intel_crtc->plane)
11061                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11062         else
11063                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11064         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11065         intel_ring_emit(engine, MI_NOOP);
11066         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
11067                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11068         intel_ring_emit(engine, fb->pitches[0]);
11069         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11070         intel_ring_emit(engine, MI_NOOP);
11071
11072         intel_mark_page_flip_active(intel_crtc->unpin_work);
11073         return 0;
11074 }
11075
11076 static int intel_gen4_queue_flip(struct drm_device *dev,
11077                                  struct drm_crtc *crtc,
11078                                  struct drm_framebuffer *fb,
11079                                  struct drm_i915_gem_object *obj,
11080                                  struct drm_i915_gem_request *req,
11081                                  uint32_t flags)
11082 {
11083         struct intel_engine_cs *engine = req->engine;
11084         struct drm_i915_private *dev_priv = dev->dev_private;
11085         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11086         uint32_t pf, pipesrc;
11087         int ret;
11088
11089         ret = intel_ring_begin(req, 4);
11090         if (ret)
11091                 return ret;
11092
11093         /* i965+ uses the linear or tiled offsets from the
11094          * Display Registers (which do not change across a page-flip)
11095          * so we need only reprogram the base address.
11096          */
11097         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11098                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11099         intel_ring_emit(engine, fb->pitches[0]);
11100         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset |
11101                         obj->tiling_mode);
11102
11103         /* XXX Enabling the panel-fitter across page-flip is so far
11104          * untested on non-native modes, so ignore it for now.
11105          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11106          */
11107         pf = 0;
11108         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11109         intel_ring_emit(engine, pf | pipesrc);
11110
11111         intel_mark_page_flip_active(intel_crtc->unpin_work);
11112         return 0;
11113 }
11114
11115 static int intel_gen6_queue_flip(struct drm_device *dev,
11116                                  struct drm_crtc *crtc,
11117                                  struct drm_framebuffer *fb,
11118                                  struct drm_i915_gem_object *obj,
11119                                  struct drm_i915_gem_request *req,
11120                                  uint32_t flags)
11121 {
11122         struct intel_engine_cs *engine = req->engine;
11123         struct drm_i915_private *dev_priv = dev->dev_private;
11124         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11125         uint32_t pf, pipesrc;
11126         int ret;
11127
11128         ret = intel_ring_begin(req, 4);
11129         if (ret)
11130                 return ret;
11131
11132         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11133                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11134         intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11135         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11136
11137         /* Contrary to the suggestions in the documentation,
11138          * "Enable Panel Fitter" does not seem to be required when page
11139          * flipping with a non-native mode, and worse causes a normal
11140          * modeset to fail.
11141          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11142          */
11143         pf = 0;
11144         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11145         intel_ring_emit(engine, pf | pipesrc);
11146
11147         intel_mark_page_flip_active(intel_crtc->unpin_work);
11148         return 0;
11149 }
11150
11151 static int intel_gen7_queue_flip(struct drm_device *dev,
11152                                  struct drm_crtc *crtc,
11153                                  struct drm_framebuffer *fb,
11154                                  struct drm_i915_gem_object *obj,
11155                                  struct drm_i915_gem_request *req,
11156                                  uint32_t flags)
11157 {
11158         struct intel_engine_cs *engine = req->engine;
11159         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11160         uint32_t plane_bit = 0;
11161         int len, ret;
11162
11163         switch (intel_crtc->plane) {
11164         case PLANE_A:
11165                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11166                 break;
11167         case PLANE_B:
11168                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11169                 break;
11170         case PLANE_C:
11171                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11172                 break;
11173         default:
11174                 WARN_ONCE(1, "unknown plane in flip command\n");
11175                 return -ENODEV;
11176         }
11177
11178         len = 4;
11179         if (engine->id == RCS) {
11180                 len += 6;
11181                 /*
11182                  * On Gen 8, SRM is now taking an extra dword to accommodate
11183                  * 48bits addresses, and we need a NOOP for the batch size to
11184                  * stay even.
11185                  */
11186                 if (IS_GEN8(dev))
11187                         len += 2;
11188         }
11189
11190         /*
11191          * BSpec MI_DISPLAY_FLIP for IVB:
11192          * "The full packet must be contained within the same cache line."
11193          *
11194          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11195          * cacheline, if we ever start emitting more commands before
11196          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11197          * then do the cacheline alignment, and finally emit the
11198          * MI_DISPLAY_FLIP.
11199          */
11200         ret = intel_ring_cacheline_align(req);
11201         if (ret)
11202                 return ret;
11203
11204         ret = intel_ring_begin(req, len);
11205         if (ret)
11206                 return ret;
11207
11208         /* Unmask the flip-done completion message. Note that the bspec says that
11209          * we should do this for both the BCS and RCS, and that we must not unmask
11210          * more than one flip event at any time (or ensure that one flip message
11211          * can be sent by waiting for flip-done prior to queueing new flips).
11212          * Experimentation says that BCS works despite DERRMR masking all
11213          * flip-done completion events and that unmasking all planes at once
11214          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11215          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11216          */
11217         if (engine->id == RCS) {
11218                 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11219                 intel_ring_emit_reg(engine, DERRMR);
11220                 intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11221                                           DERRMR_PIPEB_PRI_FLIP_DONE |
11222                                           DERRMR_PIPEC_PRI_FLIP_DONE));
11223                 if (IS_GEN8(dev))
11224                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
11225                                               MI_SRM_LRM_GLOBAL_GTT);
11226                 else
11227                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
11228                                               MI_SRM_LRM_GLOBAL_GTT);
11229                 intel_ring_emit_reg(engine, DERRMR);
11230                 intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
11231                 if (IS_GEN8(dev)) {
11232                         intel_ring_emit(engine, 0);
11233                         intel_ring_emit(engine, MI_NOOP);
11234                 }
11235         }
11236
11237         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11238         intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11239         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11240         intel_ring_emit(engine, (MI_NOOP));
11241
11242         intel_mark_page_flip_active(intel_crtc->unpin_work);
11243         return 0;
11244 }
11245
11246 static bool use_mmio_flip(struct intel_engine_cs *engine,
11247                           struct drm_i915_gem_object *obj)
11248 {
11249         /*
11250          * This is not being used for older platforms, because
11251          * non-availability of flip done interrupt forces us to use
11252          * CS flips. Older platforms derive flip done using some clever
11253          * tricks involving the flip_pending status bits and vblank irqs.
11254          * So using MMIO flips there would disrupt this mechanism.
11255          */
11256
11257         if (engine == NULL)
11258                 return true;
11259
11260         if (INTEL_GEN(engine->i915) < 5)
11261                 return false;
11262
11263         if (i915.use_mmio_flip < 0)
11264                 return false;
11265         else if (i915.use_mmio_flip > 0)
11266                 return true;
11267         else if (i915.enable_execlists)
11268                 return true;
11269         else if (obj->base.dma_buf &&
11270                  !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11271                                                        false))
11272                 return true;
11273         else
11274                 return engine != i915_gem_request_get_engine(obj->last_write_req);
11275 }
11276
11277 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11278                              unsigned int rotation,
11279                              struct intel_unpin_work *work)
11280 {
11281         struct drm_device *dev = intel_crtc->base.dev;
11282         struct drm_i915_private *dev_priv = dev->dev_private;
11283         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11284         const enum pipe pipe = intel_crtc->pipe;
11285         u32 ctl, stride, tile_height;
11286
11287         ctl = I915_READ(PLANE_CTL(pipe, 0));
11288         ctl &= ~PLANE_CTL_TILED_MASK;
11289         switch (fb->modifier[0]) {
11290         case DRM_FORMAT_MOD_NONE:
11291                 break;
11292         case I915_FORMAT_MOD_X_TILED:
11293                 ctl |= PLANE_CTL_TILED_X;
11294                 break;
11295         case I915_FORMAT_MOD_Y_TILED:
11296                 ctl |= PLANE_CTL_TILED_Y;
11297                 break;
11298         case I915_FORMAT_MOD_Yf_TILED:
11299                 ctl |= PLANE_CTL_TILED_YF;
11300                 break;
11301         default:
11302                 MISSING_CASE(fb->modifier[0]);
11303         }
11304
11305         /*
11306          * The stride is either expressed as a multiple of 64 bytes chunks for
11307          * linear buffers or in number of tiles for tiled buffers.
11308          */
11309         if (intel_rotation_90_or_270(rotation)) {
11310                 /* stride = Surface height in tiles */
11311                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11312                 stride = DIV_ROUND_UP(fb->height, tile_height);
11313         } else {
11314                 stride = fb->pitches[0] /
11315                         intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11316                                                   fb->pixel_format);
11317         }
11318
11319         /*
11320          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11321          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11322          */
11323         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11324         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11325
11326         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11327         POSTING_READ(PLANE_SURF(pipe, 0));
11328 }
11329
11330 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11331                              struct intel_unpin_work *work)
11332 {
11333         struct drm_device *dev = intel_crtc->base.dev;
11334         struct drm_i915_private *dev_priv = dev->dev_private;
11335         struct intel_framebuffer *intel_fb =
11336                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11337         struct drm_i915_gem_object *obj = intel_fb->obj;
11338         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11339         u32 dspcntr;
11340
11341         dspcntr = I915_READ(reg);
11342
11343         if (obj->tiling_mode != I915_TILING_NONE)
11344                 dspcntr |= DISPPLANE_TILED;
11345         else
11346                 dspcntr &= ~DISPPLANE_TILED;
11347
11348         I915_WRITE(reg, dspcntr);
11349
11350         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11351         POSTING_READ(DSPSURF(intel_crtc->plane));
11352 }
11353
11354 /*
11355  * XXX: This is the temporary way to update the plane registers until we get
11356  * around to using the usual plane update functions for MMIO flips
11357  */
11358 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11359 {
11360         struct intel_crtc *crtc = mmio_flip->crtc;
11361         struct intel_unpin_work *work;
11362
11363         spin_lock_irq(&crtc->base.dev->event_lock);
11364         work = crtc->unpin_work;
11365         spin_unlock_irq(&crtc->base.dev->event_lock);
11366         if (work == NULL)
11367                 return;
11368
11369         intel_mark_page_flip_active(work);
11370
11371         intel_pipe_update_start(crtc);
11372
11373         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11374                 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11375         else
11376                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11377                 ilk_do_mmio_flip(crtc, work);
11378
11379         intel_pipe_update_end(crtc);
11380 }
11381
11382 static void intel_mmio_flip_work_func(struct work_struct *work)
11383 {
11384         struct intel_mmio_flip *mmio_flip =
11385                 container_of(work, struct intel_mmio_flip, work);
11386         struct intel_framebuffer *intel_fb =
11387                 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11388         struct drm_i915_gem_object *obj = intel_fb->obj;
11389
11390         if (mmio_flip->req) {
11391                 WARN_ON(__i915_wait_request(mmio_flip->req,
11392                                             false, NULL,
11393                                             &mmio_flip->i915->rps.mmioflips));
11394                 i915_gem_request_unreference(mmio_flip->req);
11395         }
11396
11397         /* For framebuffer backed by dmabuf, wait for fence */
11398         if (obj->base.dma_buf)
11399                 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11400                                                             false, false,
11401                                                             MAX_SCHEDULE_TIMEOUT) < 0);
11402
11403         intel_do_mmio_flip(mmio_flip);
11404         kfree(mmio_flip);
11405 }
11406
11407 static int intel_queue_mmio_flip(struct drm_device *dev,
11408                                  struct drm_crtc *crtc,
11409                                  struct drm_i915_gem_object *obj)
11410 {
11411         struct intel_mmio_flip *mmio_flip;
11412
11413         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11414         if (mmio_flip == NULL)
11415                 return -ENOMEM;
11416
11417         mmio_flip->i915 = to_i915(dev);
11418         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11419         mmio_flip->crtc = to_intel_crtc(crtc);
11420         mmio_flip->rotation = crtc->primary->state->rotation;
11421
11422         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11423         schedule_work(&mmio_flip->work);
11424
11425         return 0;
11426 }
11427
11428 static int intel_default_queue_flip(struct drm_device *dev,
11429                                     struct drm_crtc *crtc,
11430                                     struct drm_framebuffer *fb,
11431                                     struct drm_i915_gem_object *obj,
11432                                     struct drm_i915_gem_request *req,
11433                                     uint32_t flags)
11434 {
11435         return -ENODEV;
11436 }
11437
11438 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11439                                          struct drm_crtc *crtc)
11440 {
11441         struct drm_i915_private *dev_priv = dev->dev_private;
11442         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11443         struct intel_unpin_work *work = intel_crtc->unpin_work;
11444         u32 addr;
11445
11446         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11447                 return true;
11448
11449         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11450                 return false;
11451
11452         if (!work->enable_stall_check)
11453                 return false;
11454
11455         if (work->flip_ready_vblank == 0) {
11456                 if (work->flip_queued_req &&
11457                     !i915_gem_request_completed(work->flip_queued_req, true))
11458                         return false;
11459
11460                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11461         }
11462
11463         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11464                 return false;
11465
11466         /* Potential stall - if we see that the flip has happened,
11467          * assume a missed interrupt. */
11468         if (INTEL_INFO(dev)->gen >= 4)
11469                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11470         else
11471                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11472
11473         /* There is a potential issue here with a false positive after a flip
11474          * to the same address. We could address this by checking for a
11475          * non-incrementing frame counter.
11476          */
11477         return addr == work->gtt_offset;
11478 }
11479
11480 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
11481 {
11482         struct drm_device *dev = dev_priv->dev;
11483         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11484         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11485         struct intel_unpin_work *work;
11486
11487         WARN_ON(!in_interrupt());
11488
11489         if (crtc == NULL)
11490                 return;
11491
11492         spin_lock(&dev->event_lock);
11493         work = intel_crtc->unpin_work;
11494         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11495                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11496                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11497                 page_flip_completed(intel_crtc);
11498                 work = NULL;
11499         }
11500         if (work != NULL &&
11501             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11502                 intel_queue_rps_boost_for_request(work->flip_queued_req);
11503         spin_unlock(&dev->event_lock);
11504 }
11505
11506 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11507                                 struct drm_framebuffer *fb,
11508                                 struct drm_pending_vblank_event *event,
11509                                 uint32_t page_flip_flags)
11510 {
11511         struct drm_device *dev = crtc->dev;
11512         struct drm_i915_private *dev_priv = dev->dev_private;
11513         struct drm_framebuffer *old_fb = crtc->primary->fb;
11514         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11515         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11516         struct drm_plane *primary = crtc->primary;
11517         enum pipe pipe = intel_crtc->pipe;
11518         struct intel_unpin_work *work;
11519         struct intel_engine_cs *engine;
11520         bool mmio_flip;
11521         struct drm_i915_gem_request *request = NULL;
11522         int ret;
11523
11524         /*
11525          * drm_mode_page_flip_ioctl() should already catch this, but double
11526          * check to be safe.  In the future we may enable pageflipping from
11527          * a disabled primary plane.
11528          */
11529         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11530                 return -EBUSY;
11531
11532         /* Can't change pixel format via MI display flips. */
11533         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11534                 return -EINVAL;
11535
11536         /*
11537          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11538          * Note that pitch changes could also affect these register.
11539          */
11540         if (INTEL_INFO(dev)->gen > 3 &&
11541             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11542              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11543                 return -EINVAL;
11544
11545         if (i915_terminally_wedged(&dev_priv->gpu_error))
11546                 goto out_hang;
11547
11548         work = kzalloc(sizeof(*work), GFP_KERNEL);
11549         if (work == NULL)
11550                 return -ENOMEM;
11551
11552         work->event = event;
11553         work->crtc = crtc;
11554         work->old_fb = old_fb;
11555         INIT_WORK(&work->work, intel_unpin_work_fn);
11556
11557         ret = drm_crtc_vblank_get(crtc);
11558         if (ret)
11559                 goto free_work;
11560
11561         /* We borrow the event spin lock for protecting unpin_work */
11562         spin_lock_irq(&dev->event_lock);
11563         if (intel_crtc->unpin_work) {
11564                 /* Before declaring the flip queue wedged, check if
11565                  * the hardware completed the operation behind our backs.
11566                  */
11567                 if (__intel_pageflip_stall_check(dev, crtc)) {
11568                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11569                         page_flip_completed(intel_crtc);
11570                 } else {
11571                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11572                         spin_unlock_irq(&dev->event_lock);
11573
11574                         drm_crtc_vblank_put(crtc);
11575                         kfree(work);
11576                         return -EBUSY;
11577                 }
11578         }
11579         intel_crtc->unpin_work = work;
11580         spin_unlock_irq(&dev->event_lock);
11581
11582         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11583                 flush_workqueue(dev_priv->wq);
11584
11585         /* Reference the objects for the scheduled work. */
11586         drm_framebuffer_reference(work->old_fb);
11587         drm_gem_object_reference(&obj->base);
11588
11589         crtc->primary->fb = fb;
11590         update_state_fb(crtc->primary);
11591         intel_fbc_pre_update(intel_crtc);
11592
11593         work->pending_flip_obj = obj;
11594
11595         ret = i915_mutex_lock_interruptible(dev);
11596         if (ret)
11597                 goto cleanup;
11598
11599         intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11600         if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
11601                 ret = -EIO;
11602                 goto cleanup;
11603         }
11604
11605         atomic_inc(&intel_crtc->unpin_work_count);
11606
11607         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11608                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11609
11610         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11611                 engine = &dev_priv->engine[BCS];
11612                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11613                         /* vlv: DISPLAY_FLIP fails to change tiling */
11614                         engine = NULL;
11615         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11616                 engine = &dev_priv->engine[BCS];
11617         } else if (INTEL_INFO(dev)->gen >= 7) {
11618                 engine = i915_gem_request_get_engine(obj->last_write_req);
11619                 if (engine == NULL || engine->id != RCS)
11620                         engine = &dev_priv->engine[BCS];
11621         } else {
11622                 engine = &dev_priv->engine[RCS];
11623         }
11624
11625         mmio_flip = use_mmio_flip(engine, obj);
11626
11627         /* When using CS flips, we want to emit semaphores between rings.
11628          * However, when using mmio flips we will create a task to do the
11629          * synchronisation, so all we want here is to pin the framebuffer
11630          * into the display plane and skip any waits.
11631          */
11632         if (!mmio_flip) {
11633                 ret = i915_gem_object_sync(obj, engine, &request);
11634                 if (ret)
11635                         goto cleanup_pending;
11636         }
11637
11638         ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11639         if (ret)
11640                 goto cleanup_pending;
11641
11642         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11643                                                   obj, 0);
11644         work->gtt_offset += intel_crtc->dspaddr_offset;
11645
11646         if (mmio_flip) {
11647                 ret = intel_queue_mmio_flip(dev, crtc, obj);
11648                 if (ret)
11649                         goto cleanup_unpin;
11650
11651                 i915_gem_request_assign(&work->flip_queued_req,
11652                                         obj->last_write_req);
11653         } else {
11654                 if (!request) {
11655                         request = i915_gem_request_alloc(engine, NULL);
11656                         if (IS_ERR(request)) {
11657                                 ret = PTR_ERR(request);
11658                                 goto cleanup_unpin;
11659                         }
11660                 }
11661
11662                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11663                                                    page_flip_flags);
11664                 if (ret)
11665                         goto cleanup_unpin;
11666
11667                 i915_gem_request_assign(&work->flip_queued_req, request);
11668         }
11669
11670         if (request)
11671                 i915_add_request_no_flush(request);
11672
11673         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11674         work->enable_stall_check = true;
11675
11676         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11677                           to_intel_plane(primary)->frontbuffer_bit);
11678         mutex_unlock(&dev->struct_mutex);
11679
11680         intel_frontbuffer_flip_prepare(dev,
11681                                        to_intel_plane(primary)->frontbuffer_bit);
11682
11683         trace_i915_flip_request(intel_crtc->plane, obj);
11684
11685         return 0;
11686
11687 cleanup_unpin:
11688         intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11689 cleanup_pending:
11690         if (!IS_ERR_OR_NULL(request))
11691                 i915_add_request_no_flush(request);
11692         atomic_dec(&intel_crtc->unpin_work_count);
11693         mutex_unlock(&dev->struct_mutex);
11694 cleanup:
11695         crtc->primary->fb = old_fb;
11696         update_state_fb(crtc->primary);
11697
11698         drm_gem_object_unreference_unlocked(&obj->base);
11699         drm_framebuffer_unreference(work->old_fb);
11700
11701         spin_lock_irq(&dev->event_lock);
11702         intel_crtc->unpin_work = NULL;
11703         spin_unlock_irq(&dev->event_lock);
11704
11705         drm_crtc_vblank_put(crtc);
11706 free_work:
11707         kfree(work);
11708
11709         if (ret == -EIO) {
11710                 struct drm_atomic_state *state;
11711                 struct drm_plane_state *plane_state;
11712
11713 out_hang:
11714                 state = drm_atomic_state_alloc(dev);
11715                 if (!state)
11716                         return -ENOMEM;
11717                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11718
11719 retry:
11720                 plane_state = drm_atomic_get_plane_state(state, primary);
11721                 ret = PTR_ERR_OR_ZERO(plane_state);
11722                 if (!ret) {
11723                         drm_atomic_set_fb_for_plane(plane_state, fb);
11724
11725                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11726                         if (!ret)
11727                                 ret = drm_atomic_commit(state);
11728                 }
11729
11730                 if (ret == -EDEADLK) {
11731                         drm_modeset_backoff(state->acquire_ctx);
11732                         drm_atomic_state_clear(state);
11733                         goto retry;
11734                 }
11735
11736                 if (ret)
11737                         drm_atomic_state_free(state);
11738
11739                 if (ret == 0 && event) {
11740                         spin_lock_irq(&dev->event_lock);
11741                         drm_crtc_send_vblank_event(crtc, event);
11742                         spin_unlock_irq(&dev->event_lock);
11743                 }
11744         }
11745         return ret;
11746 }
11747
11748
11749 /**
11750  * intel_wm_need_update - Check whether watermarks need updating
11751  * @plane: drm plane
11752  * @state: new plane state
11753  *
11754  * Check current plane state versus the new one to determine whether
11755  * watermarks need to be recalculated.
