Merge tag 'drm-hisilicon-next-2016-04-29' of github.com:xin3liang/linux into drm...
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "intel_dsi.h"
40 #include "i915_trace.h"
41 #include <drm/drm_atomic.h>
42 #include <drm/drm_atomic_helper.h>
43 #include <drm/drm_dp_helper.h>
44 #include <drm/drm_crtc_helper.h>
45 #include <drm/drm_plane_helper.h>
46 #include <drm/drm_rect.h>
47 #include <linux/dma_remapping.h>
48 #include <linux/reservation.h>
49 #include <linux/dma-buf.h>
50
51 /* Primary plane formats for gen <= 3 */
52 static const uint32_t i8xx_primary_formats[] = {
53         DRM_FORMAT_C8,
54         DRM_FORMAT_RGB565,
55         DRM_FORMAT_XRGB1555,
56         DRM_FORMAT_XRGB8888,
57 };
58
59 /* Primary plane formats for gen >= 4 */
60 static const uint32_t i965_primary_formats[] = {
61         DRM_FORMAT_C8,
62         DRM_FORMAT_RGB565,
63         DRM_FORMAT_XRGB8888,
64         DRM_FORMAT_XBGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_XBGR2101010,
67 };
68
69 static const uint32_t skl_primary_formats[] = {
70         DRM_FORMAT_C8,
71         DRM_FORMAT_RGB565,
72         DRM_FORMAT_XRGB8888,
73         DRM_FORMAT_XBGR8888,
74         DRM_FORMAT_ARGB8888,
75         DRM_FORMAT_ABGR8888,
76         DRM_FORMAT_XRGB2101010,
77         DRM_FORMAT_XBGR2101010,
78         DRM_FORMAT_YUYV,
79         DRM_FORMAT_YVYU,
80         DRM_FORMAT_UYVY,
81         DRM_FORMAT_VYUY,
82 };
83
84 /* Cursor formats */
85 static const uint32_t intel_cursor_formats[] = {
86         DRM_FORMAT_ARGB8888,
87 };
88
89 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
90                                 struct intel_crtc_state *pipe_config);
91 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
92                                    struct intel_crtc_state *pipe_config);
93
94 static int intel_framebuffer_init(struct drm_device *dev,
95                                   struct intel_framebuffer *ifb,
96                                   struct drm_mode_fb_cmd2 *mode_cmd,
97                                   struct drm_i915_gem_object *obj);
98 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
99 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
100 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
101 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
102                                          struct intel_link_m_n *m_n,
103                                          struct intel_link_m_n *m2_n2);
104 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
105 static void haswell_set_pipeconf(struct drm_crtc *crtc);
106 static void haswell_set_pipemisc(struct drm_crtc *crtc);
107 static void vlv_prepare_pll(struct intel_crtc *crtc,
108                             const struct intel_crtc_state *pipe_config);
109 static void chv_prepare_pll(struct intel_crtc *crtc,
110                             const struct intel_crtc_state *pipe_config);
111 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
112 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
113 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
114         struct intel_crtc_state *crtc_state);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
120
121 typedef struct {
122         int     min, max;
123 } intel_range_t;
124
125 typedef struct {
126         int     dot_limit;
127         int     p2_slow, p2_fast;
128 } intel_p2_t;
129
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
133         intel_p2_t          p2;
134 };
135
136 /* returns HPLL frequency in kHz */
137 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138 {
139         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140
141         /* Obtain SKU information */
142         mutex_lock(&dev_priv->sb_lock);
143         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144                 CCK_FUSE_HPLL_FREQ_MASK;
145         mutex_unlock(&dev_priv->sb_lock);
146
147         return vco_freq[hpll_freq] * 1000;
148 }
149
150 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
151                       const char *name, u32 reg, int ref_freq)
152 {
153         u32 val;
154         int divider;
155
156         mutex_lock(&dev_priv->sb_lock);
157         val = vlv_cck_read(dev_priv, reg);
158         mutex_unlock(&dev_priv->sb_lock);
159
160         divider = val & CCK_FREQUENCY_VALUES;
161
162         WARN((val & CCK_FREQUENCY_STATUS) !=
163              (divider << CCK_FREQUENCY_STATUS_SHIFT),
164              "%s change in progress\n", name);
165
166         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
167 }
168
169 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
170                                   const char *name, u32 reg)
171 {
172         if (dev_priv->hpll_freq == 0)
173                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
174
175         return vlv_get_cck_clock(dev_priv, name, reg,
176                                  dev_priv->hpll_freq);
177 }
178
179 static int
180 intel_pch_rawclk(struct drm_i915_private *dev_priv)
181 {
182         return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
183 }
184
185 static int
186 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
187 {
188         return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
189                                       CCK_DISPLAY_REF_CLOCK_CONTROL);
190 }
191
192 static int
193 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
194 {
195         uint32_t clkcfg;
196
197         /* hrawclock is 1/4 the FSB frequency */
198         clkcfg = I915_READ(CLKCFG);
199         switch (clkcfg & CLKCFG_FSB_MASK) {
200         case CLKCFG_FSB_400:
201                 return 100000;
202         case CLKCFG_FSB_533:
203                 return 133333;
204         case CLKCFG_FSB_667:
205                 return 166667;
206         case CLKCFG_FSB_800:
207                 return 200000;
208         case CLKCFG_FSB_1067:
209                 return 266667;
210         case CLKCFG_FSB_1333:
211                 return 333333;
212         /* these two are just a guess; one of them might be right */
213         case CLKCFG_FSB_1600:
214         case CLKCFG_FSB_1600_ALT:
215                 return 400000;
216         default:
217                 return 133333;
218         }
219 }
220
221 static void intel_update_rawclk(struct drm_i915_private *dev_priv)
222 {
223         if (HAS_PCH_SPLIT(dev_priv))
224                 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
225         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
226                 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
227         else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
228                 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
229         else
230                 return; /* no rawclk on other platforms, or no need to know it */
231
232         DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
233 }
234
235 static void intel_update_czclk(struct drm_i915_private *dev_priv)
236 {
237         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
238                 return;
239
240         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
241                                                       CCK_CZ_CLOCK_CONTROL);
242
243         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
244 }
245
246 static inline u32 /* units of 100MHz */
247 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
248                     const struct intel_crtc_state *pipe_config)
249 {
250         if (HAS_DDI(dev_priv))
251                 return pipe_config->port_clock; /* SPLL */
252         else if (IS_GEN5(dev_priv))
253                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
254         else
255                 return 270000;
256 }
257
258 static const intel_limit_t intel_limits_i8xx_dac = {
259         .dot = { .min = 25000, .max = 350000 },
260         .vco = { .min = 908000, .max = 1512000 },
261         .n = { .min = 2, .max = 16 },
262         .m = { .min = 96, .max = 140 },
263         .m1 = { .min = 18, .max = 26 },
264         .m2 = { .min = 6, .max = 16 },
265         .p = { .min = 4, .max = 128 },
266         .p1 = { .min = 2, .max = 33 },
267         .p2 = { .dot_limit = 165000,
268                 .p2_slow = 4, .p2_fast = 2 },
269 };
270
271 static const intel_limit_t intel_limits_i8xx_dvo = {
272         .dot = { .min = 25000, .max = 350000 },
273         .vco = { .min = 908000, .max = 1512000 },
274         .n = { .min = 2, .max = 16 },
275         .m = { .min = 96, .max = 140 },
276         .m1 = { .min = 18, .max = 26 },
277         .m2 = { .min = 6, .max = 16 },
278         .p = { .min = 4, .max = 128 },
279         .p1 = { .min = 2, .max = 33 },
280         .p2 = { .dot_limit = 165000,
281                 .p2_slow = 4, .p2_fast = 4 },
282 };
283
284 static const intel_limit_t intel_limits_i8xx_lvds = {
285         .dot = { .min = 25000, .max = 350000 },
286         .vco = { .min = 908000, .max = 1512000 },
287         .n = { .min = 2, .max = 16 },
288         .m = { .min = 96, .max = 140 },
289         .m1 = { .min = 18, .max = 26 },
290         .m2 = { .min = 6, .max = 16 },
291         .p = { .min = 4, .max = 128 },
292         .p1 = { .min = 1, .max = 6 },
293         .p2 = { .dot_limit = 165000,
294                 .p2_slow = 14, .p2_fast = 7 },
295 };
296
297 static const intel_limit_t intel_limits_i9xx_sdvo = {
298         .dot = { .min = 20000, .max = 400000 },
299         .vco = { .min = 1400000, .max = 2800000 },
300         .n = { .min = 1, .max = 6 },
301         .m = { .min = 70, .max = 120 },
302         .m1 = { .min = 8, .max = 18 },
303         .m2 = { .min = 3, .max = 7 },
304         .p = { .min = 5, .max = 80 },
305         .p1 = { .min = 1, .max = 8 },
306         .p2 = { .dot_limit = 200000,
307                 .p2_slow = 10, .p2_fast = 5 },
308 };
309
310 static const intel_limit_t intel_limits_i9xx_lvds = {
311         .dot = { .min = 20000, .max = 400000 },
312         .vco = { .min = 1400000, .max = 2800000 },
313         .n = { .min = 1, .max = 6 },
314         .m = { .min = 70, .max = 120 },
315         .m1 = { .min = 8, .max = 18 },
316         .m2 = { .min = 3, .max = 7 },
317         .p = { .min = 7, .max = 98 },
318         .p1 = { .min = 1, .max = 8 },
319         .p2 = { .dot_limit = 112000,
320                 .p2_slow = 14, .p2_fast = 7 },
321 };
322
323
324 static const intel_limit_t intel_limits_g4x_sdvo = {
325         .dot = { .min = 25000, .max = 270000 },
326         .vco = { .min = 1750000, .max = 3500000},
327         .n = { .min = 1, .max = 4 },
328         .m = { .min = 104, .max = 138 },
329         .m1 = { .min = 17, .max = 23 },
330         .m2 = { .min = 5, .max = 11 },
331         .p = { .min = 10, .max = 30 },
332         .p1 = { .min = 1, .max = 3},
333         .p2 = { .dot_limit = 270000,
334                 .p2_slow = 10,
335                 .p2_fast = 10
336         },
337 };
338
339 static const intel_limit_t intel_limits_g4x_hdmi = {
340         .dot = { .min = 22000, .max = 400000 },
341         .vco = { .min = 1750000, .max = 3500000},
342         .n = { .min = 1, .max = 4 },
343         .m = { .min = 104, .max = 138 },
344         .m1 = { .min = 16, .max = 23 },
345         .m2 = { .min = 5, .max = 11 },
346         .p = { .min = 5, .max = 80 },
347         .p1 = { .min = 1, .max = 8},
348         .p2 = { .dot_limit = 165000,
349                 .p2_slow = 10, .p2_fast = 5 },
350 };
351
352 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
353         .dot = { .min = 20000, .max = 115000 },
354         .vco = { .min = 1750000, .max = 3500000 },
355         .n = { .min = 1, .max = 3 },
356         .m = { .min = 104, .max = 138 },
357         .m1 = { .min = 17, .max = 23 },
358         .m2 = { .min = 5, .max = 11 },
359         .p = { .min = 28, .max = 112 },
360         .p1 = { .min = 2, .max = 8 },
361         .p2 = { .dot_limit = 0,
362                 .p2_slow = 14, .p2_fast = 14
363         },
364 };
365
366 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
367         .dot = { .min = 80000, .max = 224000 },
368         .vco = { .min = 1750000, .max = 3500000 },
369         .n = { .min = 1, .max = 3 },
370         .m = { .min = 104, .max = 138 },
371         .m1 = { .min = 17, .max = 23 },
372         .m2 = { .min = 5, .max = 11 },
373         .p = { .min = 14, .max = 42 },
374         .p1 = { .min = 2, .max = 6 },
375         .p2 = { .dot_limit = 0,
376                 .p2_slow = 7, .p2_fast = 7
377         },
378 };
379
380 static const intel_limit_t intel_limits_pineview_sdvo = {
381         .dot = { .min = 20000, .max = 400000},
382         .vco = { .min = 1700000, .max = 3500000 },
383         /* Pineview's Ncounter is a ring counter */
384         .n = { .min = 3, .max = 6 },
385         .m = { .min = 2, .max = 256 },
386         /* Pineview only has one combined m divider, which we treat as m2. */
387         .m1 = { .min = 0, .max = 0 },
388         .m2 = { .min = 0, .max = 254 },
389         .p = { .min = 5, .max = 80 },
390         .p1 = { .min = 1, .max = 8 },
391         .p2 = { .dot_limit = 200000,
392                 .p2_slow = 10, .p2_fast = 5 },
393 };
394
395 static const intel_limit_t intel_limits_pineview_lvds = {
396         .dot = { .min = 20000, .max = 400000 },
397         .vco = { .min = 1700000, .max = 3500000 },
398         .n = { .min = 3, .max = 6 },
399         .m = { .min = 2, .max = 256 },
400         .m1 = { .min = 0, .max = 0 },
401         .m2 = { .min = 0, .max = 254 },
402         .p = { .min = 7, .max = 112 },
403         .p1 = { .min = 1, .max = 8 },
404         .p2 = { .dot_limit = 112000,
405                 .p2_slow = 14, .p2_fast = 14 },
406 };
407
408 /* Ironlake / Sandybridge
409  *
410  * We calculate clock using (register_value + 2) for N/M1/M2, so here
411  * the range value for them is (actual_value - 2).
412  */
413 static const intel_limit_t intel_limits_ironlake_dac = {
414         .dot = { .min = 25000, .max = 350000 },
415         .vco = { .min = 1760000, .max = 3510000 },
416         .n = { .min = 1, .max = 5 },
417         .m = { .min = 79, .max = 127 },
418         .m1 = { .min = 12, .max = 22 },
419         .m2 = { .min = 5, .max = 9 },
420         .p = { .min = 5, .max = 80 },
421         .p1 = { .min = 1, .max = 8 },
422         .p2 = { .dot_limit = 225000,
423                 .p2_slow = 10, .p2_fast = 5 },
424 };
425
426 static const intel_limit_t intel_limits_ironlake_single_lvds = {
427         .dot = { .min = 25000, .max = 350000 },
428         .vco = { .min = 1760000, .max = 3510000 },
429         .n = { .min = 1, .max = 3 },
430         .m = { .min = 79, .max = 118 },
431         .m1 = { .min = 12, .max = 22 },
432         .m2 = { .min = 5, .max = 9 },
433         .p = { .min = 28, .max = 112 },
434         .p1 = { .min = 2, .max = 8 },
435         .p2 = { .dot_limit = 225000,
436                 .p2_slow = 14, .p2_fast = 14 },
437 };
438
439 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
440         .dot = { .min = 25000, .max = 350000 },
441         .vco = { .min = 1760000, .max = 3510000 },
442         .n = { .min = 1, .max = 3 },
443         .m = { .min = 79, .max = 127 },
444         .m1 = { .min = 12, .max = 22 },
445         .m2 = { .min = 5, .max = 9 },
446         .p = { .min = 14, .max = 56 },
447         .p1 = { .min = 2, .max = 8 },
448         .p2 = { .dot_limit = 225000,
449                 .p2_slow = 7, .p2_fast = 7 },
450 };
451
452 /* LVDS 100mhz refclk limits. */
453 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
454         .dot = { .min = 25000, .max = 350000 },
455         .vco = { .min = 1760000, .max = 3510000 },
456         .n = { .min = 1, .max = 2 },
457         .m = { .min = 79, .max = 126 },
458         .m1 = { .min = 12, .max = 22 },
459         .m2 = { .min = 5, .max = 9 },
460         .p = { .min = 28, .max = 112 },
461         .p1 = { .min = 2, .max = 8 },
462         .p2 = { .dot_limit = 225000,
463                 .p2_slow = 14, .p2_fast = 14 },
464 };
465
466 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
467         .dot = { .min = 25000, .max = 350000 },
468         .vco = { .min = 1760000, .max = 3510000 },
469         .n = { .min = 1, .max = 3 },
470         .m = { .min = 79, .max = 126 },
471         .m1 = { .min = 12, .max = 22 },
472         .m2 = { .min = 5, .max = 9 },
473         .p = { .min = 14, .max = 42 },
474         .p1 = { .min = 2, .max = 6 },
475         .p2 = { .dot_limit = 225000,
476                 .p2_slow = 7, .p2_fast = 7 },
477 };
478
479 static const intel_limit_t intel_limits_vlv = {
480          /*
481           * These are the data rate limits (measured in fast clocks)
482           * since those are the strictest limits we have. The fast
483           * clock and actual rate limits are more relaxed, so checking
484           * them would make no difference.
485           */
486         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
487         .vco = { .min = 4000000, .max = 6000000 },
488         .n = { .min = 1, .max = 7 },
489         .m1 = { .min = 2, .max = 3 },
490         .m2 = { .min = 11, .max = 156 },
491         .p1 = { .min = 2, .max = 3 },
492         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
493 };
494
495 static const intel_limit_t intel_limits_chv = {
496         /*
497          * These are the data rate limits (measured in fast clocks)
498          * since those are the strictest limits we have.  The fast
499          * clock and actual rate limits are more relaxed, so checking
500          * them would make no difference.
501          */
502         .dot = { .min = 25000 * 5, .max = 540000 * 5},
503         .vco = { .min = 4800000, .max = 6480000 },
504         .n = { .min = 1, .max = 1 },
505         .m1 = { .min = 2, .max = 2 },
506         .m2 = { .min = 24 << 22, .max = 175 << 22 },
507         .p1 = { .min = 2, .max = 4 },
508         .p2 = { .p2_slow = 1, .p2_fast = 14 },
509 };
510
511 static const intel_limit_t intel_limits_bxt = {
512         /* FIXME: find real dot limits */
513         .dot = { .min = 0, .max = INT_MAX },
514         .vco = { .min = 4800000, .max = 6700000 },
515         .n = { .min = 1, .max = 1 },
516         .m1 = { .min = 2, .max = 2 },
517         /* FIXME: find real m2 limits */
518         .m2 = { .min = 2 << 22, .max = 255 << 22 },
519         .p1 = { .min = 2, .max = 4 },
520         .p2 = { .p2_slow = 1, .p2_fast = 20 },
521 };
522
523 static bool
524 needs_modeset(struct drm_crtc_state *state)
525 {
526         return drm_atomic_crtc_needs_modeset(state);
527 }
528
529 /**
530  * Returns whether any output on the specified pipe is of the specified type
531  */
532 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
533 {
534         struct drm_device *dev = crtc->base.dev;
535         struct intel_encoder *encoder;
536
537         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
538                 if (encoder->type == type)
539                         return true;
540
541         return false;
542 }
543
544 /**
545  * Returns whether any output on the specified pipe will have the specified
546  * type after a staged modeset is complete, i.e., the same as
547  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
548  * encoder->crtc.
549  */
550 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
551                                       int type)
552 {
553         struct drm_atomic_state *state = crtc_state->base.state;
554         struct drm_connector *connector;
555         struct drm_connector_state *connector_state;
556         struct intel_encoder *encoder;
557         int i, num_connectors = 0;
558
559         for_each_connector_in_state(state, connector, connector_state, i) {
560                 if (connector_state->crtc != crtc_state->base.crtc)
561                         continue;
562
563                 num_connectors++;
564
565                 encoder = to_intel_encoder(connector_state->best_encoder);
566                 if (encoder->type == type)
567                         return true;
568         }
569
570         WARN_ON(num_connectors == 0);
571
572         return false;
573 }
574
575 /*
576  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
577  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
578  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
579  * The helpers' return value is the rate of the clock that is fed to the
580  * display engine's pipe which can be the above fast dot clock rate or a
581  * divided-down version of it.
582  */
583 /* m1 is reserved as 0 in Pineview, n is a ring counter */
584 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
585 {
586         clock->m = clock->m2 + 2;
587         clock->p = clock->p1 * clock->p2;
588         if (WARN_ON(clock->n == 0 || clock->p == 0))
589                 return 0;
590         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
591         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
592
593         return clock->dot;
594 }
595
596 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
597 {
598         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
599 }
600
601 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
602 {
603         clock->m = i9xx_dpll_compute_m(clock);
604         clock->p = clock->p1 * clock->p2;
605         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
606                 return 0;
607         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
608         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
609
610         return clock->dot;
611 }
612
613 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
614 {
615         clock->m = clock->m1 * clock->m2;
616         clock->p = clock->p1 * clock->p2;
617         if (WARN_ON(clock->n == 0 || clock->p == 0))
618                 return 0;
619         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
620         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
621
622         return clock->dot / 5;
623 }
624
625 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
626 {
627         clock->m = clock->m1 * clock->m2;
628         clock->p = clock->p1 * clock->p2;
629         if (WARN_ON(clock->n == 0 || clock->p == 0))
630                 return 0;
631         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
632                         clock->n << 22);
633         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
634
635         return clock->dot / 5;
636 }
637
638 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
639 /**
640  * Returns whether the given set of divisors are valid for a given refclk with
641  * the given connectors.
642  */
643
644 static bool intel_PLL_is_valid(struct drm_device *dev,
645                                const intel_limit_t *limit,
646                                const intel_clock_t *clock)
647 {
648         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
649                 INTELPllInvalid("n out of range\n");
650         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
651                 INTELPllInvalid("p1 out of range\n");
652         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
653                 INTELPllInvalid("m2 out of range\n");
654         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
655                 INTELPllInvalid("m1 out of range\n");
656
657         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
658             !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
659                 if (clock->m1 <= clock->m2)
660                         INTELPllInvalid("m1 <= m2\n");
661
662         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
663                 if (clock->p < limit->p.min || limit->p.max < clock->p)
664                         INTELPllInvalid("p out of range\n");
665                 if (clock->m < limit->m.min || limit->m.max < clock->m)
666                         INTELPllInvalid("m out of range\n");
667         }
668
669         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
670                 INTELPllInvalid("vco out of range\n");
671         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
672          * connector, etc., rather than just a single range.
673          */
674         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
675                 INTELPllInvalid("dot out of range\n");
676
677         return true;
678 }
679
680 static int
681 i9xx_select_p2_div(const intel_limit_t *limit,
682                    const struct intel_crtc_state *crtc_state,
683                    int target)
684 {
685         struct drm_device *dev = crtc_state->base.crtc->dev;
686
687         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
688                 /*
689                  * For LVDS just rely on its current settings for dual-channel.
690                  * We haven't figured out how to reliably set up different
691                  * single/dual channel state, if we even can.
692                  */
693                 if (intel_is_dual_link_lvds(dev))
694                         return limit->p2.p2_fast;
695                 else
696                         return limit->p2.p2_slow;
697         } else {
698                 if (target < limit->p2.dot_limit)
699                         return limit->p2.p2_slow;
700                 else
701                         return limit->p2.p2_fast;
702         }
703 }
704
705 /*
706  * Returns a set of divisors for the desired target clock with the given
707  * refclk, or FALSE.  The returned values represent the clock equation:
708  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
709  *
710  * Target and reference clocks are specified in kHz.
711  *
712  * If match_clock is provided, then best_clock P divider must match the P
713  * divider from @match_clock used for LVDS downclocking.
714  */
715 static bool
716 i9xx_find_best_dpll(const intel_limit_t *limit,
717                     struct intel_crtc_state *crtc_state,
718                     int target, int refclk, intel_clock_t *match_clock,
719                     intel_clock_t *best_clock)
720 {
721         struct drm_device *dev = crtc_state->base.crtc->dev;
722         intel_clock_t clock;
723         int err = target;
724
725         memset(best_clock, 0, sizeof(*best_clock));
726
727         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
728
729         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
730              clock.m1++) {
731                 for (clock.m2 = limit->m2.min;
732                      clock.m2 <= limit->m2.max; clock.m2++) {
733                         if (clock.m2 >= clock.m1)
734                                 break;
735                         for (clock.n = limit->n.min;
736                              clock.n <= limit->n.max; clock.n++) {
737                                 for (clock.p1 = limit->p1.min;
738                                         clock.p1 <= limit->p1.max; clock.p1++) {
739                                         int this_err;
740
741                                         i9xx_calc_dpll_params(refclk, &clock);
742                                         if (!intel_PLL_is_valid(dev, limit,
743                                                                 &clock))
744                                                 continue;
745                                         if (match_clock &&
746                                             clock.p != match_clock->p)
747                                                 continue;
748
749                                         this_err = abs(clock.dot - target);
750                                         if (this_err < err) {
751                                                 *best_clock = clock;
752                                                 err = this_err;
753                                         }
754                                 }
755                         }
756                 }
757         }
758
759         return (err != target);
760 }
761
762 /*
763  * Returns a set of divisors for the desired target clock with the given
764  * refclk, or FALSE.  The returned values represent the clock equation:
765  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
766  *
767  * Target and reference clocks are specified in kHz.
768  *
769  * If match_clock is provided, then best_clock P divider must match the P
770  * divider from @match_clock used for LVDS downclocking.
771  */
772 static bool
773 pnv_find_best_dpll(const intel_limit_t *limit,
774                    struct intel_crtc_state *crtc_state,
775                    int target, int refclk, intel_clock_t *match_clock,
776                    intel_clock_t *best_clock)
777 {
778         struct drm_device *dev = crtc_state->base.crtc->dev;
779         intel_clock_t clock;
780         int err = target;
781
782         memset(best_clock, 0, sizeof(*best_clock));
783
784         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
785
786         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
787              clock.m1++) {
788                 for (clock.m2 = limit->m2.min;
789                      clock.m2 <= limit->m2.max; clock.m2++) {
790                         for (clock.n = limit->n.min;
791                              clock.n <= limit->n.max; clock.n++) {
792                                 for (clock.p1 = limit->p1.min;
793                                         clock.p1 <= limit->p1.max; clock.p1++) {
794                                         int this_err;
795
796                                         pnv_calc_dpll_params(refclk, &clock);
797                                         if (!intel_PLL_is_valid(dev, limit,
798                                                                 &clock))
799                                                 continue;
800                                         if (match_clock &&
801                                             clock.p != match_clock->p)
802                                                 continue;
803
804                                         this_err = abs(clock.dot - target);
805                                         if (this_err < err) {
806                                                 *best_clock = clock;
807                                                 err = this_err;
808                                         }
809                                 }
810                         }
811                 }
812         }
813
814         return (err != target);
815 }
816
817 /*
818  * Returns a set of divisors for the desired target clock with the given
819  * refclk, or FALSE.  The returned values represent the clock equation:
820  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
821  *
822  * Target and reference clocks are specified in kHz.
823  *
824  * If match_clock is provided, then best_clock P divider must match the P
825  * divider from @match_clock used for LVDS downclocking.
826  */
827 static bool
828 g4x_find_best_dpll(const intel_limit_t *limit,
829                    struct intel_crtc_state *crtc_state,
830                    int target, int refclk, intel_clock_t *match_clock,
831                    intel_clock_t *best_clock)
832 {
833         struct drm_device *dev = crtc_state->base.crtc->dev;
834         intel_clock_t clock;
835         int max_n;
836         bool found = false;
837         /* approximately equals target * 0.00585 */
838         int err_most = (target >> 8) + (target >> 9);
839
840         memset(best_clock, 0, sizeof(*best_clock));
841
842         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
843
844         max_n = limit->n.max;
845         /* based on hardware requirement, prefer smaller n to precision */
846         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
847                 /* based on hardware requirement, prefere larger m1,m2 */
848                 for (clock.m1 = limit->m1.max;
849                      clock.m1 >= limit->m1.min; clock.m1--) {
850                         for (clock.m2 = limit->m2.max;
851                              clock.m2 >= limit->m2.min; clock.m2--) {
852                                 for (clock.p1 = limit->p1.max;
853                                      clock.p1 >= limit->p1.min; clock.p1--) {
854                                         int this_err;
855
856                                         i9xx_calc_dpll_params(refclk, &clock);
857                                         if (!intel_PLL_is_valid(dev, limit,
858                                                                 &clock))
859                                                 continue;
860
861                                         this_err = abs(clock.dot - target);
862                                         if (this_err < err_most) {
863                                                 *best_clock = clock;
864                                                 err_most = this_err;
865                                                 max_n = clock.n;
866                                                 found = true;
867                                         }
868                                 }
869                         }
870                 }
871         }
872         return found;
873 }
874
875 /*
876  * Check if the calculated PLL configuration is more optimal compared to the
877  * best configuration and error found so far. Return the calculated error.
878  */
879 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
880                                const intel_clock_t *calculated_clock,
881                                const intel_clock_t *best_clock,
882                                unsigned int best_error_ppm,
883                                unsigned int *error_ppm)
884 {
885         /*
886          * For CHV ignore the error and consider only the P value.
887          * Prefer a bigger P value based on HW requirements.
888          */
889         if (IS_CHERRYVIEW(dev)) {
890                 *error_ppm = 0;
891
892                 return calculated_clock->p > best_clock->p;
893         }
894
895         if (WARN_ON_ONCE(!target_freq))
896                 return false;
897
898         *error_ppm = div_u64(1000000ULL *
899                                 abs(target_freq - calculated_clock->dot),
900                              target_freq);
901         /*
902          * Prefer a better P value over a better (smaller) error if the error
903          * is small. Ensure this preference for future configurations too by
904          * setting the error to 0.
905          */
906         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
907                 *error_ppm = 0;
908
909                 return true;
910         }
911
912         return *error_ppm + 10 < best_error_ppm;
913 }
914
915 /*
916  * Returns a set of divisors for the desired target clock with the given
917  * refclk, or FALSE.  The returned values represent the clock equation:
918  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
919  */
920 static bool
921 vlv_find_best_dpll(const intel_limit_t *limit,
922                    struct intel_crtc_state *crtc_state,
923                    int target, int refclk, intel_clock_t *match_clock,
924                    intel_clock_t *best_clock)
925 {
926         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
927         struct drm_device *dev = crtc->base.dev;
928         intel_clock_t clock;
929         unsigned int bestppm = 1000000;
930         /* min update 19.2 MHz */
931         int max_n = min(limit->n.max, refclk / 19200);
932         bool found = false;
933
934         target *= 5; /* fast clock */
935
936         memset(best_clock, 0, sizeof(*best_clock));
937
938         /* based on hardware requirement, prefer smaller n to precision */
939         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
940                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
941                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
942                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
943                                 clock.p = clock.p1 * clock.p2;
944                                 /* based on hardware requirement, prefer bigger m1,m2 values */
945                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
946                                         unsigned int ppm;
947
948                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
949                                                                      refclk * clock.m1);
950
951                                         vlv_calc_dpll_params(refclk, &clock);
952
953                                         if (!intel_PLL_is_valid(dev, limit,
954                                                                 &clock))
955                                                 continue;
956
957                                         if (!vlv_PLL_is_optimal(dev, target,
958                                                                 &clock,
959                                                                 best_clock,
960                                                                 bestppm, &ppm))
961                                                 continue;
962
963                                         *best_clock = clock;
964                                         bestppm = ppm;
965                                         found = true;
966                                 }
967                         }
968                 }
969         }
970
971         return found;
972 }
973
974 /*
975  * Returns a set of divisors for the desired target clock with the given
976  * refclk, or FALSE.  The returned values represent the clock equation:
977  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
978  */
979 static bool
980 chv_find_best_dpll(const intel_limit_t *limit,
981                    struct intel_crtc_state *crtc_state,
982                    int target, int refclk, intel_clock_t *match_clock,
983                    intel_clock_t *best_clock)
984 {
985         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
986         struct drm_device *dev = crtc->base.dev;
987         unsigned int best_error_ppm;
988         intel_clock_t clock;
989         uint64_t m2;
990         int found = false;
991
992         memset(best_clock, 0, sizeof(*best_clock));
993         best_error_ppm = 1000000;
994
995         /*
996          * Based on hardware doc, the n always set to 1, and m1 always
997          * set to 2.  If requires to support 200Mhz refclk, we need to
998          * revisit this because n may not 1 anymore.
999          */
1000         clock.n = 1, clock.m1 = 2;
1001         target *= 5;    /* fast clock */
1002
1003         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1004                 for (clock.p2 = limit->p2.p2_fast;
1005                                 clock.p2 >= limit->p2.p2_slow;
1006                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1007                         unsigned int error_ppm;
1008
1009                         clock.p = clock.p1 * clock.p2;
1010
1011                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1012                                         clock.n) << 22, refclk * clock.m1);
1013
1014                         if (m2 > INT_MAX/clock.m1)
1015                                 continue;
1016
1017                         clock.m2 = m2;
1018
1019                         chv_calc_dpll_params(refclk, &clock);
1020
1021                         if (!intel_PLL_is_valid(dev, limit, &clock))
1022                                 continue;
1023
1024                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1025                                                 best_error_ppm, &error_ppm))
1026                                 continue;
1027
1028                         *best_clock = clock;
1029                         best_error_ppm = error_ppm;
1030                         found = true;
1031                 }
1032         }
1033
1034         return found;
1035 }
1036
1037 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1038                         intel_clock_t *best_clock)
1039 {
1040         int refclk = 100000;
1041         const intel_limit_t *limit = &intel_limits_bxt;
1042
1043         return chv_find_best_dpll(limit, crtc_state,
1044                                   target_clock, refclk, NULL, best_clock);
1045 }
1046
1047 bool intel_crtc_active(struct drm_crtc *crtc)
1048 {
1049         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1050
1051         /* Be paranoid as we can arrive here with only partial
1052          * state retrieved from the hardware during setup.
1053          *
1054          * We can ditch the adjusted_mode.crtc_clock check as soon
1055          * as Haswell has gained clock readout/fastboot support.
1056          *
1057          * We can ditch the crtc->primary->fb check as soon as we can
1058          * properly reconstruct framebuffers.
1059          *
1060          * FIXME: The intel_crtc->active here should be switched to
1061          * crtc->state->active once we have proper CRTC states wired up
1062          * for atomic.
1063          */
1064         return intel_crtc->active && crtc->primary->state->fb &&
1065                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1066 }
1067
1068 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1069                                              enum pipe pipe)
1070 {
1071         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1072         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1073
1074         return intel_crtc->config->cpu_transcoder;
1075 }
1076
1077 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1078 {
1079         struct drm_i915_private *dev_priv = dev->dev_private;
1080         i915_reg_t reg = PIPEDSL(pipe);
1081         u32 line1, line2;
1082         u32 line_mask;
1083
1084         if (IS_GEN2(dev))
1085                 line_mask = DSL_LINEMASK_GEN2;
1086         else
1087                 line_mask = DSL_LINEMASK_GEN3;
1088
1089         line1 = I915_READ(reg) & line_mask;
1090         msleep(5);
1091         line2 = I915_READ(reg) & line_mask;
1092
1093         return line1 == line2;
1094 }
1095
1096 /*
1097  * intel_wait_for_pipe_off - wait for pipe to turn off
1098  * @crtc: crtc whose pipe to wait for
1099  *
1100  * After disabling a pipe, we can't wait for vblank in the usual way,
1101  * spinning on the vblank interrupt status bit, since we won't actually
1102  * see an interrupt when the pipe is disabled.
1103  *
1104  * On Gen4 and above:
1105  *   wait for the pipe register state bit to turn off
1106  *
1107  * Otherwise:
1108  *   wait for the display line value to settle (it usually
1109  *   ends up stopping at the start of the next frame).
1110  *
1111  */
1112 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1113 {
1114         struct drm_device *dev = crtc->base.dev;
1115         struct drm_i915_private *dev_priv = dev->dev_private;
1116         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1117         enum pipe pipe = crtc->pipe;
1118
1119         if (INTEL_INFO(dev)->gen >= 4) {
1120                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1121
1122                 /* Wait for the Pipe State to go off */
1123                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1124                              100))
1125                         WARN(1, "pipe_off wait timed out\n");
1126         } else {
1127                 /* Wait for the display line to settle */
1128                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1129                         WARN(1, "pipe_off wait timed out\n");
1130         }
1131 }
1132
1133 /* Only for pre-ILK configs */
1134 void assert_pll(struct drm_i915_private *dev_priv,
1135                 enum pipe pipe, bool state)
1136 {
1137         u32 val;
1138         bool cur_state;
1139
1140         val = I915_READ(DPLL(pipe));
1141         cur_state = !!(val & DPLL_VCO_ENABLE);
1142         I915_STATE_WARN(cur_state != state,
1143              "PLL state assertion failure (expected %s, current %s)\n",
1144                         onoff(state), onoff(cur_state));
1145 }
1146
1147 /* XXX: the dsi pll is shared between MIPI DSI ports */
1148 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1149 {
1150         u32 val;
1151         bool cur_state;
1152
1153         mutex_lock(&dev_priv->sb_lock);
1154         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1155         mutex_unlock(&dev_priv->sb_lock);
1156
1157         cur_state = val & DSI_PLL_VCO_EN;
1158         I915_STATE_WARN(cur_state != state,
1159              "DSI PLL state assertion failure (expected %s, current %s)\n",
1160                         onoff(state), onoff(cur_state));
1161 }
1162
1163 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1164                           enum pipe pipe, bool state)
1165 {
1166         bool cur_state;
1167         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1168                                                                       pipe);
1169
1170         if (HAS_DDI(dev_priv)) {
1171                 /* DDI does not have a specific FDI_TX register */
1172                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1173                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1174         } else {
1175                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1176                 cur_state = !!(val & FDI_TX_ENABLE);
1177         }
1178         I915_STATE_WARN(cur_state != state,
1179              "FDI TX state assertion failure (expected %s, current %s)\n",
1180                         onoff(state), onoff(cur_state));
1181 }
1182 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1183 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1184
1185 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1186                           enum pipe pipe, bool state)
1187 {
1188         u32 val;
1189         bool cur_state;
1190
1191         val = I915_READ(FDI_RX_CTL(pipe));
1192         cur_state = !!(val & FDI_RX_ENABLE);
1193         I915_STATE_WARN(cur_state != state,
1194              "FDI RX state assertion failure (expected %s, current %s)\n",
1195                         onoff(state), onoff(cur_state));
1196 }
1197 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1198 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1199
1200 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1201                                       enum pipe pipe)
1202 {
1203         u32 val;
1204
1205         /* ILK FDI PLL is always enabled */
1206         if (INTEL_INFO(dev_priv)->gen == 5)
1207                 return;
1208
1209         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1210         if (HAS_DDI(dev_priv))
1211                 return;
1212
1213         val = I915_READ(FDI_TX_CTL(pipe));
1214         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1215 }
1216
1217 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1218                        enum pipe pipe, bool state)
1219 {
1220         u32 val;
1221         bool cur_state;
1222
1223         val = I915_READ(FDI_RX_CTL(pipe));
1224         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1225         I915_STATE_WARN(cur_state != state,
1226              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1227                         onoff(state), onoff(cur_state));
1228 }
1229
1230 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1231                            enum pipe pipe)
1232 {
1233         struct drm_device *dev = dev_priv->dev;
1234         i915_reg_t pp_reg;
1235         u32 val;
1236         enum pipe panel_pipe = PIPE_A;
1237         bool locked = true;
1238
1239         if (WARN_ON(HAS_DDI(dev)))
1240                 return;
1241
1242         if (HAS_PCH_SPLIT(dev)) {
1243                 u32 port_sel;
1244
1245                 pp_reg = PCH_PP_CONTROL;
1246                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1247
1248                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1249                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1250                         panel_pipe = PIPE_B;
1251                 /* XXX: else fix for eDP */
1252         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1253                 /* presumably write lock depends on pipe, not port select */
1254                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1255                 panel_pipe = pipe;
1256         } else {
1257                 pp_reg = PP_CONTROL;
1258                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1259                         panel_pipe = PIPE_B;
1260         }
1261
1262         val = I915_READ(pp_reg);
1263         if (!(val & PANEL_POWER_ON) ||
1264             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1265                 locked = false;
1266
1267         I915_STATE_WARN(panel_pipe == pipe && locked,
1268              "panel assertion failure, pipe %c regs locked\n",
1269              pipe_name(pipe));
1270 }
1271
1272 static void assert_cursor(struct drm_i915_private *dev_priv,
1273                           enum pipe pipe, bool state)
1274 {
1275         struct drm_device *dev = dev_priv->dev;
1276         bool cur_state;
1277
1278         if (IS_845G(dev) || IS_I865G(dev))
1279                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1280         else
1281                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1282
1283         I915_STATE_WARN(cur_state != state,
1284              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1285                         pipe_name(pipe), onoff(state), onoff(cur_state));
1286 }
1287 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1288 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1289
1290 void assert_pipe(struct drm_i915_private *dev_priv,
1291                  enum pipe pipe, bool state)
1292 {
1293         bool cur_state;
1294         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1295                                                                       pipe);
1296         enum intel_display_power_domain power_domain;
1297
1298         /* if we need the pipe quirk it must be always on */
1299         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1300             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1301                 state = true;
1302
1303         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1304         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1305                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1306                 cur_state = !!(val & PIPECONF_ENABLE);
1307
1308                 intel_display_power_put(dev_priv, power_domain);
1309         } else {
1310                 cur_state = false;
1311         }
1312
1313         I915_STATE_WARN(cur_state != state,
1314              "pipe %c assertion failure (expected %s, current %s)\n",
1315                         pipe_name(pipe), onoff(state), onoff(cur_state));
1316 }
1317
1318 static void assert_plane(struct drm_i915_private *dev_priv,
1319                          enum plane plane, bool state)
1320 {
1321         u32 val;
1322         bool cur_state;
1323
1324         val = I915_READ(DSPCNTR(plane));
1325         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1326         I915_STATE_WARN(cur_state != state,
1327              "plane %c assertion failure (expected %s, current %s)\n",
1328                         plane_name(plane), onoff(state), onoff(cur_state));
1329 }
1330
1331 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1332 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1333
1334 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1335                                    enum pipe pipe)
1336 {
1337         struct drm_device *dev = dev_priv->dev;
1338         int i;
1339
1340         /* Primary planes are fixed to pipes on gen4+ */
1341         if (INTEL_INFO(dev)->gen >= 4) {
1342                 u32 val = I915_READ(DSPCNTR(pipe));
1343                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1344                      "plane %c assertion failure, should be disabled but not\n",
1345                      plane_name(pipe));
1346                 return;
1347         }
1348
1349         /* Need to check both planes against the pipe */
1350         for_each_pipe(dev_priv, i) {
1351                 u32 val = I915_READ(DSPCNTR(i));
1352                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1353                         DISPPLANE_SEL_PIPE_SHIFT;
1354                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1355                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1356                      plane_name(i), pipe_name(pipe));
1357         }
1358 }
1359
1360 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1361                                     enum pipe pipe)
1362 {
1363         struct drm_device *dev = dev_priv->dev;
1364         int sprite;
1365
1366         if (INTEL_INFO(dev)->gen >= 9) {
1367                 for_each_sprite(dev_priv, pipe, sprite) {
1368                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1369                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1370                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1371                              sprite, pipe_name(pipe));
1372                 }
1373         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1374                 for_each_sprite(dev_priv, pipe, sprite) {
1375                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1376                         I915_STATE_WARN(val & SP_ENABLE,
1377                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1378                              sprite_name(pipe, sprite), pipe_name(pipe));
1379                 }
1380         } else if (INTEL_INFO(dev)->gen >= 7) {
1381                 u32 val = I915_READ(SPRCTL(pipe));
1382                 I915_STATE_WARN(val & SPRITE_ENABLE,
1383                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1384                      plane_name(pipe), pipe_name(pipe));
1385         } else if (INTEL_INFO(dev)->gen >= 5) {
1386                 u32 val = I915_READ(DVSCNTR(pipe));
1387                 I915_STATE_WARN(val & DVS_ENABLE,
1388                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1389                      plane_name(pipe), pipe_name(pipe));
1390         }
1391 }
1392
1393 static void assert_vblank_disabled(struct drm_crtc *crtc)
1394 {
1395         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1396                 drm_crtc_vblank_put(crtc);
1397 }
1398
1399 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1400                                     enum pipe pipe)
1401 {
1402         u32 val;
1403         bool enabled;
1404
1405         val = I915_READ(PCH_TRANSCONF(pipe));
1406         enabled = !!(val & TRANS_ENABLE);
1407         I915_STATE_WARN(enabled,
1408              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1409              pipe_name(pipe));
1410 }
1411
1412 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1413                             enum pipe pipe, u32 port_sel, u32 val)
1414 {
1415         if ((val & DP_PORT_EN) == 0)
1416                 return false;
1417
1418         if (HAS_PCH_CPT(dev_priv)) {
1419                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1420                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1421                         return false;
1422         } else if (IS_CHERRYVIEW(dev_priv)) {
1423                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1424                         return false;
1425         } else {
1426                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1427                         return false;
1428         }
1429         return true;
1430 }
1431
1432 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1433                               enum pipe pipe, u32 val)
1434 {
1435         if ((val & SDVO_ENABLE) == 0)
1436                 return false;
1437
1438         if (HAS_PCH_CPT(dev_priv)) {
1439                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1440                         return false;
1441         } else if (IS_CHERRYVIEW(dev_priv)) {
1442                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1443                         return false;
1444         } else {
1445                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1446                         return false;
1447         }
1448         return true;
1449 }
1450
1451 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1452                               enum pipe pipe, u32 val)
1453 {
1454         if ((val & LVDS_PORT_EN) == 0)
1455                 return false;
1456
1457         if (HAS_PCH_CPT(dev_priv)) {
1458                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1459                         return false;
1460         } else {
1461                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1462                         return false;
1463         }
1464         return true;
1465 }
1466
1467 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1468                               enum pipe pipe, u32 val)
1469 {
1470         if ((val & ADPA_DAC_ENABLE) == 0)
1471                 return false;
1472         if (HAS_PCH_CPT(dev_priv)) {
1473                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1474                         return false;
1475         } else {
1476                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1477                         return false;
1478         }
1479         return true;
1480 }
1481
1482 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1483                                    enum pipe pipe, i915_reg_t reg,
1484                                    u32 port_sel)
1485 {
1486         u32 val = I915_READ(reg);
1487         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1488              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1489              i915_mmio_reg_offset(reg), pipe_name(pipe));
1490
1491         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1492              && (val & DP_PIPEB_SELECT),
1493              "IBX PCH dp port still using transcoder B\n");
1494 }
1495
1496 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1497                                      enum pipe pipe, i915_reg_t reg)
1498 {
1499         u32 val = I915_READ(reg);
1500         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1501              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1502              i915_mmio_reg_offset(reg), pipe_name(pipe));
1503
1504         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1505              && (val & SDVO_PIPE_B_SELECT),
1506              "IBX PCH hdmi port still using transcoder B\n");
1507 }
1508
1509 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1510                                       enum pipe pipe)
1511 {
1512         u32 val;
1513
1514         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1515         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1516         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1517
1518         val = I915_READ(PCH_ADPA);
1519         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1520              "PCH VGA enabled on transcoder %c, should be disabled\n",
1521              pipe_name(pipe));
1522
1523         val = I915_READ(PCH_LVDS);
1524         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1525              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1526              pipe_name(pipe));
1527
1528         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1529         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1530         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1531 }
1532
1533 static void _vlv_enable_pll(struct intel_crtc *crtc,
1534                             const struct intel_crtc_state *pipe_config)
1535 {
1536         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1537         enum pipe pipe = crtc->pipe;
1538
1539         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1540         POSTING_READ(DPLL(pipe));
1541         udelay(150);
1542
1543         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1544                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1545 }
1546
1547 static void vlv_enable_pll(struct intel_crtc *crtc,
1548                            const struct intel_crtc_state *pipe_config)
1549 {
1550         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1551         enum pipe pipe = crtc->pipe;
1552
1553         assert_pipe_disabled(dev_priv, pipe);
1554
1555         /* PLL is protected by panel, make sure we can write it */
1556         assert_panel_unlocked(dev_priv, pipe);
1557
1558         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1559                 _vlv_enable_pll(crtc, pipe_config);
1560
1561         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1562         POSTING_READ(DPLL_MD(pipe));
1563 }
1564
1565
1566 static void _chv_enable_pll(struct intel_crtc *crtc,
1567                             const struct intel_crtc_state *pipe_config)
1568 {
1569         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1570         enum pipe pipe = crtc->pipe;
1571         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1572         u32 tmp;
1573
1574         mutex_lock(&dev_priv->sb_lock);
1575
1576         /* Enable back the 10bit clock to display controller */
1577         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1578         tmp |= DPIO_DCLKP_EN;
1579         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1580
1581         mutex_unlock(&dev_priv->sb_lock);
1582
1583         /*
1584          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1585          */
1586         udelay(1);
1587
1588         /* Enable PLL */
1589         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1590
1591         /* Check PLL is locked */
1592         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1593                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1594 }
1595
1596 static void chv_enable_pll(struct intel_crtc *crtc,
1597                            const struct intel_crtc_state *pipe_config)
1598 {
1599         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1600         enum pipe pipe = crtc->pipe;
1601
1602         assert_pipe_disabled(dev_priv, pipe);
1603
1604         /* PLL is protected by panel, make sure we can write it */
1605         assert_panel_unlocked(dev_priv, pipe);
1606
1607         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1608                 _chv_enable_pll(crtc, pipe_config);
1609
1610         if (pipe != PIPE_A) {
1611                 /*
1612                  * WaPixelRepeatModeFixForC0:chv
1613                  *
1614                  * DPLLCMD is AWOL. Use chicken bits to propagate
1615                  * the value from DPLLBMD to either pipe B or C.
1616                  */
1617                 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1618                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1619                 I915_WRITE(CBR4_VLV, 0);
1620                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1621
1622                 /*
1623                  * DPLLB VGA mode also seems to cause problems.
1624                  * We should always have it disabled.
1625                  */
1626                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1627         } else {
1628                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1629                 POSTING_READ(DPLL_MD(pipe));
1630         }
1631 }
1632
1633 static int intel_num_dvo_pipes(struct drm_device *dev)
1634 {
1635         struct intel_crtc *crtc;
1636         int count = 0;
1637
1638         for_each_intel_crtc(dev, crtc)
1639                 count += crtc->base.state->active &&
1640                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1641
1642         return count;
1643 }
1644
1645 static void i9xx_enable_pll(struct intel_crtc *crtc)
1646 {
1647         struct drm_device *dev = crtc->base.dev;
1648         struct drm_i915_private *dev_priv = dev->dev_private;
1649         i915_reg_t reg = DPLL(crtc->pipe);
1650         u32 dpll = crtc->config->dpll_hw_state.dpll;
1651
1652         assert_pipe_disabled(dev_priv, crtc->pipe);
1653
1654         /* PLL is protected by panel, make sure we can write it */
1655         if (IS_MOBILE(dev) && !IS_I830(dev))
1656                 assert_panel_unlocked(dev_priv, crtc->pipe);
1657
1658         /* Enable DVO 2x clock on both PLLs if necessary */
1659         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1660                 /*
1661                  * It appears to be important that we don't enable this
1662                  * for the current pipe before otherwise configuring the
1663                  * PLL. No idea how this should be handled if multiple
1664                  * DVO outputs are enabled simultaneosly.
1665                  */
1666                 dpll |= DPLL_DVO_2X_MODE;
1667                 I915_WRITE(DPLL(!crtc->pipe),
1668                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1669         }
1670
1671         /*
1672          * Apparently we need to have VGA mode enabled prior to changing
1673          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1674          * dividers, even though the register value does change.
1675          */
1676         I915_WRITE(reg, 0);
1677
1678         I915_WRITE(reg, dpll);
1679
1680         /* Wait for the clocks to stabilize. */
1681         POSTING_READ(reg);
1682         udelay(150);
1683
1684         if (INTEL_INFO(dev)->gen >= 4) {
1685                 I915_WRITE(DPLL_MD(crtc->pipe),
1686                            crtc->config->dpll_hw_state.dpll_md);
1687         } else {
1688                 /* The pixel multiplier can only be updated once the
1689                  * DPLL is enabled and the clocks are stable.
1690                  *
1691                  * So write it again.
1692                  */
1693                 I915_WRITE(reg, dpll);
1694         }
1695
1696         /* We do this three times for luck */
1697         I915_WRITE(reg, dpll);
1698         POSTING_READ(reg);
1699         udelay(150); /* wait for warmup */
1700         I915_WRITE(reg, dpll);
1701         POSTING_READ(reg);
1702         udelay(150); /* wait for warmup */
1703         I915_WRITE(reg, dpll);
1704         POSTING_READ(reg);
1705         udelay(150); /* wait for warmup */
1706 }
1707
1708 /**
1709  * i9xx_disable_pll - disable a PLL
1710  * @dev_priv: i915 private structure
1711  * @pipe: pipe PLL to disable
1712  *
1713  * Disable the PLL for @pipe, making sure the pipe is off first.
1714  *
1715  * Note!  This is for pre-ILK only.
1716  */
1717 static void i9xx_disable_pll(struct intel_crtc *crtc)
1718 {
1719         struct drm_device *dev = crtc->base.dev;
1720         struct drm_i915_private *dev_priv = dev->dev_private;
1721         enum pipe pipe = crtc->pipe;
1722
1723         /* Disable DVO 2x clock on both PLLs if necessary */
1724         if (IS_I830(dev) &&
1725             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1726             !intel_num_dvo_pipes(dev)) {
1727                 I915_WRITE(DPLL(PIPE_B),
1728                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1729                 I915_WRITE(DPLL(PIPE_A),
1730                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1731         }
1732
1733         /* Don't disable pipe or pipe PLLs if needed */
1734         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1735             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1736                 return;
1737
1738         /* Make sure the pipe isn't still relying on us */
1739         assert_pipe_disabled(dev_priv, pipe);
1740
1741         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1742         POSTING_READ(DPLL(pipe));
1743 }
1744
1745 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1746 {
1747         u32 val;
1748
1749         /* Make sure the pipe isn't still relying on us */
1750         assert_pipe_disabled(dev_priv, pipe);
1751
1752         val = DPLL_INTEGRATED_REF_CLK_VLV |
1753                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1754         if (pipe != PIPE_A)
1755                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1756
1757         I915_WRITE(DPLL(pipe), val);
1758         POSTING_READ(DPLL(pipe));
1759 }
1760
1761 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1762 {
1763         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1764         u32 val;
1765
1766         /* Make sure the pipe isn't still relying on us */
1767         assert_pipe_disabled(dev_priv, pipe);
1768
1769         val = DPLL_SSC_REF_CLK_CHV |
1770                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1771         if (pipe != PIPE_A)
1772                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1773
1774         I915_WRITE(DPLL(pipe), val);
1775         POSTING_READ(DPLL(pipe));
1776
1777         mutex_lock(&dev_priv->sb_lock);
1778
1779         /* Disable 10bit clock to display controller */
1780         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1781         val &= ~DPIO_DCLKP_EN;
1782         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1783
1784         mutex_unlock(&dev_priv->sb_lock);
1785 }
1786
1787 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1788                          struct intel_digital_port *dport,
1789                          unsigned int expected_mask)
1790 {
1791         u32 port_mask;
1792         i915_reg_t dpll_reg;
1793
1794         switch (dport->port) {
1795         case PORT_B:
1796                 port_mask = DPLL_PORTB_READY_MASK;
1797                 dpll_reg = DPLL(0);
1798                 break;
1799         case PORT_C:
1800                 port_mask = DPLL_PORTC_READY_MASK;
1801                 dpll_reg = DPLL(0);
1802                 expected_mask <<= 4;
1803                 break;
1804         case PORT_D:
1805                 port_mask = DPLL_PORTD_READY_MASK;
1806                 dpll_reg = DPIO_PHY_STATUS;
1807                 break;
1808         default:
1809                 BUG();
1810         }
1811
1812         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1813                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1814                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1815 }
1816
1817 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1818                                            enum pipe pipe)
1819 {
1820         struct drm_device *dev = dev_priv->dev;
1821         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1822         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1823         i915_reg_t reg;
1824         uint32_t val, pipeconf_val;
1825
1826         /* Make sure PCH DPLL is enabled */
1827         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1828
1829         /* FDI must be feeding us bits for PCH ports */
1830         assert_fdi_tx_enabled(dev_priv, pipe);
1831         assert_fdi_rx_enabled(dev_priv, pipe);
1832
1833         if (HAS_PCH_CPT(dev)) {
1834                 /* Workaround: Set the timing override bit before enabling the
1835                  * pch transcoder. */
1836                 reg = TRANS_CHICKEN2(pipe);
1837                 val = I915_READ(reg);
1838                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1839                 I915_WRITE(reg, val);
1840         }
1841
1842         reg = PCH_TRANSCONF(pipe);
1843         val = I915_READ(reg);
1844         pipeconf_val = I915_READ(PIPECONF(pipe));
1845
1846         if (HAS_PCH_IBX(dev_priv)) {
1847                 /*
1848                  * Make the BPC in transcoder be consistent with
1849                  * that in pipeconf reg. For HDMI we must use 8bpc
1850                  * here for both 8bpc and 12bpc.
1851                  */
1852                 val &= ~PIPECONF_BPC_MASK;
1853                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1854                         val |= PIPECONF_8BPC;
1855                 else
1856                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1857         }
1858
1859         val &= ~TRANS_INTERLACE_MASK;
1860         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1861                 if (HAS_PCH_IBX(dev_priv) &&
1862                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1863                         val |= TRANS_LEGACY_INTERLACED_ILK;
1864                 else
1865                         val |= TRANS_INTERLACED;
1866         else
1867                 val |= TRANS_PROGRESSIVE;
1868
1869         I915_WRITE(reg, val | TRANS_ENABLE);
1870         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1871                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1872 }
1873
1874 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1875                                       enum transcoder cpu_transcoder)
1876 {
1877         u32 val, pipeconf_val;
1878
1879         /* FDI must be feeding us bits for PCH ports */
1880         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1881         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1882
1883         /* Workaround: set timing override bit. */
1884         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1885         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1886         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1887
1888         val = TRANS_ENABLE;
1889         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1890
1891         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1892             PIPECONF_INTERLACED_ILK)
1893                 val |= TRANS_INTERLACED;
1894         else
1895                 val |= TRANS_PROGRESSIVE;
1896
1897         I915_WRITE(LPT_TRANSCONF, val);
1898         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1899                 DRM_ERROR("Failed to enable PCH transcoder\n");
1900 }
1901
1902 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1903                                             enum pipe pipe)
1904 {
1905         struct drm_device *dev = dev_priv->dev;
1906         i915_reg_t reg;
1907         uint32_t val;
1908
1909         /* FDI relies on the transcoder */
1910         assert_fdi_tx_disabled(dev_priv, pipe);
1911         assert_fdi_rx_disabled(dev_priv, pipe);
1912
1913         /* Ports must be off as well */
1914         assert_pch_ports_disabled(dev_priv, pipe);
1915
1916         reg = PCH_TRANSCONF(pipe);
1917         val = I915_READ(reg);
1918         val &= ~TRANS_ENABLE;
1919         I915_WRITE(reg, val);
1920         /* wait for PCH transcoder off, transcoder state */
1921         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1922                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1923
1924         if (HAS_PCH_CPT(dev)) {
1925                 /* Workaround: Clear the timing override chicken bit again. */
1926                 reg = TRANS_CHICKEN2(pipe);
1927                 val = I915_READ(reg);
1928                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1929                 I915_WRITE(reg, val);
1930         }
1931 }
1932
1933 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1934 {
1935         u32 val;
1936
1937         val = I915_READ(LPT_TRANSCONF);
1938         val &= ~TRANS_ENABLE;
1939         I915_WRITE(LPT_TRANSCONF, val);
1940         /* wait for PCH transcoder off, transcoder state */
1941         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1942                 DRM_ERROR("Failed to disable PCH transcoder\n");
1943
1944         /* Workaround: clear timing override bit. */
1945         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1946         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1947         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1948 }
1949
1950 /**
1951  * intel_enable_pipe - enable a pipe, asserting requirements
1952  * @crtc: crtc responsible for the pipe
1953  *
1954  * Enable @crtc's pipe, making sure that various hardware specific requirements
1955  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1956  */
1957 static void intel_enable_pipe(struct intel_crtc *crtc)
1958 {
1959         struct drm_device *dev = crtc->base.dev;
1960         struct drm_i915_private *dev_priv = dev->dev_private;
1961         enum pipe pipe = crtc->pipe;
1962         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1963         enum pipe pch_transcoder;
1964         i915_reg_t reg;
1965         u32 val;
1966
1967         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1968
1969         assert_planes_disabled(dev_priv, pipe);
1970         assert_cursor_disabled(dev_priv, pipe);
1971         assert_sprites_disabled(dev_priv, pipe);
1972
1973         if (HAS_PCH_LPT(dev_priv))
1974                 pch_transcoder = TRANSCODER_A;
1975         else
1976                 pch_transcoder = pipe;
1977
1978         /*
1979          * A pipe without a PLL won't actually be able to drive bits from
1980          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1981          * need the check.
1982          */
1983         if (HAS_GMCH_DISPLAY(dev_priv))
1984                 if (crtc->config->has_dsi_encoder)
1985                         assert_dsi_pll_enabled(dev_priv);
1986                 else
1987                         assert_pll_enabled(dev_priv, pipe);
1988         else {
1989                 if (crtc->config->has_pch_encoder) {
1990                         /* if driving the PCH, we need FDI enabled */
1991                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1992                         assert_fdi_tx_pll_enabled(dev_priv,
1993                                                   (enum pipe) cpu_transcoder);
1994                 }
1995                 /* FIXME: assert CPU port conditions for SNB+ */
1996         }
1997
1998         reg = PIPECONF(cpu_transcoder);
1999         val = I915_READ(reg);
2000         if (val & PIPECONF_ENABLE) {
2001                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2002                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2003                 return;
2004         }
2005
2006         I915_WRITE(reg, val | PIPECONF_ENABLE);
2007         POSTING_READ(reg);
2008
2009         /*
2010          * Until the pipe starts DSL will read as 0, which would cause
2011          * an apparent vblank timestamp jump, which messes up also the
2012          * frame count when it's derived from the timestamps. So let's
2013          * wait for the pipe to start properly before we call
2014          * drm_crtc_vblank_on()
2015          */
2016         if (dev->max_vblank_count == 0 &&
2017             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2018                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2019 }
2020
2021 /**
2022  * intel_disable_pipe - disable a pipe, asserting requirements
2023  * @crtc: crtc whose pipes is to be disabled
2024  *
2025  * Disable the pipe of @crtc, making sure that various hardware
2026  * specific requirements are met, if applicable, e.g. plane
2027  * disabled, panel fitter off, etc.
