drm/i915: Wait until after wm optimization to drop runtime PM reference
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47 #include <linux/reservation.h>
48 #include <linux/dma-buf.h>
49
50 /* Primary plane formats for gen <= 3 */
51 static const uint32_t i8xx_primary_formats[] = {
52         DRM_FORMAT_C8,
53         DRM_FORMAT_RGB565,
54         DRM_FORMAT_XRGB1555,
55         DRM_FORMAT_XRGB8888,
56 };
57
58 /* Primary plane formats for gen >= 4 */
59 static const uint32_t i965_primary_formats[] = {
60         DRM_FORMAT_C8,
61         DRM_FORMAT_RGB565,
62         DRM_FORMAT_XRGB8888,
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_XRGB2101010,
65         DRM_FORMAT_XBGR2101010,
66 };
67
68 static const uint32_t skl_primary_formats[] = {
69         DRM_FORMAT_C8,
70         DRM_FORMAT_RGB565,
71         DRM_FORMAT_XRGB8888,
72         DRM_FORMAT_XBGR8888,
73         DRM_FORMAT_ARGB8888,
74         DRM_FORMAT_ABGR8888,
75         DRM_FORMAT_XRGB2101010,
76         DRM_FORMAT_XBGR2101010,
77         DRM_FORMAT_YUYV,
78         DRM_FORMAT_YVYU,
79         DRM_FORMAT_UYVY,
80         DRM_FORMAT_VYUY,
81 };
82
83 /* Cursor formats */
84 static const uint32_t intel_cursor_formats[] = {
85         DRM_FORMAT_ARGB8888,
86 };
87
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89                                 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91                                    struct intel_crtc_state *pipe_config);
92
93 static int intel_framebuffer_init(struct drm_device *dev,
94                                   struct intel_framebuffer *ifb,
95                                   struct drm_mode_fb_cmd2 *mode_cmd,
96                                   struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
100 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
101                                          struct intel_link_m_n *m_n,
102                                          struct intel_link_m_n *m2_n2);
103 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
104 static void haswell_set_pipeconf(struct drm_crtc *crtc);
105 static void haswell_set_pipemisc(struct drm_crtc *crtc);
106 static void vlv_prepare_pll(struct intel_crtc *crtc,
107                             const struct intel_crtc_state *pipe_config);
108 static void chv_prepare_pll(struct intel_crtc *crtc,
109                             const struct intel_crtc_state *pipe_config);
110 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
112 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
113         struct intel_crtc_state *crtc_state);
114 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
115                            int num_connectors);
116 static void skylake_pfit_enable(struct intel_crtc *crtc);
117 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
118 static void ironlake_pfit_enable(struct intel_crtc *crtc);
119 static void intel_modeset_setup_hw_state(struct drm_device *dev);
120 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
121
122 typedef struct {
123         int     min, max;
124 } intel_range_t;
125
126 typedef struct {
127         int     dot_limit;
128         int     p2_slow, p2_fast;
129 } intel_p2_t;
130
131 typedef struct intel_limit intel_limit_t;
132 struct intel_limit {
133         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
134         intel_p2_t          p2;
135 };
136
137 /* returns HPLL frequency in kHz */
138 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
139 {
140         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
141
142         /* Obtain SKU information */
143         mutex_lock(&dev_priv->sb_lock);
144         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
145                 CCK_FUSE_HPLL_FREQ_MASK;
146         mutex_unlock(&dev_priv->sb_lock);
147
148         return vco_freq[hpll_freq] * 1000;
149 }
150
151 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
152                                   const char *name, u32 reg)
153 {
154         u32 val;
155         int divider;
156
157         if (dev_priv->hpll_freq == 0)
158                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
159
160         mutex_lock(&dev_priv->sb_lock);
161         val = vlv_cck_read(dev_priv, reg);
162         mutex_unlock(&dev_priv->sb_lock);
163
164         divider = val & CCK_FREQUENCY_VALUES;
165
166         WARN((val & CCK_FREQUENCY_STATUS) !=
167              (divider << CCK_FREQUENCY_STATUS_SHIFT),
168              "%s change in progress\n", name);
169
170         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
171 }
172
173 static int
174 intel_pch_rawclk(struct drm_i915_private *dev_priv)
175 {
176         return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
177 }
178
179 static int
180 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
181 {
182         return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
183                                       CCK_DISPLAY_REF_CLOCK_CONTROL);
184 }
185
186 static int
187 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
188 {
189         uint32_t clkcfg;
190
191         /* hrawclock is 1/4 the FSB frequency */
192         clkcfg = I915_READ(CLKCFG);
193         switch (clkcfg & CLKCFG_FSB_MASK) {
194         case CLKCFG_FSB_400:
195                 return 100000;
196         case CLKCFG_FSB_533:
197                 return 133333;
198         case CLKCFG_FSB_667:
199                 return 166667;
200         case CLKCFG_FSB_800:
201                 return 200000;
202         case CLKCFG_FSB_1067:
203                 return 266667;
204         case CLKCFG_FSB_1333:
205                 return 333333;
206         /* these two are just a guess; one of them might be right */
207         case CLKCFG_FSB_1600:
208         case CLKCFG_FSB_1600_ALT:
209                 return 400000;
210         default:
211                 return 133333;
212         }
213 }
214
215 static void intel_update_rawclk(struct drm_i915_private *dev_priv)
216 {
217         if (HAS_PCH_SPLIT(dev_priv))
218                 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
219         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
220                 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
221         else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
222                 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
223         else
224                 return; /* no rawclk on other platforms, or no need to know it */
225
226         DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
227 }
228
229 static void intel_update_czclk(struct drm_i915_private *dev_priv)
230 {
231         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
232                 return;
233
234         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
235                                                       CCK_CZ_CLOCK_CONTROL);
236
237         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
238 }
239
240 static inline u32 /* units of 100MHz */
241 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
242                     const struct intel_crtc_state *pipe_config)
243 {
244         if (HAS_DDI(dev_priv))
245                 return pipe_config->port_clock; /* SPLL */
246         else if (IS_GEN5(dev_priv))
247                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
248         else
249                 return 270000;
250 }
251
252 static const intel_limit_t intel_limits_i8xx_dac = {
253         .dot = { .min = 25000, .max = 350000 },
254         .vco = { .min = 908000, .max = 1512000 },
255         .n = { .min = 2, .max = 16 },
256         .m = { .min = 96, .max = 140 },
257         .m1 = { .min = 18, .max = 26 },
258         .m2 = { .min = 6, .max = 16 },
259         .p = { .min = 4, .max = 128 },
260         .p1 = { .min = 2, .max = 33 },
261         .p2 = { .dot_limit = 165000,
262                 .p2_slow = 4, .p2_fast = 2 },
263 };
264
265 static const intel_limit_t intel_limits_i8xx_dvo = {
266         .dot = { .min = 25000, .max = 350000 },
267         .vco = { .min = 908000, .max = 1512000 },
268         .n = { .min = 2, .max = 16 },
269         .m = { .min = 96, .max = 140 },
270         .m1 = { .min = 18, .max = 26 },
271         .m2 = { .min = 6, .max = 16 },
272         .p = { .min = 4, .max = 128 },
273         .p1 = { .min = 2, .max = 33 },
274         .p2 = { .dot_limit = 165000,
275                 .p2_slow = 4, .p2_fast = 4 },
276 };
277
278 static const intel_limit_t intel_limits_i8xx_lvds = {
279         .dot = { .min = 25000, .max = 350000 },
280         .vco = { .min = 908000, .max = 1512000 },
281         .n = { .min = 2, .max = 16 },
282         .m = { .min = 96, .max = 140 },
283         .m1 = { .min = 18, .max = 26 },
284         .m2 = { .min = 6, .max = 16 },
285         .p = { .min = 4, .max = 128 },
286         .p1 = { .min = 1, .max = 6 },
287         .p2 = { .dot_limit = 165000,
288                 .p2_slow = 14, .p2_fast = 7 },
289 };
290
291 static const intel_limit_t intel_limits_i9xx_sdvo = {
292         .dot = { .min = 20000, .max = 400000 },
293         .vco = { .min = 1400000, .max = 2800000 },
294         .n = { .min = 1, .max = 6 },
295         .m = { .min = 70, .max = 120 },
296         .m1 = { .min = 8, .max = 18 },
297         .m2 = { .min = 3, .max = 7 },
298         .p = { .min = 5, .max = 80 },
299         .p1 = { .min = 1, .max = 8 },
300         .p2 = { .dot_limit = 200000,
301                 .p2_slow = 10, .p2_fast = 5 },
302 };
303
304 static const intel_limit_t intel_limits_i9xx_lvds = {
305         .dot = { .min = 20000, .max = 400000 },
306         .vco = { .min = 1400000, .max = 2800000 },
307         .n = { .min = 1, .max = 6 },
308         .m = { .min = 70, .max = 120 },
309         .m1 = { .min = 8, .max = 18 },
310         .m2 = { .min = 3, .max = 7 },
311         .p = { .min = 7, .max = 98 },
312         .p1 = { .min = 1, .max = 8 },
313         .p2 = { .dot_limit = 112000,
314                 .p2_slow = 14, .p2_fast = 7 },
315 };
316
317
318 static const intel_limit_t intel_limits_g4x_sdvo = {
319         .dot = { .min = 25000, .max = 270000 },
320         .vco = { .min = 1750000, .max = 3500000},
321         .n = { .min = 1, .max = 4 },
322         .m = { .min = 104, .max = 138 },
323         .m1 = { .min = 17, .max = 23 },
324         .m2 = { .min = 5, .max = 11 },
325         .p = { .min = 10, .max = 30 },
326         .p1 = { .min = 1, .max = 3},
327         .p2 = { .dot_limit = 270000,
328                 .p2_slow = 10,
329                 .p2_fast = 10
330         },
331 };
332
333 static const intel_limit_t intel_limits_g4x_hdmi = {
334         .dot = { .min = 22000, .max = 400000 },
335         .vco = { .min = 1750000, .max = 3500000},
336         .n = { .min = 1, .max = 4 },
337         .m = { .min = 104, .max = 138 },
338         .m1 = { .min = 16, .max = 23 },
339         .m2 = { .min = 5, .max = 11 },
340         .p = { .min = 5, .max = 80 },
341         .p1 = { .min = 1, .max = 8},
342         .p2 = { .dot_limit = 165000,
343                 .p2_slow = 10, .p2_fast = 5 },
344 };
345
346 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
347         .dot = { .min = 20000, .max = 115000 },
348         .vco = { .min = 1750000, .max = 3500000 },
349         .n = { .min = 1, .max = 3 },
350         .m = { .min = 104, .max = 138 },
351         .m1 = { .min = 17, .max = 23 },
352         .m2 = { .min = 5, .max = 11 },
353         .p = { .min = 28, .max = 112 },
354         .p1 = { .min = 2, .max = 8 },
355         .p2 = { .dot_limit = 0,
356                 .p2_slow = 14, .p2_fast = 14
357         },
358 };
359
360 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
361         .dot = { .min = 80000, .max = 224000 },
362         .vco = { .min = 1750000, .max = 3500000 },
363         .n = { .min = 1, .max = 3 },
364         .m = { .min = 104, .max = 138 },
365         .m1 = { .min = 17, .max = 23 },
366         .m2 = { .min = 5, .max = 11 },
367         .p = { .min = 14, .max = 42 },
368         .p1 = { .min = 2, .max = 6 },
369         .p2 = { .dot_limit = 0,
370                 .p2_slow = 7, .p2_fast = 7
371         },
372 };
373
374 static const intel_limit_t intel_limits_pineview_sdvo = {
375         .dot = { .min = 20000, .max = 400000},
376         .vco = { .min = 1700000, .max = 3500000 },
377         /* Pineview's Ncounter is a ring counter */
378         .n = { .min = 3, .max = 6 },
379         .m = { .min = 2, .max = 256 },
380         /* Pineview only has one combined m divider, which we treat as m2. */
381         .m1 = { .min = 0, .max = 0 },
382         .m2 = { .min = 0, .max = 254 },
383         .p = { .min = 5, .max = 80 },
384         .p1 = { .min = 1, .max = 8 },
385         .p2 = { .dot_limit = 200000,
386                 .p2_slow = 10, .p2_fast = 5 },
387 };
388
389 static const intel_limit_t intel_limits_pineview_lvds = {
390         .dot = { .min = 20000, .max = 400000 },
391         .vco = { .min = 1700000, .max = 3500000 },
392         .n = { .min = 3, .max = 6 },
393         .m = { .min = 2, .max = 256 },
394         .m1 = { .min = 0, .max = 0 },
395         .m2 = { .min = 0, .max = 254 },
396         .p = { .min = 7, .max = 112 },
397         .p1 = { .min = 1, .max = 8 },
398         .p2 = { .dot_limit = 112000,
399                 .p2_slow = 14, .p2_fast = 14 },
400 };
401
402 /* Ironlake / Sandybridge
403  *
404  * We calculate clock using (register_value + 2) for N/M1/M2, so here
405  * the range value for them is (actual_value - 2).
406  */
407 static const intel_limit_t intel_limits_ironlake_dac = {
408         .dot = { .min = 25000, .max = 350000 },
409         .vco = { .min = 1760000, .max = 3510000 },
410         .n = { .min = 1, .max = 5 },
411         .m = { .min = 79, .max = 127 },
412         .m1 = { .min = 12, .max = 22 },
413         .m2 = { .min = 5, .max = 9 },
414         .p = { .min = 5, .max = 80 },
415         .p1 = { .min = 1, .max = 8 },
416         .p2 = { .dot_limit = 225000,
417                 .p2_slow = 10, .p2_fast = 5 },
418 };
419
420 static const intel_limit_t intel_limits_ironlake_single_lvds = {
421         .dot = { .min = 25000, .max = 350000 },
422         .vco = { .min = 1760000, .max = 3510000 },
423         .n = { .min = 1, .max = 3 },
424         .m = { .min = 79, .max = 118 },
425         .m1 = { .min = 12, .max = 22 },
426         .m2 = { .min = 5, .max = 9 },
427         .p = { .min = 28, .max = 112 },
428         .p1 = { .min = 2, .max = 8 },
429         .p2 = { .dot_limit = 225000,
430                 .p2_slow = 14, .p2_fast = 14 },
431 };
432
433 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
434         .dot = { .min = 25000, .max = 350000 },
435         .vco = { .min = 1760000, .max = 3510000 },
436         .n = { .min = 1, .max = 3 },
437         .m = { .min = 79, .max = 127 },
438         .m1 = { .min = 12, .max = 22 },
439         .m2 = { .min = 5, .max = 9 },
440         .p = { .min = 14, .max = 56 },
441         .p1 = { .min = 2, .max = 8 },
442         .p2 = { .dot_limit = 225000,
443                 .p2_slow = 7, .p2_fast = 7 },
444 };
445
446 /* LVDS 100mhz refclk limits. */
447 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
448         .dot = { .min = 25000, .max = 350000 },
449         .vco = { .min = 1760000, .max = 3510000 },
450         .n = { .min = 1, .max = 2 },
451         .m = { .min = 79, .max = 126 },
452         .m1 = { .min = 12, .max = 22 },
453         .m2 = { .min = 5, .max = 9 },
454         .p = { .min = 28, .max = 112 },
455         .p1 = { .min = 2, .max = 8 },
456         .p2 = { .dot_limit = 225000,
457                 .p2_slow = 14, .p2_fast = 14 },
458 };
459
460 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
461         .dot = { .min = 25000, .max = 350000 },
462         .vco = { .min = 1760000, .max = 3510000 },
463         .n = { .min = 1, .max = 3 },
464         .m = { .min = 79, .max = 126 },
465         .m1 = { .min = 12, .max = 22 },
466         .m2 = { .min = 5, .max = 9 },
467         .p = { .min = 14, .max = 42 },
468         .p1 = { .min = 2, .max = 6 },
469         .p2 = { .dot_limit = 225000,
470                 .p2_slow = 7, .p2_fast = 7 },
471 };
472
473 static const intel_limit_t intel_limits_vlv = {
474          /*
475           * These are the data rate limits (measured in fast clocks)
476           * since those are the strictest limits we have. The fast
477           * clock and actual rate limits are more relaxed, so checking
478           * them would make no difference.
479           */
480         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
481         .vco = { .min = 4000000, .max = 6000000 },
482         .n = { .min = 1, .max = 7 },
483         .m1 = { .min = 2, .max = 3 },
484         .m2 = { .min = 11, .max = 156 },
485         .p1 = { .min = 2, .max = 3 },
486         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
487 };
488
489 static const intel_limit_t intel_limits_chv = {
490         /*
491          * These are the data rate limits (measured in fast clocks)
492          * since those are the strictest limits we have.  The fast
493          * clock and actual rate limits are more relaxed, so checking
494          * them would make no difference.
495          */
496         .dot = { .min = 25000 * 5, .max = 540000 * 5},
497         .vco = { .min = 4800000, .max = 6480000 },
498         .n = { .min = 1, .max = 1 },
499         .m1 = { .min = 2, .max = 2 },
500         .m2 = { .min = 24 << 22, .max = 175 << 22 },
501         .p1 = { .min = 2, .max = 4 },
502         .p2 = { .p2_slow = 1, .p2_fast = 14 },
503 };
504
505 static const intel_limit_t intel_limits_bxt = {
506         /* FIXME: find real dot limits */
507         .dot = { .min = 0, .max = INT_MAX },
508         .vco = { .min = 4800000, .max = 6700000 },
509         .n = { .min = 1, .max = 1 },
510         .m1 = { .min = 2, .max = 2 },
511         /* FIXME: find real m2 limits */
512         .m2 = { .min = 2 << 22, .max = 255 << 22 },
513         .p1 = { .min = 2, .max = 4 },
514         .p2 = { .p2_slow = 1, .p2_fast = 20 },
515 };
516
517 static bool
518 needs_modeset(struct drm_crtc_state *state)
519 {
520         return drm_atomic_crtc_needs_modeset(state);
521 }
522
523 /**
524  * Returns whether any output on the specified pipe is of the specified type
525  */
526 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
527 {
528         struct drm_device *dev = crtc->base.dev;
529         struct intel_encoder *encoder;
530
531         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
532                 if (encoder->type == type)
533                         return true;
534
535         return false;
536 }
537
538 /**
539  * Returns whether any output on the specified pipe will have the specified
540  * type after a staged modeset is complete, i.e., the same as
541  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
542  * encoder->crtc.
543  */
544 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
545                                       int type)
546 {
547         struct drm_atomic_state *state = crtc_state->base.state;
548         struct drm_connector *connector;
549         struct drm_connector_state *connector_state;
550         struct intel_encoder *encoder;
551         int i, num_connectors = 0;
552
553         for_each_connector_in_state(state, connector, connector_state, i) {
554                 if (connector_state->crtc != crtc_state->base.crtc)
555                         continue;
556
557                 num_connectors++;
558
559                 encoder = to_intel_encoder(connector_state->best_encoder);
560                 if (encoder->type == type)
561                         return true;
562         }
563
564         WARN_ON(num_connectors == 0);
565
566         return false;
567 }
568
569 static const intel_limit_t *
570 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
571 {
572         struct drm_device *dev = crtc_state->base.crtc->dev;
573         const intel_limit_t *limit;
574
575         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
576                 if (intel_is_dual_link_lvds(dev)) {
577                         if (refclk == 100000)
578                                 limit = &intel_limits_ironlake_dual_lvds_100m;
579                         else
580                                 limit = &intel_limits_ironlake_dual_lvds;
581                 } else {
582                         if (refclk == 100000)
583                                 limit = &intel_limits_ironlake_single_lvds_100m;
584                         else
585                                 limit = &intel_limits_ironlake_single_lvds;
586                 }
587         } else
588                 limit = &intel_limits_ironlake_dac;
589
590         return limit;
591 }
592
593 static const intel_limit_t *
594 intel_g4x_limit(struct intel_crtc_state *crtc_state)
595 {
596         struct drm_device *dev = crtc_state->base.crtc->dev;
597         const intel_limit_t *limit;
598
599         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
600                 if (intel_is_dual_link_lvds(dev))
601                         limit = &intel_limits_g4x_dual_channel_lvds;
602                 else
603                         limit = &intel_limits_g4x_single_channel_lvds;
604         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
605                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
606                 limit = &intel_limits_g4x_hdmi;
607         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
608                 limit = &intel_limits_g4x_sdvo;
609         } else /* The option is for other outputs */
610                 limit = &intel_limits_i9xx_sdvo;
611
612         return limit;
613 }
614
615 static const intel_limit_t *
616 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
617 {
618         struct drm_device *dev = crtc_state->base.crtc->dev;
619         const intel_limit_t *limit;
620
621         if (IS_BROXTON(dev))
622                 limit = &intel_limits_bxt;
623         else if (HAS_PCH_SPLIT(dev))
624                 limit = intel_ironlake_limit(crtc_state, refclk);
625         else if (IS_G4X(dev)) {
626                 limit = intel_g4x_limit(crtc_state);
627         } else if (IS_PINEVIEW(dev)) {
628                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
629                         limit = &intel_limits_pineview_lvds;
630                 else
631                         limit = &intel_limits_pineview_sdvo;
632         } else if (IS_CHERRYVIEW(dev)) {
633                 limit = &intel_limits_chv;
634         } else if (IS_VALLEYVIEW(dev)) {
635                 limit = &intel_limits_vlv;
636         } else if (!IS_GEN2(dev)) {
637                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
638                         limit = &intel_limits_i9xx_lvds;
639                 else
640                         limit = &intel_limits_i9xx_sdvo;
641         } else {
642                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
643                         limit = &intel_limits_i8xx_lvds;
644                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
645                         limit = &intel_limits_i8xx_dvo;
646                 else
647                         limit = &intel_limits_i8xx_dac;
648         }
649         return limit;
650 }
651
652 /*
653  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
654  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
655  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
656  * The helpers' return value is the rate of the clock that is fed to the
657  * display engine's pipe which can be the above fast dot clock rate or a
658  * divided-down version of it.
659  */
660 /* m1 is reserved as 0 in Pineview, n is a ring counter */
661 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
662 {
663         clock->m = clock->m2 + 2;
664         clock->p = clock->p1 * clock->p2;
665         if (WARN_ON(clock->n == 0 || clock->p == 0))
666                 return 0;
667         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
668         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
669
670         return clock->dot;
671 }
672
673 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
674 {
675         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
676 }
677
678 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
679 {
680         clock->m = i9xx_dpll_compute_m(clock);
681         clock->p = clock->p1 * clock->p2;
682         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
683                 return 0;
684         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
685         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
686
687         return clock->dot;
688 }
689
690 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
691 {
692         clock->m = clock->m1 * clock->m2;
693         clock->p = clock->p1 * clock->p2;
694         if (WARN_ON(clock->n == 0 || clock->p == 0))
695                 return 0;
696         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
697         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
698
699         return clock->dot / 5;
700 }
701
702 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
703 {
704         clock->m = clock->m1 * clock->m2;
705         clock->p = clock->p1 * clock->p2;
706         if (WARN_ON(clock->n == 0 || clock->p == 0))
707                 return 0;
708         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
709                         clock->n << 22);
710         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
711
712         return clock->dot / 5;
713 }
714
715 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
716 /**
717  * Returns whether the given set of divisors are valid for a given refclk with
718  * the given connectors.
719  */
720
721 static bool intel_PLL_is_valid(struct drm_device *dev,
722                                const intel_limit_t *limit,
723                                const intel_clock_t *clock)
724 {
725         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
726                 INTELPllInvalid("n out of range\n");
727         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
728                 INTELPllInvalid("p1 out of range\n");
729         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
730                 INTELPllInvalid("m2 out of range\n");
731         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
732                 INTELPllInvalid("m1 out of range\n");
733
734         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
735             !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
736                 if (clock->m1 <= clock->m2)
737                         INTELPllInvalid("m1 <= m2\n");
738
739         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
740                 if (clock->p < limit->p.min || limit->p.max < clock->p)
741                         INTELPllInvalid("p out of range\n");
742                 if (clock->m < limit->m.min || limit->m.max < clock->m)
743                         INTELPllInvalid("m out of range\n");
744         }
745
746         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
747                 INTELPllInvalid("vco out of range\n");
748         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
749          * connector, etc., rather than just a single range.
750          */
751         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
752                 INTELPllInvalid("dot out of range\n");
753
754         return true;
755 }
756
757 static int
758 i9xx_select_p2_div(const intel_limit_t *limit,
759                    const struct intel_crtc_state *crtc_state,
760                    int target)
761 {
762         struct drm_device *dev = crtc_state->base.crtc->dev;
763
764         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
765                 /*
766                  * For LVDS just rely on its current settings for dual-channel.
767                  * We haven't figured out how to reliably set up different
768                  * single/dual channel state, if we even can.