11756  *
11757  * Returns true or false.
11758  */
11759 static bool intel_wm_need_update(struct drm_plane *plane,
11760                                  struct drm_plane_state *state)
11761 {
11762         struct intel_plane_state *new = to_intel_plane_state(state);
11763         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11764
11765         /* Update watermarks on tiling or size changes. */
11766         if (new->visible != cur->visible)
11767                 return true;
11768
11769         if (!cur->base.fb || !new->base.fb)
11770                 return false;
11771
11772         if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11773             cur->base.rotation != new->base.rotation ||
11774             drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11775             drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11776             drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11777             drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11778                 return true;
11779
11780         return false;
11781 }
11782
11783 static bool needs_scaling(struct intel_plane_state *state)
11784 {
11785         int src_w = drm_rect_width(&state->src) >> 16;
11786         int src_h = drm_rect_height(&state->src) >> 16;
11787         int dst_w = drm_rect_width(&state->dst);
11788         int dst_h = drm_rect_height(&state->dst);
11789
11790         return (src_w != dst_w || src_h != dst_h);
11791 }
11792
11793 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11794                                     struct drm_plane_state *plane_state)
11795 {
11796         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11797         struct drm_crtc *crtc = crtc_state->crtc;
11798         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11799         struct drm_plane *plane = plane_state->plane;
11800         struct drm_device *dev = crtc->dev;
11801         struct drm_i915_private *dev_priv = to_i915(dev);
11802         struct intel_plane_state *old_plane_state =
11803                 to_intel_plane_state(plane->state);
11804         int idx = intel_crtc->base.base.id, ret;
11805         bool mode_changed = needs_modeset(crtc_state);
11806         bool was_crtc_enabled = crtc->state->active;
11807         bool is_crtc_enabled = crtc_state->active;
11808         bool turn_off, turn_on, visible, was_visible;
11809         struct drm_framebuffer *fb = plane_state->fb;
11810
11811         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11812             plane->type != DRM_PLANE_TYPE_CURSOR) {
11813                 ret = skl_update_scaler_plane(
11814                         to_intel_crtc_state(crtc_state),
11815                         to_intel_plane_state(plane_state));
11816                 if (ret)
11817                         return ret;
11818         }
11819
11820         was_visible = old_plane_state->visible;
11821         visible = to_intel_plane_state(plane_state)->visible;
11822
11823         if (!was_crtc_enabled && WARN_ON(was_visible))
11824                 was_visible = false;
11825
11826         /*
11827          * Visibility is calculated as if the crtc was on, but
11828          * after scaler setup everything depends on it being off
11829          * when the crtc isn't active.
11830          *
11831          * FIXME this is wrong for watermarks. Watermarks should also
11832          * be computed as if the pipe would be active. Perhaps move
11833          * per-plane wm computation to the .check_plane() hook, and
11834          * only combine the results from all planes in the current place?
11835          */
11836         if (!is_crtc_enabled)
11837                 to_intel_plane_state(plane_state)->visible = visible = false;
11838
11839         if (!was_visible && !visible)
11840                 return 0;
11841
11842         if (fb != old_plane_state->base.fb)
11843                 pipe_config->fb_changed = true;
11844
11845         turn_off = was_visible && (!visible || mode_changed);
11846         turn_on = visible && (!was_visible || mode_changed);
11847
11848         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11849                          plane->base.id, fb ? fb->base.id : -1);
11850
11851         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11852                          plane->base.id, was_visible, visible,
11853                          turn_off, turn_on, mode_changed);
11854
11855         if (turn_on) {
11856                 pipe_config->update_wm_pre = true;
11857
11858                 /* must disable cxsr around plane enable/disable */
11859                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11860                         pipe_config->disable_cxsr = true;
11861         } else if (turn_off) {
11862                 pipe_config->update_wm_post = true;
11863
11864                 /* must disable cxsr around plane enable/disable */
11865                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11866                         pipe_config->disable_cxsr = true;
11867         } else if (intel_wm_need_update(plane, plane_state)) {
11868                 /* FIXME bollocks */
11869                 pipe_config->update_wm_pre = true;
11870                 pipe_config->update_wm_post = true;
11871         }
11872
11873         /* Pre-gen9 platforms need two-step watermark updates */
11874         if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
11875             INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
11876                 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
11877
11878         if (visible || was_visible)
11879                 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
11880
11881         /*
11882          * WaCxSRDisabledForSpriteScaling:ivb
11883          *
11884          * cstate->update_wm was already set above, so this flag will
11885          * take effect when we commit and program watermarks.
11886          */
11887         if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
11888             needs_scaling(to_intel_plane_state(plane_state)) &&
11889             !needs_scaling(old_plane_state))
11890                 pipe_config->disable_lp_wm = true;
11891
11892         return 0;
11893 }
11894
11895 static bool encoders_cloneable(const struct intel_encoder *a,
11896                                const struct intel_encoder *b)
11897 {
11898         /* masks could be asymmetric, so check both ways */
11899         return a == b || (a->cloneable & (1 << b->type) &&
11900                           b->cloneable & (1 << a->type));
11901 }
11902
11903 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11904                                          struct intel_crtc *crtc,
11905                                          struct intel_encoder *encoder)
11906 {
11907         struct intel_encoder *source_encoder;
11908         struct drm_connector *connector;
11909         struct drm_connector_state *connector_state;
11910         int i;
11911
11912         for_each_connector_in_state(state, connector, connector_state, i) {
11913                 if (connector_state->crtc != &crtc->base)
11914                         continue;
11915
11916                 source_encoder =
11917                         to_intel_encoder(connector_state->best_encoder);
11918                 if (!encoders_cloneable(encoder, source_encoder))
11919                         return false;
11920         }
11921
11922         return true;
11923 }
11924
11925 static bool check_encoder_cloning(struct drm_atomic_state *state,
11926                                   struct intel_crtc *crtc)
11927 {
11928         struct intel_encoder *encoder;
11929         struct drm_connector *connector;
11930         struct drm_connector_state *connector_state;
11931         int i;
11932
11933         for_each_connector_in_state(state, connector, connector_state, i) {
11934                 if (connector_state->crtc != &crtc->base)
11935                         continue;
11936
11937                 encoder = to_intel_encoder(connector_state->best_encoder);
11938                 if (!check_single_encoder_cloning(state, crtc, encoder))
11939                         return false;
11940         }
11941
11942         return true;
11943 }
11944
11945 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11946                                    struct drm_crtc_state *crtc_state)
11947 {
11948         struct drm_device *dev = crtc->dev;
11949         struct drm_i915_private *dev_priv = dev->dev_private;
11950         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11951         struct intel_crtc_state *pipe_config =
11952                 to_intel_crtc_state(crtc_state);
11953         struct drm_atomic_state *state = crtc_state->state;
11954         int ret;
11955         bool mode_changed = needs_modeset(crtc_state);
11956
11957         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11958                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11959                 return -EINVAL;
11960         }
11961
11962         if (mode_changed && !crtc_state->active)
11963                 pipe_config->update_wm_post = true;
11964
11965         if (mode_changed && crtc_state->enable &&
11966             dev_priv->display.crtc_compute_clock &&
11967             !WARN_ON(pipe_config->shared_dpll)) {
11968                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11969                                                            pipe_config);
11970                 if (ret)
11971                         return ret;
11972         }
11973
11974         if (crtc_state->color_mgmt_changed) {
11975                 ret = intel_color_check(crtc, crtc_state);
11976                 if (ret)
11977                         return ret;
11978         }
11979
11980         ret = 0;
11981         if (dev_priv->display.compute_pipe_wm) {
11982                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
11983                 if (ret) {
11984                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
11985                         return ret;
11986                 }
11987         }
11988
11989         if (dev_priv->display.compute_intermediate_wm &&
11990             !to_intel_atomic_state(state)->skip_intermediate_wm) {
11991                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
11992                         return 0;
11993
11994                 /*
11995                  * Calculate 'intermediate' watermarks that satisfy both the
11996                  * old state and the new state.  We can program these
11997                  * immediately.
11998                  */
11999                 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12000                                                                 intel_crtc,
12001                                                                 pipe_config);
12002                 if (ret) {
12003                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12004                         return ret;
12005                 }
12006         }
12007
12008         if (INTEL_INFO(dev)->gen >= 9) {
12009                 if (mode_changed)
12010                         ret = skl_update_scaler_crtc(pipe_config);
12011
12012                 if (!ret)
12013                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
12014                                                          pipe_config);
12015         }
12016
12017         return ret;
12018 }
12019
12020 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12021         .mode_set_base_atomic = intel_pipe_set_base_atomic,
12022         .atomic_begin = intel_begin_crtc_commit,
12023         .atomic_flush = intel_finish_crtc_commit,
12024         .atomic_check = intel_crtc_atomic_check,
12025 };
12026
12027 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12028 {
12029         struct intel_connector *connector;
12030
12031         for_each_intel_connector(dev, connector) {
12032                 if (connector->base.encoder) {
12033                         connector->base.state->best_encoder =
12034                                 connector->base.encoder;
12035                         connector->base.state->crtc =
12036                                 connector->base.encoder->crtc;
12037                 } else {
12038                         connector->base.state->best_encoder = NULL;
12039                         connector->base.state->crtc = NULL;
12040                 }
12041         }
12042 }
12043
12044 static void
12045 connected_sink_compute_bpp(struct intel_connector *connector,
12046                            struct intel_crtc_state *pipe_config)
12047 {
12048         int bpp = pipe_config->pipe_bpp;
12049
12050         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12051                 connector->base.base.id,
12052                 connector->base.name);
12053
12054         /* Don't use an invalid EDID bpc value */
12055         if (connector->base.display_info.bpc &&
12056             connector->base.display_info.bpc * 3 < bpp) {
12057                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12058                               bpp, connector->base.display_info.bpc*3);
12059                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12060         }
12061
12062         /* Clamp bpp to default limit on screens without EDID 1.4 */
12063         if (connector->base.display_info.bpc == 0) {
12064                 int type = connector->base.connector_type;
12065                 int clamp_bpp = 24;
12066
12067                 /* Fall back to 18 bpp when DP sink capability is unknown. */
12068                 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12069                     type == DRM_MODE_CONNECTOR_eDP)
12070                         clamp_bpp = 18;
12071
12072                 if (bpp > clamp_bpp) {
12073                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12074                                       bpp, clamp_bpp);
12075                         pipe_config->pipe_bpp = clamp_bpp;
12076                 }
12077         }
12078 }
12079
12080 static int
12081 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12082                           struct intel_crtc_state *pipe_config)
12083 {
12084         struct drm_device *dev = crtc->base.dev;
12085         struct drm_atomic_state *state;
12086         struct drm_connector *connector;
12087         struct drm_connector_state *connector_state;
12088         int bpp, i;
12089
12090         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12091                 bpp = 10*3;
12092         else if (INTEL_INFO(dev)->gen >= 5)
12093                 bpp = 12*3;
12094         else
12095                 bpp = 8*3;
12096
12097
12098         pipe_config->pipe_bpp = bpp;
12099
12100         state = pipe_config->base.state;
12101
12102         /* Clamp display bpp to EDID value */
12103         for_each_connector_in_state(state, connector, connector_state, i) {
12104                 if (connector_state->crtc != &crtc->base)
12105                         continue;
12106
12107                 connected_sink_compute_bpp(to_intel_connector(connector),
12108                                            pipe_config);
12109         }
12110
12111         return bpp;
12112 }
12113
12114 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12115 {
12116         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12117                         "type: 0x%x flags: 0x%x\n",
12118                 mode->crtc_clock,
12119                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12120                 mode->crtc_hsync_end, mode->crtc_htotal,
12121                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12122                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12123 }
12124
12125 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12126                                    struct intel_crtc_state *pipe_config,
12127                                    const char *context)
12128 {
12129         struct drm_device *dev = crtc->base.dev;
12130         struct drm_plane *plane;
12131         struct intel_plane *intel_plane;
12132         struct intel_plane_state *state;
12133         struct drm_framebuffer *fb;
12134
12135         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12136                       context, pipe_config, pipe_name(crtc->pipe));
12137
12138         DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12139         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12140                       pipe_config->pipe_bpp, pipe_config->dither);
12141         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12142                       pipe_config->has_pch_encoder,
12143                       pipe_config->fdi_lanes,
12144                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12145                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12146                       pipe_config->fdi_m_n.tu);
12147         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12148                       pipe_config->has_dp_encoder,
12149                       pipe_config->lane_count,
12150                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12151                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12152                       pipe_config->dp_m_n.tu);
12153
12154         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12155                       pipe_config->has_dp_encoder,
12156                       pipe_config->lane_count,
12157                       pipe_config->dp_m2_n2.gmch_m,
12158                       pipe_config->dp_m2_n2.gmch_n,
12159                       pipe_config->dp_m2_n2.link_m,
12160                       pipe_config->dp_m2_n2.link_n,
12161                       pipe_config->dp_m2_n2.tu);
12162
12163         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12164                       pipe_config->has_audio,
12165                       pipe_config->has_infoframe);
12166
12167         DRM_DEBUG_KMS("requested mode:\n");
12168         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12169         DRM_DEBUG_KMS("adjusted mode:\n");
12170         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12171         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12172         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12173         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12174                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12175         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12176                       crtc->num_scalers,
12177                       pipe_config->scaler_state.scaler_users,
12178                       pipe_config->scaler_state.scaler_id);
12179         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12180                       pipe_config->gmch_pfit.control,
12181                       pipe_config->gmch_pfit.pgm_ratios,
12182                       pipe_config->gmch_pfit.lvds_border_bits);
12183         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12184                       pipe_config->pch_pfit.pos,
12185                       pipe_config->pch_pfit.size,
12186                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12187         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12188         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12189
12190         if (IS_BROXTON(dev)) {
12191                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12192                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12193                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12194                               pipe_config->ddi_pll_sel,
12195                               pipe_config->dpll_hw_state.ebb0,
12196                               pipe_config->dpll_hw_state.ebb4,
12197                               pipe_config->dpll_hw_state.pll0,
12198                               pipe_config->dpll_hw_state.pll1,
12199                               pipe_config->dpll_hw_state.pll2,
12200                               pipe_config->dpll_hw_state.pll3,
12201                               pipe_config->dpll_hw_state.pll6,
12202                               pipe_config->dpll_hw_state.pll8,
12203                               pipe_config->dpll_hw_state.pll9,
12204                               pipe_config->dpll_hw_state.pll10,
12205                               pipe_config->dpll_hw_state.pcsdw12);
12206         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12207                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12208                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12209                               pipe_config->ddi_pll_sel,
12210                               pipe_config->dpll_hw_state.ctrl1,
12211                               pipe_config->dpll_hw_state.cfgcr1,
12212                               pipe_config->dpll_hw_state.cfgcr2);
12213         } else if (HAS_DDI(dev)) {
12214                 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12215                               pipe_config->ddi_pll_sel,
12216                               pipe_config->dpll_hw_state.wrpll,
12217                               pipe_config->dpll_hw_state.spll);
12218         } else {
12219                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12220                               "fp0: 0x%x, fp1: 0x%x\n",
12221                               pipe_config->dpll_hw_state.dpll,
12222                               pipe_config->dpll_hw_state.dpll_md,
12223                               pipe_config->dpll_hw_state.fp0,
12224                               pipe_config->dpll_hw_state.fp1);
12225         }
12226
12227         DRM_DEBUG_KMS("planes on this crtc\n");
12228         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12229                 intel_plane = to_intel_plane(plane);
12230                 if (intel_plane->pipe != crtc->pipe)
12231                         continue;
12232
12233                 state = to_intel_plane_state(plane->state);
12234                 fb = state->base.fb;
12235                 if (!fb) {
12236                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12237                                 "disabled, scaler_id = %d\n",
12238                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12239                                 plane->base.id, intel_plane->pipe,
12240                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12241                                 drm_plane_index(plane), state->scaler_id);
12242                         continue;
12243                 }
12244
12245                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12246                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12247                         plane->base.id, intel_plane->pipe,
12248                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12249                         drm_plane_index(plane));
12250                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12251                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12252                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12253                         state->scaler_id,
12254                         state->src.x1 >> 16, state->src.y1 >> 16,
12255                         drm_rect_width(&state->src) >> 16,
12256                         drm_rect_height(&state->src) >> 16,
12257                         state->dst.x1, state->dst.y1,
12258                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12259         }
12260 }
12261
12262 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12263 {
12264         struct drm_device *dev = state->dev;
12265         struct drm_connector *connector;
12266         unsigned int used_ports = 0;
12267
12268         /*
12269          * Walk the connector list instead of the encoder
12270          * list to detect the problem on ddi platforms
12271          * where there's just one encoder per digital port.
12272          */
12273         drm_for_each_connector(connector, dev) {
12274                 struct drm_connector_state *connector_state;
12275                 struct intel_encoder *encoder;
12276
12277                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12278                 if (!connector_state)
12279                         connector_state = connector->state;
12280
12281                 if (!connector_state->best_encoder)
12282                         continue;
12283
12284                 encoder = to_intel_encoder(connector_state->best_encoder);
12285
12286                 WARN_ON(!connector_state->crtc);
12287
12288                 switch (encoder->type) {
12289                         unsigned int port_mask;
12290                 case INTEL_OUTPUT_UNKNOWN:
12291                         if (WARN_ON(!HAS_DDI(dev)))
12292                                 break;
12293                 case INTEL_OUTPUT_DISPLAYPORT:
12294                 case INTEL_OUTPUT_HDMI:
12295                 case INTEL_OUTPUT_EDP:
12296                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12297
12298                         /* the same port mustn't appear more than once */
12299                         if (used_ports & port_mask)
12300                                 return false;
12301
12302                         used_ports |= port_mask;
12303                 default:
12304                         break;
12305                 }
12306         }
12307
12308         return true;
12309 }
12310
12311 static void
12312 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12313 {
12314         struct drm_crtc_state tmp_state;
12315         struct intel_crtc_scaler_state scaler_state;
12316         struct intel_dpll_hw_state dpll_hw_state;
12317         struct intel_shared_dpll *shared_dpll;
12318         uint32_t ddi_pll_sel;
12319         bool force_thru;
12320
12321         /* FIXME: before the switch to atomic started, a new pipe_config was
12322          * kzalloc'd. Code that depends on any field being zero should be
12323          * fixed, so that the crtc_state can be safely duplicated. For now,
12324          * only fields that are know to not cause problems are preserved. */
12325
12326         tmp_state = crtc_state->base;
12327         scaler_state = crtc_state->scaler_state;
12328         shared_dpll = crtc_state->shared_dpll;
12329         dpll_hw_state = crtc_state->dpll_hw_state;
12330         ddi_pll_sel = crtc_state->ddi_pll_sel;
12331         force_thru = crtc_state->pch_pfit.force_thru;
12332
12333         memset(crtc_state, 0, sizeof *crtc_state);
12334
12335         crtc_state->base = tmp_state;
12336         crtc_state->scaler_state = scaler_state;
12337         crtc_state->shared_dpll = shared_dpll;
12338         crtc_state->dpll_hw_state = dpll_hw_state;
12339         crtc_state->ddi_pll_sel = ddi_pll_sel;
12340         crtc_state->pch_pfit.force_thru = force_thru;
12341 }
12342
12343 static int
12344 intel_modeset_pipe_config(struct drm_crtc *crtc,
12345                           struct intel_crtc_state *pipe_config)
12346 {
12347         struct drm_atomic_state *state = pipe_config->base.state;
12348         struct intel_encoder *encoder;
12349         struct drm_connector *connector;
12350         struct drm_connector_state *connector_state;
12351         int base_bpp, ret = -EINVAL;
12352         int i;
12353         bool retry = true;
12354
12355         clear_intel_crtc_state(pipe_config);
12356
12357         pipe_config->cpu_transcoder =
12358                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12359
12360         /*
12361          * Sanitize sync polarity flags based on requested ones. If neither
12362          * positive or negative polarity is requested, treat this as meaning
12363          * negative polarity.