2028  *
2029  * Will wait until the pipe has shut down before returning.
2030  */
2031 static void intel_disable_pipe(struct intel_crtc *crtc)
2032 {
2033         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2034         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2035         enum pipe pipe = crtc->pipe;
2036         i915_reg_t reg;
2037         u32 val;
2038
2039         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2040
2041         /*
2042          * Make sure planes won't keep trying to pump pixels to us,
2043          * or we might hang the display.
2044          */
2045         assert_planes_disabled(dev_priv, pipe);
2046         assert_cursor_disabled(dev_priv, pipe);
2047         assert_sprites_disabled(dev_priv, pipe);
2048
2049         reg = PIPECONF(cpu_transcoder);
2050         val = I915_READ(reg);
2051         if ((val & PIPECONF_ENABLE) == 0)
2052                 return;
2053
2054         /*
2055          * Double wide has implications for planes
2056          * so best keep it disabled when not needed.
2057          */
2058         if (crtc->config->double_wide)
2059                 val &= ~PIPECONF_DOUBLE_WIDE;
2060
2061         /* Don't disable pipe or pipe PLLs if needed */
2062         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2063             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2064                 val &= ~PIPECONF_ENABLE;
2065
2066         I915_WRITE(reg, val);
2067         if ((val & PIPECONF_ENABLE) == 0)
2068                 intel_wait_for_pipe_off(crtc);
2069 }
2070
2071 static bool need_vtd_wa(struct drm_device *dev)
2072 {
2073 #ifdef CONFIG_INTEL_IOMMU
2074         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2075                 return true;
2076 #endif
2077         return false;
2078 }
2079
2080 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2081 {
2082         return IS_GEN2(dev_priv) ? 2048 : 4096;
2083 }
2084
2085 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2086                                            uint64_t fb_modifier, unsigned int cpp)
2087 {
2088         switch (fb_modifier) {
2089         case DRM_FORMAT_MOD_NONE:
2090                 return cpp;
2091         case I915_FORMAT_MOD_X_TILED:
2092                 if (IS_GEN2(dev_priv))
2093                         return 128;
2094                 else
2095                         return 512;
2096         case I915_FORMAT_MOD_Y_TILED:
2097                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2098                         return 128;
2099                 else
2100                         return 512;
2101         case I915_FORMAT_MOD_Yf_TILED:
2102                 switch (cpp) {
2103                 case 1:
2104                         return 64;
2105                 case 2:
2106                 case 4:
2107                         return 128;
2108                 case 8:
2109                 case 16:
2110                         return 256;
2111                 default:
2112                         MISSING_CASE(cpp);
2113                         return cpp;
2114                 }
2115                 break;
2116         default:
2117                 MISSING_CASE(fb_modifier);
2118                 return cpp;
2119         }
2120 }
2121
2122 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2123                                uint64_t fb_modifier, unsigned int cpp)
2124 {
2125         if (fb_modifier == DRM_FORMAT_MOD_NONE)
2126                 return 1;
2127         else
2128                 return intel_tile_size(dev_priv) /
2129                         intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2130 }
2131
2132 /* Return the tile dimensions in pixel units */
2133 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2134                             unsigned int *tile_width,
2135                             unsigned int *tile_height,
2136                             uint64_t fb_modifier,
2137                             unsigned int cpp)
2138 {
2139         unsigned int tile_width_bytes =
2140                 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2141
2142         *tile_width = tile_width_bytes / cpp;
2143         *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2144 }
2145
2146 unsigned int
2147 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2148                       uint32_t pixel_format, uint64_t fb_modifier)
2149 {
2150         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2151         unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2152
2153         return ALIGN(height, tile_height);
2154 }
2155
2156 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2157 {
2158         unsigned int size = 0;
2159         int i;
2160
2161         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2162                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2163
2164         return size;
2165 }
2166
2167 static void
2168 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2169                         const struct drm_framebuffer *fb,
2170                         unsigned int rotation)
2171 {
2172         if (intel_rotation_90_or_270(rotation)) {
2173                 *view = i915_ggtt_view_rotated;
2174                 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2175         } else {
2176                 *view = i915_ggtt_view_normal;
2177         }
2178 }
2179
2180 static void
2181 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2182                    struct drm_framebuffer *fb)
2183 {
2184         struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2185         unsigned int tile_size, tile_width, tile_height, cpp;
2186
2187         tile_size = intel_tile_size(dev_priv);
2188
2189         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2190         intel_tile_dims(dev_priv, &tile_width, &tile_height,
2191                         fb->modifier[0], cpp);
2192
2193         info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2194         info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
2195
2196         if (info->pixel_format == DRM_FORMAT_NV12) {
2197                 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2198                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2199                                 fb->modifier[1], cpp);
2200
2201                 info->uv_offset = fb->offsets[1];
2202                 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2203                 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
2204         }
2205 }
2206
2207 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2208 {
2209         if (INTEL_INFO(dev_priv)->gen >= 9)
2210                 return 256 * 1024;
2211         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2212                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2213                 return 128 * 1024;
2214         else if (INTEL_INFO(dev_priv)->gen >= 4)
2215                 return 4 * 1024;
2216         else
2217                 return 0;
2218 }
2219
2220 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2221                                          uint64_t fb_modifier)
2222 {
2223         switch (fb_modifier) {
2224         case DRM_FORMAT_MOD_NONE:
2225                 return intel_linear_alignment(dev_priv);
2226         case I915_FORMAT_MOD_X_TILED:
2227                 if (INTEL_INFO(dev_priv)->gen >= 9)
2228                         return 256 * 1024;
2229                 return 0;
2230         case I915_FORMAT_MOD_Y_TILED:
2231         case I915_FORMAT_MOD_Yf_TILED:
2232                 return 1 * 1024 * 1024;
2233         default:
2234                 MISSING_CASE(fb_modifier);
2235                 return 0;
2236         }
2237 }
2238
2239 int
2240 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2241                            unsigned int rotation)
2242 {
2243         struct drm_device *dev = fb->dev;
2244         struct drm_i915_private *dev_priv = dev->dev_private;
2245         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2246         struct i915_ggtt_view view;
2247         u32 alignment;
2248         int ret;
2249
2250         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2251
2252         alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2253
2254         intel_fill_fb_ggtt_view(&view, fb, rotation);
2255
2256         /* Note that the w/a also requires 64 PTE of padding following the
2257          * bo. We currently fill all unused PTE with the shadow page and so
2258          * we should always have valid PTE following the scanout preventing
2259          * the VT-d warning.
2260          */
2261         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2262                 alignment = 256 * 1024;
2263
2264         /*
2265          * Global gtt pte registers are special registers which actually forward
2266          * writes to a chunk of system memory. Which means that there is no risk
2267          * that the register values disappear as soon as we call
2268          * intel_runtime_pm_put(), so it is correct to wrap only the
2269          * pin/unpin/fence and not more.
2270          */
2271         intel_runtime_pm_get(dev_priv);
2272
2273         ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2274                                                    &view);
2275         if (ret)
2276                 goto err_pm;
2277
2278         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2279          * fence, whereas 965+ only requires a fence if using
2280          * framebuffer compression.  For simplicity, we always install
2281          * a fence as the cost is not that onerous.
2282          */
2283         if (view.type == I915_GGTT_VIEW_NORMAL) {
2284                 ret = i915_gem_object_get_fence(obj);
2285                 if (ret == -EDEADLK) {
2286                         /*
2287                          * -EDEADLK means there are no free fences
2288                          * no pending flips.
2289                          *
2290                          * This is propagated to atomic, but it uses
2291                          * -EDEADLK to force a locking recovery, so
2292                          * change the returned error to -EBUSY.
2293                          */
2294                         ret = -EBUSY;
2295                         goto err_unpin;
2296                 } else if (ret)
2297                         goto err_unpin;
2298
2299                 i915_gem_object_pin_fence(obj);
2300         }
2301
2302         intel_runtime_pm_put(dev_priv);
2303         return 0;
2304
2305 err_unpin:
2306         i915_gem_object_unpin_from_display_plane(obj, &view);
2307 err_pm:
2308         intel_runtime_pm_put(dev_priv);
2309         return ret;
2310 }
2311
2312 static void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2313 {
2314         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2315         struct i915_ggtt_view view;
2316
2317         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2318
2319         intel_fill_fb_ggtt_view(&view, fb, rotation);
2320
2321         if (view.type == I915_GGTT_VIEW_NORMAL)
2322                 i915_gem_object_unpin_fence(obj);
2323
2324         i915_gem_object_unpin_from_display_plane(obj, &view);
2325 }
2326
2327 /*
2328  * Adjust the tile offset by moving the difference into
2329  * the x/y offsets.
2330  *
2331  * Input tile dimensions and pitch must already be
2332  * rotated to match x and y, and in pixel units.
2333  */
2334 static u32 intel_adjust_tile_offset(int *x, int *y,
2335                                     unsigned int tile_width,
2336                                     unsigned int tile_height,
2337                                     unsigned int tile_size,
2338                                     unsigned int pitch_tiles,
2339                                     u32 old_offset,
2340                                     u32 new_offset)
2341 {
2342         unsigned int tiles;
2343
2344         WARN_ON(old_offset & (tile_size - 1));
2345         WARN_ON(new_offset & (tile_size - 1));
2346         WARN_ON(new_offset > old_offset);
2347
2348         tiles = (old_offset - new_offset) / tile_size;
2349
2350         *y += tiles / pitch_tiles * tile_height;
2351         *x += tiles % pitch_tiles * tile_width;
2352
2353         return new_offset;
2354 }
2355
2356 /*
2357  * Computes the linear offset to the base tile and adjusts
2358  * x, y. bytes per pixel is assumed to be a power-of-two.
2359  *
2360  * In the 90/270 rotated case, x and y are assumed
2361  * to be already rotated to match the rotated GTT view, and
2362  * pitch is the tile_height aligned framebuffer height.
2363  */
2364 u32 intel_compute_tile_offset(int *x, int *y,
2365                               const struct drm_framebuffer *fb, int plane,
2366                               unsigned int pitch,
2367                               unsigned int rotation)
2368 {
2369         const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2370         uint64_t fb_modifier = fb->modifier[plane];
2371         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2372         u32 offset, offset_aligned, alignment;
2373
2374         alignment = intel_surf_alignment(dev_priv, fb_modifier);
2375         if (alignment)
2376                 alignment--;
2377
2378         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2379                 unsigned int tile_size, tile_width, tile_height;
2380                 unsigned int tile_rows, tiles, pitch_tiles;
2381
2382                 tile_size = intel_tile_size(dev_priv);
2383                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2384                                 fb_modifier, cpp);
2385
2386                 if (intel_rotation_90_or_270(rotation)) {
2387                         pitch_tiles = pitch / tile_height;
2388                         swap(tile_width, tile_height);
2389                 } else {
2390                         pitch_tiles = pitch / (tile_width * cpp);
2391                 }
2392
2393                 tile_rows = *y / tile_height;
2394                 *y %= tile_height;
2395
2396                 tiles = *x / tile_width;
2397                 *x %= tile_width;
2398
2399                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2400                 offset_aligned = offset & ~alignment;
2401
2402                 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2403                                          tile_size, pitch_tiles,
2404                                          offset, offset_aligned);
2405         } else {
2406                 offset = *y * pitch + *x * cpp;
2407                 offset_aligned = offset & ~alignment;
2408
2409                 *y = (offset & alignment) / pitch;
2410                 *x = ((offset & alignment) - *y * pitch) / cpp;
2411         }
2412
2413         return offset_aligned;
2414 }
2415
2416 static int i9xx_format_to_fourcc(int format)
2417 {
2418         switch (format) {
2419         case DISPPLANE_8BPP:
2420                 return DRM_FORMAT_C8;
2421         case DISPPLANE_BGRX555:
2422                 return DRM_FORMAT_XRGB1555;
2423         case DISPPLANE_BGRX565:
2424                 return DRM_FORMAT_RGB565;
2425         default:
2426         case DISPPLANE_BGRX888:
2427                 return DRM_FORMAT_XRGB8888;
2428         case DISPPLANE_RGBX888:
2429                 return DRM_FORMAT_XBGR8888;
2430         case DISPPLANE_BGRX101010:
2431                 return DRM_FORMAT_XRGB2101010;
2432         case DISPPLANE_RGBX101010:
2433                 return DRM_FORMAT_XBGR2101010;
2434         }
2435 }
2436
2437 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2438 {
2439         switch (format) {
2440         case PLANE_CTL_FORMAT_RGB_565:
2441                 return DRM_FORMAT_RGB565;
2442         default:
2443         case PLANE_CTL_FORMAT_XRGB_8888:
2444                 if (rgb_order) {
2445                         if (alpha)
2446                                 return DRM_FORMAT_ABGR8888;
2447                         else
2448                                 return DRM_FORMAT_XBGR8888;
2449                 } else {
2450                         if (alpha)
2451                                 return DRM_FORMAT_ARGB8888;
2452                         else
2453                                 return DRM_FORMAT_XRGB8888;
2454                 }
2455         case PLANE_CTL_FORMAT_XRGB_2101010:
2456                 if (rgb_order)
2457                         return DRM_FORMAT_XBGR2101010;
2458                 else
2459                         return DRM_FORMAT_XRGB2101010;
2460         }
2461 }
2462
2463 static bool
2464 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2465                               struct intel_initial_plane_config *plane_config)
2466 {
2467         struct drm_device *dev = crtc->base.dev;
2468         struct drm_i915_private *dev_priv = to_i915(dev);
2469         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2470         struct drm_i915_gem_object *obj = NULL;
2471         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2472         struct drm_framebuffer *fb = &plane_config->fb->base;
2473         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2474         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2475                                     PAGE_SIZE);
2476
2477         size_aligned -= base_aligned;
2478
2479         if (plane_config->size == 0)
2480                 return false;
2481
2482         /* If the FB is too big, just don't use it since fbdev is not very
2483          * important and we should probably use that space with FBC or other
2484          * features. */
2485         if (size_aligned * 2 > ggtt->stolen_usable_size)
2486                 return false;
2487
2488         mutex_lock(&dev->struct_mutex);
2489
2490         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2491                                                              base_aligned,
2492                                                              base_aligned,
2493                                                              size_aligned);
2494         if (!obj) {
2495                 mutex_unlock(&dev->struct_mutex);
2496                 return false;
2497         }
2498
2499         obj->tiling_mode = plane_config->tiling;
2500         if (obj->tiling_mode == I915_TILING_X)
2501                 obj->stride = fb->pitches[0];
2502
2503         mode_cmd.pixel_format = fb->pixel_format;
2504         mode_cmd.width = fb->width;
2505         mode_cmd.height = fb->height;
2506         mode_cmd.pitches[0] = fb->pitches[0];
2507         mode_cmd.modifier[0] = fb->modifier[0];
2508         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2509
2510         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2511                                    &mode_cmd, obj)) {
2512                 DRM_DEBUG_KMS("intel fb init failed\n");
2513                 goto out_unref_obj;
2514         }
2515
2516         mutex_unlock(&dev->struct_mutex);
2517
2518         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2519         return true;
2520
2521 out_unref_obj:
2522         drm_gem_object_unreference(&obj->base);
2523         mutex_unlock(&dev->struct_mutex);
2524         return false;
2525 }
2526
2527 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2528 static void
2529 update_state_fb(struct drm_plane *plane)
2530 {
2531         if (plane->fb == plane->state->fb)
2532                 return;
2533
2534         if (plane->state->fb)
2535                 drm_framebuffer_unreference(plane->state->fb);
2536         plane->state->fb = plane->fb;
2537         if (plane->state->fb)
2538                 drm_framebuffer_reference(plane->state->fb);
2539 }
2540
2541 static void
2542 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2543                              struct intel_initial_plane_config *plane_config)
2544 {
2545         struct drm_device *dev = intel_crtc->base.dev;
2546         struct drm_i915_private *dev_priv = dev->dev_private;
2547         struct drm_crtc *c;
2548         struct intel_crtc *i;
2549         struct drm_i915_gem_object *obj;
2550         struct drm_plane *primary = intel_crtc->base.primary;
2551         struct drm_plane_state *plane_state = primary->state;
2552         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2553         struct intel_plane *intel_plane = to_intel_plane(primary);
2554         struct intel_plane_state *intel_state =
2555                 to_intel_plane_state(plane_state);
2556         struct drm_framebuffer *fb;
2557
2558         if (!plane_config->fb)
2559                 return;
2560
2561         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2562                 fb = &plane_config->fb->base;
2563                 goto valid_fb;
2564         }
2565
2566         kfree(plane_config->fb);
2567
2568         /*
2569          * Failed to alloc the obj, check to see if we should share
2570          * an fb with another CRTC instead
2571          */
2572         for_each_crtc(dev, c) {
2573                 i = to_intel_crtc(c);
2574
2575                 if (c == &intel_crtc->base)
2576                         continue;
2577
2578                 if (!i->active)
2579                         continue;
2580
2581                 fb = c->primary->fb;
2582                 if (!fb)
2583                         continue;
2584
2585                 obj = intel_fb_obj(fb);
2586                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2587                         drm_framebuffer_reference(fb);
2588                         goto valid_fb;
2589                 }
2590         }
2591
2592         /*
2593          * We've failed to reconstruct the BIOS FB.  Current display state
2594          * indicates that the primary plane is visible, but has a NULL FB,
2595          * which will lead to problems later if we don't fix it up.  The
2596          * simplest solution is to just disable the primary plane now and
2597          * pretend the BIOS never had it enabled.
2598          */
2599         to_intel_plane_state(plane_state)->visible = false;
2600         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2601         intel_pre_disable_primary_noatomic(&intel_crtc->base);
2602         intel_plane->disable_plane(primary, &intel_crtc->base);
2603
2604         return;
2605
2606 valid_fb:
2607         plane_state->src_x = 0;
2608         plane_state->src_y = 0;
2609         plane_state->src_w = fb->width << 16;
2610         plane_state->src_h = fb->height << 16;
2611
2612         plane_state->crtc_x = 0;
2613         plane_state->crtc_y = 0;
2614         plane_state->crtc_w = fb->width;
2615         plane_state->crtc_h = fb->height;
2616
2617         intel_state->src.x1 = plane_state->src_x;
2618         intel_state->src.y1 = plane_state->src_y;
2619         intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2620         intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2621         intel_state->dst.x1 = plane_state->crtc_x;
2622         intel_state->dst.y1 = plane_state->crtc_y;
2623         intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2624         intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2625
2626         obj = intel_fb_obj(fb);
2627         if (obj->tiling_mode != I915_TILING_NONE)
2628                 dev_priv->preserve_bios_swizzle = true;
2629
2630         drm_framebuffer_reference(fb);
2631         primary->fb = primary->state->fb = fb;
2632         primary->crtc = primary->state->crtc = &intel_crtc->base;
2633         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2634         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2635 }
2636
2637 static void i9xx_update_primary_plane(struct drm_plane *primary,
2638                                       const struct intel_crtc_state *crtc_state,
2639                                       const struct intel_plane_state *plane_state)
2640 {
2641         struct drm_device *dev = primary->dev;
2642         struct drm_i915_private *dev_priv = dev->dev_private;
2643         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2644         struct drm_framebuffer *fb = plane_state->base.fb;
2645         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2646         int plane = intel_crtc->plane;
2647         u32 linear_offset;
2648         u32 dspcntr;
2649         i915_reg_t reg = DSPCNTR(plane);
2650         unsigned int rotation = plane_state->base.rotation;
2651         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2652         int x = plane_state->src.x1 >> 16;
2653         int y = plane_state->src.y1 >> 16;
2654
2655         dspcntr = DISPPLANE_GAMMA_ENABLE;
2656
2657         dspcntr |= DISPLAY_PLANE_ENABLE;
2658
2659         if (INTEL_INFO(dev)->gen < 4) {
2660                 if (intel_crtc->pipe == PIPE_B)
2661                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2662
2663                 /* pipesrc and dspsize control the size that is scaled from,
2664                  * which should always be the user's requested size.
2665                  */
2666                 I915_WRITE(DSPSIZE(plane),
2667                            ((crtc_state->pipe_src_h - 1) << 16) |
2668                            (crtc_state->pipe_src_w - 1));
2669                 I915_WRITE(DSPPOS(plane), 0);
2670         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2671                 I915_WRITE(PRIMSIZE(plane),
2672                            ((crtc_state->pipe_src_h - 1) << 16) |
2673                            (crtc_state->pipe_src_w - 1));
2674                 I915_WRITE(PRIMPOS(plane), 0);
2675                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2676         }
2677
2678         switch (fb->pixel_format) {
2679         case DRM_FORMAT_C8:
2680                 dspcntr |= DISPPLANE_8BPP;
2681                 break;
2682         case DRM_FORMAT_XRGB1555:
2683                 dspcntr |= DISPPLANE_BGRX555;
2684                 break;
2685         case DRM_FORMAT_RGB565:
2686                 dspcntr |= DISPPLANE_BGRX565;
2687                 break;
2688         case DRM_FORMAT_XRGB8888:
2689                 dspcntr |= DISPPLANE_BGRX888;
2690                 break;
2691         case DRM_FORMAT_XBGR8888:
2692                 dspcntr |= DISPPLANE_RGBX888;
2693                 break;
2694         case DRM_FORMAT_XRGB2101010:
2695                 dspcntr |= DISPPLANE_BGRX101010;
2696                 break;
2697         case DRM_FORMAT_XBGR2101010:
2698                 dspcntr |= DISPPLANE_RGBX101010;
2699                 break;
2700         default:
2701                 BUG();
2702         }
2703
2704         if (INTEL_INFO(dev)->gen >= 4 &&
2705             obj->tiling_mode != I915_TILING_NONE)
2706                 dspcntr |= DISPPLANE_TILED;
2707
2708         if (IS_G4X(dev))
2709                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2710
2711         linear_offset = y * fb->pitches[0] + x * cpp;
2712
2713         if (INTEL_INFO(dev)->gen >= 4) {
2714                 intel_crtc->dspaddr_offset =
2715                         intel_compute_tile_offset(&x, &y, fb, 0,
2716                                                   fb->pitches[0], rotation);
2717                 linear_offset -= intel_crtc->dspaddr_offset;
2718         } else {
2719                 intel_crtc->dspaddr_offset = linear_offset;
2720         }
2721
2722         if (rotation == BIT(DRM_ROTATE_180)) {
2723                 dspcntr |= DISPPLANE_ROTATE_180;
2724
2725                 x += (crtc_state->pipe_src_w - 1);
2726                 y += (crtc_state->pipe_src_h - 1);
2727
2728                 /* Finding the last pixel of the last line of the display
2729                 data and adding to linear_offset*/
2730                 linear_offset +=
2731                         (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2732                         (crtc_state->pipe_src_w - 1) * cpp;
2733         }
2734
2735         intel_crtc->adjusted_x = x;
2736         intel_crtc->adjusted_y = y;
2737
2738         I915_WRITE(reg, dspcntr);
2739
2740         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2741         if (INTEL_INFO(dev)->gen >= 4) {
2742                 I915_WRITE(DSPSURF(plane),
2743                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2744                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2745                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2746         } else
2747                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2748         POSTING_READ(reg);
2749 }
2750
2751 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2752                                        struct drm_crtc *crtc)
2753 {
2754         struct drm_device *dev = crtc->dev;
2755         struct drm_i915_private *dev_priv = dev->dev_private;
2756         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2757         int plane = intel_crtc->plane;
2758
2759         I915_WRITE(DSPCNTR(plane), 0);
2760         if (INTEL_INFO(dev_priv)->gen >= 4)
2761                 I915_WRITE(DSPSURF(plane), 0);
2762         else
2763                 I915_WRITE(DSPADDR(plane), 0);
2764         POSTING_READ(DSPCNTR(plane));
2765 }
2766
2767 static void ironlake_update_primary_plane(struct drm_plane *primary,
2768                                           const struct intel_crtc_state *crtc_state,
2769                                           const struct intel_plane_state *plane_state)
2770 {
2771         struct drm_device *dev = primary->dev;
2772         struct drm_i915_private *dev_priv = dev->dev_private;
2773         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2774         struct drm_framebuffer *fb = plane_state->base.fb;
2775         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2776         int plane = intel_crtc->plane;
2777         u32 linear_offset;
2778         u32 dspcntr;
2779         i915_reg_t reg = DSPCNTR(plane);
2780         unsigned int rotation = plane_state->base.rotation;
2781         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2782         int x = plane_state->src.x1 >> 16;
2783         int y = plane_state->src.y1 >> 16;
2784
2785         dspcntr = DISPPLANE_GAMMA_ENABLE;
2786         dspcntr |= DISPLAY_PLANE_ENABLE;
2787
2788         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2789                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2790
2791         switch (fb->pixel_format) {
2792         case DRM_FORMAT_C8:
2793                 dspcntr |= DISPPLANE_8BPP;
2794                 break;
2795         case DRM_FORMAT_RGB565:
2796                 dspcntr |= DISPPLANE_BGRX565;
2797                 break;
2798         case DRM_FORMAT_XRGB8888:
2799                 dspcntr |= DISPPLANE_BGRX888;
2800                 break;
2801         case DRM_FORMAT_XBGR8888:
2802                 dspcntr |= DISPPLANE_RGBX888;
2803                 break;
2804         case DRM_FORMAT_XRGB2101010:
2805                 dspcntr |= DISPPLANE_BGRX101010;
2806                 break;
2807         case DRM_FORMAT_XBGR2101010:
2808                 dspcntr |= DISPPLANE_RGBX101010;
2809                 break;
2810         default:
2811                 BUG();
2812         }
2813
2814         if (obj->tiling_mode != I915_TILING_NONE)
2815                 dspcntr |= DISPPLANE_TILED;
2816
2817         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2818                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2819
2820         linear_offset = y * fb->pitches[0] + x * cpp;
2821         intel_crtc->dspaddr_offset =
2822                 intel_compute_tile_offset(&x, &y, fb, 0,
2823                                           fb->pitches[0], rotation);
2824         linear_offset -= intel_crtc->dspaddr_offset;
2825         if (rotation == BIT(DRM_ROTATE_180)) {
2826                 dspcntr |= DISPPLANE_ROTATE_180;
2827
2828                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2829                         x += (crtc_state->pipe_src_w - 1);
2830                         y += (crtc_state->pipe_src_h - 1);
2831
2832                         /* Finding the last pixel of the last line of the display
2833                         data and adding to linear_offset*/
2834                         linear_offset +=
2835                                 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2836                                 (crtc_state->pipe_src_w - 1) * cpp;
2837                 }
2838         }
2839
2840         intel_crtc->adjusted_x = x;
2841         intel_crtc->adjusted_y = y;
2842
2843         I915_WRITE(reg, dspcntr);
2844
2845         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2846         I915_WRITE(DSPSURF(plane),
2847                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2848         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2849                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2850         } else {
2851                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2852                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2853         }
2854         POSTING_READ(reg);
2855 }
2856
2857 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2858                               uint64_t fb_modifier, uint32_t pixel_format)
2859 {
2860         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2861                 return 64;
2862         } else {
2863                 int cpp = drm_format_plane_cpp(pixel_format, 0);
2864
2865                 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2866         }
2867 }
2868
2869 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2870                            struct drm_i915_gem_object *obj,
2871                            unsigned int plane)
2872 {
2873         struct i915_ggtt_view view;
2874         struct i915_vma *vma;
2875         u64 offset;
2876
2877         intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2878                                 intel_plane->base.state->rotation);
2879
2880         vma = i915_gem_obj_to_ggtt_view(obj, &view);
2881         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2882                 view.type))
2883                 return -1;
2884
2885         offset = vma->node.start;
2886
2887         if (plane == 1) {
2888                 offset += vma->ggtt_view.params.rotated.uv_start_page *
2889                           PAGE_SIZE;
2890         }
2891
2892         WARN_ON(upper_32_bits(offset));
2893
2894         return lower_32_bits(offset);
2895 }
2896
2897 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2898 {
2899         struct drm_device *dev = intel_crtc->base.dev;
2900         struct drm_i915_private *dev_priv = dev->dev_private;
2901
2902         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2903         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2904         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2905 }
2906
2907 /*
2908  * This function detaches (aka. unbinds) unused scalers in hardware
2909  */
2910 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2911 {
2912         struct intel_crtc_scaler_state *scaler_state;
2913         int i;
2914
2915         scaler_state = &intel_crtc->config->scaler_state;
2916
2917         /* loop through and disable scalers that aren't in use */
2918         for (i = 0; i < intel_crtc->num_scalers; i++) {
2919                 if (!scaler_state->scalers[i].in_use)
2920                         skl_detach_scaler(intel_crtc, i);
2921         }
2922 }
2923
2924 u32 skl_plane_ctl_format(uint32_t pixel_format)
2925 {
2926         switch (pixel_format) {
2927         case DRM_FORMAT_C8:
2928                 return PLANE_CTL_FORMAT_INDEXED;
2929         case DRM_FORMAT_RGB565:
2930                 return PLANE_CTL_FORMAT_RGB_565;
2931         case DRM_FORMAT_XBGR8888:
2932                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2933         case DRM_FORMAT_XRGB8888:
2934                 return PLANE_CTL_FORMAT_XRGB_8888;
2935         /*
2936          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2937          * to be already pre-multiplied. We need to add a knob (or a different
2938          * DRM_FORMAT) for user-space to configure that.
2939          */
2940         case DRM_FORMAT_ABGR8888:
2941                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2942                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2943         case DRM_FORMAT_ARGB8888:
2944                 return PLANE_CTL_FORMAT_XRGB_8888 |
2945                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2946         case DRM_FORMAT_XRGB2101010:
2947                 return PLANE_CTL_FORMAT_XRGB_2101010;
2948         case DRM_FORMAT_XBGR2101010:
2949                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2950         case DRM_FORMAT_YUYV:
2951                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2952         case DRM_FORMAT_YVYU:
2953                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2954         case DRM_FORMAT_UYVY:
2955                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2956         case DRM_FORMAT_VYUY:
2957                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2958         default:
2959                 MISSING_CASE(pixel_format);
2960         }
2961
2962         return 0;
2963 }
2964
2965 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2966 {
2967         switch (fb_modifier) {
2968         case DRM_FORMAT_MOD_NONE:
2969                 break;
2970         case I915_FORMAT_MOD_X_TILED:
2971                 return PLANE_CTL_TILED_X;
2972         case I915_FORMAT_MOD_Y_TILED:
2973                 return PLANE_CTL_TILED_Y;
2974         case I915_FORMAT_MOD_Yf_TILED:
2975                 return PLANE_CTL_TILED_YF;
2976         default:
2977                 MISSING_CASE(fb_modifier);
2978         }
2979
2980         return 0;
2981 }
2982
2983 u32 skl_plane_ctl_rotation(unsigned int rotation)
2984 {
2985         switch (rotation) {
2986         case BIT(DRM_ROTATE_0):
2987                 break;
2988         /*
2989          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2990          * while i915 HW rotation is clockwise, thats why this swapping.
2991          */
2992         case BIT(DRM_ROTATE_90):
2993                 return PLANE_CTL_ROTATE_270;
2994         case BIT(DRM_ROTATE_180):
2995                 return PLANE_CTL_ROTATE_180;
2996         case BIT(DRM_ROTATE_270):
2997                 return PLANE_CTL_ROTATE_90;
2998         default:
2999                 MISSING_CASE(rotation);
3000         }
3001
3002         return 0;
3003 }
3004
3005 static void skylake_update_primary_plane(struct drm_plane *plane,
3006                                          const struct intel_crtc_state *crtc_state,
3007                                          const struct intel_plane_state *plane_state)
3008 {
3009         struct drm_device *dev = plane->dev;
3010         struct drm_i915_private *dev_priv = dev->dev_private;
3011         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3012         struct drm_framebuffer *fb = plane_state->base.fb;
3013         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3014         int pipe = intel_crtc->pipe;
3015         u32 plane_ctl, stride_div, stride;
3016         u32 tile_height, plane_offset, plane_size;
3017         unsigned int rotation = plane_state->base.rotation;
3018         int x_offset, y_offset;
3019         u32 surf_addr;
3020         int scaler_id = plane_state->scaler_id;
3021         int src_x = plane_state->src.x1 >> 16;
3022         int src_y = plane_state->src.y1 >> 16;
3023         int src_w = drm_rect_width(&plane_state->src) >> 16;
3024         int src_h = drm_rect_height(&plane_state->src) >> 16;
3025         int dst_x = plane_state->dst.x1;
3026         int dst_y = plane_state->dst.y1;
3027         int dst_w = drm_rect_width(&plane_state->dst);
3028         int dst_h = drm_rect_height(&plane_state->dst);
3029
3030         plane_ctl = PLANE_CTL_ENABLE |
3031                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3032                     PLANE_CTL_PIPE_CSC_ENABLE;
3033
3034         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3035         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3036         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3037         plane_ctl |= skl_plane_ctl_rotation(rotation);
3038
3039         stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3040                                                fb->pixel_format);
3041         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3042
3043         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3044
3045         if (intel_rotation_90_or_270(rotation)) {
3046                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3047
3048                 /* stride = Surface height in tiles */
3049                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3050                 stride = DIV_ROUND_UP(fb->height, tile_height);
3051                 x_offset = stride * tile_height - src_y - src_h;
3052                 y_offset = src_x;
3053                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3054         } else {
3055                 stride = fb->pitches[0] / stride_div;
3056                 x_offset = src_x;
3057                 y_offset = src_y;
3058                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3059         }
3060         plane_offset = y_offset << 16 | x_offset;
3061
3062         intel_crtc->adjusted_x = x_offset;
3063         intel_crtc->adjusted_y = y_offset;
3064
3065         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3066         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3067         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3068         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3069
3070         if (scaler_id >= 0) {
3071                 uint32_t ps_ctrl = 0;
3072
3073                 WARN_ON(!dst_w || !dst_h);
3074                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3075                         crtc_state->scaler_state.scalers[scaler_id].mode;
3076                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3077                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3078                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3079                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3080                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3081         } else {
3082                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3083         }
3084
3085         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3086
3087         POSTING_READ(PLANE_SURF(pipe, 0));
3088 }
3089
3090 static void skylake_disable_primary_plane(struct drm_plane *primary,
3091                                           struct drm_crtc *crtc)
3092 {
3093         struct drm_device *dev = crtc->dev;
3094         struct drm_i915_private *dev_priv = dev->dev_private;
3095         int pipe = to_intel_crtc(crtc)->pipe;
3096
3097         I915_WRITE(PLANE_CTL(pipe, 0), 0);
3098         I915_WRITE(PLANE_SURF(pipe, 0), 0);
3099         POSTING_READ(PLANE_SURF(pipe, 0));
3100 }
3101
3102 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3103 static int
3104 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3105                            int x, int y, enum mode_set_atomic state)
3106 {
3107         /* Support for kgdboc is disabled, this needs a major rework. */
3108         DRM_ERROR("legacy panic handler not supported any more.\n");
3109
3110         return -ENODEV;
3111 }
3112
3113 static void intel_complete_page_flips(struct drm_device *dev)
3114 {
3115         struct drm_crtc *crtc;
3116
3117         for_each_crtc(dev, crtc) {
3118                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3119                 enum plane plane = intel_crtc->plane;
3120
3121                 intel_prepare_page_flip(dev, plane);
3122                 intel_finish_page_flip_plane(dev, plane);
3123         }
3124 }
3125
3126 static void intel_update_primary_planes(struct drm_device *dev)
3127 {
3128         struct drm_crtc *crtc;
3129
3130         for_each_crtc(dev, crtc) {
3131                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3132                 struct intel_plane_state *plane_state;
3133
3134                 drm_modeset_lock_crtc(crtc, &plane->base);
3135                 plane_state = to_intel_plane_state(plane->base.state);
3136
3137                 if (plane_state->visible)
3138                         plane->update_plane(&plane->base,
3139                                             to_intel_crtc_state(crtc->state),
3140                                             plane_state);
3141
3142                 drm_modeset_unlock_crtc(crtc);
3143         }
3144 }
3145
3146 void intel_prepare_reset(struct drm_device *dev)
3147 {
3148         /* no reset support for gen2 */
3149         if (IS_GEN2(dev))
3150                 return;
3151
3152         /* reset doesn't touch the display */
3153         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3154                 return;
3155
3156         drm_modeset_lock_all(dev);
3157         /*
3158          * Disabling the crtcs gracefully seems nicer. Also the
3159          * g33 docs say we should at least disable all the planes.
3160          */
3161         intel_display_suspend(dev);
3162 }
3163
3164 void intel_finish_reset(struct drm_device *dev)
3165 {
3166         struct drm_i915_private *dev_priv = to_i915(dev);
3167
3168         /*
3169          * Flips in the rings will be nuked by the reset,
3170          * so complete all pending flips so that user space
3171          * will get its events and not get stuck.
3172          */
3173         intel_complete_page_flips(dev);
3174
3175         /* no reset support for gen2 */
3176         if (IS_GEN2(dev))
3177                 return;
3178
3179         /* reset doesn't touch the display */
3180         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3181                 /*
3182                  * Flips in the rings have been nuked by the reset,
3183                  * so update the base address of all primary
3184                  * planes to the the last fb to make sure we're
3185                  * showing the correct fb after a reset.
3186                  *
3187                  * FIXME: Atomic will make this obsolete since we won't schedule
3188                  * CS-based flips (which might get lost in gpu resets) any more.
3189                  */
3190                 intel_update_primary_planes(dev);
3191                 return;
3192         }
3193
3194         /*
3195          * The display has been reset as well,
3196          * so need a full re-initialization.
3197          */
3198         intel_runtime_pm_disable_interrupts(dev_priv);
3199         intel_runtime_pm_enable_interrupts(dev_priv);
3200
3201         intel_modeset_init_hw(dev);
3202
3203         spin_lock_irq(&dev_priv->irq_lock);
3204         if (dev_priv->display.hpd_irq_setup)
3205                 dev_priv->display.hpd_irq_setup(dev);
3206         spin_unlock_irq(&dev_priv->irq_lock);
3207
3208         intel_display_resume(dev);
3209
3210         intel_hpd_init(dev_priv);
3211
3212         drm_modeset_unlock_all(dev);
3213 }
3214
3215 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3216 {
3217         struct drm_device *dev = crtc->dev;
3218         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3219         unsigned reset_counter;
3220         bool pending;
3221
3222         reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
3223         if (intel_crtc->reset_counter != reset_counter)
3224                 return false;
3225
3226         spin_lock_irq(&dev->event_lock);
3227         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3228         spin_unlock_irq(&dev->event_lock);
3229
3230         return pending;
3231 }
3232
3233 static void intel_update_pipe_config(struct intel_crtc *crtc,
3234                                      struct intel_crtc_state *old_crtc_state)
3235 {
3236         struct drm_device *dev = crtc->base.dev;
3237         struct drm_i915_private *dev_priv = dev->dev_private;
3238         struct intel_crtc_state *pipe_config =
3239                 to_intel_crtc_state(crtc->base.state);
3240
3241         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3242         crtc->base.mode = crtc->base.state->mode;
3243
3244         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3245                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3246                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3247
3248         /*
3249          * Update pipe size and adjust fitter if needed: the reason for this is
3250          * that in compute_mode_changes we check the native mode (not the pfit
3251          * mode) to see if we can flip rather than do a full mode set. In the
3252          * fastboot case, we'll flip, but if we don't update the pipesrc and
3253          * pfit state, we'll end up with a big fb scanned out into the wrong
3254          * sized surface.
3255          */
3256
3257         I915_WRITE(PIPESRC(crtc->pipe),
3258                    ((pipe_config->pipe_src_w - 1) << 16) |
3259                    (pipe_config->pipe_src_h - 1));
3260
3261         /* on skylake this is done by detaching scalers */
3262         if (INTEL_INFO(dev)->gen >= 9) {
3263                 skl_detach_scalers(crtc);
3264
3265                 if (pipe_config->pch_pfit.enabled)
3266                         skylake_pfit_enable(crtc);
3267         } else if (HAS_PCH_SPLIT(dev)) {
3268                 if (pipe_config->pch_pfit.enabled)
3269                         ironlake_pfit_enable(crtc);
3270                 else if (old_crtc_state->pch_pfit.enabled)
3271                         ironlake_pfit_disable(crtc, true);
3272         }
3273 }
3274
3275 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3276 {
3277         struct drm_device *dev = crtc->dev;
3278         struct drm_i915_private *dev_priv = dev->dev_private;
3279         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3280         int pipe = intel_crtc->pipe;
3281         i915_reg_t reg;
3282         u32 temp;
3283
3284         /* enable normal train */
3285         reg = FDI_TX_CTL(pipe);
3286         temp = I915_READ(reg);
3287         if (IS_IVYBRIDGE(dev)) {
3288                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3289                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3290         } else {
3291                 temp &= ~FDI_LINK_TRAIN_NONE;
3292                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3293         }
3294         I915_WRITE(reg, temp);
3295
3296         reg = FDI_RX_CTL(pipe);
3297         temp = I915_READ(reg);
3298         if (HAS_PCH_CPT(dev)) {
3299                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3300                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3301         } else {
3302                 temp &= ~FDI_LINK_TRAIN_NONE;
3303                 temp |= FDI_LINK_TRAIN_NONE;
3304         }
3305         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3306
3307         /* wait one idle pattern time */
3308         POSTING_READ(reg);
3309         udelay(1000);
3310
3311         /* IVB wants error correction enabled */
3312         if (IS_IVYBRIDGE(dev))
3313                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3314                            FDI_FE_ERRC_ENABLE);
3315 }
3316
3317 /* The FDI link training functions for ILK/Ibexpeak. */
3318 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3319 {
3320         struct drm_device *dev = crtc->dev;
3321         struct drm_i915_private *dev_priv = dev->dev_private;
3322         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3323         int pipe = intel_crtc->pipe;
3324         i915_reg_t reg;
3325         u32 temp, tries;
3326
3327         /* FDI needs bits from pipe first */
3328         assert_pipe_enabled(dev_priv, pipe);
3329
3330         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3331            for train result */
3332         reg = FDI_RX_IMR(pipe);
3333         temp = I915_READ(reg);
3334         temp &= ~FDI_RX_SYMBOL_LOCK;
3335         temp &= ~FDI_RX_BIT_LOCK;
3336         I915_WRITE(reg, temp);
3337         I915_READ(reg);
3338         udelay(150);
3339
3340         /* enable CPU FDI TX and PCH FDI RX */
3341         reg = FDI_TX_CTL(pipe);
3342         temp = I915_READ(reg);
3343         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3344         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3345         temp &= ~FDI_LINK_TRAIN_NONE;
3346         temp |= FDI_LINK_TRAIN_PATTERN_1;
3347         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3348
3349         reg = FDI_RX_CTL(pipe);
3350         temp = I915_READ(reg);
3351         temp &= ~FDI_LINK_TRAIN_NONE;
3352         temp |= FDI_LINK_TRAIN_PATTERN_1;
3353         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3354
3355         POSTING_READ(reg);
3356         udelay(150);
3357
3358         /* Ironlake workaround, enable clock pointer after FDI enable*/
3359         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3360         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3361                    FDI_RX_PHASE_SYNC_POINTER_EN);
3362
3363         reg = FDI_RX_IIR(pipe);
3364         for (tries = 0; tries < 5; tries++) {
3365                 temp = I915_READ(reg);
3366                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3367
3368                 if ((temp & FDI_RX_BIT_LOCK)) {
3369                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3370                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3371                         break;
3372                 }
3373         }
3374         if (tries == 5)
3375                 DRM_ERROR("FDI train 1 fail!\n");
3376
3377         /* Train 2 */
3378         reg = FDI_TX_CTL(pipe);
3379         temp = I915_READ(reg);
3380         temp &= ~FDI_LINK_TRAIN_NONE;
3381         temp |= FDI_LINK_TRAIN_PATTERN_2;
3382         I915_WRITE(reg, temp);
3383
3384         reg = FDI_RX_CTL(pipe);
3385         temp = I915_READ(reg);
3386         temp &= ~FDI_LINK_TRAIN_NONE;
3387         temp |= FDI_LINK_TRAIN_PATTERN_2;
3388         I915_WRITE(reg, temp);
3389
3390         POSTING_READ(reg);
3391         udelay(150);
3392
3393         reg = FDI_RX_IIR(pipe);
3394         for (tries = 0; tries < 5; tries++) {
3395                 temp = I915_READ(reg);
3396                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3397
3398                 if (temp & FDI_RX_SYMBOL_LOCK) {
3399                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3400                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3401                         break;
3402                 }
3403         }
3404         if (tries == 5)
3405                 DRM_ERROR("FDI train 2 fail!\n");
3406
3407         DRM_DEBUG_KMS("FDI train done\n");
3408
3409 }
3410
3411 static const int snb_b_fdi_train_param[] = {
3412         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3413         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3414         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3415         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3416 };
3417
3418 /* The FDI link training functions for SNB/Cougarpoint. */
3419 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3420 {
3421         struct drm_device *dev = crtc->dev;
3422         struct drm_i915_private *dev_priv = dev->dev_private;
3423         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3424         int pipe = intel_crtc->pipe;
3425         i915_reg_t reg;
3426         u32 temp, i, retry;
3427
3428         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3429            for train result */
3430         reg = FDI_RX_IMR(pipe);
3431         temp = I915_READ(reg);
3432         temp &= ~FDI_RX_SYMBOL_LOCK;
3433         temp &= ~FDI_RX_BIT_LOCK;
3434         I915_WRITE(reg, temp);
3435
3436         POSTING_READ(reg);
3437         udelay(150);
3438
3439         /* enable CPU FDI TX and PCH FDI RX */
3440         reg = FDI_TX_CTL(pipe);
3441         temp = I915_READ(reg);
3442         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3443         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3444         temp &= ~FDI_LINK_TRAIN_NONE;
3445         temp |= FDI_LINK_TRAIN_PATTERN_1;
3446         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3447         /* SNB-B */
3448         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3449         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3450
3451         I915_WRITE(FDI_RX_MISC(pipe),
3452                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3453
3454         reg = FDI_RX_CTL(pipe);
3455         temp = I915_READ(reg);
3456         if (HAS_PCH_CPT(dev)) {
3457                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3458                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3459         } else {
3460                 temp &= ~FDI_LINK_TRAIN_NONE;
3461                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3462         }
3463         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3464
3465         POSTING_READ(reg);
3466         udelay(150);
3467
3468         for (i = 0; i < 4; i++) {
3469                 reg = FDI_TX_CTL(pipe);
3470                 temp = I915_READ(reg);
3471                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3472                 temp |= snb_b_fdi_train_param[i];
3473                 I915_WRITE(reg, temp);
3474
3475                 POSTING_READ(reg);
3476                 udelay(500);
3477
3478                 for (retry = 0; retry < 5; retry++) {
3479                         reg = FDI_RX_IIR(pipe);
3480                         temp = I915_READ(reg);
3481                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3482                         if (temp & FDI_RX_BIT_LOCK) {
3483                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3484                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3485                                 break;
3486                         }
3487                         udelay(50);
3488                 }
3489                 if (retry < 5)
3490                         break;
3491         }
3492         if (i == 4)
3493                 DRM_ERROR("FDI train 1 fail!\n");
3494
3495         /* Train 2 */
3496         reg = FDI_TX_CTL(pipe);
3497         temp = I915_READ(reg);
3498         temp &= ~FDI_LINK_TRAIN_NONE;
3499         temp |= FDI_LINK_TRAIN_PATTERN_2;
3500         if (IS_GEN6(dev)) {
3501                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3502                 /* SNB-B */
3503                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3504         }
3505         I915_WRITE(reg, temp);
3506
3507         reg = FDI_RX_CTL(pipe);
3508         temp = I915_READ(reg);
3509         if (HAS_PCH_CPT(dev)) {
3510                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3511                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3512         } else {
3513                 temp &= ~FDI_LINK_TRAIN_NONE;
3514                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3515         }
3516         I915_WRITE(reg, temp);
3517
3518         POSTING_READ(reg);
3519         udelay(150);
3520
3521         for (i = 0; i < 4; i++) {
3522                 reg = FDI_TX_CTL(pipe);
3523                 temp = I915_READ(reg);
3524                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3525                 temp |= snb_b_fdi_train_param[i];
3526                 I915_WRITE(reg, temp);
3527
3528                 POSTING_READ(reg);
3529                 udelay(500);
3530
3531                 for (retry = 0; retry < 5; retry++) {
3532                         reg = FDI_RX_IIR(pipe);
3533                         temp = I915_READ(reg);
3534                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3535                         if (temp & FDI_RX_SYMBOL_LOCK) {
3536                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3537                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3538                                 break;
3539                         }
3540                         udelay(50);
3541                 }
3542                 if (retry < 5)
3543                         break;
3544         }
3545         if (i == 4)
3546                 DRM_ERROR("FDI train 2 fail!\n");
3547
3548         DRM_DEBUG_KMS("FDI train done.\n");
3549 }
3550
3551 /* Manual link training for Ivy Bridge A0 parts */
3552 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3553 {
3554         struct drm_device *dev = crtc->dev;
3555         struct drm_i915_private *dev_priv = dev->dev_private;
3556         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3557         int pipe = intel_crtc->pipe;
3558         i915_reg_t reg;
3559         u32 temp, i, j;
3560
3561         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3562            for train result */
3563         reg = FDI_RX_IMR(pipe);
3564         temp = I915_READ(reg);
3565         temp &= ~FDI_RX_SYMBOL_LOCK;
3566         temp &= ~FDI_RX_BIT_LOCK;
3567         I915_WRITE(reg, temp);
3568
3569         POSTING_READ(reg);
3570         udelay(150);
3571
3572         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3573                       I915_READ(FDI_RX_IIR(pipe)));
3574
3575         /* Try each vswing and preemphasis setting twice before moving on */
3576         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3577                 /* disable first in case we need to retry */
3578                 reg = FDI_TX_CTL(pipe);
3579                 temp = I915_READ(reg);
3580                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3581                 temp &= ~FDI_TX_ENABLE;
3582                 I915_WRITE(reg, temp);
3583
3584                 reg = FDI_RX_CTL(pipe);
3585                 temp = I915_READ(reg);
3586                 temp &= ~FDI_LINK_TRAIN_AUTO;
3587                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3588                 temp &= ~FDI_RX_ENABLE;
3589                 I915_WRITE(reg, temp);
3590
3591                 /* enable CPU FDI TX and PCH FDI RX */
3592                 reg = FDI_TX_CTL(pipe);
3593                 temp = I915_READ(reg);
3594                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3595                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3596                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3597                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3598                 temp |= snb_b_fdi_train_param[j/2];
3599                 temp |= FDI_COMPOSITE_SYNC;
3600                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3601
3602                 I915_WRITE(FDI_RX_MISC(pipe),
3603                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3604
3605                 reg = FDI_RX_CTL(pipe);
3606                 temp = I915_READ(reg);
3607                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3608                 temp |= FDI_COMPOSITE_SYNC;
3609                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3610
3611                 POSTING_READ(reg);
3612                 udelay(1); /* should be 0.5us */
3613
3614                 for (i = 0; i < 4; i++) {
3615                         reg = FDI_RX_IIR(pipe);
3616                         temp = I915_READ(reg);
3617                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3618
3619                         if (temp & FDI_RX_BIT_LOCK ||
3620                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3621                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3622                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3623                                               i);
3624                                 break;
3625                         }
3626                         udelay(1); /* should be 0.5us */
3627                 }
3628                 if (i == 4) {
3629                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3630                         continue;
3631                 }
3632
3633                 /* Train 2 */
3634                 reg = FDI_TX_CTL(pipe);
3635                 temp = I915_READ(reg);
3636                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3637                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3638                 I915_WRITE(reg, temp);
3639
3640                 reg = FDI_RX_CTL(pipe);
3641                 temp = I915_READ(reg);
3642                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3643                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3644                 I915_WRITE(reg, temp);
3645
3646                 POSTING_READ(reg);
3647                 udelay(2); /* should be 1.5us */
3648
3649                 for (i = 0; i < 4; i++) {
3650                         reg = FDI_RX_IIR(pipe);
3651                         temp = I915_READ(reg);
3652                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3653
3654                         if (temp & FDI_RX_SYMBOL_LOCK ||
3655                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3656                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3657                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3658                                               i);
3659                                 goto train_done;
3660                         }
3661                         udelay(2); /* should be 1.5us */
3662                 }
3663                 if (i == 4)
3664                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3665         }
3666
3667 train_done:
3668         DRM_DEBUG_KMS("FDI train done.\n");
3669 }
3670
3671 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3672 {
3673         struct drm_device *dev = intel_crtc->base.dev;
3674         struct drm_i915_private *dev_priv = dev->dev_private;
3675         int pipe = intel_crtc->pipe;
3676         i915_reg_t reg;
3677         u32 temp;
3678
3679         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3680         reg = FDI_RX_CTL(pipe);
3681         temp = I915_READ(reg);
3682         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3683         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3684         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3685         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3686
3687         POSTING_READ(reg);
3688         udelay(200);
3689
3690         /* Switch from Rawclk to PCDclk */
3691         temp = I915_READ(reg);
3692         I915_WRITE(reg, temp | FDI_PCDCLK);
3693
3694         POSTING_READ(reg);
3695         udelay(200);
3696
3697         /* Enable CPU FDI TX PLL, always on for Ironlake */
3698         reg = FDI_TX_CTL(pipe);
3699         temp = I915_READ(reg);
3700         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3701                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3702
3703                 POSTING_READ(reg);
3704                 udelay(100);
3705         }
3706 }
3707
3708 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3709 {
3710         struct drm_device *dev = intel_crtc->base.dev;
3711         struct drm_i915_private *dev_priv = dev->dev_private;
3712         int pipe = intel_crtc->pipe;
3713         i915_reg_t reg;
3714         u32 temp;
3715
3716         /* Switch from PCDclk to Rawclk */
3717         reg = FDI_RX_CTL(pipe);
3718         temp = I915_READ(reg);
3719         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3720
3721         /* Disable CPU FDI TX PLL */
3722         reg = FDI_TX_CTL(pipe);
3723         temp = I915_READ(reg);
3724         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3725
3726         POSTING_READ(reg);
3727         udelay(100);
3728
3729         reg = FDI_RX_CTL(pipe);
3730         temp = I915_READ(reg);
3731         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3732
3733         /* Wait for the clocks to turn off. */
3734         POSTING_READ(reg);
3735         udelay(100);
3736 }
3737
3738 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3739 {
3740         struct drm_device *dev = crtc->dev;
3741         struct drm_i915_private *dev_priv = dev->dev_private;
3742         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3743         int pipe = intel_crtc->pipe;
3744         i915_reg_t reg;
3745         u32 temp;
3746
3747         /* disable CPU FDI tx and PCH FDI rx */
3748         reg = FDI_TX_CTL(pipe);
3749         temp = I915_READ(reg);
3750         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3751         POSTING_READ(reg);
3752
3753         reg = FDI_RX_CTL(pipe);
3754         temp = I915_READ(reg);
3755         temp &= ~(0x7 << 16);
3756         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3757         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3758
3759         POSTING_READ(reg);
3760         udelay(100);
3761
3762         /* Ironlake workaround, disable clock pointer after downing FDI */
3763         if (HAS_PCH_IBX(dev))
3764                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3765
3766         /* still set train pattern 1 */
3767         reg = FDI_TX_CTL(pipe);
3768         temp = I915_READ(reg);
3769         temp &= ~FDI_LINK_TRAIN_NONE;
3770         temp |= FDI_LINK_TRAIN_PATTERN_1;
3771         I915_WRITE(reg, temp);
3772
3773         reg = FDI_RX_CTL(pipe);
3774         temp = I915_READ(reg);
3775         if (HAS_PCH_CPT(dev)) {
3776                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3777                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3778         } else {
3779                 temp &= ~FDI_LINK_TRAIN_NONE;
3780                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3781         }
3782         /* BPC in FDI rx is consistent with that in PIPECONF */
3783         temp &= ~(0x07 << 16);
3784         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3785         I915_WRITE(reg, temp);
3786
3787         POSTING_READ(reg);
3788         udelay(100);
3789 }
3790
3791 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3792 {
3793         struct intel_crtc *crtc;
3794
3795         /* Note that we don't need to be called with mode_config.lock here
3796          * as our list of CRTC objects is static for the lifetime of the
3797          * device and so cannot disappear as we iterate. Similarly, we can
3798          * happily treat the predicates as racy, atomic checks as userspace
3799          * cannot claim and pin a new fb without at least acquring the
3800          * struct_mutex and so serialising with us.
3801          */
3802         for_each_intel_crtc(dev, crtc) {
3803                 if (atomic_read(&crtc->unpin_work_count) == 0)
3804                         continue;
3805
3806                 if (crtc->unpin_work)
3807                         intel_wait_for_vblank(dev, crtc->pipe);
3808
3809                 return true;
3810         }
3811
3812         return false;
3813 }
3814
3815 static void page_flip_completed(struct intel_crtc *intel_crtc)
3816 {
3817         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3818         struct intel_unpin_work *work = intel_crtc->unpin_work;
3819
3820         /* ensure that the unpin work is consistent wrt ->pending. */
3821         smp_rmb();
3822         intel_crtc->unpin_work = NULL;
3823
3824         if (work->event)
3825                 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
3826
3827         drm_crtc_vblank_put(&intel_crtc->base);
3828
3829         wake_up_all(&dev_priv->pending_flip_queue);
3830         queue_work(dev_priv->wq, &work->work);
3831
3832         trace_i915_flip_complete(intel_crtc->plane,
3833                                  work->pending_flip_obj);
3834 }
3835
3836 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3837 {
3838         struct drm_device *dev = crtc->dev;
3839         struct drm_i915_private *dev_priv = dev->dev_private;
3840         long ret;
3841
3842         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3843
3844         ret = wait_event_interruptible_timeout(
3845                                         dev_priv->pending_flip_queue,
3846                                         !intel_crtc_has_pending_flip(crtc),
3847                                         60*HZ);
3848
3849         if (ret < 0)
3850                 return ret;
3851
3852         if (ret == 0) {
3853                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3854
3855                 spin_lock_irq(&dev->event_lock);
3856                 if (intel_crtc->unpin_work) {
3857                         WARN_ONCE(1, "Removing stuck page flip\n");
3858                         page_flip_completed(intel_crtc);
3859                 }
3860                 spin_unlock_irq(&dev->event_lock);
3861         }
3862
3863         return 0;
3864 }
3865
3866 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3867 {
3868         u32 temp;
3869
3870         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3871
3872         mutex_lock(&dev_priv->sb_lock);
3873
3874         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3875         temp |= SBI_SSCCTL_DISABLE;
3876         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3877
3878         mutex_unlock(&dev_priv->sb_lock);
3879 }
3880
3881 /* Program iCLKIP clock to the desired frequency */
3882 static void lpt_program_iclkip(struct drm_crtc *crtc)
3883 {
3884         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3885         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3886         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3887         u32 temp;
3888
3889         lpt_disable_iclkip(dev_priv);
3890
3891         /* The iCLK virtual clock root frequency is in MHz,
3892          * but the adjusted_mode->crtc_clock in in KHz. To get the
3893          * divisors, it is necessary to divide one by another, so we
3894          * convert the virtual clock precision to KHz here for higher
3895          * precision.