769                  */
770                 if (intel_is_dual_link_lvds(dev))
771                         return limit->p2.p2_fast;
772                 else
773                         return limit->p2.p2_slow;
774         } else {
775                 if (target < limit->p2.dot_limit)
776                         return limit->p2.p2_slow;
777                 else
778                         return limit->p2.p2_fast;
779         }
780 }
781
782 static bool
783 i9xx_find_best_dpll(const intel_limit_t *limit,
784                     struct intel_crtc_state *crtc_state,
785                     int target, int refclk, intel_clock_t *match_clock,
786                     intel_clock_t *best_clock)
787 {
788         struct drm_device *dev = crtc_state->base.crtc->dev;
789         intel_clock_t clock;
790         int err = target;
791
792         memset(best_clock, 0, sizeof(*best_clock));
793
794         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
795
796         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
797              clock.m1++) {
798                 for (clock.m2 = limit->m2.min;
799                      clock.m2 <= limit->m2.max; clock.m2++) {
800                         if (clock.m2 >= clock.m1)
801                                 break;
802                         for (clock.n = limit->n.min;
803                              clock.n <= limit->n.max; clock.n++) {
804                                 for (clock.p1 = limit->p1.min;
805                                         clock.p1 <= limit->p1.max; clock.p1++) {
806                                         int this_err;
807
808                                         i9xx_calc_dpll_params(refclk, &clock);
809                                         if (!intel_PLL_is_valid(dev, limit,
810                                                                 &clock))
811                                                 continue;
812                                         if (match_clock &&
813                                             clock.p != match_clock->p)
814                                                 continue;
815
816                                         this_err = abs(clock.dot - target);
817                                         if (this_err < err) {
818                                                 *best_clock = clock;
819                                                 err = this_err;
820                                         }
821                                 }
822                         }
823                 }
824         }
825
826         return (err != target);
827 }
828
829 static bool
830 pnv_find_best_dpll(const intel_limit_t *limit,
831                    struct intel_crtc_state *crtc_state,
832                    int target, int refclk, intel_clock_t *match_clock,
833                    intel_clock_t *best_clock)
834 {
835         struct drm_device *dev = crtc_state->base.crtc->dev;
836         intel_clock_t clock;
837         int err = target;
838
839         memset(best_clock, 0, sizeof(*best_clock));
840
841         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
842
843         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
844              clock.m1++) {
845                 for (clock.m2 = limit->m2.min;
846                      clock.m2 <= limit->m2.max; clock.m2++) {
847                         for (clock.n = limit->n.min;
848                              clock.n <= limit->n.max; clock.n++) {
849                                 for (clock.p1 = limit->p1.min;
850                                         clock.p1 <= limit->p1.max; clock.p1++) {
851                                         int this_err;
852
853                                         pnv_calc_dpll_params(refclk, &clock);
854                                         if (!intel_PLL_is_valid(dev, limit,
855                                                                 &clock))
856                                                 continue;
857                                         if (match_clock &&
858                                             clock.p != match_clock->p)
859                                                 continue;
860
861                                         this_err = abs(clock.dot - target);
862                                         if (this_err < err) {
863                                                 *best_clock = clock;
864                                                 err = this_err;
865                                         }
866                                 }
867                         }
868                 }
869         }
870
871         return (err != target);
872 }
873
874 static bool
875 g4x_find_best_dpll(const intel_limit_t *limit,
876                    struct intel_crtc_state *crtc_state,
877                    int target, int refclk, intel_clock_t *match_clock,
878                    intel_clock_t *best_clock)
879 {
880         struct drm_device *dev = crtc_state->base.crtc->dev;
881         intel_clock_t clock;
882         int max_n;
883         bool found = false;
884         /* approximately equals target * 0.00585 */
885         int err_most = (target >> 8) + (target >> 9);
886
887         memset(best_clock, 0, sizeof(*best_clock));
888
889         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
890
891         max_n = limit->n.max;
892         /* based on hardware requirement, prefer smaller n to precision */
893         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
894                 /* based on hardware requirement, prefere larger m1,m2 */
895                 for (clock.m1 = limit->m1.max;
896                      clock.m1 >= limit->m1.min; clock.m1--) {
897                         for (clock.m2 = limit->m2.max;
898                              clock.m2 >= limit->m2.min; clock.m2--) {
899                                 for (clock.p1 = limit->p1.max;
900                                      clock.p1 >= limit->p1.min; clock.p1--) {
901                                         int this_err;
902
903                                         i9xx_calc_dpll_params(refclk, &clock);
904                                         if (!intel_PLL_is_valid(dev, limit,
905                                                                 &clock))
906                                                 continue;
907
908                                         this_err = abs(clock.dot - target);
909                                         if (this_err < err_most) {
910                                                 *best_clock = clock;
911                                                 err_most = this_err;
912                                                 max_n = clock.n;
913                                                 found = true;
914                                         }
915                                 }
916                         }
917                 }
918         }
919         return found;
920 }
921
922 /*
923  * Check if the calculated PLL configuration is more optimal compared to the
924  * best configuration and error found so far. Return the calculated error.
925  */
926 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
927                                const intel_clock_t *calculated_clock,
928                                const intel_clock_t *best_clock,
929                                unsigned int best_error_ppm,
930                                unsigned int *error_ppm)
931 {
932         /*
933          * For CHV ignore the error and consider only the P value.
934          * Prefer a bigger P value based on HW requirements.
935          */
936         if (IS_CHERRYVIEW(dev)) {
937                 *error_ppm = 0;
938
939                 return calculated_clock->p > best_clock->p;
940         }
941
942         if (WARN_ON_ONCE(!target_freq))
943                 return false;
944
945         *error_ppm = div_u64(1000000ULL *
946                                 abs(target_freq - calculated_clock->dot),
947                              target_freq);
948         /*
949          * Prefer a better P value over a better (smaller) error if the error
950          * is small. Ensure this preference for future configurations too by
951          * setting the error to 0.
952          */
953         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
954                 *error_ppm = 0;
955
956                 return true;
957         }
958
959         return *error_ppm + 10 < best_error_ppm;
960 }
961
962 static bool
963 vlv_find_best_dpll(const intel_limit_t *limit,
964                    struct intel_crtc_state *crtc_state,
965                    int target, int refclk, intel_clock_t *match_clock,
966                    intel_clock_t *best_clock)
967 {
968         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
969         struct drm_device *dev = crtc->base.dev;
970         intel_clock_t clock;
971         unsigned int bestppm = 1000000;
972         /* min update 19.2 MHz */
973         int max_n = min(limit->n.max, refclk / 19200);
974         bool found = false;
975
976         target *= 5; /* fast clock */
977
978         memset(best_clock, 0, sizeof(*best_clock));
979
980         /* based on hardware requirement, prefer smaller n to precision */
981         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
982                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
983                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
984                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
985                                 clock.p = clock.p1 * clock.p2;
986                                 /* based on hardware requirement, prefer bigger m1,m2 values */
987                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
988                                         unsigned int ppm;
989
990                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
991                                                                      refclk * clock.m1);
992
993                                         vlv_calc_dpll_params(refclk, &clock);
994
995                                         if (!intel_PLL_is_valid(dev, limit,
996                                                                 &clock))
997                                                 continue;
998
999                                         if (!vlv_PLL_is_optimal(dev, target,
1000                                                                 &clock,
1001                                                                 best_clock,
1002                                                                 bestppm, &ppm))
1003                                                 continue;
1004
1005                                         *best_clock = clock;
1006                                         bestppm = ppm;
1007                                         found = true;
1008                                 }
1009                         }
1010                 }
1011         }
1012
1013         return found;
1014 }
1015
1016 static bool
1017 chv_find_best_dpll(const intel_limit_t *limit,
1018                    struct intel_crtc_state *crtc_state,
1019                    int target, int refclk, intel_clock_t *match_clock,
1020                    intel_clock_t *best_clock)
1021 {
1022         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1023         struct drm_device *dev = crtc->base.dev;
1024         unsigned int best_error_ppm;
1025         intel_clock_t clock;
1026         uint64_t m2;
1027         int found = false;
1028
1029         memset(best_clock, 0, sizeof(*best_clock));
1030         best_error_ppm = 1000000;
1031
1032         /*
1033          * Based on hardware doc, the n always set to 1, and m1 always
1034          * set to 2.  If requires to support 200Mhz refclk, we need to
1035          * revisit this because n may not 1 anymore.
1036          */
1037         clock.n = 1, clock.m1 = 2;
1038         target *= 5;    /* fast clock */
1039
1040         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1041                 for (clock.p2 = limit->p2.p2_fast;
1042                                 clock.p2 >= limit->p2.p2_slow;
1043                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1044                         unsigned int error_ppm;
1045
1046                         clock.p = clock.p1 * clock.p2;
1047
1048                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1049                                         clock.n) << 22, refclk * clock.m1);
1050
1051                         if (m2 > INT_MAX/clock.m1)
1052                                 continue;
1053
1054                         clock.m2 = m2;
1055
1056                         chv_calc_dpll_params(refclk, &clock);
1057
1058                         if (!intel_PLL_is_valid(dev, limit, &clock))
1059                                 continue;
1060
1061                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1062                                                 best_error_ppm, &error_ppm))
1063                                 continue;
1064
1065                         *best_clock = clock;
1066                         best_error_ppm = error_ppm;
1067                         found = true;
1068                 }
1069         }
1070
1071         return found;
1072 }
1073
1074 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1075                         intel_clock_t *best_clock)
1076 {
1077         int refclk = i9xx_get_refclk(crtc_state, 0);
1078
1079         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1080                                   target_clock, refclk, NULL, best_clock);
1081 }
1082
1083 bool intel_crtc_active(struct drm_crtc *crtc)
1084 {
1085         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1086
1087         /* Be paranoid as we can arrive here with only partial
1088          * state retrieved from the hardware during setup.
1089          *
1090          * We can ditch the adjusted_mode.crtc_clock check as soon
1091          * as Haswell has gained clock readout/fastboot support.
1092          *
1093          * We can ditch the crtc->primary->fb check as soon as we can
1094          * properly reconstruct framebuffers.
1095          *
1096          * FIXME: The intel_crtc->active here should be switched to
1097          * crtc->state->active once we have proper CRTC states wired up
1098          * for atomic.
1099          */
1100         return intel_crtc->active && crtc->primary->state->fb &&
1101                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1102 }
1103
1104 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1105                                              enum pipe pipe)
1106 {
1107         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1108         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1109
1110         return intel_crtc->config->cpu_transcoder;
1111 }
1112
1113 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1114 {
1115         struct drm_i915_private *dev_priv = dev->dev_private;
1116         i915_reg_t reg = PIPEDSL(pipe);
1117         u32 line1, line2;
1118         u32 line_mask;
1119
1120         if (IS_GEN2(dev))
1121                 line_mask = DSL_LINEMASK_GEN2;
1122         else
1123                 line_mask = DSL_LINEMASK_GEN3;
1124
1125         line1 = I915_READ(reg) & line_mask;
1126         msleep(5);
1127         line2 = I915_READ(reg) & line_mask;
1128
1129         return line1 == line2;
1130 }
1131
1132 /*
1133  * intel_wait_for_pipe_off - wait for pipe to turn off
1134  * @crtc: crtc whose pipe to wait for
1135  *
1136  * After disabling a pipe, we can't wait for vblank in the usual way,
1137  * spinning on the vblank interrupt status bit, since we won't actually
1138  * see an interrupt when the pipe is disabled.
1139  *
1140  * On Gen4 and above:
1141  *   wait for the pipe register state bit to turn off
1142  *
1143  * Otherwise:
1144  *   wait for the display line value to settle (it usually
1145  *   ends up stopping at the start of the next frame).
1146  *
1147  */
1148 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1149 {
1150         struct drm_device *dev = crtc->base.dev;
1151         struct drm_i915_private *dev_priv = dev->dev_private;
1152         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1153         enum pipe pipe = crtc->pipe;
1154
1155         if (INTEL_INFO(dev)->gen >= 4) {
1156                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1157
1158                 /* Wait for the Pipe State to go off */
1159                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1160                              100))
1161                         WARN(1, "pipe_off wait timed out\n");
1162         } else {
1163                 /* Wait for the display line to settle */
1164                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1165                         WARN(1, "pipe_off wait timed out\n");
1166         }
1167 }
1168
1169 /* Only for pre-ILK configs */
1170 void assert_pll(struct drm_i915_private *dev_priv,
1171                 enum pipe pipe, bool state)
1172 {
1173         u32 val;
1174         bool cur_state;
1175
1176         val = I915_READ(DPLL(pipe));
1177         cur_state = !!(val & DPLL_VCO_ENABLE);
1178         I915_STATE_WARN(cur_state != state,
1179              "PLL state assertion failure (expected %s, current %s)\n",
1180                         onoff(state), onoff(cur_state));
1181 }
1182
1183 /* XXX: the dsi pll is shared between MIPI DSI ports */
1184 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1185 {
1186         u32 val;
1187         bool cur_state;
1188
1189         mutex_lock(&dev_priv->sb_lock);
1190         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1191         mutex_unlock(&dev_priv->sb_lock);
1192
1193         cur_state = val & DSI_PLL_VCO_EN;
1194         I915_STATE_WARN(cur_state != state,
1195              "DSI PLL state assertion failure (expected %s, current %s)\n",
1196                         onoff(state), onoff(cur_state));
1197 }
1198
1199 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1200                           enum pipe pipe, bool state)
1201 {
1202         bool cur_state;
1203         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1204                                                                       pipe);
1205
1206         if (HAS_DDI(dev_priv->dev)) {
1207                 /* DDI does not have a specific FDI_TX register */
1208                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1209                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1210         } else {
1211                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1212                 cur_state = !!(val & FDI_TX_ENABLE);
1213         }
1214         I915_STATE_WARN(cur_state != state,
1215              "FDI TX state assertion failure (expected %s, current %s)\n",
1216                         onoff(state), onoff(cur_state));
1217 }
1218 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1219 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1220
1221 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1222                           enum pipe pipe, bool state)
1223 {
1224         u32 val;
1225         bool cur_state;
1226
1227         val = I915_READ(FDI_RX_CTL(pipe));
1228         cur_state = !!(val & FDI_RX_ENABLE);
1229         I915_STATE_WARN(cur_state != state,
1230              "FDI RX state assertion failure (expected %s, current %s)\n",
1231                         onoff(state), onoff(cur_state));
1232 }
1233 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1234 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1235
1236 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1237                                       enum pipe pipe)
1238 {
1239         u32 val;
1240
1241         /* ILK FDI PLL is always enabled */
1242         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1243                 return;
1244
1245         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1246         if (HAS_DDI(dev_priv->dev))
1247                 return;
1248
1249         val = I915_READ(FDI_TX_CTL(pipe));
1250         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1251 }
1252
1253 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1254                        enum pipe pipe, bool state)
1255 {
1256         u32 val;
1257         bool cur_state;
1258
1259         val = I915_READ(FDI_RX_CTL(pipe));
1260         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1261         I915_STATE_WARN(cur_state != state,
1262              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1263                         onoff(state), onoff(cur_state));
1264 }
1265
1266 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1267                            enum pipe pipe)
1268 {
1269         struct drm_device *dev = dev_priv->dev;
1270         i915_reg_t pp_reg;
1271         u32 val;
1272         enum pipe panel_pipe = PIPE_A;
1273         bool locked = true;
1274
1275         if (WARN_ON(HAS_DDI(dev)))
1276                 return;
1277
1278         if (HAS_PCH_SPLIT(dev)) {
1279                 u32 port_sel;
1280
1281                 pp_reg = PCH_PP_CONTROL;
1282                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1283
1284                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1285                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1286                         panel_pipe = PIPE_B;
1287                 /* XXX: else fix for eDP */
1288         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1289                 /* presumably write lock depends on pipe, not port select */
1290                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1291                 panel_pipe = pipe;
1292         } else {
1293                 pp_reg = PP_CONTROL;
1294                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1295                         panel_pipe = PIPE_B;
1296         }
1297
1298         val = I915_READ(pp_reg);
1299         if (!(val & PANEL_POWER_ON) ||
1300             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1301                 locked = false;
1302
1303         I915_STATE_WARN(panel_pipe == pipe && locked,
1304              "panel assertion failure, pipe %c regs locked\n",
1305              pipe_name(pipe));
1306 }
1307
1308 static void assert_cursor(struct drm_i915_private *dev_priv,
1309                           enum pipe pipe, bool state)
1310 {
1311         struct drm_device *dev = dev_priv->dev;
1312         bool cur_state;
1313
1314         if (IS_845G(dev) || IS_I865G(dev))
1315                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1316         else
1317                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1318
1319         I915_STATE_WARN(cur_state != state,
1320              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1321                         pipe_name(pipe), onoff(state), onoff(cur_state));
1322 }
1323 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1324 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1325
1326 void assert_pipe(struct drm_i915_private *dev_priv,
1327                  enum pipe pipe, bool state)
1328 {
1329         bool cur_state;
1330         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1331                                                                       pipe);
1332         enum intel_display_power_domain power_domain;
1333
1334         /* if we need the pipe quirk it must be always on */
1335         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1336             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1337                 state = true;
1338
1339         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1340         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1341                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1342                 cur_state = !!(val & PIPECONF_ENABLE);
1343
1344                 intel_display_power_put(dev_priv, power_domain);
1345         } else {
1346                 cur_state = false;
1347         }
1348
1349         I915_STATE_WARN(cur_state != state,
1350              "pipe %c assertion failure (expected %s, current %s)\n",
1351                         pipe_name(pipe), onoff(state), onoff(cur_state));
1352 }
1353
1354 static void assert_plane(struct drm_i915_private *dev_priv,
1355                          enum plane plane, bool state)
1356 {
1357         u32 val;
1358         bool cur_state;
1359
1360         val = I915_READ(DSPCNTR(plane));
1361         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1362         I915_STATE_WARN(cur_state != state,
1363              "plane %c assertion failure (expected %s, current %s)\n",
1364                         plane_name(plane), onoff(state), onoff(cur_state));
1365 }
1366
1367 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1368 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1369
1370 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1371                                    enum pipe pipe)
1372 {
1373         struct drm_device *dev = dev_priv->dev;
1374         int i;
1375
1376         /* Primary planes are fixed to pipes on gen4+ */
1377         if (INTEL_INFO(dev)->gen >= 4) {
1378                 u32 val = I915_READ(DSPCNTR(pipe));
1379                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1380                      "plane %c assertion failure, should be disabled but not\n",
1381                      plane_name(pipe));
1382                 return;
1383         }
1384
1385         /* Need to check both planes against the pipe */
1386         for_each_pipe(dev_priv, i) {
1387                 u32 val = I915_READ(DSPCNTR(i));
1388                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1389                         DISPPLANE_SEL_PIPE_SHIFT;
1390                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1391                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1392                      plane_name(i), pipe_name(pipe));
1393         }
1394 }
1395
1396 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1397                                     enum pipe pipe)
1398 {
1399         struct drm_device *dev = dev_priv->dev;
1400         int sprite;
1401
1402         if (INTEL_INFO(dev)->gen >= 9) {
1403                 for_each_sprite(dev_priv, pipe, sprite) {
1404                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1405                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1406                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1407                              sprite, pipe_name(pipe));
1408                 }
1409         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1410                 for_each_sprite(dev_priv, pipe, sprite) {
1411                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1412                         I915_STATE_WARN(val & SP_ENABLE,
1413                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1414                              sprite_name(pipe, sprite), pipe_name(pipe));
1415                 }
1416         } else if (INTEL_INFO(dev)->gen >= 7) {
1417                 u32 val = I915_READ(SPRCTL(pipe));
1418                 I915_STATE_WARN(val & SPRITE_ENABLE,
1419                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1420                      plane_name(pipe), pipe_name(pipe));
1421         } else if (INTEL_INFO(dev)->gen >= 5) {
1422                 u32 val = I915_READ(DVSCNTR(pipe));
1423                 I915_STATE_WARN(val & DVS_ENABLE,
1424                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1425                      plane_name(pipe), pipe_name(pipe));
1426         }
1427 }
1428
1429 static void assert_vblank_disabled(struct drm_crtc *crtc)
1430 {
1431         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1432                 drm_crtc_vblank_put(crtc);
1433 }
1434
1435 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1436                                     enum pipe pipe)
1437 {
1438         u32 val;
1439         bool enabled;
1440
1441         val = I915_READ(PCH_TRANSCONF(pipe));
1442         enabled = !!(val & TRANS_ENABLE);
1443         I915_STATE_WARN(enabled,
1444              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1445              pipe_name(pipe));
1446 }
1447
1448 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1449                             enum pipe pipe, u32 port_sel, u32 val)
1450 {
1451         if ((val & DP_PORT_EN) == 0)
1452                 return false;
1453
1454         if (HAS_PCH_CPT(dev_priv->dev)) {
1455                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1456                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1457                         return false;
1458         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1459                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1460                         return false;
1461         } else {
1462                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1463                         return false;
1464         }
1465         return true;
1466 }
1467
1468 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1469                               enum pipe pipe, u32 val)
1470 {
1471         if ((val & SDVO_ENABLE) == 0)
1472                 return false;
1473
1474         if (HAS_PCH_CPT(dev_priv->dev)) {
1475                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1476                         return false;
1477         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1478                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1479                         return false;
1480         } else {
1481                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1482                         return false;
1483         }
1484         return true;
1485 }
1486
1487 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1488                               enum pipe pipe, u32 val)
1489 {
1490         if ((val & LVDS_PORT_EN) == 0)
1491                 return false;
1492
1493         if (HAS_PCH_CPT(dev_priv->dev)) {
1494                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1495                         return false;
1496         } else {
1497                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1498                         return false;
1499         }
1500         return true;
1501 }
1502
1503 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1504                               enum pipe pipe, u32 val)
1505 {
1506         if ((val & ADPA_DAC_ENABLE) == 0)
1507                 return false;
1508         if (HAS_PCH_CPT(dev_priv->dev)) {
1509                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1510                         return false;
1511         } else {
1512                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1513                         return false;
1514         }
1515         return true;
1516 }
1517
1518 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1519                                    enum pipe pipe, i915_reg_t reg,
1520                                    u32 port_sel)
1521 {
1522         u32 val = I915_READ(reg);
1523         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1524              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1525              i915_mmio_reg_offset(reg), pipe_name(pipe));
1526
1527         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1528              && (val & DP_PIPEB_SELECT),
1529              "IBX PCH dp port still using transcoder B\n");
1530 }
1531
1532 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1533                                      enum pipe pipe, i915_reg_t reg)
1534 {
1535         u32 val = I915_READ(reg);
1536         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1537              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1538              i915_mmio_reg_offset(reg), pipe_name(pipe));
1539
1540         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1541              && (val & SDVO_PIPE_B_SELECT),
1542              "IBX PCH hdmi port still using transcoder B\n");
1543 }
1544
1545 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1546                                       enum pipe pipe)
1547 {
1548         u32 val;
1549
1550         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1551         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1552         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1553
1554         val = I915_READ(PCH_ADPA);
1555         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1556              "PCH VGA enabled on transcoder %c, should be disabled\n",
1557              pipe_name(pipe));
1558
1559         val = I915_READ(PCH_LVDS);
1560         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1561              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1562              pipe_name(pipe));
1563
1564         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1565         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1566         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1567 }
1568
1569 static void vlv_enable_pll(struct intel_crtc *crtc,
1570                            const struct intel_crtc_state *pipe_config)
1571 {
1572         struct drm_device *dev = crtc->base.dev;
1573         struct drm_i915_private *dev_priv = dev->dev_private;
1574         i915_reg_t reg = DPLL(crtc->pipe);
1575         u32 dpll = pipe_config->dpll_hw_state.dpll;
1576
1577         assert_pipe_disabled(dev_priv, crtc->pipe);
1578
1579         /* PLL is protected by panel, make sure we can write it */
1580         if (IS_MOBILE(dev_priv->dev))
1581                 assert_panel_unlocked(dev_priv, crtc->pipe);
1582
1583         I915_WRITE(reg, dpll);
1584         POSTING_READ(reg);
1585         udelay(150);
1586
1587         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1588                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1589
1590         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1591         POSTING_READ(DPLL_MD(crtc->pipe));
1592
1593         /* We do this three times for luck */
1594         I915_WRITE(reg, dpll);
1595         POSTING_READ(reg);
1596         udelay(150); /* wait for warmup */
1597         I915_WRITE(reg, dpll);
1598         POSTING_READ(reg);
1599         udelay(150); /* wait for warmup */
1600         I915_WRITE(reg, dpll);
1601         POSTING_READ(reg);
1602         udelay(150); /* wait for warmup */
1603 }
1604
1605 static void chv_enable_pll(struct intel_crtc *crtc,
1606                            const struct intel_crtc_state *pipe_config)
1607 {
1608         struct drm_device *dev = crtc->base.dev;
1609         struct drm_i915_private *dev_priv = dev->dev_private;
1610         int pipe = crtc->pipe;
1611         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1612         u32 tmp;
1613
1614         assert_pipe_disabled(dev_priv, crtc->pipe);
1615
1616         mutex_lock(&dev_priv->sb_lock);
1617
1618         /* Enable back the 10bit clock to display controller */
1619         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1620         tmp |= DPIO_DCLKP_EN;
1621         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1622
1623         mutex_unlock(&dev_priv->sb_lock);
1624
1625         /*
1626          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1627          */
1628         udelay(1);
1629
1630         /* Enable PLL */
1631         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1632
1633         /* Check PLL is locked */
1634         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1635                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1636
1637         /* not sure when this should be written */
1638         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1639         POSTING_READ(DPLL_MD(pipe));
1640 }
1641
1642 static int intel_num_dvo_pipes(struct drm_device *dev)
1643 {
1644         struct intel_crtc *crtc;
1645         int count = 0;
1646
1647         for_each_intel_crtc(dev, crtc)
1648                 count += crtc->base.state->active &&
1649                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1650
1651         return count;
1652 }
1653
1654 static void i9xx_enable_pll(struct intel_crtc *crtc)
1655 {
1656         struct drm_device *dev = crtc->base.dev;
1657         struct drm_i915_private *dev_priv = dev->dev_private;
1658         i915_reg_t reg = DPLL(crtc->pipe);
1659         u32 dpll = crtc->config->dpll_hw_state.dpll;
1660
1661         assert_pipe_disabled(dev_priv, crtc->pipe);
1662
1663         /* No really, not for ILK+ */
1664         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1665
1666         /* PLL is protected by panel, make sure we can write it */
1667         if (IS_MOBILE(dev) && !IS_I830(dev))
1668                 assert_panel_unlocked(dev_priv, crtc->pipe);
1669
1670         /* Enable DVO 2x clock on both PLLs if necessary */
1671         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1672                 /*
1673                  * It appears to be important that we don't enable this
1674                  * for the current pipe before otherwise configuring the
1675                  * PLL. No idea how this should be handled if multiple
1676                  * DVO outputs are enabled simultaneosly.
1677                  */
1678                 dpll |= DPLL_DVO_2X_MODE;
1679                 I915_WRITE(DPLL(!crtc->pipe),
1680                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1681         }
1682
1683         /*
1684          * Apparently we need to have VGA mode enabled prior to changing
1685          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1686          * dividers, even though the register value does change.
1687          */
1688         I915_WRITE(reg, 0);
1689
1690         I915_WRITE(reg, dpll);
1691
1692         /* Wait for the clocks to stabilize. */
1693         POSTING_READ(reg);
1694         udelay(150);
1695
1696         if (INTEL_INFO(dev)->gen >= 4) {
1697                 I915_WRITE(DPLL_MD(crtc->pipe),
1698                            crtc->config->dpll_hw_state.dpll_md);
1699         } else {
1700                 /* The pixel multiplier can only be updated once the
1701                  * DPLL is enabled and the clocks are stable.