12364          */
12365         if (!(pipe_config->base.adjusted_mode.flags &
12366               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12367                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12368
12369         if (!(pipe_config->base.adjusted_mode.flags &
12370               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12371                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12372
12373         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12374                                              pipe_config);
12375         if (base_bpp < 0)
12376                 goto fail;
12377
12378         /*
12379          * Determine the real pipe dimensions. Note that stereo modes can
12380          * increase the actual pipe size due to the frame doubling and
12381          * insertion of additional space for blanks between the frame. This
12382          * is stored in the crtc timings. We use the requested mode to do this
12383          * computation to clearly distinguish it from the adjusted mode, which
12384          * can be changed by the connectors in the below retry loop.
12385          */
12386         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12387                                &pipe_config->pipe_src_w,
12388                                &pipe_config->pipe_src_h);
12389
12390 encoder_retry:
12391         /* Ensure the port clock defaults are reset when retrying. */
12392         pipe_config->port_clock = 0;
12393         pipe_config->pixel_multiplier = 1;
12394
12395         /* Fill in default crtc timings, allow encoders to overwrite them. */
12396         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12397                               CRTC_STEREO_DOUBLE);
12398
12399         /* Pass our mode to the connectors and the CRTC to give them a chance to
12400          * adjust it according to limitations or connector properties, and also
12401          * a chance to reject the mode entirely.
12402          */
12403         for_each_connector_in_state(state, connector, connector_state, i) {
12404                 if (connector_state->crtc != crtc)
12405                         continue;
12406
12407                 encoder = to_intel_encoder(connector_state->best_encoder);
12408
12409                 if (!(encoder->compute_config(encoder, pipe_config))) {
12410                         DRM_DEBUG_KMS("Encoder config failure\n");
12411                         goto fail;
12412                 }
12413         }
12414
12415         /* Set default port clock if not overwritten by the encoder. Needs to be
12416          * done afterwards in case the encoder adjusts the mode. */
12417         if (!pipe_config->port_clock)
12418                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12419                         * pipe_config->pixel_multiplier;
12420
12421         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12422         if (ret < 0) {
12423                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12424                 goto fail;
12425         }
12426
12427         if (ret == RETRY) {
12428                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12429                         ret = -EINVAL;
12430                         goto fail;
12431                 }
12432
12433                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12434                 retry = false;
12435                 goto encoder_retry;
12436         }
12437
12438         /* Dithering seems to not pass-through bits correctly when it should, so
12439          * only enable it on 6bpc panels. */
12440         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12441         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12442                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12443
12444 fail:
12445         return ret;
12446 }
12447
12448 static void
12449 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12450 {
12451         struct drm_crtc *crtc;
12452         struct drm_crtc_state *crtc_state;
12453         int i;
12454
12455         /* Double check state. */
12456         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12457                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12458
12459                 /* Update hwmode for vblank functions */
12460                 if (crtc->state->active)
12461                         crtc->hwmode = crtc->state->adjusted_mode;
12462                 else
12463                         crtc->hwmode.crtc_clock = 0;
12464
12465                 /*
12466                  * Update legacy state to satisfy fbc code. This can
12467                  * be removed when fbc uses the atomic state.
12468                  */
12469                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12470                         struct drm_plane_state *plane_state = crtc->primary->state;
12471
12472                         crtc->primary->fb = plane_state->fb;
12473                         crtc->x = plane_state->src_x >> 16;
12474                         crtc->y = plane_state->src_y >> 16;
12475                 }
12476         }
12477 }
12478
12479 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12480 {
12481         int diff;
12482
12483         if (clock1 == clock2)
12484                 return true;
12485
12486         if (!clock1 || !clock2)
12487                 return false;
12488
12489         diff = abs(clock1 - clock2);
12490
12491         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12492                 return true;
12493
12494         return false;
12495 }
12496
12497 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12498         list_for_each_entry((intel_crtc), \
12499                             &(dev)->mode_config.crtc_list, \
12500                             base.head) \
12501                 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12502
12503 static bool
12504 intel_compare_m_n(unsigned int m, unsigned int n,
12505                   unsigned int m2, unsigned int n2,
12506                   bool exact)
12507 {
12508         if (m == m2 && n == n2)
12509                 return true;
12510
12511         if (exact || !m || !n || !m2 || !n2)
12512                 return false;
12513
12514         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12515
12516         if (n > n2) {
12517                 while (n > n2) {
12518                         m2 <<= 1;
12519                         n2 <<= 1;
12520                 }
12521         } else if (n < n2) {
12522                 while (n < n2) {
12523                         m <<= 1;
12524                         n <<= 1;
12525                 }
12526         }
12527
12528         if (n != n2)
12529                 return false;
12530
12531         return intel_fuzzy_clock_check(m, m2);
12532 }
12533
12534 static bool
12535 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12536                        struct intel_link_m_n *m2_n2,
12537                        bool adjust)
12538 {
12539         if (m_n->tu == m2_n2->tu &&
12540             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12541                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12542             intel_compare_m_n(m_n->link_m, m_n->link_n,
12543                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12544                 if (adjust)
12545                         *m2_n2 = *m_n;
12546
12547                 return true;
12548         }
12549
12550         return false;
12551 }
12552
12553 static bool
12554 intel_pipe_config_compare(struct drm_device *dev,
12555                           struct intel_crtc_state *current_config,
12556                           struct intel_crtc_state *pipe_config,
12557                           bool adjust)
12558 {
12559         bool ret = true;
12560
12561 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12562         do { \
12563                 if (!adjust) \
12564                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12565                 else \
12566                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12567         } while (0)
12568
12569 #define PIPE_CONF_CHECK_X(name) \
12570         if (current_config->name != pipe_config->name) { \
12571                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12572                           "(expected 0x%08x, found 0x%08x)\n", \
12573                           current_config->name, \
12574                           pipe_config->name); \
12575                 ret = false; \
12576         }
12577
12578 #define PIPE_CONF_CHECK_I(name) \
12579         if (current_config->name != pipe_config->name) { \
12580                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12581                           "(expected %i, found %i)\n", \
12582                           current_config->name, \
12583                           pipe_config->name); \
12584                 ret = false; \
12585         }
12586
12587 #define PIPE_CONF_CHECK_P(name) \
12588         if (current_config->name != pipe_config->name) { \
12589                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12590                           "(expected %p, found %p)\n", \
12591                           current_config->name, \
12592                           pipe_config->name); \
12593                 ret = false; \
12594         }
12595
12596 #define PIPE_CONF_CHECK_M_N(name) \
12597         if (!intel_compare_link_m_n(&current_config->name, \
12598                                     &pipe_config->name,\
12599                                     adjust)) { \
12600                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12601                           "(expected tu %i gmch %i/%i link %i/%i, " \
12602                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12603                           current_config->name.tu, \
12604                           current_config->name.gmch_m, \
12605                           current_config->name.gmch_n, \
12606                           current_config->name.link_m, \
12607                           current_config->name.link_n, \
12608                           pipe_config->name.tu, \
12609                           pipe_config->name.gmch_m, \
12610                           pipe_config->name.gmch_n, \
12611                           pipe_config->name.link_m, \
12612                           pipe_config->name.link_n); \
12613                 ret = false; \
12614         }
12615
12616 /* This is required for BDW+ where there is only one set of registers for
12617  * switching between high and low RR.
12618  * This macro can be used whenever a comparison has to be made between one
12619  * hw state and multiple sw state variables.
12620  */
12621 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12622         if (!intel_compare_link_m_n(&current_config->name, \
12623                                     &pipe_config->name, adjust) && \
12624             !intel_compare_link_m_n(&current_config->alt_name, \
12625                                     &pipe_config->name, adjust)) { \
12626                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12627                           "(expected tu %i gmch %i/%i link %i/%i, " \
12628                           "or tu %i gmch %i/%i link %i/%i, " \
12629                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12630                           current_config->name.tu, \
12631                           current_config->name.gmch_m, \
12632                           current_config->name.gmch_n, \
12633                           current_config->name.link_m, \
12634                           current_config->name.link_n, \
12635                           current_config->alt_name.tu, \
12636                           current_config->alt_name.gmch_m, \
12637                           current_config->alt_name.gmch_n, \
12638                           current_config->alt_name.link_m, \
12639                           current_config->alt_name.link_n, \
12640                           pipe_config->name.tu, \
12641                           pipe_config->name.gmch_m, \
12642                           pipe_config->name.gmch_n, \
12643                           pipe_config->name.link_m, \
12644                           pipe_config->name.link_n); \
12645                 ret = false; \
12646         }
12647
12648 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12649         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12650                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12651                           "(expected %i, found %i)\n", \
12652                           current_config->name & (mask), \
12653                           pipe_config->name & (mask)); \
12654                 ret = false; \
12655         }
12656
12657 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12658         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12659                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12660                           "(expected %i, found %i)\n", \
12661                           current_config->name, \
12662                           pipe_config->name); \
12663                 ret = false; \
12664         }
12665
12666 #define PIPE_CONF_QUIRK(quirk)  \
12667         ((current_config->quirks | pipe_config->quirks) & (quirk))
12668
12669         PIPE_CONF_CHECK_I(cpu_transcoder);
12670
12671         PIPE_CONF_CHECK_I(has_pch_encoder);
12672         PIPE_CONF_CHECK_I(fdi_lanes);
12673         PIPE_CONF_CHECK_M_N(fdi_m_n);
12674
12675         PIPE_CONF_CHECK_I(has_dp_encoder);
12676         PIPE_CONF_CHECK_I(lane_count);
12677
12678         if (INTEL_INFO(dev)->gen < 8) {
12679                 PIPE_CONF_CHECK_M_N(dp_m_n);
12680
12681                 if (current_config->has_drrs)
12682                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12683         } else
12684                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12685
12686         PIPE_CONF_CHECK_I(has_dsi_encoder);
12687
12688         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12689         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12690         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12691         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12692         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12693         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12694
12695         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12696         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12697         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12698         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12699         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12700         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12701
12702         PIPE_CONF_CHECK_I(pixel_multiplier);
12703         PIPE_CONF_CHECK_I(has_hdmi_sink);
12704         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12705             IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12706                 PIPE_CONF_CHECK_I(limited_color_range);
12707         PIPE_CONF_CHECK_I(has_infoframe);
12708
12709         PIPE_CONF_CHECK_I(has_audio);
12710
12711         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12712                               DRM_MODE_FLAG_INTERLACE);
12713
12714         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12715                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12716                                       DRM_MODE_FLAG_PHSYNC);
12717                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12718                                       DRM_MODE_FLAG_NHSYNC);
12719                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12720                                       DRM_MODE_FLAG_PVSYNC);
12721                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12722                                       DRM_MODE_FLAG_NVSYNC);
12723         }
12724
12725         PIPE_CONF_CHECK_X(gmch_pfit.control);
12726         /* pfit ratios are autocomputed by the hw on gen4+ */
12727         if (INTEL_INFO(dev)->gen < 4)
12728                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
12729         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12730
12731         if (!adjust) {
12732                 PIPE_CONF_CHECK_I(pipe_src_w);
12733                 PIPE_CONF_CHECK_I(pipe_src_h);
12734
12735                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12736                 if (current_config->pch_pfit.enabled) {
12737                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12738                         PIPE_CONF_CHECK_X(pch_pfit.size);
12739                 }
12740
12741                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12742         }
12743
12744         /* BDW+ don't expose a synchronous way to read the state */
12745         if (IS_HASWELL(dev))
12746                 PIPE_CONF_CHECK_I(ips_enabled);
12747
12748         PIPE_CONF_CHECK_I(double_wide);
12749
12750         PIPE_CONF_CHECK_X(ddi_pll_sel);
12751
12752         PIPE_CONF_CHECK_P(shared_dpll);
12753         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12754         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12755         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12756         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12757         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12758         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12759         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12760         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12761         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12762
12763         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12764         PIPE_CONF_CHECK_X(dsi_pll.div);
12765
12766         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12767                 PIPE_CONF_CHECK_I(pipe_bpp);
12768
12769         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12770         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12771
12772 #undef PIPE_CONF_CHECK_X
12773 #undef PIPE_CONF_CHECK_I
12774 #undef PIPE_CONF_CHECK_P
12775 #undef PIPE_CONF_CHECK_FLAGS
12776 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12777 #undef PIPE_CONF_QUIRK
12778 #undef INTEL_ERR_OR_DBG_KMS
12779
12780         return ret;
12781 }
12782
12783 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12784                                            const struct intel_crtc_state *pipe_config)
12785 {
12786         if (pipe_config->has_pch_encoder) {
12787                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12788                                                             &pipe_config->fdi_m_n);
12789                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12790
12791                 /*
12792                  * FDI already provided one idea for the dotclock.
12793                  * Yell if the encoder disagrees.
12794                  */
12795                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12796                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12797                      fdi_dotclock, dotclock);
12798         }
12799 }
12800
12801 static void verify_wm_state(struct drm_crtc *crtc,
12802                             struct drm_crtc_state *new_state)
12803 {
12804         struct drm_device *dev = crtc->dev;
12805         struct drm_i915_private *dev_priv = dev->dev_private;
12806         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12807         struct skl_ddb_entry *hw_entry, *sw_entry;
12808         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12809         const enum pipe pipe = intel_crtc->pipe;
12810         int plane;
12811
12812         if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
12813                 return;
12814
12815         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12816         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12817
12818         /* planes */
12819         for_each_plane(dev_priv, pipe, plane) {
12820                 hw_entry = &hw_ddb.plane[pipe][plane];
12821                 sw_entry = &sw_ddb->plane[pipe][plane];
12822
12823                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12824                         continue;
12825
12826                 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12827                           "(expected (%u,%u), found (%u,%u))\n",
12828                           pipe_name(pipe), plane + 1,
12829                           sw_entry->start, sw_entry->end,
12830                           hw_entry->start, hw_entry->end);
12831         }
12832
12833         /* cursor */
12834         hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12835         sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12836
12837         if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
12838                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12839                           "(expected (%u,%u), found (%u,%u))\n",
12840                           pipe_name(pipe),
12841                           sw_entry->start, sw_entry->end,
12842                           hw_entry->start, hw_entry->end);
12843         }
12844 }
12845
12846 static void
12847 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
12848 {
12849         struct drm_connector *connector;
12850
12851         drm_for_each_connector(connector, dev) {
12852                 struct drm_encoder *encoder = connector->encoder;
12853                 struct drm_connector_state *state = connector->state;
12854
12855                 if (state->crtc != crtc)
12856                         continue;
12857
12858                 intel_connector_verify_state(to_intel_connector(connector));
12859
12860                 I915_STATE_WARN(state->best_encoder != encoder,
12861                      "connector's atomic encoder doesn't match legacy encoder\n");
12862         }
12863 }
12864
12865 static void
12866 verify_encoder_state(struct drm_device *dev)
12867 {
12868         struct intel_encoder *encoder;
12869         struct intel_connector *connector;
12870
12871         for_each_intel_encoder(dev, encoder) {
12872                 bool enabled = false;
12873                 enum pipe pipe;
12874
12875                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12876                               encoder->base.base.id,
12877                               encoder->base.name);
12878
12879                 for_each_intel_connector(dev, connector) {
12880                         if (connector->base.state->best_encoder != &encoder->base)
12881                                 continue;
12882                         enabled = true;
12883
12884                         I915_STATE_WARN(connector->base.state->crtc !=
12885                                         encoder->base.crtc,
12886                              "connector's crtc doesn't match encoder crtc\n");
12887                 }
12888
12889                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12890                      "encoder's enabled state mismatch "
12891                      "(expected %i, found %i)\n",
12892                      !!encoder->base.crtc, enabled);
12893
12894                 if (!encoder->base.crtc) {
12895                         bool active;
12896
12897                         active = encoder->get_hw_state(encoder, &pipe);
12898                         I915_STATE_WARN(active,
12899                              "encoder detached but still enabled on pipe %c.\n",
12900                              pipe_name(pipe));
12901                 }
12902         }
12903 }
12904
12905 static void
12906 verify_crtc_state(struct drm_crtc *crtc,
12907                   struct drm_crtc_state *old_crtc_state,
12908                   struct drm_crtc_state *new_crtc_state)
12909 {
12910         struct drm_device *dev = crtc->dev;
12911         struct drm_i915_private *dev_priv = dev->dev_private;
12912         struct intel_encoder *encoder;
12913         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12914         struct intel_crtc_state *pipe_config, *sw_config;
12915         struct drm_atomic_state *old_state;
12916         bool active;
12917
12918         old_state = old_crtc_state->state;
12919         __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12920         pipe_config = to_intel_crtc_state(old_crtc_state);
12921         memset(pipe_config, 0, sizeof(*pipe_config));
12922         pipe_config->base.crtc = crtc;
12923         pipe_config->base.state = old_state;
12924
12925         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
12926
12927         active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12928
12929         /* hw state is inconsistent with the pipe quirk */
12930         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12931             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12932                 active = new_crtc_state->active;
12933
12934         I915_STATE_WARN(new_crtc_state->active != active,
12935              "crtc active state doesn't match with hw state "
12936              "(expected %i, found %i)\n", new_crtc_state->active, active);
12937
12938         I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12939              "transitional active state does not match atomic hw state "
12940              "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12941
12942         for_each_encoder_on_crtc(dev, crtc, encoder) {
12943                 enum pipe pipe;
12944
12945                 active = encoder->get_hw_state(encoder, &pipe);
12946                 I915_STATE_WARN(active != new_crtc_state->active,
12947                         "[ENCODER:%i] active %i with crtc active %i\n",
12948                         encoder->base.base.id, active, new_crtc_state->active);
12949
12950                 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12951                                 "Encoder connected to wrong pipe %c\n",
12952                                 pipe_name(pipe));
12953
12954                 if (active)
12955                         encoder->get_config(encoder, pipe_config);
12956         }
12957
12958         if (!new_crtc_state->active)
12959                 return;
12960
12961         intel_pipe_config_sanity_check(dev_priv, pipe_config);
12962
12963         sw_config = to_intel_crtc_state(crtc->state);
12964         if (!intel_pipe_config_compare(dev, sw_config,
12965                                        pipe_config, false)) {
12966                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12967                 intel_dump_pipe_config(intel_crtc, pipe_config,
12968                                        "[hw state]");
12969                 intel_dump_pipe_config(intel_crtc, sw_config,
12970                                        "[sw state]");
12971         }
12972 }
12973
12974 static void
12975 verify_single_dpll_state(struct drm_i915_private *dev_priv,
12976                          struct intel_shared_dpll *pll,
12977                          struct drm_crtc *crtc,
12978                          struct drm_crtc_state *new_state)
12979 {
12980         struct intel_dpll_hw_state dpll_hw_state;
12981         unsigned crtc_mask;
12982         bool active;
12983
12984         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12985
12986         DRM_DEBUG_KMS("%s\n", pll->name);
12987
12988         active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
12989
12990         if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12991                 I915_STATE_WARN(!pll->on && pll->active_mask,
12992                      "pll in active use but not on in sw tracking\n");
12993                 I915_STATE_WARN(pll->on && !pll->active_mask,
12994                      "pll is on but not used by any active crtc\n");
12995                 I915_STATE_WARN(pll->on != active,
12996                      "pll on state mismatch (expected %i, found %i)\n",
12997                      pll->on, active);
12998         }
12999
13000         if (!crtc) {
13001                 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13002                                 "more active pll users than references: %x vs %x\n",
13003                                 pll->active_mask, pll->config.crtc_mask);
13004
13005                 return;
13006         }
13007
13008         crtc_mask = 1 << drm_crtc_index(crtc);
13009
13010         if (new_state->active)
13011                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13012                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13013                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13014         else
13015                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13016                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13017                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13018
13019         I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13020                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13021                         crtc_mask, pll->config.crtc_mask);
13022
13023         I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13024                                           &dpll_hw_state,
13025                                           sizeof(dpll_hw_state)),
13026                         "pll hw state mismatch\n");
13027 }
13028
13029 static void
13030 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13031                          struct drm_crtc_state *old_crtc_state,
13032                          struct drm_crtc_state *new_crtc_state)
13033 {
13034         struct drm_i915_private *dev_priv = dev->dev_private;
13035         struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13036         struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13037
13038         if (new_state->shared_dpll)
13039                 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13040
13041         if (old_state->shared_dpll &&
13042             old_state->shared_dpll != new_state->shared_dpll) {
13043                 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13044                 struct intel_shared_dpll *pll = old_state->shared_dpll;
13045
13046                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13047                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13048                                 pipe_name(drm_crtc_index(crtc)));
13049                 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13050                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13051                                 pipe_name(drm_crtc_index(crtc)));
13052         }
13053 }
13054
13055 static void
13056 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13057                          struct drm_crtc_state *old_state,
13058                          struct drm_crtc_state *new_state)
13059 {
13060         if (!needs_modeset(new_state) &&
13061             !to_intel_crtc_state(new_state)->update_pipe)
13062                 return;
13063
13064         verify_wm_state(crtc, new_state);
13065         verify_connector_state(crtc->dev, crtc);
13066         verify_crtc_state(crtc, old_state, new_state);
13067         verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13068 }
13069
13070 static void
13071 verify_disabled_dpll_state(struct drm_device *dev)
13072 {
13073         struct drm_i915_private *dev_priv = dev->dev_private;
13074         int i;
13075
13076         for (i = 0; i < dev_priv->num_shared_dpll; i++)
13077                 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13078 }
13079
13080 static void
13081 intel_modeset_verify_disabled(struct drm_device *dev)
13082 {
13083         verify_encoder_state(dev);
13084         verify_connector_state(dev, NULL);
13085         verify_disabled_dpll_state(dev);
13086 }
13087
13088 static void update_scanline_offset(struct intel_crtc *crtc)
13089 {
13090         struct drm_device *dev = crtc->base.dev;
13091
13092         /*
13093          * The scanline counter increments at the leading edge of hsync.