3896          */
3897         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
3898                 u32 iclk_virtual_root_freq = 172800 * 1000;
3899                 u32 iclk_pi_range = 64;
3900                 u32 desired_divisor;
3901
3902                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3903                                                     clock << auxdiv);
3904                 divsel = (desired_divisor / iclk_pi_range) - 2;
3905                 phaseinc = desired_divisor % iclk_pi_range;
3906
3907                 /*
3908                  * Near 20MHz is a corner case which is
3909                  * out of range for the 7-bit divisor
3910                  */
3911                 if (divsel <= 0x7f)
3912                         break;
3913         }
3914
3915         /* This should not happen with any sane values */
3916         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3917                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3918         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3919                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3920
3921         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3922                         clock,
3923                         auxdiv,
3924                         divsel,
3925                         phasedir,
3926                         phaseinc);
3927
3928         mutex_lock(&dev_priv->sb_lock);
3929
3930         /* Program SSCDIVINTPHASE6 */
3931         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3932         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3933         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3934         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3935         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3936         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3937         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3938         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3939
3940         /* Program SSCAUXDIV */
3941         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3942         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3943         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3944         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3945
3946         /* Enable modulator and associated divider */
3947         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3948         temp &= ~SBI_SSCCTL_DISABLE;
3949         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3950
3951         mutex_unlock(&dev_priv->sb_lock);
3952
3953         /* Wait for initialization time */
3954         udelay(24);
3955
3956         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3957 }
3958
3959 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3960 {
3961         u32 divsel, phaseinc, auxdiv;
3962         u32 iclk_virtual_root_freq = 172800 * 1000;
3963         u32 iclk_pi_range = 64;
3964         u32 desired_divisor;
3965         u32 temp;
3966
3967         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3968                 return 0;
3969
3970         mutex_lock(&dev_priv->sb_lock);
3971
3972         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3973         if (temp & SBI_SSCCTL_DISABLE) {
3974                 mutex_unlock(&dev_priv->sb_lock);
3975                 return 0;
3976         }
3977
3978         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3979         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
3980                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
3981         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
3982                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
3983
3984         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3985         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
3986                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
3987
3988         mutex_unlock(&dev_priv->sb_lock);
3989
3990         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
3991
3992         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3993                                  desired_divisor << auxdiv);
3994 }
3995
3996 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3997                                                 enum pipe pch_transcoder)
3998 {
3999         struct drm_device *dev = crtc->base.dev;
4000         struct drm_i915_private *dev_priv = dev->dev_private;
4001         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4002
4003         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4004                    I915_READ(HTOTAL(cpu_transcoder)));
4005         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4006                    I915_READ(HBLANK(cpu_transcoder)));
4007         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4008                    I915_READ(HSYNC(cpu_transcoder)));
4009
4010         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4011                    I915_READ(VTOTAL(cpu_transcoder)));
4012         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4013                    I915_READ(VBLANK(cpu_transcoder)));
4014         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4015                    I915_READ(VSYNC(cpu_transcoder)));
4016         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4017                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4018 }
4019
4020 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4021 {
4022         struct drm_i915_private *dev_priv = dev->dev_private;
4023         uint32_t temp;
4024
4025         temp = I915_READ(SOUTH_CHICKEN1);
4026         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4027                 return;
4028
4029         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4030         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4031
4032         temp &= ~FDI_BC_BIFURCATION_SELECT;
4033         if (enable)
4034                 temp |= FDI_BC_BIFURCATION_SELECT;
4035
4036         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4037         I915_WRITE(SOUTH_CHICKEN1, temp);
4038         POSTING_READ(SOUTH_CHICKEN1);
4039 }
4040
4041 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4042 {
4043         struct drm_device *dev = intel_crtc->base.dev;
4044
4045         switch (intel_crtc->pipe) {
4046         case PIPE_A:
4047                 break;
4048         case PIPE_B:
4049                 if (intel_crtc->config->fdi_lanes > 2)
4050                         cpt_set_fdi_bc_bifurcation(dev, false);
4051                 else
4052                         cpt_set_fdi_bc_bifurcation(dev, true);
4053
4054                 break;
4055         case PIPE_C:
4056                 cpt_set_fdi_bc_bifurcation(dev, true);
4057
4058                 break;
4059         default:
4060                 BUG();
4061         }
4062 }
4063
4064 /* Return which DP Port should be selected for Transcoder DP control */
4065 static enum port
4066 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4067 {
4068         struct drm_device *dev = crtc->dev;
4069         struct intel_encoder *encoder;
4070
4071         for_each_encoder_on_crtc(dev, crtc, encoder) {
4072                 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4073                     encoder->type == INTEL_OUTPUT_EDP)
4074                         return enc_to_dig_port(&encoder->base)->port;
4075         }
4076
4077         return -1;
4078 }
4079
4080 /*
4081  * Enable PCH resources required for PCH ports:
4082  *   - PCH PLLs
4083  *   - FDI training & RX/TX
4084  *   - update transcoder timings
4085  *   - DP transcoding bits
4086  *   - transcoder
4087  */
4088 static void ironlake_pch_enable(struct drm_crtc *crtc)
4089 {
4090         struct drm_device *dev = crtc->dev;
4091         struct drm_i915_private *dev_priv = dev->dev_private;
4092         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4093         int pipe = intel_crtc->pipe;
4094         u32 temp;
4095
4096         assert_pch_transcoder_disabled(dev_priv, pipe);
4097
4098         if (IS_IVYBRIDGE(dev))
4099                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4100
4101         /* Write the TU size bits before fdi link training, so that error
4102          * detection works. */
4103         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4104                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4105
4106         /* For PCH output, training FDI link */
4107         dev_priv->display.fdi_link_train(crtc);
4108
4109         /* We need to program the right clock selection before writing the pixel
4110          * mutliplier into the DPLL. */
4111         if (HAS_PCH_CPT(dev)) {
4112                 u32 sel;
4113
4114                 temp = I915_READ(PCH_DPLL_SEL);
4115                 temp |= TRANS_DPLL_ENABLE(pipe);
4116                 sel = TRANS_DPLLB_SEL(pipe);
4117                 if (intel_crtc->config->shared_dpll ==
4118                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4119                         temp |= sel;
4120                 else
4121                         temp &= ~sel;
4122                 I915_WRITE(PCH_DPLL_SEL, temp);
4123         }
4124
4125         /* XXX: pch pll's can be enabled any time before we enable the PCH
4126          * transcoder, and we actually should do this to not upset any PCH
4127          * transcoder that already use the clock when we share it.
4128          *
4129          * Note that enable_shared_dpll tries to do the right thing, but
4130          * get_shared_dpll unconditionally resets the pll - we need that to have
4131          * the right LVDS enable sequence. */
4132         intel_enable_shared_dpll(intel_crtc);
4133
4134         /* set transcoder timing, panel must allow it */
4135         assert_panel_unlocked(dev_priv, pipe);
4136         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4137
4138         intel_fdi_normal_train(crtc);
4139
4140         /* For PCH DP, enable TRANS_DP_CTL */
4141         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4142                 const struct drm_display_mode *adjusted_mode =
4143                         &intel_crtc->config->base.adjusted_mode;
4144                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4145                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4146                 temp = I915_READ(reg);
4147                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4148                           TRANS_DP_SYNC_MASK |
4149                           TRANS_DP_BPC_MASK);
4150                 temp |= TRANS_DP_OUTPUT_ENABLE;
4151                 temp |= bpc << 9; /* same format but at 11:9 */
4152
4153                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4154                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4155                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4156                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4157
4158                 switch (intel_trans_dp_port_sel(crtc)) {
4159                 case PORT_B:
4160                         temp |= TRANS_DP_PORT_SEL_B;
4161                         break;
4162                 case PORT_C:
4163                         temp |= TRANS_DP_PORT_SEL_C;
4164                         break;
4165                 case PORT_D:
4166                         temp |= TRANS_DP_PORT_SEL_D;
4167                         break;
4168                 default:
4169                         BUG();
4170                 }
4171
4172                 I915_WRITE(reg, temp);
4173         }
4174
4175         ironlake_enable_pch_transcoder(dev_priv, pipe);
4176 }
4177
4178 static void lpt_pch_enable(struct drm_crtc *crtc)
4179 {
4180         struct drm_device *dev = crtc->dev;
4181         struct drm_i915_private *dev_priv = dev->dev_private;
4182         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4183         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4184
4185         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4186
4187         lpt_program_iclkip(crtc);
4188
4189         /* Set transcoder timing. */
4190         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4191
4192         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4193 }
4194
4195 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4196 {
4197         struct drm_i915_private *dev_priv = dev->dev_private;
4198         i915_reg_t dslreg = PIPEDSL(pipe);
4199         u32 temp;
4200
4201         temp = I915_READ(dslreg);
4202         udelay(500);
4203         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4204                 if (wait_for(I915_READ(dslreg) != temp, 5))
4205                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4206         }
4207 }
4208
4209 static int
4210 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4211                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4212                   int src_w, int src_h, int dst_w, int dst_h)
4213 {
4214         struct intel_crtc_scaler_state *scaler_state =
4215                 &crtc_state->scaler_state;
4216         struct intel_crtc *intel_crtc =
4217                 to_intel_crtc(crtc_state->base.crtc);
4218         int need_scaling;
4219
4220         need_scaling = intel_rotation_90_or_270(rotation) ?
4221                 (src_h != dst_w || src_w != dst_h):
4222                 (src_w != dst_w || src_h != dst_h);
4223
4224         /*
4225          * if plane is being disabled or scaler is no more required or force detach
4226          *  - free scaler binded to this plane/crtc
4227          *  - in order to do this, update crtc->scaler_usage
4228          *
4229          * Here scaler state in crtc_state is set free so that
4230          * scaler can be assigned to other user. Actual register
4231          * update to free the scaler is done in plane/panel-fit programming.
4232          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4233          */
4234         if (force_detach || !need_scaling) {
4235                 if (*scaler_id >= 0) {
4236                         scaler_state->scaler_users &= ~(1 << scaler_user);
4237                         scaler_state->scalers[*scaler_id].in_use = 0;
4238
4239                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4240                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4241                                 intel_crtc->pipe, scaler_user, *scaler_id,
4242                                 scaler_state->scaler_users);
4243                         *scaler_id = -1;
4244                 }
4245                 return 0;
4246         }
4247
4248         /* range checks */
4249         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4250                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4251
4252                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4253                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4254                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4255                         "size is out of scaler range\n",
4256                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4257                 return -EINVAL;
4258         }
4259
4260         /* mark this plane as a scaler user in crtc_state */
4261         scaler_state->scaler_users |= (1 << scaler_user);
4262         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4263                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4264                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4265                 scaler_state->scaler_users);
4266
4267         return 0;
4268 }
4269
4270 /**
4271  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4272  *
4273  * @state: crtc's scaler state
4274  *
4275  * Return
4276  *     0 - scaler_usage updated successfully
4277  *    error - requested scaling cannot be supported or other error condition
4278  */
4279 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4280 {
4281         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4282         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4283
4284         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4285                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4286
4287         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4288                 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4289                 state->pipe_src_w, state->pipe_src_h,
4290                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4291 }
4292
4293 /**
4294  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4295  *
4296  * @state: crtc's scaler state
4297  * @plane_state: atomic plane state to update
4298  *
4299  * Return
4300  *     0 - scaler_usage updated successfully
4301  *    error - requested scaling cannot be supported or other error condition
4302  */
4303 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4304                                    struct intel_plane_state *plane_state)
4305 {
4306
4307         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4308         struct intel_plane *intel_plane =
4309                 to_intel_plane(plane_state->base.plane);
4310         struct drm_framebuffer *fb = plane_state->base.fb;
4311         int ret;
4312
4313         bool force_detach = !fb || !plane_state->visible;
4314
4315         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4316                       intel_plane->base.base.id, intel_crtc->pipe,
4317                       drm_plane_index(&intel_plane->base));
4318
4319         ret = skl_update_scaler(crtc_state, force_detach,
4320                                 drm_plane_index(&intel_plane->base),
4321                                 &plane_state->scaler_id,
4322                                 plane_state->base.rotation,
4323                                 drm_rect_width(&plane_state->src) >> 16,
4324                                 drm_rect_height(&plane_state->src) >> 16,
4325                                 drm_rect_width(&plane_state->dst),
4326                                 drm_rect_height(&plane_state->dst));
4327
4328         if (ret || plane_state->scaler_id < 0)
4329                 return ret;
4330
4331         /* check colorkey */
4332         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4333                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4334                               intel_plane->base.base.id);
4335                 return -EINVAL;
4336         }
4337
4338         /* Check src format */
4339         switch (fb->pixel_format) {
4340         case DRM_FORMAT_RGB565:
4341         case DRM_FORMAT_XBGR8888:
4342         case DRM_FORMAT_XRGB8888:
4343         case DRM_FORMAT_ABGR8888:
4344         case DRM_FORMAT_ARGB8888:
4345         case DRM_FORMAT_XRGB2101010:
4346         case DRM_FORMAT_XBGR2101010:
4347         case DRM_FORMAT_YUYV:
4348         case DRM_FORMAT_YVYU:
4349         case DRM_FORMAT_UYVY:
4350         case DRM_FORMAT_VYUY:
4351                 break;
4352         default:
4353                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4354                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4355                 return -EINVAL;
4356         }
4357
4358         return 0;
4359 }
4360
4361 static void skylake_scaler_disable(struct intel_crtc *crtc)
4362 {
4363         int i;
4364
4365         for (i = 0; i < crtc->num_scalers; i++)
4366                 skl_detach_scaler(crtc, i);
4367 }
4368
4369 static void skylake_pfit_enable(struct intel_crtc *crtc)
4370 {
4371         struct drm_device *dev = crtc->base.dev;
4372         struct drm_i915_private *dev_priv = dev->dev_private;
4373         int pipe = crtc->pipe;
4374         struct intel_crtc_scaler_state *scaler_state =
4375                 &crtc->config->scaler_state;
4376
4377         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4378
4379         if (crtc->config->pch_pfit.enabled) {
4380                 int id;
4381
4382                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4383                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4384                         return;
4385                 }
4386
4387                 id = scaler_state->scaler_id;
4388                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4389                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4390                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4391                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4392
4393                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4394         }
4395 }
4396
4397 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4398 {
4399         struct drm_device *dev = crtc->base.dev;
4400         struct drm_i915_private *dev_priv = dev->dev_private;
4401         int pipe = crtc->pipe;
4402
4403         if (crtc->config->pch_pfit.enabled) {
4404                 /* Force use of hard-coded filter coefficients
4405                  * as some pre-programmed values are broken,
4406                  * e.g. x201.
4407                  */
4408                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4409                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4410                                                  PF_PIPE_SEL_IVB(pipe));
4411                 else
4412                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4413                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4414                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4415         }
4416 }
4417
4418 void hsw_enable_ips(struct intel_crtc *crtc)
4419 {
4420         struct drm_device *dev = crtc->base.dev;
4421         struct drm_i915_private *dev_priv = dev->dev_private;
4422
4423         if (!crtc->config->ips_enabled)
4424                 return;
4425
4426         /*
4427          * We can only enable IPS after we enable a plane and wait for a vblank
4428          * This function is called from post_plane_update, which is run after
4429          * a vblank wait.
4430          */
4431
4432         assert_plane_enabled(dev_priv, crtc->plane);
4433         if (IS_BROADWELL(dev)) {
4434                 mutex_lock(&dev_priv->rps.hw_lock);
4435                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4436                 mutex_unlock(&dev_priv->rps.hw_lock);
4437                 /* Quoting Art Runyan: "its not safe to expect any particular
4438                  * value in IPS_CTL bit 31 after enabling IPS through the
4439                  * mailbox." Moreover, the mailbox may return a bogus state,
4440                  * so we need to just enable it and continue on.
4441                  */
4442         } else {
4443                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4444                 /* The bit only becomes 1 in the next vblank, so this wait here
4445                  * is essentially intel_wait_for_vblank. If we don't have this
4446                  * and don't wait for vblanks until the end of crtc_enable, then
4447                  * the HW state readout code will complain that the expected
4448                  * IPS_CTL value is not the one we read. */
4449                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4450                         DRM_ERROR("Timed out waiting for IPS enable\n");
4451         }
4452 }
4453
4454 void hsw_disable_ips(struct intel_crtc *crtc)
4455 {
4456         struct drm_device *dev = crtc->base.dev;
4457         struct drm_i915_private *dev_priv = dev->dev_private;
4458
4459         if (!crtc->config->ips_enabled)
4460                 return;
4461
4462         assert_plane_enabled(dev_priv, crtc->plane);
4463         if (IS_BROADWELL(dev)) {
4464                 mutex_lock(&dev_priv->rps.hw_lock);
4465                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4466                 mutex_unlock(&dev_priv->rps.hw_lock);
4467                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4468                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4469                         DRM_ERROR("Timed out waiting for IPS disable\n");
4470         } else {
4471                 I915_WRITE(IPS_CTL, 0);
4472                 POSTING_READ(IPS_CTL);
4473         }
4474
4475         /* We need to wait for a vblank before we can disable the plane. */
4476         intel_wait_for_vblank(dev, crtc->pipe);
4477 }
4478
4479 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4480 {
4481         if (intel_crtc->overlay) {
4482                 struct drm_device *dev = intel_crtc->base.dev;
4483                 struct drm_i915_private *dev_priv = dev->dev_private;
4484
4485                 mutex_lock(&dev->struct_mutex);
4486                 dev_priv->mm.interruptible = false;
4487                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4488                 dev_priv->mm.interruptible = true;
4489                 mutex_unlock(&dev->struct_mutex);
4490         }
4491
4492         /* Let userspace switch the overlay on again. In most cases userspace
4493          * has to recompute where to put it anyway.
4494          */
4495 }
4496
4497 /**
4498  * intel_post_enable_primary - Perform operations after enabling primary plane
4499  * @crtc: the CRTC whose primary plane was just enabled
4500  *
4501  * Performs potentially sleeping operations that must be done after the primary
4502  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4503  * called due to an explicit primary plane update, or due to an implicit
4504  * re-enable that is caused when a sprite plane is updated to no longer
4505  * completely hide the primary plane.
4506  */
4507 static void
4508 intel_post_enable_primary(struct drm_crtc *crtc)
4509 {
4510         struct drm_device *dev = crtc->dev;
4511         struct drm_i915_private *dev_priv = dev->dev_private;
4512         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4513         int pipe = intel_crtc->pipe;
4514
4515         /*
4516          * FIXME IPS should be fine as long as one plane is
4517          * enabled, but in practice it seems to have problems
4518          * when going from primary only to sprite only and vice
4519          * versa.
4520          */
4521         hsw_enable_ips(intel_crtc);
4522
4523         /*
4524          * Gen2 reports pipe underruns whenever all planes are disabled.
4525          * So don't enable underrun reporting before at least some planes
4526          * are enabled.
4527          * FIXME: Need to fix the logic to work when we turn off all planes
4528          * but leave the pipe running.
4529          */
4530         if (IS_GEN2(dev))
4531                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4532
4533         /* Underruns don't always raise interrupts, so check manually. */
4534         intel_check_cpu_fifo_underruns(dev_priv);
4535         intel_check_pch_fifo_underruns(dev_priv);
4536 }
4537
4538 /* FIXME move all this to pre_plane_update() with proper state tracking */
4539 static void
4540 intel_pre_disable_primary(struct drm_crtc *crtc)
4541 {
4542         struct drm_device *dev = crtc->dev;
4543         struct drm_i915_private *dev_priv = dev->dev_private;
4544         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4545         int pipe = intel_crtc->pipe;
4546
4547         /*
4548          * Gen2 reports pipe underruns whenever all planes are disabled.
4549          * So diasble underrun reporting before all the planes get disabled.
4550          * FIXME: Need to fix the logic to work when we turn off all planes
4551          * but leave the pipe running.
4552          */
4553         if (IS_GEN2(dev))
4554                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4555
4556         /*
4557          * FIXME IPS should be fine as long as one plane is
4558          * enabled, but in practice it seems to have problems
4559          * when going from primary only to sprite only and vice
4560          * versa.
4561          */
4562         hsw_disable_ips(intel_crtc);
4563 }
4564
4565 /* FIXME get rid of this and use pre_plane_update */
4566 static void
4567 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4568 {
4569         struct drm_device *dev = crtc->dev;
4570         struct drm_i915_private *dev_priv = dev->dev_private;
4571         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4572         int pipe = intel_crtc->pipe;
4573
4574         intel_pre_disable_primary(crtc);
4575
4576         /*
4577          * Vblank time updates from the shadow to live plane control register
4578          * are blocked if the memory self-refresh mode is active at that
4579          * moment. So to make sure the plane gets truly disabled, disable
4580          * first the self-refresh mode. The self-refresh enable bit in turn
4581          * will be checked/applied by the HW only at the next frame start
4582          * event which is after the vblank start event, so we need to have a
4583          * wait-for-vblank between disabling the plane and the pipe.
4584          */
4585         if (HAS_GMCH_DISPLAY(dev)) {
4586                 intel_set_memory_cxsr(dev_priv, false);
4587                 dev_priv->wm.vlv.cxsr = false;
4588                 intel_wait_for_vblank(dev, pipe);
4589         }
4590 }
4591
4592 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4593 {
4594         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4595         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4596         struct intel_crtc_state *pipe_config =
4597                 to_intel_crtc_state(crtc->base.state);
4598         struct drm_device *dev = crtc->base.dev;
4599         struct drm_plane *primary = crtc->base.primary;
4600         struct drm_plane_state *old_pri_state =
4601                 drm_atomic_get_existing_plane_state(old_state, primary);
4602
4603         intel_frontbuffer_flip(dev, pipe_config->fb_bits);
4604
4605         crtc->wm.cxsr_allowed = true;
4606
4607         if (pipe_config->update_wm_post && pipe_config->base.active)
4608                 intel_update_watermarks(&crtc->base);
4609
4610         if (old_pri_state) {
4611                 struct intel_plane_state *primary_state =
4612                         to_intel_plane_state(primary->state);
4613                 struct intel_plane_state *old_primary_state =
4614                         to_intel_plane_state(old_pri_state);
4615
4616                 intel_fbc_post_update(crtc);
4617
4618                 if (primary_state->visible &&
4619                     (needs_modeset(&pipe_config->base) ||
4620                      !old_primary_state->visible))
4621                         intel_post_enable_primary(&crtc->base);
4622         }
4623 }
4624
4625 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4626 {
4627         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4628         struct drm_device *dev = crtc->base.dev;
4629         struct drm_i915_private *dev_priv = dev->dev_private;
4630         struct intel_crtc_state *pipe_config =
4631                 to_intel_crtc_state(crtc->base.state);
4632         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4633         struct drm_plane *primary = crtc->base.primary;
4634         struct drm_plane_state *old_pri_state =
4635                 drm_atomic_get_existing_plane_state(old_state, primary);
4636         bool modeset = needs_modeset(&pipe_config->base);
4637
4638         if (old_pri_state) {
4639                 struct intel_plane_state *primary_state =
4640                         to_intel_plane_state(primary->state);
4641                 struct intel_plane_state *old_primary_state =
4642                         to_intel_plane_state(old_pri_state);
4643
4644                 intel_fbc_pre_update(crtc);
4645
4646                 if (old_primary_state->visible &&
4647                     (modeset || !primary_state->visible))
4648                         intel_pre_disable_primary(&crtc->base);
4649         }
4650
4651         if (pipe_config->disable_cxsr) {
4652                 crtc->wm.cxsr_allowed = false;
4653
4654                 /*
4655                  * Vblank time updates from the shadow to live plane control register
4656                  * are blocked if the memory self-refresh mode is active at that
4657                  * moment. So to make sure the plane gets truly disabled, disable
4658                  * first the self-refresh mode. The self-refresh enable bit in turn
4659                  * will be checked/applied by the HW only at the next frame start
4660                  * event which is after the vblank start event, so we need to have a
4661                  * wait-for-vblank between disabling the plane and the pipe.
4662                  */
4663                 if (old_crtc_state->base.active) {
4664                         intel_set_memory_cxsr(dev_priv, false);
4665                         dev_priv->wm.vlv.cxsr = false;
4666                         intel_wait_for_vblank(dev, crtc->pipe);
4667                 }
4668         }
4669
4670         /*
4671          * IVB workaround: must disable low power watermarks for at least
4672          * one frame before enabling scaling.  LP watermarks can be re-enabled
4673          * when scaling is disabled.
4674          *
4675          * WaCxSRDisabledForSpriteScaling:ivb
4676          */
4677         if (pipe_config->disable_lp_wm) {
4678                 ilk_disable_lp_wm(dev);
4679                 intel_wait_for_vblank(dev, crtc->pipe);
4680         }
4681
4682         /*
4683          * If we're doing a modeset, we're done.  No need to do any pre-vblank
4684          * watermark programming here.
4685          */
4686         if (needs_modeset(&pipe_config->base))
4687                 return;
4688
4689         /*
4690          * For platforms that support atomic watermarks, program the
4691          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
4692          * will be the intermediate values that are safe for both pre- and
4693          * post- vblank; when vblank happens, the 'active' values will be set
4694          * to the final 'target' values and we'll do this again to get the
4695          * optimal watermarks.  For gen9+ platforms, the values we program here
4696          * will be the final target values which will get automatically latched
4697          * at vblank time; no further programming will be necessary.
4698          *
4699          * If a platform hasn't been transitioned to atomic watermarks yet,
4700          * we'll continue to update watermarks the old way, if flags tell
4701          * us to.
4702          */
4703         if (dev_priv->display.initial_watermarks != NULL)
4704                 dev_priv->display.initial_watermarks(pipe_config);
4705         else if (pipe_config->update_wm_pre)
4706                 intel_update_watermarks(&crtc->base);
4707 }
4708
4709 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4710 {
4711         struct drm_device *dev = crtc->dev;
4712         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4713         struct drm_plane *p;
4714         int pipe = intel_crtc->pipe;
4715
4716         intel_crtc_dpms_overlay_disable(intel_crtc);
4717
4718         drm_for_each_plane_mask(p, dev, plane_mask)
4719                 to_intel_plane(p)->disable_plane(p, crtc);
4720
4721         /*
4722          * FIXME: Once we grow proper nuclear flip support out of this we need
4723          * to compute the mask of flip planes precisely. For the time being
4724          * consider this a flip to a NULL plane.
4725          */
4726         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4727 }
4728
4729 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4730 {
4731         struct drm_device *dev = crtc->dev;
4732         struct drm_i915_private *dev_priv = dev->dev_private;
4733         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4734         struct intel_encoder *encoder;
4735         int pipe = intel_crtc->pipe;
4736         struct intel_crtc_state *pipe_config =
4737                 to_intel_crtc_state(crtc->state);
4738
4739         if (WARN_ON(intel_crtc->active))
4740                 return;
4741
4742         /*
4743          * Sometimes spurious CPU pipe underruns happen during FDI
4744          * training, at least with VGA+HDMI cloning. Suppress them.
4745          *
4746          * On ILK we get an occasional spurious CPU pipe underruns
4747          * between eDP port A enable and vdd enable. Also PCH port
4748          * enable seems to result in the occasional CPU pipe underrun.
4749          *
4750          * Spurious PCH underruns also occur during PCH enabling.
4751          */
4752         if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
4753                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4754         if (intel_crtc->config->has_pch_encoder)
4755                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4756
4757         if (intel_crtc->config->has_pch_encoder)
4758                 intel_prepare_shared_dpll(intel_crtc);
4759
4760         if (intel_crtc->config->has_dp_encoder)
4761                 intel_dp_set_m_n(intel_crtc, M1_N1);
4762
4763         intel_set_pipe_timings(intel_crtc);
4764         intel_set_pipe_src_size(intel_crtc);
4765
4766         if (intel_crtc->config->has_pch_encoder) {
4767                 intel_cpu_transcoder_set_m_n(intel_crtc,
4768                                      &intel_crtc->config->fdi_m_n, NULL);
4769         }
4770
4771         ironlake_set_pipeconf(crtc);
4772
4773         intel_crtc->active = true;
4774
4775         for_each_encoder_on_crtc(dev, crtc, encoder)
4776                 if (encoder->pre_enable)
4777                         encoder->pre_enable(encoder);
4778
4779         if (intel_crtc->config->has_pch_encoder) {
4780                 /* Note: FDI PLL enabling _must_ be done before we enable the
4781                  * cpu pipes, hence this is separate from all the other fdi/pch
4782                  * enabling. */
4783                 ironlake_fdi_pll_enable(intel_crtc);
4784         } else {
4785                 assert_fdi_tx_disabled(dev_priv, pipe);
4786                 assert_fdi_rx_disabled(dev_priv, pipe);
4787         }
4788
4789         ironlake_pfit_enable(intel_crtc);
4790
4791         /*
4792          * On ILK+ LUT must be loaded before the pipe is running but with
4793          * clocks enabled
4794          */
4795         intel_color_load_luts(&pipe_config->base);
4796
4797         if (dev_priv->display.initial_watermarks != NULL)
4798                 dev_priv->display.initial_watermarks(intel_crtc->config);
4799         intel_enable_pipe(intel_crtc);
4800
4801         if (intel_crtc->config->has_pch_encoder)
4802                 ironlake_pch_enable(crtc);
4803
4804         assert_vblank_disabled(crtc);
4805         drm_crtc_vblank_on(crtc);
4806
4807         for_each_encoder_on_crtc(dev, crtc, encoder)
4808                 encoder->enable(encoder);
4809
4810         if (HAS_PCH_CPT(dev))
4811                 cpt_verify_modeset(dev, intel_crtc->pipe);
4812
4813         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4814         if (intel_crtc->config->has_pch_encoder)
4815                 intel_wait_for_vblank(dev, pipe);
4816         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4817         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4818 }
4819
4820 /* IPS only exists on ULT machines and is tied to pipe A. */
4821 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4822 {
4823         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4824 }
4825
4826 static void haswell_crtc_enable(struct drm_crtc *crtc)
4827 {
4828         struct drm_device *dev = crtc->dev;
4829         struct drm_i915_private *dev_priv = dev->dev_private;
4830         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4831         struct intel_encoder *encoder;
4832         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4833         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4834         struct intel_crtc_state *pipe_config =
4835                 to_intel_crtc_state(crtc->state);
4836
4837         if (WARN_ON(intel_crtc->active))
4838                 return;
4839
4840         if (intel_crtc->config->has_pch_encoder)
4841                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4842                                                       false);
4843
4844         if (intel_crtc->config->shared_dpll)
4845                 intel_enable_shared_dpll(intel_crtc);
4846
4847         if (intel_crtc->config->has_dp_encoder)
4848                 intel_dp_set_m_n(intel_crtc, M1_N1);
4849
4850         if (!intel_crtc->config->has_dsi_encoder)
4851                 intel_set_pipe_timings(intel_crtc);
4852
4853         intel_set_pipe_src_size(intel_crtc);
4854
4855         if (cpu_transcoder != TRANSCODER_EDP &&
4856             !transcoder_is_dsi(cpu_transcoder)) {
4857                 I915_WRITE(PIPE_MULT(cpu_transcoder),
4858                            intel_crtc->config->pixel_multiplier - 1);
4859         }
4860
4861         if (intel_crtc->config->has_pch_encoder) {
4862                 intel_cpu_transcoder_set_m_n(intel_crtc,
4863                                      &intel_crtc->config->fdi_m_n, NULL);
4864         }
4865
4866         if (!intel_crtc->config->has_dsi_encoder)
4867                 haswell_set_pipeconf(crtc);
4868
4869         haswell_set_pipemisc(crtc);
4870
4871         intel_color_set_csc(&pipe_config->base);
4872
4873         intel_crtc->active = true;
4874
4875         if (intel_crtc->config->has_pch_encoder)
4876                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4877         else
4878                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4879
4880         for_each_encoder_on_crtc(dev, crtc, encoder) {
4881                 if (encoder->pre_enable)
4882                         encoder->pre_enable(encoder);
4883         }
4884
4885         if (intel_crtc->config->has_pch_encoder)
4886                 dev_priv->display.fdi_link_train(crtc);
4887
4888         if (!intel_crtc->config->has_dsi_encoder)
4889                 intel_ddi_enable_pipe_clock(intel_crtc);
4890
4891         if (INTEL_INFO(dev)->gen >= 9)
4892                 skylake_pfit_enable(intel_crtc);
4893         else
4894                 ironlake_pfit_enable(intel_crtc);
4895
4896         /*
4897          * On ILK+ LUT must be loaded before the pipe is running but with
4898          * clocks enabled
4899          */
4900         intel_color_load_luts(&pipe_config->base);
4901
4902         intel_ddi_set_pipe_settings(crtc);
4903         if (!intel_crtc->config->has_dsi_encoder)
4904                 intel_ddi_enable_transcoder_func(crtc);
4905
4906         if (dev_priv->display.initial_watermarks != NULL)
4907                 dev_priv->display.initial_watermarks(pipe_config);
4908         else
4909                 intel_update_watermarks(crtc);
4910
4911         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4912         if (!intel_crtc->config->has_dsi_encoder)
4913                 intel_enable_pipe(intel_crtc);
4914
4915         if (intel_crtc->config->has_pch_encoder)
4916                 lpt_pch_enable(crtc);
4917
4918         if (intel_crtc->config->dp_encoder_is_mst)
4919                 intel_ddi_set_vc_payload_alloc(crtc, true);
4920
4921         assert_vblank_disabled(crtc);
4922         drm_crtc_vblank_on(crtc);
4923
4924         for_each_encoder_on_crtc(dev, crtc, encoder) {
4925                 encoder->enable(encoder);
4926                 intel_opregion_notify_encoder(encoder, true);
4927         }
4928
4929         if (intel_crtc->config->has_pch_encoder) {
4930                 intel_wait_for_vblank(dev, pipe);
4931                 intel_wait_for_vblank(dev, pipe);
4932                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4933                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4934                                                       true);
4935         }
4936
4937         /* If we change the relative order between pipe/planes enabling, we need
4938          * to change the workaround. */
4939         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4940         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4941                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4942                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4943         }
4944 }
4945
4946 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4947 {
4948         struct drm_device *dev = crtc->base.dev;
4949         struct drm_i915_private *dev_priv = dev->dev_private;
4950         int pipe = crtc->pipe;
4951
4952         /* To avoid upsetting the power well on haswell only disable the pfit if
4953          * it's in use. The hw state code will make sure we get this right. */
4954         if (force || crtc->config->pch_pfit.enabled) {
4955                 I915_WRITE(PF_CTL(pipe), 0);
4956                 I915_WRITE(PF_WIN_POS(pipe), 0);
4957                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4958         }
4959 }
4960
4961 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4962 {
4963         struct drm_device *dev = crtc->dev;
4964         struct drm_i915_private *dev_priv = dev->dev_private;
4965         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4966         struct intel_encoder *encoder;
4967         int pipe = intel_crtc->pipe;
4968
4969         /*
4970          * Sometimes spurious CPU pipe underruns happen when the
4971          * pipe is already disabled, but FDI RX/TX is still enabled.
4972          * Happens at least with VGA+HDMI cloning. Suppress them.
4973          */
4974         if (intel_crtc->config->has_pch_encoder) {
4975                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4976                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4977         }
4978
4979         for_each_encoder_on_crtc(dev, crtc, encoder)
4980                 encoder->disable(encoder);
4981
4982         drm_crtc_vblank_off(crtc);
4983         assert_vblank_disabled(crtc);
4984
4985         intel_disable_pipe(intel_crtc);
4986
4987         ironlake_pfit_disable(intel_crtc, false);
4988
4989         if (intel_crtc->config->has_pch_encoder)
4990                 ironlake_fdi_disable(crtc);
4991
4992         for_each_encoder_on_crtc(dev, crtc, encoder)
4993                 if (encoder->post_disable)
4994                         encoder->post_disable(encoder);
4995
4996         if (intel_crtc->config->has_pch_encoder) {
4997                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4998
4999                 if (HAS_PCH_CPT(dev)) {
5000                         i915_reg_t reg;
5001                         u32 temp;
5002
5003                         /* disable TRANS_DP_CTL */
5004                         reg = TRANS_DP_CTL(pipe);
5005                         temp = I915_READ(reg);
5006                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5007                                   TRANS_DP_PORT_SEL_MASK);
5008                         temp |= TRANS_DP_PORT_SEL_NONE;
5009                         I915_WRITE(reg, temp);
5010
5011                         /* disable DPLL_SEL */
5012                         temp = I915_READ(PCH_DPLL_SEL);
5013                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5014                         I915_WRITE(PCH_DPLL_SEL, temp);
5015                 }
5016
5017                 ironlake_fdi_pll_disable(intel_crtc);
5018         }
5019
5020         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5021         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5022 }
5023
5024 static void haswell_crtc_disable(struct drm_crtc *crtc)
5025 {
5026         struct drm_device *dev = crtc->dev;
5027         struct drm_i915_private *dev_priv = dev->dev_private;
5028         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5029         struct intel_encoder *encoder;
5030         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5031
5032         if (intel_crtc->config->has_pch_encoder)
5033                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5034                                                       false);
5035
5036         for_each_encoder_on_crtc(dev, crtc, encoder) {
5037                 intel_opregion_notify_encoder(encoder, false);
5038                 encoder->disable(encoder);
5039         }
5040
5041         drm_crtc_vblank_off(crtc);
5042         assert_vblank_disabled(crtc);
5043
5044         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5045         if (!intel_crtc->config->has_dsi_encoder)
5046                 intel_disable_pipe(intel_crtc);
5047
5048         if (intel_crtc->config->dp_encoder_is_mst)
5049                 intel_ddi_set_vc_payload_alloc(crtc, false);
5050
5051         if (!intel_crtc->config->has_dsi_encoder)
5052                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5053
5054         if (INTEL_INFO(dev)->gen >= 9)
5055                 skylake_scaler_disable(intel_crtc);
5056         else
5057                 ironlake_pfit_disable(intel_crtc, false);
5058
5059         if (!intel_crtc->config->has_dsi_encoder)
5060                 intel_ddi_disable_pipe_clock(intel_crtc);
5061
5062         for_each_encoder_on_crtc(dev, crtc, encoder)
5063                 if (encoder->post_disable)
5064                         encoder->post_disable(encoder);
5065
5066         if (intel_crtc->config->has_pch_encoder) {
5067                 lpt_disable_pch_transcoder(dev_priv);
5068                 lpt_disable_iclkip(dev_priv);
5069                 intel_ddi_fdi_disable(crtc);
5070
5071                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5072                                                       true);
5073         }
5074 }
5075
5076 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5077 {
5078         struct drm_device *dev = crtc->base.dev;
5079         struct drm_i915_private *dev_priv = dev->dev_private;
5080         struct intel_crtc_state *pipe_config = crtc->config;
5081
5082         if (!pipe_config->gmch_pfit.control)
5083                 return;
5084
5085         /*
5086          * The panel fitter should only be adjusted whilst the pipe is disabled,
5087          * according to register description and PRM.
5088          */
5089         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5090         assert_pipe_disabled(dev_priv, crtc->pipe);
5091
5092         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5093         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5094
5095         /* Border color in case we don't scale up to the full screen. Black by
5096          * default, change to something else for debugging. */
5097         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5098 }
5099
5100 static enum intel_display_power_domain port_to_power_domain(enum port port)
5101 {
5102         switch (port) {
5103         case PORT_A:
5104                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5105         case PORT_B:
5106                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5107         case PORT_C:
5108                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5109         case PORT_D:
5110                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5111         case PORT_E:
5112                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5113         default:
5114                 MISSING_CASE(port);
5115                 return POWER_DOMAIN_PORT_OTHER;
5116         }
5117 }
5118
5119 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5120 {
5121         switch (port) {
5122         case PORT_A:
5123                 return POWER_DOMAIN_AUX_A;
5124         case PORT_B:
5125                 return POWER_DOMAIN_AUX_B;
5126         case PORT_C:
5127                 return POWER_DOMAIN_AUX_C;
5128         case PORT_D:
5129                 return POWER_DOMAIN_AUX_D;
5130         case PORT_E:
5131                 /* FIXME: Check VBT for actual wiring of PORT E */
5132                 return POWER_DOMAIN_AUX_D;
5133         default:
5134                 MISSING_CASE(port);
5135                 return POWER_DOMAIN_AUX_A;
5136         }
5137 }
5138
5139 enum intel_display_power_domain
5140 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5141 {
5142         struct drm_device *dev = intel_encoder->base.dev;
5143         struct intel_digital_port *intel_dig_port;
5144
5145         switch (intel_encoder->type) {
5146         case INTEL_OUTPUT_UNKNOWN:
5147                 /* Only DDI platforms should ever use this output type */
5148                 WARN_ON_ONCE(!HAS_DDI(dev));
5149         case INTEL_OUTPUT_DISPLAYPORT:
5150         case INTEL_OUTPUT_HDMI:
5151         case INTEL_OUTPUT_EDP:
5152                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5153                 return port_to_power_domain(intel_dig_port->port);
5154         case INTEL_OUTPUT_DP_MST:
5155                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5156                 return port_to_power_domain(intel_dig_port->port);
5157         case INTEL_OUTPUT_ANALOG:
5158                 return POWER_DOMAIN_PORT_CRT;
5159         case INTEL_OUTPUT_DSI:
5160                 return POWER_DOMAIN_PORT_DSI;
5161         default:
5162                 return POWER_DOMAIN_PORT_OTHER;
5163         }
5164 }
5165
5166 enum intel_display_power_domain
5167 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5168 {
5169         struct drm_device *dev = intel_encoder->base.dev;
5170         struct intel_digital_port *intel_dig_port;
5171
5172         switch (intel_encoder->type) {
5173         case INTEL_OUTPUT_UNKNOWN:
5174         case INTEL_OUTPUT_HDMI:
5175                 /*
5176                  * Only DDI platforms should ever use these output types.
5177                  * We can get here after the HDMI detect code has already set
5178                  * the type of the shared encoder. Since we can't be sure
5179                  * what's the status of the given connectors, play safe and
5180                  * run the DP detection too.
5181                  */
5182                 WARN_ON_ONCE(!HAS_DDI(dev));
5183         case INTEL_OUTPUT_DISPLAYPORT:
5184         case INTEL_OUTPUT_EDP:
5185                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5186                 return port_to_aux_power_domain(intel_dig_port->port);
5187         case INTEL_OUTPUT_DP_MST:
5188                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5189                 return port_to_aux_power_domain(intel_dig_port->port);
5190         default:
5191                 MISSING_CASE(intel_encoder->type);
5192                 return POWER_DOMAIN_AUX_A;
5193         }
5194 }
5195
5196 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5197                                             struct intel_crtc_state *crtc_state)
5198 {
5199         struct drm_device *dev = crtc->dev;
5200         struct drm_encoder *encoder;
5201         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5202         enum pipe pipe = intel_crtc->pipe;
5203         unsigned long mask;
5204         enum transcoder transcoder = crtc_state->cpu_transcoder;
5205
5206         if (!crtc_state->base.active)
5207                 return 0;
5208
5209         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5210         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5211         if (crtc_state->pch_pfit.enabled ||
5212             crtc_state->pch_pfit.force_thru)
5213                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5214
5215         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5216                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5217
5218                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5219         }
5220
5221         if (crtc_state->shared_dpll)
5222                 mask |= BIT(POWER_DOMAIN_PLLS);
5223
5224         return mask;
5225 }
5226
5227 static unsigned long
5228 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5229                                struct intel_crtc_state *crtc_state)
5230 {
5231         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5232         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5233         enum intel_display_power_domain domain;
5234         unsigned long domains, new_domains, old_domains;
5235
5236         old_domains = intel_crtc->enabled_power_domains;
5237         intel_crtc->enabled_power_domains = new_domains =
5238                 get_crtc_power_domains(crtc, crtc_state);
5239
5240         domains = new_domains & ~old_domains;
5241
5242         for_each_power_domain(domain, domains)
5243                 intel_display_power_get(dev_priv, domain);
5244
5245         return old_domains & ~new_domains;
5246 }
5247
5248 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5249                                       unsigned long domains)
5250 {
5251         enum intel_display_power_domain domain;
5252
5253         for_each_power_domain(domain, domains)
5254                 intel_display_power_put(dev_priv, domain);
5255 }
5256
5257 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5258 {
5259         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5260
5261         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5262             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5263                 return max_cdclk_freq;
5264         else if (IS_CHERRYVIEW(dev_priv))
5265                 return max_cdclk_freq*95/100;
5266         else if (INTEL_INFO(dev_priv)->gen < 4)
5267                 return 2*max_cdclk_freq*90/100;
5268         else
5269                 return max_cdclk_freq*90/100;
5270 }
5271
5272 static void intel_update_max_cdclk(struct drm_device *dev)
5273 {
5274         struct drm_i915_private *dev_priv = dev->dev_private;
5275
5276         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5277                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5278
5279                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5280                         dev_priv->max_cdclk_freq = 675000;
5281                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5282                         dev_priv->max_cdclk_freq = 540000;
5283                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5284                         dev_priv->max_cdclk_freq = 450000;
5285                 else
5286                         dev_priv->max_cdclk_freq = 337500;
5287         } else if (IS_BROXTON(dev)) {
5288                 dev_priv->max_cdclk_freq = 624000;
5289         } else if (IS_BROADWELL(dev))  {
5290                 /*
5291                  * FIXME with extra cooling we can allow
5292                  * 540 MHz for ULX and 675 Mhz for ULT.
5293                  * How can we know if extra cooling is
5294                  * available? PCI ID, VTB, something else?
5295                  */
5296                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5297                         dev_priv->max_cdclk_freq = 450000;
5298                 else if (IS_BDW_ULX(dev))
5299                         dev_priv->max_cdclk_freq = 450000;
5300                 else if (IS_BDW_ULT(dev))
5301                         dev_priv->max_cdclk_freq = 540000;
5302                 else
5303                         dev_priv->max_cdclk_freq = 675000;
5304         } else if (IS_CHERRYVIEW(dev)) {
5305                 dev_priv->max_cdclk_freq = 320000;
5306         } else if (IS_VALLEYVIEW(dev)) {
5307                 dev_priv->max_cdclk_freq = 400000;
5308         } else {
5309                 /* otherwise assume cdclk is fixed */
5310                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5311         }
5312
5313         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5314
5315         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5316                          dev_priv->max_cdclk_freq);
5317
5318         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5319                          dev_priv->max_dotclk_freq);
5320 }
5321
5322 static void intel_update_cdclk(struct drm_device *dev)
5323 {
5324         struct drm_i915_private *dev_priv = dev->dev_private;
5325
5326         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5327         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5328                          dev_priv->cdclk_freq);
5329
5330         /*
5331          * Program the gmbus_freq based on the cdclk frequency.
5332          * BSpec erroneously claims we should aim for 4MHz, but
5333          * in fact 1MHz is the correct frequency.
5334          */
5335         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5336                 /*
5337                  * Program the gmbus_freq based on the cdclk frequency.
5338                  * BSpec erroneously claims we should aim for 4MHz, but
5339                  * in fact 1MHz is the correct frequency.
5340                  */
5341                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5342         }
5343
5344         if (dev_priv->max_cdclk_freq == 0)
5345                 intel_update_max_cdclk(dev);
5346 }
5347
5348 static void broxton_set_cdclk(struct drm_i915_private *dev_priv, int frequency)
5349 {
5350         uint32_t divider;
5351         uint32_t ratio;
5352         uint32_t current_freq;
5353         int ret;
5354
5355         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5356         switch (frequency) {
5357         case 144000:
5358                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5359                 ratio = BXT_DE_PLL_RATIO(60);
5360                 break;
5361         case 288000:
5362                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5363                 ratio = BXT_DE_PLL_RATIO(60);
5364                 break;
5365         case 384000:
5366                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5367                 ratio = BXT_DE_PLL_RATIO(60);
5368                 break;
5369         case 576000:
5370                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5371                 ratio = BXT_DE_PLL_RATIO(60);
5372                 break;
5373         case 624000:
5374                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5375                 ratio = BXT_DE_PLL_RATIO(65);
5376                 break;
5377         case 19200:
5378                 /*
5379                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5380                  * to suppress GCC warning.
5381                  */
5382                 ratio = 0;
5383                 divider = 0;
5384                 break;
5385         default:
5386                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5387
5388                 return;
5389         }
5390
5391         mutex_lock(&dev_priv->rps.hw_lock);
5392         /* Inform power controller of upcoming frequency change */
5393         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5394                                       0x80000000);
5395         mutex_unlock(&dev_priv->rps.hw_lock);
5396
5397         if (ret) {
5398                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5399                           ret, frequency);
5400                 return;
5401         }
5402
5403         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5404         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5405         current_freq = current_freq * 500 + 1000;
5406
5407         /*
5408          * DE PLL has to be disabled when
5409          * - setting to 19.2MHz (bypass, PLL isn't used)
5410          * - before setting to 624MHz (PLL needs toggling)
5411          * - before setting to any frequency from 624MHz (PLL needs toggling)
5412          */
5413         if (frequency == 19200 || frequency == 624000 ||
5414             current_freq == 624000) {
5415                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5416                 /* Timeout 200us */
5417                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5418                              1))
5419                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5420         }
5421
5422         if (frequency != 19200) {
5423                 uint32_t val;
5424
5425                 val = I915_READ(BXT_DE_PLL_CTL);
5426                 val &= ~BXT_DE_PLL_RATIO_MASK;
5427                 val |= ratio;
5428                 I915_WRITE(BXT_DE_PLL_CTL, val);
5429
5430                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5431                 /* Timeout 200us */
5432                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5433                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5434
5435                 val = I915_READ(CDCLK_CTL);
5436                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5437                 val |= divider;
5438                 /*
5439                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5440                  * enable otherwise.
5441                  */
5442                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5443                 if (frequency >= 500000)
5444                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5445
5446                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5447                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5448                 val |= (frequency - 1000) / 500;
5449                 I915_WRITE(CDCLK_CTL, val);
5450         }
5451
5452         mutex_lock(&dev_priv->rps.hw_lock);
5453         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5454                                       DIV_ROUND_UP(frequency, 25000));
5455         mutex_unlock(&dev_priv->rps.hw_lock);
5456
5457         if (ret) {
5458                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5459                           ret, frequency);
5460                 return;
5461         }
5462
5463         intel_update_cdclk(dev_priv->dev);
5464 }
5465
5466 static bool broxton_cdclk_is_enabled(struct drm_i915_private *dev_priv)
5467 {
5468         if (!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE))
5469                 return false;
5470
5471         /* TODO: Check for a valid CDCLK rate */
5472
5473         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_REQUEST)) {
5474                 DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power not requested\n");
5475
5476                 return false;
5477         }
5478
5479         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE)) {
5480                 DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power hasn't settled\n");
5481
5482                 return false;
5483         }
5484
5485         return true;
5486 }
5487
5488 bool broxton_cdclk_verify_state(struct drm_i915_private *dev_priv)
5489 {
5490         return broxton_cdclk_is_enabled(dev_priv);
5491 }
5492
5493 void broxton_init_cdclk(struct drm_i915_private *dev_priv)
5494 {
5495         /* check if cd clock is enabled */
5496         if (broxton_cdclk_is_enabled(dev_priv)) {
5497                 DRM_DEBUG_KMS("CDCLK already enabled, won't reprogram it\n");
5498                 return;
5499         }
5500
5501         DRM_DEBUG_KMS("CDCLK not enabled, enabling it\n");
5502
5503         /*
5504          * FIXME:
5505          * - The initial CDCLK needs to be read from VBT.
5506          *   Need to make this change after VBT has changes for BXT.
5507          * - check if setting the max (or any) cdclk freq is really necessary
5508          *   here, it belongs to modeset time
5509          */
5510         broxton_set_cdclk(dev_priv, 624000);
5511
5512         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5513         POSTING_READ(DBUF_CTL);
5514
5515         udelay(10);
5516
5517         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5518                 DRM_ERROR("DBuf power enable timeout!\n");
5519 }
5520
5521 void broxton_uninit_cdclk(struct drm_i915_private *dev_priv)
5522 {
5523         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5524         POSTING_READ(DBUF_CTL);
5525
5526         udelay(10);
5527
5528         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5529                 DRM_ERROR("DBuf power disable timeout!\n");
5530
5531         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5532         broxton_set_cdclk(dev_priv, 19200);
5533 }
5534
5535 static const struct skl_cdclk_entry {
5536         unsigned int freq;
5537         unsigned int vco;
5538 } skl_cdclk_frequencies[] = {
5539         { .freq = 308570, .vco = 8640 },
5540         { .freq = 337500, .vco = 8100 },
5541         { .freq = 432000, .vco = 8640 },
5542         { .freq = 450000, .vco = 8100 },
5543         { .freq = 540000, .vco = 8100 },
5544         { .freq = 617140, .vco = 8640 },
5545         { .freq = 675000, .vco = 8100 },
5546 };
5547
5548 static unsigned int skl_cdclk_decimal(unsigned int freq)
5549 {
5550         return (freq - 1000) / 500;
5551 }
5552
5553 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5554 {
5555         unsigned int i;
5556
5557         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5558                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5559
5560                 if (e->freq == freq)
5561                         return e->vco;
5562         }
5563
5564         return 8100;
5565 }
5566
5567 static void
5568 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5569 {
5570         unsigned int min_freq;
5571         u32 val;
5572
5573         /* select the minimum CDCLK before enabling DPLL 0 */
5574         val = I915_READ(CDCLK_CTL);
5575         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5576         val |= CDCLK_FREQ_337_308;
5577
5578         if (required_vco == 8640)
5579                 min_freq = 308570;
5580         else
5581                 min_freq = 337500;
5582
5583         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5584
5585         I915_WRITE(CDCLK_CTL, val);
5586         POSTING_READ(CDCLK_CTL);
5587
5588         /*
5589          * We always enable DPLL0 with the lowest link rate possible, but still
5590          * taking into account the VCO required to operate the eDP panel at the
5591          * desired frequency. The usual DP link rates operate with a VCO of
5592          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5593          * The modeset code is responsible for the selection of the exact link
5594          * rate later on, with the constraint of choosing a frequency that
5595          * works with required_vco.
5596          */
5597         val = I915_READ(DPLL_CTRL1);
5598
5599         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5600                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5601         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5602         if (required_vco == 8640)
5603                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5604                                             SKL_DPLL0);
5605         else
5606                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5607                                             SKL_DPLL0);
5608
5609         I915_WRITE(DPLL_CTRL1, val);
5610         POSTING_READ(DPLL_CTRL1);
5611
5612         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5613
5614         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5615                 DRM_ERROR("DPLL0 not locked\n");
5616 }
5617
5618 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5619 {
5620         int ret;
5621         u32 val;
5622
5623         /* inform PCU we want to change CDCLK */
5624         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5625         mutex_lock(&dev_priv->rps.hw_lock);
5626         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5627         mutex_unlock(&dev_priv->rps.hw_lock);
5628
5629         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5630 }
5631
5632 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5633 {
5634         unsigned int i;
5635
5636         for (i = 0; i < 15; i++) {
5637                 if (skl_cdclk_pcu_ready(dev_priv))
5638                         return true;
5639                 udelay(10);
5640         }
5641
5642         return false;
5643 }
5644
5645 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5646 {
5647         struct drm_device *dev = dev_priv->dev;
5648         u32 freq_select, pcu_ack;
5649
5650         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5651
5652         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5653                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5654                 return;
5655         }
5656
5657         /* set CDCLK_CTL */
5658         switch(freq) {
5659         case 450000:
5660         case 432000:
5661                 freq_select = CDCLK_FREQ_450_432;
5662                 pcu_ack = 1;
5663                 break;
5664         case 540000:
5665                 freq_select = CDCLK_FREQ_540;
5666                 pcu_ack = 2;
5667                 break;
5668         case 308570:
5669         case 337500:
5670         default:
5671                 freq_select = CDCLK_FREQ_337_308;
5672                 pcu_ack = 0;
5673                 break;
5674         case 617140:
5675         case 675000:
5676                 freq_select = CDCLK_FREQ_675_617;
5677                 pcu_ack = 3;
5678                 break;
5679         }
5680
5681         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5682         POSTING_READ(CDCLK_CTL);
5683
5684         /* inform PCU of the change */
5685         mutex_lock(&dev_priv->rps.hw_lock);
5686         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5687         mutex_unlock(&dev_priv->rps.hw_lock);
5688
5689         intel_update_cdclk(dev);
5690 }
5691
5692 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5693 {
5694         /* disable DBUF power */
5695         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5696         POSTING_READ(DBUF_CTL);
5697
5698         udelay(10);
5699
5700         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5701                 DRM_ERROR("DBuf power disable timeout\n");
5702
5703         /* disable DPLL0 */
5704         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5705         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5706                 DRM_ERROR("Couldn't disable DPLL0\n");
5707 }
5708
5709 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5710 {
5711         unsigned int required_vco;
5712
5713         /* DPLL0 not enabled (happens on early BIOS versions) */
5714         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5715                 /* enable DPLL0 */
5716                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5717                 skl_dpll0_enable(dev_priv, required_vco);
5718         }
5719
5720         /* set CDCLK to the frequency the BIOS chose */
5721         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5722
5723         /* enable DBUF power */
5724         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5725         POSTING_READ(DBUF_CTL);
5726
5727         udelay(10);
5728
5729         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5730                 DRM_ERROR("DBuf power enable timeout\n");
5731 }
5732
5733 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5734 {
5735         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5736         uint32_t cdctl = I915_READ(CDCLK_CTL);
5737         int freq = dev_priv->skl_boot_cdclk;
5738
5739         /*
5740          * check if the pre-os intialized the display
5741          * There is SWF18 scratchpad register defined which is set by the
5742          * pre-os which can be used by the OS drivers to check the status
5743          */
5744         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5745                 goto sanitize;
5746
5747         /* Is PLL enabled and locked ? */
5748         if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5749                 goto sanitize;
5750
5751         /* DPLL okay; verify the cdclock
5752          *
5753          * Noticed in some instances that the freq selection is correct but
5754          * decimal part is programmed wrong from BIOS where pre-os does not
5755          * enable display. Verify the same as well.
5756          */
5757         if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5758                 /* All well; nothing to sanitize */
5759                 return false;
5760 sanitize:
5761         /*
5762          * As of now initialize with max cdclk till
5763          * we get dynamic cdclk support
5764          * */
5765         dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5766         skl_init_cdclk(dev_priv);
5767
5768         /* we did have to sanitize */
5769         return true;
5770 }
5771
5772 /* Adjust CDclk dividers to allow high res or save power if possible */
5773 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5774 {
5775         struct drm_i915_private *dev_priv = dev->dev_private;
5776         u32 val, cmd;
5777
5778         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5779                                         != dev_priv->cdclk_freq);
5780
5781         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5782                 cmd = 2;
5783         else if (cdclk == 266667)
5784                 cmd = 1;
5785         else
5786                 cmd = 0;
5787
5788         mutex_lock(&dev_priv->rps.hw_lock);
5789         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5790         val &= ~DSPFREQGUAR_MASK;
5791         val |= (cmd << DSPFREQGUAR_SHIFT);
5792         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5793         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5794                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5795                      50)) {
5796                 DRM_ERROR("timed out waiting for CDclk change\n");
5797         }
5798         mutex_unlock(&dev_priv->rps.hw_lock);
5799
5800         mutex_lock(&dev_priv->sb_lock);
5801
5802         if (cdclk == 400000) {
5803                 u32 divider;
5804
5805                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5806
5807                 /* adjust cdclk divider */
5808                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5809                 val &= ~CCK_FREQUENCY_VALUES;
5810                 val |= divider;
5811                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5812
5813                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5814                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5815                              50))
5816                         DRM_ERROR("timed out waiting for CDclk change\n");
5817         }
5818
5819         /* adjust self-refresh exit latency value */
5820         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5821         val &= ~0x7f;
5822
5823         /*
5824          * For high bandwidth configs, we set a higher latency in the bunit
5825          * so that the core display fetch happens in time to avoid underruns.
5826          */
5827         if (cdclk == 400000)
5828                 val |= 4500 / 250; /* 4.5 usec */
5829         else
5830                 val |= 3000 / 250; /* 3.0 usec */
5831         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5832
5833         mutex_unlock(&dev_priv->sb_lock);
5834
5835         intel_update_cdclk(dev);
5836 }
5837
5838 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5839 {
5840         struct drm_i915_private *dev_priv = dev->dev_private;
5841         u32 val, cmd;
5842
5843         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5844                                                 != dev_priv->cdclk_freq);
5845
5846         switch (cdclk) {
5847         case 333333:
5848         case 320000:
5849         case 266667:
5850         case 200000:
5851                 break;
5852         default:
5853                 MISSING_CASE(cdclk);
5854                 return;
5855         }
5856
5857         /*
5858          * Specs are full of misinformation, but testing on actual
5859          * hardware has shown that we just need to write the desired
5860          * CCK divider into the Punit register.
5861          */
5862         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5863
5864         mutex_lock(&dev_priv->rps.hw_lock);
5865         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5866         val &= ~DSPFREQGUAR_MASK_CHV;
5867         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5868         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5869         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5870                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5871                      50)) {
5872                 DRM_ERROR("timed out waiting for CDclk change\n");
5873         }
5874         mutex_unlock(&dev_priv->rps.hw_lock);
5875
5876         intel_update_cdclk(dev);
5877 }
5878
5879 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5880                                  int max_pixclk)
5881 {
5882         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5883         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5884
5885         /*
5886          * Really only a few cases to deal with, as only 4 CDclks are supported:
5887          *   200MHz
5888          *   267MHz
5889          *   320/333MHz (depends on HPLL freq)
5890          *   400MHz (VLV only)
5891          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5892          * of the lower bin and adjust if needed.
5893          *
5894          * We seem to get an unstable or solid color picture at 200MHz.
5895          * Not sure what's wrong. For now use 200MHz only when all pipes
5896          * are off.
5897          */
5898         if (!IS_CHERRYVIEW(dev_priv) &&
5899             max_pixclk > freq_320*limit/100)
5900                 return 400000;
5901         else if (max_pixclk > 266667*limit/100)
5902                 return freq_320;
5903         else if (max_pixclk > 0)
5904                 return 266667;
5905         else
5906                 return 200000;
5907 }
5908
5909 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5910                               int max_pixclk)
5911 {
5912         /*
5913          * FIXME:
5914          * - remove the guardband, it's not needed on BXT
5915          * - set 19.2MHz bypass frequency if there are no active pipes
5916          */
5917         if (max_pixclk > 576000*9/10)
5918                 return 624000;
5919         else if (max_pixclk > 384000*9/10)
5920                 return 576000;
5921         else if (max_pixclk > 288000*9/10)
5922                 return 384000;
5923         else if (max_pixclk > 144000*9/10)
5924                 return 288000;
5925         else
5926                 return 144000;
5927 }
5928
5929 /* Compute the max pixel clock for new configuration. */
5930 static int intel_mode_max_pixclk(struct drm_device *dev,
5931                                  struct drm_atomic_state *state)
5932 {
5933         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5934         struct drm_i915_private *dev_priv = dev->dev_private;
5935         struct drm_crtc *crtc;
5936         struct drm_crtc_state *crtc_state;
5937         unsigned max_pixclk = 0, i;
5938         enum pipe pipe;
5939
5940         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
5941                sizeof(intel_state->min_pixclk));
5942
5943         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5944                 int pixclk = 0;
5945
5946                 if (crtc_state->enable)
5947                         pixclk = crtc_state->adjusted_mode.crtc_clock;
5948
5949                 intel_state->min_pixclk[i] = pixclk;
5950         }
5951
5952         for_each_pipe(dev_priv, pipe)
5953                 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
5954
5955         return max_pixclk;
5956 }
5957
5958 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5959 {
5960         struct drm_device *dev = state->dev;
5961         struct drm_i915_private *dev_priv = dev->dev_private;
5962         int max_pixclk = intel_mode_max_pixclk(dev, state);
5963         struct intel_atomic_state *intel_state =
5964                 to_intel_atomic_state(state);
5965
5966         if (max_pixclk < 0)
5967                 return max_pixclk;
5968
5969         intel_state->cdclk = intel_state->dev_cdclk =
5970                 valleyview_calc_cdclk(dev_priv, max_pixclk);
5971
5972         if (!intel_state->active_crtcs)
5973                 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
5974
5975         return 0;
5976 }
5977
5978 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5979 {
5980         struct drm_device *dev = state->dev;
5981         struct drm_i915_private *dev_priv = dev->dev_private;
5982         int max_pixclk = intel_mode_max_pixclk(dev, state);
5983         struct intel_atomic_state *intel_state =
5984                 to_intel_atomic_state(state);
5985
5986         if (max_pixclk < 0)
5987                 return max_pixclk;
5988
5989         intel_state->cdclk = intel_state->dev_cdclk =
5990                 broxton_calc_cdclk(dev_priv, max_pixclk);
5991
5992         if (!intel_state->active_crtcs)
5993                 intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0);
5994
5995         return 0;
5996 }
5997
5998 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5999 {
6000         unsigned int credits, default_credits;
6001
6002         if (IS_CHERRYVIEW(dev_priv))
6003                 default_credits = PFI_CREDIT(12);
6004         else
6005                 default_credits = PFI_CREDIT(8);
6006
6007         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6008                 /* CHV suggested value is 31 or 63 */
6009                 if (IS_CHERRYVIEW(dev_priv))
6010                         credits = PFI_CREDIT_63;
6011                 else
6012                         credits = PFI_CREDIT(15);
6013         } else {
6014                 credits = default_credits;
6015         }
6016
6017         /*
6018          * WA - write default credits before re-programming
6019          * FIXME: should we also set the resend bit here?