1702                  *
1703                  * So write it again.
1704                  */
1705                 I915_WRITE(reg, dpll);
1706         }
1707
1708         /* We do this three times for luck */
1709         I915_WRITE(reg, dpll);
1710         POSTING_READ(reg);
1711         udelay(150); /* wait for warmup */
1712         I915_WRITE(reg, dpll);
1713         POSTING_READ(reg);
1714         udelay(150); /* wait for warmup */
1715         I915_WRITE(reg, dpll);
1716         POSTING_READ(reg);
1717         udelay(150); /* wait for warmup */
1718 }
1719
1720 /**
1721  * i9xx_disable_pll - disable a PLL
1722  * @dev_priv: i915 private structure
1723  * @pipe: pipe PLL to disable
1724  *
1725  * Disable the PLL for @pipe, making sure the pipe is off first.
1726  *
1727  * Note!  This is for pre-ILK only.
1728  */
1729 static void i9xx_disable_pll(struct intel_crtc *crtc)
1730 {
1731         struct drm_device *dev = crtc->base.dev;
1732         struct drm_i915_private *dev_priv = dev->dev_private;
1733         enum pipe pipe = crtc->pipe;
1734
1735         /* Disable DVO 2x clock on both PLLs if necessary */
1736         if (IS_I830(dev) &&
1737             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1738             !intel_num_dvo_pipes(dev)) {
1739                 I915_WRITE(DPLL(PIPE_B),
1740                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1741                 I915_WRITE(DPLL(PIPE_A),
1742                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1743         }
1744
1745         /* Don't disable pipe or pipe PLLs if needed */
1746         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1747             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1748                 return;
1749
1750         /* Make sure the pipe isn't still relying on us */
1751         assert_pipe_disabled(dev_priv, pipe);
1752
1753         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1754         POSTING_READ(DPLL(pipe));
1755 }
1756
1757 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1758 {
1759         u32 val;
1760
1761         /* Make sure the pipe isn't still relying on us */
1762         assert_pipe_disabled(dev_priv, pipe);
1763
1764         /*
1765          * Leave integrated clock source and reference clock enabled for pipe B.
1766          * The latter is needed for VGA hotplug / manual detection.
1767          */
1768         val = DPLL_VGA_MODE_DIS;
1769         if (pipe == PIPE_B)
1770                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1771         I915_WRITE(DPLL(pipe), val);
1772         POSTING_READ(DPLL(pipe));
1773
1774 }
1775
1776 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1777 {
1778         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1779         u32 val;
1780
1781         /* Make sure the pipe isn't still relying on us */
1782         assert_pipe_disabled(dev_priv, pipe);
1783
1784         /* Set PLL en = 0 */
1785         val = DPLL_SSC_REF_CLK_CHV |
1786                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1787         if (pipe != PIPE_A)
1788                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1789         I915_WRITE(DPLL(pipe), val);
1790         POSTING_READ(DPLL(pipe));
1791
1792         mutex_lock(&dev_priv->sb_lock);
1793
1794         /* Disable 10bit clock to display controller */
1795         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1796         val &= ~DPIO_DCLKP_EN;
1797         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1798
1799         mutex_unlock(&dev_priv->sb_lock);
1800 }
1801
1802 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1803                          struct intel_digital_port *dport,
1804                          unsigned int expected_mask)
1805 {
1806         u32 port_mask;
1807         i915_reg_t dpll_reg;
1808
1809         switch (dport->port) {
1810         case PORT_B:
1811                 port_mask = DPLL_PORTB_READY_MASK;
1812                 dpll_reg = DPLL(0);
1813                 break;
1814         case PORT_C:
1815                 port_mask = DPLL_PORTC_READY_MASK;
1816                 dpll_reg = DPLL(0);
1817                 expected_mask <<= 4;
1818                 break;
1819         case PORT_D:
1820                 port_mask = DPLL_PORTD_READY_MASK;
1821                 dpll_reg = DPIO_PHY_STATUS;
1822                 break;
1823         default:
1824                 BUG();
1825         }
1826
1827         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1828                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1829                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1830 }
1831
1832 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1833                                            enum pipe pipe)
1834 {
1835         struct drm_device *dev = dev_priv->dev;
1836         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1837         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1838         i915_reg_t reg;
1839         uint32_t val, pipeconf_val;
1840
1841         /* PCH only available on ILK+ */
1842         BUG_ON(!HAS_PCH_SPLIT(dev));
1843
1844         /* Make sure PCH DPLL is enabled */
1845         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1846
1847         /* FDI must be feeding us bits for PCH ports */
1848         assert_fdi_tx_enabled(dev_priv, pipe);
1849         assert_fdi_rx_enabled(dev_priv, pipe);
1850
1851         if (HAS_PCH_CPT(dev)) {
1852                 /* Workaround: Set the timing override bit before enabling the
1853                  * pch transcoder. */
1854                 reg = TRANS_CHICKEN2(pipe);
1855                 val = I915_READ(reg);
1856                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1857                 I915_WRITE(reg, val);
1858         }
1859
1860         reg = PCH_TRANSCONF(pipe);
1861         val = I915_READ(reg);
1862         pipeconf_val = I915_READ(PIPECONF(pipe));
1863
1864         if (HAS_PCH_IBX(dev_priv->dev)) {
1865                 /*
1866                  * Make the BPC in transcoder be consistent with
1867                  * that in pipeconf reg. For HDMI we must use 8bpc
1868                  * here for both 8bpc and 12bpc.
1869                  */
1870                 val &= ~PIPECONF_BPC_MASK;
1871                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1872                         val |= PIPECONF_8BPC;
1873                 else
1874                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1875         }
1876
1877         val &= ~TRANS_INTERLACE_MASK;
1878         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1879                 if (HAS_PCH_IBX(dev_priv->dev) &&
1880                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1881                         val |= TRANS_LEGACY_INTERLACED_ILK;
1882                 else
1883                         val |= TRANS_INTERLACED;
1884         else
1885                 val |= TRANS_PROGRESSIVE;
1886
1887         I915_WRITE(reg, val | TRANS_ENABLE);
1888         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1889                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1890 }
1891
1892 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1893                                       enum transcoder cpu_transcoder)
1894 {
1895         u32 val, pipeconf_val;
1896
1897         /* PCH only available on ILK+ */
1898         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1899
1900         /* FDI must be feeding us bits for PCH ports */
1901         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1902         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1903
1904         /* Workaround: set timing override bit. */
1905         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1906         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1907         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1908
1909         val = TRANS_ENABLE;
1910         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1911
1912         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1913             PIPECONF_INTERLACED_ILK)
1914                 val |= TRANS_INTERLACED;
1915         else
1916                 val |= TRANS_PROGRESSIVE;
1917
1918         I915_WRITE(LPT_TRANSCONF, val);
1919         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1920                 DRM_ERROR("Failed to enable PCH transcoder\n");
1921 }
1922
1923 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1924                                             enum pipe pipe)
1925 {
1926         struct drm_device *dev = dev_priv->dev;
1927         i915_reg_t reg;
1928         uint32_t val;
1929
1930         /* FDI relies on the transcoder */
1931         assert_fdi_tx_disabled(dev_priv, pipe);
1932         assert_fdi_rx_disabled(dev_priv, pipe);
1933
1934         /* Ports must be off as well */
1935         assert_pch_ports_disabled(dev_priv, pipe);
1936
1937         reg = PCH_TRANSCONF(pipe);
1938         val = I915_READ(reg);
1939         val &= ~TRANS_ENABLE;
1940         I915_WRITE(reg, val);
1941         /* wait for PCH transcoder off, transcoder state */
1942         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1943                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1944
1945         if (HAS_PCH_CPT(dev)) {
1946                 /* Workaround: Clear the timing override chicken bit again. */
1947                 reg = TRANS_CHICKEN2(pipe);
1948                 val = I915_READ(reg);
1949                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1950                 I915_WRITE(reg, val);
1951         }
1952 }
1953
1954 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1955 {
1956         u32 val;
1957
1958         val = I915_READ(LPT_TRANSCONF);
1959         val &= ~TRANS_ENABLE;
1960         I915_WRITE(LPT_TRANSCONF, val);
1961         /* wait for PCH transcoder off, transcoder state */
1962         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1963                 DRM_ERROR("Failed to disable PCH transcoder\n");
1964
1965         /* Workaround: clear timing override bit. */
1966         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1967         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1968         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1969 }
1970
1971 /**
1972  * intel_enable_pipe - enable a pipe, asserting requirements
1973  * @crtc: crtc responsible for the pipe
1974  *
1975  * Enable @crtc's pipe, making sure that various hardware specific requirements
1976  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1977  */
1978 static void intel_enable_pipe(struct intel_crtc *crtc)
1979 {
1980         struct drm_device *dev = crtc->base.dev;
1981         struct drm_i915_private *dev_priv = dev->dev_private;
1982         enum pipe pipe = crtc->pipe;
1983         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1984         enum pipe pch_transcoder;
1985         i915_reg_t reg;
1986         u32 val;
1987
1988         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1989
1990         assert_planes_disabled(dev_priv, pipe);
1991         assert_cursor_disabled(dev_priv, pipe);
1992         assert_sprites_disabled(dev_priv, pipe);
1993
1994         if (HAS_PCH_LPT(dev_priv->dev))
1995                 pch_transcoder = TRANSCODER_A;
1996         else
1997                 pch_transcoder = pipe;
1998
1999         /*
2000          * A pipe without a PLL won't actually be able to drive bits from
2001          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2002          * need the check.
2003          */
2004         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2005                 if (crtc->config->has_dsi_encoder)
2006                         assert_dsi_pll_enabled(dev_priv);
2007                 else
2008                         assert_pll_enabled(dev_priv, pipe);
2009         else {
2010                 if (crtc->config->has_pch_encoder) {
2011                         /* if driving the PCH, we need FDI enabled */
2012                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2013                         assert_fdi_tx_pll_enabled(dev_priv,
2014                                                   (enum pipe) cpu_transcoder);
2015                 }
2016                 /* FIXME: assert CPU port conditions for SNB+ */
2017         }
2018
2019         reg = PIPECONF(cpu_transcoder);
2020         val = I915_READ(reg);
2021         if (val & PIPECONF_ENABLE) {
2022                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2023                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2024                 return;
2025         }
2026
2027         I915_WRITE(reg, val | PIPECONF_ENABLE);
2028         POSTING_READ(reg);
2029
2030         /*
2031          * Until the pipe starts DSL will read as 0, which would cause
2032          * an apparent vblank timestamp jump, which messes up also the
2033          * frame count when it's derived from the timestamps. So let's
2034          * wait for the pipe to start properly before we call
2035          * drm_crtc_vblank_on()
2036          */
2037         if (dev->max_vblank_count == 0 &&
2038             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2039                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2040 }
2041
2042 /**
2043  * intel_disable_pipe - disable a pipe, asserting requirements
2044  * @crtc: crtc whose pipes is to be disabled
2045  *
2046  * Disable the pipe of @crtc, making sure that various hardware
2047  * specific requirements are met, if applicable, e.g. plane
2048  * disabled, panel fitter off, etc.
2049  *
2050  * Will wait until the pipe has shut down before returning.
2051  */
2052 static void intel_disable_pipe(struct intel_crtc *crtc)
2053 {
2054         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2055         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2056         enum pipe pipe = crtc->pipe;
2057         i915_reg_t reg;
2058         u32 val;
2059
2060         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2061
2062         /*
2063          * Make sure planes won't keep trying to pump pixels to us,
2064          * or we might hang the display.
2065          */
2066         assert_planes_disabled(dev_priv, pipe);
2067         assert_cursor_disabled(dev_priv, pipe);
2068         assert_sprites_disabled(dev_priv, pipe);
2069
2070         reg = PIPECONF(cpu_transcoder);
2071         val = I915_READ(reg);
2072         if ((val & PIPECONF_ENABLE) == 0)
2073                 return;
2074
2075         /*
2076          * Double wide has implications for planes
2077          * so best keep it disabled when not needed.
2078          */
2079         if (crtc->config->double_wide)
2080                 val &= ~PIPECONF_DOUBLE_WIDE;
2081
2082         /* Don't disable pipe or pipe PLLs if needed */
2083         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2084             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2085                 val &= ~PIPECONF_ENABLE;
2086
2087         I915_WRITE(reg, val);
2088         if ((val & PIPECONF_ENABLE) == 0)
2089                 intel_wait_for_pipe_off(crtc);
2090 }
2091
2092 static bool need_vtd_wa(struct drm_device *dev)
2093 {
2094 #ifdef CONFIG_INTEL_IOMMU
2095         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2096                 return true;
2097 #endif
2098         return false;
2099 }
2100
2101 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2102 {
2103         return IS_GEN2(dev_priv) ? 2048 : 4096;
2104 }
2105
2106 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2107                                            uint64_t fb_modifier, unsigned int cpp)
2108 {
2109         switch (fb_modifier) {
2110         case DRM_FORMAT_MOD_NONE:
2111                 return cpp;
2112         case I915_FORMAT_MOD_X_TILED:
2113                 if (IS_GEN2(dev_priv))
2114                         return 128;
2115                 else
2116                         return 512;
2117         case I915_FORMAT_MOD_Y_TILED:
2118                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2119                         return 128;
2120                 else
2121                         return 512;
2122         case I915_FORMAT_MOD_Yf_TILED:
2123                 switch (cpp) {
2124                 case 1:
2125                         return 64;
2126                 case 2:
2127                 case 4:
2128                         return 128;
2129                 case 8:
2130                 case 16:
2131                         return 256;
2132                 default:
2133                         MISSING_CASE(cpp);
2134                         return cpp;
2135                 }
2136                 break;
2137         default:
2138                 MISSING_CASE(fb_modifier);
2139                 return cpp;
2140         }
2141 }
2142
2143 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2144                                uint64_t fb_modifier, unsigned int cpp)
2145 {
2146         if (fb_modifier == DRM_FORMAT_MOD_NONE)
2147                 return 1;
2148         else
2149                 return intel_tile_size(dev_priv) /
2150                         intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2151 }
2152
2153 /* Return the tile dimensions in pixel units */
2154 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2155                             unsigned int *tile_width,
2156                             unsigned int *tile_height,
2157                             uint64_t fb_modifier,
2158                             unsigned int cpp)
2159 {
2160         unsigned int tile_width_bytes =
2161                 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2162
2163         *tile_width = tile_width_bytes / cpp;
2164         *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2165 }
2166
2167 unsigned int
2168 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2169                       uint32_t pixel_format, uint64_t fb_modifier)
2170 {
2171         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2172         unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2173
2174         return ALIGN(height, tile_height);
2175 }
2176
2177 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2178 {
2179         unsigned int size = 0;
2180         int i;
2181
2182         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2183                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2184
2185         return size;
2186 }
2187
2188 static void
2189 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2190                         const struct drm_framebuffer *fb,
2191                         unsigned int rotation)
2192 {
2193         if (intel_rotation_90_or_270(rotation)) {
2194                 *view = i915_ggtt_view_rotated;
2195                 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2196         } else {
2197                 *view = i915_ggtt_view_normal;
2198         }
2199 }
2200
2201 static void
2202 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2203                    struct drm_framebuffer *fb)
2204 {
2205         struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2206         unsigned int tile_size, tile_width, tile_height, cpp;
2207
2208         tile_size = intel_tile_size(dev_priv);
2209
2210         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2211         intel_tile_dims(dev_priv, &tile_width, &tile_height,
2212                         fb->modifier[0], cpp);
2213
2214         info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2215         info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
2216
2217         if (info->pixel_format == DRM_FORMAT_NV12) {
2218                 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2219                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2220                                 fb->modifier[1], cpp);
2221
2222                 info->uv_offset = fb->offsets[1];
2223                 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2224                 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
2225         }
2226 }
2227
2228 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2229 {
2230         if (INTEL_INFO(dev_priv)->gen >= 9)
2231                 return 256 * 1024;
2232         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2233                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2234                 return 128 * 1024;
2235         else if (INTEL_INFO(dev_priv)->gen >= 4)
2236                 return 4 * 1024;
2237         else
2238                 return 0;
2239 }
2240
2241 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2242                                          uint64_t fb_modifier)
2243 {
2244         switch (fb_modifier) {
2245         case DRM_FORMAT_MOD_NONE:
2246                 return intel_linear_alignment(dev_priv);
2247         case I915_FORMAT_MOD_X_TILED:
2248                 if (INTEL_INFO(dev_priv)->gen >= 9)
2249                         return 256 * 1024;
2250                 return 0;
2251         case I915_FORMAT_MOD_Y_TILED:
2252         case I915_FORMAT_MOD_Yf_TILED:
2253                 return 1 * 1024 * 1024;
2254         default:
2255                 MISSING_CASE(fb_modifier);
2256                 return 0;
2257         }
2258 }
2259
2260 int
2261 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2262                            unsigned int rotation)
2263 {
2264         struct drm_device *dev = fb->dev;
2265         struct drm_i915_private *dev_priv = dev->dev_private;
2266         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2267         struct i915_ggtt_view view;
2268         u32 alignment;
2269         int ret;
2270
2271         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2272
2273         alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2274
2275         intel_fill_fb_ggtt_view(&view, fb, rotation);
2276
2277         /* Note that the w/a also requires 64 PTE of padding following the
2278          * bo. We currently fill all unused PTE with the shadow page and so
2279          * we should always have valid PTE following the scanout preventing
2280          * the VT-d warning.
2281          */
2282         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2283                 alignment = 256 * 1024;
2284
2285         /*
2286          * Global gtt pte registers are special registers which actually forward
2287          * writes to a chunk of system memory. Which means that there is no risk
2288          * that the register values disappear as soon as we call
2289          * intel_runtime_pm_put(), so it is correct to wrap only the
2290          * pin/unpin/fence and not more.
2291          */
2292         intel_runtime_pm_get(dev_priv);
2293
2294         ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2295                                                    &view);
2296         if (ret)
2297                 goto err_pm;
2298
2299         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2300          * fence, whereas 965+ only requires a fence if using
2301          * framebuffer compression.  For simplicity, we always install
2302          * a fence as the cost is not that onerous.
2303          */
2304         if (view.type == I915_GGTT_VIEW_NORMAL) {
2305                 ret = i915_gem_object_get_fence(obj);
2306                 if (ret == -EDEADLK) {
2307                         /*
2308                          * -EDEADLK means there are no free fences
2309                          * no pending flips.
2310                          *
2311                          * This is propagated to atomic, but it uses
2312                          * -EDEADLK to force a locking recovery, so
2313                          * change the returned error to -EBUSY.
2314                          */
2315                         ret = -EBUSY;
2316                         goto err_unpin;
2317                 } else if (ret)
2318                         goto err_unpin;
2319
2320                 i915_gem_object_pin_fence(obj);
2321         }
2322
2323         intel_runtime_pm_put(dev_priv);
2324         return 0;
2325
2326 err_unpin:
2327         i915_gem_object_unpin_from_display_plane(obj, &view);
2328 err_pm:
2329         intel_runtime_pm_put(dev_priv);
2330         return ret;
2331 }
2332
2333 static void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2334 {
2335         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2336         struct i915_ggtt_view view;
2337
2338         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2339
2340         intel_fill_fb_ggtt_view(&view, fb, rotation);
2341
2342         if (view.type == I915_GGTT_VIEW_NORMAL)
2343                 i915_gem_object_unpin_fence(obj);
2344
2345         i915_gem_object_unpin_from_display_plane(obj, &view);
2346 }
2347
2348 /*
2349  * Adjust the tile offset by moving the difference into
2350  * the x/y offsets.
2351  *
2352  * Input tile dimensions and pitch must already be
2353  * rotated to match x and y, and in pixel units.
2354  */
2355 static u32 intel_adjust_tile_offset(int *x, int *y,
2356                                     unsigned int tile_width,
2357                                     unsigned int tile_height,
2358                                     unsigned int tile_size,
2359                                     unsigned int pitch_tiles,
2360                                     u32 old_offset,
2361                                     u32 new_offset)
2362 {
2363         unsigned int tiles;
2364
2365         WARN_ON(old_offset & (tile_size - 1));
2366         WARN_ON(new_offset & (tile_size - 1));
2367         WARN_ON(new_offset > old_offset);
2368
2369         tiles = (old_offset - new_offset) / tile_size;
2370
2371         *y += tiles / pitch_tiles * tile_height;
2372         *x += tiles % pitch_tiles * tile_width;
2373
2374         return new_offset;
2375 }
2376
2377 /*
2378  * Computes the linear offset to the base tile and adjusts
2379  * x, y. bytes per pixel is assumed to be a power-of-two.
2380  *
2381  * In the 90/270 rotated case, x and y are assumed
2382  * to be already rotated to match the rotated GTT view, and
2383  * pitch is the tile_height aligned framebuffer height.
2384  */
2385 u32 intel_compute_tile_offset(int *x, int *y,
2386                               const struct drm_framebuffer *fb, int plane,
2387                               unsigned int pitch,
2388                               unsigned int rotation)
2389 {
2390         const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2391         uint64_t fb_modifier = fb->modifier[plane];
2392         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2393         u32 offset, offset_aligned, alignment;
2394
2395         alignment = intel_surf_alignment(dev_priv, fb_modifier);
2396         if (alignment)
2397                 alignment--;
2398
2399         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2400                 unsigned int tile_size, tile_width, tile_height;
2401                 unsigned int tile_rows, tiles, pitch_tiles;
2402
2403                 tile_size = intel_tile_size(dev_priv);
2404                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2405                                 fb_modifier, cpp);
2406
2407                 if (intel_rotation_90_or_270(rotation)) {
2408                         pitch_tiles = pitch / tile_height;
2409                         swap(tile_width, tile_height);
2410                 } else {
2411                         pitch_tiles = pitch / (tile_width * cpp);
2412                 }
2413
2414                 tile_rows = *y / tile_height;
2415                 *y %= tile_height;
2416
2417                 tiles = *x / tile_width;
2418                 *x %= tile_width;
2419
2420                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2421                 offset_aligned = offset & ~alignment;
2422
2423                 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2424                                          tile_size, pitch_tiles,
2425                                          offset, offset_aligned);
2426         } else {
2427                 offset = *y * pitch + *x * cpp;
2428                 offset_aligned = offset & ~alignment;
2429
2430                 *y = (offset & alignment) / pitch;
2431                 *x = ((offset & alignment) - *y * pitch) / cpp;
2432         }
2433
2434         return offset_aligned;
2435 }
2436
2437 static int i9xx_format_to_fourcc(int format)
2438 {
2439         switch (format) {
2440         case DISPPLANE_8BPP:
2441                 return DRM_FORMAT_C8;
2442         case DISPPLANE_BGRX555:
2443                 return DRM_FORMAT_XRGB1555;
2444         case DISPPLANE_BGRX565:
2445                 return DRM_FORMAT_RGB565;
2446         default:
2447         case DISPPLANE_BGRX888:
2448                 return DRM_FORMAT_XRGB8888;
2449         case DISPPLANE_RGBX888:
2450                 return DRM_FORMAT_XBGR8888;
2451         case DISPPLANE_BGRX101010:
2452                 return DRM_FORMAT_XRGB2101010;
2453         case DISPPLANE_RGBX101010:
2454                 return DRM_FORMAT_XBGR2101010;
2455         }
2456 }
2457
2458 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2459 {
2460         switch (format) {
2461         case PLANE_CTL_FORMAT_RGB_565:
2462                 return DRM_FORMAT_RGB565;
2463         default:
2464         case PLANE_CTL_FORMAT_XRGB_8888:
2465                 if (rgb_order) {
2466                         if (alpha)
2467                                 return DRM_FORMAT_ABGR8888;
2468                         else
2469                                 return DRM_FORMAT_XBGR8888;
2470                 } else {
2471                         if (alpha)
2472                                 return DRM_FORMAT_ARGB8888;
2473                         else
2474                                 return DRM_FORMAT_XRGB8888;
2475                 }
2476         case PLANE_CTL_FORMAT_XRGB_2101010:
2477                 if (rgb_order)
2478                         return DRM_FORMAT_XBGR2101010;
2479                 else
2480                         return DRM_FORMAT_XRGB2101010;
2481         }
2482 }
2483
2484 static bool
2485 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2486                               struct intel_initial_plane_config *plane_config)
2487 {
2488         struct drm_device *dev = crtc->base.dev;
2489         struct drm_i915_private *dev_priv = to_i915(dev);
2490         struct drm_i915_gem_object *obj = NULL;
2491         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2492         struct drm_framebuffer *fb = &plane_config->fb->base;
2493         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2494         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2495                                     PAGE_SIZE);
2496
2497         size_aligned -= base_aligned;
2498
2499         if (plane_config->size == 0)
2500                 return false;
2501
2502         /* If the FB is too big, just don't use it since fbdev is not very
2503          * important and we should probably use that space with FBC or other
2504          * features. */
2505         if (size_aligned * 2 > dev_priv->ggtt.stolen_usable_size)
2506                 return false;
2507
2508         mutex_lock(&dev->struct_mutex);
2509
2510         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2511                                                              base_aligned,
2512                                                              base_aligned,
2513                                                              size_aligned);
2514         if (!obj) {
2515                 mutex_unlock(&dev->struct_mutex);
2516                 return false;
2517         }
2518
2519         obj->tiling_mode = plane_config->tiling;
2520         if (obj->tiling_mode == I915_TILING_X)
2521                 obj->stride = fb->pitches[0];
2522
2523         mode_cmd.pixel_format = fb->pixel_format;
2524         mode_cmd.width = fb->width;
2525         mode_cmd.height = fb->height;
2526         mode_cmd.pitches[0] = fb->pitches[0];
2527         mode_cmd.modifier[0] = fb->modifier[0];
2528         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2529
2530         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2531                                    &mode_cmd, obj)) {
2532                 DRM_DEBUG_KMS("intel fb init failed\n");
2533                 goto out_unref_obj;
2534         }
2535
2536         mutex_unlock(&dev->struct_mutex);
2537
2538         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2539         return true;
2540
2541 out_unref_obj:
2542         drm_gem_object_unreference(&obj->base);
2543         mutex_unlock(&dev->struct_mutex);
2544         return false;
2545 }
2546
2547 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2548 static void
2549 update_state_fb(struct drm_plane *plane)
2550 {
2551         if (plane->fb == plane->state->fb)
2552                 return;
2553
2554         if (plane->state->fb)
2555                 drm_framebuffer_unreference(plane->state->fb);
2556         plane->state->fb = plane->fb;
2557         if (plane->state->fb)
2558                 drm_framebuffer_reference(plane->state->fb);
2559 }
2560
2561 static void
2562 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2563                              struct intel_initial_plane_config *plane_config)
2564 {
2565         struct drm_device *dev = intel_crtc->base.dev;
2566         struct drm_i915_private *dev_priv = dev->dev_private;
2567         struct drm_crtc *c;
2568         struct intel_crtc *i;
2569         struct drm_i915_gem_object *obj;
2570         struct drm_plane *primary = intel_crtc->base.primary;
2571         struct drm_plane_state *plane_state = primary->state;
2572         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2573         struct intel_plane *intel_plane = to_intel_plane(primary);
2574         struct intel_plane_state *intel_state =
2575                 to_intel_plane_state(plane_state);
2576         struct drm_framebuffer *fb;
2577
2578         if (!plane_config->fb)
2579                 return;
2580
2581         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2582                 fb = &plane_config->fb->base;
2583                 goto valid_fb;
2584         }
2585
2586         kfree(plane_config->fb);
2587
2588         /*
2589          * Failed to alloc the obj, check to see if we should share
2590          * an fb with another CRTC instead
2591          */
2592         for_each_crtc(dev, c) {
2593                 i = to_intel_crtc(c);
2594
2595                 if (c == &intel_crtc->base)
2596                         continue;
2597
2598                 if (!i->active)
2599                         continue;
2600
2601                 fb = c->primary->fb;
2602                 if (!fb)
2603                         continue;
2604
2605                 obj = intel_fb_obj(fb);
2606                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2607                         drm_framebuffer_reference(fb);
2608                         goto valid_fb;
2609                 }
2610         }
2611
2612         /*
2613          * We've failed to reconstruct the BIOS FB.  Current display state
2614          * indicates that the primary plane is visible, but has a NULL FB,
2615          * which will lead to problems later if we don't fix it up.  The
2616          * simplest solution is to just disable the primary plane now and
2617          * pretend the BIOS never had it enabled.