13094          *
13095          * On most platforms it starts counting from vtotal-1 on the
13096          * first active line. That means the scanline counter value is
13097          * always one less than what we would expect. Ie. just after
13098          * start of vblank, which also occurs at start of hsync (on the
13099          * last active line), the scanline counter will read vblank_start-1.
13100          *
13101          * On gen2 the scanline counter starts counting from 1 instead
13102          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13103          * to keep the value positive), instead of adding one.
13104          *
13105          * On HSW+ the behaviour of the scanline counter depends on the output
13106          * type. For DP ports it behaves like most other platforms, but on HDMI
13107          * there's an extra 1 line difference. So we need to add two instead of
13108          * one to the value.
13109          */
13110         if (IS_GEN2(dev)) {
13111                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13112                 int vtotal;
13113
13114                 vtotal = adjusted_mode->crtc_vtotal;
13115                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13116                         vtotal /= 2;
13117
13118                 crtc->scanline_offset = vtotal - 1;
13119         } else if (HAS_DDI(dev) &&
13120                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13121                 crtc->scanline_offset = 2;
13122         } else
13123                 crtc->scanline_offset = 1;
13124 }
13125
13126 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13127 {
13128         struct drm_device *dev = state->dev;
13129         struct drm_i915_private *dev_priv = to_i915(dev);
13130         struct intel_shared_dpll_config *shared_dpll = NULL;
13131         struct drm_crtc *crtc;
13132         struct drm_crtc_state *crtc_state;
13133         int i;
13134
13135         if (!dev_priv->display.crtc_compute_clock)
13136                 return;
13137
13138         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13139                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13140                 struct intel_shared_dpll *old_dpll =
13141                         to_intel_crtc_state(crtc->state)->shared_dpll;
13142
13143                 if (!needs_modeset(crtc_state))
13144                         continue;
13145
13146                 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13147
13148                 if (!old_dpll)
13149                         continue;
13150
13151                 if (!shared_dpll)
13152                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13153
13154                 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13155         }
13156 }
13157
13158 /*
13159  * This implements the workaround described in the "notes" section of the mode
13160  * set sequence documentation. When going from no pipes or single pipe to
13161  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13162  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13163  */
13164 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13165 {
13166         struct drm_crtc_state *crtc_state;
13167         struct intel_crtc *intel_crtc;
13168         struct drm_crtc *crtc;
13169         struct intel_crtc_state *first_crtc_state = NULL;
13170         struct intel_crtc_state *other_crtc_state = NULL;
13171         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13172         int i;
13173
13174         /* look at all crtc's that are going to be enabled in during modeset */
13175         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13176                 intel_crtc = to_intel_crtc(crtc);
13177
13178                 if (!crtc_state->active || !needs_modeset(crtc_state))
13179                         continue;
13180
13181                 if (first_crtc_state) {
13182                         other_crtc_state = to_intel_crtc_state(crtc_state);
13183                         break;
13184                 } else {
13185                         first_crtc_state = to_intel_crtc_state(crtc_state);
13186                         first_pipe = intel_crtc->pipe;
13187                 }
13188         }
13189
13190         /* No workaround needed? */
13191         if (!first_crtc_state)
13192                 return 0;
13193
13194         /* w/a possibly needed, check how many crtc's are already enabled. */
13195         for_each_intel_crtc(state->dev, intel_crtc) {
13196                 struct intel_crtc_state *pipe_config;
13197
13198                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13199                 if (IS_ERR(pipe_config))
13200                         return PTR_ERR(pipe_config);
13201
13202                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13203
13204                 if (!pipe_config->base.active ||
13205                     needs_modeset(&pipe_config->base))
13206                         continue;
13207
13208                 /* 2 or more enabled crtcs means no need for w/a */
13209                 if (enabled_pipe != INVALID_PIPE)
13210                         return 0;
13211
13212                 enabled_pipe = intel_crtc->pipe;
13213         }
13214
13215         if (enabled_pipe != INVALID_PIPE)
13216                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13217         else if (other_crtc_state)
13218                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13219
13220         return 0;
13221 }
13222
13223 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13224 {
13225         struct drm_crtc *crtc;
13226         struct drm_crtc_state *crtc_state;
13227         int ret = 0;
13228
13229         /* add all active pipes to the state */
13230         for_each_crtc(state->dev, crtc) {
13231                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13232                 if (IS_ERR(crtc_state))
13233                         return PTR_ERR(crtc_state);
13234
13235                 if (!crtc_state->active || needs_modeset(crtc_state))
13236                         continue;
13237
13238                 crtc_state->mode_changed = true;
13239
13240                 ret = drm_atomic_add_affected_connectors(state, crtc);
13241                 if (ret)
13242                         break;
13243
13244                 ret = drm_atomic_add_affected_planes(state, crtc);
13245                 if (ret)
13246                         break;
13247         }
13248
13249         return ret;
13250 }
13251
13252 static int intel_modeset_checks(struct drm_atomic_state *state)
13253 {
13254         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13255         struct drm_i915_private *dev_priv = state->dev->dev_private;
13256         struct drm_crtc *crtc;
13257         struct drm_crtc_state *crtc_state;
13258         int ret = 0, i;
13259
13260         if (!check_digital_port_conflicts(state)) {
13261                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13262                 return -EINVAL;
13263         }
13264
13265         intel_state->modeset = true;
13266         intel_state->active_crtcs = dev_priv->active_crtcs;
13267
13268         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13269                 if (crtc_state->active)
13270                         intel_state->active_crtcs |= 1 << i;
13271                 else
13272                         intel_state->active_crtcs &= ~(1 << i);
13273
13274                 if (crtc_state->active != crtc->state->active)
13275                         intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13276         }
13277
13278         /*
13279          * See if the config requires any additional preparation, e.g.
13280          * to adjust global state with pipes off.  We need to do this
13281          * here so we can get the modeset_pipe updated config for the new
13282          * mode set on this crtc.  For other crtcs we need to use the
13283          * adjusted_mode bits in the crtc directly.
13284          */
13285         if (dev_priv->display.modeset_calc_cdclk) {
13286                 ret = dev_priv->display.modeset_calc_cdclk(state);
13287
13288                 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
13289                         ret = intel_modeset_all_pipes(state);
13290
13291                 if (ret < 0)
13292                         return ret;
13293
13294                 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13295                               intel_state->cdclk, intel_state->dev_cdclk);
13296         } else
13297                 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13298
13299         intel_modeset_clear_plls(state);
13300
13301         if (IS_HASWELL(dev_priv))
13302                 return haswell_mode_set_planes_workaround(state);
13303
13304         return 0;
13305 }
13306
13307 /*
13308  * Handle calculation of various watermark data at the end of the atomic check
13309  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13310  * handlers to ensure that all derived state has been updated.
13311  */
13312 static int calc_watermark_data(struct drm_atomic_state *state)
13313 {
13314         struct drm_device *dev = state->dev;
13315         struct drm_i915_private *dev_priv = to_i915(dev);
13316         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13317         struct drm_crtc *crtc;
13318         struct drm_crtc_state *cstate;
13319         struct drm_plane *plane;
13320         struct drm_plane_state *pstate;
13321
13322         /*
13323          * Calculate watermark configuration details now that derived
13324          * plane/crtc state is all properly updated.
13325          */
13326         drm_for_each_crtc(crtc, dev) {
13327                 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13328                         crtc->state;
13329
13330                 if (cstate->active)
13331                         intel_state->wm_config.num_pipes_active++;
13332         }
13333         drm_for_each_legacy_plane(plane, dev) {
13334                 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13335                         plane->state;
13336
13337                 if (!to_intel_plane_state(pstate)->visible)
13338                         continue;
13339
13340                 intel_state->wm_config.sprites_enabled = true;
13341                 if (pstate->crtc_w != pstate->src_w >> 16 ||
13342                     pstate->crtc_h != pstate->src_h >> 16)
13343                         intel_state->wm_config.sprites_scaled = true;
13344         }
13345
13346         /* Is there platform-specific watermark information to calculate? */
13347         if (dev_priv->display.compute_global_watermarks)
13348                 return dev_priv->display.compute_global_watermarks(state);
13349
13350         return 0;
13351 }
13352
13353 /**
13354  * intel_atomic_check - validate state object
13355  * @dev: drm device
13356  * @state: state to validate
13357  */
13358 static int intel_atomic_check(struct drm_device *dev,
13359                               struct drm_atomic_state *state)
13360 {
13361         struct drm_i915_private *dev_priv = to_i915(dev);
13362         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13363         struct drm_crtc *crtc;
13364         struct drm_crtc_state *crtc_state;
13365         int ret, i;
13366         bool any_ms = false;
13367
13368         ret = drm_atomic_helper_check_modeset(dev, state);
13369         if (ret)
13370                 return ret;
13371
13372         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13373                 struct intel_crtc_state *pipe_config =
13374                         to_intel_crtc_state(crtc_state);
13375
13376                 /* Catch I915_MODE_FLAG_INHERITED */
13377                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13378                         crtc_state->mode_changed = true;
13379
13380                 if (!crtc_state->enable) {
13381                         if (needs_modeset(crtc_state))
13382                                 any_ms = true;
13383                         continue;
13384                 }
13385
13386                 if (!needs_modeset(crtc_state))
13387                         continue;
13388
13389                 /* FIXME: For only active_changed we shouldn't need to do any
13390                  * state recomputation at all. */
13391
13392                 ret = drm_atomic_add_affected_connectors(state, crtc);
13393                 if (ret)
13394                         return ret;
13395
13396                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13397                 if (ret) {
13398                         intel_dump_pipe_config(to_intel_crtc(crtc),
13399                                                pipe_config, "[failed]");
13400                         return ret;
13401                 }
13402
13403                 if (i915.fastboot &&
13404                     intel_pipe_config_compare(dev,
13405                                         to_intel_crtc_state(crtc->state),
13406                                         pipe_config, true)) {
13407                         crtc_state->mode_changed = false;
13408                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13409                 }
13410
13411                 if (needs_modeset(crtc_state)) {
13412                         any_ms = true;
13413
13414                         ret = drm_atomic_add_affected_planes(state, crtc);
13415                         if (ret)
13416                                 return ret;
13417                 }
13418
13419                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13420                                        needs_modeset(crtc_state) ?
13421                                        "[modeset]" : "[fastset]");
13422         }
13423
13424         if (any_ms) {
13425                 ret = intel_modeset_checks(state);
13426
13427                 if (ret)
13428                         return ret;
13429         } else
13430                 intel_state->cdclk = dev_priv->cdclk_freq;
13431
13432         ret = drm_atomic_helper_check_planes(dev, state);
13433         if (ret)
13434                 return ret;
13435
13436         intel_fbc_choose_crtc(dev_priv, state);
13437         return calc_watermark_data(state);
13438 }
13439
13440 static int intel_atomic_prepare_commit(struct drm_device *dev,
13441                                        struct drm_atomic_state *state,
13442                                        bool async)
13443 {
13444         struct drm_i915_private *dev_priv = dev->dev_private;
13445         struct drm_plane_state *plane_state;
13446         struct drm_crtc_state *crtc_state;
13447         struct drm_plane *plane;
13448         struct drm_crtc *crtc;
13449         int i, ret;
13450
13451         if (async) {
13452                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13453                 return -EINVAL;
13454         }
13455
13456         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13457                 if (state->legacy_cursor_update)
13458                         continue;
13459
13460                 ret = intel_crtc_wait_for_pending_flips(crtc);
13461                 if (ret)
13462                         return ret;
13463
13464                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13465                         flush_workqueue(dev_priv->wq);
13466         }
13467
13468         ret = mutex_lock_interruptible(&dev->struct_mutex);
13469         if (ret)
13470                 return ret;
13471
13472         ret = drm_atomic_helper_prepare_planes(dev, state);
13473         mutex_unlock(&dev->struct_mutex);
13474
13475         if (!ret && !async) {
13476                 for_each_plane_in_state(state, plane, plane_state, i) {
13477                         struct intel_plane_state *intel_plane_state =
13478                                 to_intel_plane_state(plane_state);
13479
13480                         if (!intel_plane_state->wait_req)
13481                                 continue;
13482
13483                         ret = __i915_wait_request(intel_plane_state->wait_req,
13484                                                   true, NULL, NULL);
13485                         if (ret) {
13486                                 /* Any hang should be swallowed by the wait */
13487                                 WARN_ON(ret == -EIO);
13488                                 mutex_lock(&dev->struct_mutex);
13489                                 drm_atomic_helper_cleanup_planes(dev, state);
13490                                 mutex_unlock(&dev->struct_mutex);
13491                                 break;
13492                         }
13493                 }
13494         }
13495
13496         return ret;
13497 }
13498
13499 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13500                                           struct drm_i915_private *dev_priv,
13501                                           unsigned crtc_mask)
13502 {
13503         unsigned last_vblank_count[I915_MAX_PIPES];
13504         enum pipe pipe;
13505         int ret;
13506
13507         if (!crtc_mask)
13508                 return;
13509
13510         for_each_pipe(dev_priv, pipe) {
13511                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13512
13513                 if (!((1 << pipe) & crtc_mask))
13514                         continue;
13515
13516                 ret = drm_crtc_vblank_get(crtc);
13517                 if (WARN_ON(ret != 0)) {
13518                         crtc_mask &= ~(1 << pipe);
13519                         continue;
13520                 }
13521
13522                 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13523         }
13524
13525         for_each_pipe(dev_priv, pipe) {
13526                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13527                 long lret;
13528
13529                 if (!((1 << pipe) & crtc_mask))
13530                         continue;
13531
13532                 lret = wait_event_timeout(dev->vblank[pipe].queue,
13533                                 last_vblank_count[pipe] !=
13534                                         drm_crtc_vblank_count(crtc),
13535                                 msecs_to_jiffies(50));
13536
13537                 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
13538
13539                 drm_crtc_vblank_put(crtc);
13540         }
13541 }
13542
13543 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13544 {
13545         /* fb updated, need to unpin old fb */
13546         if (crtc_state->fb_changed)
13547                 return true;
13548
13549         /* wm changes, need vblank before final wm's */
13550         if (crtc_state->update_wm_post)
13551                 return true;
13552
13553         /*
13554          * cxsr is re-enabled after vblank.
13555          * This is already handled by crtc_state->update_wm_post,
13556          * but added for clarity.
13557          */
13558         if (crtc_state->disable_cxsr)
13559                 return true;
13560
13561         return false;
13562 }
13563
13564 /**
13565  * intel_atomic_commit - commit validated state object
13566  * @dev: DRM device
13567  * @state: the top-level driver state object
13568  * @async: asynchronous commit
13569  *
13570  * This function commits a top-level state object that has been validated
13571  * with drm_atomic_helper_check().
13572  *
13573  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13574  * we can only handle plane-related operations and do not yet support
13575  * asynchronous commit.
13576  *
13577  * RETURNS
13578  * Zero for success or -errno.
13579  */
13580 static int intel_atomic_commit(struct drm_device *dev,
13581                                struct drm_atomic_state *state,
13582                                bool async)
13583 {
13584         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13585         struct drm_i915_private *dev_priv = dev->dev_private;
13586         struct drm_crtc_state *old_crtc_state;
13587         struct drm_crtc *crtc;
13588         struct intel_crtc_state *intel_cstate;
13589         int ret = 0, i;
13590         bool hw_check = intel_state->modeset;
13591         unsigned long put_domains[I915_MAX_PIPES] = {};
13592         unsigned crtc_vblank_mask = 0;
13593
13594         ret = intel_atomic_prepare_commit(dev, state, async);
13595         if (ret) {
13596                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13597                 return ret;
13598         }
13599
13600         drm_atomic_helper_swap_state(dev, state);
13601         dev_priv->wm.config = intel_state->wm_config;
13602         dev_priv->wm.distrust_bios_wm = false;
13603         dev_priv->wm.skl_results.ddb = intel_state->ddb;
13604         intel_shared_dpll_commit(state);
13605
13606         if (intel_state->modeset) {
13607                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13608                        sizeof(intel_state->min_pixclk));
13609                 dev_priv->active_crtcs = intel_state->active_crtcs;
13610                 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13611
13612                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13613         }
13614
13615         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13616                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13617
13618                 if (needs_modeset(crtc->state) ||
13619                     to_intel_crtc_state(crtc->state)->update_pipe) {
13620                         hw_check = true;
13621
13622                         put_domains[to_intel_crtc(crtc)->pipe] =
13623                                 modeset_get_crtc_power_domains(crtc,
13624                                         to_intel_crtc_state(crtc->state));
13625                 }
13626
13627                 if (!needs_modeset(crtc->state))
13628                         continue;
13629
13630                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13631
13632                 if (old_crtc_state->active) {
13633                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13634                         dev_priv->display.crtc_disable(crtc);
13635                         intel_crtc->active = false;
13636                         intel_fbc_disable(intel_crtc);
13637                         intel_disable_shared_dpll(intel_crtc);
13638
13639                         /*
13640                          * Underruns don't always raise
13641                          * interrupts, so check manually.
13642                          */
13643                         intel_check_cpu_fifo_underruns(dev_priv);
13644                         intel_check_pch_fifo_underruns(dev_priv);
13645
13646                         if (!crtc->state->active)
13647                                 intel_update_watermarks(crtc);
13648                 }
13649         }
13650
13651         /* Only after disabling all output pipelines that will be changed can we
13652          * update the the output configuration. */
13653         intel_modeset_update_crtc_state(state);
13654
13655         if (intel_state->modeset) {
13656                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13657
13658                 if (dev_priv->display.modeset_commit_cdclk &&
13659                     intel_state->dev_cdclk != dev_priv->cdclk_freq)
13660                         dev_priv->display.modeset_commit_cdclk(state);
13661
13662                 intel_modeset_verify_disabled(dev);
13663         }
13664
13665         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13666         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13667                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13668                 bool modeset = needs_modeset(crtc->state);
13669                 struct intel_crtc_state *pipe_config =
13670                         to_intel_crtc_state(crtc->state);
13671                 bool update_pipe = !modeset && pipe_config->update_pipe;
13672
13673                 if (modeset && crtc->state->active) {
13674                         update_scanline_offset(to_intel_crtc(crtc));
13675                         dev_priv->display.crtc_enable(crtc);
13676                 }
13677
13678                 if (!modeset)
13679                         intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13680
13681                 if (crtc->state->active &&
13682                     drm_atomic_get_existing_plane_state(state, crtc->primary))
13683                         intel_fbc_enable(intel_crtc);
13684
13685                 if (crtc->state->active &&
13686                     (crtc->state->planes_changed || update_pipe))
13687                         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
13688
13689                 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13690                         crtc_vblank_mask |= 1 << i;
13691         }
13692
13693         /* FIXME: add subpixel order */
13694
13695         if (!state->legacy_cursor_update)
13696                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13697
13698         /*
13699          * Now that the vblank has passed, we can go ahead and program the
13700          * optimal watermarks on platforms that need two-step watermark
13701          * programming.