6020          */
6021         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6022                    default_credits);
6023
6024         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6025                    credits | PFI_CREDIT_RESEND);
6026
6027         /*
6028          * FIXME is this guaranteed to clear
6029          * immediately or should we poll for it?
6030          */
6031         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6032 }
6033
6034 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6035 {
6036         struct drm_device *dev = old_state->dev;
6037         struct drm_i915_private *dev_priv = dev->dev_private;
6038         struct intel_atomic_state *old_intel_state =
6039                 to_intel_atomic_state(old_state);
6040         unsigned req_cdclk = old_intel_state->dev_cdclk;
6041
6042         /*
6043          * FIXME: We can end up here with all power domains off, yet
6044          * with a CDCLK frequency other than the minimum. To account
6045          * for this take the PIPE-A power domain, which covers the HW
6046          * blocks needed for the following programming. This can be
6047          * removed once it's guaranteed that we get here either with
6048          * the minimum CDCLK set, or the required power domains
6049          * enabled.
6050          */
6051         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6052
6053         if (IS_CHERRYVIEW(dev))
6054                 cherryview_set_cdclk(dev, req_cdclk);
6055         else
6056                 valleyview_set_cdclk(dev, req_cdclk);
6057
6058         vlv_program_pfi_credits(dev_priv);
6059
6060         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6061 }
6062
6063 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6064 {
6065         struct drm_device *dev = crtc->dev;
6066         struct drm_i915_private *dev_priv = to_i915(dev);
6067         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6068         struct intel_encoder *encoder;
6069         struct intel_crtc_state *pipe_config =
6070                 to_intel_crtc_state(crtc->state);
6071         int pipe = intel_crtc->pipe;
6072
6073         if (WARN_ON(intel_crtc->active))
6074                 return;
6075
6076         if (intel_crtc->config->has_dp_encoder)
6077                 intel_dp_set_m_n(intel_crtc, M1_N1);
6078
6079         intel_set_pipe_timings(intel_crtc);
6080         intel_set_pipe_src_size(intel_crtc);
6081
6082         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6083                 struct drm_i915_private *dev_priv = dev->dev_private;
6084
6085                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6086                 I915_WRITE(CHV_CANVAS(pipe), 0);
6087         }
6088
6089         i9xx_set_pipeconf(intel_crtc);
6090
6091         intel_crtc->active = true;
6092
6093         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6094
6095         for_each_encoder_on_crtc(dev, crtc, encoder)
6096                 if (encoder->pre_pll_enable)
6097                         encoder->pre_pll_enable(encoder);
6098
6099         if (IS_CHERRYVIEW(dev)) {
6100                 chv_prepare_pll(intel_crtc, intel_crtc->config);
6101                 chv_enable_pll(intel_crtc, intel_crtc->config);
6102         } else {
6103                 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6104                 vlv_enable_pll(intel_crtc, intel_crtc->config);
6105         }
6106
6107         for_each_encoder_on_crtc(dev, crtc, encoder)
6108                 if (encoder->pre_enable)
6109                         encoder->pre_enable(encoder);
6110
6111         i9xx_pfit_enable(intel_crtc);
6112
6113         intel_color_load_luts(&pipe_config->base);
6114
6115         intel_update_watermarks(crtc);
6116         intel_enable_pipe(intel_crtc);
6117
6118         assert_vblank_disabled(crtc);
6119         drm_crtc_vblank_on(crtc);
6120
6121         for_each_encoder_on_crtc(dev, crtc, encoder)
6122                 encoder->enable(encoder);
6123 }
6124
6125 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6126 {
6127         struct drm_device *dev = crtc->base.dev;
6128         struct drm_i915_private *dev_priv = dev->dev_private;
6129
6130         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6131         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6132 }
6133
6134 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6135 {
6136         struct drm_device *dev = crtc->dev;
6137         struct drm_i915_private *dev_priv = to_i915(dev);
6138         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6139         struct intel_encoder *encoder;
6140         struct intel_crtc_state *pipe_config =
6141                 to_intel_crtc_state(crtc->state);
6142         enum pipe pipe = intel_crtc->pipe;
6143
6144         if (WARN_ON(intel_crtc->active))
6145                 return;
6146
6147         i9xx_set_pll_dividers(intel_crtc);
6148
6149         if (intel_crtc->config->has_dp_encoder)
6150                 intel_dp_set_m_n(intel_crtc, M1_N1);
6151
6152         intel_set_pipe_timings(intel_crtc);
6153         intel_set_pipe_src_size(intel_crtc);
6154
6155         i9xx_set_pipeconf(intel_crtc);
6156
6157         intel_crtc->active = true;
6158
6159         if (!IS_GEN2(dev))
6160                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6161
6162         for_each_encoder_on_crtc(dev, crtc, encoder)
6163                 if (encoder->pre_enable)
6164                         encoder->pre_enable(encoder);
6165
6166         i9xx_enable_pll(intel_crtc);
6167
6168         i9xx_pfit_enable(intel_crtc);
6169
6170         intel_color_load_luts(&pipe_config->base);
6171
6172         intel_update_watermarks(crtc);
6173         intel_enable_pipe(intel_crtc);
6174
6175         assert_vblank_disabled(crtc);
6176         drm_crtc_vblank_on(crtc);
6177
6178         for_each_encoder_on_crtc(dev, crtc, encoder)
6179                 encoder->enable(encoder);
6180 }
6181
6182 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6183 {
6184         struct drm_device *dev = crtc->base.dev;
6185         struct drm_i915_private *dev_priv = dev->dev_private;
6186
6187         if (!crtc->config->gmch_pfit.control)
6188                 return;
6189
6190         assert_pipe_disabled(dev_priv, crtc->pipe);
6191
6192         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6193                          I915_READ(PFIT_CONTROL));
6194         I915_WRITE(PFIT_CONTROL, 0);
6195 }
6196
6197 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6198 {
6199         struct drm_device *dev = crtc->dev;
6200         struct drm_i915_private *dev_priv = dev->dev_private;
6201         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6202         struct intel_encoder *encoder;
6203         int pipe = intel_crtc->pipe;
6204
6205         /*
6206          * On gen2 planes are double buffered but the pipe isn't, so we must
6207          * wait for planes to fully turn off before disabling the pipe.
6208          */
6209         if (IS_GEN2(dev))
6210                 intel_wait_for_vblank(dev, pipe);
6211
6212         for_each_encoder_on_crtc(dev, crtc, encoder)
6213                 encoder->disable(encoder);
6214
6215         drm_crtc_vblank_off(crtc);
6216         assert_vblank_disabled(crtc);
6217
6218         intel_disable_pipe(intel_crtc);
6219
6220         i9xx_pfit_disable(intel_crtc);
6221
6222         for_each_encoder_on_crtc(dev, crtc, encoder)
6223                 if (encoder->post_disable)
6224                         encoder->post_disable(encoder);
6225
6226         if (!intel_crtc->config->has_dsi_encoder) {
6227                 if (IS_CHERRYVIEW(dev))
6228                         chv_disable_pll(dev_priv, pipe);
6229                 else if (IS_VALLEYVIEW(dev))
6230                         vlv_disable_pll(dev_priv, pipe);
6231                 else
6232                         i9xx_disable_pll(intel_crtc);
6233         }
6234
6235         for_each_encoder_on_crtc(dev, crtc, encoder)
6236                 if (encoder->post_pll_disable)
6237                         encoder->post_pll_disable(encoder);
6238
6239         if (!IS_GEN2(dev))
6240                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6241 }
6242
6243 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6244 {
6245         struct intel_encoder *encoder;
6246         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6247         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6248         enum intel_display_power_domain domain;
6249         unsigned long domains;
6250
6251         if (!intel_crtc->active)
6252                 return;
6253
6254         if (to_intel_plane_state(crtc->primary->state)->visible) {
6255                 WARN_ON(intel_crtc->unpin_work);
6256
6257                 intel_pre_disable_primary_noatomic(crtc);
6258
6259                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6260                 to_intel_plane_state(crtc->primary->state)->visible = false;
6261         }
6262
6263         dev_priv->display.crtc_disable(crtc);
6264
6265         DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was enabled, now disabled\n",
6266                       crtc->base.id);
6267
6268         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6269         crtc->state->active = false;
6270         intel_crtc->active = false;
6271         crtc->enabled = false;
6272         crtc->state->connector_mask = 0;
6273         crtc->state->encoder_mask = 0;
6274
6275         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6276                 encoder->base.crtc = NULL;
6277
6278         intel_fbc_disable(intel_crtc);
6279         intel_update_watermarks(crtc);
6280         intel_disable_shared_dpll(intel_crtc);
6281
6282         domains = intel_crtc->enabled_power_domains;
6283         for_each_power_domain(domain, domains)
6284                 intel_display_power_put(dev_priv, domain);
6285         intel_crtc->enabled_power_domains = 0;
6286
6287         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6288         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6289 }
6290
6291 /*
6292  * turn all crtc's off, but do not adjust state
6293  * This has to be paired with a call to intel_modeset_setup_hw_state.
6294  */
6295 int intel_display_suspend(struct drm_device *dev)
6296 {
6297         struct drm_i915_private *dev_priv = to_i915(dev);
6298         struct drm_atomic_state *state;
6299         int ret;
6300
6301         state = drm_atomic_helper_suspend(dev);
6302         ret = PTR_ERR_OR_ZERO(state);
6303         if (ret)
6304                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6305         else
6306                 dev_priv->modeset_restore_state = state;
6307         return ret;
6308 }
6309
6310 void intel_encoder_destroy(struct drm_encoder *encoder)
6311 {
6312         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6313
6314         drm_encoder_cleanup(encoder);
6315         kfree(intel_encoder);
6316 }
6317
6318 /* Cross check the actual hw state with our own modeset state tracking (and it's
6319  * internal consistency). */
6320 static void intel_connector_verify_state(struct intel_connector *connector)
6321 {
6322         struct drm_crtc *crtc = connector->base.state->crtc;
6323
6324         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6325                       connector->base.base.id,
6326                       connector->base.name);
6327
6328         if (connector->get_hw_state(connector)) {
6329                 struct intel_encoder *encoder = connector->encoder;
6330                 struct drm_connector_state *conn_state = connector->base.state;
6331
6332                 I915_STATE_WARN(!crtc,
6333                          "connector enabled without attached crtc\n");
6334
6335                 if (!crtc)
6336                         return;
6337
6338                 I915_STATE_WARN(!crtc->state->active,
6339                       "connector is active, but attached crtc isn't\n");
6340
6341                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6342                         return;
6343
6344                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6345                         "atomic encoder doesn't match attached encoder\n");
6346
6347                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6348                         "attached encoder crtc differs from connector crtc\n");
6349         } else {
6350                 I915_STATE_WARN(crtc && crtc->state->active,
6351                         "attached crtc is active, but connector isn't\n");
6352                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6353                         "best encoder set without crtc!\n");
6354         }
6355 }
6356
6357 int intel_connector_init(struct intel_connector *connector)
6358 {
6359         drm_atomic_helper_connector_reset(&connector->base);
6360
6361         if (!connector->base.state)
6362                 return -ENOMEM;
6363
6364         return 0;
6365 }
6366
6367 struct intel_connector *intel_connector_alloc(void)
6368 {
6369         struct intel_connector *connector;
6370
6371         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6372         if (!connector)
6373                 return NULL;
6374
6375         if (intel_connector_init(connector) < 0) {
6376                 kfree(connector);
6377                 return NULL;
6378         }
6379
6380         return connector;
6381 }
6382
6383 /* Simple connector->get_hw_state implementation for encoders that support only
6384  * one connector and no cloning and hence the encoder state determines the state
6385  * of the connector. */
6386 bool intel_connector_get_hw_state(struct intel_connector *connector)
6387 {
6388         enum pipe pipe = 0;
6389         struct intel_encoder *encoder = connector->encoder;
6390
6391         return encoder->get_hw_state(encoder, &pipe);
6392 }
6393
6394 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6395 {
6396         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6397                 return crtc_state->fdi_lanes;
6398
6399         return 0;
6400 }
6401
6402 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6403                                      struct intel_crtc_state *pipe_config)
6404 {
6405         struct drm_atomic_state *state = pipe_config->base.state;
6406         struct intel_crtc *other_crtc;
6407         struct intel_crtc_state *other_crtc_state;
6408
6409         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6410                       pipe_name(pipe), pipe_config->fdi_lanes);
6411         if (pipe_config->fdi_lanes > 4) {
6412                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6413                               pipe_name(pipe), pipe_config->fdi_lanes);
6414                 return -EINVAL;
6415         }
6416
6417         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6418                 if (pipe_config->fdi_lanes > 2) {
6419                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6420                                       pipe_config->fdi_lanes);
6421                         return -EINVAL;
6422                 } else {
6423                         return 0;
6424                 }
6425         }
6426
6427         if (INTEL_INFO(dev)->num_pipes == 2)
6428                 return 0;
6429
6430         /* Ivybridge 3 pipe is really complicated */
6431         switch (pipe) {
6432         case PIPE_A:
6433                 return 0;
6434         case PIPE_B:
6435                 if (pipe_config->fdi_lanes <= 2)
6436                         return 0;
6437
6438                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6439                 other_crtc_state =
6440                         intel_atomic_get_crtc_state(state, other_crtc);
6441                 if (IS_ERR(other_crtc_state))
6442                         return PTR_ERR(other_crtc_state);
6443
6444                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6445                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6446                                       pipe_name(pipe), pipe_config->fdi_lanes);
6447                         return -EINVAL;
6448                 }
6449                 return 0;
6450         case PIPE_C:
6451                 if (pipe_config->fdi_lanes > 2) {
6452                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6453                                       pipe_name(pipe), pipe_config->fdi_lanes);
6454                         return -EINVAL;
6455                 }
6456
6457                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6458                 other_crtc_state =
6459                         intel_atomic_get_crtc_state(state, other_crtc);
6460                 if (IS_ERR(other_crtc_state))
6461                         return PTR_ERR(other_crtc_state);
6462
6463                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6464                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6465                         return -EINVAL;
6466                 }
6467                 return 0;
6468         default:
6469                 BUG();
6470         }
6471 }
6472
6473 #define RETRY 1
6474 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6475                                        struct intel_crtc_state *pipe_config)
6476 {
6477         struct drm_device *dev = intel_crtc->base.dev;
6478         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6479         int lane, link_bw, fdi_dotclock, ret;
6480         bool needs_recompute = false;
6481
6482 retry:
6483         /* FDI is a binary signal running at ~2.7GHz, encoding
6484          * each output octet as 10 bits. The actual frequency
6485          * is stored as a divider into a 100MHz clock, and the
6486          * mode pixel clock is stored in units of 1KHz.
6487          * Hence the bw of each lane in terms of the mode signal
6488          * is:
6489          */
6490         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6491
6492         fdi_dotclock = adjusted_mode->crtc_clock;
6493
6494         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6495                                            pipe_config->pipe_bpp);
6496
6497         pipe_config->fdi_lanes = lane;
6498
6499         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6500                                link_bw, &pipe_config->fdi_m_n);
6501
6502         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6503         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6504                 pipe_config->pipe_bpp -= 2*3;
6505                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6506                               pipe_config->pipe_bpp);
6507                 needs_recompute = true;
6508                 pipe_config->bw_constrained = true;
6509
6510                 goto retry;
6511         }
6512
6513         if (needs_recompute)
6514                 return RETRY;
6515
6516         return ret;
6517 }
6518
6519 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6520                                      struct intel_crtc_state *pipe_config)
6521 {
6522         if (pipe_config->pipe_bpp > 24)
6523                 return false;
6524
6525         /* HSW can handle pixel rate up to cdclk? */
6526         if (IS_HASWELL(dev_priv))
6527                 return true;
6528
6529         /*
6530          * We compare against max which means we must take
6531          * the increased cdclk requirement into account when
6532          * calculating the new cdclk.
6533          *
6534          * Should measure whether using a lower cdclk w/o IPS
6535          */
6536         return ilk_pipe_pixel_rate(pipe_config) <=
6537                 dev_priv->max_cdclk_freq * 95 / 100;
6538 }
6539
6540 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6541                                    struct intel_crtc_state *pipe_config)
6542 {
6543         struct drm_device *dev = crtc->base.dev;
6544         struct drm_i915_private *dev_priv = dev->dev_private;
6545
6546         pipe_config->ips_enabled = i915.enable_ips &&
6547                 hsw_crtc_supports_ips(crtc) &&
6548                 pipe_config_supports_ips(dev_priv, pipe_config);
6549 }
6550
6551 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6552 {
6553         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6554
6555         /* GDG double wide on either pipe, otherwise pipe A only */
6556         return INTEL_INFO(dev_priv)->gen < 4 &&
6557                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6558 }
6559
6560 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6561                                      struct intel_crtc_state *pipe_config)
6562 {
6563         struct drm_device *dev = crtc->base.dev;
6564         struct drm_i915_private *dev_priv = dev->dev_private;
6565         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6566
6567         /* FIXME should check pixel clock limits on all platforms */
6568         if (INTEL_INFO(dev)->gen < 4) {
6569                 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6570
6571                 /*
6572                  * Enable double wide mode when the dot clock
6573                  * is > 90% of the (display) core speed.
6574                  */
6575                 if (intel_crtc_supports_double_wide(crtc) &&
6576                     adjusted_mode->crtc_clock > clock_limit) {
6577                         clock_limit *= 2;
6578                         pipe_config->double_wide = true;
6579                 }
6580
6581                 if (adjusted_mode->crtc_clock > clock_limit) {
6582                         DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6583                                       adjusted_mode->crtc_clock, clock_limit,
6584                                       yesno(pipe_config->double_wide));
6585                         return -EINVAL;
6586                 }
6587         }
6588
6589         /*
6590          * Pipe horizontal size must be even in:
6591          * - DVO ganged mode
6592          * - LVDS dual channel mode
6593          * - Double wide pipe
6594          */
6595         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6596              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6597                 pipe_config->pipe_src_w &= ~1;
6598
6599         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6600          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6601          */
6602         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6603                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6604                 return -EINVAL;
6605
6606         if (HAS_IPS(dev))
6607                 hsw_compute_ips_config(crtc, pipe_config);
6608
6609         if (pipe_config->has_pch_encoder)
6610                 return ironlake_fdi_compute_config(crtc, pipe_config);
6611
6612         return 0;
6613 }
6614
6615 static int skylake_get_display_clock_speed(struct drm_device *dev)
6616 {
6617         struct drm_i915_private *dev_priv = to_i915(dev);
6618         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6619         uint32_t cdctl = I915_READ(CDCLK_CTL);
6620         uint32_t linkrate;
6621
6622         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6623                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6624
6625         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6626                 return 540000;
6627
6628         linkrate = (I915_READ(DPLL_CTRL1) &
6629                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6630
6631         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6632             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6633                 /* vco 8640 */
6634                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6635                 case CDCLK_FREQ_450_432:
6636                         return 432000;
6637                 case CDCLK_FREQ_337_308:
6638                         return 308570;
6639                 case CDCLK_FREQ_675_617:
6640                         return 617140;
6641                 default:
6642                         WARN(1, "Unknown cd freq selection\n");
6643                 }
6644         } else {
6645                 /* vco 8100 */
6646                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6647                 case CDCLK_FREQ_450_432:
6648                         return 450000;
6649                 case CDCLK_FREQ_337_308:
6650                         return 337500;
6651                 case CDCLK_FREQ_675_617:
6652                         return 675000;
6653                 default:
6654                         WARN(1, "Unknown cd freq selection\n");
6655                 }
6656         }
6657
6658         /* error case, do as if DPLL0 isn't enabled */
6659         return 24000;
6660 }
6661
6662 static int broxton_get_display_clock_speed(struct drm_device *dev)
6663 {
6664         struct drm_i915_private *dev_priv = to_i915(dev);
6665         uint32_t cdctl = I915_READ(CDCLK_CTL);
6666         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6667         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6668         int cdclk;
6669
6670         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6671                 return 19200;
6672
6673         cdclk = 19200 * pll_ratio / 2;
6674
6675         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6676         case BXT_CDCLK_CD2X_DIV_SEL_1:
6677                 return cdclk;  /* 576MHz or 624MHz */
6678         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6679                 return cdclk * 2 / 3; /* 384MHz */
6680         case BXT_CDCLK_CD2X_DIV_SEL_2:
6681                 return cdclk / 2; /* 288MHz */
6682         case BXT_CDCLK_CD2X_DIV_SEL_4:
6683                 return cdclk / 4; /* 144MHz */
6684         }
6685
6686         /* error case, do as if DE PLL isn't enabled */
6687         return 19200;
6688 }
6689
6690 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6691 {
6692         struct drm_i915_private *dev_priv = dev->dev_private;
6693         uint32_t lcpll = I915_READ(LCPLL_CTL);
6694         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6695
6696         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6697                 return 800000;
6698         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6699                 return 450000;
6700         else if (freq == LCPLL_CLK_FREQ_450)
6701                 return 450000;
6702         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6703                 return 540000;
6704         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6705                 return 337500;
6706         else
6707                 return 675000;
6708 }
6709
6710 static int haswell_get_display_clock_speed(struct drm_device *dev)
6711 {
6712         struct drm_i915_private *dev_priv = dev->dev_private;
6713         uint32_t lcpll = I915_READ(LCPLL_CTL);
6714         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6715
6716         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6717                 return 800000;
6718         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6719                 return 450000;
6720         else if (freq == LCPLL_CLK_FREQ_450)
6721                 return 450000;
6722         else if (IS_HSW_ULT(dev))
6723                 return 337500;
6724         else
6725                 return 540000;
6726 }
6727
6728 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6729 {
6730         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6731                                       CCK_DISPLAY_CLOCK_CONTROL);
6732 }
6733
6734 static int ilk_get_display_clock_speed(struct drm_device *dev)
6735 {
6736         return 450000;
6737 }
6738
6739 static int i945_get_display_clock_speed(struct drm_device *dev)
6740 {
6741         return 400000;
6742 }
6743
6744 static int i915_get_display_clock_speed(struct drm_device *dev)
6745 {
6746         return 333333;
6747 }
6748
6749 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6750 {
6751         return 200000;
6752 }
6753
6754 static int pnv_get_display_clock_speed(struct drm_device *dev)
6755 {
6756         u16 gcfgc = 0;
6757
6758         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6759
6760         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6761         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6762                 return 266667;
6763         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6764                 return 333333;
6765         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6766                 return 444444;
6767         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6768                 return 200000;
6769         default:
6770                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6771         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6772                 return 133333;
6773         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6774                 return 166667;
6775         }
6776 }
6777
6778 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6779 {
6780         u16 gcfgc = 0;
6781
6782         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6783
6784         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6785                 return 133333;
6786         else {
6787                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6788                 case GC_DISPLAY_CLOCK_333_MHZ:
6789                         return 333333;
6790                 default:
6791                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6792                         return 190000;
6793                 }
6794         }
6795 }
6796
6797 static int i865_get_display_clock_speed(struct drm_device *dev)
6798 {
6799         return 266667;
6800 }
6801
6802 static int i85x_get_display_clock_speed(struct drm_device *dev)
6803 {
6804         u16 hpllcc = 0;
6805
6806         /*
6807          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6808          * encoding is different :(
6809          * FIXME is this the right way to detect 852GM/852GMV?
6810          */
6811         if (dev->pdev->revision == 0x1)
6812                 return 133333;
6813
6814         pci_bus_read_config_word(dev->pdev->bus,
6815                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6816
6817         /* Assume that the hardware is in the high speed state.  This
6818          * should be the default.
6819          */
6820         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6821         case GC_CLOCK_133_200:
6822         case GC_CLOCK_133_200_2:
6823         case GC_CLOCK_100_200:
6824                 return 200000;
6825         case GC_CLOCK_166_250:
6826                 return 250000;
6827         case GC_CLOCK_100_133:
6828                 return 133333;
6829         case GC_CLOCK_133_266:
6830         case GC_CLOCK_133_266_2:
6831         case GC_CLOCK_166_266:
6832                 return 266667;
6833         }
6834
6835         /* Shouldn't happen */
6836         return 0;
6837 }
6838
6839 static int i830_get_display_clock_speed(struct drm_device *dev)
6840 {
6841         return 133333;
6842 }
6843
6844 static unsigned int intel_hpll_vco(struct drm_device *dev)
6845 {
6846         struct drm_i915_private *dev_priv = dev->dev_private;
6847         static const unsigned int blb_vco[8] = {
6848                 [0] = 3200000,
6849                 [1] = 4000000,
6850                 [2] = 5333333,
6851                 [3] = 4800000,
6852                 [4] = 6400000,
6853         };
6854         static const unsigned int pnv_vco[8] = {
6855                 [0] = 3200000,
6856                 [1] = 4000000,
6857                 [2] = 5333333,
6858                 [3] = 4800000,
6859                 [4] = 2666667,
6860         };
6861         static const unsigned int cl_vco[8] = {
6862                 [0] = 3200000,
6863                 [1] = 4000000,
6864                 [2] = 5333333,
6865                 [3] = 6400000,
6866                 [4] = 3333333,
6867                 [5] = 3566667,
6868                 [6] = 4266667,
6869         };
6870         static const unsigned int elk_vco[8] = {
6871                 [0] = 3200000,
6872                 [1] = 4000000,
6873                 [2] = 5333333,
6874                 [3] = 4800000,
6875         };
6876         static const unsigned int ctg_vco[8] = {
6877                 [0] = 3200000,
6878                 [1] = 4000000,
6879                 [2] = 5333333,
6880                 [3] = 6400000,
6881                 [4] = 2666667,
6882                 [5] = 4266667,
6883         };
6884         const unsigned int *vco_table;
6885         unsigned int vco;
6886         uint8_t tmp = 0;
6887
6888         /* FIXME other chipsets? */
6889         if (IS_GM45(dev))
6890                 vco_table = ctg_vco;
6891         else if (IS_G4X(dev))
6892                 vco_table = elk_vco;
6893         else if (IS_CRESTLINE(dev))
6894                 vco_table = cl_vco;
6895         else if (IS_PINEVIEW(dev))
6896                 vco_table = pnv_vco;
6897         else if (IS_G33(dev))
6898                 vco_table = blb_vco;
6899         else
6900                 return 0;
6901
6902         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6903
6904         vco = vco_table[tmp & 0x7];
6905         if (vco == 0)
6906                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6907         else
6908                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6909
6910         return vco;
6911 }
6912
6913 static int gm45_get_display_clock_speed(struct drm_device *dev)
6914 {
6915         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6916         uint16_t tmp = 0;
6917
6918         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6919
6920         cdclk_sel = (tmp >> 12) & 0x1;
6921
6922         switch (vco) {
6923         case 2666667:
6924         case 4000000:
6925         case 5333333:
6926                 return cdclk_sel ? 333333 : 222222;
6927         case 3200000:
6928                 return cdclk_sel ? 320000 : 228571;
6929         default:
6930                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6931                 return 222222;
6932         }
6933 }
6934
6935 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6936 {
6937         static const uint8_t div_3200[] = { 16, 10,  8 };
6938         static const uint8_t div_4000[] = { 20, 12, 10 };
6939         static const uint8_t div_5333[] = { 24, 16, 14 };
6940         const uint8_t *div_table;
6941         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6942         uint16_t tmp = 0;
6943
6944         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6945
6946         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6947
6948         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6949                 goto fail;
6950
6951         switch (vco) {
6952         case 3200000:
6953                 div_table = div_3200;
6954                 break;
6955         case 4000000:
6956                 div_table = div_4000;
6957                 break;
6958         case 5333333:
6959                 div_table = div_5333;
6960                 break;
6961         default:
6962                 goto fail;
6963         }
6964
6965         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6966
6967 fail:
6968         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6969         return 200000;
6970 }
6971
6972 static int g33_get_display_clock_speed(struct drm_device *dev)
6973 {
6974         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
6975         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
6976         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6977         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6978         const uint8_t *div_table;
6979         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6980         uint16_t tmp = 0;
6981
6982         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6983
6984         cdclk_sel = (tmp >> 4) & 0x7;
6985
6986         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6987                 goto fail;
6988
6989         switch (vco) {
6990         case 3200000:
6991                 div_table = div_3200;
6992                 break;
6993         case 4000000:
6994                 div_table = div_4000;
6995                 break;
6996         case 4800000:
6997                 div_table = div_4800;
6998                 break;
6999         case 5333333:
7000                 div_table = div_5333;
7001                 break;
7002         default:
7003                 goto fail;
7004         }
7005
7006         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7007
7008 fail:
7009         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7010         return 190476;
7011 }
7012
7013 static void
7014 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7015 {
7016         while (*num > DATA_LINK_M_N_MASK ||
7017                *den > DATA_LINK_M_N_MASK) {
7018                 *num >>= 1;
7019                 *den >>= 1;
7020         }
7021 }
7022
7023 static void compute_m_n(unsigned int m, unsigned int n,
7024                         uint32_t *ret_m, uint32_t *ret_n)
7025 {
7026         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7027         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7028         intel_reduce_m_n_ratio(ret_m, ret_n);
7029 }
7030
7031 void
7032 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7033                        int pixel_clock, int link_clock,
7034                        struct intel_link_m_n *m_n)
7035 {
7036         m_n->tu = 64;
7037
7038         compute_m_n(bits_per_pixel * pixel_clock,
7039                     link_clock * nlanes * 8,
7040                     &m_n->gmch_m, &m_n->gmch_n);
7041
7042         compute_m_n(pixel_clock, link_clock,
7043                     &m_n->link_m, &m_n->link_n);
7044 }
7045
7046 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7047 {
7048         if (i915.panel_use_ssc >= 0)
7049                 return i915.panel_use_ssc != 0;
7050         return dev_priv->vbt.lvds_use_ssc
7051                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7052 }
7053
7054 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7055 {
7056         return (1 << dpll->n) << 16 | dpll->m2;
7057 }
7058
7059 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7060 {
7061         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7062 }
7063
7064 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7065                                      struct intel_crtc_state *crtc_state,
7066                                      intel_clock_t *reduced_clock)
7067 {
7068         struct drm_device *dev = crtc->base.dev;
7069         u32 fp, fp2 = 0;
7070
7071         if (IS_PINEVIEW(dev)) {
7072                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7073                 if (reduced_clock)
7074                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7075         } else {
7076                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7077                 if (reduced_clock)
7078                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7079         }
7080
7081         crtc_state->dpll_hw_state.fp0 = fp;
7082
7083         crtc->lowfreq_avail = false;
7084         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7085             reduced_clock) {
7086                 crtc_state->dpll_hw_state.fp1 = fp2;
7087                 crtc->lowfreq_avail = true;
7088         } else {
7089                 crtc_state->dpll_hw_state.fp1 = fp;
7090         }
7091 }
7092
7093 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7094                 pipe)
7095 {
7096         u32 reg_val;
7097
7098         /*
7099          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7100          * and set it to a reasonable value instead.
7101          */
7102         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7103         reg_val &= 0xffffff00;
7104         reg_val |= 0x00000030;
7105         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7106
7107         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7108         reg_val &= 0x8cffffff;
7109         reg_val = 0x8c000000;
7110         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7111
7112         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7113         reg_val &= 0xffffff00;
7114         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7115
7116         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7117         reg_val &= 0x00ffffff;
7118         reg_val |= 0xb0000000;
7119         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7120 }
7121
7122 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7123                                          struct intel_link_m_n *m_n)
7124 {
7125         struct drm_device *dev = crtc->base.dev;
7126         struct drm_i915_private *dev_priv = dev->dev_private;
7127         int pipe = crtc->pipe;
7128
7129         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7130         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7131         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7132         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7133 }
7134
7135 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7136                                          struct intel_link_m_n *m_n,
7137                                          struct intel_link_m_n *m2_n2)
7138 {
7139         struct drm_device *dev = crtc->base.dev;
7140         struct drm_i915_private *dev_priv = dev->dev_private;
7141         int pipe = crtc->pipe;
7142         enum transcoder transcoder = crtc->config->cpu_transcoder;
7143
7144         if (INTEL_INFO(dev)->gen >= 5) {
7145                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7146                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7147                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7148                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7149                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7150                  * for gen < 8) and if DRRS is supported (to make sure the
7151                  * registers are not unnecessarily accessed).
7152                  */
7153                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7154                         crtc->config->has_drrs) {
7155                         I915_WRITE(PIPE_DATA_M2(transcoder),
7156                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7157                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7158                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7159                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7160                 }
7161         } else {
7162                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7163                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7164                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7165                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7166         }
7167 }
7168
7169 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7170 {
7171         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7172
7173         if (m_n == M1_N1) {
7174                 dp_m_n = &crtc->config->dp_m_n;
7175                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7176         } else if (m_n == M2_N2) {
7177
7178                 /*
7179                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7180                  * needs to be programmed into M1_N1.
7181                  */
7182                 dp_m_n = &crtc->config->dp_m2_n2;
7183         } else {
7184                 DRM_ERROR("Unsupported divider value\n");
7185                 return;
7186         }
7187
7188         if (crtc->config->has_pch_encoder)
7189                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7190         else
7191                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7192 }
7193
7194 static void vlv_compute_dpll(struct intel_crtc *crtc,
7195                              struct intel_crtc_state *pipe_config)
7196 {
7197         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7198                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7199         if (crtc->pipe != PIPE_A)
7200                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7201
7202         /* DPLL not used with DSI, but still need the rest set up */
7203         if (!pipe_config->has_dsi_encoder)
7204                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7205                         DPLL_EXT_BUFFER_ENABLE_VLV;
7206
7207         pipe_config->dpll_hw_state.dpll_md =
7208                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7209 }
7210
7211 static void chv_compute_dpll(struct intel_crtc *crtc,
7212                              struct intel_crtc_state *pipe_config)
7213 {
7214         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7215                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7216         if (crtc->pipe != PIPE_A)
7217                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7218
7219         /* DPLL not used with DSI, but still need the rest set up */
7220         if (!pipe_config->has_dsi_encoder)
7221                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7222
7223         pipe_config->dpll_hw_state.dpll_md =
7224                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7225 }
7226
7227 static void vlv_prepare_pll(struct intel_crtc *crtc,
7228                             const struct intel_crtc_state *pipe_config)
7229 {
7230         struct drm_device *dev = crtc->base.dev;
7231         struct drm_i915_private *dev_priv = dev->dev_private;
7232         enum pipe pipe = crtc->pipe;
7233         u32 mdiv;
7234         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7235         u32 coreclk, reg_val;
7236
7237         /* Enable Refclk */
7238         I915_WRITE(DPLL(pipe),
7239                    pipe_config->dpll_hw_state.dpll &
7240                    ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7241
7242         /* No need to actually set up the DPLL with DSI */
7243         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7244                 return;
7245
7246         mutex_lock(&dev_priv->sb_lock);
7247
7248         bestn = pipe_config->dpll.n;
7249         bestm1 = pipe_config->dpll.m1;
7250         bestm2 = pipe_config->dpll.m2;
7251         bestp1 = pipe_config->dpll.p1;
7252         bestp2 = pipe_config->dpll.p2;
7253
7254         /* See eDP HDMI DPIO driver vbios notes doc */
7255
7256         /* PLL B needs special handling */
7257         if (pipe == PIPE_B)
7258                 vlv_pllb_recal_opamp(dev_priv, pipe);
7259
7260         /* Set up Tx target for periodic Rcomp update */
7261         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7262
7263         /* Disable target IRef on PLL */
7264         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7265         reg_val &= 0x00ffffff;
7266         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7267
7268         /* Disable fast lock */
7269         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7270
7271         /* Set idtafcrecal before PLL is enabled */
7272         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7273         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7274         mdiv |= ((bestn << DPIO_N_SHIFT));
7275         mdiv |= (1 << DPIO_K_SHIFT);
7276
7277         /*
7278          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7279          * but we don't support that).
7280          * Note: don't use the DAC post divider as it seems unstable.
7281          */
7282         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7283         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7284
7285         mdiv |= DPIO_ENABLE_CALIBRATION;
7286         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7287
7288         /* Set HBR and RBR LPF coefficients */
7289         if (pipe_config->port_clock == 162000 ||
7290             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7291             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7292                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7293                                  0x009f0003);
7294         else
7295                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7296                                  0x00d0000f);
7297
7298         if (pipe_config->has_dp_encoder) {
7299                 /* Use SSC source */
7300                 if (pipe == PIPE_A)
7301                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7302                                          0x0df40000);
7303                 else
7304                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7305                                          0x0df70000);
7306         } else { /* HDMI or VGA */
7307                 /* Use bend source */
7308                 if (pipe == PIPE_A)
7309                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7310                                          0x0df70000);
7311                 else
7312                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7313                                          0x0df40000);
7314         }
7315
7316         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7317         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7318         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7319             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7320                 coreclk |= 0x01000000;
7321         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7322
7323         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7324         mutex_unlock(&dev_priv->sb_lock);
7325 }
7326
7327 static void chv_prepare_pll(struct intel_crtc *crtc,
7328                             const struct intel_crtc_state *pipe_config)
7329 {
7330         struct drm_device *dev = crtc->base.dev;
7331         struct drm_i915_private *dev_priv = dev->dev_private;
7332         enum pipe pipe = crtc->pipe;
7333         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7334         u32 loopfilter, tribuf_calcntr;
7335         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7336         u32 dpio_val;
7337         int vco;
7338
7339         /* Enable Refclk and SSC */
7340         I915_WRITE(DPLL(pipe),
7341                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7342
7343         /* No need to actually set up the DPLL with DSI */
7344         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7345                 return;
7346
7347         bestn = pipe_config->dpll.n;
7348         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7349         bestm1 = pipe_config->dpll.m1;
7350         bestm2 = pipe_config->dpll.m2 >> 22;
7351         bestp1 = pipe_config->dpll.p1;
7352         bestp2 = pipe_config->dpll.p2;
7353         vco = pipe_config->dpll.vco;
7354         dpio_val = 0;
7355         loopfilter = 0;
7356
7357         mutex_lock(&dev_priv->sb_lock);
7358
7359         /* p1 and p2 divider */
7360         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7361                         5 << DPIO_CHV_S1_DIV_SHIFT |
7362                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7363                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7364                         1 << DPIO_CHV_K_DIV_SHIFT);
7365
7366         /* Feedback post-divider - m2 */
7367         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7368
7369         /* Feedback refclk divider - n and m1 */
7370         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7371                         DPIO_CHV_M1_DIV_BY_2 |
7372                         1 << DPIO_CHV_N_DIV_SHIFT);
7373
7374         /* M2 fraction division */
7375         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7376
7377         /* M2 fraction division enable */
7378         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7379         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7380         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7381         if (bestm2_frac)
7382                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7383         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7384
7385         /* Program digital lock detect threshold */
7386         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7387         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7388                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7389         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7390         if (!bestm2_frac)
7391                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7392         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7393
7394         /* Loop filter */
7395         if (vco == 5400000) {
7396                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7397                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7398                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7399                 tribuf_calcntr = 0x9;
7400         } else if (vco <= 6200000) {
7401                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7402                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7403                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7404                 tribuf_calcntr = 0x9;
7405         } else if (vco <= 6480000) {
7406                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7407                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7408                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7409                 tribuf_calcntr = 0x8;
7410         } else {
7411                 /* Not supported. Apply the same limits as in the max case */
7412                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7413                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7414                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7415                 tribuf_calcntr = 0;
7416         }
7417         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7418
7419         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7420         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7421         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7422         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7423
7424         /* AFC Recal */
7425         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7426                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7427                         DPIO_AFC_RECAL);
7428
7429         mutex_unlock(&dev_priv->sb_lock);
7430 }
7431
7432 /**
7433  * vlv_force_pll_on - forcibly enable just the PLL
7434  * @dev_priv: i915 private structure
7435  * @pipe: pipe PLL to enable
7436  * @dpll: PLL configuration
7437  *
7438  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7439  * in cases where we need the PLL enabled even when @pipe is not going to
7440  * be enabled.
7441  */
7442 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7443                      const struct dpll *dpll)
7444 {
7445         struct intel_crtc *crtc =
7446                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7447         struct intel_crtc_state *pipe_config;
7448
7449         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7450         if (!pipe_config)
7451                 return -ENOMEM;
7452
7453         pipe_config->base.crtc = &crtc->base;
7454         pipe_config->pixel_multiplier = 1;
7455         pipe_config->dpll = *dpll;
7456
7457         if (IS_CHERRYVIEW(dev)) {
7458                 chv_compute_dpll(crtc, pipe_config);
7459                 chv_prepare_pll(crtc, pipe_config);
7460                 chv_enable_pll(crtc, pipe_config);
7461         } else {
7462                 vlv_compute_dpll(crtc, pipe_config);
7463                 vlv_prepare_pll(crtc, pipe_config);
7464                 vlv_enable_pll(crtc, pipe_config);
7465         }
7466
7467         kfree(pipe_config);
7468
7469         return 0;
7470 }
7471
7472 /**
7473  * vlv_force_pll_off - forcibly disable just the PLL
7474  * @dev_priv: i915 private structure
7475  * @pipe: pipe PLL to disable
7476  *
7477  * Disable the PLL for @pipe. To be used in cases where we need
7478  * the PLL enabled even when @pipe is not going to be enabled.
7479  */
7480 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7481 {
7482         if (IS_CHERRYVIEW(dev))
7483                 chv_disable_pll(to_i915(dev), pipe);
7484         else
7485                 vlv_disable_pll(to_i915(dev), pipe);
7486 }
7487
7488 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7489                               struct intel_crtc_state *crtc_state,
7490                               intel_clock_t *reduced_clock)
7491 {
7492         struct drm_device *dev = crtc->base.dev;
7493         struct drm_i915_private *dev_priv = dev->dev_private;
7494         u32 dpll;
7495         bool is_sdvo;
7496         struct dpll *clock = &crtc_state->dpll;
7497
7498         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7499
7500         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7501                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7502
7503         dpll = DPLL_VGA_MODE_DIS;
7504
7505         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7506                 dpll |= DPLLB_MODE_LVDS;
7507         else
7508                 dpll |= DPLLB_MODE_DAC_SERIAL;
7509
7510         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7511                 dpll |= (crtc_state->pixel_multiplier - 1)
7512                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7513         }
7514
7515         if (is_sdvo)
7516                 dpll |= DPLL_SDVO_HIGH_SPEED;
7517
7518         if (crtc_state->has_dp_encoder)
7519                 dpll |= DPLL_SDVO_HIGH_SPEED;
7520
7521         /* compute bitmask from p1 value */
7522         if (IS_PINEVIEW(dev))
7523                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7524         else {
7525                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7526                 if (IS_G4X(dev) && reduced_clock)
7527                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7528         }
7529         switch (clock->p2) {
7530         case 5:
7531                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7532                 break;
7533         case 7:
7534                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7535                 break;
7536         case 10:
7537                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7538                 break;
7539         case 14:
7540                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7541                 break;
7542         }
7543         if (INTEL_INFO(dev)->gen >= 4)
7544                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7545
7546         if (crtc_state->sdvo_tv_clock)
7547                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7548         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7549                  intel_panel_use_ssc(dev_priv))
7550                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7551         else
7552                 dpll |= PLL_REF_INPUT_DREFCLK;
7553
7554         dpll |= DPLL_VCO_ENABLE;
7555         crtc_state->dpll_hw_state.dpll = dpll;
7556
7557         if (INTEL_INFO(dev)->gen >= 4) {
7558                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7559                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7560                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7561         }
7562 }
7563
7564 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7565                               struct intel_crtc_state *crtc_state,
7566                               intel_clock_t *reduced_clock)
7567 {
7568         struct drm_device *dev = crtc->base.dev;
7569         struct drm_i915_private *dev_priv = dev->dev_private;
7570         u32 dpll;
7571         struct dpll *clock = &crtc_state->dpll;
7572
7573         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7574
7575         dpll = DPLL_VGA_MODE_DIS;
7576
7577         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7578                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7579         } else {
7580                 if (clock->p1 == 2)
7581                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7582                 else
7583                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7584                 if (clock->p2 == 4)
7585                         dpll |= PLL_P2_DIVIDE_BY_4;
7586         }
7587
7588         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7589                 dpll |= DPLL_DVO_2X_MODE;
7590
7591         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7592             intel_panel_use_ssc(dev_priv))
7593                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7594         else
7595                 dpll |= PLL_REF_INPUT_DREFCLK;
7596
7597         dpll |= DPLL_VCO_ENABLE;
7598         crtc_state->dpll_hw_state.dpll = dpll;
7599 }
7600
7601 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7602 {
7603         struct drm_device *dev = intel_crtc->base.dev;
7604         struct drm_i915_private *dev_priv = dev->dev_private;
7605         enum pipe pipe = intel_crtc->pipe;
7606         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7607         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7608         uint32_t crtc_vtotal, crtc_vblank_end;
7609         int vsyncshift = 0;
7610
7611         /* We need to be careful not to changed the adjusted mode, for otherwise
7612          * the hw state checker will get angry at the mismatch. */
7613         crtc_vtotal = adjusted_mode->crtc_vtotal;
7614         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7615
7616         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7617                 /* the chip adds 2 halflines automatically */
7618                 crtc_vtotal -= 1;
7619                 crtc_vblank_end -= 1;
7620
7621                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7622                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7623                 else
7624                         vsyncshift = adjusted_mode->crtc_hsync_start -
7625                                 adjusted_mode->crtc_htotal / 2;
7626                 if (vsyncshift < 0)
7627                         vsyncshift += adjusted_mode->crtc_htotal;
7628         }
7629
7630         if (INTEL_INFO(dev)->gen > 3)
7631                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7632
7633         I915_WRITE(HTOTAL(cpu_transcoder),
7634                    (adjusted_mode->crtc_hdisplay - 1) |
7635                    ((adjusted_mode->crtc_htotal - 1) << 16));
7636         I915_WRITE(HBLANK(cpu_transcoder),
7637                    (adjusted_mode->crtc_hblank_start - 1) |
7638                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7639         I915_WRITE(HSYNC(cpu_transcoder),
7640                    (adjusted_mode->crtc_hsync_start - 1) |
7641                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7642
7643         I915_WRITE(VTOTAL(cpu_transcoder),
7644                    (adjusted_mode->crtc_vdisplay - 1) |
7645                    ((crtc_vtotal - 1) << 16));
7646         I915_WRITE(VBLANK(cpu_transcoder),
7647                    (adjusted_mode->crtc_vblank_start - 1) |
7648                    ((crtc_vblank_end - 1) << 16));
7649         I915_WRITE(VSYNC(cpu_transcoder),
7650                    (adjusted_mode->crtc_vsync_start - 1) |
7651                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7652
7653         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7654          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7655          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7656          * bits. */
7657         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7658             (pipe == PIPE_B || pipe == PIPE_C))
7659                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7660
7661 }
7662
7663 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7664 {
7665         struct drm_device *dev = intel_crtc->base.dev;
7666         struct drm_i915_private *dev_priv = dev->dev_private;
7667         enum pipe pipe = intel_crtc->pipe;
7668
7669         /* pipesrc controls the size that is scaled from, which should
7670          * always be the user's requested size.
7671          */
7672         I915_WRITE(PIPESRC(pipe),
7673                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7674                    (intel_crtc->config->pipe_src_h - 1));
7675 }
7676
7677 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7678                                    struct intel_crtc_state *pipe_config)
7679 {
7680         struct drm_device *dev = crtc->base.dev;
7681         struct drm_i915_private *dev_priv = dev->dev_private;
7682         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7683         uint32_t tmp;
7684
7685         tmp = I915_READ(HTOTAL(cpu_transcoder));
7686         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7687         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7688         tmp = I915_READ(HBLANK(cpu_transcoder));
7689         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7690         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7691         tmp = I915_READ(HSYNC(cpu_transcoder));
7692         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7693         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7694
7695         tmp = I915_READ(VTOTAL(cpu_transcoder));
7696         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7697         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7698         tmp = I915_READ(VBLANK(cpu_transcoder));
7699         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7700         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7701         tmp = I915_READ(VSYNC(cpu_transcoder));
7702         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7703         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7704
7705         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7706                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7707                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7708                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7709         }
7710 }
7711
7712 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7713                                     struct intel_crtc_state *pipe_config)
7714 {
7715         struct drm_device *dev = crtc->base.dev;
7716         struct drm_i915_private *dev_priv = dev->dev_private;
7717         u32 tmp;
7718
7719         tmp = I915_READ(PIPESRC(crtc->pipe));
7720         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7721         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7722
7723         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7724         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7725 }
7726
7727 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7728                                  struct intel_crtc_state *pipe_config)
7729 {
7730         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7731         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7732         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7733         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7734
7735         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7736         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7737         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7738         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7739
7740         mode->flags = pipe_config->base.adjusted_mode.flags;
7741         mode->type = DRM_MODE_TYPE_DRIVER;
7742
7743         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7744         mode->flags |= pipe_config->base.adjusted_mode.flags;
7745
7746         mode->hsync = drm_mode_hsync(mode);
7747         mode->vrefresh = drm_mode_vrefresh(mode);
7748         drm_mode_set_name(mode);
7749 }
7750
7751 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7752 {
7753         struct drm_device *dev = intel_crtc->base.dev;
7754         struct drm_i915_private *dev_priv = dev->dev_private;
7755         uint32_t pipeconf;
7756
7757         pipeconf = 0;
7758
7759         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7760             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7761                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7762
7763         if (intel_crtc->config->double_wide)
7764                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7765
7766         /* only g4x and later have fancy bpc/dither controls */
7767         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7768                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7769                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7770                         pipeconf |= PIPECONF_DITHER_EN |
7771                                     PIPECONF_DITHER_TYPE_SP;
7772
7773                 switch (intel_crtc->config->pipe_bpp) {
7774                 case 18:
7775                         pipeconf |= PIPECONF_6BPC;
7776                         break;
7777                 case 24:
7778                         pipeconf |= PIPECONF_8BPC;
7779                         break;
7780                 case 30:
7781                         pipeconf |= PIPECONF_10BPC;
7782                         break;
7783                 default:
7784                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7785                         BUG();
7786                 }
7787         }
7788
7789         if (HAS_PIPE_CXSR(dev)) {
7790                 if (intel_crtc->lowfreq_avail) {
7791                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7792                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7793                 } else {
7794                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7795                 }
7796         }
7797
7798         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7799                 if (INTEL_INFO(dev)->gen < 4 ||
7800                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7801                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7802                 else
7803                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7804         } else
7805                 pipeconf |= PIPECONF_PROGRESSIVE;
7806
7807         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7808              intel_crtc->config->limited_color_range)
7809                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7810
7811         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7812         POSTING_READ(PIPECONF(intel_crtc->pipe));
7813 }
7814
7815 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7816                                    struct intel_crtc_state *crtc_state)
7817 {
7818         struct drm_device *dev = crtc->base.dev;
7819         struct drm_i915_private *dev_priv = dev->dev_private;
7820         const intel_limit_t *limit;
7821         int refclk = 48000;
7822
7823         memset(&crtc_state->dpll_hw_state, 0,
7824                sizeof(crtc_state->dpll_hw_state));
7825
7826         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7827                 if (intel_panel_use_ssc(dev_priv)) {
7828                         refclk = dev_priv->vbt.lvds_ssc_freq;
7829                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7830                 }
7831
7832                 limit = &intel_limits_i8xx_lvds;
7833         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO)) {
7834                 limit = &intel_limits_i8xx_dvo;
7835         } else {
7836                 limit = &intel_limits_i8xx_dac;
7837         }
7838
7839         if (!crtc_state->clock_set &&
7840             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7841                                  refclk, NULL, &crtc_state->dpll)) {
7842                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7843                 return -EINVAL;
7844         }
7845
7846         i8xx_compute_dpll(crtc, crtc_state, NULL);
7847
7848         return 0;
7849 }
7850
7851 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7852                                   struct intel_crtc_state *crtc_state)
7853 {
7854         struct drm_device *dev = crtc->base.dev;
7855         struct drm_i915_private *dev_priv = dev->dev_private;
7856         const intel_limit_t *limit;
7857         int refclk = 96000;
7858
7859         memset(&crtc_state->dpll_hw_state, 0,
7860                sizeof(crtc_state->dpll_hw_state));
7861
7862         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7863                 if (intel_panel_use_ssc(dev_priv)) {
7864                         refclk = dev_priv->vbt.lvds_ssc_freq;
7865                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7866                 }
7867
7868                 if (intel_is_dual_link_lvds(dev))
7869                         limit = &intel_limits_g4x_dual_channel_lvds;
7870                 else
7871                         limit = &intel_limits_g4x_single_channel_lvds;
7872         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7873                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7874                 limit = &intel_limits_g4x_hdmi;
7875         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7876                 limit = &intel_limits_g4x_sdvo;
7877         } else {
7878                 /* The option is for other outputs */
7879                 limit = &intel_limits_i9xx_sdvo;
7880         }
7881
7882         if (!crtc_state->clock_set &&
7883             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7884                                 refclk, NULL, &crtc_state->dpll)) {
7885                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7886                 return -EINVAL;
7887         }
7888
7889         i9xx_compute_dpll(crtc, crtc_state, NULL);
7890
7891         return 0;
7892 }
7893
7894 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7895                                   struct intel_crtc_state *crtc_state)
7896 {
7897         struct drm_device *dev = crtc->base.dev;
7898         struct drm_i915_private *dev_priv = dev->dev_private;
7899         const intel_limit_t *limit;
7900         int refclk = 96000;
7901
7902         memset(&crtc_state->dpll_hw_state, 0,
7903                sizeof(crtc_state->dpll_hw_state));
7904
7905         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7906                 if (intel_panel_use_ssc(dev_priv)) {
7907                         refclk = dev_priv->vbt.lvds_ssc_freq;
7908                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7909                 }
7910
7911                 limit = &intel_limits_pineview_lvds;
7912         } else {
7913                 limit = &intel_limits_pineview_sdvo;
7914         }
7915
7916         if (!crtc_state->clock_set &&
7917             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7918                                 refclk, NULL, &crtc_state->dpll)) {
7919                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7920                 return -EINVAL;
7921         }
7922
7923         i9xx_compute_dpll(crtc, crtc_state, NULL);
7924
7925         return 0;
7926 }
7927
7928 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7929                                    struct intel_crtc_state *crtc_state)
7930 {
7931         struct drm_device *dev = crtc->base.dev;
7932         struct drm_i915_private *dev_priv = dev->dev_private;
7933         const intel_limit_t *limit;
7934         int refclk = 96000;
7935
7936         memset(&crtc_state->dpll_hw_state, 0,
7937                sizeof(crtc_state->dpll_hw_state));
7938
7939         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7940                 if (intel_panel_use_ssc(dev_priv)) {
7941                         refclk = dev_priv->vbt.lvds_ssc_freq;
7942                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7943                 }
7944
7945                 limit = &intel_limits_i9xx_lvds;
7946         } else {
7947                 limit = &intel_limits_i9xx_sdvo;
7948         }
7949
7950         if (!crtc_state->clock_set &&
7951             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7952                                  refclk, NULL, &crtc_state->dpll)) {
7953                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7954                 return -EINVAL;
7955         }
7956
7957         i9xx_compute_dpll(crtc, crtc_state, NULL);
7958
7959         return 0;
7960 }
7961
7962 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7963                                   struct intel_crtc_state *crtc_state)
7964 {
7965         int refclk = 100000;
7966         const intel_limit_t *limit = &intel_limits_chv;
7967
7968         memset(&crtc_state->dpll_hw_state, 0,
7969                sizeof(crtc_state->dpll_hw_state));
7970
7971         if (!crtc_state->clock_set &&
7972             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7973                                 refclk, NULL, &crtc_state->dpll)) {
7974                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7975                 return -EINVAL;
7976         }
7977
7978         chv_compute_dpll(crtc, crtc_state);
7979
7980         return 0;
7981 }
7982
7983 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7984                                   struct intel_crtc_state *crtc_state)
7985 {
7986         int refclk = 100000;
7987         const intel_limit_t *limit = &intel_limits_vlv;
7988
7989         memset(&crtc_state->dpll_hw_state, 0,
7990                sizeof(crtc_state->dpll_hw_state));
7991
7992         if (!crtc_state->clock_set &&
7993             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7994                                 refclk, NULL, &crtc_state->dpll)) {
7995                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7996                 return -EINVAL;
7997         }
7998
7999         vlv_compute_dpll(crtc, crtc_state);
8000
8001         return 0;
8002 }
8003
8004 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8005                                  struct intel_crtc_state *pipe_config)
8006 {
8007         struct drm_device *dev = crtc->base.dev;
8008         struct drm_i915_private *dev_priv = dev->dev_private;
8009         uint32_t tmp;
8010
8011         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8012                 return;
8013
8014         tmp = I915_READ(PFIT_CONTROL);
8015         if (!(tmp & PFIT_ENABLE))
8016                 return;
8017
8018         /* Check whether the pfit is attached to our pipe. */
8019         if (INTEL_INFO(dev)->gen < 4) {
8020                 if (crtc->pipe != PIPE_B)
8021                         return;
8022         } else {
8023                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8024                         return;
8025         }
8026
8027         pipe_config->gmch_pfit.control = tmp;
8028         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8029         if (INTEL_INFO(dev)->gen < 5)
8030                 pipe_config->gmch_pfit.lvds_border_bits =
8031                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
8032 }
8033
8034 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8035                                struct intel_crtc_state *pipe_config)
8036 {
8037         struct drm_device *dev = crtc->base.dev;
8038         struct drm_i915_private *dev_priv = dev->dev_private;
8039         int pipe = pipe_config->cpu_transcoder;
8040         intel_clock_t clock;
8041         u32 mdiv;
8042         int refclk = 100000;
8043
8044         /* In case of DSI, DPLL will not be used */
8045         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8046                 return;
8047
8048         mutex_lock(&dev_priv->sb_lock);
8049         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8050         mutex_unlock(&dev_priv->sb_lock);
8051
8052         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8053         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8054         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8055         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8056         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8057
8058         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8059 }
8060
8061 static void
8062 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8063                               struct intel_initial_plane_config *plane_config)
8064 {
8065         struct drm_device *dev = crtc->base.dev;
8066         struct drm_i915_private *dev_priv = dev->dev_private;
8067         u32 val, base, offset;
8068         int pipe = crtc->pipe, plane = crtc->plane;
8069         int fourcc, pixel_format;
8070         unsigned int aligned_height;
8071         struct drm_framebuffer *fb;
8072         struct intel_framebuffer *intel_fb;
8073
8074         val = I915_READ(DSPCNTR(plane));
8075         if (!(val & DISPLAY_PLANE_ENABLE))
8076                 return;
8077
8078         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8079         if (!intel_fb) {
8080                 DRM_DEBUG_KMS("failed to alloc fb\n");
8081                 return;
8082         }
8083
8084         fb = &intel_fb->base;
8085
8086         if (INTEL_INFO(dev)->gen >= 4) {
8087                 if (val & DISPPLANE_TILED) {
8088                         plane_config->tiling = I915_TILING_X;
8089                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8090                 }
8091         }
8092
8093         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8094         fourcc = i9xx_format_to_fourcc(pixel_format);
8095         fb->pixel_format = fourcc;
8096         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8097
8098         if (INTEL_INFO(dev)->gen >= 4) {
8099                 if (plane_config->tiling)
8100                         offset = I915_READ(DSPTILEOFF(plane));
8101                 else
8102                         offset = I915_READ(DSPLINOFF(plane));
8103                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8104         } else {
8105                 base = I915_READ(DSPADDR(plane));
8106         }
8107         plane_config->base = base;
8108
8109         val = I915_READ(PIPESRC(pipe));
8110         fb->width = ((val >> 16) & 0xfff) + 1;
8111         fb->height = ((val >> 0) & 0xfff) + 1;
8112
8113         val = I915_READ(DSPSTRIDE(pipe));
8114         fb->pitches[0] = val & 0xffffffc0;
8115
8116         aligned_height = intel_fb_align_height(dev, fb->height,
8117                                                fb->pixel_format,
8118                                                fb->modifier[0]);
8119
8120         plane_config->size = fb->pitches[0] * aligned_height;
8121
8122         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8123                       pipe_name(pipe), plane, fb->width, fb->height,
8124                       fb->bits_per_pixel, base, fb->pitches[0],
8125                       plane_config->size);
8126
8127         plane_config->fb = intel_fb;
8128 }
8129
8130 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8131                                struct intel_crtc_state *pipe_config)
8132 {
8133         struct drm_device *dev = crtc->base.dev;
8134         struct drm_i915_private *dev_priv = dev->dev_private;
8135         int pipe = pipe_config->cpu_transcoder;
8136         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8137         intel_clock_t clock;
8138         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8139         int refclk = 100000;
8140
8141         /* In case of DSI, DPLL will not be used */
8142         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8143                 return;
8144
8145         mutex_lock(&dev_priv->sb_lock);
8146         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8147         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8148         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8149         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8150         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8151         mutex_unlock(&dev_priv->sb_lock);
8152
8153         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8154         clock.m2 = (pll_dw0 & 0xff) << 22;
8155         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8156                 clock.m2 |= pll_dw2 & 0x3fffff;
8157         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8158         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8159         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8160
8161         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8162 }
8163
8164 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8165                                  struct intel_crtc_state *pipe_config)
8166 {
8167         struct drm_device *dev = crtc->base.dev;
8168         struct drm_i915_private *dev_priv = dev->dev_private;
8169         enum intel_display_power_domain power_domain;
8170         uint32_t tmp;
8171         bool ret;
8172
8173         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8174         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8175                 return false;
8176
8177         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8178         pipe_config->shared_dpll = NULL;
8179
8180         ret = false;
8181
8182         tmp = I915_READ(PIPECONF(crtc->pipe));
8183         if (!(tmp & PIPECONF_ENABLE))
8184                 goto out;
8185
8186         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8187                 switch (tmp & PIPECONF_BPC_MASK) {
8188                 case PIPECONF_6BPC:
8189                         pipe_config->pipe_bpp = 18;
8190                         break;
8191                 case PIPECONF_8BPC:
8192                         pipe_config->pipe_bpp = 24;
8193                         break;
8194                 case PIPECONF_10BPC:
8195                         pipe_config->pipe_bpp = 30;
8196                         break;
8197                 default:
8198                         break;
8199                 }
8200         }
8201
8202         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8203             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8204                 pipe_config->limited_color_range = true;
8205
8206         if (INTEL_INFO(dev)->gen < 4)
8207                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8208
8209         intel_get_pipe_timings(crtc, pipe_config);
8210         intel_get_pipe_src_size(crtc, pipe_config);
8211
8212         i9xx_get_pfit_config(crtc, pipe_config);
8213
8214         if (INTEL_INFO(dev)->gen >= 4) {
8215                 /* No way to read it out on pipes B and C */
8216                 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8217                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
8218                 else
8219                         tmp = I915_READ(DPLL_MD(crtc->pipe));
8220                 pipe_config->pixel_multiplier =
8221                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8222                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8223                 pipe_config->dpll_hw_state.dpll_md = tmp;
8224         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8225                 tmp = I915_READ(DPLL(crtc->pipe));
8226                 pipe_config->pixel_multiplier =
8227                         ((tmp & SDVO_MULTIPLIER_MASK)
8228                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8229         } else {
8230                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8231                  * port and will be fixed up in the encoder->get_config
8232                  * function. */
8233                 pipe_config->pixel_multiplier = 1;
8234         }
8235         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8236         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8237                 /*
8238                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8239                  * on 830. Filter it out here so that we don't
8240                  * report errors due to that.