2618          */
2619         to_intel_plane_state(plane_state)->visible = false;
2620         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2621         intel_pre_disable_primary_noatomic(&intel_crtc->base);
2622         intel_plane->disable_plane(primary, &intel_crtc->base);
2623
2624         return;
2625
2626 valid_fb:
2627         plane_state->src_x = 0;
2628         plane_state->src_y = 0;
2629         plane_state->src_w = fb->width << 16;
2630         plane_state->src_h = fb->height << 16;
2631
2632         plane_state->crtc_x = 0;
2633         plane_state->crtc_y = 0;
2634         plane_state->crtc_w = fb->width;
2635         plane_state->crtc_h = fb->height;
2636
2637         intel_state->src.x1 = plane_state->src_x;
2638         intel_state->src.y1 = plane_state->src_y;
2639         intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2640         intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2641         intel_state->dst.x1 = plane_state->crtc_x;
2642         intel_state->dst.y1 = plane_state->crtc_y;
2643         intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2644         intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2645
2646         obj = intel_fb_obj(fb);
2647         if (obj->tiling_mode != I915_TILING_NONE)
2648                 dev_priv->preserve_bios_swizzle = true;
2649
2650         drm_framebuffer_reference(fb);
2651         primary->fb = primary->state->fb = fb;
2652         primary->crtc = primary->state->crtc = &intel_crtc->base;
2653         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2654         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2655 }
2656
2657 static void i9xx_update_primary_plane(struct drm_plane *primary,
2658                                       const struct intel_crtc_state *crtc_state,
2659                                       const struct intel_plane_state *plane_state)
2660 {
2661         struct drm_device *dev = primary->dev;
2662         struct drm_i915_private *dev_priv = dev->dev_private;
2663         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2664         struct drm_framebuffer *fb = plane_state->base.fb;
2665         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2666         int plane = intel_crtc->plane;
2667         u32 linear_offset;
2668         u32 dspcntr;
2669         i915_reg_t reg = DSPCNTR(plane);
2670         unsigned int rotation = plane_state->base.rotation;
2671         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2672         int x = plane_state->src.x1 >> 16;
2673         int y = plane_state->src.y1 >> 16;
2674
2675         dspcntr = DISPPLANE_GAMMA_ENABLE;
2676
2677         dspcntr |= DISPLAY_PLANE_ENABLE;
2678
2679         if (INTEL_INFO(dev)->gen < 4) {
2680                 if (intel_crtc->pipe == PIPE_B)
2681                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2682
2683                 /* pipesrc and dspsize control the size that is scaled from,
2684                  * which should always be the user's requested size.
2685                  */
2686                 I915_WRITE(DSPSIZE(plane),
2687                            ((crtc_state->pipe_src_h - 1) << 16) |
2688                            (crtc_state->pipe_src_w - 1));
2689                 I915_WRITE(DSPPOS(plane), 0);
2690         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2691                 I915_WRITE(PRIMSIZE(plane),
2692                            ((crtc_state->pipe_src_h - 1) << 16) |
2693                            (crtc_state->pipe_src_w - 1));
2694                 I915_WRITE(PRIMPOS(plane), 0);
2695                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2696         }
2697
2698         switch (fb->pixel_format) {
2699         case DRM_FORMAT_C8:
2700                 dspcntr |= DISPPLANE_8BPP;
2701                 break;
2702         case DRM_FORMAT_XRGB1555:
2703                 dspcntr |= DISPPLANE_BGRX555;
2704                 break;
2705         case DRM_FORMAT_RGB565:
2706                 dspcntr |= DISPPLANE_BGRX565;
2707                 break;
2708         case DRM_FORMAT_XRGB8888:
2709                 dspcntr |= DISPPLANE_BGRX888;
2710                 break;
2711         case DRM_FORMAT_XBGR8888:
2712                 dspcntr |= DISPPLANE_RGBX888;
2713                 break;
2714         case DRM_FORMAT_XRGB2101010:
2715                 dspcntr |= DISPPLANE_BGRX101010;
2716                 break;
2717         case DRM_FORMAT_XBGR2101010:
2718                 dspcntr |= DISPPLANE_RGBX101010;
2719                 break;
2720         default:
2721                 BUG();
2722         }
2723
2724         if (INTEL_INFO(dev)->gen >= 4 &&
2725             obj->tiling_mode != I915_TILING_NONE)
2726                 dspcntr |= DISPPLANE_TILED;
2727
2728         if (IS_G4X(dev))
2729                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2730
2731         linear_offset = y * fb->pitches[0] + x * cpp;
2732
2733         if (INTEL_INFO(dev)->gen >= 4) {
2734                 intel_crtc->dspaddr_offset =
2735                         intel_compute_tile_offset(&x, &y, fb, 0,
2736                                                   fb->pitches[0], rotation);
2737                 linear_offset -= intel_crtc->dspaddr_offset;
2738         } else {
2739                 intel_crtc->dspaddr_offset = linear_offset;
2740         }
2741
2742         if (rotation == BIT(DRM_ROTATE_180)) {
2743                 dspcntr |= DISPPLANE_ROTATE_180;
2744
2745                 x += (crtc_state->pipe_src_w - 1);
2746                 y += (crtc_state->pipe_src_h - 1);
2747
2748                 /* Finding the last pixel of the last line of the display
2749                 data and adding to linear_offset*/
2750                 linear_offset +=
2751                         (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2752                         (crtc_state->pipe_src_w - 1) * cpp;
2753         }
2754
2755         intel_crtc->adjusted_x = x;
2756         intel_crtc->adjusted_y = y;
2757
2758         I915_WRITE(reg, dspcntr);
2759
2760         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2761         if (INTEL_INFO(dev)->gen >= 4) {
2762                 I915_WRITE(DSPSURF(plane),
2763                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2764                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2765                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2766         } else
2767                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2768         POSTING_READ(reg);
2769 }
2770
2771 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2772                                        struct drm_crtc *crtc)
2773 {
2774         struct drm_device *dev = crtc->dev;
2775         struct drm_i915_private *dev_priv = dev->dev_private;
2776         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2777         int plane = intel_crtc->plane;
2778
2779         I915_WRITE(DSPCNTR(plane), 0);
2780         if (INTEL_INFO(dev_priv)->gen >= 4)
2781                 I915_WRITE(DSPSURF(plane), 0);
2782         else
2783                 I915_WRITE(DSPADDR(plane), 0);
2784         POSTING_READ(DSPCNTR(plane));
2785 }
2786
2787 static void ironlake_update_primary_plane(struct drm_plane *primary,
2788                                           const struct intel_crtc_state *crtc_state,
2789                                           const struct intel_plane_state *plane_state)
2790 {
2791         struct drm_device *dev = primary->dev;
2792         struct drm_i915_private *dev_priv = dev->dev_private;
2793         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2794         struct drm_framebuffer *fb = plane_state->base.fb;
2795         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2796         int plane = intel_crtc->plane;
2797         u32 linear_offset;
2798         u32 dspcntr;
2799         i915_reg_t reg = DSPCNTR(plane);
2800         unsigned int rotation = plane_state->base.rotation;
2801         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2802         int x = plane_state->src.x1 >> 16;
2803         int y = plane_state->src.y1 >> 16;
2804
2805         dspcntr = DISPPLANE_GAMMA_ENABLE;
2806         dspcntr |= DISPLAY_PLANE_ENABLE;
2807
2808         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2809                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2810
2811         switch (fb->pixel_format) {
2812         case DRM_FORMAT_C8:
2813                 dspcntr |= DISPPLANE_8BPP;
2814                 break;
2815         case DRM_FORMAT_RGB565:
2816                 dspcntr |= DISPPLANE_BGRX565;
2817                 break;
2818         case DRM_FORMAT_XRGB8888:
2819                 dspcntr |= DISPPLANE_BGRX888;
2820                 break;
2821         case DRM_FORMAT_XBGR8888:
2822                 dspcntr |= DISPPLANE_RGBX888;
2823                 break;
2824         case DRM_FORMAT_XRGB2101010:
2825                 dspcntr |= DISPPLANE_BGRX101010;
2826                 break;
2827         case DRM_FORMAT_XBGR2101010:
2828                 dspcntr |= DISPPLANE_RGBX101010;
2829                 break;
2830         default:
2831                 BUG();
2832         }
2833
2834         if (obj->tiling_mode != I915_TILING_NONE)
2835                 dspcntr |= DISPPLANE_TILED;
2836
2837         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2838                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2839
2840         linear_offset = y * fb->pitches[0] + x * cpp;
2841         intel_crtc->dspaddr_offset =
2842                 intel_compute_tile_offset(&x, &y, fb, 0,
2843                                           fb->pitches[0], rotation);
2844         linear_offset -= intel_crtc->dspaddr_offset;
2845         if (rotation == BIT(DRM_ROTATE_180)) {
2846                 dspcntr |= DISPPLANE_ROTATE_180;
2847
2848                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2849                         x += (crtc_state->pipe_src_w - 1);
2850                         y += (crtc_state->pipe_src_h - 1);
2851
2852                         /* Finding the last pixel of the last line of the display
2853                         data and adding to linear_offset*/
2854                         linear_offset +=
2855                                 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2856                                 (crtc_state->pipe_src_w - 1) * cpp;
2857                 }
2858         }
2859
2860         intel_crtc->adjusted_x = x;
2861         intel_crtc->adjusted_y = y;
2862
2863         I915_WRITE(reg, dspcntr);
2864
2865         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2866         I915_WRITE(DSPSURF(plane),
2867                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2868         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2869                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2870         } else {
2871                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2872                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2873         }
2874         POSTING_READ(reg);
2875 }
2876
2877 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2878                               uint64_t fb_modifier, uint32_t pixel_format)
2879 {
2880         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2881                 return 64;
2882         } else {
2883                 int cpp = drm_format_plane_cpp(pixel_format, 0);
2884
2885                 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2886         }
2887 }
2888
2889 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2890                            struct drm_i915_gem_object *obj,
2891                            unsigned int plane)
2892 {
2893         struct i915_ggtt_view view;
2894         struct i915_vma *vma;
2895         u64 offset;
2896
2897         intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2898                                 intel_plane->base.state->rotation);
2899
2900         vma = i915_gem_obj_to_ggtt_view(obj, &view);
2901         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2902                 view.type))
2903                 return -1;
2904
2905         offset = vma->node.start;
2906
2907         if (plane == 1) {
2908                 offset += vma->ggtt_view.params.rotated.uv_start_page *
2909                           PAGE_SIZE;
2910         }
2911
2912         WARN_ON(upper_32_bits(offset));
2913
2914         return lower_32_bits(offset);
2915 }
2916
2917 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2918 {
2919         struct drm_device *dev = intel_crtc->base.dev;
2920         struct drm_i915_private *dev_priv = dev->dev_private;
2921
2922         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2923         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2924         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2925 }
2926
2927 /*
2928  * This function detaches (aka. unbinds) unused scalers in hardware
2929  */
2930 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2931 {
2932         struct intel_crtc_scaler_state *scaler_state;
2933         int i;
2934
2935         scaler_state = &intel_crtc->config->scaler_state;
2936
2937         /* loop through and disable scalers that aren't in use */
2938         for (i = 0; i < intel_crtc->num_scalers; i++) {
2939                 if (!scaler_state->scalers[i].in_use)
2940                         skl_detach_scaler(intel_crtc, i);
2941         }
2942 }
2943
2944 u32 skl_plane_ctl_format(uint32_t pixel_format)
2945 {
2946         switch (pixel_format) {
2947         case DRM_FORMAT_C8:
2948                 return PLANE_CTL_FORMAT_INDEXED;
2949         case DRM_FORMAT_RGB565:
2950                 return PLANE_CTL_FORMAT_RGB_565;
2951         case DRM_FORMAT_XBGR8888:
2952                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2953         case DRM_FORMAT_XRGB8888:
2954                 return PLANE_CTL_FORMAT_XRGB_8888;
2955         /*
2956          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2957          * to be already pre-multiplied. We need to add a knob (or a different
2958          * DRM_FORMAT) for user-space to configure that.
2959          */
2960         case DRM_FORMAT_ABGR8888:
2961                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2962                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2963         case DRM_FORMAT_ARGB8888:
2964                 return PLANE_CTL_FORMAT_XRGB_8888 |
2965                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2966         case DRM_FORMAT_XRGB2101010:
2967                 return PLANE_CTL_FORMAT_XRGB_2101010;
2968         case DRM_FORMAT_XBGR2101010:
2969                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2970         case DRM_FORMAT_YUYV:
2971                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2972         case DRM_FORMAT_YVYU:
2973                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2974         case DRM_FORMAT_UYVY:
2975                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2976         case DRM_FORMAT_VYUY:
2977                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2978         default:
2979                 MISSING_CASE(pixel_format);
2980         }
2981
2982         return 0;
2983 }
2984
2985 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2986 {
2987         switch (fb_modifier) {
2988         case DRM_FORMAT_MOD_NONE:
2989                 break;
2990         case I915_FORMAT_MOD_X_TILED:
2991                 return PLANE_CTL_TILED_X;
2992         case I915_FORMAT_MOD_Y_TILED:
2993                 return PLANE_CTL_TILED_Y;
2994         case I915_FORMAT_MOD_Yf_TILED:
2995                 return PLANE_CTL_TILED_YF;
2996         default:
2997                 MISSING_CASE(fb_modifier);
2998         }
2999
3000         return 0;
3001 }
3002
3003 u32 skl_plane_ctl_rotation(unsigned int rotation)
3004 {
3005         switch (rotation) {
3006         case BIT(DRM_ROTATE_0):
3007                 break;
3008         /*
3009          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3010          * while i915 HW rotation is clockwise, thats why this swapping.
3011          */
3012         case BIT(DRM_ROTATE_90):
3013                 return PLANE_CTL_ROTATE_270;
3014         case BIT(DRM_ROTATE_180):
3015                 return PLANE_CTL_ROTATE_180;
3016         case BIT(DRM_ROTATE_270):
3017                 return PLANE_CTL_ROTATE_90;
3018         default:
3019                 MISSING_CASE(rotation);
3020         }
3021
3022         return 0;
3023 }
3024
3025 static void skylake_update_primary_plane(struct drm_plane *plane,
3026                                          const struct intel_crtc_state *crtc_state,
3027                                          const struct intel_plane_state *plane_state)
3028 {
3029         struct drm_device *dev = plane->dev;
3030         struct drm_i915_private *dev_priv = dev->dev_private;
3031         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3032         struct drm_framebuffer *fb = plane_state->base.fb;
3033         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3034         int pipe = intel_crtc->pipe;
3035         u32 plane_ctl, stride_div, stride;
3036         u32 tile_height, plane_offset, plane_size;
3037         unsigned int rotation = plane_state->base.rotation;
3038         int x_offset, y_offset;
3039         u32 surf_addr;
3040         int scaler_id = plane_state->scaler_id;
3041         int src_x = plane_state->src.x1 >> 16;
3042         int src_y = plane_state->src.y1 >> 16;
3043         int src_w = drm_rect_width(&plane_state->src) >> 16;
3044         int src_h = drm_rect_height(&plane_state->src) >> 16;
3045         int dst_x = plane_state->dst.x1;
3046         int dst_y = plane_state->dst.y1;
3047         int dst_w = drm_rect_width(&plane_state->dst);
3048         int dst_h = drm_rect_height(&plane_state->dst);
3049
3050         plane_ctl = PLANE_CTL_ENABLE |
3051                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3052                     PLANE_CTL_PIPE_CSC_ENABLE;
3053
3054         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3055         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3056         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3057         plane_ctl |= skl_plane_ctl_rotation(rotation);
3058
3059         stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3060                                                fb->pixel_format);
3061         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3062
3063         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3064
3065         if (intel_rotation_90_or_270(rotation)) {
3066                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3067
3068                 /* stride = Surface height in tiles */
3069                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3070                 stride = DIV_ROUND_UP(fb->height, tile_height);
3071                 x_offset = stride * tile_height - src_y - src_h;
3072                 y_offset = src_x;
3073                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3074         } else {
3075                 stride = fb->pitches[0] / stride_div;
3076                 x_offset = src_x;
3077                 y_offset = src_y;
3078                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3079         }
3080         plane_offset = y_offset << 16 | x_offset;
3081
3082         intel_crtc->adjusted_x = x_offset;
3083         intel_crtc->adjusted_y = y_offset;
3084
3085         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3086         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3087         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3088         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3089
3090         if (scaler_id >= 0) {
3091                 uint32_t ps_ctrl = 0;
3092
3093                 WARN_ON(!dst_w || !dst_h);
3094                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3095                         crtc_state->scaler_state.scalers[scaler_id].mode;
3096                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3097                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3098                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3099                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3100                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3101         } else {
3102                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3103         }
3104
3105         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3106
3107         POSTING_READ(PLANE_SURF(pipe, 0));
3108 }
3109
3110 static void skylake_disable_primary_plane(struct drm_plane *primary,
3111                                           struct drm_crtc *crtc)
3112 {
3113         struct drm_device *dev = crtc->dev;
3114         struct drm_i915_private *dev_priv = dev->dev_private;
3115         int pipe = to_intel_crtc(crtc)->pipe;
3116
3117         I915_WRITE(PLANE_CTL(pipe, 0), 0);
3118         I915_WRITE(PLANE_SURF(pipe, 0), 0);
3119         POSTING_READ(PLANE_SURF(pipe, 0));
3120 }
3121
3122 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3123 static int
3124 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3125                            int x, int y, enum mode_set_atomic state)
3126 {
3127         /* Support for kgdboc is disabled, this needs a major rework. */
3128         DRM_ERROR("legacy panic handler not supported any more.\n");
3129
3130         return -ENODEV;
3131 }
3132
3133 static void intel_complete_page_flips(struct drm_device *dev)
3134 {
3135         struct drm_crtc *crtc;
3136
3137         for_each_crtc(dev, crtc) {
3138                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3139                 enum plane plane = intel_crtc->plane;
3140
3141                 intel_prepare_page_flip(dev, plane);
3142                 intel_finish_page_flip_plane(dev, plane);
3143         }
3144 }
3145
3146 static void intel_update_primary_planes(struct drm_device *dev)
3147 {
3148         struct drm_crtc *crtc;
3149
3150         for_each_crtc(dev, crtc) {
3151                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3152                 struct intel_plane_state *plane_state;
3153
3154                 drm_modeset_lock_crtc(crtc, &plane->base);
3155                 plane_state = to_intel_plane_state(plane->base.state);
3156
3157                 if (plane_state->visible)
3158                         plane->update_plane(&plane->base,
3159                                             to_intel_crtc_state(crtc->state),
3160                                             plane_state);
3161
3162                 drm_modeset_unlock_crtc(crtc);
3163         }
3164 }
3165
3166 void intel_prepare_reset(struct drm_device *dev)
3167 {
3168         /* no reset support for gen2 */
3169         if (IS_GEN2(dev))
3170                 return;
3171
3172         /* reset doesn't touch the display */
3173         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3174                 return;
3175
3176         drm_modeset_lock_all(dev);
3177         /*
3178          * Disabling the crtcs gracefully seems nicer. Also the
3179          * g33 docs say we should at least disable all the planes.
3180          */
3181         intel_display_suspend(dev);
3182 }
3183
3184 void intel_finish_reset(struct drm_device *dev)
3185 {
3186         struct drm_i915_private *dev_priv = to_i915(dev);
3187
3188         /*
3189          * Flips in the rings will be nuked by the reset,
3190          * so complete all pending flips so that user space
3191          * will get its events and not get stuck.
3192          */
3193         intel_complete_page_flips(dev);
3194
3195         /* no reset support for gen2 */
3196         if (IS_GEN2(dev))
3197                 return;
3198
3199         /* reset doesn't touch the display */
3200         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3201                 /*
3202                  * Flips in the rings have been nuked by the reset,
3203                  * so update the base address of all primary
3204                  * planes to the the last fb to make sure we're
3205                  * showing the correct fb after a reset.
3206                  *
3207                  * FIXME: Atomic will make this obsolete since we won't schedule
3208                  * CS-based flips (which might get lost in gpu resets) any more.
3209                  */
3210                 intel_update_primary_planes(dev);
3211                 return;
3212         }
3213
3214         /*
3215          * The display has been reset as well,
3216          * so need a full re-initialization.
3217          */
3218         intel_runtime_pm_disable_interrupts(dev_priv);
3219         intel_runtime_pm_enable_interrupts(dev_priv);
3220
3221         intel_modeset_init_hw(dev);
3222
3223         spin_lock_irq(&dev_priv->irq_lock);
3224         if (dev_priv->display.hpd_irq_setup)
3225                 dev_priv->display.hpd_irq_setup(dev);
3226         spin_unlock_irq(&dev_priv->irq_lock);
3227
3228         intel_display_resume(dev);
3229
3230         intel_hpd_init(dev_priv);
3231
3232         drm_modeset_unlock_all(dev);
3233 }
3234
3235 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3236 {
3237         struct drm_device *dev = crtc->dev;
3238         struct drm_i915_private *dev_priv = dev->dev_private;
3239         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3240         bool pending;
3241
3242         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3243             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3244                 return false;
3245
3246         spin_lock_irq(&dev->event_lock);
3247         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3248         spin_unlock_irq(&dev->event_lock);
3249
3250         return pending;
3251 }
3252
3253 static void intel_update_pipe_config(struct intel_crtc *crtc,
3254                                      struct intel_crtc_state *old_crtc_state)
3255 {
3256         struct drm_device *dev = crtc->base.dev;
3257         struct drm_i915_private *dev_priv = dev->dev_private;
3258         struct intel_crtc_state *pipe_config =
3259                 to_intel_crtc_state(crtc->base.state);
3260
3261         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3262         crtc->base.mode = crtc->base.state->mode;
3263
3264         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3265                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3266                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3267
3268         if (HAS_DDI(dev))
3269                 intel_color_set_csc(&crtc->base);
3270
3271         /*
3272          * Update pipe size and adjust fitter if needed: the reason for this is
3273          * that in compute_mode_changes we check the native mode (not the pfit
3274          * mode) to see if we can flip rather than do a full mode set. In the
3275          * fastboot case, we'll flip, but if we don't update the pipesrc and
3276          * pfit state, we'll end up with a big fb scanned out into the wrong
3277          * sized surface.