13702          *
13703          * TODO: Move this (and other cleanup) to an async worker eventually.
13704          */
13705         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13706                 intel_cstate = to_intel_crtc_state(crtc->state);
13707
13708                 if (dev_priv->display.optimize_watermarks)
13709                         dev_priv->display.optimize_watermarks(intel_cstate);
13710         }
13711
13712         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13713                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13714
13715                 if (put_domains[i])
13716                         modeset_put_power_domains(dev_priv, put_domains[i]);
13717
13718                 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
13719         }
13720
13721         if (intel_state->modeset)
13722                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13723
13724         mutex_lock(&dev->struct_mutex);
13725         drm_atomic_helper_cleanup_planes(dev, state);
13726         mutex_unlock(&dev->struct_mutex);
13727
13728         drm_atomic_state_free(state);
13729
13730         /* As one of the primary mmio accessors, KMS has a high likelihood
13731          * of triggering bugs in unclaimed access. After we finish
13732          * modesetting, see if an error has been flagged, and if so
13733          * enable debugging for the next modeset - and hope we catch
13734          * the culprit.
13735          *
13736          * XXX note that we assume display power is on at this point.
13737          * This might hold true now but we need to add pm helper to check
13738          * unclaimed only when the hardware is on, as atomic commits
13739          * can happen also when the device is completely off.
13740          */
13741         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13742
13743         return 0;
13744 }
13745
13746 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13747 {
13748         struct drm_device *dev = crtc->dev;
13749         struct drm_atomic_state *state;
13750         struct drm_crtc_state *crtc_state;
13751         int ret;
13752
13753         state = drm_atomic_state_alloc(dev);
13754         if (!state) {
13755                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13756                               crtc->base.id);
13757                 return;
13758         }
13759
13760         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13761
13762 retry:
13763         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13764         ret = PTR_ERR_OR_ZERO(crtc_state);
13765         if (!ret) {
13766                 if (!crtc_state->active)
13767                         goto out;
13768
13769                 crtc_state->mode_changed = true;
13770                 ret = drm_atomic_commit(state);
13771         }
13772
13773         if (ret == -EDEADLK) {
13774                 drm_atomic_state_clear(state);
13775                 drm_modeset_backoff(state->acquire_ctx);
13776                 goto retry;
13777         }
13778
13779         if (ret)
13780 out:
13781                 drm_atomic_state_free(state);
13782 }
13783
13784 #undef for_each_intel_crtc_masked
13785
13786 static const struct drm_crtc_funcs intel_crtc_funcs = {
13787         .gamma_set = drm_atomic_helper_legacy_gamma_set,
13788         .set_config = drm_atomic_helper_set_config,
13789         .set_property = drm_atomic_helper_crtc_set_property,
13790         .destroy = intel_crtc_destroy,
13791         .page_flip = intel_crtc_page_flip,
13792         .atomic_duplicate_state = intel_crtc_duplicate_state,
13793         .atomic_destroy_state = intel_crtc_destroy_state,
13794 };
13795
13796 /**
13797  * intel_prepare_plane_fb - Prepare fb for usage on plane
13798  * @plane: drm plane to prepare for
13799  * @fb: framebuffer to prepare for presentation
13800  *
13801  * Prepares a framebuffer for usage on a display plane.  Generally this
13802  * involves pinning the underlying object and updating the frontbuffer tracking
13803  * bits.  Some older platforms need special physical address handling for
13804  * cursor planes.
13805  *
13806  * Must be called with struct_mutex held.
13807  *
13808  * Returns 0 on success, negative error code on failure.
13809  */
13810 int
13811 intel_prepare_plane_fb(struct drm_plane *plane,
13812                        const struct drm_plane_state *new_state)
13813 {
13814         struct drm_device *dev = plane->dev;
13815         struct drm_framebuffer *fb = new_state->fb;
13816         struct intel_plane *intel_plane = to_intel_plane(plane);
13817         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13818         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13819         int ret = 0;
13820
13821         if (!obj && !old_obj)
13822                 return 0;
13823
13824         if (old_obj) {
13825                 struct drm_crtc_state *crtc_state =
13826                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13827
13828                 /* Big Hammer, we also need to ensure that any pending
13829                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13830                  * current scanout is retired before unpinning the old
13831                  * framebuffer. Note that we rely on userspace rendering
13832                  * into the buffer attached to the pipe they are waiting
13833                  * on. If not, userspace generates a GPU hang with IPEHR
13834                  * point to the MI_WAIT_FOR_EVENT.
13835                  *
13836                  * This should only fail upon a hung GPU, in which case we
13837                  * can safely continue.
13838                  */
13839                 if (needs_modeset(crtc_state))
13840                         ret = i915_gem_object_wait_rendering(old_obj, true);
13841                 if (ret) {
13842                         /* GPU hangs should have been swallowed by the wait */
13843                         WARN_ON(ret == -EIO);
13844                         return ret;
13845                 }
13846         }
13847
13848         /* For framebuffer backed by dmabuf, wait for fence */
13849         if (obj && obj->base.dma_buf) {
13850                 long lret;
13851
13852                 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13853                                                            false, true,
13854                                                            MAX_SCHEDULE_TIMEOUT);
13855                 if (lret == -ERESTARTSYS)
13856                         return lret;
13857
13858                 WARN(lret < 0, "waiting returns %li\n", lret);
13859         }
13860
13861         if (!obj) {
13862                 ret = 0;
13863         } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13864             INTEL_INFO(dev)->cursor_needs_physical) {
13865                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13866                 ret = i915_gem_object_attach_phys(obj, align);
13867                 if (ret)
13868                         DRM_DEBUG_KMS("failed to attach phys object\n");
13869         } else {
13870                 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13871         }
13872
13873         if (ret == 0) {
13874                 if (obj) {
13875                         struct intel_plane_state *plane_state =
13876                                 to_intel_plane_state(new_state);
13877
13878                         i915_gem_request_assign(&plane_state->wait_req,
13879                                                 obj->last_write_req);
13880                 }
13881
13882                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13883         }
13884
13885         return ret;
13886 }
13887
13888 /**
13889  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13890  * @plane: drm plane to clean up for
13891  * @fb: old framebuffer that was on plane
13892  *
13893  * Cleans up a framebuffer that has just been removed from a plane.
13894  *
13895  * Must be called with struct_mutex held.
13896  */
13897 void
13898 intel_cleanup_plane_fb(struct drm_plane *plane,
13899                        const struct drm_plane_state *old_state)
13900 {
13901         struct drm_device *dev = plane->dev;
13902         struct intel_plane *intel_plane = to_intel_plane(plane);
13903         struct intel_plane_state *old_intel_state;
13904         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13905         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13906
13907         old_intel_state = to_intel_plane_state(old_state);
13908
13909         if (!obj && !old_obj)
13910                 return;
13911
13912         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13913             !INTEL_INFO(dev)->cursor_needs_physical))
13914                 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
13915
13916         /* prepare_fb aborted? */
13917         if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13918             (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13919                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13920
13921         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13922 }
13923
13924 int
13925 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13926 {
13927         int max_scale;
13928         struct drm_device *dev;
13929         struct drm_i915_private *dev_priv;
13930         int crtc_clock, cdclk;
13931
13932         if (!intel_crtc || !crtc_state->base.enable)
13933                 return DRM_PLANE_HELPER_NO_SCALING;
13934
13935         dev = intel_crtc->base.dev;
13936         dev_priv = dev->dev_private;
13937         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13938         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13939
13940         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13941                 return DRM_PLANE_HELPER_NO_SCALING;
13942
13943         /*
13944          * skl max scale is lower of:
13945          *    close to 3 but not 3, -1 is for that purpose
13946          *            or
13947          *    cdclk/crtc_clock
13948          */
13949         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13950
13951         return max_scale;
13952 }
13953
13954 static int
13955 intel_check_primary_plane(struct drm_plane *plane,
13956                           struct intel_crtc_state *crtc_state,
13957                           struct intel_plane_state *state)
13958 {
13959         struct drm_crtc *crtc = state->base.crtc;
13960         struct drm_framebuffer *fb = state->base.fb;
13961         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13962         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13963         bool can_position = false;
13964
13965         if (INTEL_INFO(plane->dev)->gen >= 9) {
13966                 /* use scaler when colorkey is not required */
13967                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13968                         min_scale = 1;
13969                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13970                 }
13971                 can_position = true;
13972         }
13973
13974         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13975                                              &state->dst, &state->clip,
13976                                              min_scale, max_scale,
13977                                              can_position, true,
13978                                              &state->visible);
13979 }
13980
13981 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13982                                     struct drm_crtc_state *old_crtc_state)
13983 {
13984         struct drm_device *dev = crtc->dev;
13985         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13986         struct intel_crtc_state *old_intel_state =
13987                 to_intel_crtc_state(old_crtc_state);
13988         bool modeset = needs_modeset(crtc->state);
13989
13990         /* Perform vblank evasion around commit operation */
13991         intel_pipe_update_start(intel_crtc);
13992
13993         if (modeset)
13994                 return;
13995
13996         if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
13997                 intel_color_set_csc(crtc->state);
13998                 intel_color_load_luts(crtc->state);
13999         }
14000
14001         if (to_intel_crtc_state(crtc->state)->update_pipe)
14002                 intel_update_pipe_config(intel_crtc, old_intel_state);
14003         else if (INTEL_INFO(dev)->gen >= 9)
14004                 skl_detach_scalers(intel_crtc);
14005 }
14006
14007 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14008                                      struct drm_crtc_state *old_crtc_state)
14009 {
14010         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14011
14012         intel_pipe_update_end(intel_crtc);
14013 }
14014
14015 /**
14016  * intel_plane_destroy - destroy a plane
14017  * @plane: plane to destroy
14018  *
14019  * Common destruction function for all types of planes (primary, cursor,
14020  * sprite).
14021  */
14022 void intel_plane_destroy(struct drm_plane *plane)
14023 {
14024         struct intel_plane *intel_plane = to_intel_plane(plane);
14025         drm_plane_cleanup(plane);
14026         kfree(intel_plane);
14027 }
14028
14029 const struct drm_plane_funcs intel_plane_funcs = {
14030         .update_plane = drm_atomic_helper_update_plane,
14031         .disable_plane = drm_atomic_helper_disable_plane,
14032         .destroy = intel_plane_destroy,
14033         .set_property = drm_atomic_helper_plane_set_property,
14034         .atomic_get_property = intel_plane_atomic_get_property,
14035         .atomic_set_property = intel_plane_atomic_set_property,
14036         .atomic_duplicate_state = intel_plane_duplicate_state,
14037         .atomic_destroy_state = intel_plane_destroy_state,
14038
14039 };
14040
14041 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14042                                                     int pipe)
14043 {
14044         struct intel_plane *primary = NULL;
14045         struct intel_plane_state *state = NULL;
14046         const uint32_t *intel_primary_formats;
14047         unsigned int num_formats;
14048         int ret;
14049
14050         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14051         if (!primary)
14052                 goto fail;
14053
14054         state = intel_create_plane_state(&primary->base);
14055         if (!state)
14056                 goto fail;
14057         primary->base.state = &state->base;
14058
14059         primary->can_scale = false;
14060         primary->max_downscale = 1;
14061         if (INTEL_INFO(dev)->gen >= 9) {
14062                 primary->can_scale = true;
14063                 state->scaler_id = -1;
14064         }
14065         primary->pipe = pipe;
14066         primary->plane = pipe;
14067         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14068         primary->check_plane = intel_check_primary_plane;
14069         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14070                 primary->plane = !pipe;
14071
14072         if (INTEL_INFO(dev)->gen >= 9) {
14073                 intel_primary_formats = skl_primary_formats;
14074                 num_formats = ARRAY_SIZE(skl_primary_formats);
14075
14076                 primary->update_plane = skylake_update_primary_plane;
14077                 primary->disable_plane = skylake_disable_primary_plane;
14078         } else if (HAS_PCH_SPLIT(dev)) {
14079                 intel_primary_formats = i965_primary_formats;
14080                 num_formats = ARRAY_SIZE(i965_primary_formats);
14081
14082                 primary->update_plane = ironlake_update_primary_plane;
14083                 primary->disable_plane = i9xx_disable_primary_plane;
14084         } else if (INTEL_INFO(dev)->gen >= 4) {
14085                 intel_primary_formats = i965_primary_formats;
14086                 num_formats = ARRAY_SIZE(i965_primary_formats);
14087
14088                 primary->update_plane = i9xx_update_primary_plane;
14089                 primary->disable_plane = i9xx_disable_primary_plane;
14090         } else {
14091                 intel_primary_formats = i8xx_primary_formats;
14092                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14093
14094                 primary->update_plane = i9xx_update_primary_plane;
14095                 primary->disable_plane = i9xx_disable_primary_plane;
14096         }
14097
14098         ret = drm_universal_plane_init(dev, &primary->base, 0,
14099                                        &intel_plane_funcs,
14100                                        intel_primary_formats, num_formats,
14101                                        DRM_PLANE_TYPE_PRIMARY, NULL);
14102         if (ret)
14103                 goto fail;
14104
14105         if (INTEL_INFO(dev)->gen >= 4)
14106                 intel_create_rotation_property(dev, primary);
14107
14108         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14109
14110         return &primary->base;
14111
14112 fail:
14113         kfree(state);
14114         kfree(primary);
14115
14116         return NULL;
14117 }
14118
14119 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14120 {
14121         if (!dev->mode_config.rotation_property) {
14122                 unsigned long flags = BIT(DRM_ROTATE_0) |
14123                         BIT(DRM_ROTATE_180);
14124
14125                 if (INTEL_INFO(dev)->gen >= 9)
14126                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14127
14128                 dev->mode_config.rotation_property =
14129                         drm_mode_create_rotation_property(dev, flags);
14130         }
14131         if (dev->mode_config.rotation_property)
14132                 drm_object_attach_property(&plane->base.base,
14133                                 dev->mode_config.rotation_property,
14134                                 plane->base.state->rotation);
14135 }
14136
14137 static int
14138 intel_check_cursor_plane(struct drm_plane *plane,
14139                          struct intel_crtc_state *crtc_state,
14140                          struct intel_plane_state *state)
14141 {
14142         struct drm_crtc *crtc = crtc_state->base.crtc;
14143         struct drm_framebuffer *fb = state->base.fb;
14144         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14145         enum pipe pipe = to_intel_plane(plane)->pipe;
14146         unsigned stride;
14147         int ret;
14148
14149         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14150                                             &state->dst, &state->clip,
14151                                             DRM_PLANE_HELPER_NO_SCALING,
14152                                             DRM_PLANE_HELPER_NO_SCALING,
14153                                             true, true, &state->visible);
14154         if (ret)
14155                 return ret;
14156
14157         /* if we want to turn off the cursor ignore width and height */
14158         if (!obj)
14159                 return 0;
14160
14161         /* Check for which cursor types we support */
14162         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14163                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14164                           state->base.crtc_w, state->base.crtc_h);
14165                 return -EINVAL;
14166         }
14167
14168         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14169         if (obj->base.size < stride * state->base.crtc_h) {
14170                 DRM_DEBUG_KMS("buffer is too small\n");
14171                 return -ENOMEM;
14172         }
14173
14174         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14175                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14176                 return -EINVAL;
14177         }
14178
14179         /*
14180          * There's something wrong with the cursor on CHV pipe C.
14181          * If it straddles the left edge of the screen then
14182          * moving it away from the edge or disabling it often
14183          * results in a pipe underrun, and often that can lead to
14184          * dead pipe (constant underrun reported, and it scans
14185          * out just a solid color). To recover from that, the
14186          * display power well must be turned off and on again.
14187          * Refuse the put the cursor into that compromised position.
14188          */
14189         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14190             state->visible && state->base.crtc_x < 0) {
14191                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14192                 return -EINVAL;
14193         }
14194
14195         return 0;
14196 }
14197
14198 static void
14199 intel_disable_cursor_plane(struct drm_plane *plane,
14200                            struct drm_crtc *crtc)
14201 {
14202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14203
14204         intel_crtc->cursor_addr = 0;
14205         intel_crtc_update_cursor(crtc, NULL);
14206 }
14207
14208 static void
14209 intel_update_cursor_plane(struct drm_plane *plane,
14210                           const struct intel_crtc_state *crtc_state,
14211                           const struct intel_plane_state *state)
14212 {
14213         struct drm_crtc *crtc = crtc_state->base.crtc;
14214         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14215         struct drm_device *dev = plane->dev;
14216         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14217         uint32_t addr;
14218
14219         if (!obj)
14220                 addr = 0;
14221         else if (!INTEL_INFO(dev)->cursor_needs_physical)
14222                 addr = i915_gem_obj_ggtt_offset(obj);
14223         else
14224                 addr = obj->phys_handle->busaddr;
14225
14226         intel_crtc->cursor_addr = addr;
14227         intel_crtc_update_cursor(crtc, state);
14228 }
14229
14230 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14231                                                    int pipe)
14232 {
14233         struct intel_plane *cursor = NULL;
14234         struct intel_plane_state *state = NULL;
14235         int ret;
14236
14237         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14238         if (!cursor)
14239                 goto fail;
14240
14241         state = intel_create_plane_state(&cursor->base);
14242         if (!state)
14243                 goto fail;
14244         cursor->base.state = &state->base;
14245
14246         cursor->can_scale = false;
14247         cursor->max_downscale = 1;
14248         cursor->pipe = pipe;
14249         cursor->plane = pipe;
14250         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14251         cursor->check_plane = intel_check_cursor_plane;
14252         cursor->update_plane = intel_update_cursor_plane;
14253         cursor->disable_plane = intel_disable_cursor_plane;
14254
14255         ret = drm_universal_plane_init(dev, &cursor->base, 0,
14256                                        &intel_plane_funcs,
14257                                        intel_cursor_formats,
14258                                        ARRAY_SIZE(intel_cursor_formats),
14259                                        DRM_PLANE_TYPE_CURSOR, NULL);
14260         if (ret)
14261                 goto fail;
14262
14263         if (INTEL_INFO(dev)->gen >= 4) {
14264                 if (!dev->mode_config.rotation_property)
14265                         dev->mode_config.rotation_property =
14266                                 drm_mode_create_rotation_property(dev,
14267                                                         BIT(DRM_ROTATE_0) |
14268                                                         BIT(DRM_ROTATE_180));
14269                 if (dev->mode_config.rotation_property)
14270                         drm_object_attach_property(&cursor->base.base,
14271                                 dev->mode_config.rotation_property,
14272                                 state->base.rotation);
14273         }
14274
14275         if (INTEL_INFO(dev)->gen >=9)
14276                 state->scaler_id = -1;
14277
14278         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14279
14280         return &cursor->base;
14281
14282 fail:
14283         kfree(state);
14284         kfree(cursor);
14285
14286         return NULL;
14287 }
14288
14289 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14290         struct intel_crtc_state *crtc_state)
14291 {
14292         int i;
14293         struct intel_scaler *intel_scaler;
14294         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14295
14296         for (i = 0; i < intel_crtc->num_scalers; i++) {
14297                 intel_scaler = &scaler_state->scalers[i];
14298                 intel_scaler->in_use = 0;
14299                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14300         }
14301
14302         scaler_state->scaler_id = -1;
14303 }
14304
14305 static void intel_crtc_init(struct drm_device *dev, int pipe)
14306 {
14307         struct drm_i915_private *dev_priv = dev->dev_private;
14308         struct intel_crtc *intel_crtc;
14309         struct intel_crtc_state *crtc_state = NULL;
14310         struct drm_plane *primary = NULL;
14311         struct drm_plane *cursor = NULL;
14312         int ret;
14313
14314         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14315         if (intel_crtc == NULL)
14316                 return;
14317
14318         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14319         if (!crtc_state)
14320                 goto fail;
14321         intel_crtc->config = crtc_state;
14322         intel_crtc->base.state = &crtc_state->base;
14323         crtc_state->base.crtc = &intel_crtc->base;
14324
14325         /* initialize shared scalers */
14326         if (INTEL_INFO(dev)->gen >= 9) {
14327                 if (pipe == PIPE_C)
14328                         intel_crtc->num_scalers = 1;
14329                 else
14330                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14331
14332                 skl_init_scalers(dev, intel_crtc, crtc_state);
14333         }
14334
14335         primary = intel_primary_plane_create(dev, pipe);
14336         if (!primary)
14337                 goto fail;
14338
14339         cursor = intel_cursor_plane_create(dev, pipe);
14340         if (!cursor)
14341                 goto fail;
14342
14343         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14344                                         cursor, &intel_crtc_funcs, NULL);
14345         if (ret)
14346                 goto fail;
14347
14348         /*
14349          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14350          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14351          */
14352         intel_crtc->pipe = pipe;
14353         intel_crtc->plane = pipe;
14354         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14355                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14356                 intel_crtc->plane = !pipe;
14357         }
14358
14359         intel_crtc->cursor_base = ~0;
14360         intel_crtc->cursor_cntl = ~0;
14361         intel_crtc->cursor_size = ~0;
14362
14363         intel_crtc->wm.cxsr_allowed = true;
14364
14365         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14366                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14367         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14368         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14369
14370         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14371
14372         intel_color_init(&intel_crtc->base);
14373
14374         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14375         return;
14376
14377 fail:
14378         if (primary)
14379                 drm_plane_cleanup(primary);
14380         if (cursor)
14381                 drm_plane_cleanup(cursor);
14382         kfree(crtc_state);
14383         kfree(intel_crtc);
14384 }
14385
14386 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14387 {
14388         struct drm_encoder *encoder = connector->base.encoder;
14389         struct drm_device *dev = connector->base.dev;
14390
14391         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14392
14393         if (!encoder || WARN_ON(!encoder->crtc))
14394                 return INVALID_PIPE;
14395
14396         return to_intel_crtc(encoder->crtc)->pipe;
14397 }
14398
14399 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14400                                 struct drm_file *file)
14401 {
14402         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14403         struct drm_crtc *drmmode_crtc;
14404         struct intel_crtc *crtc;
14405
14406         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14407
14408         if (!drmmode_crtc) {
14409                 DRM_ERROR("no such CRTC id\n");
14410                 return -ENOENT;
14411         }
14412
14413         crtc = to_intel_crtc(drmmode_crtc);
14414         pipe_from_crtc_id->pipe = crtc->pipe;
14415
14416         return 0;
14417 }
14418
14419 static int intel_encoder_clones(struct intel_encoder *encoder)
14420 {
14421         struct drm_device *dev = encoder->base.dev;
14422         struct intel_encoder *source_encoder;
14423         int index_mask = 0;
14424         int entry = 0;
14425
14426         for_each_intel_encoder(dev, source_encoder) {
14427                 if (encoders_cloneable(encoder, source_encoder))
14428                         index_mask |= (1 << entry);
14429
14430                 entry++;
14431         }
14432
14433         return index_mask;
14434 }
14435
14436 static bool has_edp_a(struct drm_device *dev)
14437 {
14438         struct drm_i915_private *dev_priv = dev->dev_private;
14439
14440         if (!IS_MOBILE(dev))
14441                 return false;
14442
14443         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14444                 return false;
14445
14446         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14447                 return false;
14448
14449         return true;
14450 }
14451
14452 static bool intel_crt_present(struct drm_device *dev)
14453 {
14454         struct drm_i915_private *dev_priv = dev->dev_private;
14455
14456         if (INTEL_INFO(dev)->gen >= 9)
14457                 return false;
14458
14459         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14460                 return false;
14461
14462         if (IS_CHERRYVIEW(dev))
14463                 return false;
14464
14465         if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14466                 return false;
14467
14468         /* DDI E can't be used if DDI A requires 4 lanes */
14469         if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14470                 return false;
14471
14472         if (!dev_priv->vbt.int_crt_support)
14473                 return false;
14474
14475         return true;
14476 }
14477
14478 static void intel_setup_outputs(struct drm_device *dev)
14479 {
14480         struct drm_i915_private *dev_priv = dev->dev_private;
14481         struct intel_encoder *encoder;
14482         bool dpd_is_edp = false;
14483
14484         intel_lvds_init(dev);
14485
14486         if (intel_crt_present(dev))
14487                 intel_crt_init(dev);
14488
14489         if (IS_BROXTON(dev)) {
14490                 /*
14491                  * FIXME: Broxton doesn't support port detection via the
14492                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14493                  * detect the ports.