8241                  */
8242                 if (IS_I830(dev))
8243                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8244
8245                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8246                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8247         } else {
8248                 /* Mask out read-only status bits. */
8249                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8250                                                      DPLL_PORTC_READY_MASK |
8251                                                      DPLL_PORTB_READY_MASK);
8252         }
8253
8254         if (IS_CHERRYVIEW(dev))
8255                 chv_crtc_clock_get(crtc, pipe_config);
8256         else if (IS_VALLEYVIEW(dev))
8257                 vlv_crtc_clock_get(crtc, pipe_config);
8258         else
8259                 i9xx_crtc_clock_get(crtc, pipe_config);
8260
8261         /*
8262          * Normally the dotclock is filled in by the encoder .get_config()
8263          * but in case the pipe is enabled w/o any ports we need a sane
8264          * default.
8265          */
8266         pipe_config->base.adjusted_mode.crtc_clock =
8267                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8268
8269         ret = true;
8270
8271 out:
8272         intel_display_power_put(dev_priv, power_domain);
8273
8274         return ret;
8275 }
8276
8277 static void ironlake_init_pch_refclk(struct drm_device *dev)
8278 {
8279         struct drm_i915_private *dev_priv = dev->dev_private;
8280         struct intel_encoder *encoder;
8281         u32 val, final;
8282         bool has_lvds = false;
8283         bool has_cpu_edp = false;
8284         bool has_panel = false;
8285         bool has_ck505 = false;
8286         bool can_ssc = false;
8287
8288         /* We need to take the global config into account */
8289         for_each_intel_encoder(dev, encoder) {
8290                 switch (encoder->type) {
8291                 case INTEL_OUTPUT_LVDS:
8292                         has_panel = true;
8293                         has_lvds = true;
8294                         break;
8295                 case INTEL_OUTPUT_EDP:
8296                         has_panel = true;
8297                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8298                                 has_cpu_edp = true;
8299                         break;
8300                 default:
8301                         break;
8302                 }
8303         }
8304
8305         if (HAS_PCH_IBX(dev)) {
8306                 has_ck505 = dev_priv->vbt.display_clock_mode;
8307                 can_ssc = has_ck505;
8308         } else {
8309                 has_ck505 = false;
8310                 can_ssc = true;
8311         }
8312
8313         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8314                       has_panel, has_lvds, has_ck505);
8315
8316         /* Ironlake: try to setup display ref clock before DPLL
8317          * enabling. This is only under driver's control after
8318          * PCH B stepping, previous chipset stepping should be
8319          * ignoring this setting.
8320          */
8321         val = I915_READ(PCH_DREF_CONTROL);
8322
8323         /* As we must carefully and slowly disable/enable each source in turn,
8324          * compute the final state we want first and check if we need to
8325          * make any changes at all.
8326          */
8327         final = val;
8328         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8329         if (has_ck505)
8330                 final |= DREF_NONSPREAD_CK505_ENABLE;
8331         else
8332                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8333
8334         final &= ~DREF_SSC_SOURCE_MASK;
8335         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8336         final &= ~DREF_SSC1_ENABLE;
8337
8338         if (has_panel) {
8339                 final |= DREF_SSC_SOURCE_ENABLE;
8340
8341                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8342                         final |= DREF_SSC1_ENABLE;
8343
8344                 if (has_cpu_edp) {
8345                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8346                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8347                         else
8348                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8349                 } else
8350                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8351         } else {
8352                 final |= DREF_SSC_SOURCE_DISABLE;
8353                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8354         }
8355
8356         if (final == val)
8357                 return;
8358
8359         /* Always enable nonspread source */
8360         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8361
8362         if (has_ck505)
8363                 val |= DREF_NONSPREAD_CK505_ENABLE;
8364         else
8365                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8366
8367         if (has_panel) {
8368                 val &= ~DREF_SSC_SOURCE_MASK;
8369                 val |= DREF_SSC_SOURCE_ENABLE;
8370
8371                 /* SSC must be turned on before enabling the CPU output  */
8372                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8373                         DRM_DEBUG_KMS("Using SSC on panel\n");
8374                         val |= DREF_SSC1_ENABLE;
8375                 } else
8376                         val &= ~DREF_SSC1_ENABLE;
8377
8378                 /* Get SSC going before enabling the outputs */
8379                 I915_WRITE(PCH_DREF_CONTROL, val);
8380                 POSTING_READ(PCH_DREF_CONTROL);
8381                 udelay(200);
8382
8383                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8384
8385                 /* Enable CPU source on CPU attached eDP */
8386                 if (has_cpu_edp) {
8387                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8388                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8389                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8390                         } else
8391                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8392                 } else
8393                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8394
8395                 I915_WRITE(PCH_DREF_CONTROL, val);
8396                 POSTING_READ(PCH_DREF_CONTROL);
8397                 udelay(200);
8398         } else {
8399                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8400
8401                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8402
8403                 /* Turn off CPU output */
8404                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8405
8406                 I915_WRITE(PCH_DREF_CONTROL, val);
8407                 POSTING_READ(PCH_DREF_CONTROL);
8408                 udelay(200);
8409
8410                 /* Turn off the SSC source */
8411                 val &= ~DREF_SSC_SOURCE_MASK;
8412                 val |= DREF_SSC_SOURCE_DISABLE;
8413
8414                 /* Turn off SSC1 */
8415                 val &= ~DREF_SSC1_ENABLE;
8416
8417                 I915_WRITE(PCH_DREF_CONTROL, val);
8418                 POSTING_READ(PCH_DREF_CONTROL);
8419                 udelay(200);
8420         }
8421
8422         BUG_ON(val != final);
8423 }
8424
8425 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8426 {
8427         uint32_t tmp;
8428
8429         tmp = I915_READ(SOUTH_CHICKEN2);
8430         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8431         I915_WRITE(SOUTH_CHICKEN2, tmp);
8432
8433         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8434                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8435                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8436
8437         tmp = I915_READ(SOUTH_CHICKEN2);
8438         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8439         I915_WRITE(SOUTH_CHICKEN2, tmp);
8440
8441         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8442                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8443                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8444 }
8445
8446 /* WaMPhyProgramming:hsw */
8447 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8448 {
8449         uint32_t tmp;
8450
8451         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8452         tmp &= ~(0xFF << 24);
8453         tmp |= (0x12 << 24);
8454         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8455
8456         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8457         tmp |= (1 << 11);
8458         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8459
8460         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8461         tmp |= (1 << 11);
8462         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8463
8464         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8465         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8466         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8467
8468         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8469         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8470         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8471
8472         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8473         tmp &= ~(7 << 13);
8474         tmp |= (5 << 13);
8475         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8476
8477         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8478         tmp &= ~(7 << 13);
8479         tmp |= (5 << 13);
8480         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8481
8482         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8483         tmp &= ~0xFF;
8484         tmp |= 0x1C;
8485         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8486
8487         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8488         tmp &= ~0xFF;
8489         tmp |= 0x1C;
8490         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8491
8492         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8493         tmp &= ~(0xFF << 16);
8494         tmp |= (0x1C << 16);
8495         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8496
8497         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8498         tmp &= ~(0xFF << 16);
8499         tmp |= (0x1C << 16);
8500         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8501
8502         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8503         tmp |= (1 << 27);
8504         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8505
8506         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8507         tmp |= (1 << 27);
8508         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8509
8510         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8511         tmp &= ~(0xF << 28);
8512         tmp |= (4 << 28);
8513         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8514
8515         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8516         tmp &= ~(0xF << 28);
8517         tmp |= (4 << 28);
8518         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8519 }
8520
8521 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8522  * Programming" based on the parameters passed:
8523  * - Sequence to enable CLKOUT_DP
8524  * - Sequence to enable CLKOUT_DP without spread
8525  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8526  */
8527 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8528                                  bool with_fdi)
8529 {
8530         struct drm_i915_private *dev_priv = dev->dev_private;
8531         uint32_t reg, tmp;
8532
8533         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8534                 with_spread = true;
8535         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8536                 with_fdi = false;
8537
8538         mutex_lock(&dev_priv->sb_lock);
8539
8540         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8541         tmp &= ~SBI_SSCCTL_DISABLE;
8542         tmp |= SBI_SSCCTL_PATHALT;
8543         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8544
8545         udelay(24);
8546
8547         if (with_spread) {
8548                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8549                 tmp &= ~SBI_SSCCTL_PATHALT;
8550                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8551
8552                 if (with_fdi) {
8553                         lpt_reset_fdi_mphy(dev_priv);
8554                         lpt_program_fdi_mphy(dev_priv);
8555                 }
8556         }
8557
8558         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8559         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8560         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8561         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8562
8563         mutex_unlock(&dev_priv->sb_lock);
8564 }
8565
8566 /* Sequence to disable CLKOUT_DP */
8567 static void lpt_disable_clkout_dp(struct drm_device *dev)
8568 {
8569         struct drm_i915_private *dev_priv = dev->dev_private;
8570         uint32_t reg, tmp;
8571
8572         mutex_lock(&dev_priv->sb_lock);
8573
8574         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8575         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8576         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8577         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8578
8579         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8580         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8581                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8582                         tmp |= SBI_SSCCTL_PATHALT;
8583                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8584                         udelay(32);
8585                 }
8586                 tmp |= SBI_SSCCTL_DISABLE;
8587                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8588         }
8589
8590         mutex_unlock(&dev_priv->sb_lock);
8591 }
8592
8593 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8594
8595 static const uint16_t sscdivintphase[] = {
8596         [BEND_IDX( 50)] = 0x3B23,
8597         [BEND_IDX( 45)] = 0x3B23,
8598         [BEND_IDX( 40)] = 0x3C23,
8599         [BEND_IDX( 35)] = 0x3C23,
8600         [BEND_IDX( 30)] = 0x3D23,
8601         [BEND_IDX( 25)] = 0x3D23,
8602         [BEND_IDX( 20)] = 0x3E23,
8603         [BEND_IDX( 15)] = 0x3E23,
8604         [BEND_IDX( 10)] = 0x3F23,
8605         [BEND_IDX(  5)] = 0x3F23,
8606         [BEND_IDX(  0)] = 0x0025,
8607         [BEND_IDX( -5)] = 0x0025,
8608         [BEND_IDX(-10)] = 0x0125,
8609         [BEND_IDX(-15)] = 0x0125,
8610         [BEND_IDX(-20)] = 0x0225,
8611         [BEND_IDX(-25)] = 0x0225,
8612         [BEND_IDX(-30)] = 0x0325,
8613         [BEND_IDX(-35)] = 0x0325,
8614         [BEND_IDX(-40)] = 0x0425,
8615         [BEND_IDX(-45)] = 0x0425,
8616         [BEND_IDX(-50)] = 0x0525,
8617 };
8618
8619 /*
8620  * Bend CLKOUT_DP
8621  * steps -50 to 50 inclusive, in steps of 5
8622  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8623  * change in clock period = -(steps / 10) * 5.787 ps
8624  */
8625 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8626 {
8627         uint32_t tmp;
8628         int idx = BEND_IDX(steps);
8629
8630         if (WARN_ON(steps % 5 != 0))
8631                 return;
8632
8633         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8634                 return;
8635
8636         mutex_lock(&dev_priv->sb_lock);
8637
8638         if (steps % 10 != 0)
8639                 tmp = 0xAAAAAAAB;
8640         else
8641                 tmp = 0x00000000;
8642         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8643
8644         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8645         tmp &= 0xffff0000;
8646         tmp |= sscdivintphase[idx];
8647         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8648
8649         mutex_unlock(&dev_priv->sb_lock);
8650 }
8651
8652 #undef BEND_IDX
8653
8654 static void lpt_init_pch_refclk(struct drm_device *dev)
8655 {
8656         struct intel_encoder *encoder;
8657         bool has_vga = false;
8658
8659         for_each_intel_encoder(dev, encoder) {
8660                 switch (encoder->type) {
8661                 case INTEL_OUTPUT_ANALOG:
8662                         has_vga = true;
8663                         break;
8664                 default:
8665                         break;
8666                 }
8667         }
8668
8669         if (has_vga) {
8670                 lpt_bend_clkout_dp(to_i915(dev), 0);
8671                 lpt_enable_clkout_dp(dev, true, true);
8672         } else {
8673                 lpt_disable_clkout_dp(dev);
8674         }
8675 }
8676
8677 /*
8678  * Initialize reference clocks when the driver loads
8679  */
8680 void intel_init_pch_refclk(struct drm_device *dev)
8681 {
8682         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8683                 ironlake_init_pch_refclk(dev);
8684         else if (HAS_PCH_LPT(dev))
8685                 lpt_init_pch_refclk(dev);
8686 }
8687
8688 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8689 {
8690         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8691         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8692         int pipe = intel_crtc->pipe;
8693         uint32_t val;
8694
8695         val = 0;
8696
8697         switch (intel_crtc->config->pipe_bpp) {
8698         case 18:
8699                 val |= PIPECONF_6BPC;
8700                 break;
8701         case 24:
8702                 val |= PIPECONF_8BPC;
8703                 break;
8704         case 30:
8705                 val |= PIPECONF_10BPC;
8706                 break;
8707         case 36:
8708                 val |= PIPECONF_12BPC;
8709                 break;
8710         default:
8711                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8712                 BUG();
8713         }
8714
8715         if (intel_crtc->config->dither)
8716                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8717
8718         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8719                 val |= PIPECONF_INTERLACED_ILK;
8720         else
8721                 val |= PIPECONF_PROGRESSIVE;
8722
8723         if (intel_crtc->config->limited_color_range)
8724                 val |= PIPECONF_COLOR_RANGE_SELECT;
8725
8726         I915_WRITE(PIPECONF(pipe), val);
8727         POSTING_READ(PIPECONF(pipe));
8728 }
8729
8730 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8731 {
8732         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8733         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8734         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8735         u32 val = 0;
8736
8737         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8738                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8739
8740         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8741                 val |= PIPECONF_INTERLACED_ILK;
8742         else
8743                 val |= PIPECONF_PROGRESSIVE;
8744
8745         I915_WRITE(PIPECONF(cpu_transcoder), val);
8746         POSTING_READ(PIPECONF(cpu_transcoder));
8747 }
8748
8749 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8750 {
8751         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8752         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8753
8754         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8755                 u32 val = 0;
8756
8757                 switch (intel_crtc->config->pipe_bpp) {
8758                 case 18:
8759                         val |= PIPEMISC_DITHER_6_BPC;
8760                         break;
8761                 case 24:
8762                         val |= PIPEMISC_DITHER_8_BPC;
8763                         break;
8764                 case 30:
8765                         val |= PIPEMISC_DITHER_10_BPC;
8766                         break;
8767                 case 36:
8768                         val |= PIPEMISC_DITHER_12_BPC;
8769                         break;
8770                 default:
8771                         /* Case prevented by pipe_config_set_bpp. */
8772                         BUG();
8773                 }
8774
8775                 if (intel_crtc->config->dither)
8776                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8777
8778                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8779         }
8780 }
8781
8782 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8783 {
8784         /*
8785          * Account for spread spectrum to avoid
8786          * oversubscribing the link. Max center spread
8787          * is 2.5%; use 5% for safety's sake.
8788          */
8789         u32 bps = target_clock * bpp * 21 / 20;
8790         return DIV_ROUND_UP(bps, link_bw * 8);
8791 }
8792
8793 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8794 {
8795         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8796 }
8797
8798 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8799                                   struct intel_crtc_state *crtc_state,
8800                                   intel_clock_t *reduced_clock)
8801 {
8802         struct drm_crtc *crtc = &intel_crtc->base;
8803         struct drm_device *dev = crtc->dev;
8804         struct drm_i915_private *dev_priv = dev->dev_private;
8805         struct drm_atomic_state *state = crtc_state->base.state;
8806         struct drm_connector *connector;
8807         struct drm_connector_state *connector_state;
8808         struct intel_encoder *encoder;
8809         u32 dpll, fp, fp2;
8810         int factor, i;
8811         bool is_lvds = false, is_sdvo = false;
8812
8813         for_each_connector_in_state(state, connector, connector_state, i) {
8814                 if (connector_state->crtc != crtc_state->base.crtc)
8815                         continue;
8816
8817                 encoder = to_intel_encoder(connector_state->best_encoder);
8818
8819                 switch (encoder->type) {
8820                 case INTEL_OUTPUT_LVDS:
8821                         is_lvds = true;
8822                         break;
8823                 case INTEL_OUTPUT_SDVO:
8824                 case INTEL_OUTPUT_HDMI:
8825                         is_sdvo = true;
8826                         break;
8827                 default:
8828                         break;
8829                 }
8830         }
8831
8832         /* Enable autotuning of the PLL clock (if permissible) */
8833         factor = 21;
8834         if (is_lvds) {
8835                 if ((intel_panel_use_ssc(dev_priv) &&
8836                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8837                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8838                         factor = 25;
8839         } else if (crtc_state->sdvo_tv_clock)
8840                 factor = 20;
8841
8842         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8843
8844         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8845                 fp |= FP_CB_TUNE;
8846
8847         if (reduced_clock) {
8848                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8849
8850                 if (reduced_clock->m < factor * reduced_clock->n)
8851                         fp2 |= FP_CB_TUNE;
8852         } else {
8853                 fp2 = fp;
8854         }
8855
8856         dpll = 0;
8857
8858         if (is_lvds)
8859                 dpll |= DPLLB_MODE_LVDS;
8860         else
8861                 dpll |= DPLLB_MODE_DAC_SERIAL;
8862
8863         dpll |= (crtc_state->pixel_multiplier - 1)
8864                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8865
8866         if (is_sdvo)
8867                 dpll |= DPLL_SDVO_HIGH_SPEED;
8868         if (crtc_state->has_dp_encoder)
8869                 dpll |= DPLL_SDVO_HIGH_SPEED;
8870
8871         /* compute bitmask from p1 value */
8872         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8873         /* also FPA1 */
8874         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8875
8876         switch (crtc_state->dpll.p2) {
8877         case 5:
8878                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8879                 break;
8880         case 7:
8881                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8882                 break;
8883         case 10:
8884                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8885                 break;
8886         case 14:
8887                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8888                 break;
8889         }
8890
8891         if (is_lvds && intel_panel_use_ssc(dev_priv))
8892                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8893         else
8894                 dpll |= PLL_REF_INPUT_DREFCLK;
8895
8896         dpll |= DPLL_VCO_ENABLE;
8897
8898         crtc_state->dpll_hw_state.dpll = dpll;
8899         crtc_state->dpll_hw_state.fp0 = fp;
8900         crtc_state->dpll_hw_state.fp1 = fp2;
8901 }
8902
8903 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8904                                        struct intel_crtc_state *crtc_state)
8905 {
8906         struct drm_device *dev = crtc->base.dev;
8907         struct drm_i915_private *dev_priv = dev->dev_private;
8908         intel_clock_t reduced_clock;
8909         bool has_reduced_clock = false;
8910         struct intel_shared_dpll *pll;
8911         const intel_limit_t *limit;
8912         int refclk = 120000;
8913
8914         memset(&crtc_state->dpll_hw_state, 0,
8915                sizeof(crtc_state->dpll_hw_state));
8916
8917         crtc->lowfreq_avail = false;
8918
8919         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8920         if (!crtc_state->has_pch_encoder)
8921                 return 0;
8922
8923         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8924                 if (intel_panel_use_ssc(dev_priv)) {
8925                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8926                                       dev_priv->vbt.lvds_ssc_freq);
8927                         refclk = dev_priv->vbt.lvds_ssc_freq;
8928                 }
8929
8930                 if (intel_is_dual_link_lvds(dev)) {
8931                         if (refclk == 100000)
8932                                 limit = &intel_limits_ironlake_dual_lvds_100m;
8933                         else
8934                                 limit = &intel_limits_ironlake_dual_lvds;
8935                 } else {
8936                         if (refclk == 100000)
8937                                 limit = &intel_limits_ironlake_single_lvds_100m;
8938                         else
8939                                 limit = &intel_limits_ironlake_single_lvds;
8940                 }
8941         } else {
8942                 limit = &intel_limits_ironlake_dac;
8943         }
8944
8945         if (!crtc_state->clock_set &&
8946             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8947                                 refclk, NULL, &crtc_state->dpll)) {
8948                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8949                 return -EINVAL;
8950         }
8951
8952         ironlake_compute_dpll(crtc, crtc_state,
8953                               has_reduced_clock ? &reduced_clock : NULL);
8954
8955         pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
8956         if (pll == NULL) {
8957                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8958                                  pipe_name(crtc->pipe));
8959                 return -EINVAL;
8960         }
8961
8962         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8963             has_reduced_clock)
8964                 crtc->lowfreq_avail = true;
8965
8966         return 0;
8967 }
8968
8969 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8970                                          struct intel_link_m_n *m_n)
8971 {
8972         struct drm_device *dev = crtc->base.dev;
8973         struct drm_i915_private *dev_priv = dev->dev_private;
8974         enum pipe pipe = crtc->pipe;
8975
8976         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8977         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8978         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8979                 & ~TU_SIZE_MASK;
8980         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8981         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8982                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8983 }
8984
8985 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8986                                          enum transcoder transcoder,
8987                                          struct intel_link_m_n *m_n,
8988                                          struct intel_link_m_n *m2_n2)
8989 {
8990         struct drm_device *dev = crtc->base.dev;
8991         struct drm_i915_private *dev_priv = dev->dev_private;
8992         enum pipe pipe = crtc->pipe;
8993
8994         if (INTEL_INFO(dev)->gen >= 5) {
8995                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8996                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8997                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8998                         & ~TU_SIZE_MASK;
8999                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9000                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9001                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9002                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9003                  * gen < 8) and if DRRS is supported (to make sure the
9004                  * registers are not unnecessarily read).
9005                  */
9006                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9007                         crtc->config->has_drrs) {
9008                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9009                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9010                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9011                                         & ~TU_SIZE_MASK;
9012                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9013                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9014                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9015                 }
9016         } else {
9017                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9018                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9019                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9020                         & ~TU_SIZE_MASK;
9021                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9022                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9023                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9024         }
9025 }
9026
9027 void intel_dp_get_m_n(struct intel_crtc *crtc,
9028                       struct intel_crtc_state *pipe_config)
9029 {
9030         if (pipe_config->has_pch_encoder)
9031                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9032         else
9033                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9034                                              &pipe_config->dp_m_n,
9035                                              &pipe_config->dp_m2_n2);
9036 }
9037
9038 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9039                                         struct intel_crtc_state *pipe_config)
9040 {
9041         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9042                                      &pipe_config->fdi_m_n, NULL);
9043 }
9044
9045 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9046                                     struct intel_crtc_state *pipe_config)
9047 {
9048         struct drm_device *dev = crtc->base.dev;
9049         struct drm_i915_private *dev_priv = dev->dev_private;
9050         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9051         uint32_t ps_ctrl = 0;
9052         int id = -1;
9053         int i;
9054
9055         /* find scaler attached to this pipe */
9056         for (i = 0; i < crtc->num_scalers; i++) {
9057                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9058                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9059                         id = i;
9060                         pipe_config->pch_pfit.enabled = true;
9061                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9062                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9063                         break;
9064                 }
9065         }
9066
9067         scaler_state->scaler_id = id;
9068         if (id >= 0) {
9069                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9070         } else {
9071                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9072         }
9073 }
9074
9075 static void
9076 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9077                                  struct intel_initial_plane_config *plane_config)
9078 {
9079         struct drm_device *dev = crtc->base.dev;
9080         struct drm_i915_private *dev_priv = dev->dev_private;
9081         u32 val, base, offset, stride_mult, tiling;
9082         int pipe = crtc->pipe;
9083         int fourcc, pixel_format;
9084         unsigned int aligned_height;
9085         struct drm_framebuffer *fb;
9086         struct intel_framebuffer *intel_fb;
9087
9088         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9089         if (!intel_fb) {
9090                 DRM_DEBUG_KMS("failed to alloc fb\n");
9091                 return;
9092         }
9093
9094         fb = &intel_fb->base;
9095
9096         val = I915_READ(PLANE_CTL(pipe, 0));
9097         if (!(val & PLANE_CTL_ENABLE))
9098                 goto error;
9099
9100         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9101         fourcc = skl_format_to_fourcc(pixel_format,
9102                                       val & PLANE_CTL_ORDER_RGBX,
9103                                       val & PLANE_CTL_ALPHA_MASK);
9104         fb->pixel_format = fourcc;
9105         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9106
9107         tiling = val & PLANE_CTL_TILED_MASK;
9108         switch (tiling) {
9109         case PLANE_CTL_TILED_LINEAR:
9110                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9111                 break;
9112         case PLANE_CTL_TILED_X:
9113                 plane_config->tiling = I915_TILING_X;
9114                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9115                 break;
9116         case PLANE_CTL_TILED_Y:
9117                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9118                 break;
9119         case PLANE_CTL_TILED_YF:
9120                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9121                 break;
9122         default:
9123                 MISSING_CASE(tiling);
9124                 goto error;
9125         }
9126
9127         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9128         plane_config->base = base;
9129
9130         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9131
9132         val = I915_READ(PLANE_SIZE(pipe, 0));
9133         fb->height = ((val >> 16) & 0xfff) + 1;
9134         fb->width = ((val >> 0) & 0x1fff) + 1;
9135
9136         val = I915_READ(PLANE_STRIDE(pipe, 0));
9137         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9138                                                 fb->pixel_format);
9139         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9140
9141         aligned_height = intel_fb_align_height(dev, fb->height,
9142                                                fb->pixel_format,
9143                                                fb->modifier[0]);
9144
9145         plane_config->size = fb->pitches[0] * aligned_height;
9146
9147         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9148                       pipe_name(pipe), fb->width, fb->height,
9149                       fb->bits_per_pixel, base, fb->pitches[0],
9150                       plane_config->size);
9151
9152         plane_config->fb = intel_fb;
9153         return;
9154
9155 error:
9156         kfree(fb);
9157 }
9158
9159 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9160                                      struct intel_crtc_state *pipe_config)
9161 {
9162         struct drm_device *dev = crtc->base.dev;
9163         struct drm_i915_private *dev_priv = dev->dev_private;
9164         uint32_t tmp;
9165
9166         tmp = I915_READ(PF_CTL(crtc->pipe));
9167
9168         if (tmp & PF_ENABLE) {
9169                 pipe_config->pch_pfit.enabled = true;
9170                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9171                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9172
9173                 /* We currently do not free assignements of panel fitters on
9174                  * ivb/hsw (since we don't use the higher upscaling modes which
9175                  * differentiates them) so just WARN about this case for now. */
9176                 if (IS_GEN7(dev)) {
9177                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9178                                 PF_PIPE_SEL_IVB(crtc->pipe));
9179                 }
9180         }
9181 }
9182
9183 static void
9184 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9185                                   struct intel_initial_plane_config *plane_config)
9186 {
9187         struct drm_device *dev = crtc->base.dev;
9188         struct drm_i915_private *dev_priv = dev->dev_private;
9189         u32 val, base, offset;
9190         int pipe = crtc->pipe;
9191         int fourcc, pixel_format;
9192         unsigned int aligned_height;
9193         struct drm_framebuffer *fb;
9194         struct intel_framebuffer *intel_fb;
9195
9196         val = I915_READ(DSPCNTR(pipe));
9197         if (!(val & DISPLAY_PLANE_ENABLE))
9198                 return;
9199
9200         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9201         if (!intel_fb) {
9202                 DRM_DEBUG_KMS("failed to alloc fb\n");
9203                 return;
9204         }
9205
9206         fb = &intel_fb->base;
9207
9208         if (INTEL_INFO(dev)->gen >= 4) {
9209                 if (val & DISPPLANE_TILED) {
9210                         plane_config->tiling = I915_TILING_X;
9211                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9212                 }
9213         }
9214
9215         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9216         fourcc = i9xx_format_to_fourcc(pixel_format);
9217         fb->pixel_format = fourcc;
9218         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9219
9220         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9221         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9222                 offset = I915_READ(DSPOFFSET(pipe));
9223         } else {
9224                 if (plane_config->tiling)
9225                         offset = I915_READ(DSPTILEOFF(pipe));
9226                 else
9227                         offset = I915_READ(DSPLINOFF(pipe));
9228         }
9229         plane_config->base = base;
9230
9231         val = I915_READ(PIPESRC(pipe));
9232         fb->width = ((val >> 16) & 0xfff) + 1;
9233         fb->height = ((val >> 0) & 0xfff) + 1;
9234
9235         val = I915_READ(DSPSTRIDE(pipe));
9236         fb->pitches[0] = val & 0xffffffc0;
9237
9238         aligned_height = intel_fb_align_height(dev, fb->height,
9239                                                fb->pixel_format,
9240                                                fb->modifier[0]);
9241
9242         plane_config->size = fb->pitches[0] * aligned_height;
9243
9244         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9245                       pipe_name(pipe), fb->width, fb->height,
9246                       fb->bits_per_pixel, base, fb->pitches[0],
9247                       plane_config->size);
9248
9249         plane_config->fb = intel_fb;
9250 }
9251
9252 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9253                                      struct intel_crtc_state *pipe_config)
9254 {
9255         struct drm_device *dev = crtc->base.dev;
9256         struct drm_i915_private *dev_priv = dev->dev_private;
9257         enum intel_display_power_domain power_domain;
9258         uint32_t tmp;
9259         bool ret;
9260
9261         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9262         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9263                 return false;
9264
9265         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9266         pipe_config->shared_dpll = NULL;
9267
9268         ret = false;
9269         tmp = I915_READ(PIPECONF(crtc->pipe));
9270         if (!(tmp & PIPECONF_ENABLE))
9271                 goto out;
9272
9273         switch (tmp & PIPECONF_BPC_MASK) {
9274         case PIPECONF_6BPC:
9275                 pipe_config->pipe_bpp = 18;
9276                 break;
9277         case PIPECONF_8BPC:
9278                 pipe_config->pipe_bpp = 24;
9279                 break;
9280         case PIPECONF_10BPC:
9281                 pipe_config->pipe_bpp = 30;
9282                 break;
9283         case PIPECONF_12BPC:
9284                 pipe_config->pipe_bpp = 36;
9285                 break;
9286         default:
9287                 break;
9288         }
9289
9290         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9291                 pipe_config->limited_color_range = true;
9292
9293         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9294                 struct intel_shared_dpll *pll;
9295                 enum intel_dpll_id pll_id;
9296
9297                 pipe_config->has_pch_encoder = true;
9298
9299                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9300                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9301                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9302
9303                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9304
9305                 if (HAS_PCH_IBX(dev_priv)) {
9306                         pll_id = (enum intel_dpll_id) crtc->pipe;
9307                 } else {
9308                         tmp = I915_READ(PCH_DPLL_SEL);
9309                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9310                                 pll_id = DPLL_ID_PCH_PLL_B;
9311                         else
9312                                 pll_id= DPLL_ID_PCH_PLL_A;
9313                 }
9314
9315                 pipe_config->shared_dpll =
9316                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
9317                 pll = pipe_config->shared_dpll;
9318
9319                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9320                                                  &pipe_config->dpll_hw_state));
9321
9322                 tmp = pipe_config->dpll_hw_state.dpll;
9323                 pipe_config->pixel_multiplier =
9324                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9325                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9326
9327                 ironlake_pch_clock_get(crtc, pipe_config);
9328         } else {
9329                 pipe_config->pixel_multiplier = 1;
9330         }
9331
9332         intel_get_pipe_timings(crtc, pipe_config);
9333         intel_get_pipe_src_size(crtc, pipe_config);
9334
9335         ironlake_get_pfit_config(crtc, pipe_config);
9336
9337         ret = true;
9338
9339 out:
9340         intel_display_power_put(dev_priv, power_domain);
9341
9342         return ret;
9343 }
9344
9345 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9346 {
9347         struct drm_device *dev = dev_priv->dev;
9348         struct intel_crtc *crtc;
9349
9350         for_each_intel_crtc(dev, crtc)
9351                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9352                      pipe_name(crtc->pipe));
9353
9354         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9355         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9356         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9357         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9358         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9359         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9360              "CPU PWM1 enabled\n");
9361         if (IS_HASWELL(dev))
9362                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9363                      "CPU PWM2 enabled\n");
9364         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9365              "PCH PWM1 enabled\n");
9366         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9367              "Utility pin enabled\n");
9368         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9369
9370         /*
9371          * In theory we can still leave IRQs enabled, as long as only the HPD
9372          * interrupts remain enabled. We used to check for that, but since it's
9373          * gen-specific and since we only disable LCPLL after we fully disable
9374          * the interrupts, the check below should be enough.
9375          */
9376         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9377 }
9378
9379 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9380 {
9381         struct drm_device *dev = dev_priv->dev;
9382
9383         if (IS_HASWELL(dev))
9384                 return I915_READ(D_COMP_HSW);
9385         else
9386                 return I915_READ(D_COMP_BDW);
9387 }
9388
9389 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9390 {
9391         struct drm_device *dev = dev_priv->dev;
9392
9393         if (IS_HASWELL(dev)) {
9394                 mutex_lock(&dev_priv->rps.hw_lock);
9395                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9396                                             val))
9397                         DRM_ERROR("Failed to write to D_COMP\n");
9398                 mutex_unlock(&dev_priv->rps.hw_lock);
9399         } else {
9400                 I915_WRITE(D_COMP_BDW, val);
9401                 POSTING_READ(D_COMP_BDW);
9402         }
9403 }
9404
9405 /*
9406  * This function implements pieces of two sequences from BSpec:
9407  * - Sequence for display software to disable LCPLL
9408  * - Sequence for display software to allow package C8+
9409  * The steps implemented here are just the steps that actually touch the LCPLL
9410  * register. Callers should take care of disabling all the display engine
9411  * functions, doing the mode unset, fixing interrupts, etc.
9412  */
9413 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9414                               bool switch_to_fclk, bool allow_power_down)
9415 {
9416         uint32_t val;
9417
9418         assert_can_disable_lcpll(dev_priv);
9419
9420         val = I915_READ(LCPLL_CTL);
9421
9422         if (switch_to_fclk) {
9423                 val |= LCPLL_CD_SOURCE_FCLK;
9424                 I915_WRITE(LCPLL_CTL, val);
9425
9426                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9427                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9428                         DRM_ERROR("Switching to FCLK failed\n");
9429
9430                 val = I915_READ(LCPLL_CTL);
9431         }
9432
9433         val |= LCPLL_PLL_DISABLE;
9434         I915_WRITE(LCPLL_CTL, val);
9435         POSTING_READ(LCPLL_CTL);
9436
9437         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9438                 DRM_ERROR("LCPLL still locked\n");
9439
9440         val = hsw_read_dcomp(dev_priv);
9441         val |= D_COMP_COMP_DISABLE;
9442         hsw_write_dcomp(dev_priv, val);
9443         ndelay(100);
9444
9445         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9446                      1))
9447                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9448
9449         if (allow_power_down) {
9450                 val = I915_READ(LCPLL_CTL);
9451                 val |= LCPLL_POWER_DOWN_ALLOW;
9452                 I915_WRITE(LCPLL_CTL, val);
9453                 POSTING_READ(LCPLL_CTL);
9454         }
9455 }
9456
9457 /*
9458  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9459  * source.
9460  */
9461 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9462 {
9463         uint32_t val;
9464
9465         val = I915_READ(LCPLL_CTL);
9466
9467         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9468                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9469                 return;
9470
9471         /*
9472          * Make sure we're not on PC8 state before disabling PC8, otherwise
9473          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9474          */
9475         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9476
9477         if (val & LCPLL_POWER_DOWN_ALLOW) {
9478                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9479                 I915_WRITE(LCPLL_CTL, val);
9480                 POSTING_READ(LCPLL_CTL);
9481         }
9482
9483         val = hsw_read_dcomp(dev_priv);
9484         val |= D_COMP_COMP_FORCE;
9485         val &= ~D_COMP_COMP_DISABLE;
9486         hsw_write_dcomp(dev_priv, val);
9487
9488         val = I915_READ(LCPLL_CTL);
9489         val &= ~LCPLL_PLL_DISABLE;
9490         I915_WRITE(LCPLL_CTL, val);
9491
9492         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9493                 DRM_ERROR("LCPLL not locked yet\n");
9494
9495         if (val & LCPLL_CD_SOURCE_FCLK) {
9496                 val = I915_READ(LCPLL_CTL);
9497                 val &= ~LCPLL_CD_SOURCE_FCLK;
9498                 I915_WRITE(LCPLL_CTL, val);
9499
9500                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9501                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9502                         DRM_ERROR("Switching back to LCPLL failed\n");
9503         }
9504
9505         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9506         intel_update_cdclk(dev_priv->dev);
9507 }
9508
9509 /*
9510  * Package states C8 and deeper are really deep PC states that can only be
9511  * reached when all the devices on the system allow it, so even if the graphics
9512  * device allows PC8+, it doesn't mean the system will actually get to these
9513  * states. Our driver only allows PC8+ when going into runtime PM.
9514  *
9515  * The requirements for PC8+ are that all the outputs are disabled, the power
9516  * well is disabled and most interrupts are disabled, and these are also
9517  * requirements for runtime PM. When these conditions are met, we manually do
9518  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9519  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9520  * hang the machine.
9521  *
9522  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9523  * the state of some registers, so when we come back from PC8+ we need to
9524  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9525  * need to take care of the registers kept by RC6. Notice that this happens even
9526  * if we don't put the device in PCI D3 state (which is what currently happens
9527  * because of the runtime PM support).
9528  *
9529  * For more, read "Display Sequences for Package C8" on the hardware
9530  * documentation.
9531  */
9532 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9533 {
9534         struct drm_device *dev = dev_priv->dev;
9535         uint32_t val;
9536
9537         DRM_DEBUG_KMS("Enabling package C8+\n");
9538
9539         if (HAS_PCH_LPT_LP(dev)) {
9540                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9541                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9542                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9543         }
9544
9545         lpt_disable_clkout_dp(dev);
9546         hsw_disable_lcpll(dev_priv, true, true);
9547 }
9548
9549 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9550 {
9551         struct drm_device *dev = dev_priv->dev;
9552         uint32_t val;
9553
9554         DRM_DEBUG_KMS("Disabling package C8+\n");
9555
9556         hsw_restore_lcpll(dev_priv);
9557         lpt_init_pch_refclk(dev);
9558
9559         if (HAS_PCH_LPT_LP(dev)) {
9560                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9561                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9562                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9563         }
9564 }
9565
9566 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9567 {
9568         struct drm_device *dev = old_state->dev;
9569         struct intel_atomic_state *old_intel_state =
9570                 to_intel_atomic_state(old_state);
9571         unsigned int req_cdclk = old_intel_state->dev_cdclk;
9572
9573         broxton_set_cdclk(to_i915(dev), req_cdclk);
9574 }
9575
9576 /* compute the max rate for new configuration */
9577 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9578 {
9579         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9580         struct drm_i915_private *dev_priv = state->dev->dev_private;
9581         struct drm_crtc *crtc;
9582         struct drm_crtc_state *cstate;
9583         struct intel_crtc_state *crtc_state;
9584         unsigned max_pixel_rate = 0, i;
9585         enum pipe pipe;
9586
9587         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9588                sizeof(intel_state->min_pixclk));
9589
9590         for_each_crtc_in_state(state, crtc, cstate, i) {
9591                 int pixel_rate;
9592
9593                 crtc_state = to_intel_crtc_state(cstate);
9594                 if (!crtc_state->base.enable) {
9595                         intel_state->min_pixclk[i] = 0;
9596                         continue;
9597                 }
9598
9599                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9600
9601                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9602                 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9603                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9604
9605                 intel_state->min_pixclk[i] = pixel_rate;
9606         }
9607
9608         for_each_pipe(dev_priv, pipe)
9609                 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9610
9611         return max_pixel_rate;
9612 }
9613
9614 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9615 {
9616         struct drm_i915_private *dev_priv = dev->dev_private;
9617         uint32_t val, data;
9618         int ret;
9619
9620         if (WARN((I915_READ(LCPLL_CTL) &
9621                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9622                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9623                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9624                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9625                  "trying to change cdclk frequency with cdclk not enabled\n"))
9626                 return;
9627
9628         mutex_lock(&dev_priv->rps.hw_lock);
9629         ret = sandybridge_pcode_write(dev_priv,
9630                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9631         mutex_unlock(&dev_priv->rps.hw_lock);
9632         if (ret) {
9633                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9634                 return;
9635         }
9636
9637         val = I915_READ(LCPLL_CTL);
9638         val |= LCPLL_CD_SOURCE_FCLK;
9639         I915_WRITE(LCPLL_CTL, val);
9640
9641         if (wait_for_us(I915_READ(LCPLL_CTL) &
9642                         LCPLL_CD_SOURCE_FCLK_DONE, 1))
9643                 DRM_ERROR("Switching to FCLK failed\n");
9644
9645         val = I915_READ(LCPLL_CTL);
9646         val &= ~LCPLL_CLK_FREQ_MASK;
9647
9648         switch (cdclk) {
9649         case 450000:
9650                 val |= LCPLL_CLK_FREQ_450;
9651                 data = 0;
9652                 break;
9653         case 540000:
9654                 val |= LCPLL_CLK_FREQ_54O_BDW;
9655                 data = 1;
9656                 break;
9657         case 337500:
9658                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9659                 data = 2;
9660                 break;
9661         case 675000:
9662                 val |= LCPLL_CLK_FREQ_675_BDW;
9663                 data = 3;
9664                 break;
9665         default:
9666                 WARN(1, "invalid cdclk frequency\n");
9667                 return;
9668         }
9669
9670         I915_WRITE(LCPLL_CTL, val);
9671
9672         val = I915_READ(LCPLL_CTL);
9673         val &= ~LCPLL_CD_SOURCE_FCLK;
9674         I915_WRITE(LCPLL_CTL, val);
9675
9676         if (wait_for_us((I915_READ(LCPLL_CTL) &
9677                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9678                 DRM_ERROR("Switching back to LCPLL failed\n");
9679
9680         mutex_lock(&dev_priv->rps.hw_lock);
9681         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9682         mutex_unlock(&dev_priv->rps.hw_lock);
9683
9684         intel_update_cdclk(dev);
9685
9686         WARN(cdclk != dev_priv->cdclk_freq,
9687              "cdclk requested %d kHz but got %d kHz\n",
9688              cdclk, dev_priv->cdclk_freq);
9689 }
9690
9691 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9692 {
9693         struct drm_i915_private *dev_priv = to_i915(state->dev);
9694         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9695         int max_pixclk = ilk_max_pixel_rate(state);
9696         int cdclk;
9697
9698         /*
9699          * FIXME should also account for plane ratio
9700          * once 64bpp pixel formats are supported.
9701          */
9702         if (max_pixclk > 540000)
9703                 cdclk = 675000;
9704         else if (max_pixclk > 450000)
9705                 cdclk = 540000;
9706         else if (max_pixclk > 337500)
9707                 cdclk = 450000;
9708         else
9709                 cdclk = 337500;
9710
9711         if (cdclk > dev_priv->max_cdclk_freq) {
9712                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9713                               cdclk, dev_priv->max_cdclk_freq);
9714                 return -EINVAL;
9715         }
9716
9717         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9718         if (!intel_state->active_crtcs)
9719                 intel_state->dev_cdclk = 337500;
9720
9721         return 0;
9722 }
9723
9724 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9725 {
9726         struct drm_device *dev = old_state->dev;
9727         struct intel_atomic_state *old_intel_state =
9728                 to_intel_atomic_state(old_state);
9729         unsigned req_cdclk = old_intel_state->dev_cdclk;
9730
9731         broadwell_set_cdclk(dev, req_cdclk);
9732 }
9733
9734 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9735                                       struct intel_crtc_state *crtc_state)
9736 {
9737         struct intel_encoder *intel_encoder =
9738                 intel_ddi_get_crtc_new_encoder(crtc_state);
9739
9740         if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9741                 if (!intel_ddi_pll_select(crtc, crtc_state))
9742                         return -EINVAL;
9743         }
9744
9745         crtc->lowfreq_avail = false;
9746
9747         return 0;
9748 }
9749
9750 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9751                                 enum port port,
9752                                 struct intel_crtc_state *pipe_config)
9753 {
9754         enum intel_dpll_id id;
9755
9756         switch (port) {
9757         case PORT_A:
9758                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9759                 id = DPLL_ID_SKL_DPLL0;
9760                 break;
9761         case PORT_B:
9762                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9763                 id = DPLL_ID_SKL_DPLL1;
9764                 break;
9765         case PORT_C:
9766                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9767                 id = DPLL_ID_SKL_DPLL2;
9768                 break;
9769         default:
9770                 DRM_ERROR("Incorrect port type\n");
9771                 return;
9772         }
9773
9774         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9775 }
9776
9777 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9778                                 enum port port,
9779                                 struct intel_crtc_state *pipe_config)
9780 {
9781         enum intel_dpll_id id;
9782         u32 temp;
9783
9784         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9785         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9786
9787         switch (pipe_config->ddi_pll_sel) {
9788         case SKL_DPLL0:
9789                 id = DPLL_ID_SKL_DPLL0;
9790                 break;
9791         case SKL_DPLL1:
9792                 id = DPLL_ID_SKL_DPLL1;
9793                 break;
9794         case SKL_DPLL2:
9795                 id = DPLL_ID_SKL_DPLL2;
9796                 break;
9797         case SKL_DPLL3:
9798                 id = DPLL_ID_SKL_DPLL3;
9799                 break;
9800         default:
9801                 MISSING_CASE(pipe_config->ddi_pll_sel);
9802                 return;
9803         }
9804
9805         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9806 }
9807
9808 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9809                                 enum port port,
9810                                 struct intel_crtc_state *pipe_config)
9811 {
9812         enum intel_dpll_id id;
9813
9814         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9815
9816         switch (pipe_config->ddi_pll_sel) {
9817         case PORT_CLK_SEL_WRPLL1:
9818                 id = DPLL_ID_WRPLL1;
9819                 break;
9820         case PORT_CLK_SEL_WRPLL2:
9821                 id = DPLL_ID_WRPLL2;
9822                 break;
9823         case PORT_CLK_SEL_SPLL:
9824                 id = DPLL_ID_SPLL;
9825                 break;
9826         case PORT_CLK_SEL_LCPLL_810:
9827                 id = DPLL_ID_LCPLL_810;
9828                 break;
9829         case PORT_CLK_SEL_LCPLL_1350:
9830                 id = DPLL_ID_LCPLL_1350;
9831                 break;
9832         case PORT_CLK_SEL_LCPLL_2700:
9833                 id = DPLL_ID_LCPLL_2700;
9834                 break;
9835         default:
9836                 MISSING_CASE(pipe_config->ddi_pll_sel);
9837                 /* fall through */
9838         case PORT_CLK_SEL_NONE:
9839                 return;
9840         }
9841
9842         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9843 }
9844
9845 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9846                                      struct intel_crtc_state *pipe_config,
9847                                      unsigned long *power_domain_mask)
9848 {
9849         struct drm_device *dev = crtc->base.dev;
9850         struct drm_i915_private *dev_priv = dev->dev_private;
9851         enum intel_display_power_domain power_domain;
9852         u32 tmp;
9853
9854         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9855
9856         /*
9857          * XXX: Do intel_display_power_get_if_enabled before reading this (for
9858          * consistency and less surprising code; it's in always on power).
9859          */
9860         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9861         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9862                 enum pipe trans_edp_pipe;
9863                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9864                 default:
9865                         WARN(1, "unknown pipe linked to edp transcoder\n");
9866                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9867                 case TRANS_DDI_EDP_INPUT_A_ON:
9868                         trans_edp_pipe = PIPE_A;
9869                         break;
9870                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9871                         trans_edp_pipe = PIPE_B;
9872                         break;
9873                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9874                         trans_edp_pipe = PIPE_C;
9875                         break;
9876                 }
9877
9878                 if (trans_edp_pipe == crtc->pipe)
9879                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9880         }
9881
9882         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9883         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9884                 return false;
9885         *power_domain_mask |= BIT(power_domain);
9886
9887         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9888
9889         return tmp & PIPECONF_ENABLE;
9890 }
9891
9892 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9893                                          struct intel_crtc_state *pipe_config,
9894                                          unsigned long *power_domain_mask)
9895 {
9896         struct drm_device *dev = crtc->base.dev;
9897         struct drm_i915_private *dev_priv = dev->dev_private;
9898         enum intel_display_power_domain power_domain;
9899         enum port port;
9900         enum transcoder cpu_transcoder;
9901         u32 tmp;
9902
9903         pipe_config->has_dsi_encoder = false;
9904
9905         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9906                 if (port == PORT_A)
9907                         cpu_transcoder = TRANSCODER_DSI_A;
9908                 else
9909                         cpu_transcoder = TRANSCODER_DSI_C;
9910
9911                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9912                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9913                         continue;
9914                 *power_domain_mask |= BIT(power_domain);
9915
9916                 /*
9917                  * The PLL needs to be enabled with a valid divider
9918                  * configuration, otherwise accessing DSI registers will hang
9919                  * the machine. See BSpec North Display Engine
9920                  * registers/MIPI[BXT]. We can break out here early, since we
9921                  * need the same DSI PLL to be enabled for both DSI ports.
9922                  */
9923                 if (!intel_dsi_pll_is_enabled(dev_priv))
9924                         break;
9925
9926                 /* XXX: this works for video mode only */
9927                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9928                 if (!(tmp & DPI_ENABLE))
9929                         continue;
9930
9931                 tmp = I915_READ(MIPI_CTRL(port));
9932                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9933                         continue;
9934
9935                 pipe_config->cpu_transcoder = cpu_transcoder;
9936                 pipe_config->has_dsi_encoder = true;
9937                 break;
9938         }
9939
9940         return pipe_config->has_dsi_encoder;
9941 }
9942
9943 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9944                                        struct intel_crtc_state *pipe_config)
9945 {
9946         struct drm_device *dev = crtc->base.dev;
9947         struct drm_i915_private *dev_priv = dev->dev_private;
9948         struct intel_shared_dpll *pll;
9949         enum port port;
9950         uint32_t tmp;
9951
9952         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9953
9954         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9955
9956         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9957                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9958         else if (IS_BROXTON(dev))
9959                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9960         else
9961                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9962
9963         pll = pipe_config->shared_dpll;
9964         if (pll) {
9965                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9966                                                  &pipe_config->dpll_hw_state));
9967         }
9968
9969         /*
9970          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9971          * DDI E. So just check whether this pipe is wired to DDI E and whether
9972          * the PCH transcoder is on.
9973          */
9974         if (INTEL_INFO(dev)->gen < 9 &&
9975             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9976                 pipe_config->has_pch_encoder = true;
9977
9978                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9979                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9980                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9981
9982                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9983         }
9984 }
9985
9986 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9987                                     struct intel_crtc_state *pipe_config)
9988 {
9989         struct drm_device *dev = crtc->base.dev;
9990         struct drm_i915_private *dev_priv = dev->dev_private;
9991         enum intel_display_power_domain power_domain;
9992         unsigned long power_domain_mask;
9993         bool active;
9994
9995         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9996         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9997                 return false;
9998         power_domain_mask = BIT(power_domain);
9999
10000         pipe_config->shared_dpll = NULL;
10001
10002         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10003
10004         if (IS_BROXTON(dev_priv)) {
10005                 bxt_get_dsi_transcoder_state(crtc, pipe_config,
10006                                              &power_domain_mask);
10007                 WARN_ON(active && pipe_config->has_dsi_encoder);
10008                 if (pipe_config->has_dsi_encoder)
10009                         active = true;
10010         }
10011
10012         if (!active)
10013                 goto out;
10014
10015         if (!pipe_config->has_dsi_encoder) {
10016                 haswell_get_ddi_port_state(crtc, pipe_config);
10017                 intel_get_pipe_timings(crtc, pipe_config);
10018         }
10019
10020         intel_get_pipe_src_size(crtc, pipe_config);
10021
10022         pipe_config->gamma_mode =
10023                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10024
10025         if (INTEL_INFO(dev)->gen >= 9) {
10026                 skl_init_scalers(dev, crtc, pipe_config);
10027         }
10028
10029         if (INTEL_INFO(dev)->gen >= 9) {
10030                 pipe_config->scaler_state.scaler_id = -1;
10031                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10032         }
10033
10034         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10035         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10036                 power_domain_mask |= BIT(power_domain);
10037                 if (INTEL_INFO(dev)->gen >= 9)
10038                         skylake_get_pfit_config(crtc, pipe_config);
10039                 else
10040                         ironlake_get_pfit_config(crtc, pipe_config);
10041         }
10042
10043         if (IS_HASWELL(dev))
10044                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10045                         (I915_READ(IPS_CTL) & IPS_ENABLE);
10046
10047         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10048             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10049                 pipe_config->pixel_multiplier =
10050                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10051         } else {
10052                 pipe_config->pixel_multiplier = 1;
10053         }
10054
10055 out:
10056         for_each_power_domain(power_domain, power_domain_mask)
10057                 intel_display_power_put(dev_priv, power_domain);
10058
10059         return active;
10060 }
10061
10062 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10063                                const struct intel_plane_state *plane_state)
10064 {
10065         struct drm_device *dev = crtc->dev;
10066         struct drm_i915_private *dev_priv = dev->dev_private;
10067         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10068         uint32_t cntl = 0, size = 0;
10069
10070         if (plane_state && plane_state->visible) {
10071                 unsigned int width = plane_state->base.crtc_w;
10072                 unsigned int height = plane_state->base.crtc_h;
10073                 unsigned int stride = roundup_pow_of_two(width) * 4;
10074
10075                 switch (stride) {
10076                 default:
10077                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10078                                   width, stride);
10079                         stride = 256;
10080                         /* fallthrough */
10081                 case 256:
10082                 case 512:
10083                 case 1024:
10084                 case 2048:
10085                         break;
10086                 }
10087
10088                 cntl |= CURSOR_ENABLE |
10089                         CURSOR_GAMMA_ENABLE |
10090                         CURSOR_FORMAT_ARGB |
10091                         CURSOR_STRIDE(stride);
10092
10093                 size = (height << 12) | width;
10094         }
10095
10096         if (intel_crtc->cursor_cntl != 0 &&
10097             (intel_crtc->cursor_base != base ||
10098              intel_crtc->cursor_size != size ||
10099              intel_crtc->cursor_cntl != cntl)) {
10100                 /* On these chipsets we can only modify the base/size/stride
10101                  * whilst the cursor is disabled.
10102                  */
10103                 I915_WRITE(CURCNTR(PIPE_A), 0);
10104                 POSTING_READ(CURCNTR(PIPE_A));
10105                 intel_crtc->cursor_cntl = 0;
10106         }
10107
10108         if (intel_crtc->cursor_base != base) {
10109                 I915_WRITE(CURBASE(PIPE_A), base);
10110                 intel_crtc->cursor_base = base;
10111         }
10112
10113         if (intel_crtc->cursor_size != size) {
10114                 I915_WRITE(CURSIZE, size);
10115                 intel_crtc->cursor_size = size;
10116         }
10117
10118         if (intel_crtc->cursor_cntl != cntl) {
10119                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10120                 POSTING_READ(CURCNTR(PIPE_A));
10121                 intel_crtc->cursor_cntl = cntl;
10122         }
10123 }
10124
10125 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10126                                const struct intel_plane_state *plane_state)
10127 {
10128         struct drm_device *dev = crtc->dev;
10129         struct drm_i915_private *dev_priv = dev->dev_private;
10130         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10131         int pipe = intel_crtc->pipe;
10132         uint32_t cntl = 0;
10133
10134         if (plane_state && plane_state->visible) {
10135                 cntl = MCURSOR_GAMMA_ENABLE;
10136                 switch (plane_state->base.crtc_w) {
10137                         case 64:
10138                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10139                                 break;
10140                         case 128:
10141                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10142                                 break;
10143                         case 256:
10144                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10145                                 break;
10146                         default:
10147                                 MISSING_CASE(plane_state->base.crtc_w);
10148                                 return;
10149                 }
10150                 cntl |= pipe << 28; /* Connect to correct pipe */
10151
10152                 if (HAS_DDI(dev))
10153                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10154
10155                 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10156                         cntl |= CURSOR_ROTATE_180;
10157         }
10158
10159         if (intel_crtc->cursor_cntl != cntl) {
10160                 I915_WRITE(CURCNTR(pipe), cntl);
10161                 POSTING_READ(CURCNTR(pipe));
10162                 intel_crtc->cursor_cntl = cntl;
10163         }
10164
10165         /* and commit changes on next vblank */
10166         I915_WRITE(CURBASE(pipe), base);
10167         POSTING_READ(CURBASE(pipe));
10168
10169         intel_crtc->cursor_base = base;
10170 }
10171
10172 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10173 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10174                                      const struct intel_plane_state *plane_state)
10175 {
10176         struct drm_device *dev = crtc->dev;
10177         struct drm_i915_private *dev_priv = dev->dev_private;
10178         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10179         int pipe = intel_crtc->pipe;
10180         u32 base = intel_crtc->cursor_addr;
10181         u32 pos = 0;
10182
10183         if (plane_state) {
10184                 int x = plane_state->base.crtc_x;
10185                 int y = plane_state->base.crtc_y;
10186
10187                 if (x < 0) {
10188                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10189                         x = -x;
10190                 }
10191                 pos |= x << CURSOR_X_SHIFT;
10192
10193                 if (y < 0) {
10194                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10195                         y = -y;
10196                 }
10197                 pos |= y << CURSOR_Y_SHIFT;
10198
10199                 /* ILK+ do this automagically */
10200                 if (HAS_GMCH_DISPLAY(dev) &&
10201                     plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10202                         base += (plane_state->base.crtc_h *
10203                                  plane_state->base.crtc_w - 1) * 4;
10204                 }
10205         }
10206
10207         I915_WRITE(CURPOS(pipe), pos);
10208
10209         if (IS_845G(dev) || IS_I865G(dev))
10210                 i845_update_cursor(crtc, base, plane_state);
10211         else
10212                 i9xx_update_cursor(crtc, base, plane_state);
10213 }
10214
10215 static bool cursor_size_ok(struct drm_device *dev,
10216                            uint32_t width, uint32_t height)
10217 {
10218         if (width == 0 || height == 0)
10219                 return false;
10220
10221         /*
10222          * 845g/865g are special in that they are only limited by
10223          * the width of their cursors, the height is arbitrary up to
10224          * the precision of the register. Everything else requires
10225          * square cursors, limited to a few power-of-two sizes.