3278          */
3279
3280         I915_WRITE(PIPESRC(crtc->pipe),
3281                    ((pipe_config->pipe_src_w - 1) << 16) |
3282                    (pipe_config->pipe_src_h - 1));
3283
3284         /* on skylake this is done by detaching scalers */
3285         if (INTEL_INFO(dev)->gen >= 9) {
3286                 skl_detach_scalers(crtc);
3287
3288                 if (pipe_config->pch_pfit.enabled)
3289                         skylake_pfit_enable(crtc);
3290         } else if (HAS_PCH_SPLIT(dev)) {
3291                 if (pipe_config->pch_pfit.enabled)
3292                         ironlake_pfit_enable(crtc);
3293                 else if (old_crtc_state->pch_pfit.enabled)
3294                         ironlake_pfit_disable(crtc, true);
3295         }
3296 }
3297
3298 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3299 {
3300         struct drm_device *dev = crtc->dev;
3301         struct drm_i915_private *dev_priv = dev->dev_private;
3302         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3303         int pipe = intel_crtc->pipe;
3304         i915_reg_t reg;
3305         u32 temp;
3306
3307         /* enable normal train */
3308         reg = FDI_TX_CTL(pipe);
3309         temp = I915_READ(reg);
3310         if (IS_IVYBRIDGE(dev)) {
3311                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3312                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3313         } else {
3314                 temp &= ~FDI_LINK_TRAIN_NONE;
3315                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3316         }
3317         I915_WRITE(reg, temp);
3318
3319         reg = FDI_RX_CTL(pipe);
3320         temp = I915_READ(reg);
3321         if (HAS_PCH_CPT(dev)) {
3322                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3323                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3324         } else {
3325                 temp &= ~FDI_LINK_TRAIN_NONE;
3326                 temp |= FDI_LINK_TRAIN_NONE;
3327         }
3328         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3329
3330         /* wait one idle pattern time */
3331         POSTING_READ(reg);
3332         udelay(1000);
3333
3334         /* IVB wants error correction enabled */
3335         if (IS_IVYBRIDGE(dev))
3336                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3337                            FDI_FE_ERRC_ENABLE);
3338 }
3339
3340 /* The FDI link training functions for ILK/Ibexpeak. */
3341 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3342 {
3343         struct drm_device *dev = crtc->dev;
3344         struct drm_i915_private *dev_priv = dev->dev_private;
3345         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3346         int pipe = intel_crtc->pipe;
3347         i915_reg_t reg;
3348         u32 temp, tries;
3349
3350         /* FDI needs bits from pipe first */
3351         assert_pipe_enabled(dev_priv, pipe);
3352
3353         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3354            for train result */
3355         reg = FDI_RX_IMR(pipe);
3356         temp = I915_READ(reg);
3357         temp &= ~FDI_RX_SYMBOL_LOCK;
3358         temp &= ~FDI_RX_BIT_LOCK;
3359         I915_WRITE(reg, temp);
3360         I915_READ(reg);
3361         udelay(150);
3362
3363         /* enable CPU FDI TX and PCH FDI RX */
3364         reg = FDI_TX_CTL(pipe);
3365         temp = I915_READ(reg);
3366         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3367         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3368         temp &= ~FDI_LINK_TRAIN_NONE;
3369         temp |= FDI_LINK_TRAIN_PATTERN_1;
3370         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3371
3372         reg = FDI_RX_CTL(pipe);
3373         temp = I915_READ(reg);
3374         temp &= ~FDI_LINK_TRAIN_NONE;
3375         temp |= FDI_LINK_TRAIN_PATTERN_1;
3376         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3377
3378         POSTING_READ(reg);
3379         udelay(150);
3380
3381         /* Ironlake workaround, enable clock pointer after FDI enable*/
3382         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3383         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3384                    FDI_RX_PHASE_SYNC_POINTER_EN);
3385
3386         reg = FDI_RX_IIR(pipe);
3387         for (tries = 0; tries < 5; tries++) {
3388                 temp = I915_READ(reg);
3389                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3390
3391                 if ((temp & FDI_RX_BIT_LOCK)) {
3392                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3393                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3394                         break;
3395                 }
3396         }
3397         if (tries == 5)
3398                 DRM_ERROR("FDI train 1 fail!\n");
3399
3400         /* Train 2 */
3401         reg = FDI_TX_CTL(pipe);
3402         temp = I915_READ(reg);
3403         temp &= ~FDI_LINK_TRAIN_NONE;
3404         temp |= FDI_LINK_TRAIN_PATTERN_2;
3405         I915_WRITE(reg, temp);
3406
3407         reg = FDI_RX_CTL(pipe);
3408         temp = I915_READ(reg);
3409         temp &= ~FDI_LINK_TRAIN_NONE;
3410         temp |= FDI_LINK_TRAIN_PATTERN_2;
3411         I915_WRITE(reg, temp);
3412
3413         POSTING_READ(reg);
3414         udelay(150);
3415
3416         reg = FDI_RX_IIR(pipe);
3417         for (tries = 0; tries < 5; tries++) {
3418                 temp = I915_READ(reg);
3419                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3420
3421                 if (temp & FDI_RX_SYMBOL_LOCK) {
3422                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3423                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3424                         break;
3425                 }
3426         }
3427         if (tries == 5)
3428                 DRM_ERROR("FDI train 2 fail!\n");
3429
3430         DRM_DEBUG_KMS("FDI train done\n");
3431
3432 }
3433
3434 static const int snb_b_fdi_train_param[] = {
3435         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3436         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3437         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3438         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3439 };
3440
3441 /* The FDI link training functions for SNB/Cougarpoint. */
3442 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3443 {
3444         struct drm_device *dev = crtc->dev;
3445         struct drm_i915_private *dev_priv = dev->dev_private;
3446         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3447         int pipe = intel_crtc->pipe;
3448         i915_reg_t reg;
3449         u32 temp, i, retry;
3450
3451         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3452            for train result */
3453         reg = FDI_RX_IMR(pipe);
3454         temp = I915_READ(reg);
3455         temp &= ~FDI_RX_SYMBOL_LOCK;
3456         temp &= ~FDI_RX_BIT_LOCK;
3457         I915_WRITE(reg, temp);
3458
3459         POSTING_READ(reg);
3460         udelay(150);
3461
3462         /* enable CPU FDI TX and PCH FDI RX */
3463         reg = FDI_TX_CTL(pipe);
3464         temp = I915_READ(reg);
3465         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3466         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3467         temp &= ~FDI_LINK_TRAIN_NONE;
3468         temp |= FDI_LINK_TRAIN_PATTERN_1;
3469         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3470         /* SNB-B */
3471         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3472         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3473
3474         I915_WRITE(FDI_RX_MISC(pipe),
3475                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3476
3477         reg = FDI_RX_CTL(pipe);
3478         temp = I915_READ(reg);
3479         if (HAS_PCH_CPT(dev)) {
3480                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3481                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3482         } else {
3483                 temp &= ~FDI_LINK_TRAIN_NONE;
3484                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3485         }
3486         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3487
3488         POSTING_READ(reg);
3489         udelay(150);
3490
3491         for (i = 0; i < 4; i++) {
3492                 reg = FDI_TX_CTL(pipe);
3493                 temp = I915_READ(reg);
3494                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3495                 temp |= snb_b_fdi_train_param[i];
3496                 I915_WRITE(reg, temp);
3497
3498                 POSTING_READ(reg);
3499                 udelay(500);
3500
3501                 for (retry = 0; retry < 5; retry++) {
3502                         reg = FDI_RX_IIR(pipe);
3503                         temp = I915_READ(reg);
3504                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3505                         if (temp & FDI_RX_BIT_LOCK) {
3506                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3507                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3508                                 break;
3509                         }
3510                         udelay(50);
3511                 }
3512                 if (retry < 5)
3513                         break;
3514         }
3515         if (i == 4)
3516                 DRM_ERROR("FDI train 1 fail!\n");
3517
3518         /* Train 2 */
3519         reg = FDI_TX_CTL(pipe);
3520         temp = I915_READ(reg);
3521         temp &= ~FDI_LINK_TRAIN_NONE;
3522         temp |= FDI_LINK_TRAIN_PATTERN_2;
3523         if (IS_GEN6(dev)) {
3524                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3525                 /* SNB-B */
3526                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3527         }
3528         I915_WRITE(reg, temp);
3529
3530         reg = FDI_RX_CTL(pipe);
3531         temp = I915_READ(reg);
3532         if (HAS_PCH_CPT(dev)) {
3533                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3534                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3535         } else {
3536                 temp &= ~FDI_LINK_TRAIN_NONE;
3537                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3538         }
3539         I915_WRITE(reg, temp);
3540
3541         POSTING_READ(reg);
3542         udelay(150);
3543
3544         for (i = 0; i < 4; i++) {
3545                 reg = FDI_TX_CTL(pipe);
3546                 temp = I915_READ(reg);
3547                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3548                 temp |= snb_b_fdi_train_param[i];
3549                 I915_WRITE(reg, temp);
3550
3551                 POSTING_READ(reg);
3552                 udelay(500);
3553
3554                 for (retry = 0; retry < 5; retry++) {
3555                         reg = FDI_RX_IIR(pipe);
3556                         temp = I915_READ(reg);
3557                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3558                         if (temp & FDI_RX_SYMBOL_LOCK) {
3559                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3560                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3561                                 break;
3562                         }
3563                         udelay(50);
3564                 }
3565                 if (retry < 5)
3566                         break;
3567         }
3568         if (i == 4)
3569                 DRM_ERROR("FDI train 2 fail!\n");
3570
3571         DRM_DEBUG_KMS("FDI train done.\n");
3572 }
3573
3574 /* Manual link training for Ivy Bridge A0 parts */
3575 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3576 {
3577         struct drm_device *dev = crtc->dev;
3578         struct drm_i915_private *dev_priv = dev->dev_private;
3579         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3580         int pipe = intel_crtc->pipe;
3581         i915_reg_t reg;
3582         u32 temp, i, j;
3583
3584         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3585            for train result */
3586         reg = FDI_RX_IMR(pipe);
3587         temp = I915_READ(reg);
3588         temp &= ~FDI_RX_SYMBOL_LOCK;
3589         temp &= ~FDI_RX_BIT_LOCK;
3590         I915_WRITE(reg, temp);
3591
3592         POSTING_READ(reg);
3593         udelay(150);
3594
3595         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3596                       I915_READ(FDI_RX_IIR(pipe)));
3597
3598         /* Try each vswing and preemphasis setting twice before moving on */
3599         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3600                 /* disable first in case we need to retry */
3601                 reg = FDI_TX_CTL(pipe);
3602                 temp = I915_READ(reg);
3603                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3604                 temp &= ~FDI_TX_ENABLE;
3605                 I915_WRITE(reg, temp);
3606
3607                 reg = FDI_RX_CTL(pipe);
3608                 temp = I915_READ(reg);
3609                 temp &= ~FDI_LINK_TRAIN_AUTO;
3610                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3611                 temp &= ~FDI_RX_ENABLE;
3612                 I915_WRITE(reg, temp);
3613
3614                 /* enable CPU FDI TX and PCH FDI RX */
3615                 reg = FDI_TX_CTL(pipe);
3616                 temp = I915_READ(reg);
3617                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3618                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3619                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3620                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3621                 temp |= snb_b_fdi_train_param[j/2];
3622                 temp |= FDI_COMPOSITE_SYNC;
3623                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3624
3625                 I915_WRITE(FDI_RX_MISC(pipe),
3626                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3627
3628                 reg = FDI_RX_CTL(pipe);
3629                 temp = I915_READ(reg);
3630                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3631                 temp |= FDI_COMPOSITE_SYNC;
3632                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3633
3634                 POSTING_READ(reg);
3635                 udelay(1); /* should be 0.5us */
3636
3637                 for (i = 0; i < 4; i++) {
3638                         reg = FDI_RX_IIR(pipe);
3639                         temp = I915_READ(reg);
3640                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3641
3642                         if (temp & FDI_RX_BIT_LOCK ||
3643                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3644                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3645                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3646                                               i);
3647                                 break;
3648                         }
3649                         udelay(1); /* should be 0.5us */
3650                 }
3651                 if (i == 4) {
3652                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3653                         continue;
3654                 }
3655
3656                 /* Train 2 */
3657                 reg = FDI_TX_CTL(pipe);
3658                 temp = I915_READ(reg);
3659                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3660                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3661                 I915_WRITE(reg, temp);
3662
3663                 reg = FDI_RX_CTL(pipe);
3664                 temp = I915_READ(reg);
3665                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3666                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3667                 I915_WRITE(reg, temp);
3668
3669                 POSTING_READ(reg);
3670                 udelay(2); /* should be 1.5us */
3671
3672                 for (i = 0; i < 4; i++) {
3673                         reg = FDI_RX_IIR(pipe);
3674                         temp = I915_READ(reg);
3675                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3676
3677                         if (temp & FDI_RX_SYMBOL_LOCK ||
3678                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3679                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3680                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3681                                               i);
3682                                 goto train_done;
3683                         }
3684                         udelay(2); /* should be 1.5us */
3685                 }
3686                 if (i == 4)
3687                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3688         }
3689
3690 train_done:
3691         DRM_DEBUG_KMS("FDI train done.\n");
3692 }
3693
3694 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3695 {
3696         struct drm_device *dev = intel_crtc->base.dev;
3697         struct drm_i915_private *dev_priv = dev->dev_private;
3698         int pipe = intel_crtc->pipe;
3699         i915_reg_t reg;
3700         u32 temp;
3701
3702         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3703         reg = FDI_RX_CTL(pipe);
3704         temp = I915_READ(reg);
3705         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3706         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3707         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3708         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3709
3710         POSTING_READ(reg);
3711         udelay(200);
3712
3713         /* Switch from Rawclk to PCDclk */
3714         temp = I915_READ(reg);
3715         I915_WRITE(reg, temp | FDI_PCDCLK);
3716
3717         POSTING_READ(reg);
3718         udelay(200);
3719
3720         /* Enable CPU FDI TX PLL, always on for Ironlake */
3721         reg = FDI_TX_CTL(pipe);
3722         temp = I915_READ(reg);
3723         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3724                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3725
3726                 POSTING_READ(reg);
3727                 udelay(100);
3728         }
3729 }
3730
3731 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3732 {
3733         struct drm_device *dev = intel_crtc->base.dev;
3734         struct drm_i915_private *dev_priv = dev->dev_private;
3735         int pipe = intel_crtc->pipe;
3736         i915_reg_t reg;
3737         u32 temp;
3738
3739         /* Switch from PCDclk to Rawclk */
3740         reg = FDI_RX_CTL(pipe);
3741         temp = I915_READ(reg);
3742         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3743
3744         /* Disable CPU FDI TX PLL */
3745         reg = FDI_TX_CTL(pipe);
3746         temp = I915_READ(reg);
3747         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3748
3749         POSTING_READ(reg);
3750         udelay(100);
3751
3752         reg = FDI_RX_CTL(pipe);
3753         temp = I915_READ(reg);
3754         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3755
3756         /* Wait for the clocks to turn off. */
3757         POSTING_READ(reg);
3758         udelay(100);
3759 }
3760
3761 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3762 {
3763         struct drm_device *dev = crtc->dev;
3764         struct drm_i915_private *dev_priv = dev->dev_private;
3765         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3766         int pipe = intel_crtc->pipe;
3767         i915_reg_t reg;
3768         u32 temp;
3769
3770         /* disable CPU FDI tx and PCH FDI rx */
3771         reg = FDI_TX_CTL(pipe);
3772         temp = I915_READ(reg);
3773         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3774         POSTING_READ(reg);
3775
3776         reg = FDI_RX_CTL(pipe);
3777         temp = I915_READ(reg);
3778         temp &= ~(0x7 << 16);
3779         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3780         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3781
3782         POSTING_READ(reg);
3783         udelay(100);
3784
3785         /* Ironlake workaround, disable clock pointer after downing FDI */
3786         if (HAS_PCH_IBX(dev))
3787                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3788
3789         /* still set train pattern 1 */
3790         reg = FDI_TX_CTL(pipe);
3791         temp = I915_READ(reg);
3792         temp &= ~FDI_LINK_TRAIN_NONE;
3793         temp |= FDI_LINK_TRAIN_PATTERN_1;
3794         I915_WRITE(reg, temp);
3795
3796         reg = FDI_RX_CTL(pipe);
3797         temp = I915_READ(reg);
3798         if (HAS_PCH_CPT(dev)) {
3799                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3800                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3801         } else {
3802                 temp &= ~FDI_LINK_TRAIN_NONE;
3803                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3804         }
3805         /* BPC in FDI rx is consistent with that in PIPECONF */
3806         temp &= ~(0x07 << 16);
3807         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3808         I915_WRITE(reg, temp);
3809
3810         POSTING_READ(reg);
3811         udelay(100);
3812 }
3813
3814 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3815 {
3816         struct intel_crtc *crtc;
3817
3818         /* Note that we don't need to be called with mode_config.lock here
3819          * as our list of CRTC objects is static for the lifetime of the
3820          * device and so cannot disappear as we iterate. Similarly, we can
3821          * happily treat the predicates as racy, atomic checks as userspace
3822          * cannot claim and pin a new fb without at least acquring the
3823          * struct_mutex and so serialising with us.
3824          */
3825         for_each_intel_crtc(dev, crtc) {
3826                 if (atomic_read(&crtc->unpin_work_count) == 0)
3827                         continue;
3828
3829                 if (crtc->unpin_work)
3830                         intel_wait_for_vblank(dev, crtc->pipe);
3831
3832                 return true;
3833         }
3834
3835         return false;
3836 }
3837
3838 static void page_flip_completed(struct intel_crtc *intel_crtc)
3839 {
3840         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3841         struct intel_unpin_work *work = intel_crtc->unpin_work;
3842
3843         /* ensure that the unpin work is consistent wrt ->pending. */
3844         smp_rmb();
3845         intel_crtc->unpin_work = NULL;
3846
3847         if (work->event)
3848                 drm_send_vblank_event(intel_crtc->base.dev,
3849                                       intel_crtc->pipe,
3850                                       work->event);
3851
3852         drm_crtc_vblank_put(&intel_crtc->base);
3853
3854         wake_up_all(&dev_priv->pending_flip_queue);
3855         queue_work(dev_priv->wq, &work->work);
3856
3857         trace_i915_flip_complete(intel_crtc->plane,
3858                                  work->pending_flip_obj);
3859 }
3860
3861 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3862 {
3863         struct drm_device *dev = crtc->dev;
3864         struct drm_i915_private *dev_priv = dev->dev_private;
3865         long ret;
3866
3867         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3868
3869         ret = wait_event_interruptible_timeout(
3870                                         dev_priv->pending_flip_queue,
3871                                         !intel_crtc_has_pending_flip(crtc),
3872                                         60*HZ);
3873
3874         if (ret < 0)
3875                 return ret;
3876
3877         if (ret == 0) {
3878                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3879
3880                 spin_lock_irq(&dev->event_lock);
3881                 if (intel_crtc->unpin_work) {
3882                         WARN_ONCE(1, "Removing stuck page flip\n");
3883                         page_flip_completed(intel_crtc);
3884                 }
3885                 spin_unlock_irq(&dev->event_lock);
3886         }
3887
3888         return 0;
3889 }
3890
3891 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3892 {
3893         u32 temp;
3894
3895         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3896
3897         mutex_lock(&dev_priv->sb_lock);
3898
3899         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3900         temp |= SBI_SSCCTL_DISABLE;
3901         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3902
3903         mutex_unlock(&dev_priv->sb_lock);
3904 }
3905
3906 /* Program iCLKIP clock to the desired frequency */
3907 static void lpt_program_iclkip(struct drm_crtc *crtc)
3908 {
3909         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3910         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3911         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3912         u32 temp;
3913
3914         lpt_disable_iclkip(dev_priv);
3915
3916         /* The iCLK virtual clock root frequency is in MHz,
3917          * but the adjusted_mode->crtc_clock in in KHz. To get the
3918          * divisors, it is necessary to divide one by another, so we
3919          * convert the virtual clock precision to KHz here for higher
3920          * precision.
3921          */
3922         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
3923                 u32 iclk_virtual_root_freq = 172800 * 1000;
3924                 u32 iclk_pi_range = 64;
3925                 u32 desired_divisor;
3926
3927                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3928                                                     clock << auxdiv);
3929                 divsel = (desired_divisor / iclk_pi_range) - 2;
3930                 phaseinc = desired_divisor % iclk_pi_range;
3931
3932                 /*
3933                  * Near 20MHz is a corner case which is
3934                  * out of range for the 7-bit divisor
3935                  */
3936                 if (divsel <= 0x7f)
3937                         break;
3938         }
3939
3940         /* This should not happen with any sane values */
3941         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3942                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3943         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3944                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3945
3946         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3947                         clock,
3948                         auxdiv,
3949                         divsel,
3950                         phasedir,
3951                         phaseinc);
3952
3953         mutex_lock(&dev_priv->sb_lock);
3954
3955         /* Program SSCDIVINTPHASE6 */
3956         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3957         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3958         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3959         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3960         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3961         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3962         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3963         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3964
3965         /* Program SSCAUXDIV */
3966         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3967         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3968         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3969         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3970
3971         /* Enable modulator and associated divider */
3972         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3973         temp &= ~SBI_SSCCTL_DISABLE;
3974         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3975
3976         mutex_unlock(&dev_priv->sb_lock);
3977
3978         /* Wait for initialization time */
3979         udelay(24);
3980
3981         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3982 }
3983
3984 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3985 {
3986         u32 divsel, phaseinc, auxdiv;
3987         u32 iclk_virtual_root_freq = 172800 * 1000;
3988         u32 iclk_pi_range = 64;
3989         u32 desired_divisor;
3990         u32 temp;
3991
3992         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3993                 return 0;
3994
3995         mutex_lock(&dev_priv->sb_lock);
3996
3997         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3998         if (temp & SBI_SSCCTL_DISABLE) {
3999                 mutex_unlock(&dev_priv->sb_lock);
4000                 return 0;
4001         }
4002
4003         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4004         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4005                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4006         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4007                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4008
4009         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4010         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4011                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4012
4013         mutex_unlock(&dev_priv->sb_lock);
4014
4015         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4016
4017         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4018                                  desired_divisor << auxdiv);
4019 }
4020
4021 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4022                                                 enum pipe pch_transcoder)
4023 {
4024         struct drm_device *dev = crtc->base.dev;
4025         struct drm_i915_private *dev_priv = dev->dev_private;
4026         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4027
4028         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4029                    I915_READ(HTOTAL(cpu_transcoder)));
4030         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4031                    I915_READ(HBLANK(cpu_transcoder)));
4032         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4033                    I915_READ(HSYNC(cpu_transcoder)));
4034
4035         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4036                    I915_READ(VTOTAL(cpu_transcoder)));
4037         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4038                    I915_READ(VBLANK(cpu_transcoder)));
4039         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4040                    I915_READ(VSYNC(cpu_transcoder)));
4041         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4042                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4043 }
4044
4045 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4046 {
4047         struct drm_i915_private *dev_priv = dev->dev_private;
4048         uint32_t temp;
4049
4050         temp = I915_READ(SOUTH_CHICKEN1);
4051         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4052                 return;
4053
4054         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4055         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4056
4057         temp &= ~FDI_BC_BIFURCATION_SELECT;
4058         if (enable)
4059                 temp |= FDI_BC_BIFURCATION_SELECT;
4060
4061         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4062         I915_WRITE(SOUTH_CHICKEN1, temp);
4063         POSTING_READ(SOUTH_CHICKEN1);
4064 }
4065
4066 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4067 {
4068         struct drm_device *dev = intel_crtc->base.dev;
4069
4070         switch (intel_crtc->pipe) {
4071         case PIPE_A:
4072                 break;
4073         case PIPE_B:
4074                 if (intel_crtc->config->fdi_lanes > 2)
4075                         cpt_set_fdi_bc_bifurcation(dev, false);
4076                 else
4077                         cpt_set_fdi_bc_bifurcation(dev, true);
4078
4079                 break;
4080         case PIPE_C:
4081                 cpt_set_fdi_bc_bifurcation(dev, true);
4082
4083                 break;
4084         default:
4085                 BUG();
4086         }
4087 }
4088
4089 /* Return which DP Port should be selected for Transcoder DP control */
4090 static enum port
4091 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4092 {
4093         struct drm_device *dev = crtc->dev;
4094         struct intel_encoder *encoder;
4095
4096         for_each_encoder_on_crtc(dev, crtc, encoder) {
4097                 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4098                     encoder->type == INTEL_OUTPUT_EDP)
4099                         return enc_to_dig_port(&encoder->base)->port;
4100         }
4101
4102         return -1;
4103 }
4104
4105 /*
4106  * Enable PCH resources required for PCH ports:
4107  *   - PCH PLLs
4108  *   - FDI training & RX/TX
4109  *   - update transcoder timings
4110  *   - DP transcoding bits
4111  *   - transcoder
4112  */
4113 static void ironlake_pch_enable(struct drm_crtc *crtc)
4114 {
4115         struct drm_device *dev = crtc->dev;
4116         struct drm_i915_private *dev_priv = dev->dev_private;
4117         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4118         int pipe = intel_crtc->pipe;
4119         u32 temp;
4120
4121         assert_pch_transcoder_disabled(dev_priv, pipe);
4122
4123         if (IS_IVYBRIDGE(dev))
4124                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4125
4126         /* Write the TU size bits before fdi link training, so that error
4127          * detection works. */
4128         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4129                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4130
4131         /*
4132          * Sometimes spurious CPU pipe underruns happen during FDI
4133          * training, at least with VGA+HDMI cloning. Suppress them.
4134          */
4135         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4136
4137         /* For PCH output, training FDI link */
4138         dev_priv->display.fdi_link_train(crtc);
4139
4140         /* We need to program the right clock selection before writing the pixel
4141          * mutliplier into the DPLL. */
4142         if (HAS_PCH_CPT(dev)) {
4143                 u32 sel;
4144
4145                 temp = I915_READ(PCH_DPLL_SEL);
4146                 temp |= TRANS_DPLL_ENABLE(pipe);
4147                 sel = TRANS_DPLLB_SEL(pipe);
4148                 if (intel_crtc->config->shared_dpll ==
4149                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4150                         temp |= sel;
4151                 else
4152                         temp &= ~sel;
4153                 I915_WRITE(PCH_DPLL_SEL, temp);
4154         }
4155
4156         /* XXX: pch pll's can be enabled any time before we enable the PCH
4157          * transcoder, and we actually should do this to not upset any PCH
4158          * transcoder that already use the clock when we share it.
4159          *
4160          * Note that enable_shared_dpll tries to do the right thing, but
4161          * get_shared_dpll unconditionally resets the pll - we need that to have
4162          * the right LVDS enable sequence. */
4163         intel_enable_shared_dpll(intel_crtc);
4164
4165         /* set transcoder timing, panel must allow it */
4166         assert_panel_unlocked(dev_priv, pipe);
4167         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4168
4169         intel_fdi_normal_train(crtc);
4170
4171         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4172
4173         /* For PCH DP, enable TRANS_DP_CTL */
4174         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4175                 const struct drm_display_mode *adjusted_mode =
4176                         &intel_crtc->config->base.adjusted_mode;
4177                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4178                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4179                 temp = I915_READ(reg);
4180                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4181                           TRANS_DP_SYNC_MASK |
4182                           TRANS_DP_BPC_MASK);
4183                 temp |= TRANS_DP_OUTPUT_ENABLE;
4184                 temp |= bpc << 9; /* same format but at 11:9 */
4185
4186                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4187                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4188                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4189                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4190
4191                 switch (intel_trans_dp_port_sel(crtc)) {
4192                 case PORT_B:
4193                         temp |= TRANS_DP_PORT_SEL_B;
4194                         break;
4195                 case PORT_C:
4196                         temp |= TRANS_DP_PORT_SEL_C;
4197                         break;
4198                 case PORT_D:
4199                         temp |= TRANS_DP_PORT_SEL_D;
4200                         break;
4201                 default:
4202                         BUG();
4203                 }
4204
4205                 I915_WRITE(reg, temp);
4206         }
4207
4208         ironlake_enable_pch_transcoder(dev_priv, pipe);
4209 }
4210
4211 static void lpt_pch_enable(struct drm_crtc *crtc)
4212 {
4213         struct drm_device *dev = crtc->dev;
4214         struct drm_i915_private *dev_priv = dev->dev_private;
4215         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4216         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4217
4218         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4219
4220         lpt_program_iclkip(crtc);
4221
4222         /* Set transcoder timing. */
4223         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4224
4225         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4226 }
4227
4228 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4229 {
4230         struct drm_i915_private *dev_priv = dev->dev_private;
4231         i915_reg_t dslreg = PIPEDSL(pipe);
4232         u32 temp;
4233
4234         temp = I915_READ(dslreg);
4235         udelay(500);
4236         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4237                 if (wait_for(I915_READ(dslreg) != temp, 5))
4238                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4239         }
4240 }
4241
4242 static int
4243 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4244                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4245                   int src_w, int src_h, int dst_w, int dst_h)
4246 {
4247         struct intel_crtc_scaler_state *scaler_state =
4248                 &crtc_state->scaler_state;
4249         struct intel_crtc *intel_crtc =
4250                 to_intel_crtc(crtc_state->base.crtc);
4251         int need_scaling;
4252
4253         need_scaling = intel_rotation_90_or_270(rotation) ?