14494                  */
14495                 intel_ddi_init(dev, PORT_A);
14496                 intel_ddi_init(dev, PORT_B);
14497                 intel_ddi_init(dev, PORT_C);
14498
14499                 intel_dsi_init(dev);
14500         } else if (HAS_DDI(dev)) {
14501                 int found;
14502
14503                 /*
14504                  * Haswell uses DDI functions to detect digital outputs.
14505                  * On SKL pre-D0 the strap isn't connected, so we assume
14506                  * it's there.
14507                  */
14508                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14509                 /* WaIgnoreDDIAStrap: skl */
14510                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14511                         intel_ddi_init(dev, PORT_A);
14512
14513                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14514                  * register */
14515                 found = I915_READ(SFUSE_STRAP);
14516
14517                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14518                         intel_ddi_init(dev, PORT_B);
14519                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14520                         intel_ddi_init(dev, PORT_C);
14521                 if (found & SFUSE_STRAP_DDID_DETECTED)
14522                         intel_ddi_init(dev, PORT_D);
14523                 /*
14524                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14525                  */
14526                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14527                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14528                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14529                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14530                         intel_ddi_init(dev, PORT_E);
14531
14532         } else if (HAS_PCH_SPLIT(dev)) {
14533                 int found;
14534                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14535
14536                 if (has_edp_a(dev))
14537                         intel_dp_init(dev, DP_A, PORT_A);
14538
14539                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14540                         /* PCH SDVOB multiplex with HDMIB */
14541                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14542                         if (!found)
14543                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14544                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14545                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14546                 }
14547
14548                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14549                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14550
14551                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14552                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14553
14554                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14555                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14556
14557                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14558                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14559         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14560                 /*
14561                  * The DP_DETECTED bit is the latched state of the DDC
14562                  * SDA pin at boot. However since eDP doesn't require DDC
14563                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14564                  * eDP ports may have been muxed to an alternate function.
14565                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14566                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14567                  * detect eDP ports.
14568                  */
14569                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14570                     !intel_dp_is_edp(dev, PORT_B))
14571                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14572                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14573                     intel_dp_is_edp(dev, PORT_B))
14574                         intel_dp_init(dev, VLV_DP_B, PORT_B);
14575
14576                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14577                     !intel_dp_is_edp(dev, PORT_C))
14578                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14579                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14580                     intel_dp_is_edp(dev, PORT_C))
14581                         intel_dp_init(dev, VLV_DP_C, PORT_C);
14582
14583                 if (IS_CHERRYVIEW(dev)) {
14584                         /* eDP not supported on port D, so don't check VBT */
14585                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14586                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14587                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
14588                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14589                 }
14590
14591                 intel_dsi_init(dev);
14592         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14593                 bool found = false;
14594
14595                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14596                         DRM_DEBUG_KMS("probing SDVOB\n");
14597                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14598                         if (!found && IS_G4X(dev)) {
14599                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14600                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14601                         }
14602
14603                         if (!found && IS_G4X(dev))
14604                                 intel_dp_init(dev, DP_B, PORT_B);
14605                 }
14606
14607                 /* Before G4X SDVOC doesn't have its own detect register */
14608
14609                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14610                         DRM_DEBUG_KMS("probing SDVOC\n");
14611                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14612                 }
14613
14614                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14615
14616                         if (IS_G4X(dev)) {
14617                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14618                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14619                         }
14620                         if (IS_G4X(dev))
14621                                 intel_dp_init(dev, DP_C, PORT_C);
14622                 }
14623
14624                 if (IS_G4X(dev) &&
14625                     (I915_READ(DP_D) & DP_DETECTED))
14626                         intel_dp_init(dev, DP_D, PORT_D);
14627         } else if (IS_GEN2(dev))
14628                 intel_dvo_init(dev);
14629
14630         if (SUPPORTS_TV(dev))
14631                 intel_tv_init(dev);
14632
14633         intel_psr_init(dev);
14634
14635         for_each_intel_encoder(dev, encoder) {
14636                 encoder->base.possible_crtcs = encoder->crtc_mask;
14637                 encoder->base.possible_clones =
14638                         intel_encoder_clones(encoder);
14639         }
14640
14641         intel_init_pch_refclk(dev);
14642
14643         drm_helper_move_panel_connectors_to_head(dev);
14644 }
14645
14646 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14647 {
14648         struct drm_device *dev = fb->dev;
14649         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14650
14651         drm_framebuffer_cleanup(fb);
14652         mutex_lock(&dev->struct_mutex);
14653         WARN_ON(!intel_fb->obj->framebuffer_references--);
14654         drm_gem_object_unreference(&intel_fb->obj->base);
14655         mutex_unlock(&dev->struct_mutex);
14656         kfree(intel_fb);
14657 }
14658
14659 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14660                                                 struct drm_file *file,
14661                                                 unsigned int *handle)
14662 {
14663         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14664         struct drm_i915_gem_object *obj = intel_fb->obj;
14665
14666         if (obj->userptr.mm) {
14667                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14668                 return -EINVAL;
14669         }
14670
14671         return drm_gem_handle_create(file, &obj->base, handle);
14672 }
14673
14674 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14675                                         struct drm_file *file,
14676                                         unsigned flags, unsigned color,
14677                                         struct drm_clip_rect *clips,
14678                                         unsigned num_clips)
14679 {
14680         struct drm_device *dev = fb->dev;
14681         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14682         struct drm_i915_gem_object *obj = intel_fb->obj;
14683
14684         mutex_lock(&dev->struct_mutex);
14685         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14686         mutex_unlock(&dev->struct_mutex);
14687
14688         return 0;
14689 }
14690
14691 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14692         .destroy = intel_user_framebuffer_destroy,
14693         .create_handle = intel_user_framebuffer_create_handle,
14694         .dirty = intel_user_framebuffer_dirty,
14695 };
14696
14697 static
14698 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14699                          uint32_t pixel_format)
14700 {
14701         u32 gen = INTEL_INFO(dev)->gen;
14702
14703         if (gen >= 9) {
14704                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14705
14706                 /* "The stride in bytes must not exceed the of the size of 8K
14707                  *  pixels and 32K bytes."
14708                  */
14709                 return min(8192 * cpp, 32768);
14710         } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14711                 return 32*1024;
14712         } else if (gen >= 4) {
14713                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14714                         return 16*1024;
14715                 else
14716                         return 32*1024;
14717         } else if (gen >= 3) {
14718                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14719                         return 8*1024;
14720                 else
14721                         return 16*1024;
14722         } else {
14723                 /* XXX DSPC is limited to 4k tiled */
14724                 return 8*1024;
14725         }
14726 }
14727
14728 static int intel_framebuffer_init(struct drm_device *dev,
14729                                   struct intel_framebuffer *intel_fb,
14730                                   struct drm_mode_fb_cmd2 *mode_cmd,
14731                                   struct drm_i915_gem_object *obj)
14732 {
14733         struct drm_i915_private *dev_priv = to_i915(dev);
14734         unsigned int aligned_height;
14735         int ret;
14736         u32 pitch_limit, stride_alignment;
14737
14738         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14739
14740         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14741                 /* Enforce that fb modifier and tiling mode match, but only for
14742                  * X-tiled. This is needed for FBC. */
14743                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14744                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14745                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14746                         return -EINVAL;
14747                 }
14748         } else {
14749                 if (obj->tiling_mode == I915_TILING_X)
14750                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14751                 else if (obj->tiling_mode == I915_TILING_Y) {
14752                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14753                         return -EINVAL;
14754                 }
14755         }
14756
14757         /* Passed in modifier sanity checking. */
14758         switch (mode_cmd->modifier[0]) {
14759         case I915_FORMAT_MOD_Y_TILED:
14760         case I915_FORMAT_MOD_Yf_TILED:
14761                 if (INTEL_INFO(dev)->gen < 9) {
14762                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14763                                   mode_cmd->modifier[0]);
14764                         return -EINVAL;
14765                 }
14766         case DRM_FORMAT_MOD_NONE:
14767         case I915_FORMAT_MOD_X_TILED:
14768                 break;
14769         default:
14770                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14771                           mode_cmd->modifier[0]);
14772                 return -EINVAL;
14773         }
14774
14775         stride_alignment = intel_fb_stride_alignment(dev_priv,
14776                                                      mode_cmd->modifier[0],
14777                                                      mode_cmd->pixel_format);
14778         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14779                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14780                           mode_cmd->pitches[0], stride_alignment);
14781                 return -EINVAL;
14782         }
14783
14784         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14785                                            mode_cmd->pixel_format);
14786         if (mode_cmd->pitches[0] > pitch_limit) {
14787                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14788                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14789                           "tiled" : "linear",
14790                           mode_cmd->pitches[0], pitch_limit);
14791                 return -EINVAL;
14792         }
14793
14794         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14795             mode_cmd->pitches[0] != obj->stride) {
14796                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14797                           mode_cmd->pitches[0], obj->stride);
14798                 return -EINVAL;
14799         }
14800
14801         /* Reject formats not supported by any plane early. */
14802         switch (mode_cmd->pixel_format) {
14803         case DRM_FORMAT_C8:
14804         case DRM_FORMAT_RGB565:
14805         case DRM_FORMAT_XRGB8888:
14806         case DRM_FORMAT_ARGB8888:
14807                 break;
14808         case DRM_FORMAT_XRGB1555:
14809                 if (INTEL_INFO(dev)->gen > 3) {
14810                         DRM_DEBUG("unsupported pixel format: %s\n",
14811                                   drm_get_format_name(mode_cmd->pixel_format));
14812                         return -EINVAL;
14813                 }
14814                 break;
14815         case DRM_FORMAT_ABGR8888:
14816                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14817                     INTEL_INFO(dev)->gen < 9) {
14818                         DRM_DEBUG("unsupported pixel format: %s\n",
14819                                   drm_get_format_name(mode_cmd->pixel_format));
14820                         return -EINVAL;
14821                 }
14822                 break;
14823         case DRM_FORMAT_XBGR8888:
14824         case DRM_FORMAT_XRGB2101010:
14825         case DRM_FORMAT_XBGR2101010:
14826                 if (INTEL_INFO(dev)->gen < 4) {
14827                         DRM_DEBUG("unsupported pixel format: %s\n",
14828                                   drm_get_format_name(mode_cmd->pixel_format));
14829                         return -EINVAL;
14830                 }
14831                 break;
14832         case DRM_FORMAT_ABGR2101010:
14833                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14834                         DRM_DEBUG("unsupported pixel format: %s\n",
14835                                   drm_get_format_name(mode_cmd->pixel_format));
14836                         return -EINVAL;
14837                 }
14838                 break;
14839         case DRM_FORMAT_YUYV:
14840         case DRM_FORMAT_UYVY:
14841         case DRM_FORMAT_YVYU:
14842         case DRM_FORMAT_VYUY:
14843                 if (INTEL_INFO(dev)->gen < 5) {
14844                         DRM_DEBUG("unsupported pixel format: %s\n",
14845                                   drm_get_format_name(mode_cmd->pixel_format));
14846                         return -EINVAL;
14847                 }
14848                 break;
14849         default:
14850                 DRM_DEBUG("unsupported pixel format: %s\n",
14851                           drm_get_format_name(mode_cmd->pixel_format));
14852                 return -EINVAL;
14853         }
14854
14855         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14856         if (mode_cmd->offsets[0] != 0)
14857                 return -EINVAL;
14858
14859         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14860                                                mode_cmd->pixel_format,
14861                                                mode_cmd->modifier[0]);
14862         /* FIXME drm helper for size checks (especially planar formats)? */
14863         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14864                 return -EINVAL;
14865
14866         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14867         intel_fb->obj = obj;
14868
14869         intel_fill_fb_info(dev_priv, &intel_fb->base);
14870
14871         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14872         if (ret) {
14873                 DRM_ERROR("framebuffer init failed %d\n", ret);
14874                 return ret;
14875         }
14876
14877         intel_fb->obj->framebuffer_references++;
14878
14879         return 0;
14880 }
14881
14882 static struct drm_framebuffer *
14883 intel_user_framebuffer_create(struct drm_device *dev,
14884                               struct drm_file *filp,
14885                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14886 {
14887         struct drm_framebuffer *fb;
14888         struct drm_i915_gem_object *obj;
14889         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14890
14891         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14892                                                 mode_cmd.handles[0]));
14893         if (&obj->base == NULL)
14894                 return ERR_PTR(-ENOENT);
14895
14896         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14897         if (IS_ERR(fb))
14898                 drm_gem_object_unreference_unlocked(&obj->base);
14899
14900         return fb;
14901 }
14902
14903 #ifndef CONFIG_DRM_FBDEV_EMULATION
14904 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14905 {
14906 }
14907 #endif
14908
14909 static const struct drm_mode_config_funcs intel_mode_funcs = {
14910         .fb_create = intel_user_framebuffer_create,
14911         .output_poll_changed = intel_fbdev_output_poll_changed,
14912         .atomic_check = intel_atomic_check,
14913         .atomic_commit = intel_atomic_commit,
14914         .atomic_state_alloc = intel_atomic_state_alloc,
14915         .atomic_state_clear = intel_atomic_state_clear,
14916 };
14917
14918 /**
14919  * intel_init_display_hooks - initialize the display modesetting hooks
14920  * @dev_priv: device private
14921  */
14922 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14923 {
14924         if (INTEL_INFO(dev_priv)->gen >= 9) {
14925                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14926                 dev_priv->display.get_initial_plane_config =
14927                         skylake_get_initial_plane_config;
14928                 dev_priv->display.crtc_compute_clock =
14929                         haswell_crtc_compute_clock;
14930                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14931                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14932         } else if (HAS_DDI(dev_priv)) {
14933                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14934                 dev_priv->display.get_initial_plane_config =
14935                         ironlake_get_initial_plane_config;
14936                 dev_priv->display.crtc_compute_clock =
14937                         haswell_crtc_compute_clock;
14938                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14939                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14940         } else if (HAS_PCH_SPLIT(dev_priv)) {
14941                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14942                 dev_priv->display.get_initial_plane_config =
14943                         ironlake_get_initial_plane_config;
14944                 dev_priv->display.crtc_compute_clock =
14945                         ironlake_crtc_compute_clock;
14946                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14947                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14948         } else if (IS_CHERRYVIEW(dev_priv)) {
14949                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14950                 dev_priv->display.get_initial_plane_config =
14951                         i9xx_get_initial_plane_config;
14952                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14953                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14954                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14955         } else if (IS_VALLEYVIEW(dev_priv)) {
14956                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14957                 dev_priv->display.get_initial_plane_config =
14958                         i9xx_get_initial_plane_config;
14959                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14960                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14961                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14962         } else if (IS_G4X(dev_priv)) {
14963                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14964                 dev_priv->display.get_initial_plane_config =
14965                         i9xx_get_initial_plane_config;
14966                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14967                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14968                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14969         } else if (IS_PINEVIEW(dev_priv)) {
14970                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14971                 dev_priv->display.get_initial_plane_config =
14972                         i9xx_get_initial_plane_config;
14973                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14974                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14975                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14976         } else if (!IS_GEN2(dev_priv)) {
14977                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14978                 dev_priv->display.get_initial_plane_config =
14979                         i9xx_get_initial_plane_config;
14980                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14981                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14982                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14983         } else {
14984                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14985                 dev_priv->display.get_initial_plane_config =
14986                         i9xx_get_initial_plane_config;
14987                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14988                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14989                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14990         }
14991
14992         /* Returns the core display clock speed */
14993         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
14994                 dev_priv->display.get_display_clock_speed =
14995                         skylake_get_display_clock_speed;
14996         else if (IS_BROXTON(dev_priv))
14997                 dev_priv->display.get_display_clock_speed =
14998                         broxton_get_display_clock_speed;
14999         else if (IS_BROADWELL(dev_priv))
15000                 dev_priv->display.get_display_clock_speed =
15001                         broadwell_get_display_clock_speed;
15002         else if (IS_HASWELL(dev_priv))
15003                 dev_priv->display.get_display_clock_speed =
15004                         haswell_get_display_clock_speed;
15005         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15006                 dev_priv->display.get_display_clock_speed =
15007                         valleyview_get_display_clock_speed;
15008         else if (IS_GEN5(dev_priv))
15009                 dev_priv->display.get_display_clock_speed =
15010                         ilk_get_display_clock_speed;
15011         else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15012                  IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
15013                 dev_priv->display.get_display_clock_speed =
15014                         i945_get_display_clock_speed;
15015         else if (IS_GM45(dev_priv))
15016                 dev_priv->display.get_display_clock_speed =
15017                         gm45_get_display_clock_speed;
15018         else if (IS_CRESTLINE(dev_priv))
15019                 dev_priv->display.get_display_clock_speed =
15020                         i965gm_get_display_clock_speed;
15021         else if (IS_PINEVIEW(dev_priv))
15022                 dev_priv->display.get_display_clock_speed =
15023                         pnv_get_display_clock_speed;
15024         else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
15025                 dev_priv->display.get_display_clock_speed =
15026                         g33_get_display_clock_speed;
15027         else if (IS_I915G(dev_priv))
15028                 dev_priv->display.get_display_clock_speed =
15029                         i915_get_display_clock_speed;
15030         else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
15031                 dev_priv->display.get_display_clock_speed =
15032                         i9xx_misc_get_display_clock_speed;
15033         else if (IS_I915GM(dev_priv))
15034                 dev_priv->display.get_display_clock_speed =
15035                         i915gm_get_display_clock_speed;
15036         else if (IS_I865G(dev_priv))
15037                 dev_priv->display.get_display_clock_speed =
15038                         i865_get_display_clock_speed;
15039         else if (IS_I85X(dev_priv))
15040                 dev_priv->display.get_display_clock_speed =
15041                         i85x_get_display_clock_speed;
15042         else { /* 830 */
15043                 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
15044                 dev_priv->display.get_display_clock_speed =
15045                         i830_get_display_clock_speed;
15046         }
15047
15048         if (IS_GEN5(dev_priv)) {
15049                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15050         } else if (IS_GEN6(dev_priv)) {
15051                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15052         } else if (IS_IVYBRIDGE(dev_priv)) {
15053                 /* FIXME: detect B0+ stepping and use auto training */
15054                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15055         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15056                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15057                 if (IS_BROADWELL(dev_priv)) {
15058                         dev_priv->display.modeset_commit_cdclk =
15059                                 broadwell_modeset_commit_cdclk;
15060                         dev_priv->display.modeset_calc_cdclk =
15061                                 broadwell_modeset_calc_cdclk;
15062                 }
15063         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15064                 dev_priv->display.modeset_commit_cdclk =
15065                         valleyview_modeset_commit_cdclk;
15066                 dev_priv->display.modeset_calc_cdclk =
15067                         valleyview_modeset_calc_cdclk;
15068         } else if (IS_BROXTON(dev_priv)) {
15069                 dev_priv->display.modeset_commit_cdclk =
15070                         broxton_modeset_commit_cdclk;
15071                 dev_priv->display.modeset_calc_cdclk =
15072                         broxton_modeset_calc_cdclk;
15073         }
15074
15075         switch (INTEL_INFO(dev_priv)->gen) {
15076         case 2:
15077                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15078                 break;
15079
15080         case 3:
15081                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15082                 break;
15083
15084         case 4:
15085         case 5:
15086                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15087                 break;
15088
15089         case 6:
15090                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15091                 break;
15092         case 7:
15093         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15094                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15095                 break;
15096         case 9:
15097                 /* Drop through - unsupported since execlist only. */
15098         default:
15099                 /* Default just returns -ENODEV to indicate unsupported */
15100                 dev_priv->display.queue_flip = intel_default_queue_flip;
15101         }
15102 }
15103
15104 /*
15105  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15106  * resume, or other times.  This quirk makes sure that's the case for
15107  * affected systems.