10226          */
10227         if (IS_845G(dev) || IS_I865G(dev)) {
10228                 if ((width & 63) != 0)
10229                         return false;
10230
10231                 if (width > (IS_845G(dev) ? 64 : 512))
10232                         return false;
10233
10234                 if (height > 1023)
10235                         return false;
10236         } else {
10237                 switch (width | height) {
10238                 case 256:
10239                 case 128:
10240                         if (IS_GEN2(dev))
10241                                 return false;
10242                 case 64:
10243                         break;
10244                 default:
10245                         return false;
10246                 }
10247         }
10248
10249         return true;
10250 }
10251
10252 /* VESA 640x480x72Hz mode to set on the pipe */
10253 static struct drm_display_mode load_detect_mode = {
10254         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10255                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10256 };
10257
10258 struct drm_framebuffer *
10259 __intel_framebuffer_create(struct drm_device *dev,
10260                            struct drm_mode_fb_cmd2 *mode_cmd,
10261                            struct drm_i915_gem_object *obj)
10262 {
10263         struct intel_framebuffer *intel_fb;
10264         int ret;
10265
10266         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10267         if (!intel_fb)
10268                 return ERR_PTR(-ENOMEM);
10269
10270         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10271         if (ret)
10272                 goto err;
10273
10274         return &intel_fb->base;
10275
10276 err:
10277         kfree(intel_fb);
10278         return ERR_PTR(ret);
10279 }
10280
10281 static struct drm_framebuffer *
10282 intel_framebuffer_create(struct drm_device *dev,
10283                          struct drm_mode_fb_cmd2 *mode_cmd,
10284                          struct drm_i915_gem_object *obj)
10285 {
10286         struct drm_framebuffer *fb;
10287         int ret;
10288
10289         ret = i915_mutex_lock_interruptible(dev);
10290         if (ret)
10291                 return ERR_PTR(ret);
10292         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10293         mutex_unlock(&dev->struct_mutex);
10294
10295         return fb;
10296 }
10297
10298 static u32
10299 intel_framebuffer_pitch_for_width(int width, int bpp)
10300 {
10301         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10302         return ALIGN(pitch, 64);
10303 }
10304
10305 static u32
10306 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10307 {
10308         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10309         return PAGE_ALIGN(pitch * mode->vdisplay);
10310 }
10311
10312 static struct drm_framebuffer *
10313 intel_framebuffer_create_for_mode(struct drm_device *dev,
10314                                   struct drm_display_mode *mode,
10315                                   int depth, int bpp)
10316 {
10317         struct drm_framebuffer *fb;
10318         struct drm_i915_gem_object *obj;
10319         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10320
10321         obj = i915_gem_alloc_object(dev,
10322                                     intel_framebuffer_size_for_mode(mode, bpp));
10323         if (obj == NULL)
10324                 return ERR_PTR(-ENOMEM);
10325
10326         mode_cmd.width = mode->hdisplay;
10327         mode_cmd.height = mode->vdisplay;
10328         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10329                                                                 bpp);
10330         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10331
10332         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10333         if (IS_ERR(fb))
10334                 drm_gem_object_unreference_unlocked(&obj->base);
10335
10336         return fb;
10337 }
10338
10339 static struct drm_framebuffer *
10340 mode_fits_in_fbdev(struct drm_device *dev,
10341                    struct drm_display_mode *mode)
10342 {
10343 #ifdef CONFIG_DRM_FBDEV_EMULATION
10344         struct drm_i915_private *dev_priv = dev->dev_private;
10345         struct drm_i915_gem_object *obj;
10346         struct drm_framebuffer *fb;
10347
10348         if (!dev_priv->fbdev)
10349                 return NULL;
10350
10351         if (!dev_priv->fbdev->fb)
10352                 return NULL;
10353
10354         obj = dev_priv->fbdev->fb->obj;
10355         BUG_ON(!obj);
10356
10357         fb = &dev_priv->fbdev->fb->base;
10358         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10359                                                                fb->bits_per_pixel))
10360                 return NULL;
10361
10362         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10363                 return NULL;
10364
10365         drm_framebuffer_reference(fb);
10366         return fb;
10367 #else
10368         return NULL;
10369 #endif
10370 }
10371
10372 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10373                                            struct drm_crtc *crtc,
10374                                            struct drm_display_mode *mode,
10375                                            struct drm_framebuffer *fb,
10376                                            int x, int y)
10377 {
10378         struct drm_plane_state *plane_state;
10379         int hdisplay, vdisplay;
10380         int ret;
10381
10382         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10383         if (IS_ERR(plane_state))
10384                 return PTR_ERR(plane_state);
10385
10386         if (mode)
10387                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10388         else
10389                 hdisplay = vdisplay = 0;
10390
10391         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10392         if (ret)
10393                 return ret;
10394         drm_atomic_set_fb_for_plane(plane_state, fb);
10395         plane_state->crtc_x = 0;
10396         plane_state->crtc_y = 0;
10397         plane_state->crtc_w = hdisplay;
10398         plane_state->crtc_h = vdisplay;
10399         plane_state->src_x = x << 16;
10400         plane_state->src_y = y << 16;
10401         plane_state->src_w = hdisplay << 16;
10402         plane_state->src_h = vdisplay << 16;
10403
10404         return 0;
10405 }
10406
10407 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10408                                 struct drm_display_mode *mode,
10409                                 struct intel_load_detect_pipe *old,
10410                                 struct drm_modeset_acquire_ctx *ctx)
10411 {
10412         struct intel_crtc *intel_crtc;
10413         struct intel_encoder *intel_encoder =
10414                 intel_attached_encoder(connector);
10415         struct drm_crtc *possible_crtc;
10416         struct drm_encoder *encoder = &intel_encoder->base;
10417         struct drm_crtc *crtc = NULL;
10418         struct drm_device *dev = encoder->dev;
10419         struct drm_framebuffer *fb;
10420         struct drm_mode_config *config = &dev->mode_config;
10421         struct drm_atomic_state *state = NULL, *restore_state = NULL;
10422         struct drm_connector_state *connector_state;
10423         struct intel_crtc_state *crtc_state;
10424         int ret, i = -1;
10425
10426         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10427                       connector->base.id, connector->name,
10428                       encoder->base.id, encoder->name);
10429
10430         old->restore_state = NULL;
10431
10432 retry:
10433         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10434         if (ret)
10435                 goto fail;
10436
10437         /*
10438          * Algorithm gets a little messy:
10439          *
10440          *   - if the connector already has an assigned crtc, use it (but make
10441          *     sure it's on first)
10442          *
10443          *   - try to find the first unused crtc that can drive this connector,
10444          *     and use that if we find one
10445          */
10446
10447         /* See if we already have a CRTC for this connector */
10448         if (connector->state->crtc) {
10449                 crtc = connector->state->crtc;
10450
10451                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10452                 if (ret)
10453                         goto fail;
10454
10455                 /* Make sure the crtc and connector are running */
10456                 goto found;
10457         }
10458
10459         /* Find an unused one (if possible) */
10460         for_each_crtc(dev, possible_crtc) {
10461                 i++;
10462                 if (!(encoder->possible_crtcs & (1 << i)))
10463                         continue;
10464
10465                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10466                 if (ret)
10467                         goto fail;
10468
10469                 if (possible_crtc->state->enable) {
10470                         drm_modeset_unlock(&possible_crtc->mutex);
10471                         continue;
10472                 }
10473
10474                 crtc = possible_crtc;
10475                 break;
10476         }
10477
10478         /*
10479          * If we didn't find an unused CRTC, don't use any.
10480          */
10481         if (!crtc) {
10482                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10483                 goto fail;
10484         }
10485
10486 found:
10487         intel_crtc = to_intel_crtc(crtc);
10488
10489         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10490         if (ret)
10491                 goto fail;
10492
10493         state = drm_atomic_state_alloc(dev);
10494         restore_state = drm_atomic_state_alloc(dev);
10495         if (!state || !restore_state) {
10496                 ret = -ENOMEM;
10497                 goto fail;
10498         }
10499
10500         state->acquire_ctx = ctx;
10501         restore_state->acquire_ctx = ctx;
10502
10503         connector_state = drm_atomic_get_connector_state(state, connector);
10504         if (IS_ERR(connector_state)) {
10505                 ret = PTR_ERR(connector_state);
10506                 goto fail;
10507         }
10508
10509         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10510         if (ret)
10511                 goto fail;
10512
10513         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10514         if (IS_ERR(crtc_state)) {
10515                 ret = PTR_ERR(crtc_state);
10516                 goto fail;
10517         }
10518
10519         crtc_state->base.active = crtc_state->base.enable = true;
10520
10521         if (!mode)
10522                 mode = &load_detect_mode;
10523
10524         /* We need a framebuffer large enough to accommodate all accesses
10525          * that the plane may generate whilst we perform load detection.
10526          * We can not rely on the fbcon either being present (we get called
10527          * during its initialisation to detect all boot displays, or it may
10528          * not even exist) or that it is large enough to satisfy the
10529          * requested mode.
10530          */
10531         fb = mode_fits_in_fbdev(dev, mode);
10532         if (fb == NULL) {
10533                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10534                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10535         } else
10536                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10537         if (IS_ERR(fb)) {
10538                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10539                 goto fail;
10540         }
10541
10542         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10543         if (ret)
10544                 goto fail;
10545
10546         drm_framebuffer_unreference(fb);
10547
10548         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10549         if (ret)
10550                 goto fail;
10551
10552         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10553         if (!ret)
10554                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10555         if (!ret)
10556                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10557         if (ret) {
10558                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10559                 goto fail;
10560         }
10561
10562         ret = drm_atomic_commit(state);
10563         if (ret) {
10564                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10565                 goto fail;
10566         }
10567
10568         old->restore_state = restore_state;
10569
10570         /* let the connector get through one full cycle before testing */
10571         intel_wait_for_vblank(dev, intel_crtc->pipe);
10572         return true;
10573
10574 fail:
10575         drm_atomic_state_free(state);
10576         drm_atomic_state_free(restore_state);
10577         restore_state = state = NULL;
10578
10579         if (ret == -EDEADLK) {
10580                 drm_modeset_backoff(ctx);
10581                 goto retry;
10582         }
10583
10584         return false;
10585 }
10586
10587 void intel_release_load_detect_pipe(struct drm_connector *connector,
10588                                     struct intel_load_detect_pipe *old,
10589                                     struct drm_modeset_acquire_ctx *ctx)
10590 {
10591         struct intel_encoder *intel_encoder =
10592                 intel_attached_encoder(connector);
10593         struct drm_encoder *encoder = &intel_encoder->base;
10594         struct drm_atomic_state *state = old->restore_state;
10595         int ret;
10596
10597         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10598                       connector->base.id, connector->name,
10599                       encoder->base.id, encoder->name);
10600
10601         if (!state)
10602                 return;
10603
10604         ret = drm_atomic_commit(state);
10605         if (ret) {
10606                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10607                 drm_atomic_state_free(state);
10608         }
10609 }
10610
10611 static int i9xx_pll_refclk(struct drm_device *dev,
10612                            const struct intel_crtc_state *pipe_config)
10613 {
10614         struct drm_i915_private *dev_priv = dev->dev_private;
10615         u32 dpll = pipe_config->dpll_hw_state.dpll;
10616
10617         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10618                 return dev_priv->vbt.lvds_ssc_freq;
10619         else if (HAS_PCH_SPLIT(dev))
10620                 return 120000;
10621         else if (!IS_GEN2(dev))
10622                 return 96000;
10623         else
10624                 return 48000;
10625 }
10626
10627 /* Returns the clock of the currently programmed mode of the given pipe. */
10628 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10629                                 struct intel_crtc_state *pipe_config)
10630 {
10631         struct drm_device *dev = crtc->base.dev;
10632         struct drm_i915_private *dev_priv = dev->dev_private;
10633         int pipe = pipe_config->cpu_transcoder;
10634         u32 dpll = pipe_config->dpll_hw_state.dpll;
10635         u32 fp;
10636         intel_clock_t clock;
10637         int port_clock;
10638         int refclk = i9xx_pll_refclk(dev, pipe_config);
10639
10640         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10641                 fp = pipe_config->dpll_hw_state.fp0;
10642         else
10643                 fp = pipe_config->dpll_hw_state.fp1;
10644
10645         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10646         if (IS_PINEVIEW(dev)) {
10647                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10648                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10649         } else {
10650                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10651                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10652         }
10653
10654         if (!IS_GEN2(dev)) {
10655                 if (IS_PINEVIEW(dev))
10656                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10657                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10658                 else
10659                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10660                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10661
10662                 switch (dpll & DPLL_MODE_MASK) {
10663                 case DPLLB_MODE_DAC_SERIAL:
10664                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10665                                 5 : 10;
10666                         break;
10667                 case DPLLB_MODE_LVDS:
10668                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10669                                 7 : 14;
10670                         break;
10671                 default:
10672                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10673                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10674                         return;
10675                 }
10676
10677                 if (IS_PINEVIEW(dev))
10678                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10679                 else
10680                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10681         } else {
10682                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10683                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10684
10685                 if (is_lvds) {
10686                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10687                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10688
10689                         if (lvds & LVDS_CLKB_POWER_UP)
10690                                 clock.p2 = 7;
10691                         else
10692                                 clock.p2 = 14;
10693                 } else {
10694                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10695                                 clock.p1 = 2;
10696                         else {
10697                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10698                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10699                         }
10700                         if (dpll & PLL_P2_DIVIDE_BY_4)
10701                                 clock.p2 = 4;
10702                         else
10703                                 clock.p2 = 2;
10704                 }
10705
10706                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10707         }
10708
10709         /*
10710          * This value includes pixel_multiplier. We will use
10711          * port_clock to compute adjusted_mode.crtc_clock in the
10712          * encoder's get_config() function.
10713          */
10714         pipe_config->port_clock = port_clock;
10715 }
10716
10717 int intel_dotclock_calculate(int link_freq,
10718                              const struct intel_link_m_n *m_n)
10719 {
10720         /*
10721          * The calculation for the data clock is:
10722          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10723          * But we want to avoid losing precison if possible, so:
10724          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10725          *
10726          * and the link clock is simpler:
10727          * link_clock = (m * link_clock) / n
10728          */
10729
10730         if (!m_n->link_n)
10731                 return 0;
10732
10733         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10734 }
10735
10736 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10737                                    struct intel_crtc_state *pipe_config)
10738 {
10739         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10740
10741         /* read out port_clock from the DPLL */
10742         i9xx_crtc_clock_get(crtc, pipe_config);
10743
10744         /*
10745          * In case there is an active pipe without active ports,
10746          * we may need some idea for the dotclock anyway.
10747          * Calculate one based on the FDI configuration.
10748          */
10749         pipe_config->base.adjusted_mode.crtc_clock =
10750                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10751                                          &pipe_config->fdi_m_n);
10752 }
10753
10754 /** Returns the currently programmed mode of the given pipe. */
10755 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10756                                              struct drm_crtc *crtc)
10757 {
10758         struct drm_i915_private *dev_priv = dev->dev_private;
10759         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10760         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10761         struct drm_display_mode *mode;
10762         struct intel_crtc_state *pipe_config;
10763         int htot = I915_READ(HTOTAL(cpu_transcoder));
10764         int hsync = I915_READ(HSYNC(cpu_transcoder));
10765         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10766         int vsync = I915_READ(VSYNC(cpu_transcoder));
10767         enum pipe pipe = intel_crtc->pipe;
10768
10769         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10770         if (!mode)
10771                 return NULL;
10772
10773         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10774         if (!pipe_config) {
10775                 kfree(mode);
10776                 return NULL;
10777         }
10778
10779         /*
10780          * Construct a pipe_config sufficient for getting the clock info
10781          * back out of crtc_clock_get.
10782          *
10783          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10784          * to use a real value here instead.
10785          */
10786         pipe_config->cpu_transcoder = (enum transcoder) pipe;
10787         pipe_config->pixel_multiplier = 1;
10788         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10789         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10790         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10791         i9xx_crtc_clock_get(intel_crtc, pipe_config);
10792
10793         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10794         mode->hdisplay = (htot & 0xffff) + 1;
10795         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10796         mode->hsync_start = (hsync & 0xffff) + 1;
10797         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10798         mode->vdisplay = (vtot & 0xffff) + 1;
10799         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10800         mode->vsync_start = (vsync & 0xffff) + 1;
10801         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10802
10803         drm_mode_set_name(mode);
10804
10805         kfree(pipe_config);
10806
10807         return mode;
10808 }
10809
10810 void intel_mark_busy(struct drm_device *dev)
10811 {
10812         struct drm_i915_private *dev_priv = dev->dev_private;
10813
10814         if (dev_priv->mm.busy)
10815                 return;
10816
10817         intel_runtime_pm_get(dev_priv);
10818         i915_update_gfx_val(dev_priv);
10819         if (INTEL_INFO(dev)->gen >= 6)
10820                 gen6_rps_busy(dev_priv);
10821         dev_priv->mm.busy = true;
10822 }
10823
10824 void intel_mark_idle(struct drm_device *dev)
10825 {
10826         struct drm_i915_private *dev_priv = dev->dev_private;
10827
10828         if (!dev_priv->mm.busy)
10829                 return;
10830
10831         dev_priv->mm.busy = false;
10832
10833         if (INTEL_INFO(dev)->gen >= 6)
10834                 gen6_rps_idle(dev->dev_private);
10835
10836         intel_runtime_pm_put(dev_priv);
10837 }
10838
10839 static void intel_crtc_destroy(struct drm_crtc *crtc)
10840 {
10841         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10842         struct drm_device *dev = crtc->dev;
10843         struct intel_unpin_work *work;
10844
10845         spin_lock_irq(&dev->event_lock);
10846         work = intel_crtc->unpin_work;
10847         intel_crtc->unpin_work = NULL;
10848         spin_unlock_irq(&dev->event_lock);
10849
10850         if (work) {
10851                 cancel_work_sync(&work->work);
10852                 kfree(work);
10853         }
10854
10855         drm_crtc_cleanup(crtc);
10856
10857         kfree(intel_crtc);
10858 }
10859
10860 static void intel_unpin_work_fn(struct work_struct *__work)
10861 {
10862         struct intel_unpin_work *work =
10863                 container_of(__work, struct intel_unpin_work, work);
10864         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10865         struct drm_device *dev = crtc->base.dev;
10866         struct drm_plane *primary = crtc->base.primary;
10867
10868         mutex_lock(&dev->struct_mutex);
10869         intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
10870         drm_gem_object_unreference(&work->pending_flip_obj->base);
10871
10872         if (work->flip_queued_req)
10873                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10874         mutex_unlock(&dev->struct_mutex);
10875
10876         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10877         intel_fbc_post_update(crtc);
10878         drm_framebuffer_unreference(work->old_fb);
10879
10880         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10881         atomic_dec(&crtc->unpin_work_count);
10882
10883         kfree(work);
10884 }
10885
10886 static void do_intel_finish_page_flip(struct drm_device *dev,
10887                                       struct drm_crtc *crtc)
10888 {
10889         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10890         struct intel_unpin_work *work;
10891         unsigned long flags;
10892
10893         /* Ignore early vblank irqs */
10894         if (intel_crtc == NULL)
10895                 return;
10896
10897         /*
10898          * This is called both by irq handlers and the reset code (to complete
10899          * lost pageflips) so needs the full irqsave spinlocks.
10900          */
10901         spin_lock_irqsave(&dev->event_lock, flags);
10902         work = intel_crtc->unpin_work;
10903
10904         /* Ensure we don't miss a work->pending update ... */
10905         smp_rmb();
10906
10907         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10908                 spin_unlock_irqrestore(&dev->event_lock, flags);
10909                 return;
10910         }
10911
10912         page_flip_completed(intel_crtc);
10913
10914         spin_unlock_irqrestore(&dev->event_lock, flags);
10915 }
10916
10917 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10918 {
10919         struct drm_i915_private *dev_priv = dev->dev_private;
10920         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10921
10922         do_intel_finish_page_flip(dev, crtc);
10923 }
10924
10925 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10926 {
10927         struct drm_i915_private *dev_priv = dev->dev_private;
10928         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10929
10930         do_intel_finish_page_flip(dev, crtc);
10931 }
10932
10933 /* Is 'a' after or equal to 'b'? */
10934 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10935 {
10936         return !((a - b) & 0x80000000);
10937 }
10938
10939 static bool page_flip_finished(struct intel_crtc *crtc)
10940 {
10941         struct drm_device *dev = crtc->base.dev;
10942         struct drm_i915_private *dev_priv = dev->dev_private;
10943         unsigned reset_counter;
10944
10945         reset_counter = i915_reset_counter(&dev_priv->gpu_error);
10946         if (crtc->reset_counter != reset_counter)
10947                 return true;
10948
10949         /*
10950          * The relevant registers doen't exist on pre-ctg.
10951          * As the flip done interrupt doesn't trigger for mmio
10952          * flips on gmch platforms, a flip count check isn't
10953          * really needed there. But since ctg has the registers,
10954          * include it in the check anyway.
10955          */
10956         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10957                 return true;
10958
10959         /*
10960          * BDW signals flip done immediately if the plane
10961          * is disabled, even if the plane enable is already
10962          * armed to occur at the next vblank :(
10963          */
10964
10965         /*
10966          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10967          * used the same base address. In that case the mmio flip might
10968          * have completed, but the CS hasn't even executed the flip yet.
10969          *
10970          * A flip count check isn't enough as the CS might have updated
10971          * the base address just after start of vblank, but before we
10972          * managed to process the interrupt. This means we'd complete the
10973          * CS flip too soon.
10974          *
10975          * Combining both checks should get us a good enough result. It may
10976          * still happen that the CS flip has been executed, but has not
10977          * yet actually completed. But in case the base address is the same
10978          * anyway, we don't really care.
10979          */
10980         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10981                 crtc->unpin_work->gtt_offset &&
10982                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10983                                     crtc->unpin_work->flip_count);
10984 }
10985
10986 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10987 {
10988         struct drm_i915_private *dev_priv = dev->dev_private;
10989         struct intel_crtc *intel_crtc =
10990                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10991         unsigned long flags;
10992
10993
10994         /*
10995          * This is called both by irq handlers and the reset code (to complete
10996          * lost pageflips) so needs the full irqsave spinlocks.
10997          *
10998          * NB: An MMIO update of the plane base pointer will also
10999          * generate a page-flip completion irq, i.e. every modeset
11000          * is also accompanied by a spurious intel_prepare_page_flip().
11001          */
11002         spin_lock_irqsave(&dev->event_lock, flags);
11003         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
11004                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
11005         spin_unlock_irqrestore(&dev->event_lock, flags);
11006 }
11007
11008 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
11009 {
11010         /* Ensure that the work item is consistent when activating it ... */
11011         smp_wmb();
11012         atomic_set(&work->pending, INTEL_FLIP_PENDING);
11013         /* and that it is marked active as soon as the irq could fire. */
11014         smp_wmb();
11015 }
11016
11017 static int intel_gen2_queue_flip(struct drm_device *dev,
11018                                  struct drm_crtc *crtc,
11019                                  struct drm_framebuffer *fb,
11020                                  struct drm_i915_gem_object *obj,
11021                                  struct drm_i915_gem_request *req,
11022                                  uint32_t flags)
11023 {
11024         struct intel_engine_cs *engine = req->engine;
11025         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11026         u32 flip_mask;
11027         int ret;
11028
11029         ret = intel_ring_begin(req, 6);
11030         if (ret)
11031                 return ret;
11032
11033         /* Can't queue multiple flips, so wait for the previous
11034          * one to finish before executing the next.
11035          */
11036         if (intel_crtc->plane)
11037                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11038         else
11039                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11040         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11041         intel_ring_emit(engine, MI_NOOP);
11042         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11043                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11044         intel_ring_emit(engine, fb->pitches[0]);
11045         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11046         intel_ring_emit(engine, 0); /* aux display base address, unused */
11047
11048         intel_mark_page_flip_active(intel_crtc->unpin_work);
11049         return 0;
11050 }
11051
11052 static int intel_gen3_queue_flip(struct drm_device *dev,
11053                                  struct drm_crtc *crtc,
11054                                  struct drm_framebuffer *fb,
11055                                  struct drm_i915_gem_object *obj,
11056                                  struct drm_i915_gem_request *req,
11057                                  uint32_t flags)
11058 {
11059         struct intel_engine_cs *engine = req->engine;
11060         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11061         u32 flip_mask;
11062         int ret;
11063
11064         ret = intel_ring_begin(req, 6);
11065         if (ret)
11066                 return ret;
11067
11068         if (intel_crtc->plane)
11069                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11070         else
11071                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11072         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11073         intel_ring_emit(engine, MI_NOOP);
11074         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
11075                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11076         intel_ring_emit(engine, fb->pitches[0]);
11077         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11078         intel_ring_emit(engine, MI_NOOP);
11079
11080         intel_mark_page_flip_active(intel_crtc->unpin_work);
11081         return 0;
11082 }
11083
11084 static int intel_gen4_queue_flip(struct drm_device *dev,
11085                                  struct drm_crtc *crtc,
11086                                  struct drm_framebuffer *fb,
11087                                  struct drm_i915_gem_object *obj,
11088                                  struct drm_i915_gem_request *req,
11089                                  uint32_t flags)
11090 {
11091         struct intel_engine_cs *engine = req->engine;
11092         struct drm_i915_private *dev_priv = dev->dev_private;
11093         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11094         uint32_t pf, pipesrc;
11095         int ret;
11096
11097         ret = intel_ring_begin(req, 4);
11098         if (ret)
11099                 return ret;
11100
11101         /* i965+ uses the linear or tiled offsets from the
11102          * Display Registers (which do not change across a page-flip)
11103          * so we need only reprogram the base address.
11104          */
11105         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11106                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11107         intel_ring_emit(engine, fb->pitches[0]);
11108         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset |
11109                         obj->tiling_mode);
11110
11111         /* XXX Enabling the panel-fitter across page-flip is so far
11112          * untested on non-native modes, so ignore it for now.
11113          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11114          */
11115         pf = 0;
11116         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11117         intel_ring_emit(engine, pf | pipesrc);
11118
11119         intel_mark_page_flip_active(intel_crtc->unpin_work);
11120         return 0;
11121 }
11122
11123 static int intel_gen6_queue_flip(struct drm_device *dev,
11124                                  struct drm_crtc *crtc,
11125                                  struct drm_framebuffer *fb,
11126                                  struct drm_i915_gem_object *obj,
11127                                  struct drm_i915_gem_request *req,
11128                                  uint32_t flags)
11129 {
11130         struct intel_engine_cs *engine = req->engine;
11131         struct drm_i915_private *dev_priv = dev->dev_private;
11132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11133         uint32_t pf, pipesrc;
11134         int ret;
11135
11136         ret = intel_ring_begin(req, 4);
11137         if (ret)
11138                 return ret;
11139
11140         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11141                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11142         intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11143         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11144
11145         /* Contrary to the suggestions in the documentation,
11146          * "Enable Panel Fitter" does not seem to be required when page
11147          * flipping with a non-native mode, and worse causes a normal
11148          * modeset to fail.
11149          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11150          */
11151         pf = 0;
11152         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11153         intel_ring_emit(engine, pf | pipesrc);
11154
11155         intel_mark_page_flip_active(intel_crtc->unpin_work);
11156         return 0;
11157 }
11158
11159 static int intel_gen7_queue_flip(struct drm_device *dev,
11160                                  struct drm_crtc *crtc,
11161                                  struct drm_framebuffer *fb,
11162                                  struct drm_i915_gem_object *obj,
11163                                  struct drm_i915_gem_request *req,
11164                                  uint32_t flags)
11165 {
11166         struct intel_engine_cs *engine = req->engine;
11167         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11168         uint32_t plane_bit = 0;
11169         int len, ret;
11170
11171         switch (intel_crtc->plane) {
11172         case PLANE_A:
11173                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11174                 break;
11175         case PLANE_B:
11176                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11177                 break;
11178         case PLANE_C:
11179                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11180                 break;
11181         default:
11182                 WARN_ONCE(1, "unknown plane in flip command\n");
11183                 return -ENODEV;
11184         }
11185
11186         len = 4;
11187         if (engine->id == RCS) {
11188                 len += 6;
11189                 /*
11190                  * On Gen 8, SRM is now taking an extra dword to accommodate
11191                  * 48bits addresses, and we need a NOOP for the batch size to
11192                  * stay even.
11193                  */
11194                 if (IS_GEN8(dev))
11195                         len += 2;
11196         }
11197
11198         /*
11199          * BSpec MI_DISPLAY_FLIP for IVB:
11200          * "The full packet must be contained within the same cache line."
11201          *
11202          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11203          * cacheline, if we ever start emitting more commands before
11204          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11205          * then do the cacheline alignment, and finally emit the
11206          * MI_DISPLAY_FLIP.
11207          */
11208         ret = intel_ring_cacheline_align(req);
11209         if (ret)
11210                 return ret;
11211
11212         ret = intel_ring_begin(req, len);
11213         if (ret)
11214                 return ret;
11215
11216         /* Unmask the flip-done completion message. Note that the bspec says that
11217          * we should do this for both the BCS and RCS, and that we must not unmask
11218          * more than one flip event at any time (or ensure that one flip message
11219          * can be sent by waiting for flip-done prior to queueing new flips).
11220          * Experimentation says that BCS works despite DERRMR masking all
11221          * flip-done completion events and that unmasking all planes at once
11222          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11223          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11224          */
11225         if (engine->id == RCS) {
11226                 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11227                 intel_ring_emit_reg(engine, DERRMR);
11228                 intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11229                                           DERRMR_PIPEB_PRI_FLIP_DONE |
11230                                           DERRMR_PIPEC_PRI_FLIP_DONE));
11231                 if (IS_GEN8(dev))
11232                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
11233                                               MI_SRM_LRM_GLOBAL_GTT);
11234                 else
11235                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
11236                                               MI_SRM_LRM_GLOBAL_GTT);
11237                 intel_ring_emit_reg(engine, DERRMR);
11238                 intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
11239                 if (IS_GEN8(dev)) {
11240                         intel_ring_emit(engine, 0);
11241                         intel_ring_emit(engine, MI_NOOP);
11242                 }
11243         }
11244
11245         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11246         intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11247         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11248         intel_ring_emit(engine, (MI_NOOP));
11249
11250         intel_mark_page_flip_active(intel_crtc->unpin_work);
11251         return 0;
11252 }
11253
11254 static bool use_mmio_flip(struct intel_engine_cs *engine,
11255                           struct drm_i915_gem_object *obj)
11256 {
11257         /*
11258          * This is not being used for older platforms, because
11259          * non-availability of flip done interrupt forces us to use
11260          * CS flips. Older platforms derive flip done using some clever
11261          * tricks involving the flip_pending status bits and vblank irqs.
11262          * So using MMIO flips there would disrupt this mechanism.
11263          */
11264
11265         if (engine == NULL)
11266                 return true;
11267
11268         if (INTEL_INFO(engine->dev)->gen < 5)
11269                 return false;
11270
11271         if (i915.use_mmio_flip < 0)
11272                 return false;
11273         else if (i915.use_mmio_flip > 0)
11274                 return true;
11275         else if (i915.enable_execlists)
11276                 return true;
11277         else if (obj->base.dma_buf &&
11278                  !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11279                                                        false))
11280                 return true;
11281         else
11282                 return engine != i915_gem_request_get_engine(obj->last_write_req);
11283 }
11284
11285 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11286                              unsigned int rotation,
11287                              struct intel_unpin_work *work)
11288 {
11289         struct drm_device *dev = intel_crtc->base.dev;
11290         struct drm_i915_private *dev_priv = dev->dev_private;
11291         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11292         const enum pipe pipe = intel_crtc->pipe;
11293         u32 ctl, stride, tile_height;
11294
11295         ctl = I915_READ(PLANE_CTL(pipe, 0));
11296         ctl &= ~PLANE_CTL_TILED_MASK;
11297         switch (fb->modifier[0]) {
11298         case DRM_FORMAT_MOD_NONE:
11299                 break;
11300         case I915_FORMAT_MOD_X_TILED:
11301                 ctl |= PLANE_CTL_TILED_X;
11302                 break;
11303         case I915_FORMAT_MOD_Y_TILED:
11304                 ctl |= PLANE_CTL_TILED_Y;
11305                 break;
11306         case I915_FORMAT_MOD_Yf_TILED:
11307                 ctl |= PLANE_CTL_TILED_YF;
11308                 break;
11309         default:
11310                 MISSING_CASE(fb->modifier[0]);
11311         }
11312
11313         /*
11314          * The stride is either expressed as a multiple of 64 bytes chunks for
11315          * linear buffers or in number of tiles for tiled buffers.
11316          */
11317         if (intel_rotation_90_or_270(rotation)) {
11318                 /* stride = Surface height in tiles */
11319                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11320                 stride = DIV_ROUND_UP(fb->height, tile_height);
11321         } else {
11322                 stride = fb->pitches[0] /
11323                         intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11324                                                   fb->pixel_format);
11325         }
11326
11327         /*
11328          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11329          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11330          */
11331         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11332         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11333
11334         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11335         POSTING_READ(PLANE_SURF(pipe, 0));
11336 }
11337
11338 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11339                              struct intel_unpin_work *work)
11340 {
11341         struct drm_device *dev = intel_crtc->base.dev;
11342         struct drm_i915_private *dev_priv = dev->dev_private;
11343         struct intel_framebuffer *intel_fb =
11344                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11345         struct drm_i915_gem_object *obj = intel_fb->obj;
11346         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11347         u32 dspcntr;
11348
11349         dspcntr = I915_READ(reg);
11350
11351         if (obj->tiling_mode != I915_TILING_NONE)
11352                 dspcntr |= DISPPLANE_TILED;
11353         else
11354                 dspcntr &= ~DISPPLANE_TILED;
11355
11356         I915_WRITE(reg, dspcntr);
11357
11358         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11359         POSTING_READ(DSPSURF(intel_crtc->plane));
11360 }
11361
11362 /*
11363  * XXX: This is the temporary way to update the plane registers until we get
11364  * around to using the usual plane update functions for MMIO flips
11365  */
11366 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11367 {
11368         struct intel_crtc *crtc = mmio_flip->crtc;
11369         struct intel_unpin_work *work;
11370
11371         spin_lock_irq(&crtc->base.dev->event_lock);
11372         work = crtc->unpin_work;
11373         spin_unlock_irq(&crtc->base.dev->event_lock);
11374         if (work == NULL)
11375                 return;
11376
11377         intel_mark_page_flip_active(work);
11378
11379         intel_pipe_update_start(crtc);
11380
11381         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11382                 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11383         else
11384                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11385                 ilk_do_mmio_flip(crtc, work);
11386
11387         intel_pipe_update_end(crtc);
11388 }
11389
11390 static void intel_mmio_flip_work_func(struct work_struct *work)
11391 {
11392         struct intel_mmio_flip *mmio_flip =
11393                 container_of(work, struct intel_mmio_flip, work);
11394         struct intel_framebuffer *intel_fb =
11395                 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11396         struct drm_i915_gem_object *obj = intel_fb->obj;
11397
11398         if (mmio_flip->req) {
11399                 WARN_ON(__i915_wait_request(mmio_flip->req,
11400                                             false, NULL,
11401                                             &mmio_flip->i915->rps.mmioflips));
11402                 i915_gem_request_unreference__unlocked(mmio_flip->req);
11403         }
11404
11405         /* For framebuffer backed by dmabuf, wait for fence */
11406         if (obj->base.dma_buf)
11407                 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11408                                                             false, false,
11409                                                             MAX_SCHEDULE_TIMEOUT) < 0);
11410
11411         intel_do_mmio_flip(mmio_flip);
11412         kfree(mmio_flip);
11413 }
11414
11415 static int intel_queue_mmio_flip(struct drm_device *dev,
11416                                  struct drm_crtc *crtc,
11417                                  struct drm_i915_gem_object *obj)
11418 {
11419         struct intel_mmio_flip *mmio_flip;
11420
11421         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11422         if (mmio_flip == NULL)
11423                 return -ENOMEM;
11424
11425         mmio_flip->i915 = to_i915(dev);
11426         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11427         mmio_flip->crtc = to_intel_crtc(crtc);
11428         mmio_flip->rotation = crtc->primary->state->rotation;
11429
11430         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11431         schedule_work(&mmio_flip->work);
11432
11433         return 0;
11434 }
11435
11436 static int intel_default_queue_flip(struct drm_device *dev,
11437                                     struct drm_crtc *crtc,
11438                                     struct drm_framebuffer *fb,
11439                                     struct drm_i915_gem_object *obj,
11440                                     struct drm_i915_gem_request *req,
11441                                     uint32_t flags)
11442 {
11443         return -ENODEV;
11444 }
11445
11446 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11447                                          struct drm_crtc *crtc)
11448 {
11449         struct drm_i915_private *dev_priv = dev->dev_private;
11450         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11451         struct intel_unpin_work *work = intel_crtc->unpin_work;
11452         u32 addr;
11453
11454         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11455                 return true;
11456
11457         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11458                 return false;
11459
11460         if (!work->enable_stall_check)
11461                 return false;
11462
11463         if (work->flip_ready_vblank == 0) {
11464                 if (work->flip_queued_req &&
11465                     !i915_gem_request_completed(work->flip_queued_req, true))
11466                         return false;
11467
11468                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11469         }
11470
11471         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11472                 return false;
11473
11474         /* Potential stall - if we see that the flip has happened,
11475          * assume a missed interrupt. */
11476         if (INTEL_INFO(dev)->gen >= 4)
11477                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11478         else
11479                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11480
11481         /* There is a potential issue here with a false positive after a flip
11482          * to the same address. We could address this by checking for a
11483          * non-incrementing frame counter.
11484          */
11485         return addr == work->gtt_offset;
11486 }
11487
11488 void intel_check_page_flip(struct drm_device *dev, int pipe)
11489 {
11490         struct drm_i915_private *dev_priv = dev->dev_private;
11491         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11492         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11493         struct intel_unpin_work *work;
11494
11495         WARN_ON(!in_interrupt());
11496
11497         if (crtc == NULL)
11498                 return;
11499
11500         spin_lock(&dev->event_lock);
11501         work = intel_crtc->unpin_work;
11502         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11503                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11504                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11505                 page_flip_completed(intel_crtc);
11506                 work = NULL;
11507         }
11508         if (work != NULL &&
11509             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11510                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11511         spin_unlock(&dev->event_lock);
11512 }
11513
11514 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11515                                 struct drm_framebuffer *fb,
11516                                 struct drm_pending_vblank_event *event,
11517                                 uint32_t page_flip_flags)
11518 {
11519         struct drm_device *dev = crtc->dev;
11520         struct drm_i915_private *dev_priv = dev->dev_private;
11521         struct drm_framebuffer *old_fb = crtc->primary->fb;
11522         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11523         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11524         struct drm_plane *primary = crtc->primary;
11525         enum pipe pipe = intel_crtc->pipe;
11526         struct intel_unpin_work *work;
11527         struct intel_engine_cs *engine;
11528         bool mmio_flip;
11529         struct drm_i915_gem_request *request = NULL;
11530         int ret;
11531
11532         /*
11533          * drm_mode_page_flip_ioctl() should already catch this, but double
11534          * check to be safe.  In the future we may enable pageflipping from
11535          * a disabled primary plane.
11536          */
11537         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11538                 return -EBUSY;
11539
11540         /* Can't change pixel format via MI display flips. */
11541         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11542                 return -EINVAL;
11543
11544         /*
11545          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11546          * Note that pitch changes could also affect these register.
11547          */
11548         if (INTEL_INFO(dev)->gen > 3 &&
11549             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11550              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11551                 return -EINVAL;
11552
11553         if (i915_terminally_wedged(&dev_priv->gpu_error))
11554                 goto out_hang;
11555
11556         work = kzalloc(sizeof(*work), GFP_KERNEL);
11557         if (work == NULL)
11558                 return -ENOMEM;
11559
11560         work->event = event;
11561         work->crtc = crtc;
11562         work->old_fb = old_fb;
11563         INIT_WORK(&work->work, intel_unpin_work_fn);
11564
11565         ret = drm_crtc_vblank_get(crtc);
11566         if (ret)
11567                 goto free_work;
11568
11569         /* We borrow the event spin lock for protecting unpin_work */
11570         spin_lock_irq(&dev->event_lock);
11571         if (intel_crtc->unpin_work) {
11572                 /* Before declaring the flip queue wedged, check if
11573                  * the hardware completed the operation behind our backs.
11574                  */
11575                 if (__intel_pageflip_stall_check(dev, crtc)) {
11576                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11577                         page_flip_completed(intel_crtc);
11578                 } else {
11579                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11580                         spin_unlock_irq(&dev->event_lock);
11581
11582                         drm_crtc_vblank_put(crtc);
11583                         kfree(work);
11584                         return -EBUSY;
11585                 }
11586         }
11587         intel_crtc->unpin_work = work;
11588         spin_unlock_irq(&dev->event_lock);
11589
11590         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11591                 flush_workqueue(dev_priv->wq);
11592
11593         /* Reference the objects for the scheduled work. */
11594         drm_framebuffer_reference(work->old_fb);
11595         drm_gem_object_reference(&obj->base);
11596
11597         crtc->primary->fb = fb;
11598         update_state_fb(crtc->primary);
11599         intel_fbc_pre_update(intel_crtc);
11600
11601         work->pending_flip_obj = obj;
11602
11603         ret = i915_mutex_lock_interruptible(dev);
11604         if (ret)
11605                 goto cleanup;
11606
11607         intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11608         if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
11609                 ret = -EIO;
11610                 goto cleanup;
11611         }
11612
11613         atomic_inc(&intel_crtc->unpin_work_count);
11614
11615         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11616                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11617
11618         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11619                 engine = &dev_priv->engine[BCS];
11620                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11621                         /* vlv: DISPLAY_FLIP fails to change tiling */
11622                         engine = NULL;
11623         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11624                 engine = &dev_priv->engine[BCS];
11625         } else if (INTEL_INFO(dev)->gen >= 7) {
11626                 engine = i915_gem_request_get_engine(obj->last_write_req);
11627                 if (engine == NULL || engine->id != RCS)
11628                         engine = &dev_priv->engine[BCS];
11629         } else {
11630                 engine = &dev_priv->engine[RCS];
11631         }
11632
11633         mmio_flip = use_mmio_flip(engine, obj);
11634
11635         /* When using CS flips, we want to emit semaphores between rings.
11636          * However, when using mmio flips we will create a task to do the
11637          * synchronisation, so all we want here is to pin the framebuffer
11638          * into the display plane and skip any waits.
11639          */
11640         if (!mmio_flip) {
11641                 ret = i915_gem_object_sync(obj, engine, &request);
11642                 if (ret)
11643                         goto cleanup_pending;
11644         }
11645
11646         ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11647         if (ret)
11648                 goto cleanup_pending;
11649
11650         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11651                                                   obj, 0);
11652         work->gtt_offset += intel_crtc->dspaddr_offset;
11653
11654         if (mmio_flip) {
11655                 ret = intel_queue_mmio_flip(dev, crtc, obj);
11656                 if (ret)
11657                         goto cleanup_unpin;
11658
11659                 i915_gem_request_assign(&work->flip_queued_req,
11660                                         obj->last_write_req);
11661         } else {
11662                 if (!request) {
11663                         request = i915_gem_request_alloc(engine, NULL);
11664                         if (IS_ERR(request)) {
11665                                 ret = PTR_ERR(request);
11666                                 goto cleanup_unpin;
11667                         }
11668                 }
11669
11670                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11671                                                    page_flip_flags);
11672                 if (ret)
11673                         goto cleanup_unpin;
11674
11675                 i915_gem_request_assign(&work->flip_queued_req, request);
11676         }
11677
11678         if (request)
11679                 i915_add_request_no_flush(request);
11680
11681         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11682         work->enable_stall_check = true;
11683
11684         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11685                           to_intel_plane(primary)->frontbuffer_bit);
11686         mutex_unlock(&dev->struct_mutex);
11687
11688         intel_frontbuffer_flip_prepare(dev,
11689                                        to_intel_plane(primary)->frontbuffer_bit);
11690
11691         trace_i915_flip_request(intel_crtc->plane, obj);
11692
11693         return 0;
11694
11695 cleanup_unpin:
11696         intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11697 cleanup_pending:
11698         if (!IS_ERR_OR_NULL(request))
11699                 i915_add_request_no_flush(request);
11700         atomic_dec(&intel_crtc->unpin_work_count);
11701         mutex_unlock(&dev->struct_mutex);
11702 cleanup:
11703         crtc->primary->fb = old_fb;
11704         update_state_fb(crtc->primary);
11705
11706         drm_gem_object_unreference_unlocked(&obj->base);
11707         drm_framebuffer_unreference(work->old_fb);
11708
11709         spin_lock_irq(&dev->event_lock);
11710         intel_crtc->unpin_work = NULL;
11711         spin_unlock_irq(&dev->event_lock);
11712
11713         drm_crtc_vblank_put(crtc);
11714 free_work:
11715         kfree(work);
11716
11717         if (ret == -EIO) {
11718                 struct drm_atomic_state *state;
11719                 struct drm_plane_state *plane_state;
11720
11721 out_hang:
11722                 state = drm_atomic_state_alloc(dev);
11723                 if (!state)
11724                         return -ENOMEM;
11725                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11726
11727 retry:
11728                 plane_state = drm_atomic_get_plane_state(state, primary);
11729                 ret = PTR_ERR_OR_ZERO(plane_state);
11730                 if (!ret) {
11731                         drm_atomic_set_fb_for_plane(plane_state, fb);
11732
11733                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11734                         if (!ret)
11735                                 ret = drm_atomic_commit(state);
11736                 }
11737
11738                 if (ret == -EDEADLK) {
11739                         drm_modeset_backoff(state->acquire_ctx);
11740                         drm_atomic_state_clear(state);
11741                         goto retry;
11742                 }
11743
11744                 if (ret)
11745                         drm_atomic_state_free(state);
11746
11747                 if (ret == 0 && event) {
11748                         spin_lock_irq(&dev->event_lock);
11749                         drm_crtc_send_vblank_event(crtc, event);
11750                         spin_unlock_irq(&dev->event_lock);
11751                 }
11752         }
11753         return ret;
11754 }
11755
11756
11757 /**
11758  * intel_wm_need_update - Check whether watermarks need updating
11759  * @plane: drm plane
11760  * @state: new plane state
11761  *
11762  * Check current plane state versus the new one to determine whether
11763  * watermarks need to be recalculated.
11764  *
11765  * Returns true or false.
11766  */
11767 static bool intel_wm_need_update(struct drm_plane *plane,
11768                                  struct drm_plane_state *state)
11769 {
11770         struct intel_plane_state *new = to_intel_plane_state(state);
11771         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11772
11773         /* Update watermarks on tiling or size changes. */
11774         if (new->visible != cur->visible)
11775                 return true;
11776
11777         if (!cur->base.fb || !new->base.fb)
11778                 return false;
11779
11780         if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11781             cur->base.rotation != new->base.rotation ||
11782             drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11783             drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11784             drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11785             drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11786                 return true;
11787
11788         return false;
11789 }
11790
11791 static bool needs_scaling(struct intel_plane_state *state)
11792 {
11793         int src_w = drm_rect_width(&state->src) >> 16;
11794         int src_h = drm_rect_height(&state->src) >> 16;
11795         int dst_w = drm_rect_width(&state->dst);
11796         int dst_h = drm_rect_height(&state->dst);
11797
11798         return (src_w != dst_w || src_h != dst_h);
11799 }
11800
11801 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11802                                     struct drm_plane_state *plane_state)
11803 {
11804         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11805         struct drm_crtc *crtc = crtc_state->crtc;
11806         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11807         struct drm_plane *plane = plane_state->plane;
11808         struct drm_device *dev = crtc->dev;
11809         struct drm_i915_private *dev_priv = to_i915(dev);
11810         struct intel_plane_state *old_plane_state =
11811                 to_intel_plane_state(plane->state);
11812         int idx = intel_crtc->base.base.id, ret;
11813         bool mode_changed = needs_modeset(crtc_state);
11814         bool was_crtc_enabled = crtc->state->active;
11815         bool is_crtc_enabled = crtc_state->active;
11816         bool turn_off, turn_on, visible, was_visible;
11817         struct drm_framebuffer *fb = plane_state->fb;
11818
11819         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11820             plane->type != DRM_PLANE_TYPE_CURSOR) {
11821                 ret = skl_update_scaler_plane(
11822                         to_intel_crtc_state(crtc_state),
11823                         to_intel_plane_state(plane_state));
11824                 if (ret)
11825                         return ret;
11826         }
11827
11828         was_visible = old_plane_state->visible;
11829         visible = to_intel_plane_state(plane_state)->visible;
11830
11831         if (!was_crtc_enabled && WARN_ON(was_visible))
11832                 was_visible = false;
11833
11834         /*
11835          * Visibility is calculated as if the crtc was on, but
11836          * after scaler setup everything depends on it being off
11837          * when the crtc isn't active.
11838          */
11839         if (!is_crtc_enabled)
11840                 to_intel_plane_state(plane_state)->visible = visible = false;
11841
11842         if (!was_visible && !visible)
11843                 return 0;
11844
11845         if (fb != old_plane_state->base.fb)
11846                 pipe_config->fb_changed = true;
11847
11848         turn_off = was_visible && (!visible || mode_changed);
11849         turn_on = visible && (!was_visible || mode_changed);
11850
11851         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11852                          plane->base.id, fb ? fb->base.id : -1);
11853
11854         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11855                          plane->base.id, was_visible, visible,
11856                          turn_off, turn_on, mode_changed);
11857
11858         if (turn_on) {
11859                 pipe_config->update_wm_pre = true;
11860
11861                 /* must disable cxsr around plane enable/disable */
11862                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11863                         pipe_config->disable_cxsr = true;
11864         } else if (turn_off) {
11865                 pipe_config->update_wm_post = true;
11866
11867                 /* must disable cxsr around plane enable/disable */
11868                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11869                         pipe_config->disable_cxsr = true;
11870         } else if (intel_wm_need_update(plane, plane_state)) {
11871                 /* FIXME bollocks */
11872                 pipe_config->update_wm_pre = true;
11873                 pipe_config->update_wm_post = true;
11874         }
11875
11876         /* Pre-gen9 platforms need two-step watermark updates */
11877         if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
11878             INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
11879                 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
11880
11881         if (visible || was_visible)
11882                 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
11883
11884         /*
11885          * WaCxSRDisabledForSpriteScaling:ivb
11886          *
11887          * cstate->update_wm was already set above, so this flag will
11888          * take effect when we commit and program watermarks.
11889          */
11890         if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
11891             needs_scaling(to_intel_plane_state(plane_state)) &&
11892             !needs_scaling(old_plane_state))
11893                 pipe_config->disable_lp_wm = true;
11894
11895         return 0;
11896 }
11897
11898 static bool encoders_cloneable(const struct intel_encoder *a,
11899                                const struct intel_encoder *b)
11900 {
11901         /* masks could be asymmetric, so check both ways */
11902         return a == b || (a->cloneable & (1 << b->type) &&
11903                           b->cloneable & (1 << a->type));
11904 }
11905
11906 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11907                                          struct intel_crtc *crtc,
11908                                          struct intel_encoder *encoder)
11909 {
11910         struct intel_encoder *source_encoder;
11911         struct drm_connector *connector;
11912         struct drm_connector_state *connector_state;
11913         int i;
11914
11915         for_each_connector_in_state(state, connector, connector_state, i) {
11916                 if (connector_state->crtc != &crtc->base)
11917                         continue;
11918
11919                 source_encoder =
11920                         to_intel_encoder(connector_state->best_encoder);
11921                 if (!encoders_cloneable(encoder, source_encoder))
11922                         return false;
11923         }
11924
11925         return true;
11926 }
11927
11928 static bool check_encoder_cloning(struct drm_atomic_state *state,
11929                                   struct intel_crtc *crtc)
11930 {
11931         struct intel_encoder *encoder;
11932         struct drm_connector *connector;
11933         struct drm_connector_state *connector_state;
11934         int i;
11935
11936         for_each_connector_in_state(state, connector, connector_state, i) {
11937                 if (connector_state->crtc != &crtc->base)
11938                         continue;
11939
11940                 encoder = to_intel_encoder(connector_state->best_encoder);
11941                 if (!check_single_encoder_cloning(state, crtc, encoder))
11942                         return false;
11943         }
11944
11945         return true;
11946 }
11947
11948 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11949                                    struct drm_crtc_state *crtc_state)
11950 {
11951         struct drm_device *dev = crtc->dev;
11952         struct drm_i915_private *dev_priv = dev->dev_private;
11953         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11954         struct intel_crtc_state *pipe_config =
11955                 to_intel_crtc_state(crtc_state);
11956         struct drm_atomic_state *state = crtc_state->state;
11957         int ret;
11958         bool mode_changed = needs_modeset(crtc_state);
11959
11960         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11961                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11962                 return -EINVAL;
11963         }
11964
11965         if (mode_changed && !crtc_state->active)
11966                 pipe_config->update_wm_post = true;
11967
11968         if (mode_changed && crtc_state->enable &&
11969             dev_priv->display.crtc_compute_clock &&
11970             !WARN_ON(pipe_config->shared_dpll)) {
11971                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11972                                                            pipe_config);
11973                 if (ret)
11974                         return ret;
11975         }
11976
11977         if (crtc_state->color_mgmt_changed) {
11978                 ret = intel_color_check(crtc, crtc_state);
11979                 if (ret)
11980                         return ret;
11981         }
11982
11983         ret = 0;
11984         if (dev_priv->display.compute_pipe_wm) {
11985                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
11986                 if (ret) {
11987                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
11988                         return ret;
11989                 }
11990         }
11991
11992         if (dev_priv->display.compute_intermediate_wm &&
11993             !to_intel_atomic_state(state)->skip_intermediate_wm) {
11994                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
11995                         return 0;
11996
11997                 /*
11998                  * Calculate 'intermediate' watermarks that satisfy both the
11999                  * old state and the new state.  We can program these
12000                  * immediately.
12001                  */
12002                 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12003                                                                 intel_crtc,
12004                                                                 pipe_config);
12005                 if (ret) {
12006                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12007                         return ret;
12008                 }
12009         }
12010
12011         if (INTEL_INFO(dev)->gen >= 9) {
12012                 if (mode_changed)
12013                         ret = skl_update_scaler_crtc(pipe_config);
12014
12015                 if (!ret)
12016                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
12017                                                          pipe_config);
12018         }
12019
12020         return ret;
12021 }
12022
12023 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12024         .mode_set_base_atomic = intel_pipe_set_base_atomic,
12025         .atomic_begin = intel_begin_crtc_commit,
12026         .atomic_flush = intel_finish_crtc_commit,
12027         .atomic_check = intel_crtc_atomic_check,
12028 };
12029
12030 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12031 {
12032         struct intel_connector *connector;
12033
12034         for_each_intel_connector(dev, connector) {
12035                 if (connector->base.encoder) {
12036                         connector->base.state->best_encoder =
12037                                 connector->base.encoder;
12038                         connector->base.state->crtc =
12039                                 connector->base.encoder->crtc;
12040                 } else {
12041                         connector->base.state->best_encoder = NULL;
12042                         connector->base.state->crtc = NULL;
12043                 }
12044         }
12045 }
12046
12047 static void
12048 connected_sink_compute_bpp(struct intel_connector *connector,
12049                            struct intel_crtc_state *pipe_config)
12050 {
12051         int bpp = pipe_config->pipe_bpp;
12052
12053         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12054                 connector->base.base.id,
12055                 connector->base.name);
12056
12057         /* Don't use an invalid EDID bpc value */
12058         if (connector->base.display_info.bpc &&
12059             connector->base.display_info.bpc * 3 < bpp) {
12060                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12061                               bpp, connector->base.display_info.bpc*3);
12062                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12063         }
12064
12065         /* Clamp bpp to default limit on screens without EDID 1.4 */
12066         if (connector->base.display_info.bpc == 0) {
12067                 int type = connector->base.connector_type;
12068                 int clamp_bpp = 24;
12069
12070                 /* Fall back to 18 bpp when DP sink capability is unknown. */
12071                 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12072                     type == DRM_MODE_CONNECTOR_eDP)
12073                         clamp_bpp = 18;
12074
12075                 if (bpp > clamp_bpp) {
12076                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12077                                       bpp, clamp_bpp);
12078                         pipe_config->pipe_bpp = clamp_bpp;
12079                 }
12080         }
12081 }
12082
12083 static int
12084 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12085                           struct intel_crtc_state *pipe_config)
12086 {
12087         struct drm_device *dev = crtc->base.dev;
12088         struct drm_atomic_state *state;
12089         struct drm_connector *connector;
12090         struct drm_connector_state *connector_state;
12091         int bpp, i;
12092
12093         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12094                 bpp = 10*3;
12095         else if (INTEL_INFO(dev)->gen >= 5)
12096                 bpp = 12*3;
12097         else
12098                 bpp = 8*3;
12099
12100
12101         pipe_config->pipe_bpp = bpp;
12102
12103         state = pipe_config->base.state;
12104
12105         /* Clamp display bpp to EDID value */
12106         for_each_connector_in_state(state, connector, connector_state, i) {
12107                 if (connector_state->crtc != &crtc->base)
12108                         continue;
12109
12110                 connected_sink_compute_bpp(to_intel_connector(connector),
12111                                            pipe_config);
12112         }
12113
12114         return bpp;
12115 }
12116
12117 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12118 {
12119         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12120                         "type: 0x%x flags: 0x%x\n",
12121                 mode->crtc_clock,
12122                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12123                 mode->crtc_hsync_end, mode->crtc_htotal,
12124                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12125                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12126 }
12127
12128 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12129                                    struct intel_crtc_state *pipe_config,
12130                                    const char *context)
12131 {
12132         struct drm_device *dev = crtc->base.dev;
12133         struct drm_plane *plane;
12134         struct intel_plane *intel_plane;
12135         struct intel_plane_state *state;
12136         struct drm_framebuffer *fb;
12137
12138         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12139                       context, pipe_config, pipe_name(crtc->pipe));
12140
12141         DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12142         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12143                       pipe_config->pipe_bpp, pipe_config->dither);
12144         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12145                       pipe_config->has_pch_encoder,
12146                       pipe_config->fdi_lanes,
12147                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12148                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12149                       pipe_config->fdi_m_n.tu);
12150         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12151                       pipe_config->has_dp_encoder,
12152                       pipe_config->lane_count,
12153                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12154                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12155                       pipe_config->dp_m_n.tu);
12156
12157         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12158                       pipe_config->has_dp_encoder,
12159                       pipe_config->lane_count,
12160                       pipe_config->dp_m2_n2.gmch_m,
12161                       pipe_config->dp_m2_n2.gmch_n,
12162                       pipe_config->dp_m2_n2.link_m,
12163                       pipe_config->dp_m2_n2.link_n,
12164                       pipe_config->dp_m2_n2.tu);
12165
12166         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12167                       pipe_config->has_audio,
12168                       pipe_config->has_infoframe);
12169
12170         DRM_DEBUG_KMS("requested mode:\n");
12171         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12172         DRM_DEBUG_KMS("adjusted mode:\n");
12173         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12174         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12175         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12176         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12177                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12178         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12179                       crtc->num_scalers,
12180                       pipe_config->scaler_state.scaler_users,
12181                       pipe_config->scaler_state.scaler_id);
12182         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12183                       pipe_config->gmch_pfit.control,
12184                       pipe_config->gmch_pfit.pgm_ratios,
12185                       pipe_config->gmch_pfit.lvds_border_bits);
12186         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12187                       pipe_config->pch_pfit.pos,
12188                       pipe_config->pch_pfit.size,
12189                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12190         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12191         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12192
12193         if (IS_BROXTON(dev)) {
12194                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12195                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12196                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12197                               pipe_config->ddi_pll_sel,
12198                               pipe_config->dpll_hw_state.ebb0,
12199                               pipe_config->dpll_hw_state.ebb4,
12200                               pipe_config->dpll_hw_state.pll0,
12201                               pipe_config->dpll_hw_state.pll1,
12202                               pipe_config->dpll_hw_state.pll2,
12203                               pipe_config->dpll_hw_state.pll3,
12204                               pipe_config->dpll_hw_state.pll6,
12205                               pipe_config->dpll_hw_state.pll8,
12206                               pipe_config->dpll_hw_state.pll9,
12207                               pipe_config->dpll_hw_state.pll10,
12208                               pipe_config->dpll_hw_state.pcsdw12);
12209         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12210                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12211                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12212                               pipe_config->ddi_pll_sel,
12213                               pipe_config->dpll_hw_state.ctrl1,
12214                               pipe_config->dpll_hw_state.cfgcr1,
12215                               pipe_config->dpll_hw_state.cfgcr2);
12216         } else if (HAS_DDI(dev)) {
12217                 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12218                               pipe_config->ddi_pll_sel,
12219                               pipe_config->dpll_hw_state.wrpll,
12220                               pipe_config->dpll_hw_state.spll);
12221         } else {
12222                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12223                               "fp0: 0x%x, fp1: 0x%x\n",
12224                               pipe_config->dpll_hw_state.dpll,
12225                               pipe_config->dpll_hw_state.dpll_md,
12226                               pipe_config->dpll_hw_state.fp0,
12227                               pipe_config->dpll_hw_state.fp1);
12228         }
12229
12230         DRM_DEBUG_KMS("planes on this crtc\n");
12231         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12232                 intel_plane = to_intel_plane(plane);
12233                 if (intel_plane->pipe != crtc->pipe)
12234                         continue;
12235
12236                 state = to_intel_plane_state(plane->state);
12237                 fb = state->base.fb;
12238                 if (!fb) {
12239                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12240                                 "disabled, scaler_id = %d\n",
12241                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12242                                 plane->base.id, intel_plane->pipe,
12243                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12244                                 drm_plane_index(plane), state->scaler_id);
12245                         continue;
12246                 }
12247
12248                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12249                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12250                         plane->base.id, intel_plane->pipe,
12251                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12252                         drm_plane_index(plane));
12253                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12254                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12255                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12256                         state->scaler_id,
12257                         state->src.x1 >> 16, state->src.y1 >> 16,
12258                         drm_rect_width(&state->src) >> 16,
12259                         drm_rect_height(&state->src) >> 16,
12260                         state->dst.x1, state->dst.y1,
12261                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12262         }
12263 }
12264
12265 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12266 {
12267         struct drm_device *dev = state->dev;
12268         struct drm_connector *connector;
12269         unsigned int used_ports = 0;
12270
12271         /*
12272          * Walk the connector list instead of the encoder
12273          * list to detect the problem on ddi platforms
12274          * where there's just one encoder per digital port.