4254                 (src_h != dst_w || src_w != dst_h):
4255                 (src_w != dst_w || src_h != dst_h);
4256
4257         /*
4258          * if plane is being disabled or scaler is no more required or force detach
4259          *  - free scaler binded to this plane/crtc
4260          *  - in order to do this, update crtc->scaler_usage
4261          *
4262          * Here scaler state in crtc_state is set free so that
4263          * scaler can be assigned to other user. Actual register
4264          * update to free the scaler is done in plane/panel-fit programming.
4265          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4266          */
4267         if (force_detach || !need_scaling) {
4268                 if (*scaler_id >= 0) {
4269                         scaler_state->scaler_users &= ~(1 << scaler_user);
4270                         scaler_state->scalers[*scaler_id].in_use = 0;
4271
4272                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4273                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4274                                 intel_crtc->pipe, scaler_user, *scaler_id,
4275                                 scaler_state->scaler_users);
4276                         *scaler_id = -1;
4277                 }
4278                 return 0;
4279         }
4280
4281         /* range checks */
4282         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4283                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4284
4285                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4286                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4287                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4288                         "size is out of scaler range\n",
4289                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4290                 return -EINVAL;
4291         }
4292
4293         /* mark this plane as a scaler user in crtc_state */
4294         scaler_state->scaler_users |= (1 << scaler_user);
4295         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4296                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4297                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4298                 scaler_state->scaler_users);
4299
4300         return 0;
4301 }
4302
4303 /**
4304  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4305  *
4306  * @state: crtc's scaler state
4307  *
4308  * Return
4309  *     0 - scaler_usage updated successfully
4310  *    error - requested scaling cannot be supported or other error condition
4311  */
4312 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4313 {
4314         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4315         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4316
4317         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4318                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4319
4320         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4321                 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4322                 state->pipe_src_w, state->pipe_src_h,
4323                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4324 }
4325
4326 /**
4327  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4328  *
4329  * @state: crtc's scaler state
4330  * @plane_state: atomic plane state to update
4331  *
4332  * Return
4333  *     0 - scaler_usage updated successfully
4334  *    error - requested scaling cannot be supported or other error condition
4335  */
4336 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4337                                    struct intel_plane_state *plane_state)
4338 {
4339
4340         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4341         struct intel_plane *intel_plane =
4342                 to_intel_plane(plane_state->base.plane);
4343         struct drm_framebuffer *fb = plane_state->base.fb;
4344         int ret;
4345
4346         bool force_detach = !fb || !plane_state->visible;
4347
4348         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4349                       intel_plane->base.base.id, intel_crtc->pipe,
4350                       drm_plane_index(&intel_plane->base));
4351
4352         ret = skl_update_scaler(crtc_state, force_detach,
4353                                 drm_plane_index(&intel_plane->base),
4354                                 &plane_state->scaler_id,
4355                                 plane_state->base.rotation,
4356                                 drm_rect_width(&plane_state->src) >> 16,
4357                                 drm_rect_height(&plane_state->src) >> 16,
4358                                 drm_rect_width(&plane_state->dst),
4359                                 drm_rect_height(&plane_state->dst));
4360
4361         if (ret || plane_state->scaler_id < 0)
4362                 return ret;
4363
4364         /* check colorkey */
4365         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4366                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4367                               intel_plane->base.base.id);
4368                 return -EINVAL;
4369         }
4370
4371         /* Check src format */
4372         switch (fb->pixel_format) {
4373         case DRM_FORMAT_RGB565:
4374         case DRM_FORMAT_XBGR8888:
4375         case DRM_FORMAT_XRGB8888:
4376         case DRM_FORMAT_ABGR8888:
4377         case DRM_FORMAT_ARGB8888:
4378         case DRM_FORMAT_XRGB2101010:
4379         case DRM_FORMAT_XBGR2101010:
4380         case DRM_FORMAT_YUYV:
4381         case DRM_FORMAT_YVYU:
4382         case DRM_FORMAT_UYVY:
4383         case DRM_FORMAT_VYUY:
4384                 break;
4385         default:
4386                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4387                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4388                 return -EINVAL;
4389         }
4390
4391         return 0;
4392 }
4393
4394 static void skylake_scaler_disable(struct intel_crtc *crtc)
4395 {
4396         int i;
4397
4398         for (i = 0; i < crtc->num_scalers; i++)
4399                 skl_detach_scaler(crtc, i);
4400 }
4401
4402 static void skylake_pfit_enable(struct intel_crtc *crtc)
4403 {
4404         struct drm_device *dev = crtc->base.dev;
4405         struct drm_i915_private *dev_priv = dev->dev_private;
4406         int pipe = crtc->pipe;
4407         struct intel_crtc_scaler_state *scaler_state =
4408                 &crtc->config->scaler_state;
4409
4410         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4411
4412         if (crtc->config->pch_pfit.enabled) {
4413                 int id;
4414
4415                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4416                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4417                         return;
4418                 }
4419
4420                 id = scaler_state->scaler_id;
4421                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4422                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4423                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4424                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4425
4426                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4427         }
4428 }
4429
4430 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4431 {
4432         struct drm_device *dev = crtc->base.dev;
4433         struct drm_i915_private *dev_priv = dev->dev_private;
4434         int pipe = crtc->pipe;
4435
4436         if (crtc->config->pch_pfit.enabled) {
4437                 /* Force use of hard-coded filter coefficients
4438                  * as some pre-programmed values are broken,
4439                  * e.g. x201.
4440                  */
4441                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4442                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4443                                                  PF_PIPE_SEL_IVB(pipe));
4444                 else
4445                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4446                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4447                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4448         }
4449 }
4450
4451 void hsw_enable_ips(struct intel_crtc *crtc)
4452 {
4453         struct drm_device *dev = crtc->base.dev;
4454         struct drm_i915_private *dev_priv = dev->dev_private;
4455
4456         if (!crtc->config->ips_enabled)
4457                 return;
4458
4459         /* We can only enable IPS after we enable a plane and wait for a vblank */
4460         intel_wait_for_vblank(dev, crtc->pipe);
4461
4462         assert_plane_enabled(dev_priv, crtc->plane);
4463         if (IS_BROADWELL(dev)) {
4464                 mutex_lock(&dev_priv->rps.hw_lock);
4465                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4466                 mutex_unlock(&dev_priv->rps.hw_lock);
4467                 /* Quoting Art Runyan: "its not safe to expect any particular
4468                  * value in IPS_CTL bit 31 after enabling IPS through the
4469                  * mailbox." Moreover, the mailbox may return a bogus state,
4470                  * so we need to just enable it and continue on.
4471                  */
4472         } else {
4473                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4474                 /* The bit only becomes 1 in the next vblank, so this wait here
4475                  * is essentially intel_wait_for_vblank. If we don't have this
4476                  * and don't wait for vblanks until the end of crtc_enable, then
4477                  * the HW state readout code will complain that the expected
4478                  * IPS_CTL value is not the one we read. */
4479                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4480                         DRM_ERROR("Timed out waiting for IPS enable\n");
4481         }
4482 }
4483
4484 void hsw_disable_ips(struct intel_crtc *crtc)
4485 {
4486         struct drm_device *dev = crtc->base.dev;
4487         struct drm_i915_private *dev_priv = dev->dev_private;
4488
4489         if (!crtc->config->ips_enabled)
4490                 return;
4491
4492         assert_plane_enabled(dev_priv, crtc->plane);
4493         if (IS_BROADWELL(dev)) {
4494                 mutex_lock(&dev_priv->rps.hw_lock);
4495                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4496                 mutex_unlock(&dev_priv->rps.hw_lock);
4497                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4498                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4499                         DRM_ERROR("Timed out waiting for IPS disable\n");
4500         } else {
4501                 I915_WRITE(IPS_CTL, 0);
4502                 POSTING_READ(IPS_CTL);
4503         }
4504
4505         /* We need to wait for a vblank before we can disable the plane. */
4506         intel_wait_for_vblank(dev, crtc->pipe);
4507 }
4508
4509 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4510 {
4511         if (intel_crtc->overlay) {
4512                 struct drm_device *dev = intel_crtc->base.dev;
4513                 struct drm_i915_private *dev_priv = dev->dev_private;
4514
4515                 mutex_lock(&dev->struct_mutex);
4516                 dev_priv->mm.interruptible = false;
4517                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4518                 dev_priv->mm.interruptible = true;
4519                 mutex_unlock(&dev->struct_mutex);
4520         }
4521
4522         /* Let userspace switch the overlay on again. In most cases userspace
4523          * has to recompute where to put it anyway.
4524          */
4525 }
4526
4527 /**
4528  * intel_post_enable_primary - Perform operations after enabling primary plane
4529  * @crtc: the CRTC whose primary plane was just enabled
4530  *
4531  * Performs potentially sleeping operations that must be done after the primary
4532  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4533  * called due to an explicit primary plane update, or due to an implicit
4534  * re-enable that is caused when a sprite plane is updated to no longer
4535  * completely hide the primary plane.
4536  */
4537 static void
4538 intel_post_enable_primary(struct drm_crtc *crtc)
4539 {
4540         struct drm_device *dev = crtc->dev;
4541         struct drm_i915_private *dev_priv = dev->dev_private;
4542         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4543         int pipe = intel_crtc->pipe;
4544
4545         /*
4546          * FIXME IPS should be fine as long as one plane is
4547          * enabled, but in practice it seems to have problems
4548          * when going from primary only to sprite only and vice
4549          * versa.
4550          */
4551         hsw_enable_ips(intel_crtc);
4552
4553         /*
4554          * Gen2 reports pipe underruns whenever all planes are disabled.
4555          * So don't enable underrun reporting before at least some planes
4556          * are enabled.
4557          * FIXME: Need to fix the logic to work when we turn off all planes
4558          * but leave the pipe running.
4559          */
4560         if (IS_GEN2(dev))
4561                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4562
4563         /* Underruns don't always raise interrupts, so check manually. */
4564         intel_check_cpu_fifo_underruns(dev_priv);
4565         intel_check_pch_fifo_underruns(dev_priv);
4566 }
4567
4568 /* FIXME move all this to pre_plane_update() with proper state tracking */
4569 static void
4570 intel_pre_disable_primary(struct drm_crtc *crtc)
4571 {
4572         struct drm_device *dev = crtc->dev;
4573         struct drm_i915_private *dev_priv = dev->dev_private;
4574         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4575         int pipe = intel_crtc->pipe;
4576
4577         /*
4578          * Gen2 reports pipe underruns whenever all planes are disabled.
4579          * So diasble underrun reporting before all the planes get disabled.
4580          * FIXME: Need to fix the logic to work when we turn off all planes
4581          * but leave the pipe running.
4582          */
4583         if (IS_GEN2(dev))
4584                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4585
4586         /*
4587          * FIXME IPS should be fine as long as one plane is
4588          * enabled, but in practice it seems to have problems
4589          * when going from primary only to sprite only and vice
4590          * versa.
4591          */
4592         hsw_disable_ips(intel_crtc);
4593 }
4594
4595 /* FIXME get rid of this and use pre_plane_update */
4596 static void
4597 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4598 {
4599         struct drm_device *dev = crtc->dev;
4600         struct drm_i915_private *dev_priv = dev->dev_private;
4601         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4602         int pipe = intel_crtc->pipe;
4603
4604         intel_pre_disable_primary(crtc);
4605
4606         /*
4607          * Vblank time updates from the shadow to live plane control register
4608          * are blocked if the memory self-refresh mode is active at that
4609          * moment. So to make sure the plane gets truly disabled, disable
4610          * first the self-refresh mode. The self-refresh enable bit in turn
4611          * will be checked/applied by the HW only at the next frame start
4612          * event which is after the vblank start event, so we need to have a
4613          * wait-for-vblank between disabling the plane and the pipe.
4614          */
4615         if (HAS_GMCH_DISPLAY(dev)) {
4616                 intel_set_memory_cxsr(dev_priv, false);
4617                 dev_priv->wm.vlv.cxsr = false;
4618                 intel_wait_for_vblank(dev, pipe);
4619         }
4620 }
4621
4622 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4623 {
4624         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4625         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4626         struct intel_crtc_state *pipe_config =
4627                 to_intel_crtc_state(crtc->base.state);
4628         struct drm_device *dev = crtc->base.dev;
4629         struct drm_plane *primary = crtc->base.primary;
4630         struct drm_plane_state *old_pri_state =
4631                 drm_atomic_get_existing_plane_state(old_state, primary);
4632
4633         intel_frontbuffer_flip(dev, pipe_config->fb_bits);
4634
4635         crtc->wm.cxsr_allowed = true;
4636
4637         if (pipe_config->update_wm_post && pipe_config->base.active)
4638                 intel_update_watermarks(&crtc->base);
4639
4640         if (old_pri_state) {
4641                 struct intel_plane_state *primary_state =
4642                         to_intel_plane_state(primary->state);
4643                 struct intel_plane_state *old_primary_state =
4644                         to_intel_plane_state(old_pri_state);
4645
4646                 intel_fbc_post_update(crtc);
4647
4648                 if (primary_state->visible &&
4649                     (needs_modeset(&pipe_config->base) ||
4650                      !old_primary_state->visible))
4651                         intel_post_enable_primary(&crtc->base);
4652         }
4653 }
4654
4655 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4656 {
4657         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4658         struct drm_device *dev = crtc->base.dev;
4659         struct drm_i915_private *dev_priv = dev->dev_private;
4660         struct intel_crtc_state *pipe_config =
4661                 to_intel_crtc_state(crtc->base.state);
4662         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4663         struct drm_plane *primary = crtc->base.primary;
4664         struct drm_plane_state *old_pri_state =
4665                 drm_atomic_get_existing_plane_state(old_state, primary);
4666         bool modeset = needs_modeset(&pipe_config->base);
4667
4668         if (old_pri_state) {
4669                 struct intel_plane_state *primary_state =
4670                         to_intel_plane_state(primary->state);
4671                 struct intel_plane_state *old_primary_state =
4672                         to_intel_plane_state(old_pri_state);
4673
4674                 intel_fbc_pre_update(crtc);
4675
4676                 if (old_primary_state->visible &&
4677                     (modeset || !primary_state->visible))
4678                         intel_pre_disable_primary(&crtc->base);
4679         }
4680
4681         if (pipe_config->disable_cxsr) {
4682                 crtc->wm.cxsr_allowed = false;
4683
4684                 /*
4685                  * Vblank time updates from the shadow to live plane control register
4686                  * are blocked if the memory self-refresh mode is active at that
4687                  * moment. So to make sure the plane gets truly disabled, disable
4688                  * first the self-refresh mode. The self-refresh enable bit in turn
4689                  * will be checked/applied by the HW only at the next frame start
4690                  * event which is after the vblank start event, so we need to have a
4691                  * wait-for-vblank between disabling the plane and the pipe.
4692                  */
4693                 if (old_crtc_state->base.active) {
4694                         intel_set_memory_cxsr(dev_priv, false);
4695                         dev_priv->wm.vlv.cxsr = false;
4696                         intel_wait_for_vblank(dev, crtc->pipe);
4697                 }
4698         }
4699
4700         /*
4701          * IVB workaround: must disable low power watermarks for at least
4702          * one frame before enabling scaling.  LP watermarks can be re-enabled
4703          * when scaling is disabled.
4704          *
4705          * WaCxSRDisabledForSpriteScaling:ivb
4706          */
4707         if (pipe_config->disable_lp_wm) {
4708                 ilk_disable_lp_wm(dev);
4709                 intel_wait_for_vblank(dev, crtc->pipe);
4710         }
4711
4712         /*
4713          * If we're doing a modeset, we're done.  No need to do any pre-vblank
4714          * watermark programming here.
4715          */
4716         if (needs_modeset(&pipe_config->base))
4717                 return;
4718
4719         /*
4720          * For platforms that support atomic watermarks, program the
4721          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
4722          * will be the intermediate values that are safe for both pre- and
4723          * post- vblank; when vblank happens, the 'active' values will be set
4724          * to the final 'target' values and we'll do this again to get the
4725          * optimal watermarks.  For gen9+ platforms, the values we program here
4726          * will be the final target values which will get automatically latched
4727          * at vblank time; no further programming will be necessary.
4728          *
4729          * If a platform hasn't been transitioned to atomic watermarks yet,
4730          * we'll continue to update watermarks the old way, if flags tell
4731          * us to.
4732          */
4733         if (dev_priv->display.initial_watermarks != NULL)
4734                 dev_priv->display.initial_watermarks(pipe_config);
4735         else if (pipe_config->update_wm_pre)
4736                 intel_update_watermarks(&crtc->base);
4737 }
4738
4739 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4740 {
4741         struct drm_device *dev = crtc->dev;
4742         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4743         struct drm_plane *p;
4744         int pipe = intel_crtc->pipe;
4745
4746         intel_crtc_dpms_overlay_disable(intel_crtc);
4747
4748         drm_for_each_plane_mask(p, dev, plane_mask)
4749                 to_intel_plane(p)->disable_plane(p, crtc);
4750
4751         /*
4752          * FIXME: Once we grow proper nuclear flip support out of this we need
4753          * to compute the mask of flip planes precisely. For the time being
4754          * consider this a flip to a NULL plane.
4755          */
4756         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4757 }
4758
4759 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4760 {
4761         struct drm_device *dev = crtc->dev;
4762         struct drm_i915_private *dev_priv = dev->dev_private;
4763         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4764         struct intel_encoder *encoder;
4765         int pipe = intel_crtc->pipe;
4766
4767         if (WARN_ON(intel_crtc->active))
4768                 return;
4769
4770         if (intel_crtc->config->has_pch_encoder)
4771                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4772
4773         if (intel_crtc->config->has_pch_encoder)
4774                 intel_prepare_shared_dpll(intel_crtc);
4775
4776         if (intel_crtc->config->has_dp_encoder)
4777                 intel_dp_set_m_n(intel_crtc, M1_N1);
4778
4779         intel_set_pipe_timings(intel_crtc);
4780         intel_set_pipe_src_size(intel_crtc);
4781
4782         if (intel_crtc->config->has_pch_encoder) {
4783                 intel_cpu_transcoder_set_m_n(intel_crtc,
4784                                      &intel_crtc->config->fdi_m_n, NULL);
4785         }
4786
4787         ironlake_set_pipeconf(crtc);
4788
4789         intel_crtc->active = true;
4790
4791         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4792
4793         for_each_encoder_on_crtc(dev, crtc, encoder)
4794                 if (encoder->pre_enable)
4795                         encoder->pre_enable(encoder);
4796
4797         if (intel_crtc->config->has_pch_encoder) {
4798                 /* Note: FDI PLL enabling _must_ be done before we enable the
4799                  * cpu pipes, hence this is separate from all the other fdi/pch
4800                  * enabling. */
4801                 ironlake_fdi_pll_enable(intel_crtc);
4802         } else {
4803                 assert_fdi_tx_disabled(dev_priv, pipe);
4804                 assert_fdi_rx_disabled(dev_priv, pipe);
4805         }
4806
4807         ironlake_pfit_enable(intel_crtc);
4808
4809         /*
4810          * On ILK+ LUT must be loaded before the pipe is running but with
4811          * clocks enabled
4812          */
4813         intel_color_load_luts(crtc);
4814
4815         if (dev_priv->display.initial_watermarks != NULL)
4816                 dev_priv->display.initial_watermarks(intel_crtc->config);
4817         intel_enable_pipe(intel_crtc);
4818
4819         if (intel_crtc->config->has_pch_encoder)
4820                 ironlake_pch_enable(crtc);
4821
4822         assert_vblank_disabled(crtc);
4823         drm_crtc_vblank_on(crtc);
4824
4825         for_each_encoder_on_crtc(dev, crtc, encoder)
4826                 encoder->enable(encoder);
4827
4828         if (HAS_PCH_CPT(dev))
4829                 cpt_verify_modeset(dev, intel_crtc->pipe);
4830
4831         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4832         if (intel_crtc->config->has_pch_encoder)
4833                 intel_wait_for_vblank(dev, pipe);
4834         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4835 }
4836
4837 /* IPS only exists on ULT machines and is tied to pipe A. */
4838 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4839 {
4840         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4841 }
4842
4843 static void haswell_crtc_enable(struct drm_crtc *crtc)
4844 {
4845         struct drm_device *dev = crtc->dev;
4846         struct drm_i915_private *dev_priv = dev->dev_private;
4847         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4848         struct intel_encoder *encoder;
4849         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4850         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4851         struct intel_crtc_state *pipe_config =
4852                 to_intel_crtc_state(crtc->state);
4853
4854         if (WARN_ON(intel_crtc->active))
4855                 return;
4856
4857         if (intel_crtc->config->has_pch_encoder)
4858                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4859                                                       false);
4860
4861         if (intel_crtc->config->shared_dpll)
4862                 intel_enable_shared_dpll(intel_crtc);
4863
4864         if (intel_crtc->config->has_dp_encoder)
4865                 intel_dp_set_m_n(intel_crtc, M1_N1);
4866
4867         if (!intel_crtc->config->has_dsi_encoder)
4868                 intel_set_pipe_timings(intel_crtc);
4869
4870         intel_set_pipe_src_size(intel_crtc);
4871
4872         if (cpu_transcoder != TRANSCODER_EDP &&
4873             !transcoder_is_dsi(cpu_transcoder)) {
4874                 I915_WRITE(PIPE_MULT(cpu_transcoder),
4875                            intel_crtc->config->pixel_multiplier - 1);
4876         }
4877
4878         if (intel_crtc->config->has_pch_encoder) {
4879                 intel_cpu_transcoder_set_m_n(intel_crtc,
4880                                      &intel_crtc->config->fdi_m_n, NULL);
4881         }
4882
4883         if (!intel_crtc->config->has_dsi_encoder)
4884                 haswell_set_pipeconf(crtc);
4885
4886         haswell_set_pipemisc(crtc);
4887
4888         intel_color_set_csc(crtc);
4889
4890         intel_crtc->active = true;
4891
4892         if (intel_crtc->config->has_pch_encoder)
4893                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4894         else
4895                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4896
4897         for_each_encoder_on_crtc(dev, crtc, encoder) {
4898                 if (encoder->pre_enable)
4899                         encoder->pre_enable(encoder);
4900         }
4901
4902         if (intel_crtc->config->has_pch_encoder)
4903                 dev_priv->display.fdi_link_train(crtc);
4904
4905         if (!intel_crtc->config->has_dsi_encoder)
4906                 intel_ddi_enable_pipe_clock(intel_crtc);
4907
4908         if (INTEL_INFO(dev)->gen >= 9)
4909                 skylake_pfit_enable(intel_crtc);
4910         else
4911                 ironlake_pfit_enable(intel_crtc);
4912
4913         /*
4914          * On ILK+ LUT must be loaded before the pipe is running but with
4915          * clocks enabled
4916          */
4917         intel_color_load_luts(crtc);
4918
4919         intel_ddi_set_pipe_settings(crtc);
4920         if (!intel_crtc->config->has_dsi_encoder)
4921                 intel_ddi_enable_transcoder_func(crtc);
4922
4923         if (dev_priv->display.initial_watermarks != NULL)
4924                 dev_priv->display.initial_watermarks(pipe_config);
4925         else
4926                 intel_update_watermarks(crtc);
4927
4928         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4929         if (!intel_crtc->config->has_dsi_encoder)
4930                 intel_enable_pipe(intel_crtc);
4931
4932         if (intel_crtc->config->has_pch_encoder)
4933                 lpt_pch_enable(crtc);
4934
4935         if (intel_crtc->config->dp_encoder_is_mst)
4936                 intel_ddi_set_vc_payload_alloc(crtc, true);
4937
4938         assert_vblank_disabled(crtc);
4939         drm_crtc_vblank_on(crtc);
4940
4941         for_each_encoder_on_crtc(dev, crtc, encoder) {
4942                 encoder->enable(encoder);
4943                 intel_opregion_notify_encoder(encoder, true);
4944         }
4945
4946         if (intel_crtc->config->has_pch_encoder) {
4947                 intel_wait_for_vblank(dev, pipe);
4948                 intel_wait_for_vblank(dev, pipe);
4949                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4950                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4951                                                       true);
4952         }
4953
4954         /* If we change the relative order between pipe/planes enabling, we need
4955          * to change the workaround. */
4956         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4957         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4958                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4959                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4960         }
4961 }
4962
4963 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4964 {
4965         struct drm_device *dev = crtc->base.dev;
4966         struct drm_i915_private *dev_priv = dev->dev_private;
4967         int pipe = crtc->pipe;
4968
4969         /* To avoid upsetting the power well on haswell only disable the pfit if
4970          * it's in use. The hw state code will make sure we get this right. */
4971         if (force || crtc->config->pch_pfit.enabled) {
4972                 I915_WRITE(PF_CTL(pipe), 0);
4973                 I915_WRITE(PF_WIN_POS(pipe), 0);
4974                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4975         }
4976 }
4977
4978 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4979 {
4980         struct drm_device *dev = crtc->dev;
4981         struct drm_i915_private *dev_priv = dev->dev_private;
4982         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4983         struct intel_encoder *encoder;
4984         int pipe = intel_crtc->pipe;
4985
4986         if (intel_crtc->config->has_pch_encoder)
4987                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4988
4989         for_each_encoder_on_crtc(dev, crtc, encoder)
4990                 encoder->disable(encoder);
4991
4992         drm_crtc_vblank_off(crtc);
4993         assert_vblank_disabled(crtc);
4994
4995         /*
4996          * Sometimes spurious CPU pipe underruns happen when the
4997          * pipe is already disabled, but FDI RX/TX is still enabled.