15108  */
15109 static void quirk_pipea_force(struct drm_device *dev)
15110 {
15111         struct drm_i915_private *dev_priv = dev->dev_private;
15112
15113         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15114         DRM_INFO("applying pipe a force quirk\n");
15115 }
15116
15117 static void quirk_pipeb_force(struct drm_device *dev)
15118 {
15119         struct drm_i915_private *dev_priv = dev->dev_private;
15120
15121         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15122         DRM_INFO("applying pipe b force quirk\n");
15123 }
15124
15125 /*
15126  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15127  */
15128 static void quirk_ssc_force_disable(struct drm_device *dev)
15129 {
15130         struct drm_i915_private *dev_priv = dev->dev_private;
15131         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15132         DRM_INFO("applying lvds SSC disable quirk\n");
15133 }
15134
15135 /*
15136  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15137  * brightness value
15138  */
15139 static void quirk_invert_brightness(struct drm_device *dev)
15140 {
15141         struct drm_i915_private *dev_priv = dev->dev_private;
15142         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15143         DRM_INFO("applying inverted panel brightness quirk\n");
15144 }
15145
15146 /* Some VBT's incorrectly indicate no backlight is present */
15147 static void quirk_backlight_present(struct drm_device *dev)
15148 {
15149         struct drm_i915_private *dev_priv = dev->dev_private;
15150         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15151         DRM_INFO("applying backlight present quirk\n");
15152 }
15153
15154 struct intel_quirk {
15155         int device;
15156         int subsystem_vendor;
15157         int subsystem_device;
15158         void (*hook)(struct drm_device *dev);
15159 };
15160
15161 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15162 struct intel_dmi_quirk {
15163         void (*hook)(struct drm_device *dev);
15164         const struct dmi_system_id (*dmi_id_list)[];
15165 };
15166
15167 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15168 {
15169         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15170         return 1;
15171 }
15172
15173 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15174         {
15175                 .dmi_id_list = &(const struct dmi_system_id[]) {
15176                         {
15177                                 .callback = intel_dmi_reverse_brightness,
15178                                 .ident = "NCR Corporation",
15179                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15180                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
15181                                 },
15182                         },
15183                         { }  /* terminating entry */
15184                 },
15185                 .hook = quirk_invert_brightness,
15186         },
15187 };
15188
15189 static struct intel_quirk intel_quirks[] = {
15190         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15191         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15192
15193         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15194         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15195
15196         /* 830 needs to leave pipe A & dpll A up */
15197         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15198
15199         /* 830 needs to leave pipe B & dpll B up */
15200         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15201
15202         /* Lenovo U160 cannot use SSC on LVDS */
15203         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15204
15205         /* Sony Vaio Y cannot use SSC on LVDS */
15206         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15207
15208         /* Acer Aspire 5734Z must invert backlight brightness */
15209         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15210
15211         /* Acer/eMachines G725 */
15212         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15213
15214         /* Acer/eMachines e725 */
15215         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15216
15217         /* Acer/Packard Bell NCL20 */
15218         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15219
15220         /* Acer Aspire 4736Z */
15221         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15222
15223         /* Acer Aspire 5336 */
15224         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15225
15226         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15227         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15228
15229         /* Acer C720 Chromebook (Core i3 4005U) */
15230         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15231
15232         /* Apple Macbook 2,1 (Core 2 T7400) */
15233         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15234
15235         /* Apple Macbook 4,1 */
15236         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15237
15238         /* Toshiba CB35 Chromebook (Celeron 2955U) */
15239         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15240
15241         /* HP Chromebook 14 (Celeron 2955U) */
15242         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15243
15244         /* Dell Chromebook 11 */
15245         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15246
15247         /* Dell Chromebook 11 (2015 version) */
15248         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15249 };
15250
15251 static void intel_init_quirks(struct drm_device *dev)
15252 {
15253         struct pci_dev *d = dev->pdev;
15254         int i;
15255
15256         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15257                 struct intel_quirk *q = &intel_quirks[i];
15258
15259                 if (d->device == q->device &&
15260                     (d->subsystem_vendor == q->subsystem_vendor ||
15261                      q->subsystem_vendor == PCI_ANY_ID) &&
15262                     (d->subsystem_device == q->subsystem_device ||
15263                      q->subsystem_device == PCI_ANY_ID))
15264                         q->hook(dev);
15265         }
15266         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15267                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15268                         intel_dmi_quirks[i].hook(dev);
15269         }
15270 }
15271
15272 /* Disable the VGA plane that we never use */
15273 static void i915_disable_vga(struct drm_device *dev)
15274 {
15275         struct drm_i915_private *dev_priv = dev->dev_private;
15276         u8 sr1;
15277         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15278
15279         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15280         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15281         outb(SR01, VGA_SR_INDEX);
15282         sr1 = inb(VGA_SR_DATA);
15283         outb(sr1 | 1<<5, VGA_SR_DATA);
15284         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15285         udelay(300);
15286
15287         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15288         POSTING_READ(vga_reg);
15289 }
15290
15291 void intel_modeset_init_hw(struct drm_device *dev)
15292 {
15293         struct drm_i915_private *dev_priv = dev->dev_private;
15294
15295         intel_update_cdclk(dev);
15296
15297         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15298
15299         intel_init_clock_gating(dev);
15300         intel_enable_gt_powersave(dev_priv);
15301 }
15302
15303 /*
15304  * Calculate what we think the watermarks should be for the state we've read
15305  * out of the hardware and then immediately program those watermarks so that
15306  * we ensure the hardware settings match our internal state.
15307  *
15308  * We can calculate what we think WM's should be by creating a duplicate of the
15309  * current state (which was constructed during hardware readout) and running it
15310  * through the atomic check code to calculate new watermark values in the
15311  * state object.
15312  */
15313 static void sanitize_watermarks(struct drm_device *dev)
15314 {
15315         struct drm_i915_private *dev_priv = to_i915(dev);
15316         struct drm_atomic_state *state;
15317         struct drm_crtc *crtc;
15318         struct drm_crtc_state *cstate;
15319         struct drm_modeset_acquire_ctx ctx;
15320         int ret;
15321         int i;
15322
15323         /* Only supported on platforms that use atomic watermark design */
15324         if (!dev_priv->display.optimize_watermarks)
15325                 return;
15326
15327         /*
15328          * We need to hold connection_mutex before calling duplicate_state so
15329          * that the connector loop is protected.
15330          */
15331         drm_modeset_acquire_init(&ctx, 0);
15332 retry:
15333         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15334         if (ret == -EDEADLK) {
15335                 drm_modeset_backoff(&ctx);
15336                 goto retry;
15337         } else if (WARN_ON(ret)) {
15338                 goto fail;
15339         }
15340
15341         state = drm_atomic_helper_duplicate_state(dev, &ctx);
15342         if (WARN_ON(IS_ERR(state)))
15343                 goto fail;
15344
15345         /*
15346          * Hardware readout is the only time we don't want to calculate
15347          * intermediate watermarks (since we don't trust the current
15348          * watermarks).
15349          */
15350         to_intel_atomic_state(state)->skip_intermediate_wm = true;
15351
15352         ret = intel_atomic_check(dev, state);
15353         if (ret) {
15354                 /*
15355                  * If we fail here, it means that the hardware appears to be
15356                  * programmed in a way that shouldn't be possible, given our
15357                  * understanding of watermark requirements.  This might mean a
15358                  * mistake in the hardware readout code or a mistake in the
15359                  * watermark calculations for a given platform.  Raise a WARN
15360                  * so that this is noticeable.
15361                  *
15362                  * If this actually happens, we'll have to just leave the
15363                  * BIOS-programmed watermarks untouched and hope for the best.
15364                  */
15365                 WARN(true, "Could not determine valid watermarks for inherited state\n");
15366                 goto fail;
15367         }
15368
15369         /* Write calculated watermark values back */
15370         to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config;
15371         for_each_crtc_in_state(state, crtc, cstate, i) {
15372                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15373
15374                 cs->wm.need_postvbl_update = true;
15375                 dev_priv->display.optimize_watermarks(cs);
15376         }
15377
15378         drm_atomic_state_free(state);
15379 fail:
15380         drm_modeset_drop_locks(&ctx);
15381         drm_modeset_acquire_fini(&ctx);
15382 }
15383
15384 void intel_modeset_init(struct drm_device *dev)
15385 {
15386         struct drm_i915_private *dev_priv = to_i915(dev);
15387         struct i915_ggtt *ggtt = &dev_priv->ggtt;
15388         int sprite, ret;
15389         enum pipe pipe;
15390         struct intel_crtc *crtc;
15391
15392         drm_mode_config_init(dev);
15393
15394         dev->mode_config.min_width = 0;
15395         dev->mode_config.min_height = 0;
15396
15397         dev->mode_config.preferred_depth = 24;
15398         dev->mode_config.prefer_shadow = 1;
15399
15400         dev->mode_config.allow_fb_modifiers = true;
15401
15402         dev->mode_config.funcs = &intel_mode_funcs;
15403
15404         intel_init_quirks(dev);
15405
15406         intel_init_pm(dev);
15407
15408         if (INTEL_INFO(dev)->num_pipes == 0)
15409                 return;
15410
15411         /*
15412          * There may be no VBT; and if the BIOS enabled SSC we can
15413          * just keep using it to avoid unnecessary flicker.  Whereas if the
15414          * BIOS isn't using it, don't assume it will work even if the VBT
15415          * indicates as much.
15416          */
15417         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15418                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15419                                             DREF_SSC1_ENABLE);
15420
15421                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15422                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15423                                      bios_lvds_use_ssc ? "en" : "dis",
15424                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15425                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15426                 }
15427         }
15428
15429         if (IS_GEN2(dev)) {
15430                 dev->mode_config.max_width = 2048;
15431                 dev->mode_config.max_height = 2048;
15432         } else if (IS_GEN3(dev)) {
15433                 dev->mode_config.max_width = 4096;
15434                 dev->mode_config.max_height = 4096;
15435         } else {
15436                 dev->mode_config.max_width = 8192;
15437                 dev->mode_config.max_height = 8192;
15438         }
15439
15440         if (IS_845G(dev) || IS_I865G(dev)) {
15441                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15442                 dev->mode_config.cursor_height = 1023;
15443         } else if (IS_GEN2(dev)) {
15444                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15445                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15446         } else {
15447                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15448                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15449         }
15450
15451         dev->mode_config.fb_base = ggtt->mappable_base;
15452
15453         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15454                       INTEL_INFO(dev)->num_pipes,
15455                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15456
15457         for_each_pipe(dev_priv, pipe) {
15458                 intel_crtc_init(dev, pipe);
15459                 for_each_sprite(dev_priv, pipe, sprite) {
15460                         ret = intel_plane_init(dev, pipe, sprite);
15461                         if (ret)
15462                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15463                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15464                 }
15465         }
15466
15467         intel_update_czclk(dev_priv);
15468         intel_update_cdclk(dev);
15469
15470         intel_shared_dpll_init(dev);
15471
15472         /* Just disable it once at startup */
15473         i915_disable_vga(dev);
15474         intel_setup_outputs(dev);
15475
15476         drm_modeset_lock_all(dev);
15477         intel_modeset_setup_hw_state(dev);
15478         drm_modeset_unlock_all(dev);
15479
15480         for_each_intel_crtc(dev, crtc) {
15481                 struct intel_initial_plane_config plane_config = {};
15482
15483                 if (!crtc->active)
15484                         continue;
15485
15486                 /*
15487                  * Note that reserving the BIOS fb up front prevents us
15488                  * from stuffing other stolen allocations like the ring
15489                  * on top.  This prevents some ugliness at boot time, and
15490                  * can even allow for smooth boot transitions if the BIOS
15491                  * fb is large enough for the active pipe configuration.
15492                  */
15493                 dev_priv->display.get_initial_plane_config(crtc,
15494                                                            &plane_config);
15495
15496                 /*
15497                  * If the fb is shared between multiple heads, we'll
15498                  * just get the first one.
15499                  */
15500                 intel_find_initial_plane_obj(crtc, &plane_config);
15501         }
15502
15503         /*
15504          * Make sure hardware watermarks really match the state we read out.
15505          * Note that we need to do this after reconstructing the BIOS fb's
15506          * since the watermark calculation done here will use pstate->fb.
15507          */
15508         sanitize_watermarks(dev);
15509 }
15510
15511 static void intel_enable_pipe_a(struct drm_device *dev)
15512 {
15513         struct intel_connector *connector;
15514         struct drm_connector *crt = NULL;
15515         struct intel_load_detect_pipe load_detect_temp;
15516         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15517
15518         /* We can't just switch on the pipe A, we need to set things up with a
15519          * proper mode and output configuration. As a gross hack, enable pipe A
15520          * by enabling the load detect pipe once. */
15521         for_each_intel_connector(dev, connector) {
15522                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15523                         crt = &connector->base;
15524                         break;
15525                 }
15526         }
15527
15528         if (!crt)
15529                 return;
15530
15531         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15532                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15533 }
15534
15535 static bool
15536 intel_check_plane_mapping(struct intel_crtc *crtc)
15537 {
15538         struct drm_device *dev = crtc->base.dev;
15539         struct drm_i915_private *dev_priv = dev->dev_private;
15540         u32 val;
15541
15542         if (INTEL_INFO(dev)->num_pipes == 1)
15543                 return true;
15544
15545         val = I915_READ(DSPCNTR(!crtc->plane));
15546
15547         if ((val & DISPLAY_PLANE_ENABLE) &&
15548             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15549                 return false;
15550
15551         return true;
15552 }
15553
15554 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15555 {
15556         struct drm_device *dev = crtc->base.dev;
15557         struct intel_encoder *encoder;
15558
15559         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15560                 return true;
15561
15562         return false;
15563 }
15564
15565 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15566 {
15567         struct drm_device *dev = encoder->base.dev;
15568         struct intel_connector *connector;
15569
15570         for_each_connector_on_encoder(dev, &encoder->base, connector)
15571                 return true;
15572
15573         return false;
15574 }
15575
15576 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15577 {
15578         struct drm_device *dev = crtc->base.dev;
15579         struct drm_i915_private *dev_priv = dev->dev_private;
15580         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15581
15582         /* Clear any frame start delays used for debugging left by the BIOS */
15583         if (!transcoder_is_dsi(cpu_transcoder)) {
15584                 i915_reg_t reg = PIPECONF(cpu_transcoder);
15585
15586                 I915_WRITE(reg,
15587                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15588         }
15589
15590         /* restore vblank interrupts to correct state */
15591         drm_crtc_vblank_reset(&crtc->base);
15592         if (crtc->active) {
15593                 struct intel_plane *plane;
15594
15595                 drm_crtc_vblank_on(&crtc->base);
15596
15597                 /* Disable everything but the primary plane */
15598                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15599                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15600                                 continue;
15601
15602                         plane->disable_plane(&plane->base, &crtc->base);
15603                 }
15604         }
15605
15606         /* We need to sanitize the plane -> pipe mapping first because this will
15607          * disable the crtc (and hence change the state) if it is wrong. Note
15608          * that gen4+ has a fixed plane -> pipe mapping.  */
15609         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15610                 bool plane;
15611
15612                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15613                               crtc->base.base.id);
15614
15615                 /* Pipe has the wrong plane attached and the plane is active.
15616                  * Temporarily change the plane mapping and disable everything
15617                  * ...  */
15618                 plane = crtc->plane;
15619                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15620                 crtc->plane = !plane;
15621                 intel_crtc_disable_noatomic(&crtc->base);
15622                 crtc->plane = plane;
15623         }
15624
15625         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15626             crtc->pipe == PIPE_A && !crtc->active) {
15627                 /* BIOS forgot to enable pipe A, this mostly happens after
15628                  * resume. Force-enable the pipe to fix this, the update_dpms
15629                  * call below we restore the pipe to the right state, but leave
15630                  * the required bits on. */
15631                 intel_enable_pipe_a(dev);
15632         }
15633
15634         /* Adjust the state of the output pipe according to whether we
15635          * have active connectors/encoders. */
15636         if (crtc->active && !intel_crtc_has_encoders(crtc))
15637                 intel_crtc_disable_noatomic(&crtc->base);
15638
15639         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15640                 /*
15641                  * We start out with underrun reporting disabled to avoid races.
15642                  * For correct bookkeeping mark this on active crtcs.
15643                  *
15644                  * Also on gmch platforms we dont have any hardware bits to
15645                  * disable the underrun reporting. Which means we need to start
15646                  * out with underrun reporting disabled also on inactive pipes,
15647                  * since otherwise we'll complain about the garbage we read when
15648                  * e.g. coming up after runtime pm.
15649                  *
15650                  * No protection against concurrent access is required - at
15651                  * worst a fifo underrun happens which also sets this to false.