12275          */
12276         drm_for_each_connector(connector, dev) {
12277                 struct drm_connector_state *connector_state;
12278                 struct intel_encoder *encoder;
12279
12280                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12281                 if (!connector_state)
12282                         connector_state = connector->state;
12283
12284                 if (!connector_state->best_encoder)
12285                         continue;
12286
12287                 encoder = to_intel_encoder(connector_state->best_encoder);
12288
12289                 WARN_ON(!connector_state->crtc);
12290
12291                 switch (encoder->type) {
12292                         unsigned int port_mask;
12293                 case INTEL_OUTPUT_UNKNOWN:
12294                         if (WARN_ON(!HAS_DDI(dev)))
12295                                 break;
12296                 case INTEL_OUTPUT_DISPLAYPORT:
12297                 case INTEL_OUTPUT_HDMI:
12298                 case INTEL_OUTPUT_EDP:
12299                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12300
12301                         /* the same port mustn't appear more than once */
12302                         if (used_ports & port_mask)
12303                                 return false;
12304
12305                         used_ports |= port_mask;
12306                 default:
12307                         break;
12308                 }
12309         }
12310
12311         return true;
12312 }
12313
12314 static void
12315 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12316 {
12317         struct drm_crtc_state tmp_state;
12318         struct intel_crtc_scaler_state scaler_state;
12319         struct intel_dpll_hw_state dpll_hw_state;
12320         struct intel_shared_dpll *shared_dpll;
12321         uint32_t ddi_pll_sel;
12322         bool force_thru;
12323
12324         /* FIXME: before the switch to atomic started, a new pipe_config was
12325          * kzalloc'd. Code that depends on any field being zero should be
12326          * fixed, so that the crtc_state can be safely duplicated. For now,
12327          * only fields that are know to not cause problems are preserved. */
12328
12329         tmp_state = crtc_state->base;
12330         scaler_state = crtc_state->scaler_state;
12331         shared_dpll = crtc_state->shared_dpll;
12332         dpll_hw_state = crtc_state->dpll_hw_state;
12333         ddi_pll_sel = crtc_state->ddi_pll_sel;
12334         force_thru = crtc_state->pch_pfit.force_thru;
12335
12336         memset(crtc_state, 0, sizeof *crtc_state);
12337
12338         crtc_state->base = tmp_state;
12339         crtc_state->scaler_state = scaler_state;
12340         crtc_state->shared_dpll = shared_dpll;
12341         crtc_state->dpll_hw_state = dpll_hw_state;
12342         crtc_state->ddi_pll_sel = ddi_pll_sel;
12343         crtc_state->pch_pfit.force_thru = force_thru;
12344 }
12345
12346 static int
12347 intel_modeset_pipe_config(struct drm_crtc *crtc,
12348                           struct intel_crtc_state *pipe_config)
12349 {
12350         struct drm_atomic_state *state = pipe_config->base.state;
12351         struct intel_encoder *encoder;
12352         struct drm_connector *connector;
12353         struct drm_connector_state *connector_state;
12354         int base_bpp, ret = -EINVAL;
12355         int i;
12356         bool retry = true;
12357
12358         clear_intel_crtc_state(pipe_config);
12359
12360         pipe_config->cpu_transcoder =
12361                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12362
12363         /*
12364          * Sanitize sync polarity flags based on requested ones. If neither
12365          * positive or negative polarity is requested, treat this as meaning
12366          * negative polarity.
12367          */
12368         if (!(pipe_config->base.adjusted_mode.flags &
12369               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12370                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12371
12372         if (!(pipe_config->base.adjusted_mode.flags &
12373               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12374                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12375
12376         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12377                                              pipe_config);
12378         if (base_bpp < 0)
12379                 goto fail;
12380
12381         /*
12382          * Determine the real pipe dimensions. Note that stereo modes can
12383          * increase the actual pipe size due to the frame doubling and
12384          * insertion of additional space for blanks between the frame. This
12385          * is stored in the crtc timings. We use the requested mode to do this
12386          * computation to clearly distinguish it from the adjusted mode, which
12387          * can be changed by the connectors in the below retry loop.
12388          */
12389         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12390                                &pipe_config->pipe_src_w,
12391                                &pipe_config->pipe_src_h);
12392
12393 encoder_retry:
12394         /* Ensure the port clock defaults are reset when retrying. */
12395         pipe_config->port_clock = 0;
12396         pipe_config->pixel_multiplier = 1;
12397
12398         /* Fill in default crtc timings, allow encoders to overwrite them. */
12399         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12400                               CRTC_STEREO_DOUBLE);
12401
12402         /* Pass our mode to the connectors and the CRTC to give them a chance to
12403          * adjust it according to limitations or connector properties, and also
12404          * a chance to reject the mode entirely.
12405          */
12406         for_each_connector_in_state(state, connector, connector_state, i) {
12407                 if (connector_state->crtc != crtc)
12408                         continue;
12409
12410                 encoder = to_intel_encoder(connector_state->best_encoder);
12411
12412                 if (!(encoder->compute_config(encoder, pipe_config))) {
12413                         DRM_DEBUG_KMS("Encoder config failure\n");
12414                         goto fail;
12415                 }
12416         }
12417
12418         /* Set default port clock if not overwritten by the encoder. Needs to be
12419          * done afterwards in case the encoder adjusts the mode. */
12420         if (!pipe_config->port_clock)
12421                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12422                         * pipe_config->pixel_multiplier;
12423
12424         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12425         if (ret < 0) {
12426                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12427                 goto fail;
12428         }
12429
12430         if (ret == RETRY) {
12431                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12432                         ret = -EINVAL;
12433                         goto fail;
12434                 }
12435
12436                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12437                 retry = false;
12438                 goto encoder_retry;
12439         }
12440
12441         /* Dithering seems to not pass-through bits correctly when it should, so
12442          * only enable it on 6bpc panels. */
12443         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12444         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12445                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12446
12447 fail:
12448         return ret;
12449 }
12450
12451 static void
12452 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12453 {
12454         struct drm_crtc *crtc;
12455         struct drm_crtc_state *crtc_state;
12456         int i;
12457
12458         /* Double check state. */
12459         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12460                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12461
12462                 /* Update hwmode for vblank functions */
12463                 if (crtc->state->active)
12464                         crtc->hwmode = crtc->state->adjusted_mode;
12465                 else
12466                         crtc->hwmode.crtc_clock = 0;
12467
12468                 /*
12469                  * Update legacy state to satisfy fbc code. This can
12470                  * be removed when fbc uses the atomic state.
12471                  */
12472                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12473                         struct drm_plane_state *plane_state = crtc->primary->state;
12474
12475                         crtc->primary->fb = plane_state->fb;
12476                         crtc->x = plane_state->src_x >> 16;
12477                         crtc->y = plane_state->src_y >> 16;
12478                 }
12479         }
12480 }
12481
12482 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12483 {
12484         int diff;
12485
12486         if (clock1 == clock2)
12487                 return true;
12488
12489         if (!clock1 || !clock2)
12490                 return false;
12491
12492         diff = abs(clock1 - clock2);
12493
12494         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12495                 return true;
12496
12497         return false;
12498 }
12499
12500 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12501         list_for_each_entry((intel_crtc), \
12502                             &(dev)->mode_config.crtc_list, \
12503                             base.head) \
12504                 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12505
12506 static bool
12507 intel_compare_m_n(unsigned int m, unsigned int n,
12508                   unsigned int m2, unsigned int n2,
12509                   bool exact)
12510 {
12511         if (m == m2 && n == n2)
12512                 return true;
12513
12514         if (exact || !m || !n || !m2 || !n2)
12515                 return false;
12516
12517         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12518
12519         if (n > n2) {
12520                 while (n > n2) {
12521                         m2 <<= 1;
12522                         n2 <<= 1;
12523                 }
12524         } else if (n < n2) {
12525                 while (n < n2) {
12526                         m <<= 1;
12527                         n <<= 1;
12528                 }
12529         }
12530
12531         if (n != n2)
12532                 return false;
12533
12534         return intel_fuzzy_clock_check(m, m2);
12535 }
12536
12537 static bool
12538 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12539                        struct intel_link_m_n *m2_n2,
12540                        bool adjust)
12541 {
12542         if (m_n->tu == m2_n2->tu &&
12543             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12544                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12545             intel_compare_m_n(m_n->link_m, m_n->link_n,
12546                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12547                 if (adjust)
12548                         *m2_n2 = *m_n;
12549
12550                 return true;
12551         }
12552
12553         return false;
12554 }
12555
12556 static bool
12557 intel_pipe_config_compare(struct drm_device *dev,
12558                           struct intel_crtc_state *current_config,
12559                           struct intel_crtc_state *pipe_config,
12560                           bool adjust)
12561 {
12562         bool ret = true;
12563
12564 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12565         do { \
12566                 if (!adjust) \
12567                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12568                 else \
12569                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12570         } while (0)
12571
12572 #define PIPE_CONF_CHECK_X(name) \
12573         if (current_config->name != pipe_config->name) { \
12574                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12575                           "(expected 0x%08x, found 0x%08x)\n", \
12576                           current_config->name, \
12577                           pipe_config->name); \
12578                 ret = false; \
12579         }
12580
12581 #define PIPE_CONF_CHECK_I(name) \
12582         if (current_config->name != pipe_config->name) { \
12583                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12584                           "(expected %i, found %i)\n", \
12585                           current_config->name, \
12586                           pipe_config->name); \
12587                 ret = false; \
12588         }
12589
12590 #define PIPE_CONF_CHECK_P(name) \
12591         if (current_config->name != pipe_config->name) { \
12592                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12593                           "(expected %p, found %p)\n", \
12594                           current_config->name, \
12595                           pipe_config->name); \
12596                 ret = false; \
12597         }
12598
12599 #define PIPE_CONF_CHECK_M_N(name) \
12600         if (!intel_compare_link_m_n(&current_config->name, \
12601                                     &pipe_config->name,\
12602                                     adjust)) { \
12603                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12604                           "(expected tu %i gmch %i/%i link %i/%i, " \
12605                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12606                           current_config->name.tu, \
12607                           current_config->name.gmch_m, \
12608                           current_config->name.gmch_n, \
12609                           current_config->name.link_m, \
12610                           current_config->name.link_n, \
12611                           pipe_config->name.tu, \
12612                           pipe_config->name.gmch_m, \
12613                           pipe_config->name.gmch_n, \
12614                           pipe_config->name.link_m, \
12615                           pipe_config->name.link_n); \
12616                 ret = false; \
12617         }
12618
12619 /* This is required for BDW+ where there is only one set of registers for
12620  * switching between high and low RR.
12621  * This macro can be used whenever a comparison has to be made between one
12622  * hw state and multiple sw state variables.
12623  */
12624 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12625         if (!intel_compare_link_m_n(&current_config->name, \
12626                                     &pipe_config->name, adjust) && \
12627             !intel_compare_link_m_n(&current_config->alt_name, \
12628                                     &pipe_config->name, adjust)) { \
12629                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12630                           "(expected tu %i gmch %i/%i link %i/%i, " \
12631                           "or tu %i gmch %i/%i link %i/%i, " \
12632                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12633                           current_config->name.tu, \
12634                           current_config->name.gmch_m, \
12635                           current_config->name.gmch_n, \
12636                           current_config->name.link_m, \
12637                           current_config->name.link_n, \
12638                           current_config->alt_name.tu, \
12639                           current_config->alt_name.gmch_m, \
12640                           current_config->alt_name.gmch_n, \
12641                           current_config->alt_name.link_m, \
12642                           current_config->alt_name.link_n, \
12643                           pipe_config->name.tu, \
12644                           pipe_config->name.gmch_m, \
12645                           pipe_config->name.gmch_n, \
12646                           pipe_config->name.link_m, \
12647                           pipe_config->name.link_n); \
12648                 ret = false; \
12649         }
12650
12651 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12652         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12653                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12654                           "(expected %i, found %i)\n", \
12655                           current_config->name & (mask), \
12656                           pipe_config->name & (mask)); \
12657                 ret = false; \
12658         }
12659
12660 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12661         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12662                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12663                           "(expected %i, found %i)\n", \
12664                           current_config->name, \
12665                           pipe_config->name); \
12666                 ret = false; \
12667         }
12668
12669 #define PIPE_CONF_QUIRK(quirk)  \
12670         ((current_config->quirks | pipe_config->quirks) & (quirk))
12671
12672         PIPE_CONF_CHECK_I(cpu_transcoder);
12673
12674         PIPE_CONF_CHECK_I(has_pch_encoder);
12675         PIPE_CONF_CHECK_I(fdi_lanes);
12676         PIPE_CONF_CHECK_M_N(fdi_m_n);
12677
12678         PIPE_CONF_CHECK_I(has_dp_encoder);
12679         PIPE_CONF_CHECK_I(lane_count);
12680
12681         if (INTEL_INFO(dev)->gen < 8) {
12682                 PIPE_CONF_CHECK_M_N(dp_m_n);
12683
12684                 if (current_config->has_drrs)
12685                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12686         } else
12687                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12688
12689         PIPE_CONF_CHECK_I(has_dsi_encoder);
12690
12691         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12692         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12693         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12694         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12695         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12696         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12697
12698         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12699         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12700         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12701         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12702         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12703         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12704
12705         PIPE_CONF_CHECK_I(pixel_multiplier);
12706         PIPE_CONF_CHECK_I(has_hdmi_sink);
12707         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12708             IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12709                 PIPE_CONF_CHECK_I(limited_color_range);
12710         PIPE_CONF_CHECK_I(has_infoframe);
12711
12712         PIPE_CONF_CHECK_I(has_audio);
12713
12714         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12715                               DRM_MODE_FLAG_INTERLACE);
12716
12717         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12718                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12719                                       DRM_MODE_FLAG_PHSYNC);
12720                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12721                                       DRM_MODE_FLAG_NHSYNC);
12722                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12723                                       DRM_MODE_FLAG_PVSYNC);
12724                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12725                                       DRM_MODE_FLAG_NVSYNC);
12726         }
12727
12728         PIPE_CONF_CHECK_X(gmch_pfit.control);
12729         /* pfit ratios are autocomputed by the hw on gen4+ */
12730         if (INTEL_INFO(dev)->gen < 4)
12731                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
12732         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12733
12734         if (!adjust) {
12735                 PIPE_CONF_CHECK_I(pipe_src_w);
12736                 PIPE_CONF_CHECK_I(pipe_src_h);
12737
12738                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12739                 if (current_config->pch_pfit.enabled) {
12740                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12741                         PIPE_CONF_CHECK_X(pch_pfit.size);
12742                 }
12743
12744                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12745         }
12746
12747         /* BDW+ don't expose a synchronous way to read the state */
12748         if (IS_HASWELL(dev))
12749                 PIPE_CONF_CHECK_I(ips_enabled);
12750
12751         PIPE_CONF_CHECK_I(double_wide);
12752
12753         PIPE_CONF_CHECK_X(ddi_pll_sel);
12754
12755         PIPE_CONF_CHECK_P(shared_dpll);
12756         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12757         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12758         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12759         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12760         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12761         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12762         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12763         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12764         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12765
12766         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12767         PIPE_CONF_CHECK_X(dsi_pll.div);
12768
12769         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12770                 PIPE_CONF_CHECK_I(pipe_bpp);
12771
12772         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12773         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12774
12775 #undef PIPE_CONF_CHECK_X
12776 #undef PIPE_CONF_CHECK_I
12777 #undef PIPE_CONF_CHECK_P
12778 #undef PIPE_CONF_CHECK_FLAGS
12779 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12780 #undef PIPE_CONF_QUIRK
12781 #undef INTEL_ERR_OR_DBG_KMS
12782
12783         return ret;
12784 }
12785
12786 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12787                                            const struct intel_crtc_state *pipe_config)
12788 {
12789         if (pipe_config->has_pch_encoder) {
12790                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12791                                                             &pipe_config->fdi_m_n);
12792                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12793
12794                 /*
12795                  * FDI already provided one idea for the dotclock.
12796                  * Yell if the encoder disagrees.
12797                  */
12798                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12799                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12800                      fdi_dotclock, dotclock);
12801         }
12802 }
12803
12804 static void verify_wm_state(struct drm_crtc *crtc,
12805                             struct drm_crtc_state *new_state)
12806 {
12807         struct drm_device *dev = crtc->dev;
12808         struct drm_i915_private *dev_priv = dev->dev_private;
12809         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12810         struct skl_ddb_entry *hw_entry, *sw_entry;
12811         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12812         const enum pipe pipe = intel_crtc->pipe;
12813         int plane;
12814
12815         if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
12816                 return;
12817
12818         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12819         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12820
12821         /* planes */
12822         for_each_plane(dev_priv, pipe, plane) {
12823                 hw_entry = &hw_ddb.plane[pipe][plane];
12824                 sw_entry = &sw_ddb->plane[pipe][plane];
12825
12826                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12827                         continue;
12828
12829                 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12830                           "(expected (%u,%u), found (%u,%u))\n",
12831                           pipe_name(pipe), plane + 1,
12832                           sw_entry->start, sw_entry->end,
12833                           hw_entry->start, hw_entry->end);
12834         }
12835
12836         /* cursor */
12837         hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12838         sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12839
12840         if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
12841                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12842                           "(expected (%u,%u), found (%u,%u))\n",
12843                           pipe_name(pipe),
12844                           sw_entry->start, sw_entry->end,
12845                           hw_entry->start, hw_entry->end);
12846         }
12847 }
12848
12849 static void
12850 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
12851 {
12852         struct drm_connector *connector;
12853
12854         drm_for_each_connector(connector, dev) {
12855                 struct drm_encoder *encoder = connector->encoder;
12856                 struct drm_connector_state *state = connector->state;
12857
12858                 if (state->crtc != crtc)
12859                         continue;
12860
12861                 intel_connector_verify_state(to_intel_connector(connector));
12862
12863                 I915_STATE_WARN(state->best_encoder != encoder,
12864                      "connector's atomic encoder doesn't match legacy encoder\n");
12865         }
12866 }
12867
12868 static void
12869 verify_encoder_state(struct drm_device *dev)
12870 {
12871         struct intel_encoder *encoder;
12872         struct intel_connector *connector;
12873
12874         for_each_intel_encoder(dev, encoder) {
12875                 bool enabled = false;
12876                 enum pipe pipe;
12877
12878                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12879                               encoder->base.base.id,
12880                               encoder->base.name);
12881
12882                 for_each_intel_connector(dev, connector) {
12883                         if (connector->base.state->best_encoder != &encoder->base)
12884                                 continue;
12885                         enabled = true;
12886
12887                         I915_STATE_WARN(connector->base.state->crtc !=
12888                                         encoder->base.crtc,
12889                              "connector's crtc doesn't match encoder crtc\n");
12890                 }
12891
12892                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12893                      "encoder's enabled state mismatch "
12894                      "(expected %i, found %i)\n",
12895                      !!encoder->base.crtc, enabled);
12896
12897                 if (!encoder->base.crtc) {
12898                         bool active;
12899
12900                         active = encoder->get_hw_state(encoder, &pipe);
12901                         I915_STATE_WARN(active,
12902                              "encoder detached but still enabled on pipe %c.\n",
12903                              pipe_name(pipe));
12904                 }
12905         }
12906 }
12907
12908 static void
12909 verify_crtc_state(struct drm_crtc *crtc,
12910                   struct drm_crtc_state *old_crtc_state,
12911                   struct drm_crtc_state *new_crtc_state)
12912 {
12913         struct drm_device *dev = crtc->dev;
12914         struct drm_i915_private *dev_priv = dev->dev_private;
12915         struct intel_encoder *encoder;
12916         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12917         struct intel_crtc_state *pipe_config, *sw_config;
12918         struct drm_atomic_state *old_state;
12919         bool active;
12920
12921         old_state = old_crtc_state->state;
12922         __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12923         pipe_config = to_intel_crtc_state(old_crtc_state);
12924         memset(pipe_config, 0, sizeof(*pipe_config));
12925         pipe_config->base.crtc = crtc;
12926         pipe_config->base.state = old_state;
12927
12928         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
12929
12930         active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12931
12932         /* hw state is inconsistent with the pipe quirk */
12933         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12934             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12935                 active = new_crtc_state->active;
12936
12937         I915_STATE_WARN(new_crtc_state->active != active,
12938              "crtc active state doesn't match with hw state "
12939              "(expected %i, found %i)\n", new_crtc_state->active, active);
12940
12941         I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12942              "transitional active state does not match atomic hw state "
12943              "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12944
12945         for_each_encoder_on_crtc(dev, crtc, encoder) {
12946                 enum pipe pipe;
12947
12948                 active = encoder->get_hw_state(encoder, &pipe);
12949                 I915_STATE_WARN(active != new_crtc_state->active,
12950                         "[ENCODER:%i] active %i with crtc active %i\n",
12951                         encoder->base.base.id, active, new_crtc_state->active);
12952
12953                 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12954                                 "Encoder connected to wrong pipe %c\n",
12955                                 pipe_name(pipe));
12956
12957                 if (active)
12958                         encoder->get_config(encoder, pipe_config);
12959         }
12960
12961         if (!new_crtc_state->active)
12962                 return;
12963
12964         intel_pipe_config_sanity_check(dev_priv, pipe_config);
12965
12966         sw_config = to_intel_crtc_state(crtc->state);
12967         if (!intel_pipe_config_compare(dev, sw_config,
12968                                        pipe_config, false)) {
12969                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12970                 intel_dump_pipe_config(intel_crtc, pipe_config,
12971                                        "[hw state]");
12972                 intel_dump_pipe_config(intel_crtc, sw_config,
12973                                        "[sw state]");
12974         }
12975 }
12976
12977 static void
12978 verify_single_dpll_state(struct drm_i915_private *dev_priv,
12979                          struct intel_shared_dpll *pll,
12980                          struct drm_crtc *crtc,
12981                          struct drm_crtc_state *new_state)
12982 {
12983         struct intel_dpll_hw_state dpll_hw_state;
12984         unsigned crtc_mask;
12985         bool active;
12986
12987         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12988
12989         DRM_DEBUG_KMS("%s\n", pll->name);
12990
12991         active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
12992
12993         if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12994                 I915_STATE_WARN(!pll->on && pll->active_mask,
12995                      "pll in active use but not on in sw tracking\n");
12996                 I915_STATE_WARN(pll->on && !pll->active_mask,
12997                      "pll is on but not used by any active crtc\n");
12998                 I915_STATE_WARN(pll->on != active,
12999                      "pll on state mismatch (expected %i, found %i)\n",
13000                      pll->on, active);
13001         }
13002
13003         if (!crtc) {
13004                 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13005                                 "more active pll users than references: %x vs %x\n",
13006                                 pll->active_mask, pll->config.crtc_mask);
13007
13008                 return;
13009         }
13010
13011         crtc_mask = 1 << drm_crtc_index(crtc);
13012
13013         if (new_state->active)
13014                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13015                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13016                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13017         else
13018                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13019                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13020                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13021
13022         I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13023                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13024                         crtc_mask, pll->config.crtc_mask);
13025
13026         I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13027                                           &dpll_hw_state,
13028                                           sizeof(dpll_hw_state)),
13029                         "pll hw state mismatch\n");
13030 }
13031
13032 static void
13033 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13034                          struct drm_crtc_state *old_crtc_state,
13035                          struct drm_crtc_state *new_crtc_state)
13036 {
13037         struct drm_i915_private *dev_priv = dev->dev_private;
13038         struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13039         struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13040
13041         if (new_state->shared_dpll)
13042                 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13043
13044         if (old_state->shared_dpll &&
13045             old_state->shared_dpll != new_state->shared_dpll) {
13046                 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13047                 struct intel_shared_dpll *pll = old_state->shared_dpll;
13048
13049                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13050                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13051                                 pipe_name(drm_crtc_index(crtc)));
13052                 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13053                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13054                                 pipe_name(drm_crtc_index(crtc)));
13055         }
13056 }
13057
13058 static void
13059 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13060                          struct drm_crtc_state *old_state,
13061                          struct drm_crtc_state *new_state)
13062 {
13063         if (!needs_modeset(new_state) &&
13064             !to_intel_crtc_state(new_state)->update_pipe)
13065                 return;
13066
13067         verify_wm_state(crtc, new_state);
13068         verify_connector_state(crtc->dev, crtc);
13069         verify_crtc_state(crtc, old_state, new_state);
13070         verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13071 }
13072
13073 static void
13074 verify_disabled_dpll_state(struct drm_device *dev)
13075 {
13076         struct drm_i915_private *dev_priv = dev->dev_private;
13077         int i;
13078
13079         for (i = 0; i < dev_priv->num_shared_dpll; i++)
13080                 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13081 }
13082
13083 static void
13084 intel_modeset_verify_disabled(struct drm_device *dev)
13085 {
13086         verify_encoder_state(dev);
13087         verify_connector_state(dev, NULL);
13088         verify_disabled_dpll_state(dev);
13089 }
13090
13091 static void update_scanline_offset(struct intel_crtc *crtc)
13092 {
13093         struct drm_device *dev = crtc->base.dev;
13094
13095         /*
13096          * The scanline counter increments at the leading edge of hsync.
13097          *
13098          * On most platforms it starts counting from vtotal-1 on the
13099          * first active line. That means the scanline counter value is
13100          * always one less than what we would expect. Ie. just after
13101          * start of vblank, which also occurs at start of hsync (on the
13102          * last active line), the scanline counter will read vblank_start-1.
13103          *
13104          * On gen2 the scanline counter starts counting from 1 instead
13105          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13106          * to keep the value positive), instead of adding one.
13107          *
13108          * On HSW+ the behaviour of the scanline counter depends on the output
13109          * type. For DP ports it behaves like most other platforms, but on HDMI
13110          * there's an extra 1 line difference. So we need to add two instead of
13111          * one to the value.
13112          */
13113         if (IS_GEN2(dev)) {
13114                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13115                 int vtotal;
13116
13117                 vtotal = adjusted_mode->crtc_vtotal;
13118                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13119                         vtotal /= 2;
13120
13121                 crtc->scanline_offset = vtotal - 1;
13122         } else if (HAS_DDI(dev) &&
13123                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13124                 crtc->scanline_offset = 2;
13125         } else
13126                 crtc->scanline_offset = 1;
13127 }
13128
13129 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13130 {
13131         struct drm_device *dev = state->dev;
13132         struct drm_i915_private *dev_priv = to_i915(dev);
13133         struct intel_shared_dpll_config *shared_dpll = NULL;
13134         struct drm_crtc *crtc;
13135         struct drm_crtc_state *crtc_state;
13136         int i;
13137
13138         if (!dev_priv->display.crtc_compute_clock)
13139                 return;
13140
13141         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13142                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13143                 struct intel_shared_dpll *old_dpll =
13144                         to_intel_crtc_state(crtc->state)->shared_dpll;
13145
13146                 if (!needs_modeset(crtc_state))
13147                         continue;
13148
13149                 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13150
13151                 if (!old_dpll)
13152                         continue;
13153
13154                 if (!shared_dpll)
13155                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13156
13157                 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13158         }
13159 }
13160
13161 /*
13162  * This implements the workaround described in the "notes" section of the mode
13163  * set sequence documentation. When going from no pipes or single pipe to
13164  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13165  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13166  */
13167 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13168 {
13169         struct drm_crtc_state *crtc_state;
13170         struct intel_crtc *intel_crtc;
13171         struct drm_crtc *crtc;
13172         struct intel_crtc_state *first_crtc_state = NULL;
13173         struct intel_crtc_state *other_crtc_state = NULL;
13174         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13175         int i;
13176
13177         /* look at all crtc's that are going to be enabled in during modeset */
13178         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13179                 intel_crtc = to_intel_crtc(crtc);
13180
13181                 if (!crtc_state->active || !needs_modeset(crtc_state))
13182                         continue;
13183
13184                 if (first_crtc_state) {
13185                         other_crtc_state = to_intel_crtc_state(crtc_state);
13186                         break;
13187                 } else {
13188                         first_crtc_state = to_intel_crtc_state(crtc_state);
13189                         first_pipe = intel_crtc->pipe;
13190                 }
13191         }
13192
13193         /* No workaround needed? */
13194         if (!first_crtc_state)
13195                 return 0;
13196
13197         /* w/a possibly needed, check how many crtc's are already enabled. */
13198         for_each_intel_crtc(state->dev, intel_crtc) {
13199                 struct intel_crtc_state *pipe_config;
13200
13201                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13202                 if (IS_ERR(pipe_config))
13203                         return PTR_ERR(pipe_config);
13204
13205                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13206
13207                 if (!pipe_config->base.active ||
13208                     needs_modeset(&pipe_config->base))
13209                         continue;
13210
13211                 /* 2 or more enabled crtcs means no need for w/a */
13212                 if (enabled_pipe != INVALID_PIPE)
13213                         return 0;
13214
13215                 enabled_pipe = intel_crtc->pipe;
13216         }
13217
13218         if (enabled_pipe != INVALID_PIPE)
13219                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13220         else if (other_crtc_state)
13221                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13222
13223         return 0;
13224 }
13225
13226 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13227 {
13228         struct drm_crtc *crtc;
13229         struct drm_crtc_state *crtc_state;
13230         int ret = 0;
13231
13232         /* add all active pipes to the state */
13233         for_each_crtc(state->dev, crtc) {
13234                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13235                 if (IS_ERR(crtc_state))
13236                         return PTR_ERR(crtc_state);
13237
13238                 if (!crtc_state->active || needs_modeset(crtc_state))
13239                         continue;
13240
13241                 crtc_state->mode_changed = true;
13242
13243                 ret = drm_atomic_add_affected_connectors(state, crtc);
13244                 if (ret)
13245                         break;
13246
13247                 ret = drm_atomic_add_affected_planes(state, crtc);
13248                 if (ret)
13249                         break;
13250         }
13251
13252         return ret;
13253 }
13254
13255 static int intel_modeset_checks(struct drm_atomic_state *state)
13256 {
13257         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13258         struct drm_i915_private *dev_priv = state->dev->dev_private;
13259         struct drm_crtc *crtc;
13260         struct drm_crtc_state *crtc_state;
13261         int ret = 0, i;
13262
13263         if (!check_digital_port_conflicts(state)) {
13264                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13265                 return -EINVAL;
13266         }
13267
13268         intel_state->modeset = true;
13269         intel_state->active_crtcs = dev_priv->active_crtcs;
13270
13271         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13272                 if (crtc_state->active)
13273                         intel_state->active_crtcs |= 1 << i;
13274                 else
13275                         intel_state->active_crtcs &= ~(1 << i);
13276         }
13277
13278         /*
13279          * See if the config requires any additional preparation, e.g.
13280          * to adjust global state with pipes off.  We need to do this
13281          * here so we can get the modeset_pipe updated config for the new
13282          * mode set on this crtc.  For other crtcs we need to use the
13283          * adjusted_mode bits in the crtc directly.
13284          */
13285         if (dev_priv->display.modeset_calc_cdclk) {
13286                 ret = dev_priv->display.modeset_calc_cdclk(state);
13287
13288                 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
13289                         ret = intel_modeset_all_pipes(state);
13290
13291                 if (ret < 0)
13292                         return ret;
13293
13294                 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13295                               intel_state->cdclk, intel_state->dev_cdclk);
13296         } else
13297                 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13298
13299         intel_modeset_clear_plls(state);
13300
13301         if (IS_HASWELL(dev_priv))
13302                 return haswell_mode_set_planes_workaround(state);
13303
13304         return 0;
13305 }
13306
13307 /*
13308  * Handle calculation of various watermark data at the end of the atomic check
13309  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13310  * handlers to ensure that all derived state has been updated.
13311  */
13312 static void calc_watermark_data(struct drm_atomic_state *state)
13313 {
13314         struct drm_device *dev = state->dev;
13315         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13316         struct drm_crtc *crtc;
13317         struct drm_crtc_state *cstate;
13318         struct drm_plane *plane;
13319         struct drm_plane_state *pstate;
13320
13321         /*
13322          * Calculate watermark configuration details now that derived
13323          * plane/crtc state is all properly updated.
13324          */
13325         drm_for_each_crtc(crtc, dev) {
13326                 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13327                         crtc->state;
13328
13329                 if (cstate->active)
13330                         intel_state->wm_config.num_pipes_active++;
13331         }
13332         drm_for_each_legacy_plane(plane, dev) {
13333                 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13334                         plane->state;
13335
13336                 if (!to_intel_plane_state(pstate)->visible)
13337                         continue;
13338
13339                 intel_state->wm_config.sprites_enabled = true;
13340                 if (pstate->crtc_w != pstate->src_w >> 16 ||
13341                     pstate->crtc_h != pstate->src_h >> 16)
13342                         intel_state->wm_config.sprites_scaled = true;
13343         }
13344 }
13345
13346 /**
13347  * intel_atomic_check - validate state object
13348  * @dev: drm device
13349  * @state: state to validate
13350  */
13351 static int intel_atomic_check(struct drm_device *dev,
13352                               struct drm_atomic_state *state)
13353 {
13354         struct drm_i915_private *dev_priv = to_i915(dev);
13355         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13356         struct drm_crtc *crtc;
13357         struct drm_crtc_state *crtc_state;
13358         int ret, i;
13359         bool any_ms = false;
13360
13361         ret = drm_atomic_helper_check_modeset(dev, state);
13362         if (ret)
13363                 return ret;
13364
13365         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13366                 struct intel_crtc_state *pipe_config =
13367                         to_intel_crtc_state(crtc_state);
13368
13369                 /* Catch I915_MODE_FLAG_INHERITED */
13370                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13371                         crtc_state->mode_changed = true;
13372
13373                 if (!crtc_state->enable) {
13374                         if (needs_modeset(crtc_state))
13375                                 any_ms = true;
13376                         continue;
13377                 }
13378
13379                 if (!needs_modeset(crtc_state))
13380                         continue;
13381
13382                 /* FIXME: For only active_changed we shouldn't need to do any
13383                  * state recomputation at all. */
13384
13385                 ret = drm_atomic_add_affected_connectors(state, crtc);
13386                 if (ret)
13387                         return ret;
13388
13389                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13390                 if (ret)
13391                         return ret;
13392
13393                 if (i915.fastboot &&
13394                     intel_pipe_config_compare(dev,
13395                                         to_intel_crtc_state(crtc->state),
13396                                         pipe_config, true)) {
13397                         crtc_state->mode_changed = false;
13398                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13399                 }
13400
13401                 if (needs_modeset(crtc_state)) {
13402                         any_ms = true;
13403
13404                         ret = drm_atomic_add_affected_planes(state, crtc);
13405                         if (ret)
13406                                 return ret;
13407                 }
13408
13409                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13410                                        needs_modeset(crtc_state) ?
13411                                        "[modeset]" : "[fastset]");
13412         }
13413
13414         if (any_ms) {
13415                 ret = intel_modeset_checks(state);
13416
13417                 if (ret)
13418                         return ret;
13419         } else
13420                 intel_state->cdclk = dev_priv->cdclk_freq;
13421
13422         ret = drm_atomic_helper_check_planes(dev, state);
13423         if (ret)
13424                 return ret;
13425
13426         intel_fbc_choose_crtc(dev_priv, state);
13427         calc_watermark_data(state);
13428
13429         return 0;
13430 }
13431
13432 static int intel_atomic_prepare_commit(struct drm_device *dev,
13433                                        struct drm_atomic_state *state,
13434                                        bool async)
13435 {
13436         struct drm_i915_private *dev_priv = dev->dev_private;
13437         struct drm_plane_state *plane_state;
13438         struct drm_crtc_state *crtc_state;
13439         struct drm_plane *plane;
13440         struct drm_crtc *crtc;
13441         int i, ret;
13442
13443         if (async) {
13444                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13445                 return -EINVAL;
13446         }
13447
13448         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13449                 if (state->legacy_cursor_update)
13450                         continue;
13451
13452                 ret = intel_crtc_wait_for_pending_flips(crtc);
13453                 if (ret)
13454                         return ret;
13455
13456                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13457                         flush_workqueue(dev_priv->wq);
13458         }
13459
13460         ret = mutex_lock_interruptible(&dev->struct_mutex);
13461         if (ret)
13462                 return ret;
13463
13464         ret = drm_atomic_helper_prepare_planes(dev, state);
13465         mutex_unlock(&dev->struct_mutex);
13466
13467         if (!ret && !async) {
13468                 for_each_plane_in_state(state, plane, plane_state, i) {
13469                         struct intel_plane_state *intel_plane_state =
13470                                 to_intel_plane_state(plane_state);
13471
13472                         if (!intel_plane_state->wait_req)
13473                                 continue;
13474
13475                         ret = __i915_wait_request(intel_plane_state->wait_req,
13476                                                   true, NULL, NULL);
13477                         if (ret) {
13478                                 /* Any hang should be swallowed by the wait */
13479                                 WARN_ON(ret == -EIO);
13480                                 mutex_lock(&dev->struct_mutex);
13481                                 drm_atomic_helper_cleanup_planes(dev, state);
13482                                 mutex_unlock(&dev->struct_mutex);
13483                                 break;
13484                         }
13485                 }
13486         }
13487
13488         return ret;
13489 }
13490
13491 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13492                                           struct drm_i915_private *dev_priv,
13493                                           unsigned crtc_mask)
13494 {
13495         unsigned last_vblank_count[I915_MAX_PIPES];
13496         enum pipe pipe;
13497         int ret;
13498
13499         if (!crtc_mask)
13500                 return;
13501
13502         for_each_pipe(dev_priv, pipe) {
13503                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13504
13505                 if (!((1 << pipe) & crtc_mask))
13506                         continue;
13507
13508                 ret = drm_crtc_vblank_get(crtc);
13509                 if (WARN_ON(ret != 0)) {
13510                         crtc_mask &= ~(1 << pipe);
13511                         continue;
13512                 }
13513
13514                 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13515         }
13516
13517         for_each_pipe(dev_priv, pipe) {
13518                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13519                 long lret;
13520
13521                 if (!((1 << pipe) & crtc_mask))
13522                         continue;
13523
13524                 lret = wait_event_timeout(dev->vblank[pipe].queue,
13525                                 last_vblank_count[pipe] !=
13526                                         drm_crtc_vblank_count(crtc),
13527                                 msecs_to_jiffies(50));
13528
13529                 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
13530
13531                 drm_crtc_vblank_put(crtc);
13532         }
13533 }
13534
13535 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13536 {
13537         /* fb updated, need to unpin old fb */
13538         if (crtc_state->fb_changed)
13539                 return true;
13540
13541         /* wm changes, need vblank before final wm's */
13542         if (crtc_state->update_wm_post)
13543                 return true;
13544
13545         /*
13546          * cxsr is re-enabled after vblank.
13547          * This is already handled by crtc_state->update_wm_post,
13548          * but added for clarity.
13549          */
13550         if (crtc_state->disable_cxsr)
13551                 return true;
13552
13553         return false;
13554 }
13555
13556 /**
13557  * intel_atomic_commit - commit validated state object
13558  * @dev: DRM device
13559  * @state: the top-level driver state object
13560  * @async: asynchronous commit
13561  *
13562  * This function commits a top-level state object that has been validated
13563  * with drm_atomic_helper_check().
13564  *
13565  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13566  * we can only handle plane-related operations and do not yet support
13567  * asynchronous commit.
13568  *
13569  * RETURNS
13570  * Zero for success or -errno.
13571  */
13572 static int intel_atomic_commit(struct drm_device *dev,
13573                                struct drm_atomic_state *state,
13574                                bool async)
13575 {
13576         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13577         struct drm_i915_private *dev_priv = dev->dev_private;
13578         struct drm_crtc_state *old_crtc_state;
13579         struct drm_crtc *crtc;
13580         struct intel_crtc_state *intel_cstate;
13581         int ret = 0, i;
13582         bool hw_check = intel_state->modeset;
13583         unsigned long put_domains[I915_MAX_PIPES] = {};
13584         unsigned crtc_vblank_mask = 0;
13585
13586         ret = intel_atomic_prepare_commit(dev, state, async);
13587         if (ret) {
13588                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13589                 return ret;
13590         }
13591
13592         drm_atomic_helper_swap_state(dev, state);
13593         dev_priv->wm.config = intel_state->wm_config;
13594         intel_shared_dpll_commit(state);
13595
13596         if (intel_state->modeset) {
13597                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13598                        sizeof(intel_state->min_pixclk));
13599                 dev_priv->active_crtcs = intel_state->active_crtcs;
13600                 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13601
13602                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13603         }
13604
13605         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13606                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13607
13608                 if (needs_modeset(crtc->state) ||
13609                     to_intel_crtc_state(crtc->state)->update_pipe) {
13610                         hw_check = true;
13611
13612                         put_domains[to_intel_crtc(crtc)->pipe] =
13613                                 modeset_get_crtc_power_domains(crtc,
13614                                         to_intel_crtc_state(crtc->state));
13615                 }
13616
13617                 if (!needs_modeset(crtc->state))
13618                         continue;
13619
13620                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13621
13622                 if (old_crtc_state->active) {
13623                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13624                         dev_priv->display.crtc_disable(crtc);
13625                         intel_crtc->active = false;
13626                         intel_fbc_disable(intel_crtc);
13627                         intel_disable_shared_dpll(intel_crtc);
13628
13629                         /*
13630                          * Underruns don't always raise
13631                          * interrupts, so check manually.
13632                          */
13633                         intel_check_cpu_fifo_underruns(dev_priv);
13634                         intel_check_pch_fifo_underruns(dev_priv);
13635
13636                         if (!crtc->state->active)
13637                                 intel_update_watermarks(crtc);
13638                 }
13639         }
13640
13641         /* Only after disabling all output pipelines that will be changed can we
13642          * update the the output configuration. */
13643         intel_modeset_update_crtc_state(state);
13644
13645         if (intel_state->modeset) {
13646                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13647
13648                 if (dev_priv->display.modeset_commit_cdclk &&
13649                     intel_state->dev_cdclk != dev_priv->cdclk_freq)
13650                         dev_priv->display.modeset_commit_cdclk(state);
13651
13652                 intel_modeset_verify_disabled(dev);
13653         }
13654
13655         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13656         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13657                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13658                 bool modeset = needs_modeset(crtc->state);
13659                 struct intel_crtc_state *pipe_config =
13660                         to_intel_crtc_state(crtc->state);
13661                 bool update_pipe = !modeset && pipe_config->update_pipe;
13662
13663                 if (modeset && crtc->state->active) {
13664                         update_scanline_offset(to_intel_crtc(crtc));
13665                         dev_priv->display.crtc_enable(crtc);
13666                 }
13667
13668                 if (!modeset)
13669                         intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13670
13671                 if (crtc->state->active &&
13672                     drm_atomic_get_existing_plane_state(state, crtc->primary))
13673                         intel_fbc_enable(intel_crtc);
13674
13675                 if (crtc->state->active &&
13676                     (crtc->state->planes_changed || update_pipe))
13677                         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
13678
13679                 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13680                         crtc_vblank_mask |= 1 << i;
13681         }
13682
13683         /* FIXME: add subpixel order */
13684
13685         if (!state->legacy_cursor_update)
13686                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13687
13688         /*
13689          * Now that the vblank has passed, we can go ahead and program the
13690          * optimal watermarks on platforms that need two-step watermark
13691          * programming.
13692          *
13693          * TODO: Move this (and other cleanup) to an async worker eventually.
13694          */
13695         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13696                 intel_cstate = to_intel_crtc_state(crtc->state);
13697
13698                 if (dev_priv->display.optimize_watermarks)
13699                         dev_priv->display.optimize_watermarks(intel_cstate);
13700         }
13701
13702         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13703                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13704
13705                 if (put_domains[i])
13706                         modeset_put_power_domains(dev_priv, put_domains[i]);
13707
13708                 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
13709         }
13710
13711         if (intel_state->modeset)
13712                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13713
13714         mutex_lock(&dev->struct_mutex);
13715         drm_atomic_helper_cleanup_planes(dev, state);
13716         mutex_unlock(&dev->struct_mutex);
13717
13718         drm_atomic_state_free(state);
13719
13720         /* As one of the primary mmio accessors, KMS has a high likelihood
13721          * of triggering bugs in unclaimed access. After we finish
13722          * modesetting, see if an error has been flagged, and if so
13723          * enable debugging for the next modeset - and hope we catch
13724          * the culprit.
13725          *
13726          * XXX note that we assume display power is on at this point.
13727          * This might hold true now but we need to add pm helper to check
13728          * unclaimed only when the hardware is on, as atomic commits
13729          * can happen also when the device is completely off.
13730          */
13731         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13732
13733         return 0;
13734 }
13735
13736 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13737 {
13738         struct drm_device *dev = crtc->dev;
13739         struct drm_atomic_state *state;
13740         struct drm_crtc_state *crtc_state;
13741         int ret;
13742
13743         state = drm_atomic_state_alloc(dev);
13744         if (!state) {
13745                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13746                               crtc->base.id);
13747                 return;
13748         }
13749
13750         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13751
13752 retry:
13753         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13754         ret = PTR_ERR_OR_ZERO(crtc_state);
13755         if (!ret) {
13756                 if (!crtc_state->active)
13757                         goto out;
13758
13759                 crtc_state->mode_changed = true;
13760                 ret = drm_atomic_commit(state);
13761         }
13762
13763         if (ret == -EDEADLK) {
13764                 drm_atomic_state_clear(state);
13765                 drm_modeset_backoff(state->acquire_ctx);
13766                 goto retry;
13767         }
13768
13769         if (ret)
13770 out:
13771                 drm_atomic_state_free(state);
13772 }
13773
13774 #undef for_each_intel_crtc_masked
13775
13776 static const struct drm_crtc_funcs intel_crtc_funcs = {
13777         .gamma_set = drm_atomic_helper_legacy_gamma_set,
13778         .set_config = drm_atomic_helper_set_config,
13779         .set_property = drm_atomic_helper_crtc_set_property,
13780         .destroy = intel_crtc_destroy,
13781         .page_flip = intel_crtc_page_flip,
13782         .atomic_duplicate_state = intel_crtc_duplicate_state,
13783         .atomic_destroy_state = intel_crtc_destroy_state,
13784 };
13785
13786 /**
13787  * intel_prepare_plane_fb - Prepare fb for usage on plane
13788  * @plane: drm plane to prepare for
13789  * @fb: framebuffer to prepare for presentation
13790  *
13791  * Prepares a framebuffer for usage on a display plane.  Generally this
13792  * involves pinning the underlying object and updating the frontbuffer tracking
13793  * bits.  Some older platforms need special physical address handling for
13794  * cursor planes.
13795  *
13796  * Must be called with struct_mutex held.
13797  *
13798  * Returns 0 on success, negative error code on failure.
13799  */
13800 int
13801 intel_prepare_plane_fb(struct drm_plane *plane,
13802                        const struct drm_plane_state *new_state)
13803 {
13804         struct drm_device *dev = plane->dev;
13805         struct drm_framebuffer *fb = new_state->fb;
13806         struct intel_plane *intel_plane = to_intel_plane(plane);
13807         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13808         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13809         int ret = 0;
13810
13811         if (!obj && !old_obj)
13812                 return 0;
13813
13814         if (old_obj) {
13815                 struct drm_crtc_state *crtc_state =
13816                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13817
13818                 /* Big Hammer, we also need to ensure that any pending
13819                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13820                  * current scanout is retired before unpinning the old
13821                  * framebuffer. Note that we rely on userspace rendering
13822                  * into the buffer attached to the pipe they are waiting
13823                  * on. If not, userspace generates a GPU hang with IPEHR
13824                  * point to the MI_WAIT_FOR_EVENT.
13825                  *
13826                  * This should only fail upon a hung GPU, in which case we
13827                  * can safely continue.
13828                  */
13829                 if (needs_modeset(crtc_state))
13830                         ret = i915_gem_object_wait_rendering(old_obj, true);
13831                 if (ret) {
13832                         /* GPU hangs should have been swallowed by the wait */
13833                         WARN_ON(ret == -EIO);
13834                         return ret;
13835                 }
13836         }
13837
13838         /* For framebuffer backed by dmabuf, wait for fence */
13839         if (obj && obj->base.dma_buf) {
13840                 long lret;
13841
13842                 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13843                                                            false, true,
13844                                                            MAX_SCHEDULE_TIMEOUT);
13845                 if (lret == -ERESTARTSYS)
13846                         return lret;
13847
13848                 WARN(lret < 0, "waiting returns %li\n", lret);
13849         }
13850
13851         if (!obj) {
13852                 ret = 0;
13853         } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13854             INTEL_INFO(dev)->cursor_needs_physical) {
13855                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13856                 ret = i915_gem_object_attach_phys(obj, align);
13857                 if (ret)
13858                         DRM_DEBUG_KMS("failed to attach phys object\n");
13859         } else {
13860                 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13861         }
13862
13863         if (ret == 0) {
13864                 if (obj) {
13865                         struct intel_plane_state *plane_state =
13866                                 to_intel_plane_state(new_state);
13867
13868                         i915_gem_request_assign(&plane_state->wait_req,
13869                                                 obj->last_write_req);
13870                 }
13871
13872                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13873         }
13874
13875         return ret;
13876 }
13877
13878 /**
13879  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13880  * @plane: drm plane to clean up for
13881  * @fb: old framebuffer that was on plane
13882  *
13883  * Cleans up a framebuffer that has just been removed from a plane.
13884  *
13885  * Must be called with struct_mutex held.
13886  */
13887 void
13888 intel_cleanup_plane_fb(struct drm_plane *plane,
13889                        const struct drm_plane_state *old_state)
13890 {
13891         struct drm_device *dev = plane->dev;
13892         struct intel_plane *intel_plane = to_intel_plane(plane);
13893         struct intel_plane_state *old_intel_state;
13894         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13895         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13896
13897         old_intel_state = to_intel_plane_state(old_state);
13898
13899         if (!obj && !old_obj)
13900                 return;
13901
13902         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13903             !INTEL_INFO(dev)->cursor_needs_physical))
13904                 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
13905
13906         /* prepare_fb aborted? */
13907         if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13908             (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13909                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13910
13911         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13912 }
13913
13914 int
13915 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13916 {
13917         int max_scale;
13918         struct drm_device *dev;
13919         struct drm_i915_private *dev_priv;
13920         int crtc_clock, cdclk;
13921
13922         if (!intel_crtc || !crtc_state->base.enable)
13923                 return DRM_PLANE_HELPER_NO_SCALING;
13924
13925         dev = intel_crtc->base.dev;
13926         dev_priv = dev->dev_private;
13927         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13928         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13929
13930         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13931                 return DRM_PLANE_HELPER_NO_SCALING;
13932
13933         /*
13934          * skl max scale is lower of:
13935          *    close to 3 but not 3, -1 is for that purpose
13936          *            or
13937          *    cdclk/crtc_clock
13938          */
13939         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13940
13941         return max_scale;
13942 }
13943
13944 static int
13945 intel_check_primary_plane(struct drm_plane *plane,
13946                           struct intel_crtc_state *crtc_state,
13947                           struct intel_plane_state *state)
13948 {
13949         struct drm_crtc *crtc = state->base.crtc;
13950         struct drm_framebuffer *fb = state->base.fb;
13951         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13952         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13953         bool can_position = false;
13954
13955         if (INTEL_INFO(plane->dev)->gen >= 9) {
13956                 /* use scaler when colorkey is not required */
13957                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13958                         min_scale = 1;
13959                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13960                 }
13961                 can_position = true;
13962         }
13963
13964         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13965                                              &state->dst, &state->clip,
13966                                              min_scale, max_scale,
13967                                              can_position, true,
13968                                              &state->visible);
13969 }
13970
13971 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13972                                     struct drm_crtc_state *old_crtc_state)
13973 {
13974         struct drm_device *dev = crtc->dev;
13975         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13976         struct intel_crtc_state *old_intel_state =
13977                 to_intel_crtc_state(old_crtc_state);
13978         bool modeset = needs_modeset(crtc->state);
13979
13980         /* Perform vblank evasion around commit operation */
13981         intel_pipe_update_start(intel_crtc);
13982
13983         if (modeset)
13984                 return;
13985
13986         if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
13987                 intel_color_set_csc(crtc->state);
13988                 intel_color_load_luts(crtc->state);
13989         }
13990
13991         if (to_intel_crtc_state(crtc->state)->update_pipe)
13992                 intel_update_pipe_config(intel_crtc, old_intel_state);
13993         else if (INTEL_INFO(dev)->gen >= 9)
13994                 skl_detach_scalers(intel_crtc);
13995 }
13996
13997 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13998                                      struct drm_crtc_state *old_crtc_state)
13999 {
14000         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14001
14002         intel_pipe_update_end(intel_crtc);
14003 }
14004
14005 /**
14006  * intel_plane_destroy - destroy a plane
14007  * @plane: plane to destroy
14008  *
14009  * Common destruction function for all types of planes (primary, cursor,
14010  * sprite).
14011  */
14012 void intel_plane_destroy(struct drm_plane *plane)
14013 {
14014         struct intel_plane *intel_plane = to_intel_plane(plane);
14015         drm_plane_cleanup(plane);
14016         kfree(intel_plane);
14017 }
14018
14019 const struct drm_plane_funcs intel_plane_funcs = {
14020         .update_plane = drm_atomic_helper_update_plane,
14021         .disable_plane = drm_atomic_helper_disable_plane,
14022         .destroy = intel_plane_destroy,
14023         .set_property = drm_atomic_helper_plane_set_property,
14024         .atomic_get_property = intel_plane_atomic_get_property,
14025         .atomic_set_property = intel_plane_atomic_set_property,
14026         .atomic_duplicate_state = intel_plane_duplicate_state,
14027         .atomic_destroy_state = intel_plane_destroy_state,
14028
14029 };
14030
14031 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14032                                                     int pipe)
14033 {
14034         struct intel_plane *primary = NULL;
14035         struct intel_plane_state *state = NULL;
14036         const uint32_t *intel_primary_formats;
14037         unsigned int num_formats;
14038         int ret;
14039
14040         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14041         if (!primary)
14042                 goto fail;
14043
14044         state = intel_create_plane_state(&primary->base);
14045         if (!state)
14046                 goto fail;
14047         primary->base.state = &state->base;
14048
14049         primary->can_scale = false;
14050         primary->max_downscale = 1;
14051         if (INTEL_INFO(dev)->gen >= 9) {
14052                 primary->can_scale = true;
14053                 state->scaler_id = -1;
14054         }
14055         primary->pipe = pipe;
14056         primary->plane = pipe;
14057         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14058         primary->check_plane = intel_check_primary_plane;
14059         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14060                 primary->plane = !pipe;
14061
14062         if (INTEL_INFO(dev)->gen >= 9) {
14063                 intel_primary_formats = skl_primary_formats;
14064                 num_formats = ARRAY_SIZE(skl_primary_formats);
14065
14066                 primary->update_plane = skylake_update_primary_plane;
14067                 primary->disable_plane = skylake_disable_primary_plane;
14068         } else if (HAS_PCH_SPLIT(dev)) {
14069                 intel_primary_formats = i965_primary_formats;
14070                 num_formats = ARRAY_SIZE(i965_primary_formats);
14071
14072                 primary->update_plane = ironlake_update_primary_plane;
14073                 primary->disable_plane = i9xx_disable_primary_plane;
14074         } else if (INTEL_INFO(dev)->gen >= 4) {
14075                 intel_primary_formats = i965_primary_formats;
14076                 num_formats = ARRAY_SIZE(i965_primary_formats);
14077
14078                 primary->update_plane = i9xx_update_primary_plane;
14079                 primary->disable_plane = i9xx_disable_primary_plane;
14080         } else {
14081                 intel_primary_formats = i8xx_primary_formats;
14082                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14083
14084                 primary->update_plane = i9xx_update_primary_plane;
14085                 primary->disable_plane = i9xx_disable_primary_plane;
14086         }
14087
14088         ret = drm_universal_plane_init(dev, &primary->base, 0,
14089                                        &intel_plane_funcs,
14090                                        intel_primary_formats, num_formats,
14091                                        DRM_PLANE_TYPE_PRIMARY, NULL);
14092         if (ret)
14093                 goto fail;
14094
14095         if (INTEL_INFO(dev)->gen >= 4)
14096                 intel_create_rotation_property(dev, primary);
14097
14098         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14099
14100         return &primary->base;
14101
14102 fail:
14103         kfree(state);
14104         kfree(primary);
14105
14106         return NULL;
14107 }
14108
14109 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14110 {
14111         if (!dev->mode_config.rotation_property) {
14112                 unsigned long flags = BIT(DRM_ROTATE_0) |
14113                         BIT(DRM_ROTATE_180);
14114
14115                 if (INTEL_INFO(dev)->gen >= 9)
14116                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14117
14118                 dev->mode_config.rotation_property =
14119                         drm_mode_create_rotation_property(dev, flags);
14120         }
14121         if (dev->mode_config.rotation_property)
14122                 drm_object_attach_property(&plane->base.base,
14123                                 dev->mode_config.rotation_property,
14124                                 plane->base.state->rotation);
14125 }
14126
14127 static int
14128 intel_check_cursor_plane(struct drm_plane *plane,
14129                          struct intel_crtc_state *crtc_state,
14130                          struct intel_plane_state *state)
14131 {
14132         struct drm_crtc *crtc = crtc_state->base.crtc;
14133         struct drm_framebuffer *fb = state->base.fb;
14134         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14135         enum pipe pipe = to_intel_plane(plane)->pipe;
14136         unsigned stride;
14137         int ret;
14138
14139         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14140                                             &state->dst, &state->clip,
14141                                             DRM_PLANE_HELPER_NO_SCALING,
14142                                             DRM_PLANE_HELPER_NO_SCALING,
14143                                             true, true, &state->visible);
14144         if (ret)
14145                 return ret;
14146
14147         /* if we want to turn off the cursor ignore width and height */
14148         if (!obj)
14149                 return 0;
14150
14151         /* Check for which cursor types we support */
14152         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14153                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14154                           state->base.crtc_w, state->base.crtc_h);
14155                 return -EINVAL;
14156         }
14157
14158         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14159         if (obj->base.size < stride * state->base.crtc_h) {
14160                 DRM_DEBUG_KMS("buffer is too small\n");
14161                 return -ENOMEM;
14162         }
14163
14164         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14165                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14166                 return -EINVAL;
14167         }
14168
14169         /*
14170          * There's something wrong with the cursor on CHV pipe C.
14171          * If it straddles the left edge of the screen then
14172          * moving it away from the edge or disabling it often
14173          * results in a pipe underrun, and often that can lead to
14174          * dead pipe (constant underrun reported, and it scans
14175          * out just a solid color). To recover from that, the
14176          * display power well must be turned off and on again.
14177          * Refuse the put the cursor into that compromised position.