4998          * Happens at least with VGA+HDMI cloning. Suppress them.
4999          */
5000         if (intel_crtc->config->has_pch_encoder)
5001                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5002
5003         intel_disable_pipe(intel_crtc);
5004
5005         ironlake_pfit_disable(intel_crtc, false);
5006
5007         if (intel_crtc->config->has_pch_encoder) {
5008                 ironlake_fdi_disable(crtc);
5009                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5010         }
5011
5012         for_each_encoder_on_crtc(dev, crtc, encoder)
5013                 if (encoder->post_disable)
5014                         encoder->post_disable(encoder);
5015
5016         if (intel_crtc->config->has_pch_encoder) {
5017                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5018
5019                 if (HAS_PCH_CPT(dev)) {
5020                         i915_reg_t reg;
5021                         u32 temp;
5022
5023                         /* disable TRANS_DP_CTL */
5024                         reg = TRANS_DP_CTL(pipe);
5025                         temp = I915_READ(reg);
5026                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5027                                   TRANS_DP_PORT_SEL_MASK);
5028                         temp |= TRANS_DP_PORT_SEL_NONE;
5029                         I915_WRITE(reg, temp);
5030
5031                         /* disable DPLL_SEL */
5032                         temp = I915_READ(PCH_DPLL_SEL);
5033                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5034                         I915_WRITE(PCH_DPLL_SEL, temp);
5035                 }
5036
5037                 ironlake_fdi_pll_disable(intel_crtc);
5038         }
5039
5040         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5041 }
5042
5043 static void haswell_crtc_disable(struct drm_crtc *crtc)
5044 {
5045         struct drm_device *dev = crtc->dev;
5046         struct drm_i915_private *dev_priv = dev->dev_private;
5047         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5048         struct intel_encoder *encoder;
5049         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5050
5051         if (intel_crtc->config->has_pch_encoder)
5052                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5053                                                       false);
5054
5055         for_each_encoder_on_crtc(dev, crtc, encoder) {
5056                 intel_opregion_notify_encoder(encoder, false);
5057                 encoder->disable(encoder);
5058         }
5059
5060         drm_crtc_vblank_off(crtc);
5061         assert_vblank_disabled(crtc);
5062
5063         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5064         if (!intel_crtc->config->has_dsi_encoder)
5065                 intel_disable_pipe(intel_crtc);
5066
5067         if (intel_crtc->config->dp_encoder_is_mst)
5068                 intel_ddi_set_vc_payload_alloc(crtc, false);
5069
5070         if (!intel_crtc->config->has_dsi_encoder)
5071                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5072
5073         if (INTEL_INFO(dev)->gen >= 9)
5074                 skylake_scaler_disable(intel_crtc);
5075         else
5076                 ironlake_pfit_disable(intel_crtc, false);
5077
5078         if (!intel_crtc->config->has_dsi_encoder)
5079                 intel_ddi_disable_pipe_clock(intel_crtc);
5080
5081         for_each_encoder_on_crtc(dev, crtc, encoder)
5082                 if (encoder->post_disable)
5083                         encoder->post_disable(encoder);
5084
5085         if (intel_crtc->config->has_pch_encoder) {
5086                 lpt_disable_pch_transcoder(dev_priv);
5087                 lpt_disable_iclkip(dev_priv);
5088                 intel_ddi_fdi_disable(crtc);
5089
5090                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5091                                                       true);
5092         }
5093 }
5094
5095 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5096 {
5097         struct drm_device *dev = crtc->base.dev;
5098         struct drm_i915_private *dev_priv = dev->dev_private;
5099         struct intel_crtc_state *pipe_config = crtc->config;
5100
5101         if (!pipe_config->gmch_pfit.control)
5102                 return;
5103
5104         /*
5105          * The panel fitter should only be adjusted whilst the pipe is disabled,
5106          * according to register description and PRM.
5107          */
5108         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5109         assert_pipe_disabled(dev_priv, crtc->pipe);
5110
5111         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5112         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5113
5114         /* Border color in case we don't scale up to the full screen. Black by
5115          * default, change to something else for debugging. */
5116         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5117 }
5118
5119 static enum intel_display_power_domain port_to_power_domain(enum port port)
5120 {
5121         switch (port) {
5122         case PORT_A:
5123                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5124         case PORT_B:
5125                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5126         case PORT_C:
5127                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5128         case PORT_D:
5129                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5130         case PORT_E:
5131                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5132         default:
5133                 MISSING_CASE(port);
5134                 return POWER_DOMAIN_PORT_OTHER;
5135         }
5136 }
5137
5138 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5139 {
5140         switch (port) {
5141         case PORT_A:
5142                 return POWER_DOMAIN_AUX_A;
5143         case PORT_B:
5144                 return POWER_DOMAIN_AUX_B;
5145         case PORT_C:
5146                 return POWER_DOMAIN_AUX_C;
5147         case PORT_D:
5148                 return POWER_DOMAIN_AUX_D;
5149         case PORT_E:
5150                 /* FIXME: Check VBT for actual wiring of PORT E */
5151                 return POWER_DOMAIN_AUX_D;
5152         default:
5153                 MISSING_CASE(port);
5154                 return POWER_DOMAIN_AUX_A;
5155         }
5156 }
5157
5158 enum intel_display_power_domain
5159 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5160 {
5161         struct drm_device *dev = intel_encoder->base.dev;
5162         struct intel_digital_port *intel_dig_port;
5163
5164         switch (intel_encoder->type) {
5165         case INTEL_OUTPUT_UNKNOWN:
5166                 /* Only DDI platforms should ever use this output type */
5167                 WARN_ON_ONCE(!HAS_DDI(dev));
5168         case INTEL_OUTPUT_DISPLAYPORT:
5169         case INTEL_OUTPUT_HDMI:
5170         case INTEL_OUTPUT_EDP:
5171                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5172                 return port_to_power_domain(intel_dig_port->port);
5173         case INTEL_OUTPUT_DP_MST:
5174                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5175                 return port_to_power_domain(intel_dig_port->port);
5176         case INTEL_OUTPUT_ANALOG:
5177                 return POWER_DOMAIN_PORT_CRT;
5178         case INTEL_OUTPUT_DSI:
5179                 return POWER_DOMAIN_PORT_DSI;
5180         default:
5181                 return POWER_DOMAIN_PORT_OTHER;
5182         }
5183 }
5184
5185 enum intel_display_power_domain
5186 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5187 {
5188         struct drm_device *dev = intel_encoder->base.dev;
5189         struct intel_digital_port *intel_dig_port;
5190
5191         switch (intel_encoder->type) {
5192         case INTEL_OUTPUT_UNKNOWN:
5193         case INTEL_OUTPUT_HDMI:
5194                 /*
5195                  * Only DDI platforms should ever use these output types.
5196                  * We can get here after the HDMI detect code has already set
5197                  * the type of the shared encoder. Since we can't be sure
5198                  * what's the status of the given connectors, play safe and
5199                  * run the DP detection too.
5200                  */
5201                 WARN_ON_ONCE(!HAS_DDI(dev));
5202         case INTEL_OUTPUT_DISPLAYPORT:
5203         case INTEL_OUTPUT_EDP:
5204                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5205                 return port_to_aux_power_domain(intel_dig_port->port);
5206         case INTEL_OUTPUT_DP_MST:
5207                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5208                 return port_to_aux_power_domain(intel_dig_port->port);
5209         default:
5210                 MISSING_CASE(intel_encoder->type);
5211                 return POWER_DOMAIN_AUX_A;
5212         }
5213 }
5214
5215 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5216                                             struct intel_crtc_state *crtc_state)
5217 {
5218         struct drm_device *dev = crtc->dev;
5219         struct drm_encoder *encoder;
5220         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5221         enum pipe pipe = intel_crtc->pipe;
5222         unsigned long mask;
5223         enum transcoder transcoder = crtc_state->cpu_transcoder;
5224
5225         if (!crtc_state->base.active)
5226                 return 0;
5227
5228         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5229         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5230         if (crtc_state->pch_pfit.enabled ||
5231             crtc_state->pch_pfit.force_thru)
5232                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5233
5234         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5235                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5236
5237                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5238         }
5239
5240         if (crtc_state->shared_dpll)
5241                 mask |= BIT(POWER_DOMAIN_PLLS);
5242
5243         return mask;
5244 }
5245
5246 static unsigned long
5247 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5248                                struct intel_crtc_state *crtc_state)
5249 {
5250         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5251         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5252         enum intel_display_power_domain domain;
5253         unsigned long domains, new_domains, old_domains;
5254
5255         old_domains = intel_crtc->enabled_power_domains;
5256         intel_crtc->enabled_power_domains = new_domains =
5257                 get_crtc_power_domains(crtc, crtc_state);
5258
5259         domains = new_domains & ~old_domains;
5260
5261         for_each_power_domain(domain, domains)
5262                 intel_display_power_get(dev_priv, domain);
5263
5264         return old_domains & ~new_domains;
5265 }
5266
5267 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5268                                       unsigned long domains)
5269 {
5270         enum intel_display_power_domain domain;
5271
5272         for_each_power_domain(domain, domains)
5273                 intel_display_power_put(dev_priv, domain);
5274 }
5275
5276 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5277 {
5278         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5279
5280         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5281             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5282                 return max_cdclk_freq;
5283         else if (IS_CHERRYVIEW(dev_priv))
5284                 return max_cdclk_freq*95/100;
5285         else if (INTEL_INFO(dev_priv)->gen < 4)
5286                 return 2*max_cdclk_freq*90/100;
5287         else
5288                 return max_cdclk_freq*90/100;
5289 }
5290
5291 static void intel_update_max_cdclk(struct drm_device *dev)
5292 {
5293         struct drm_i915_private *dev_priv = dev->dev_private;
5294
5295         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5296                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5297
5298                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5299                         dev_priv->max_cdclk_freq = 675000;
5300                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5301                         dev_priv->max_cdclk_freq = 540000;
5302                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5303                         dev_priv->max_cdclk_freq = 450000;
5304                 else
5305                         dev_priv->max_cdclk_freq = 337500;
5306         } else if (IS_BROADWELL(dev))  {
5307                 /*
5308                  * FIXME with extra cooling we can allow
5309                  * 540 MHz for ULX and 675 Mhz for ULT.
5310                  * How can we know if extra cooling is
5311                  * available? PCI ID, VTB, something else?
5312                  */
5313                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5314                         dev_priv->max_cdclk_freq = 450000;
5315                 else if (IS_BDW_ULX(dev))
5316                         dev_priv->max_cdclk_freq = 450000;
5317                 else if (IS_BDW_ULT(dev))
5318                         dev_priv->max_cdclk_freq = 540000;
5319                 else
5320                         dev_priv->max_cdclk_freq = 675000;
5321         } else if (IS_CHERRYVIEW(dev)) {
5322                 dev_priv->max_cdclk_freq = 320000;
5323         } else if (IS_VALLEYVIEW(dev)) {
5324                 dev_priv->max_cdclk_freq = 400000;
5325         } else {
5326                 /* otherwise assume cdclk is fixed */
5327                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5328         }
5329
5330         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5331
5332         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5333                          dev_priv->max_cdclk_freq);
5334
5335         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5336                          dev_priv->max_dotclk_freq);
5337 }
5338
5339 static void intel_update_cdclk(struct drm_device *dev)
5340 {
5341         struct drm_i915_private *dev_priv = dev->dev_private;
5342
5343         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5344         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5345                          dev_priv->cdclk_freq);
5346
5347         /*
5348          * Program the gmbus_freq based on the cdclk frequency.
5349          * BSpec erroneously claims we should aim for 4MHz, but
5350          * in fact 1MHz is the correct frequency.
5351          */
5352         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5353                 /*
5354                  * Program the gmbus_freq based on the cdclk frequency.
5355                  * BSpec erroneously claims we should aim for 4MHz, but
5356                  * in fact 1MHz is the correct frequency.
5357                  */
5358                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5359         }
5360
5361         if (dev_priv->max_cdclk_freq == 0)
5362                 intel_update_max_cdclk(dev);
5363 }
5364
5365 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5366 {
5367         struct drm_i915_private *dev_priv = dev->dev_private;
5368         uint32_t divider;
5369         uint32_t ratio;
5370         uint32_t current_freq;
5371         int ret;
5372
5373         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5374         switch (frequency) {
5375         case 144000:
5376                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5377                 ratio = BXT_DE_PLL_RATIO(60);
5378                 break;
5379         case 288000:
5380                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5381                 ratio = BXT_DE_PLL_RATIO(60);
5382                 break;
5383         case 384000:
5384                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5385                 ratio = BXT_DE_PLL_RATIO(60);
5386                 break;
5387         case 576000:
5388                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5389                 ratio = BXT_DE_PLL_RATIO(60);
5390                 break;
5391         case 624000:
5392                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5393                 ratio = BXT_DE_PLL_RATIO(65);
5394                 break;
5395         case 19200:
5396                 /*
5397                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5398                  * to suppress GCC warning.
5399                  */
5400                 ratio = 0;
5401                 divider = 0;
5402                 break;
5403         default:
5404                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5405
5406                 return;
5407         }
5408
5409         mutex_lock(&dev_priv->rps.hw_lock);
5410         /* Inform power controller of upcoming frequency change */
5411         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5412                                       0x80000000);
5413         mutex_unlock(&dev_priv->rps.hw_lock);
5414
5415         if (ret) {
5416                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5417                           ret, frequency);
5418                 return;
5419         }
5420
5421         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5422         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5423         current_freq = current_freq * 500 + 1000;
5424
5425         /*
5426          * DE PLL has to be disabled when
5427          * - setting to 19.2MHz (bypass, PLL isn't used)
5428          * - before setting to 624MHz (PLL needs toggling)
5429          * - before setting to any frequency from 624MHz (PLL needs toggling)
5430          */
5431         if (frequency == 19200 || frequency == 624000 ||
5432             current_freq == 624000) {
5433                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5434                 /* Timeout 200us */
5435                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5436                              1))
5437                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5438         }
5439
5440         if (frequency != 19200) {
5441                 uint32_t val;
5442
5443                 val = I915_READ(BXT_DE_PLL_CTL);
5444                 val &= ~BXT_DE_PLL_RATIO_MASK;
5445                 val |= ratio;
5446                 I915_WRITE(BXT_DE_PLL_CTL, val);
5447
5448                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5449                 /* Timeout 200us */
5450                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5451                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5452
5453                 val = I915_READ(CDCLK_CTL);
5454                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5455                 val |= divider;
5456                 /*
5457                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5458                  * enable otherwise.
5459                  */
5460                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5461                 if (frequency >= 500000)
5462                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5463
5464                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5465                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5466                 val |= (frequency - 1000) / 500;
5467                 I915_WRITE(CDCLK_CTL, val);
5468         }
5469
5470         mutex_lock(&dev_priv->rps.hw_lock);
5471         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5472                                       DIV_ROUND_UP(frequency, 25000));
5473         mutex_unlock(&dev_priv->rps.hw_lock);
5474
5475         if (ret) {
5476                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5477                           ret, frequency);
5478                 return;
5479         }
5480
5481         intel_update_cdclk(dev);
5482 }
5483
5484 void broxton_init_cdclk(struct drm_device *dev)
5485 {
5486         struct drm_i915_private *dev_priv = dev->dev_private;
5487         uint32_t val;
5488
5489         /*
5490          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5491          * or else the reset will hang because there is no PCH to respond.
5492          * Move the handshake programming to initialization sequence.
5493          * Previously was left up to BIOS.
5494          */
5495         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5496         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5497         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5498
5499         /* Enable PG1 for cdclk */
5500         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5501
5502         /* check if cd clock is enabled */
5503         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5504                 DRM_DEBUG_KMS("Display already initialized\n");
5505                 return;
5506         }
5507
5508         /*
5509          * FIXME:
5510          * - The initial CDCLK needs to be read from VBT.
5511          *   Need to make this change after VBT has changes for BXT.
5512          * - check if setting the max (or any) cdclk freq is really necessary
5513          *   here, it belongs to modeset time
5514          */
5515         broxton_set_cdclk(dev, 624000);
5516
5517         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5518         POSTING_READ(DBUF_CTL);
5519
5520         udelay(10);
5521
5522         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5523                 DRM_ERROR("DBuf power enable timeout!\n");
5524 }
5525
5526 void broxton_uninit_cdclk(struct drm_device *dev)
5527 {
5528         struct drm_i915_private *dev_priv = dev->dev_private;
5529
5530         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5531         POSTING_READ(DBUF_CTL);
5532
5533         udelay(10);
5534
5535         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5536                 DRM_ERROR("DBuf power disable timeout!\n");
5537
5538         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5539         broxton_set_cdclk(dev, 19200);
5540
5541         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5542 }
5543
5544 static const struct skl_cdclk_entry {
5545         unsigned int freq;
5546         unsigned int vco;
5547 } skl_cdclk_frequencies[] = {
5548         { .freq = 308570, .vco = 8640 },
5549         { .freq = 337500, .vco = 8100 },
5550         { .freq = 432000, .vco = 8640 },
5551         { .freq = 450000, .vco = 8100 },
5552         { .freq = 540000, .vco = 8100 },
5553         { .freq = 617140, .vco = 8640 },
5554         { .freq = 675000, .vco = 8100 },
5555 };
5556
5557 static unsigned int skl_cdclk_decimal(unsigned int freq)
5558 {
5559         return (freq - 1000) / 500;
5560 }
5561
5562 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5563 {
5564         unsigned int i;
5565
5566         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5567                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5568
5569                 if (e->freq == freq)
5570                         return e->vco;
5571         }
5572
5573         return 8100;
5574 }
5575
5576 static void
5577 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5578 {
5579         unsigned int min_freq;
5580         u32 val;
5581
5582         /* select the minimum CDCLK before enabling DPLL 0 */
5583         val = I915_READ(CDCLK_CTL);
5584         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5585         val |= CDCLK_FREQ_337_308;
5586
5587         if (required_vco == 8640)
5588                 min_freq = 308570;
5589         else
5590                 min_freq = 337500;
5591
5592         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5593
5594         I915_WRITE(CDCLK_CTL, val);
5595         POSTING_READ(CDCLK_CTL);
5596
5597         /*
5598          * We always enable DPLL0 with the lowest link rate possible, but still
5599          * taking into account the VCO required to operate the eDP panel at the
5600          * desired frequency. The usual DP link rates operate with a VCO of
5601          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5602          * The modeset code is responsible for the selection of the exact link
5603          * rate later on, with the constraint of choosing a frequency that
5604          * works with required_vco.
5605          */
5606         val = I915_READ(DPLL_CTRL1);
5607
5608         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5609                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5610         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5611         if (required_vco == 8640)
5612                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5613                                             SKL_DPLL0);
5614         else
5615                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5616                                             SKL_DPLL0);
5617
5618         I915_WRITE(DPLL_CTRL1, val);
5619         POSTING_READ(DPLL_CTRL1);
5620
5621         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5622
5623         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5624                 DRM_ERROR("DPLL0 not locked\n");
5625 }
5626
5627 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5628 {
5629         int ret;
5630         u32 val;
5631
5632         /* inform PCU we want to change CDCLK */
5633         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5634         mutex_lock(&dev_priv->rps.hw_lock);
5635         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5636         mutex_unlock(&dev_priv->rps.hw_lock);
5637
5638         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5639 }
5640
5641 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5642 {
5643         unsigned int i;
5644
5645         for (i = 0; i < 15; i++) {
5646                 if (skl_cdclk_pcu_ready(dev_priv))
5647                         return true;
5648                 udelay(10);
5649         }
5650
5651         return false;
5652 }
5653
5654 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5655 {
5656         struct drm_device *dev = dev_priv->dev;
5657         u32 freq_select, pcu_ack;
5658
5659         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5660
5661         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5662                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5663                 return;
5664         }
5665
5666         /* set CDCLK_CTL */
5667         switch(freq) {
5668         case 450000:
5669         case 432000:
5670                 freq_select = CDCLK_FREQ_450_432;
5671                 pcu_ack = 1;
5672                 break;
5673         case 540000:
5674                 freq_select = CDCLK_FREQ_540;
5675                 pcu_ack = 2;
5676                 break;
5677         case 308570:
5678         case 337500:
5679         default:
5680                 freq_select = CDCLK_FREQ_337_308;
5681                 pcu_ack = 0;
5682                 break;
5683         case 617140:
5684         case 675000:
5685                 freq_select = CDCLK_FREQ_675_617;
5686                 pcu_ack = 3;
5687                 break;
5688         }
5689
5690         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5691         POSTING_READ(CDCLK_CTL);
5692
5693         /* inform PCU of the change */
5694         mutex_lock(&dev_priv->rps.hw_lock);
5695         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5696         mutex_unlock(&dev_priv->rps.hw_lock);
5697
5698         intel_update_cdclk(dev);
5699 }
5700
5701 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5702 {
5703         /* disable DBUF power */
5704         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5705         POSTING_READ(DBUF_CTL);
5706
5707         udelay(10);
5708
5709         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5710                 DRM_ERROR("DBuf power disable timeout\n");
5711
5712         /* disable DPLL0 */
5713         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5714         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5715                 DRM_ERROR("Couldn't disable DPLL0\n");
5716 }
5717
5718 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5719 {
5720         unsigned int required_vco;
5721
5722         /* DPLL0 not enabled (happens on early BIOS versions) */
5723         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5724                 /* enable DPLL0 */
5725                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5726                 skl_dpll0_enable(dev_priv, required_vco);
5727         }
5728
5729         /* set CDCLK to the frequency the BIOS chose */
5730         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5731
5732         /* enable DBUF power */
5733         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5734         POSTING_READ(DBUF_CTL);
5735
5736         udelay(10);
5737
5738         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5739                 DRM_ERROR("DBuf power enable timeout\n");
5740 }
5741
5742 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5743 {
5744         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5745         uint32_t cdctl = I915_READ(CDCLK_CTL);
5746         int freq = dev_priv->skl_boot_cdclk;
5747
5748         /*
5749          * check if the pre-os intialized the display
5750          * There is SWF18 scratchpad register defined which is set by the
5751          * pre-os which can be used by the OS drivers to check the status
5752          */
5753         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5754                 goto sanitize;
5755
5756         /* Is PLL enabled and locked ? */
5757         if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5758                 goto sanitize;
5759
5760         /* DPLL okay; verify the cdclock
5761          *
5762          * Noticed in some instances that the freq selection is correct but
5763          * decimal part is programmed wrong from BIOS where pre-os does not
5764          * enable display. Verify the same as well.
5765          */
5766         if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5767                 /* All well; nothing to sanitize */
5768                 return false;
5769 sanitize:
5770         /*
5771          * As of now initialize with max cdclk till
5772          * we get dynamic cdclk support
5773          * */
5774         dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5775         skl_init_cdclk(dev_priv);
5776
5777         /* we did have to sanitize */
5778         return true;
5779 }
5780
5781 /* Adjust CDclk dividers to allow high res or save power if possible */
5782 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5783 {
5784         struct drm_i915_private *dev_priv = dev->dev_private;
5785         u32 val, cmd;
5786
5787         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5788                                         != dev_priv->cdclk_freq);
5789
5790         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5791                 cmd = 2;
5792         else if (cdclk == 266667)
5793                 cmd = 1;
5794         else
5795                 cmd = 0;
5796
5797         mutex_lock(&dev_priv->rps.hw_lock);
5798         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5799         val &= ~DSPFREQGUAR_MASK;
5800         val |= (cmd << DSPFREQGUAR_SHIFT);
5801         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5802         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5803                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5804                      50)) {
5805                 DRM_ERROR("timed out waiting for CDclk change\n");
5806         }
5807         mutex_unlock(&dev_priv->rps.hw_lock);
5808
5809         mutex_lock(&dev_priv->sb_lock);
5810
5811         if (cdclk == 400000) {
5812                 u32 divider;
5813
5814                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5815
5816                 /* adjust cdclk divider */
5817                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5818                 val &= ~CCK_FREQUENCY_VALUES;
5819                 val |= divider;
5820                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5821
5822                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5823                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5824                              50))
5825                         DRM_ERROR("timed out waiting for CDclk change\n");
5826         }
5827
5828         /* adjust self-refresh exit latency value */
5829         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5830         val &= ~0x7f;
5831
5832         /*
5833          * For high bandwidth configs, we set a higher latency in the bunit
5834          * so that the core display fetch happens in time to avoid underruns.
5835          */
5836         if (cdclk == 400000)
5837                 val |= 4500 / 250; /* 4.5 usec */
5838         else
5839                 val |= 3000 / 250; /* 3.0 usec */
5840         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5841
5842         mutex_unlock(&dev_priv->sb_lock);
5843
5844         intel_update_cdclk(dev);
5845 }
5846
5847 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5848 {
5849         struct drm_i915_private *dev_priv = dev->dev_private;
5850         u32 val, cmd;
5851
5852         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5853                                                 != dev_priv->cdclk_freq);
5854
5855         switch (cdclk) {
5856         case 333333:
5857         case 320000:
5858         case 266667:
5859         case 200000:
5860                 break;
5861         default:
5862                 MISSING_CASE(cdclk);
5863                 return;
5864         }
5865
5866         /*
5867          * Specs are full of misinformation, but testing on actual
5868          * hardware has shown that we just need to write the desired
5869          * CCK divider into the Punit register.
5870          */
5871         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5872
5873         mutex_lock(&dev_priv->rps.hw_lock);
5874         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5875         val &= ~DSPFREQGUAR_MASK_CHV;
5876         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5877         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5878         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5879                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5880                      50)) {
5881                 DRM_ERROR("timed out waiting for CDclk change\n");
5882         }
5883         mutex_unlock(&dev_priv->rps.hw_lock);
5884
5885         intel_update_cdclk(dev);
5886 }
5887
5888 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5889                                  int max_pixclk)
5890 {
5891         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5892         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5893
5894         /*
5895          * Really only a few cases to deal with, as only 4 CDclks are supported:
5896          *   200MHz
5897          *   267MHz
5898          *   320/333MHz (depends on HPLL freq)
5899          *   400MHz (VLV only)
5900          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5901          * of the lower bin and adjust if needed.