15652                  */
15653                 crtc->cpu_fifo_underrun_disabled = true;
15654                 crtc->pch_fifo_underrun_disabled = true;
15655         }
15656 }
15657
15658 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15659 {
15660         struct intel_connector *connector;
15661         struct drm_device *dev = encoder->base.dev;
15662
15663         /* We need to check both for a crtc link (meaning that the
15664          * encoder is active and trying to read from a pipe) and the
15665          * pipe itself being active. */
15666         bool has_active_crtc = encoder->base.crtc &&
15667                 to_intel_crtc(encoder->base.crtc)->active;
15668
15669         if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15670                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15671                               encoder->base.base.id,
15672                               encoder->base.name);
15673
15674                 /* Connector is active, but has no active pipe. This is
15675                  * fallout from our resume register restoring. Disable
15676                  * the encoder manually again. */
15677                 if (encoder->base.crtc) {
15678                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15679                                       encoder->base.base.id,
15680                                       encoder->base.name);
15681                         encoder->disable(encoder);
15682                         if (encoder->post_disable)
15683                                 encoder->post_disable(encoder);
15684                 }
15685                 encoder->base.crtc = NULL;
15686
15687                 /* Inconsistent output/port/pipe state happens presumably due to
15688                  * a bug in one of the get_hw_state functions. Or someplace else
15689                  * in our code, like the register restore mess on resume. Clamp
15690                  * things to off as a safer default. */
15691                 for_each_intel_connector(dev, connector) {
15692                         if (connector->encoder != encoder)
15693                                 continue;
15694                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15695                         connector->base.encoder = NULL;
15696                 }
15697         }
15698         /* Enabled encoders without active connectors will be fixed in
15699          * the crtc fixup. */
15700 }
15701
15702 void i915_redisable_vga_power_on(struct drm_device *dev)
15703 {
15704         struct drm_i915_private *dev_priv = dev->dev_private;
15705         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15706
15707         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15708                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15709                 i915_disable_vga(dev);
15710         }
15711 }
15712
15713 void i915_redisable_vga(struct drm_device *dev)
15714 {
15715         struct drm_i915_private *dev_priv = dev->dev_private;
15716
15717         /* This function can be called both from intel_modeset_setup_hw_state or
15718          * at a very early point in our resume sequence, where the power well
15719          * structures are not yet restored. Since this function is at a very
15720          * paranoid "someone might have enabled VGA while we were not looking"
15721          * level, just check if the power well is enabled instead of trying to
15722          * follow the "don't touch the power well if we don't need it" policy
15723          * the rest of the driver uses. */
15724         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15725                 return;
15726
15727         i915_redisable_vga_power_on(dev);
15728
15729         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15730 }
15731
15732 static bool primary_get_hw_state(struct intel_plane *plane)
15733 {
15734         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15735
15736         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15737 }
15738
15739 /* FIXME read out full plane state for all planes */
15740 static void readout_plane_state(struct intel_crtc *crtc)
15741 {
15742         struct drm_plane *primary = crtc->base.primary;
15743         struct intel_plane_state *plane_state =
15744                 to_intel_plane_state(primary->state);
15745
15746         plane_state->visible = crtc->active &&
15747                 primary_get_hw_state(to_intel_plane(primary));
15748
15749         if (plane_state->visible)
15750                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15751 }
15752
15753 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15754 {
15755         struct drm_i915_private *dev_priv = dev->dev_private;
15756         enum pipe pipe;
15757         struct intel_crtc *crtc;
15758         struct intel_encoder *encoder;
15759         struct intel_connector *connector;
15760         int i;
15761
15762         dev_priv->active_crtcs = 0;
15763
15764         for_each_intel_crtc(dev, crtc) {
15765                 struct intel_crtc_state *crtc_state = crtc->config;
15766                 int pixclk = 0;
15767
15768                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, &crtc_state->base);
15769                 memset(crtc_state, 0, sizeof(*crtc_state));
15770                 crtc_state->base.crtc = &crtc->base;
15771
15772                 crtc_state->base.active = crtc_state->base.enable =
15773                         dev_priv->display.get_pipe_config(crtc, crtc_state);
15774
15775                 crtc->base.enabled = crtc_state->base.enable;
15776                 crtc->active = crtc_state->base.active;
15777
15778                 if (crtc_state->base.active) {
15779                         dev_priv->active_crtcs |= 1 << crtc->pipe;
15780
15781                         if (IS_BROADWELL(dev_priv)) {
15782                                 pixclk = ilk_pipe_pixel_rate(crtc_state);
15783
15784                                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15785                                 if (crtc_state->ips_enabled)
15786                                         pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15787                         } else if (IS_VALLEYVIEW(dev_priv) ||
15788                                    IS_CHERRYVIEW(dev_priv) ||
15789                                    IS_BROXTON(dev_priv))
15790                                 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15791                         else
15792                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15793                 }
15794
15795                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15796
15797                 readout_plane_state(crtc);
15798
15799                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15800                               crtc->base.base.id,
15801                               crtc->active ? "enabled" : "disabled");
15802         }
15803
15804         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15805                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15806
15807                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15808                                                   &pll->config.hw_state);
15809                 pll->config.crtc_mask = 0;
15810                 for_each_intel_crtc(dev, crtc) {
15811                         if (crtc->active && crtc->config->shared_dpll == pll)
15812                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15813                 }
15814                 pll->active_mask = pll->config.crtc_mask;
15815
15816                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15817                               pll->name, pll->config.crtc_mask, pll->on);
15818         }
15819
15820         for_each_intel_encoder(dev, encoder) {
15821                 pipe = 0;
15822
15823                 if (encoder->get_hw_state(encoder, &pipe)) {
15824                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15825                         encoder->base.crtc = &crtc->base;
15826                         encoder->get_config(encoder, crtc->config);
15827                 } else {
15828                         encoder->base.crtc = NULL;
15829                 }
15830
15831                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15832                               encoder->base.base.id,
15833                               encoder->base.name,
15834                               encoder->base.crtc ? "enabled" : "disabled",
15835                               pipe_name(pipe));
15836         }
15837
15838         for_each_intel_connector(dev, connector) {
15839                 if (connector->get_hw_state(connector)) {
15840                         connector->base.dpms = DRM_MODE_DPMS_ON;
15841
15842                         encoder = connector->encoder;
15843                         connector->base.encoder = &encoder->base;
15844
15845                         if (encoder->base.crtc &&
15846                             encoder->base.crtc->state->active) {
15847                                 /*
15848                                  * This has to be done during hardware readout
15849                                  * because anything calling .crtc_disable may
15850                                  * rely on the connector_mask being accurate.
15851                                  */
15852                                 encoder->base.crtc->state->connector_mask |=
15853                                         1 << drm_connector_index(&connector->base);
15854                                 encoder->base.crtc->state->encoder_mask |=
15855                                         1 << drm_encoder_index(&encoder->base);
15856                         }
15857
15858                 } else {
15859                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15860                         connector->base.encoder = NULL;
15861                 }
15862                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15863                               connector->base.base.id,
15864                               connector->base.name,
15865                               connector->base.encoder ? "enabled" : "disabled");
15866         }
15867
15868         for_each_intel_crtc(dev, crtc) {
15869                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15870
15871                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15872                 if (crtc->base.state->active) {
15873                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15874                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15875                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15876
15877                         /*
15878                          * The initial mode needs to be set in order to keep
15879                          * the atomic core happy. It wants a valid mode if the
15880                          * crtc's enabled, so we do the above call.
15881                          *
15882                          * At this point some state updated by the connectors
15883                          * in their ->detect() callback has not run yet, so
15884                          * no recalculation can be done yet.
15885                          *
15886                          * Even if we could do a recalculation and modeset
15887                          * right now it would cause a double modeset if
15888                          * fbdev or userspace chooses a different initial mode.
15889                          *
15890                          * If that happens, someone indicated they wanted a
15891                          * mode change, which means it's safe to do a full
15892                          * recalculation.
15893                          */
15894                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15895
15896                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15897                         update_scanline_offset(crtc);
15898                 }
15899
15900                 intel_pipe_config_sanity_check(dev_priv, crtc->config);
15901         }
15902 }
15903
15904 /* Scan out the current hw modeset state,
15905  * and sanitizes it to the current state
15906  */
15907 static void
15908 intel_modeset_setup_hw_state(struct drm_device *dev)
15909 {
15910         struct drm_i915_private *dev_priv = dev->dev_private;
15911         enum pipe pipe;
15912         struct intel_crtc *crtc;
15913         struct intel_encoder *encoder;
15914         int i;
15915
15916         intel_modeset_readout_hw_state(dev);
15917
15918         /* HW state is read out, now we need to sanitize this mess. */
15919         for_each_intel_encoder(dev, encoder) {
15920                 intel_sanitize_encoder(encoder);
15921         }
15922
15923         for_each_pipe(dev_priv, pipe) {
15924                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15925                 intel_sanitize_crtc(crtc);
15926                 intel_dump_pipe_config(crtc, crtc->config,
15927                                        "[setup_hw_state]");
15928         }
15929
15930         intel_modeset_update_connector_atomic_state(dev);
15931
15932         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15933                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15934
15935                 if (!pll->on || pll->active_mask)
15936                         continue;
15937
15938                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15939
15940                 pll->funcs.disable(dev_priv, pll);
15941                 pll->on = false;
15942         }
15943
15944         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
15945                 vlv_wm_get_hw_state(dev);
15946         else if (IS_GEN9(dev))
15947                 skl_wm_get_hw_state(dev);
15948         else if (HAS_PCH_SPLIT(dev))
15949                 ilk_wm_get_hw_state(dev);
15950
15951         for_each_intel_crtc(dev, crtc) {
15952                 unsigned long put_domains;
15953
15954                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15955                 if (WARN_ON(put_domains))
15956                         modeset_put_power_domains(dev_priv, put_domains);
15957         }
15958         intel_display_set_init_power(dev_priv, false);
15959
15960         intel_fbc_init_pipe_state(dev_priv);
15961 }
15962
15963 void intel_display_resume(struct drm_device *dev)
15964 {
15965         struct drm_i915_private *dev_priv = to_i915(dev);
15966         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15967         struct drm_modeset_acquire_ctx ctx;
15968         int ret;
15969         bool setup = false;
15970
15971         dev_priv->modeset_restore_state = NULL;
15972
15973         /*
15974          * This is a cludge because with real atomic modeset mode_config.mutex
15975          * won't be taken. Unfortunately some probed state like
15976          * audio_codec_enable is still protected by mode_config.mutex, so lock
15977          * it here for now.
15978          */
15979         mutex_lock(&dev->mode_config.mutex);
15980         drm_modeset_acquire_init(&ctx, 0);
15981
15982 retry:
15983         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15984
15985         if (ret == 0 && !setup) {
15986                 setup = true;
15987
15988                 intel_modeset_setup_hw_state(dev);
15989                 i915_redisable_vga(dev);
15990         }
15991
15992         if (ret == 0 && state) {
15993                 struct drm_crtc_state *crtc_state;
15994                 struct drm_crtc *crtc;
15995                 int i;
15996
15997                 state->acquire_ctx = &ctx;
15998
15999                 for_each_crtc_in_state(state, crtc, crtc_state, i) {
16000                         /*
16001                          * Force recalculation even if we restore
16002                          * current state. With fast modeset this may not result
16003                          * in a modeset when the state is compatible.
16004                          */
16005                         crtc_state->mode_changed = true;
16006                 }
16007
16008                 ret = drm_atomic_commit(state);
16009         }
16010
16011         if (ret == -EDEADLK) {
16012                 drm_modeset_backoff(&ctx);
16013                 goto retry;
16014         }
16015
16016         drm_modeset_drop_locks(&ctx);
16017         drm_modeset_acquire_fini(&ctx);
16018         mutex_unlock(&dev->mode_config.mutex);
16019
16020         if (ret) {
16021                 DRM_ERROR("Restoring old state failed with %i\n", ret);
16022                 drm_atomic_state_free(state);
16023         }
16024 }
16025
16026 void intel_modeset_gem_init(struct drm_device *dev)
16027 {
16028         struct drm_i915_private *dev_priv = to_i915(dev);
16029         struct drm_crtc *c;
16030         struct drm_i915_gem_object *obj;
16031         int ret;
16032
16033         intel_init_gt_powersave(dev_priv);
16034
16035         intel_modeset_init_hw(dev);
16036
16037         intel_setup_overlay(dev_priv);
16038
16039         /*
16040          * Make sure any fbs we allocated at startup are properly
16041          * pinned & fenced.  When we do the allocation it's too early
16042          * for this.
16043          */
16044         for_each_crtc(dev, c) {
16045                 obj = intel_fb_obj(c->primary->fb);
16046                 if (obj == NULL)
16047                         continue;
16048
16049                 mutex_lock(&dev->struct_mutex);
16050                 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
16051                                                  c->primary->state->rotation);
16052                 mutex_unlock(&dev->struct_mutex);
16053                 if (ret) {
16054                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
16055                                   to_intel_crtc(c)->pipe);
16056                         drm_framebuffer_unreference(c->primary->fb);
16057                         c->primary->fb = NULL;
16058                         c->primary->crtc = c->primary->state->crtc = NULL;
16059                         update_state_fb(c->primary);
16060                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16061                 }
16062         }
16063
16064         intel_backlight_register(dev);
16065 }
16066
16067 void intel_connector_unregister(struct intel_connector *intel_connector)
16068 {
16069         struct drm_connector *connector = &intel_connector->base;
16070
16071         intel_panel_destroy_backlight(connector);
16072         drm_connector_unregister(connector);
16073 }
16074
16075 void intel_modeset_cleanup(struct drm_device *dev)
16076 {
16077         struct drm_i915_private *dev_priv = dev->dev_private;
16078         struct intel_connector *connector;
16079
16080         intel_disable_gt_powersave(dev_priv);
16081
16082         intel_backlight_unregister(dev);
16083
16084         /*
16085          * Interrupts and polling as the first thing to avoid creating havoc.
16086          * Too much stuff here (turning of connectors, ...) would
16087          * experience fancy races otherwise.
16088          */
16089         intel_irq_uninstall(dev_priv);
16090
16091         /*
16092          * Due to the hpd irq storm handling the hotplug work can re-arm the
16093          * poll handlers. Hence disable polling after hpd handling is shut down.
16094          */
16095         drm_kms_helper_poll_fini(dev);
16096
16097         intel_unregister_dsm_handler();
16098
16099         intel_fbc_global_disable(dev_priv);
16100
16101         /* flush any delayed tasks or pending work */
16102         flush_scheduled_work();
16103
16104         /* destroy the backlight and sysfs files before encoders/connectors */
16105         for_each_intel_connector(dev, connector)
16106                 connector->unregister(connector);
16107
16108         drm_mode_config_cleanup(dev);
16109
16110         intel_cleanup_overlay(dev_priv);
16111
16112         intel_cleanup_gt_powersave(dev_priv);
16113
16114         intel_teardown_gmbus(dev);
16115 }
16116
16117 /*
16118  * Return which encoder is currently attached for connector.
16119  */
16120 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
16121 {
16122         return &intel_attached_encoder(connector)->base;
16123 }
16124
16125 void intel_connector_attach_encoder(struct intel_connector *connector,
16126                                     struct intel_encoder *encoder)
16127 {
16128         connector->encoder = encoder;
16129         drm_mode_connector_attach_encoder(&connector->base,
16130                                           &encoder->base);
16131 }
16132
16133 /*
16134  * set vga decode state - true == enable VGA decode
16135  */
16136 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16137 {
16138         struct drm_i915_private *dev_priv = dev->dev_private;
16139         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16140         u16 gmch_ctrl;
16141
16142         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16143                 DRM_ERROR("failed to read control word\n");
16144                 return -EIO;
16145         }
16146
16147         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16148                 return 0;
16149
16150         if (state)
16151                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16152         else
16153                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16154
16155         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16156                 DRM_ERROR("failed to write control word\n");
16157                 return -EIO;
16158         }
16159
16160         return 0;
16161 }
16162
16163 struct intel_display_error_state {
16164
16165         u32 power_well_driver;
16166
16167         int num_transcoders;
16168
16169         struct intel_cursor_error_state {
16170                 u32 control;
16171                 u32 position;
16172                 u32 base;
16173                 u32 size;
16174         } cursor[I915_MAX_PIPES];
16175
16176         struct intel_pipe_error_state {
16177                 bool power_domain_on;
16178                 u32 source;
16179                 u32 stat;
16180         } pipe[I915_MAX_PIPES];
16181
16182         struct intel_plane_error_state {
16183                 u32 control;
16184                 u32 stride;
16185                 u32 size;
16186                 u32 pos;
16187                 u32 addr;
16188                 u32 surface;
16189                 u32 tile_offset;
16190         } plane[I915_MAX_PIPES];
16191
16192         struct intel_transcoder_error_state {
16193                 bool power_domain_on;
16194                 enum transcoder cpu_transcoder;
16195
16196                 u32 conf;
16197
16198                 u32 htotal;
16199                 u32 hblank;
16200                 u32 hsync;
16201                 u32 vtotal;
16202                 u32 vblank;
16203                 u32 vsync;
16204         } transcoder[4];
16205 };
16206
16207 struct intel_display_error_state *
16208 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
16209 {
16210         struct intel_display_error_state *error;
16211         int transcoders[] = {
16212                 TRANSCODER_A,
16213                 TRANSCODER_B,
16214                 TRANSCODER_C,
16215                 TRANSCODER_EDP,
16216         };
16217         int i;
16218
16219         if (INTEL_INFO(dev_priv)->num_pipes == 0)
16220                 return NULL;
16221
16222         error = kzalloc(sizeof(*error), GFP_ATOMIC);
16223         if (error == NULL)
16224                 return NULL;
16225
16226         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
16227                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16228
16229         for_each_pipe(dev_priv, i) {
16230                 error->pipe[i].power_domain_on =
16231                         __intel_display_power_is_enabled(dev_priv,
16232                                                          POWER_DOMAIN_PIPE(i));
16233                 if (!error->pipe[i].power_domain_on)
16234                         continue;
16235
16236                 error->cursor[i].control = I915_READ(CURCNTR(i));
16237                 error->cursor[i].position = I915_READ(CURPOS(i));
16238                 error->cursor[i].base = I915_READ(CURBASE(i));
16239
16240                 error->plane[i].control = I915_READ(DSPCNTR(i));
16241                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16242                 if (INTEL_GEN(dev_priv) <= 3) {
16243                         error->plane[i].size = I915_READ(DSPSIZE(i));
16244                         error->plane[i].pos = I915_READ(DSPPOS(i));
16245                 }
16246                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
16247                         error->plane[i].addr = I915_READ(DSPADDR(i));
16248                 if (INTEL_GEN(dev_priv) >= 4) {
16249                         error->plane[i].surface = I915_READ(DSPSURF(i));
16250                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16251                 }
16252
16253                 error->pipe[i].source = I915_READ(PIPESRC(i));
16254
16255                 if (HAS_GMCH_DISPLAY(dev_priv))
16256                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
16257         }
16258
16259         /* Note: this does not include DSI transcoders. */
16260         error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
16261         if (HAS_DDI(dev_priv))
16262                 error->num_transcoders++; /* Account for eDP. */
16263
16264         for (i = 0; i < error->num_transcoders; i++) {
16265                 enum transcoder cpu_transcoder = transcoders[i];
16266
16267                 error->transcoder[i].power_domain_on =
16268                         __intel_display_power_is_enabled(dev_priv,
16269                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16270                 if (!error->transcoder[i].power_domain_on)
16271                         continue;
16272
16273                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16274
16275                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16276                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16277                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16278                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16279                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16280                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16281                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16282         }
16283
16284         return error;
16285 }
16286
16287 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16288
16289 void
16290 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16291                                 struct drm_device *dev,
16292                                 struct intel_display_error_state *error)
16293 {
16294         struct drm_i915_private *dev_priv = dev->dev_private;
16295         int i;
16296
16297         if (!error)
16298                 return;
16299
16300         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16301         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16302                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16303                            error->power_well_driver);
16304         for_each_pipe(dev_priv, i) {
16305                 err_printf(m, "Pipe [%d]:\n", i);
16306                 err_printf(m, "  Power: %s\n",
16307                            onoff(error->pipe[i].power_domain_on));
16308                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16309                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16310
16311                 err_printf(m, "Plane [%d]:\n", i);
16312                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16313                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16314                 if (INTEL_INFO(dev)->gen <= 3) {
16315                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16316                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16317                 }
16318                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16319                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16320                 if (INTEL_INFO(dev)->gen >= 4) {
16321                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16322                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16323                 }
16324
16325                 err_printf(m, "Cursor [%d]:\n", i);
16326                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16327                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16328                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16329         }
16330
16331         for (i = 0; i < error->num_transcoders; i++) {
16332                 err_printf(m, "CPU transcoder: %s\n",
16333                            transcoder_name(error->transcoder[i].cpu_transcoder));
16334                 err_printf(m, "  Power: %s\n",
16335                            onoff(error->transcoder[i].power_domain_on));
16336                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16337                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16338                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16339                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16340                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16341                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16342                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16343         }
16344 }