14178          */
14179         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14180             state->visible && state->base.crtc_x < 0) {
14181                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14182                 return -EINVAL;
14183         }
14184
14185         return 0;
14186 }
14187
14188 static void
14189 intel_disable_cursor_plane(struct drm_plane *plane,
14190                            struct drm_crtc *crtc)
14191 {
14192         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14193
14194         intel_crtc->cursor_addr = 0;
14195         intel_crtc_update_cursor(crtc, NULL);
14196 }
14197
14198 static void
14199 intel_update_cursor_plane(struct drm_plane *plane,
14200                           const struct intel_crtc_state *crtc_state,
14201                           const struct intel_plane_state *state)
14202 {
14203         struct drm_crtc *crtc = crtc_state->base.crtc;
14204         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14205         struct drm_device *dev = plane->dev;
14206         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14207         uint32_t addr;
14208
14209         if (!obj)
14210                 addr = 0;
14211         else if (!INTEL_INFO(dev)->cursor_needs_physical)
14212                 addr = i915_gem_obj_ggtt_offset(obj);
14213         else
14214                 addr = obj->phys_handle->busaddr;
14215
14216         intel_crtc->cursor_addr = addr;
14217         intel_crtc_update_cursor(crtc, state);
14218 }
14219
14220 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14221                                                    int pipe)
14222 {
14223         struct intel_plane *cursor = NULL;
14224         struct intel_plane_state *state = NULL;
14225         int ret;
14226
14227         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14228         if (!cursor)
14229                 goto fail;
14230
14231         state = intel_create_plane_state(&cursor->base);
14232         if (!state)
14233                 goto fail;
14234         cursor->base.state = &state->base;
14235
14236         cursor->can_scale = false;
14237         cursor->max_downscale = 1;
14238         cursor->pipe = pipe;
14239         cursor->plane = pipe;
14240         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14241         cursor->check_plane = intel_check_cursor_plane;
14242         cursor->update_plane = intel_update_cursor_plane;
14243         cursor->disable_plane = intel_disable_cursor_plane;
14244
14245         ret = drm_universal_plane_init(dev, &cursor->base, 0,
14246                                        &intel_plane_funcs,
14247                                        intel_cursor_formats,
14248                                        ARRAY_SIZE(intel_cursor_formats),
14249                                        DRM_PLANE_TYPE_CURSOR, NULL);
14250         if (ret)
14251                 goto fail;
14252
14253         if (INTEL_INFO(dev)->gen >= 4) {
14254                 if (!dev->mode_config.rotation_property)
14255                         dev->mode_config.rotation_property =
14256                                 drm_mode_create_rotation_property(dev,
14257                                                         BIT(DRM_ROTATE_0) |
14258                                                         BIT(DRM_ROTATE_180));
14259                 if (dev->mode_config.rotation_property)
14260                         drm_object_attach_property(&cursor->base.base,
14261                                 dev->mode_config.rotation_property,
14262                                 state->base.rotation);
14263         }
14264
14265         if (INTEL_INFO(dev)->gen >=9)
14266                 state->scaler_id = -1;
14267
14268         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14269
14270         return &cursor->base;
14271
14272 fail:
14273         kfree(state);
14274         kfree(cursor);
14275
14276         return NULL;
14277 }
14278
14279 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14280         struct intel_crtc_state *crtc_state)
14281 {
14282         int i;
14283         struct intel_scaler *intel_scaler;
14284         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14285
14286         for (i = 0; i < intel_crtc->num_scalers; i++) {
14287                 intel_scaler = &scaler_state->scalers[i];
14288                 intel_scaler->in_use = 0;
14289                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14290         }
14291
14292         scaler_state->scaler_id = -1;
14293 }
14294
14295 static void intel_crtc_init(struct drm_device *dev, int pipe)
14296 {
14297         struct drm_i915_private *dev_priv = dev->dev_private;
14298         struct intel_crtc *intel_crtc;
14299         struct intel_crtc_state *crtc_state = NULL;
14300         struct drm_plane *primary = NULL;
14301         struct drm_plane *cursor = NULL;
14302         int ret;
14303
14304         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14305         if (intel_crtc == NULL)
14306                 return;
14307
14308         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14309         if (!crtc_state)
14310                 goto fail;
14311         intel_crtc->config = crtc_state;
14312         intel_crtc->base.state = &crtc_state->base;
14313         crtc_state->base.crtc = &intel_crtc->base;
14314
14315         /* initialize shared scalers */
14316         if (INTEL_INFO(dev)->gen >= 9) {
14317                 if (pipe == PIPE_C)
14318                         intel_crtc->num_scalers = 1;
14319                 else
14320                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14321
14322                 skl_init_scalers(dev, intel_crtc, crtc_state);
14323         }
14324
14325         primary = intel_primary_plane_create(dev, pipe);
14326         if (!primary)
14327                 goto fail;
14328
14329         cursor = intel_cursor_plane_create(dev, pipe);
14330         if (!cursor)
14331                 goto fail;
14332
14333         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14334                                         cursor, &intel_crtc_funcs, NULL);
14335         if (ret)
14336                 goto fail;
14337
14338         /*
14339          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14340          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14341          */
14342         intel_crtc->pipe = pipe;
14343         intel_crtc->plane = pipe;
14344         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14345                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14346                 intel_crtc->plane = !pipe;
14347         }
14348
14349         intel_crtc->cursor_base = ~0;
14350         intel_crtc->cursor_cntl = ~0;
14351         intel_crtc->cursor_size = ~0;
14352
14353         intel_crtc->wm.cxsr_allowed = true;
14354
14355         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14356                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14357         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14358         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14359
14360         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14361
14362         intel_color_init(&intel_crtc->base);
14363
14364         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14365         return;
14366
14367 fail:
14368         if (primary)
14369                 drm_plane_cleanup(primary);
14370         if (cursor)
14371                 drm_plane_cleanup(cursor);
14372         kfree(crtc_state);
14373         kfree(intel_crtc);
14374 }
14375
14376 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14377 {
14378         struct drm_encoder *encoder = connector->base.encoder;
14379         struct drm_device *dev = connector->base.dev;
14380
14381         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14382
14383         if (!encoder || WARN_ON(!encoder->crtc))
14384                 return INVALID_PIPE;
14385
14386         return to_intel_crtc(encoder->crtc)->pipe;
14387 }
14388
14389 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14390                                 struct drm_file *file)
14391 {
14392         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14393         struct drm_crtc *drmmode_crtc;
14394         struct intel_crtc *crtc;
14395
14396         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14397
14398         if (!drmmode_crtc) {
14399                 DRM_ERROR("no such CRTC id\n");
14400                 return -ENOENT;
14401         }
14402
14403         crtc = to_intel_crtc(drmmode_crtc);
14404         pipe_from_crtc_id->pipe = crtc->pipe;
14405
14406         return 0;
14407 }
14408
14409 static int intel_encoder_clones(struct intel_encoder *encoder)
14410 {
14411         struct drm_device *dev = encoder->base.dev;
14412         struct intel_encoder *source_encoder;
14413         int index_mask = 0;
14414         int entry = 0;
14415
14416         for_each_intel_encoder(dev, source_encoder) {
14417                 if (encoders_cloneable(encoder, source_encoder))
14418                         index_mask |= (1 << entry);
14419
14420                 entry++;
14421         }
14422
14423         return index_mask;
14424 }
14425
14426 static bool has_edp_a(struct drm_device *dev)
14427 {
14428         struct drm_i915_private *dev_priv = dev->dev_private;
14429
14430         if (!IS_MOBILE(dev))
14431                 return false;
14432
14433         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14434                 return false;
14435
14436         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14437                 return false;
14438
14439         return true;
14440 }
14441
14442 static bool intel_crt_present(struct drm_device *dev)
14443 {
14444         struct drm_i915_private *dev_priv = dev->dev_private;
14445
14446         if (INTEL_INFO(dev)->gen >= 9)
14447                 return false;
14448
14449         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14450                 return false;
14451
14452         if (IS_CHERRYVIEW(dev))
14453                 return false;
14454
14455         if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14456                 return false;
14457
14458         /* DDI E can't be used if DDI A requires 4 lanes */
14459         if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14460                 return false;
14461
14462         if (!dev_priv->vbt.int_crt_support)
14463                 return false;
14464
14465         return true;
14466 }
14467
14468 static void intel_setup_outputs(struct drm_device *dev)
14469 {
14470         struct drm_i915_private *dev_priv = dev->dev_private;
14471         struct intel_encoder *encoder;
14472         bool dpd_is_edp = false;
14473
14474         intel_lvds_init(dev);
14475
14476         if (intel_crt_present(dev))
14477                 intel_crt_init(dev);
14478
14479         if (IS_BROXTON(dev)) {
14480                 /*
14481                  * FIXME: Broxton doesn't support port detection via the
14482                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14483                  * detect the ports.
14484                  */
14485                 intel_ddi_init(dev, PORT_A);
14486                 intel_ddi_init(dev, PORT_B);
14487                 intel_ddi_init(dev, PORT_C);
14488
14489                 intel_dsi_init(dev);
14490         } else if (HAS_DDI(dev)) {
14491                 int found;
14492
14493                 /*
14494                  * Haswell uses DDI functions to detect digital outputs.
14495                  * On SKL pre-D0 the strap isn't connected, so we assume
14496                  * it's there.
14497                  */
14498                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14499                 /* WaIgnoreDDIAStrap: skl */
14500                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14501                         intel_ddi_init(dev, PORT_A);
14502
14503                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14504                  * register */
14505                 found = I915_READ(SFUSE_STRAP);
14506
14507                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14508                         intel_ddi_init(dev, PORT_B);
14509                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14510                         intel_ddi_init(dev, PORT_C);
14511                 if (found & SFUSE_STRAP_DDID_DETECTED)
14512                         intel_ddi_init(dev, PORT_D);
14513                 /*
14514                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14515                  */
14516                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14517                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14518                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14519                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14520                         intel_ddi_init(dev, PORT_E);
14521
14522         } else if (HAS_PCH_SPLIT(dev)) {
14523                 int found;
14524                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14525
14526                 if (has_edp_a(dev))
14527                         intel_dp_init(dev, DP_A, PORT_A);
14528
14529                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14530                         /* PCH SDVOB multiplex with HDMIB */
14531                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14532                         if (!found)
14533                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14534                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14535                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14536                 }
14537
14538                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14539                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14540
14541                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14542                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14543
14544                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14545                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14546
14547                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14548                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14549         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14550                 /*
14551                  * The DP_DETECTED bit is the latched state of the DDC
14552                  * SDA pin at boot. However since eDP doesn't require DDC
14553                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14554                  * eDP ports may have been muxed to an alternate function.
14555                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14556                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14557                  * detect eDP ports.
14558                  */
14559                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14560                     !intel_dp_is_edp(dev, PORT_B))
14561                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14562                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14563                     intel_dp_is_edp(dev, PORT_B))
14564                         intel_dp_init(dev, VLV_DP_B, PORT_B);
14565
14566                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14567                     !intel_dp_is_edp(dev, PORT_C))
14568                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14569                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14570                     intel_dp_is_edp(dev, PORT_C))
14571                         intel_dp_init(dev, VLV_DP_C, PORT_C);
14572
14573                 if (IS_CHERRYVIEW(dev)) {
14574                         /* eDP not supported on port D, so don't check VBT */
14575                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14576                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14577                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
14578                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14579                 }
14580
14581                 intel_dsi_init(dev);
14582         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14583                 bool found = false;
14584
14585                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14586                         DRM_DEBUG_KMS("probing SDVOB\n");
14587                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14588                         if (!found && IS_G4X(dev)) {
14589                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14590                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14591                         }
14592
14593                         if (!found && IS_G4X(dev))
14594                                 intel_dp_init(dev, DP_B, PORT_B);
14595                 }
14596
14597                 /* Before G4X SDVOC doesn't have its own detect register */
14598
14599                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14600                         DRM_DEBUG_KMS("probing SDVOC\n");
14601                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14602                 }
14603
14604                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14605
14606                         if (IS_G4X(dev)) {
14607                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14608                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14609                         }
14610                         if (IS_G4X(dev))
14611                                 intel_dp_init(dev, DP_C, PORT_C);
14612                 }
14613
14614                 if (IS_G4X(dev) &&
14615                     (I915_READ(DP_D) & DP_DETECTED))
14616                         intel_dp_init(dev, DP_D, PORT_D);
14617         } else if (IS_GEN2(dev))
14618                 intel_dvo_init(dev);
14619
14620         if (SUPPORTS_TV(dev))
14621                 intel_tv_init(dev);
14622
14623         intel_psr_init(dev);
14624
14625         for_each_intel_encoder(dev, encoder) {
14626                 encoder->base.possible_crtcs = encoder->crtc_mask;
14627                 encoder->base.possible_clones =
14628                         intel_encoder_clones(encoder);
14629         }
14630
14631         intel_init_pch_refclk(dev);
14632
14633         drm_helper_move_panel_connectors_to_head(dev);
14634 }
14635
14636 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14637 {
14638         struct drm_device *dev = fb->dev;
14639         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14640
14641         drm_framebuffer_cleanup(fb);
14642         mutex_lock(&dev->struct_mutex);
14643         WARN_ON(!intel_fb->obj->framebuffer_references--);
14644         drm_gem_object_unreference(&intel_fb->obj->base);
14645         mutex_unlock(&dev->struct_mutex);
14646         kfree(intel_fb);
14647 }
14648
14649 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14650                                                 struct drm_file *file,
14651                                                 unsigned int *handle)
14652 {
14653         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14654         struct drm_i915_gem_object *obj = intel_fb->obj;
14655
14656         if (obj->userptr.mm) {
14657                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14658                 return -EINVAL;
14659         }
14660
14661         return drm_gem_handle_create(file, &obj->base, handle);
14662 }
14663
14664 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14665                                         struct drm_file *file,
14666                                         unsigned flags, unsigned color,
14667                                         struct drm_clip_rect *clips,
14668                                         unsigned num_clips)
14669 {
14670         struct drm_device *dev = fb->dev;
14671         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14672         struct drm_i915_gem_object *obj = intel_fb->obj;
14673
14674         mutex_lock(&dev->struct_mutex);
14675         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14676         mutex_unlock(&dev->struct_mutex);
14677
14678         return 0;
14679 }
14680
14681 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14682         .destroy = intel_user_framebuffer_destroy,
14683         .create_handle = intel_user_framebuffer_create_handle,
14684         .dirty = intel_user_framebuffer_dirty,
14685 };
14686
14687 static
14688 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14689                          uint32_t pixel_format)
14690 {
14691         u32 gen = INTEL_INFO(dev)->gen;
14692
14693         if (gen >= 9) {
14694                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14695
14696                 /* "The stride in bytes must not exceed the of the size of 8K
14697                  *  pixels and 32K bytes."
14698                  */
14699                 return min(8192 * cpp, 32768);
14700         } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14701                 return 32*1024;
14702         } else if (gen >= 4) {
14703                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14704                         return 16*1024;
14705                 else
14706                         return 32*1024;
14707         } else if (gen >= 3) {
14708                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14709                         return 8*1024;
14710                 else
14711                         return 16*1024;
14712         } else {
14713                 /* XXX DSPC is limited to 4k tiled */
14714                 return 8*1024;
14715         }
14716 }
14717
14718 static int intel_framebuffer_init(struct drm_device *dev,
14719                                   struct intel_framebuffer *intel_fb,
14720                                   struct drm_mode_fb_cmd2 *mode_cmd,
14721                                   struct drm_i915_gem_object *obj)
14722 {
14723         struct drm_i915_private *dev_priv = to_i915(dev);
14724         unsigned int aligned_height;
14725         int ret;
14726         u32 pitch_limit, stride_alignment;
14727
14728         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14729
14730         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14731                 /* Enforce that fb modifier and tiling mode match, but only for
14732                  * X-tiled. This is needed for FBC. */
14733                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14734                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14735                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14736                         return -EINVAL;
14737                 }
14738         } else {
14739                 if (obj->tiling_mode == I915_TILING_X)
14740                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14741                 else if (obj->tiling_mode == I915_TILING_Y) {
14742                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14743                         return -EINVAL;
14744                 }
14745         }
14746
14747         /* Passed in modifier sanity checking. */
14748         switch (mode_cmd->modifier[0]) {
14749         case I915_FORMAT_MOD_Y_TILED:
14750         case I915_FORMAT_MOD_Yf_TILED:
14751                 if (INTEL_INFO(dev)->gen < 9) {
14752                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14753                                   mode_cmd->modifier[0]);
14754                         return -EINVAL;
14755                 }
14756         case DRM_FORMAT_MOD_NONE:
14757         case I915_FORMAT_MOD_X_TILED:
14758                 break;
14759         default:
14760                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14761                           mode_cmd->modifier[0]);
14762                 return -EINVAL;
14763         }
14764
14765         stride_alignment = intel_fb_stride_alignment(dev_priv,
14766                                                      mode_cmd->modifier[0],
14767                                                      mode_cmd->pixel_format);
14768         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14769                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14770                           mode_cmd->pitches[0], stride_alignment);
14771                 return -EINVAL;
14772         }
14773
14774         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14775                                            mode_cmd->pixel_format);
14776         if (mode_cmd->pitches[0] > pitch_limit) {
14777                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14778                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14779                           "tiled" : "linear",
14780                           mode_cmd->pitches[0], pitch_limit);
14781                 return -EINVAL;
14782         }
14783
14784         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14785             mode_cmd->pitches[0] != obj->stride) {
14786                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14787                           mode_cmd->pitches[0], obj->stride);
14788                 return -EINVAL;
14789         }
14790
14791         /* Reject formats not supported by any plane early. */
14792         switch (mode_cmd->pixel_format) {
14793         case DRM_FORMAT_C8:
14794         case DRM_FORMAT_RGB565:
14795         case DRM_FORMAT_XRGB8888:
14796         case DRM_FORMAT_ARGB8888:
14797                 break;
14798         case DRM_FORMAT_XRGB1555:
14799                 if (INTEL_INFO(dev)->gen > 3) {
14800                         DRM_DEBUG("unsupported pixel format: %s\n",
14801                                   drm_get_format_name(mode_cmd->pixel_format));
14802                         return -EINVAL;
14803                 }
14804                 break;
14805         case DRM_FORMAT_ABGR8888:
14806                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14807                     INTEL_INFO(dev)->gen < 9) {
14808                         DRM_DEBUG("unsupported pixel format: %s\n",
14809                                   drm_get_format_name(mode_cmd->pixel_format));
14810                         return -EINVAL;
14811                 }
14812                 break;
14813         case DRM_FORMAT_XBGR8888:
14814         case DRM_FORMAT_XRGB2101010:
14815         case DRM_FORMAT_XBGR2101010:
14816                 if (INTEL_INFO(dev)->gen < 4) {
14817                         DRM_DEBUG("unsupported pixel format: %s\n",
14818                                   drm_get_format_name(mode_cmd->pixel_format));
14819                         return -EINVAL;
14820                 }
14821                 break;
14822         case DRM_FORMAT_ABGR2101010:
14823                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14824                         DRM_DEBUG("unsupported pixel format: %s\n",
14825                                   drm_get_format_name(mode_cmd->pixel_format));
14826                         return -EINVAL;
14827                 }
14828                 break;
14829         case DRM_FORMAT_YUYV:
14830         case DRM_FORMAT_UYVY:
14831         case DRM_FORMAT_YVYU:
14832         case DRM_FORMAT_VYUY:
14833                 if (INTEL_INFO(dev)->gen < 5) {
14834                         DRM_DEBUG("unsupported pixel format: %s\n",
14835                                   drm_get_format_name(mode_cmd->pixel_format));
14836                         return -EINVAL;
14837                 }
14838                 break;
14839         default:
14840                 DRM_DEBUG("unsupported pixel format: %s\n",
14841                           drm_get_format_name(mode_cmd->pixel_format));
14842                 return -EINVAL;
14843         }
14844
14845         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14846         if (mode_cmd->offsets[0] != 0)
14847                 return -EINVAL;
14848
14849         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14850                                                mode_cmd->pixel_format,
14851                                                mode_cmd->modifier[0]);
14852         /* FIXME drm helper for size checks (especially planar formats)? */
14853         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14854                 return -EINVAL;
14855
14856         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14857         intel_fb->obj = obj;
14858
14859         intel_fill_fb_info(dev_priv, &intel_fb->base);
14860
14861         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14862         if (ret) {
14863                 DRM_ERROR("framebuffer init failed %d\n", ret);
14864                 return ret;
14865         }
14866
14867         intel_fb->obj->framebuffer_references++;
14868
14869         return 0;
14870 }
14871
14872 static struct drm_framebuffer *
14873 intel_user_framebuffer_create(struct drm_device *dev,
14874                               struct drm_file *filp,
14875                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14876 {
14877         struct drm_framebuffer *fb;
14878         struct drm_i915_gem_object *obj;
14879         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14880
14881         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14882                                                 mode_cmd.handles[0]));
14883         if (&obj->base == NULL)
14884                 return ERR_PTR(-ENOENT);
14885
14886         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14887         if (IS_ERR(fb))
14888                 drm_gem_object_unreference_unlocked(&obj->base);
14889
14890         return fb;
14891 }
14892
14893 #ifndef CONFIG_DRM_FBDEV_EMULATION
14894 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14895 {
14896 }
14897 #endif
14898
14899 static const struct drm_mode_config_funcs intel_mode_funcs = {
14900         .fb_create = intel_user_framebuffer_create,
14901         .output_poll_changed = intel_fbdev_output_poll_changed,
14902         .atomic_check = intel_atomic_check,
14903         .atomic_commit = intel_atomic_commit,
14904         .atomic_state_alloc = intel_atomic_state_alloc,
14905         .atomic_state_clear = intel_atomic_state_clear,
14906 };
14907
14908 /**
14909  * intel_init_display_hooks - initialize the display modesetting hooks
14910  * @dev_priv: device private
14911  */
14912 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14913 {
14914         if (INTEL_INFO(dev_priv)->gen >= 9) {
14915                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14916                 dev_priv->display.get_initial_plane_config =
14917                         skylake_get_initial_plane_config;
14918                 dev_priv->display.crtc_compute_clock =
14919                         haswell_crtc_compute_clock;
14920                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14921                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14922         } else if (HAS_DDI(dev_priv)) {
14923                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14924                 dev_priv->display.get_initial_plane_config =
14925                         ironlake_get_initial_plane_config;
14926                 dev_priv->display.crtc_compute_clock =
14927                         haswell_crtc_compute_clock;
14928                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14929                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14930         } else if (HAS_PCH_SPLIT(dev_priv)) {
14931                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14932                 dev_priv->display.get_initial_plane_config =
14933                         ironlake_get_initial_plane_config;
14934                 dev_priv->display.crtc_compute_clock =
14935                         ironlake_crtc_compute_clock;
14936                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14937                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14938         } else if (IS_CHERRYVIEW(dev_priv)) {
14939                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14940                 dev_priv->display.get_initial_plane_config =
14941                         i9xx_get_initial_plane_config;
14942                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14943                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14944                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14945         } else if (IS_VALLEYVIEW(dev_priv)) {
14946                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14947                 dev_priv->display.get_initial_plane_config =
14948                         i9xx_get_initial_plane_config;
14949                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14950                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14951                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14952         } else if (IS_G4X(dev_priv)) {
14953                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14954                 dev_priv->display.get_initial_plane_config =
14955                         i9xx_get_initial_plane_config;
14956                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14957                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14958                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14959         } else if (IS_PINEVIEW(dev_priv)) {
14960                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14961                 dev_priv->display.get_initial_plane_config =
14962                         i9xx_get_initial_plane_config;
14963                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14964                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14965                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14966         } else if (!IS_GEN2(dev_priv)) {
14967                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14968                 dev_priv->display.get_initial_plane_config =
14969                         i9xx_get_initial_plane_config;
14970                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14971                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14972                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14973         } else {
14974                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14975                 dev_priv->display.get_initial_plane_config =
14976                         i9xx_get_initial_plane_config;
14977                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14978                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14979                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14980         }
14981
14982         /* Returns the core display clock speed */
14983         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
14984                 dev_priv->display.get_display_clock_speed =
14985                         skylake_get_display_clock_speed;
14986         else if (IS_BROXTON(dev_priv))
14987                 dev_priv->display.get_display_clock_speed =
14988                         broxton_get_display_clock_speed;
14989         else if (IS_BROADWELL(dev_priv))
14990                 dev_priv->display.get_display_clock_speed =
14991                         broadwell_get_display_clock_speed;
14992         else if (IS_HASWELL(dev_priv))
14993                 dev_priv->display.get_display_clock_speed =
14994                         haswell_get_display_clock_speed;
14995         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14996                 dev_priv->display.get_display_clock_speed =
14997                         valleyview_get_display_clock_speed;
14998         else if (IS_GEN5(dev_priv))
14999                 dev_priv->display.get_display_clock_speed =
15000                         ilk_get_display_clock_speed;
15001         else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15002                  IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
15003                 dev_priv->display.get_display_clock_speed =
15004                         i945_get_display_clock_speed;
15005         else if (IS_GM45(dev_priv))
15006                 dev_priv->display.get_display_clock_speed =
15007                         gm45_get_display_clock_speed;
15008         else if (IS_CRESTLINE(dev_priv))
15009                 dev_priv->display.get_display_clock_speed =
15010                         i965gm_get_display_clock_speed;
15011         else if (IS_PINEVIEW(dev_priv))
15012                 dev_priv->display.get_display_clock_speed =
15013                         pnv_get_display_clock_speed;
15014         else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
15015                 dev_priv->display.get_display_clock_speed =
15016                         g33_get_display_clock_speed;
15017         else if (IS_I915G(dev_priv))
15018                 dev_priv->display.get_display_clock_speed =
15019                         i915_get_display_clock_speed;
15020         else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
15021                 dev_priv->display.get_display_clock_speed =
15022                         i9xx_misc_get_display_clock_speed;
15023         else if (IS_I915GM(dev_priv))
15024                 dev_priv->display.get_display_clock_speed =
15025                         i915gm_get_display_clock_speed;
15026         else if (IS_I865G(dev_priv))
15027                 dev_priv->display.get_display_clock_speed =
15028                         i865_get_display_clock_speed;
15029         else if (IS_I85X(dev_priv))
15030                 dev_priv->display.get_display_clock_speed =
15031                         i85x_get_display_clock_speed;
15032         else { /* 830 */
15033                 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
15034                 dev_priv->display.get_display_clock_speed =
15035                         i830_get_display_clock_speed;
15036         }
15037
15038         if (IS_GEN5(dev_priv)) {
15039                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15040         } else if (IS_GEN6(dev_priv)) {
15041                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15042         } else if (IS_IVYBRIDGE(dev_priv)) {
15043                 /* FIXME: detect B0+ stepping and use auto training */
15044                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15045         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15046                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15047                 if (IS_BROADWELL(dev_priv)) {
15048                         dev_priv->display.modeset_commit_cdclk =
15049                                 broadwell_modeset_commit_cdclk;
15050                         dev_priv->display.modeset_calc_cdclk =
15051                                 broadwell_modeset_calc_cdclk;
15052                 }
15053         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15054                 dev_priv->display.modeset_commit_cdclk =
15055                         valleyview_modeset_commit_cdclk;
15056                 dev_priv->display.modeset_calc_cdclk =
15057                         valleyview_modeset_calc_cdclk;
15058         } else if (IS_BROXTON(dev_priv)) {
15059                 dev_priv->display.modeset_commit_cdclk =
15060                         broxton_modeset_commit_cdclk;
15061                 dev_priv->display.modeset_calc_cdclk =
15062                         broxton_modeset_calc_cdclk;
15063         }
15064
15065         switch (INTEL_INFO(dev_priv)->gen) {
15066         case 2:
15067                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15068                 break;
15069
15070         case 3:
15071                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15072                 break;
15073
15074         case 4:
15075         case 5:
15076                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15077                 break;
15078
15079         case 6:
15080                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15081                 break;
15082         case 7:
15083         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15084                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15085                 break;
15086         case 9:
15087                 /* Drop through - unsupported since execlist only. */
15088         default:
15089                 /* Default just returns -ENODEV to indicate unsupported */
15090                 dev_priv->display.queue_flip = intel_default_queue_flip;
15091         }
15092 }
15093
15094 /*
15095  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15096  * resume, or other times.  This quirk makes sure that's the case for
15097  * affected systems.
15098  */
15099 static void quirk_pipea_force(struct drm_device *dev)
15100 {
15101         struct drm_i915_private *dev_priv = dev->dev_private;
15102
15103         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15104         DRM_INFO("applying pipe a force quirk\n");
15105 }
15106
15107 static void quirk_pipeb_force(struct drm_device *dev)
15108 {
15109         struct drm_i915_private *dev_priv = dev->dev_private;
15110
15111         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15112         DRM_INFO("applying pipe b force quirk\n");
15113 }
15114
15115 /*
15116  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15117  */
15118 static void quirk_ssc_force_disable(struct drm_device *dev)
15119 {
15120         struct drm_i915_private *dev_priv = dev->dev_private;
15121         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15122         DRM_INFO("applying lvds SSC disable quirk\n");
15123 }
15124
15125 /*
15126  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15127  * brightness value
15128  */
15129 static void quirk_invert_brightness(struct drm_device *dev)
15130 {
15131         struct drm_i915_private *dev_priv = dev->dev_private;
15132         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15133         DRM_INFO("applying inverted panel brightness quirk\n");
15134 }
15135
15136 /* Some VBT's incorrectly indicate no backlight is present */
15137 static void quirk_backlight_present(struct drm_device *dev)
15138 {
15139         struct drm_i915_private *dev_priv = dev->dev_private;
15140         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15141         DRM_INFO("applying backlight present quirk\n");
15142 }
15143
15144 struct intel_quirk {
15145         int device;
15146         int subsystem_vendor;
15147         int subsystem_device;
15148         void (*hook)(struct drm_device *dev);
15149 };
15150
15151 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15152 struct intel_dmi_quirk {
15153         void (*hook)(struct drm_device *dev);
15154         const struct dmi_system_id (*dmi_id_list)[];
15155 };
15156
15157 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15158 {
15159         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15160         return 1;
15161 }
15162
15163 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15164         {
15165                 .dmi_id_list = &(const struct dmi_system_id[]) {
15166                         {
15167                                 .callback = intel_dmi_reverse_brightness,
15168                                 .ident = "NCR Corporation",
15169                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15170                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
15171                                 },
15172                         },
15173                         { }  /* terminating entry */
15174                 },
15175                 .hook = quirk_invert_brightness,
15176         },
15177 };
15178
15179 static struct intel_quirk intel_quirks[] = {
15180         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15181         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15182
15183         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15184         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15185
15186         /* 830 needs to leave pipe A & dpll A up */
15187         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15188
15189         /* 830 needs to leave pipe B & dpll B up */
15190         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15191
15192         /* Lenovo U160 cannot use SSC on LVDS */
15193         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15194
15195         /* Sony Vaio Y cannot use SSC on LVDS */
15196         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15197
15198         /* Acer Aspire 5734Z must invert backlight brightness */
15199         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15200
15201         /* Acer/eMachines G725 */
15202         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15203
15204         /* Acer/eMachines e725 */
15205         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15206
15207         /* Acer/Packard Bell NCL20 */
15208         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15209
15210         /* Acer Aspire 4736Z */
15211         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15212
15213         /* Acer Aspire 5336 */
15214         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15215
15216         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15217         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15218
15219         /* Acer C720 Chromebook (Core i3 4005U) */
15220         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15221
15222         /* Apple Macbook 2,1 (Core 2 T7400) */
15223         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15224
15225         /* Apple Macbook 4,1 */
15226         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15227
15228         /* Toshiba CB35 Chromebook (Celeron 2955U) */
15229         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15230
15231         /* HP Chromebook 14 (Celeron 2955U) */
15232         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15233
15234         /* Dell Chromebook 11 */
15235         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15236
15237         /* Dell Chromebook 11 (2015 version) */
15238         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15239 };
15240
15241 static void intel_init_quirks(struct drm_device *dev)
15242 {
15243         struct pci_dev *d = dev->pdev;
15244         int i;
15245
15246         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15247                 struct intel_quirk *q = &intel_quirks[i];
15248
15249                 if (d->device == q->device &&
15250                     (d->subsystem_vendor == q->subsystem_vendor ||
15251                      q->subsystem_vendor == PCI_ANY_ID) &&
15252                     (d->subsystem_device == q->subsystem_device ||
15253                      q->subsystem_device == PCI_ANY_ID))
15254                         q->hook(dev);
15255         }
15256         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15257                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15258                         intel_dmi_quirks[i].hook(dev);
15259         }
15260 }
15261
15262 /* Disable the VGA plane that we never use */
15263 static void i915_disable_vga(struct drm_device *dev)
15264 {
15265         struct drm_i915_private *dev_priv = dev->dev_private;
15266         u8 sr1;
15267         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15268
15269         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15270         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15271         outb(SR01, VGA_SR_INDEX);
15272         sr1 = inb(VGA_SR_DATA);
15273         outb(sr1 | 1<<5, VGA_SR_DATA);
15274         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15275         udelay(300);
15276
15277         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15278         POSTING_READ(vga_reg);
15279 }
15280
15281 void intel_modeset_init_hw(struct drm_device *dev)
15282 {
15283         struct drm_i915_private *dev_priv = dev->dev_private;
15284
15285         intel_update_cdclk(dev);
15286
15287         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15288
15289         intel_init_clock_gating(dev);
15290         intel_enable_gt_powersave(dev);
15291 }
15292
15293 /*
15294  * Calculate what we think the watermarks should be for the state we've read
15295  * out of the hardware and then immediately program those watermarks so that
15296  * we ensure the hardware settings match our internal state.
15297  *
15298  * We can calculate what we think WM's should be by creating a duplicate of the
15299  * current state (which was constructed during hardware readout) and running it
15300  * through the atomic check code to calculate new watermark values in the
15301  * state object.
15302  */
15303 static void sanitize_watermarks(struct drm_device *dev)
15304 {
15305         struct drm_i915_private *dev_priv = to_i915(dev);
15306         struct drm_atomic_state *state;
15307         struct drm_crtc *crtc;
15308         struct drm_crtc_state *cstate;
15309         struct drm_modeset_acquire_ctx ctx;
15310         int ret;
15311         int i;
15312
15313         /* Only supported on platforms that use atomic watermark design */
15314         if (!dev_priv->display.optimize_watermarks)
15315                 return;
15316
15317         /*
15318          * We need to hold connection_mutex before calling duplicate_state so
15319          * that the connector loop is protected.
15320          */
15321         drm_modeset_acquire_init(&ctx, 0);
15322 retry:
15323         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15324         if (ret == -EDEADLK) {
15325                 drm_modeset_backoff(&ctx);
15326                 goto retry;
15327         } else if (WARN_ON(ret)) {
15328                 goto fail;
15329         }
15330
15331         state = drm_atomic_helper_duplicate_state(dev, &ctx);
15332         if (WARN_ON(IS_ERR(state)))
15333                 goto fail;
15334
15335         /*
15336          * Hardware readout is the only time we don't want to calculate
15337          * intermediate watermarks (since we don't trust the current
15338          * watermarks).
15339          */
15340         to_intel_atomic_state(state)->skip_intermediate_wm = true;
15341
15342         ret = intel_atomic_check(dev, state);
15343         if (ret) {
15344                 /*
15345                  * If we fail here, it means that the hardware appears to be
15346                  * programmed in a way that shouldn't be possible, given our
15347                  * understanding of watermark requirements.  This might mean a
15348                  * mistake in the hardware readout code or a mistake in the
15349                  * watermark calculations for a given platform.  Raise a WARN
15350                  * so that this is noticeable.
15351                  *
15352                  * If this actually happens, we'll have to just leave the
15353                  * BIOS-programmed watermarks untouched and hope for the best.
15354                  */
15355                 WARN(true, "Could not determine valid watermarks for inherited state\n");
15356                 goto fail;
15357         }
15358
15359         /* Write calculated watermark values back */
15360         to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config;
15361         for_each_crtc_in_state(state, crtc, cstate, i) {
15362                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15363
15364                 cs->wm.need_postvbl_update = true;
15365                 dev_priv->display.optimize_watermarks(cs);
15366         }
15367
15368         drm_atomic_state_free(state);
15369 fail:
15370         drm_modeset_drop_locks(&ctx);
15371         drm_modeset_acquire_fini(&ctx);
15372 }
15373
15374 void intel_modeset_init(struct drm_device *dev)
15375 {
15376         struct drm_i915_private *dev_priv = to_i915(dev);
15377         struct i915_ggtt *ggtt = &dev_priv->ggtt;
15378         int sprite, ret;
15379         enum pipe pipe;
15380         struct intel_crtc *crtc;
15381
15382         drm_mode_config_init(dev);
15383
15384         dev->mode_config.min_width = 0;
15385         dev->mode_config.min_height = 0;
15386
15387         dev->mode_config.preferred_depth = 24;
15388         dev->mode_config.prefer_shadow = 1;
15389
15390         dev->mode_config.allow_fb_modifiers = true;
15391
15392         dev->mode_config.funcs = &intel_mode_funcs;
15393
15394         intel_init_quirks(dev);
15395
15396         intel_init_pm(dev);
15397
15398         if (INTEL_INFO(dev)->num_pipes == 0)
15399                 return;
15400
15401         /*
15402          * There may be no VBT; and if the BIOS enabled SSC we can
15403          * just keep using it to avoid unnecessary flicker.  Whereas if the
15404          * BIOS isn't using it, don't assume it will work even if the VBT
15405          * indicates as much.
15406          */
15407         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15408                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15409                                             DREF_SSC1_ENABLE);
15410
15411                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15412                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15413                                      bios_lvds_use_ssc ? "en" : "dis",
15414                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15415                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15416                 }
15417         }
15418
15419         if (IS_GEN2(dev)) {
15420                 dev->mode_config.max_width = 2048;
15421                 dev->mode_config.max_height = 2048;
15422         } else if (IS_GEN3(dev)) {
15423                 dev->mode_config.max_width = 4096;
15424                 dev->mode_config.max_height = 4096;
15425         } else {
15426                 dev->mode_config.max_width = 8192;
15427                 dev->mode_config.max_height = 8192;
15428         }
15429
15430         if (IS_845G(dev) || IS_I865G(dev)) {
15431                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15432                 dev->mode_config.cursor_height = 1023;
15433         } else if (IS_GEN2(dev)) {
15434                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15435                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15436         } else {
15437                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15438                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15439         }
15440
15441         dev->mode_config.fb_base = ggtt->mappable_base;
15442
15443         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15444                       INTEL_INFO(dev)->num_pipes,
15445                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15446
15447         for_each_pipe(dev_priv, pipe) {
15448                 intel_crtc_init(dev, pipe);
15449                 for_each_sprite(dev_priv, pipe, sprite) {
15450                         ret = intel_plane_init(dev, pipe, sprite);
15451                         if (ret)
15452                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15453                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15454                 }
15455         }
15456
15457         intel_update_czclk(dev_priv);
15458         intel_update_rawclk(dev_priv);
15459         intel_update_cdclk(dev);
15460
15461         intel_shared_dpll_init(dev);
15462
15463         /* Just disable it once at startup */
15464         i915_disable_vga(dev);
15465         intel_setup_outputs(dev);
15466
15467         drm_modeset_lock_all(dev);
15468         intel_modeset_setup_hw_state(dev);
15469         drm_modeset_unlock_all(dev);
15470
15471         for_each_intel_crtc(dev, crtc) {
15472                 struct intel_initial_plane_config plane_config = {};
15473
15474                 if (!crtc->active)
15475                         continue;
15476
15477                 /*
15478                  * Note that reserving the BIOS fb up front prevents us
15479                  * from stuffing other stolen allocations like the ring
15480                  * on top.  This prevents some ugliness at boot time, and
15481                  * can even allow for smooth boot transitions if the BIOS
15482                  * fb is large enough for the active pipe configuration.
15483                  */
15484                 dev_priv->display.get_initial_plane_config(crtc,
15485                                                            &plane_config);
15486
15487                 /*
15488                  * If the fb is shared between multiple heads, we'll
15489                  * just get the first one.
15490                  */
15491                 intel_find_initial_plane_obj(crtc, &plane_config);
15492         }
15493
15494         /*
15495          * Make sure hardware watermarks really match the state we read out.
15496          * Note that we need to do this after reconstructing the BIOS fb's
15497          * since the watermark calculation done here will use pstate->fb.
15498          */
15499         sanitize_watermarks(dev);
15500 }
15501
15502 static void intel_enable_pipe_a(struct drm_device *dev)
15503 {
15504         struct intel_connector *connector;
15505         struct drm_connector *crt = NULL;
15506         struct intel_load_detect_pipe load_detect_temp;
15507         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15508
15509         /* We can't just switch on the pipe A, we need to set things up with a
15510          * proper mode and output configuration. As a gross hack, enable pipe A
15511          * by enabling the load detect pipe once. */
15512         for_each_intel_connector(dev, connector) {
15513                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15514                         crt = &connector->base;
15515                         break;
15516                 }
15517         }
15518
15519         if (!crt)
15520                 return;
15521
15522         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15523                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15524 }
15525
15526 static bool
15527 intel_check_plane_mapping(struct intel_crtc *crtc)
15528 {
15529         struct drm_device *dev = crtc->base.dev;
15530         struct drm_i915_private *dev_priv = dev->dev_private;
15531         u32 val;
15532
15533         if (INTEL_INFO(dev)->num_pipes == 1)
15534                 return true;
15535
15536         val = I915_READ(DSPCNTR(!crtc->plane));
15537
15538         if ((val & DISPLAY_PLANE_ENABLE) &&
15539             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15540                 return false;
15541
15542         return true;
15543 }
15544
15545 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15546 {
15547         struct drm_device *dev = crtc->base.dev;
15548         struct intel_encoder *encoder;
15549
15550         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15551                 return true;
15552
15553         return false;
15554 }
15555
15556 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15557 {
15558         struct drm_device *dev = encoder->base.dev;
15559         struct intel_connector *connector;
15560
15561         for_each_connector_on_encoder(dev, &encoder->base, connector)
15562                 return true;
15563
15564         return false;
15565 }
15566
15567 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15568 {
15569         struct drm_device *dev = crtc->base.dev;
15570         struct drm_i915_private *dev_priv = dev->dev_private;
15571         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15572
15573         /* Clear any frame start delays used for debugging left by the BIOS */
15574         if (!transcoder_is_dsi(cpu_transcoder)) {
15575                 i915_reg_t reg = PIPECONF(cpu_transcoder);
15576
15577                 I915_WRITE(reg,
15578                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15579         }
15580
15581         /* restore vblank interrupts to correct state */
15582         drm_crtc_vblank_reset(&crtc->base);
15583         if (crtc->active) {
15584                 struct intel_plane *plane;
15585
15586                 drm_crtc_vblank_on(&crtc->base);
15587
15588                 /* Disable everything but the primary plane */
15589                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15590                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15591                                 continue;
15592
15593                         plane->disable_plane(&plane->base, &crtc->base);
15594                 }
15595         }
15596
15597         /* We need to sanitize the plane -> pipe mapping first because this will
15598          * disable the crtc (and hence change the state) if it is wrong. Note
15599          * that gen4+ has a fixed plane -> pipe mapping.  */
15600         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15601                 bool plane;
15602
15603                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15604                               crtc->base.base.id);
15605
15606                 /* Pipe has the wrong plane attached and the plane is active.
15607                  * Temporarily change the plane mapping and disable everything
15608                  * ...  */
15609                 plane = crtc->plane;
15610                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15611                 crtc->plane = !plane;
15612                 intel_crtc_disable_noatomic(&crtc->base);
15613                 crtc->plane = plane;
15614         }
15615
15616         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15617             crtc->pipe == PIPE_A && !crtc->active) {
15618                 /* BIOS forgot to enable pipe A, this mostly happens after
15619                  * resume. Force-enable the pipe to fix this, the update_dpms
15620                  * call below we restore the pipe to the right state, but leave
15621                  * the required bits on. */
15622                 intel_enable_pipe_a(dev);
15623         }
15624
15625         /* Adjust the state of the output pipe according to whether we
15626          * have active connectors/encoders. */
15627         if (crtc->active && !intel_crtc_has_encoders(crtc))
15628                 intel_crtc_disable_noatomic(&crtc->base);
15629
15630         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15631                 /*
15632                  * We start out with underrun reporting disabled to avoid races.
15633                  * For correct bookkeeping mark this on active crtcs.
15634                  *
15635                  * Also on gmch platforms we dont have any hardware bits to
15636                  * disable the underrun reporting. Which means we need to start
15637                  * out with underrun reporting disabled also on inactive pipes,
15638                  * since otherwise we'll complain about the garbage we read when
15639                  * e.g. coming up after runtime pm.
15640                  *
15641                  * No protection against concurrent access is required - at
15642                  * worst a fifo underrun happens which also sets this to false.
15643                  */
15644                 crtc->cpu_fifo_underrun_disabled = true;
15645                 crtc->pch_fifo_underrun_disabled = true;
15646         }
15647 }
15648
15649 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15650 {
15651         struct intel_connector *connector;
15652         struct drm_device *dev = encoder->base.dev;
15653
15654         /* We need to check both for a crtc link (meaning that the
15655          * encoder is active and trying to read from a pipe) and the
15656          * pipe itself being active. */
15657         bool has_active_crtc = encoder->base.crtc &&
15658                 to_intel_crtc(encoder->base.crtc)->active;
15659
15660         if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15661                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15662                               encoder->base.base.id,
15663                               encoder->base.name);
15664
15665                 /* Connector is active, but has no active pipe. This is
15666                  * fallout from our resume register restoring. Disable
15667                  * the encoder manually again. */
15668                 if (encoder->base.crtc) {
15669                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15670                                       encoder->base.base.id,
15671                                       encoder->base.name);
15672                         encoder->disable(encoder);
15673                         if (encoder->post_disable)
15674                                 encoder->post_disable(encoder);
15675                 }
15676                 encoder->base.crtc = NULL;
15677
15678                 /* Inconsistent output/port/pipe state happens presumably due to
15679                  * a bug in one of the get_hw_state functions. Or someplace else
15680                  * in our code, like the register restore mess on resume. Clamp
15681                  * things to off as a safer default. */
15682                 for_each_intel_connector(dev, connector) {
15683                         if (connector->encoder != encoder)
15684                                 continue;
15685                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15686                         connector->base.encoder = NULL;
15687                 }
15688         }
15689         /* Enabled encoders without active connectors will be fixed in
15690          * the crtc fixup. */
15691 }
15692
15693 void i915_redisable_vga_power_on(struct drm_device *dev)
15694 {
15695         struct drm_i915_private *dev_priv = dev->dev_private;
15696         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15697
15698         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15699                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15700                 i915_disable_vga(dev);
15701         }
15702 }
15703
15704 void i915_redisable_vga(struct drm_device *dev)
15705 {
15706         struct drm_i915_private *dev_priv = dev->dev_private;
15707
15708         /* This function can be called both from intel_modeset_setup_hw_state or
15709          * at a very early point in our resume sequence, where the power well
15710          * structures are not yet restored. Since this function is at a very
15711          * paranoid "someone might have enabled VGA while we were not looking"
15712          * level, just check if the power well is enabled instead of trying to
15713          * follow the "don't touch the power well if we don't need it" policy
15714          * the rest of the driver uses. */
15715         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15716                 return;
15717
15718         i915_redisable_vga_power_on(dev);
15719
15720         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15721 }
15722
15723 static bool primary_get_hw_state(struct intel_plane *plane)
15724 {
15725         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15726
15727         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15728 }
15729
15730 /* FIXME read out full plane state for all planes */
15731 static void readout_plane_state(struct intel_crtc *crtc)
15732 {
15733         struct drm_plane *primary = crtc->base.primary;
15734         struct intel_plane_state *plane_state =
15735                 to_intel_plane_state(primary->state);
15736
15737         plane_state->visible = crtc->active &&
15738                 primary_get_hw_state(to_intel_plane(primary));
15739
15740         if (plane_state->visible)
15741                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15742 }
15743
15744 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15745 {
15746         struct drm_i915_private *dev_priv = dev->dev_private;
15747         enum pipe pipe;
15748         struct intel_crtc *crtc;
15749         struct intel_encoder *encoder;
15750         struct intel_connector *connector;
15751         int i;
15752
15753         dev_priv->active_crtcs = 0;
15754
15755         for_each_intel_crtc(dev, crtc) {
15756                 struct intel_crtc_state *crtc_state = crtc->config;
15757                 int pixclk = 0;
15758
15759                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, &crtc_state->base);
15760                 memset(crtc_state, 0, sizeof(*crtc_state));
15761                 crtc_state->base.crtc = &crtc->base;
15762
15763                 crtc_state->base.active = crtc_state->base.enable =
15764                         dev_priv->display.get_pipe_config(crtc, crtc_state);
15765
15766                 crtc->base.enabled = crtc_state->base.enable;
15767                 crtc->active = crtc_state->base.active;
15768
15769                 if (crtc_state->base.active) {
15770                         dev_priv->active_crtcs |= 1 << crtc->pipe;
15771
15772                         if (IS_BROADWELL(dev_priv)) {
15773                                 pixclk = ilk_pipe_pixel_rate(crtc_state);
15774
15775                                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15776                                 if (crtc_state->ips_enabled)
15777                                         pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15778                         } else if (IS_VALLEYVIEW(dev_priv) ||
15779                                    IS_CHERRYVIEW(dev_priv) ||
15780                                    IS_BROXTON(dev_priv))
15781                                 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15782                         else
15783                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15784                 }
15785
15786                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15787
15788                 readout_plane_state(crtc);
15789
15790                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15791                               crtc->base.base.id,
15792                               crtc->active ? "enabled" : "disabled");
15793         }
15794
15795         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15796                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15797
15798                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15799                                                   &pll->config.hw_state);
15800                 pll->config.crtc_mask = 0;
15801                 for_each_intel_crtc(dev, crtc) {
15802                         if (crtc->active && crtc->config->shared_dpll == pll)
15803                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15804                 }
15805                 pll->active_mask = pll->config.crtc_mask;
15806
15807                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15808                               pll->name, pll->config.crtc_mask, pll->on);
15809         }
15810
15811         for_each_intel_encoder(dev, encoder) {
15812                 pipe = 0;
15813
15814                 if (encoder->get_hw_state(encoder, &pipe)) {
15815                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15816                         encoder->base.crtc = &crtc->base;
15817                         encoder->get_config(encoder, crtc->config);
15818                 } else {
15819                         encoder->base.crtc = NULL;
15820                 }
15821
15822                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15823                               encoder->base.base.id,
15824                               encoder->base.name,
15825                               encoder->base.crtc ? "enabled" : "disabled",
15826                               pipe_name(pipe));
15827         }
15828
15829         for_each_intel_connector(dev, connector) {
15830                 if (connector->get_hw_state(connector)) {
15831                         connector->base.dpms = DRM_MODE_DPMS_ON;
15832
15833                         encoder = connector->encoder;
15834                         connector->base.encoder = &encoder->base;
15835
15836                         if (encoder->base.crtc &&
15837                             encoder->base.crtc->state->active) {
15838                                 /*
15839                                  * This has to be done during hardware readout
15840                                  * because anything calling .crtc_disable may
15841                                  * rely on the connector_mask being accurate.
15842                                  */
15843                                 encoder->base.crtc->state->connector_mask |=
15844                                         1 << drm_connector_index(&connector->base);
15845                                 encoder->base.crtc->state->encoder_mask |=
15846                                         1 << drm_encoder_index(&encoder->base);
15847                         }
15848
15849                 } else {
15850                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15851                         connector->base.encoder = NULL;
15852                 }
15853                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15854                               connector->base.base.id,
15855                               connector->base.name,
15856                               connector->base.encoder ? "enabled" : "disabled");
15857         }
15858
15859         for_each_intel_crtc(dev, crtc) {
15860                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15861
15862                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15863                 if (crtc->base.state->active) {
15864                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15865                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15866                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15867
15868                         /*
15869                          * The initial mode needs to be set in order to keep
15870                          * the atomic core happy. It wants a valid mode if the
15871                          * crtc's enabled, so we do the above call.
15872                          *
15873                          * At this point some state updated by the connectors
15874                          * in their ->detect() callback has not run yet, so
15875                          * no recalculation can be done yet.
15876                          *
15877                          * Even if we could do a recalculation and modeset
15878                          * right now it would cause a double modeset if
15879                          * fbdev or userspace chooses a different initial mode.
15880                          *
15881                          * If that happens, someone indicated they wanted a
15882                          * mode change, which means it's safe to do a full
15883                          * recalculation.
15884                          */
15885                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15886
15887                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15888                         update_scanline_offset(crtc);
15889                 }
15890
15891                 intel_pipe_config_sanity_check(dev_priv, crtc->config);
15892         }
15893 }
15894
15895 /* Scan out the current hw modeset state,
15896  * and sanitizes it to the current state
15897  */
15898 static void
15899 intel_modeset_setup_hw_state(struct drm_device *dev)
15900 {
15901         struct drm_i915_private *dev_priv = dev->dev_private;
15902         enum pipe pipe;
15903         struct intel_crtc *crtc;
15904         struct intel_encoder *encoder;
15905         int i;
15906
15907         intel_modeset_readout_hw_state(dev);
15908
15909         /* HW state is read out, now we need to sanitize this mess. */
15910         for_each_intel_encoder(dev, encoder) {
15911                 intel_sanitize_encoder(encoder);
15912         }
15913
15914         for_each_pipe(dev_priv, pipe) {
15915                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15916                 intel_sanitize_crtc(crtc);
15917                 intel_dump_pipe_config(crtc, crtc->config,
15918                                        "[setup_hw_state]");
15919         }
15920
15921         intel_modeset_update_connector_atomic_state(dev);
15922
15923         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15924                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15925
15926                 if (!pll->on || pll->active_mask)
15927                         continue;
15928
15929                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15930
15931                 pll->funcs.disable(dev_priv, pll);
15932                 pll->on = false;
15933         }
15934
15935         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
15936                 vlv_wm_get_hw_state(dev);
15937         else if (IS_GEN9(dev))
15938                 skl_wm_get_hw_state(dev);
15939         else if (HAS_PCH_SPLIT(dev))
15940                 ilk_wm_get_hw_state(dev);
15941
15942         for_each_intel_crtc(dev, crtc) {
15943                 unsigned long put_domains;
15944
15945                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15946                 if (WARN_ON(put_domains))
15947                         modeset_put_power_domains(dev_priv, put_domains);
15948         }
15949         intel_display_set_init_power(dev_priv, false);
15950
15951         intel_fbc_init_pipe_state(dev_priv);
15952 }
15953
15954 void intel_display_resume(struct drm_device *dev)
15955 {
15956         struct drm_i915_private *dev_priv = to_i915(dev);
15957         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15958         struct drm_modeset_acquire_ctx ctx;
15959         int ret;
15960         bool setup = false;
15961
15962         dev_priv->modeset_restore_state = NULL;
15963
15964         /*
15965          * This is a cludge because with real atomic modeset mode_config.mutex
15966          * won't be taken. Unfortunately some probed state like
15967          * audio_codec_enable is still protected by mode_config.mutex, so lock
15968          * it here for now.
15969          */
15970         mutex_lock(&dev->mode_config.mutex);
15971         drm_modeset_acquire_init(&ctx, 0);
15972
15973 retry:
15974         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15975
15976         if (ret == 0 && !setup) {
15977                 setup = true;
15978
15979                 intel_modeset_setup_hw_state(dev);
15980                 i915_redisable_vga(dev);
15981         }
15982
15983         if (ret == 0 && state) {
15984                 struct drm_crtc_state *crtc_state;
15985                 struct drm_crtc *crtc;
15986                 int i;
15987
15988                 state->acquire_ctx = &ctx;
15989
15990                 for_each_crtc_in_state(state, crtc, crtc_state, i) {
15991                         /*
15992                          * Force recalculation even if we restore
15993                          * current state. With fast modeset this may not result
15994                          * in a modeset when the state is compatible.
15995                          */
15996                         crtc_state->mode_changed = true;
15997                 }
15998
15999                 ret = drm_atomic_commit(state);
16000         }
16001
16002         if (ret == -EDEADLK) {
16003                 drm_modeset_backoff(&ctx);
16004                 goto retry;
16005         }
16006
16007         drm_modeset_drop_locks(&ctx);
16008         drm_modeset_acquire_fini(&ctx);
16009         mutex_unlock(&dev->mode_config.mutex);
16010
16011         if (ret) {
16012                 DRM_ERROR("Restoring old state failed with %i\n", ret);
16013                 drm_atomic_state_free(state);
16014         }
16015 }
16016
16017 void intel_modeset_gem_init(struct drm_device *dev)
16018 {
16019         struct drm_crtc *c;
16020         struct drm_i915_gem_object *obj;
16021         int ret;
16022
16023         intel_init_gt_powersave(dev);
16024
16025         intel_modeset_init_hw(dev);
16026
16027         intel_setup_overlay(dev);
16028
16029         /*
16030          * Make sure any fbs we allocated at startup are properly
16031          * pinned & fenced.  When we do the allocation it's too early
16032          * for this.
16033          */
16034         for_each_crtc(dev, c) {
16035                 obj = intel_fb_obj(c->primary->fb);
16036                 if (obj == NULL)
16037                         continue;
16038
16039                 mutex_lock(&dev->struct_mutex);
16040                 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
16041                                                  c->primary->state->rotation);
16042                 mutex_unlock(&dev->struct_mutex);
16043                 if (ret) {
16044                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
16045                                   to_intel_crtc(c)->pipe);
16046                         drm_framebuffer_unreference(c->primary->fb);
16047                         c->primary->fb = NULL;
16048                         c->primary->crtc = c->primary->state->crtc = NULL;
16049                         update_state_fb(c->primary);
16050                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16051                 }
16052         }
16053
16054         intel_backlight_register(dev);
16055 }
16056
16057 void intel_connector_unregister(struct intel_connector *intel_connector)
16058 {
16059         struct drm_connector *connector = &intel_connector->base;
16060
16061         intel_panel_destroy_backlight(connector);
16062         drm_connector_unregister(connector);
16063 }
16064
16065 void intel_modeset_cleanup(struct drm_device *dev)
16066 {
16067         struct drm_i915_private *dev_priv = dev->dev_private;
16068         struct intel_connector *connector;
16069
16070         intel_disable_gt_powersave(dev);
16071
16072         intel_backlight_unregister(dev);
16073
16074         /*
16075          * Interrupts and polling as the first thing to avoid creating havoc.
16076          * Too much stuff here (turning of connectors, ...) would
16077          * experience fancy races otherwise.
16078          */
16079         intel_irq_uninstall(dev_priv);
16080
16081         /*
16082          * Due to the hpd irq storm handling the hotplug work can re-arm the
16083          * poll handlers. Hence disable polling after hpd handling is shut down.
16084          */
16085         drm_kms_helper_poll_fini(dev);
16086
16087         intel_unregister_dsm_handler();
16088
16089         intel_fbc_global_disable(dev_priv);
16090
16091         /* flush any delayed tasks or pending work */
16092         flush_scheduled_work();
16093
16094         /* destroy the backlight and sysfs files before encoders/connectors */
16095         for_each_intel_connector(dev, connector)
16096                 connector->unregister(connector);
16097
16098         drm_mode_config_cleanup(dev);
16099
16100         intel_cleanup_overlay(dev);
16101
16102         intel_cleanup_gt_powersave(dev);
16103
16104         intel_teardown_gmbus(dev);
16105 }
16106
16107 /*
16108  * Return which encoder is currently attached for connector.
16109  */
16110 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
16111 {
16112         return &intel_attached_encoder(connector)->base;
16113 }
16114
16115 void intel_connector_attach_encoder(struct intel_connector *connector,
16116                                     struct intel_encoder *encoder)
16117 {
16118         connector->encoder = encoder;
16119         drm_mode_connector_attach_encoder(&connector->base,
16120                                           &encoder->base);
16121 }
16122
16123 /*
16124  * set vga decode state - true == enable VGA decode
16125  */
16126 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16127 {
16128         struct drm_i915_private *dev_priv = dev->dev_private;
16129         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16130         u16 gmch_ctrl;
16131
16132         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16133                 DRM_ERROR("failed to read control word\n");
16134                 return -EIO;
16135         }
16136
16137         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16138                 return 0;
16139
16140         if (state)
16141                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16142         else
16143                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16144
16145         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16146                 DRM_ERROR("failed to write control word\n");
16147                 return -EIO;
16148         }
16149
16150         return 0;
16151 }
16152
16153 struct intel_display_error_state {
16154
16155         u32 power_well_driver;
16156
16157         int num_transcoders;
16158
16159         struct intel_cursor_error_state {
16160                 u32 control;
16161                 u32 position;
16162                 u32 base;
16163                 u32 size;
16164         } cursor[I915_MAX_PIPES];
16165
16166         struct intel_pipe_error_state {
16167                 bool power_domain_on;
16168                 u32 source;
16169                 u32 stat;
16170         } pipe[I915_MAX_PIPES];
16171
16172         struct intel_plane_error_state {
16173                 u32 control;
16174                 u32 stride;
16175                 u32 size;
16176                 u32 pos;
16177                 u32 addr;
16178                 u32 surface;
16179                 u32 tile_offset;
16180         } plane[I915_MAX_PIPES];
16181
16182         struct intel_transcoder_error_state {
16183                 bool power_domain_on;
16184                 enum transcoder cpu_transcoder;
16185
16186                 u32 conf;
16187
16188                 u32 htotal;
16189                 u32 hblank;
16190                 u32 hsync;
16191                 u32 vtotal;
16192                 u32 vblank;
16193                 u32 vsync;
16194         } transcoder[4];
16195 };
16196
16197 struct intel_display_error_state *
16198 intel_display_capture_error_state(struct drm_device *dev)
16199 {
16200         struct drm_i915_private *dev_priv = dev->dev_private;
16201         struct intel_display_error_state *error;
16202         int transcoders[] = {
16203                 TRANSCODER_A,
16204                 TRANSCODER_B,
16205                 TRANSCODER_C,
16206                 TRANSCODER_EDP,
16207         };
16208         int i;
16209
16210         if (INTEL_INFO(dev)->num_pipes == 0)
16211                 return NULL;
16212
16213         error = kzalloc(sizeof(*error), GFP_ATOMIC);
16214         if (error == NULL)
16215                 return NULL;
16216
16217         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16218                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16219
16220         for_each_pipe(dev_priv, i) {
16221                 error->pipe[i].power_domain_on =
16222                         __intel_display_power_is_enabled(dev_priv,
16223                                                          POWER_DOMAIN_PIPE(i));
16224                 if (!error->pipe[i].power_domain_on)
16225                         continue;
16226
16227                 error->cursor[i].control = I915_READ(CURCNTR(i));
16228                 error->cursor[i].position = I915_READ(CURPOS(i));
16229                 error->cursor[i].base = I915_READ(CURBASE(i));
16230
16231                 error->plane[i].control = I915_READ(DSPCNTR(i));
16232                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16233                 if (INTEL_INFO(dev)->gen <= 3) {
16234                         error->plane[i].size = I915_READ(DSPSIZE(i));
16235                         error->plane[i].pos = I915_READ(DSPPOS(i));
16236                 }
16237                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16238                         error->plane[i].addr = I915_READ(DSPADDR(i));
16239                 if (INTEL_INFO(dev)->gen >= 4) {
16240                         error->plane[i].surface = I915_READ(DSPSURF(i));
16241                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16242                 }
16243
16244                 error->pipe[i].source = I915_READ(PIPESRC(i));
16245
16246                 if (HAS_GMCH_DISPLAY(dev))
16247                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
16248         }
16249
16250         /* Note: this does not include DSI transcoders. */
16251         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
16252         if (HAS_DDI(dev_priv))
16253                 error->num_transcoders++; /* Account for eDP. */
16254
16255         for (i = 0; i < error->num_transcoders; i++) {
16256                 enum transcoder cpu_transcoder = transcoders[i];
16257
16258                 error->transcoder[i].power_domain_on =
16259                         __intel_display_power_is_enabled(dev_priv,
16260                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16261                 if (!error->transcoder[i].power_domain_on)
16262                         continue;
16263
16264                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16265
16266                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16267                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16268                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16269                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16270                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16271                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16272                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16273         }
16274
16275         return error;
16276 }
16277
16278 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16279
16280 void
16281 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16282                                 struct drm_device *dev,
16283                                 struct intel_display_error_state *error)
16284 {
16285         struct drm_i915_private *dev_priv = dev->dev_private;
16286         int i;
16287
16288         if (!error)
16289                 return;
16290
16291         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16292         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16293                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16294                            error->power_well_driver);
16295         for_each_pipe(dev_priv, i) {
16296                 err_printf(m, "Pipe [%d]:\n", i);
16297                 err_printf(m, "  Power: %s\n",
16298                            onoff(error->pipe[i].power_domain_on));
16299                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16300                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16301
16302                 err_printf(m, "Plane [%d]:\n", i);
16303                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16304                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16305                 if (INTEL_INFO(dev)->gen <= 3) {
16306                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16307                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16308                 }
16309                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16310                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16311                 if (INTEL_INFO(dev)->gen >= 4) {
16312                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16313                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16314                 }
16315
16316                 err_printf(m, "Cursor [%d]:\n", i);
16317                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16318                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16319                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16320         }
16321
16322         for (i = 0; i < error->num_transcoders; i++) {
16323                 err_printf(m, "CPU transcoder: %s\n",
16324                            transcoder_name(error->transcoder[i].cpu_transcoder));
16325                 err_printf(m, "  Power: %s\n",
16326                            onoff(error->transcoder[i].power_domain_on));
16327                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16328                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16329                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16330                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16331                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16332                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16333                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16334         }
16335 }