5902          *
5903          * We seem to get an unstable or solid color picture at 200MHz.
5904          * Not sure what's wrong. For now use 200MHz only when all pipes
5905          * are off.
5906          */
5907         if (!IS_CHERRYVIEW(dev_priv) &&
5908             max_pixclk > freq_320*limit/100)
5909                 return 400000;
5910         else if (max_pixclk > 266667*limit/100)
5911                 return freq_320;
5912         else if (max_pixclk > 0)
5913                 return 266667;
5914         else
5915                 return 200000;
5916 }
5917
5918 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5919                               int max_pixclk)
5920 {
5921         /*
5922          * FIXME:
5923          * - remove the guardband, it's not needed on BXT
5924          * - set 19.2MHz bypass frequency if there are no active pipes
5925          */
5926         if (max_pixclk > 576000*9/10)
5927                 return 624000;
5928         else if (max_pixclk > 384000*9/10)
5929                 return 576000;
5930         else if (max_pixclk > 288000*9/10)
5931                 return 384000;
5932         else if (max_pixclk > 144000*9/10)
5933                 return 288000;
5934         else
5935                 return 144000;
5936 }
5937
5938 /* Compute the max pixel clock for new configuration. */
5939 static int intel_mode_max_pixclk(struct drm_device *dev,
5940                                  struct drm_atomic_state *state)
5941 {
5942         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5943         struct drm_i915_private *dev_priv = dev->dev_private;
5944         struct drm_crtc *crtc;
5945         struct drm_crtc_state *crtc_state;
5946         unsigned max_pixclk = 0, i;
5947         enum pipe pipe;
5948
5949         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
5950                sizeof(intel_state->min_pixclk));
5951
5952         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5953                 int pixclk = 0;
5954
5955                 if (crtc_state->enable)
5956                         pixclk = crtc_state->adjusted_mode.crtc_clock;
5957
5958                 intel_state->min_pixclk[i] = pixclk;
5959         }
5960
5961         for_each_pipe(dev_priv, pipe)
5962                 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
5963
5964         return max_pixclk;
5965 }
5966
5967 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5968 {
5969         struct drm_device *dev = state->dev;
5970         struct drm_i915_private *dev_priv = dev->dev_private;
5971         int max_pixclk = intel_mode_max_pixclk(dev, state);
5972         struct intel_atomic_state *intel_state =
5973                 to_intel_atomic_state(state);
5974
5975         if (max_pixclk < 0)
5976                 return max_pixclk;
5977
5978         intel_state->cdclk = intel_state->dev_cdclk =
5979                 valleyview_calc_cdclk(dev_priv, max_pixclk);
5980
5981         if (!intel_state->active_crtcs)
5982                 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
5983
5984         return 0;
5985 }
5986
5987 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5988 {
5989         struct drm_device *dev = state->dev;
5990         struct drm_i915_private *dev_priv = dev->dev_private;
5991         int max_pixclk = intel_mode_max_pixclk(dev, state);
5992         struct intel_atomic_state *intel_state =
5993                 to_intel_atomic_state(state);
5994
5995         if (max_pixclk < 0)
5996                 return max_pixclk;
5997
5998         intel_state->cdclk = intel_state->dev_cdclk =
5999                 broxton_calc_cdclk(dev_priv, max_pixclk);
6000
6001         if (!intel_state->active_crtcs)
6002                 intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0);
6003
6004         return 0;
6005 }
6006
6007 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6008 {
6009         unsigned int credits, default_credits;
6010
6011         if (IS_CHERRYVIEW(dev_priv))
6012                 default_credits = PFI_CREDIT(12);
6013         else
6014                 default_credits = PFI_CREDIT(8);
6015
6016         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6017                 /* CHV suggested value is 31 or 63 */
6018                 if (IS_CHERRYVIEW(dev_priv))
6019                         credits = PFI_CREDIT_63;
6020                 else
6021                         credits = PFI_CREDIT(15);
6022         } else {
6023                 credits = default_credits;
6024         }
6025
6026         /*
6027          * WA - write default credits before re-programming
6028          * FIXME: should we also set the resend bit here?
6029          */
6030         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6031                    default_credits);
6032
6033         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6034                    credits | PFI_CREDIT_RESEND);
6035
6036         /*
6037          * FIXME is this guaranteed to clear
6038          * immediately or should we poll for it?
6039          */
6040         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6041 }
6042
6043 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6044 {
6045         struct drm_device *dev = old_state->dev;
6046         struct drm_i915_private *dev_priv = dev->dev_private;
6047         struct intel_atomic_state *old_intel_state =
6048                 to_intel_atomic_state(old_state);
6049         unsigned req_cdclk = old_intel_state->dev_cdclk;
6050
6051         /*
6052          * FIXME: We can end up here with all power domains off, yet
6053          * with a CDCLK frequency other than the minimum. To account
6054          * for this take the PIPE-A power domain, which covers the HW
6055          * blocks needed for the following programming. This can be
6056          * removed once it's guaranteed that we get here either with
6057          * the minimum CDCLK set, or the required power domains
6058          * enabled.
6059          */
6060         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6061
6062         if (IS_CHERRYVIEW(dev))
6063                 cherryview_set_cdclk(dev, req_cdclk);
6064         else
6065                 valleyview_set_cdclk(dev, req_cdclk);
6066
6067         vlv_program_pfi_credits(dev_priv);
6068
6069         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6070 }
6071
6072 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6073 {
6074         struct drm_device *dev = crtc->dev;
6075         struct drm_i915_private *dev_priv = to_i915(dev);
6076         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6077         struct intel_encoder *encoder;
6078         int pipe = intel_crtc->pipe;
6079
6080         if (WARN_ON(intel_crtc->active))
6081                 return;
6082
6083         if (intel_crtc->config->has_dp_encoder)
6084                 intel_dp_set_m_n(intel_crtc, M1_N1);
6085
6086         intel_set_pipe_timings(intel_crtc);
6087         intel_set_pipe_src_size(intel_crtc);
6088
6089         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6090                 struct drm_i915_private *dev_priv = dev->dev_private;
6091
6092                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6093                 I915_WRITE(CHV_CANVAS(pipe), 0);
6094         }
6095
6096         i9xx_set_pipeconf(intel_crtc);
6097
6098         intel_crtc->active = true;
6099
6100         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6101
6102         for_each_encoder_on_crtc(dev, crtc, encoder)
6103                 if (encoder->pre_pll_enable)
6104                         encoder->pre_pll_enable(encoder);
6105
6106         if (!intel_crtc->config->has_dsi_encoder) {
6107                 if (IS_CHERRYVIEW(dev)) {
6108                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6109                         chv_enable_pll(intel_crtc, intel_crtc->config);
6110                 } else {
6111                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6112                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6113                 }
6114         }
6115
6116         for_each_encoder_on_crtc(dev, crtc, encoder)
6117                 if (encoder->pre_enable)
6118                         encoder->pre_enable(encoder);
6119
6120         i9xx_pfit_enable(intel_crtc);
6121
6122         intel_color_load_luts(crtc);
6123
6124         intel_update_watermarks(crtc);
6125         intel_enable_pipe(intel_crtc);
6126
6127         assert_vblank_disabled(crtc);
6128         drm_crtc_vblank_on(crtc);
6129
6130         for_each_encoder_on_crtc(dev, crtc, encoder)
6131                 encoder->enable(encoder);
6132 }
6133
6134 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6135 {
6136         struct drm_device *dev = crtc->base.dev;
6137         struct drm_i915_private *dev_priv = dev->dev_private;
6138
6139         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6140         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6141 }
6142
6143 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6144 {
6145         struct drm_device *dev = crtc->dev;
6146         struct drm_i915_private *dev_priv = to_i915(dev);
6147         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6148         struct intel_encoder *encoder;
6149         int pipe = intel_crtc->pipe;
6150
6151         if (WARN_ON(intel_crtc->active))
6152                 return;
6153
6154         i9xx_set_pll_dividers(intel_crtc);
6155
6156         if (intel_crtc->config->has_dp_encoder)
6157                 intel_dp_set_m_n(intel_crtc, M1_N1);
6158
6159         intel_set_pipe_timings(intel_crtc);
6160         intel_set_pipe_src_size(intel_crtc);
6161
6162         i9xx_set_pipeconf(intel_crtc);
6163
6164         intel_crtc->active = true;
6165
6166         if (!IS_GEN2(dev))
6167                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6168
6169         for_each_encoder_on_crtc(dev, crtc, encoder)
6170                 if (encoder->pre_enable)
6171                         encoder->pre_enable(encoder);
6172
6173         i9xx_enable_pll(intel_crtc);
6174
6175         i9xx_pfit_enable(intel_crtc);
6176
6177         intel_color_load_luts(crtc);
6178
6179         intel_update_watermarks(crtc);
6180         intel_enable_pipe(intel_crtc);
6181
6182         assert_vblank_disabled(crtc);
6183         drm_crtc_vblank_on(crtc);
6184
6185         for_each_encoder_on_crtc(dev, crtc, encoder)
6186                 encoder->enable(encoder);
6187 }
6188
6189 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6190 {
6191         struct drm_device *dev = crtc->base.dev;
6192         struct drm_i915_private *dev_priv = dev->dev_private;
6193
6194         if (!crtc->config->gmch_pfit.control)
6195                 return;
6196
6197         assert_pipe_disabled(dev_priv, crtc->pipe);
6198
6199         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6200                          I915_READ(PFIT_CONTROL));
6201         I915_WRITE(PFIT_CONTROL, 0);
6202 }
6203
6204 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6205 {
6206         struct drm_device *dev = crtc->dev;
6207         struct drm_i915_private *dev_priv = dev->dev_private;
6208         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6209         struct intel_encoder *encoder;
6210         int pipe = intel_crtc->pipe;
6211
6212         /*
6213          * On gen2 planes are double buffered but the pipe isn't, so we must
6214          * wait for planes to fully turn off before disabling the pipe.
6215          * We also need to wait on all gmch platforms because of the
6216          * self-refresh mode constraint explained above.
6217          */
6218         intel_wait_for_vblank(dev, pipe);
6219
6220         for_each_encoder_on_crtc(dev, crtc, encoder)
6221                 encoder->disable(encoder);
6222
6223         drm_crtc_vblank_off(crtc);
6224         assert_vblank_disabled(crtc);
6225
6226         intel_disable_pipe(intel_crtc);
6227
6228         i9xx_pfit_disable(intel_crtc);
6229
6230         for_each_encoder_on_crtc(dev, crtc, encoder)
6231                 if (encoder->post_disable)
6232                         encoder->post_disable(encoder);
6233
6234         if (!intel_crtc->config->has_dsi_encoder) {
6235                 if (IS_CHERRYVIEW(dev))
6236                         chv_disable_pll(dev_priv, pipe);
6237                 else if (IS_VALLEYVIEW(dev))
6238                         vlv_disable_pll(dev_priv, pipe);
6239                 else
6240                         i9xx_disable_pll(intel_crtc);
6241         }
6242
6243         for_each_encoder_on_crtc(dev, crtc, encoder)
6244                 if (encoder->post_pll_disable)
6245                         encoder->post_pll_disable(encoder);
6246
6247         if (!IS_GEN2(dev))
6248                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6249 }
6250
6251 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6252 {
6253         struct intel_encoder *encoder;
6254         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6255         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6256         enum intel_display_power_domain domain;
6257         unsigned long domains;
6258
6259         if (!intel_crtc->active)
6260                 return;
6261
6262         if (to_intel_plane_state(crtc->primary->state)->visible) {
6263                 WARN_ON(intel_crtc->unpin_work);
6264
6265                 intel_pre_disable_primary_noatomic(crtc);
6266
6267                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6268                 to_intel_plane_state(crtc->primary->state)->visible = false;
6269         }
6270
6271         dev_priv->display.crtc_disable(crtc);
6272
6273         DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was enabled, now disabled\n",
6274                       crtc->base.id);
6275
6276         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6277         crtc->state->active = false;
6278         intel_crtc->active = false;
6279         crtc->enabled = false;
6280         crtc->state->connector_mask = 0;
6281         crtc->state->encoder_mask = 0;
6282
6283         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6284                 encoder->base.crtc = NULL;
6285
6286         intel_fbc_disable(intel_crtc);
6287         intel_update_watermarks(crtc);
6288         intel_disable_shared_dpll(intel_crtc);
6289
6290         domains = intel_crtc->enabled_power_domains;
6291         for_each_power_domain(domain, domains)
6292                 intel_display_power_put(dev_priv, domain);
6293         intel_crtc->enabled_power_domains = 0;
6294
6295         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6296         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6297 }
6298
6299 /*
6300  * turn all crtc's off, but do not adjust state
6301  * This has to be paired with a call to intel_modeset_setup_hw_state.
6302  */
6303 int intel_display_suspend(struct drm_device *dev)
6304 {
6305         struct drm_i915_private *dev_priv = to_i915(dev);
6306         struct drm_atomic_state *state;
6307         int ret;
6308
6309         state = drm_atomic_helper_suspend(dev);
6310         ret = PTR_ERR_OR_ZERO(state);
6311         if (ret)
6312                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6313         else
6314                 dev_priv->modeset_restore_state = state;
6315         return ret;
6316 }
6317
6318 void intel_encoder_destroy(struct drm_encoder *encoder)
6319 {
6320         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6321
6322         drm_encoder_cleanup(encoder);
6323         kfree(intel_encoder);
6324 }
6325
6326 /* Cross check the actual hw state with our own modeset state tracking (and it's
6327  * internal consistency). */
6328 static void intel_connector_check_state(struct intel_connector *connector)
6329 {
6330         struct drm_crtc *crtc = connector->base.state->crtc;
6331
6332         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6333                       connector->base.base.id,
6334                       connector->base.name);
6335
6336         if (connector->get_hw_state(connector)) {
6337                 struct intel_encoder *encoder = connector->encoder;
6338                 struct drm_connector_state *conn_state = connector->base.state;
6339
6340                 I915_STATE_WARN(!crtc,
6341                          "connector enabled without attached crtc\n");
6342
6343                 if (!crtc)
6344                         return;
6345
6346                 I915_STATE_WARN(!crtc->state->active,
6347                       "connector is active, but attached crtc isn't\n");
6348
6349                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6350                         return;
6351
6352                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6353                         "atomic encoder doesn't match attached encoder\n");
6354
6355                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6356                         "attached encoder crtc differs from connector crtc\n");
6357         } else {
6358                 I915_STATE_WARN(crtc && crtc->state->active,
6359                         "attached crtc is active, but connector isn't\n");
6360                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6361                         "best encoder set without crtc!\n");
6362         }
6363 }
6364
6365 int intel_connector_init(struct intel_connector *connector)
6366 {
6367         drm_atomic_helper_connector_reset(&connector->base);
6368
6369         if (!connector->base.state)
6370                 return -ENOMEM;
6371
6372         return 0;
6373 }
6374
6375 struct intel_connector *intel_connector_alloc(void)
6376 {
6377         struct intel_connector *connector;
6378
6379         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6380         if (!connector)
6381                 return NULL;
6382
6383         if (intel_connector_init(connector) < 0) {
6384                 kfree(connector);
6385                 return NULL;
6386         }
6387
6388         return connector;
6389 }
6390
6391 /* Simple connector->get_hw_state implementation for encoders that support only
6392  * one connector and no cloning and hence the encoder state determines the state
6393  * of the connector. */
6394 bool intel_connector_get_hw_state(struct intel_connector *connector)
6395 {
6396         enum pipe pipe = 0;
6397         struct intel_encoder *encoder = connector->encoder;
6398
6399         return encoder->get_hw_state(encoder, &pipe);
6400 }
6401
6402 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6403 {
6404         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6405                 return crtc_state->fdi_lanes;
6406
6407         return 0;
6408 }
6409
6410 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6411                                      struct intel_crtc_state *pipe_config)
6412 {
6413         struct drm_atomic_state *state = pipe_config->base.state;
6414         struct intel_crtc *other_crtc;
6415         struct intel_crtc_state *other_crtc_state;
6416
6417         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6418                       pipe_name(pipe), pipe_config->fdi_lanes);
6419         if (pipe_config->fdi_lanes > 4) {
6420                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6421                               pipe_name(pipe), pipe_config->fdi_lanes);
6422                 return -EINVAL;
6423         }
6424
6425         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6426                 if (pipe_config->fdi_lanes > 2) {
6427                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6428                                       pipe_config->fdi_lanes);
6429                         return -EINVAL;
6430                 } else {
6431                         return 0;
6432                 }
6433         }
6434
6435         if (INTEL_INFO(dev)->num_pipes == 2)
6436                 return 0;
6437
6438         /* Ivybridge 3 pipe is really complicated */
6439         switch (pipe) {
6440         case PIPE_A:
6441                 return 0;
6442         case PIPE_B:
6443                 if (pipe_config->fdi_lanes <= 2)
6444                         return 0;
6445
6446                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6447                 other_crtc_state =
6448                         intel_atomic_get_crtc_state(state, other_crtc);
6449                 if (IS_ERR(other_crtc_state))
6450                         return PTR_ERR(other_crtc_state);
6451
6452                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6453                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6454                                       pipe_name(pipe), pipe_config->fdi_lanes);
6455                         return -EINVAL;
6456                 }
6457                 return 0;
6458         case PIPE_C:
6459                 if (pipe_config->fdi_lanes > 2) {
6460                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6461                                       pipe_name(pipe), pipe_config->fdi_lanes);
6462                         return -EINVAL;
6463                 }
6464
6465                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6466                 other_crtc_state =
6467                         intel_atomic_get_crtc_state(state, other_crtc);
6468                 if (IS_ERR(other_crtc_state))
6469                         return PTR_ERR(other_crtc_state);
6470
6471                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6472                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6473                         return -EINVAL;
6474                 }
6475                 return 0;
6476         default:
6477                 BUG();
6478         }
6479 }
6480
6481 #define RETRY 1
6482 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6483                                        struct intel_crtc_state *pipe_config)
6484 {
6485         struct drm_device *dev = intel_crtc->base.dev;
6486         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6487         int lane, link_bw, fdi_dotclock, ret;
6488         bool needs_recompute = false;
6489
6490 retry:
6491         /* FDI is a binary signal running at ~2.7GHz, encoding
6492          * each output octet as 10 bits. The actual frequency
6493          * is stored as a divider into a 100MHz clock, and the
6494          * mode pixel clock is stored in units of 1KHz.
6495          * Hence the bw of each lane in terms of the mode signal
6496          * is:
6497          */
6498         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6499
6500         fdi_dotclock = adjusted_mode->crtc_clock;
6501
6502         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6503                                            pipe_config->pipe_bpp);
6504
6505         pipe_config->fdi_lanes = lane;
6506
6507         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6508                                link_bw, &pipe_config->fdi_m_n);
6509
6510         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6511         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6512                 pipe_config->pipe_bpp -= 2*3;
6513                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6514                               pipe_config->pipe_bpp);
6515                 needs_recompute = true;
6516                 pipe_config->bw_constrained = true;
6517
6518                 goto retry;
6519         }
6520
6521         if (needs_recompute)
6522                 return RETRY;
6523
6524         return ret;
6525 }
6526
6527 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6528                                      struct intel_crtc_state *pipe_config)
6529 {
6530         if (pipe_config->pipe_bpp > 24)
6531                 return false;
6532
6533         /* HSW can handle pixel rate up to cdclk? */
6534         if (IS_HASWELL(dev_priv->dev))
6535                 return true;
6536
6537         /*
6538          * We compare against max which means we must take
6539          * the increased cdclk requirement into account when
6540          * calculating the new cdclk.
6541          *
6542          * Should measure whether using a lower cdclk w/o IPS
6543          */
6544         return ilk_pipe_pixel_rate(pipe_config) <=
6545                 dev_priv->max_cdclk_freq * 95 / 100;
6546 }
6547
6548 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6549                                    struct intel_crtc_state *pipe_config)
6550 {
6551         struct drm_device *dev = crtc->base.dev;
6552         struct drm_i915_private *dev_priv = dev->dev_private;
6553
6554         pipe_config->ips_enabled = i915.enable_ips &&
6555                 hsw_crtc_supports_ips(crtc) &&
6556                 pipe_config_supports_ips(dev_priv, pipe_config);
6557 }
6558
6559 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6560 {
6561         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6562
6563         /* GDG double wide on either pipe, otherwise pipe A only */
6564         return INTEL_INFO(dev_priv)->gen < 4 &&
6565                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6566 }
6567
6568 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6569                                      struct intel_crtc_state *pipe_config)
6570 {
6571         struct drm_device *dev = crtc->base.dev;
6572         struct drm_i915_private *dev_priv = dev->dev_private;
6573         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6574
6575         /* FIXME should check pixel clock limits on all platforms */
6576         if (INTEL_INFO(dev)->gen < 4) {
6577                 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6578
6579                 /*
6580                  * Enable double wide mode when the dot clock
6581                  * is > 90% of the (display) core speed.
6582                  */
6583                 if (intel_crtc_supports_double_wide(crtc) &&
6584                     adjusted_mode->crtc_clock > clock_limit) {
6585                         clock_limit *= 2;
6586                         pipe_config->double_wide = true;
6587                 }
6588
6589                 if (adjusted_mode->crtc_clock > clock_limit) {
6590                         DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6591                                       adjusted_mode->crtc_clock, clock_limit,
6592                                       yesno(pipe_config->double_wide));
6593                         return -EINVAL;
6594                 }
6595         }
6596
6597         /*
6598          * Pipe horizontal size must be even in:
6599          * - DVO ganged mode
6600          * - LVDS dual channel mode
6601          * - Double wide pipe
6602          */
6603         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6604              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6605                 pipe_config->pipe_src_w &= ~1;
6606
6607         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6608          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6609          */
6610         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6611                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6612                 return -EINVAL;
6613
6614         if (HAS_IPS(dev))
6615                 hsw_compute_ips_config(crtc, pipe_config);
6616
6617         if (pipe_config->has_pch_encoder)
6618                 return ironlake_fdi_compute_config(crtc, pipe_config);
6619
6620         return 0;
6621 }
6622
6623 static int skylake_get_display_clock_speed(struct drm_device *dev)
6624 {
6625         struct drm_i915_private *dev_priv = to_i915(dev);
6626         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6627         uint32_t cdctl = I915_READ(CDCLK_CTL);
6628         uint32_t linkrate;
6629
6630         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6631                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6632
6633         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6634                 return 540000;
6635
6636         linkrate = (I915_READ(DPLL_CTRL1) &
6637                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6638
6639         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6640             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6641                 /* vco 8640 */
6642                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6643                 case CDCLK_FREQ_450_432:
6644                         return 432000;
6645                 case CDCLK_FREQ_337_308:
6646                         return 308570;
6647                 case CDCLK_FREQ_675_617:
6648                         return 617140;
6649                 default:
6650                         WARN(1, "Unknown cd freq selection\n");
6651                 }
6652         } else {
6653                 /* vco 8100 */
6654                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6655                 case CDCLK_FREQ_450_432:
6656                         return 450000;
6657                 case CDCLK_FREQ_337_308:
6658                         return 337500;
6659                 case CDCLK_FREQ_675_617:
6660                         return 675000;
6661                 default:
6662                         WARN(1, "Unknown cd freq selection\n");
6663                 }
6664         }
6665
6666         /* error case, do as if DPLL0 isn't enabled */
6667         return 24000;
6668 }
6669
6670 static int broxton_get_display_clock_speed(struct drm_device *dev)
6671 {
6672         struct drm_i915_private *dev_priv = to_i915(dev);
6673         uint32_t cdctl = I915_READ(CDCLK_CTL);
6674         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6675         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6676         int cdclk;
6677
6678         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6679                 return 19200;
6680
6681         cdclk = 19200 * pll_ratio / 2;
6682
6683         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6684         case BXT_CDCLK_CD2X_DIV_SEL_1:
6685                 return cdclk;  /* 576MHz or 624MHz */
6686         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6687                 return cdclk * 2 / 3; /* 384MHz */
6688         case BXT_CDCLK_CD2X_DIV_SEL_2:
6689                 return cdclk / 2; /* 288MHz */
6690         case BXT_CDCLK_CD2X_DIV_SEL_4:
6691                 return cdclk / 4; /* 144MHz */
6692         }
6693
6694         /* error case, do as if DE PLL isn't enabled */
6695         return 19200;
6696 }
6697
6698 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6699 {
6700         struct drm_i915_private *dev_priv = dev->dev_private;
6701         uint32_t lcpll = I915_READ(LCPLL_CTL);
6702         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6703
6704         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6705                 return 800000;
6706         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6707                 return 450000;
6708         else if (freq == LCPLL_CLK_FREQ_450)
6709                 return 450000;
6710         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6711                 return 540000;
6712         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6713                 return 337500;
6714         else
6715                 return 675000;
6716 }
6717
6718 static int haswell_get_display_clock_speed(struct drm_device *dev)
6719 {
6720         struct drm_i915_private *dev_priv = dev->dev_private;
6721         uint32_t lcpll = I915_READ(LCPLL_CTL);
6722         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6723
6724         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6725                 return 800000;
6726         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6727                 return 450000;
6728         else if (freq == LCPLL_CLK_FREQ_450)
6729                 return 450000;
6730         else if (IS_HSW_ULT(dev))
6731                 return 337500;
6732         else
6733                 return 540000;
6734 }
6735
6736 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6737 {
6738         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6739                                       CCK_DISPLAY_CLOCK_CONTROL);
6740 }
6741
6742 static int ilk_get_display_clock_speed(struct drm_device *dev)
6743 {
6744         return 450000;
6745 }
6746
6747 static int i945_get_display_clock_speed(struct drm_device *dev)
6748 {
6749         return 400000;
6750 }
6751
6752 static int i915_get_display_clock_speed(struct drm_device *dev)
6753 {
6754         return 333333;
6755 }
6756
6757 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6758 {
6759         return 200000;
6760 }
6761
6762 static int pnv_get_display_clock_speed(struct drm_device *dev)
6763 {
6764         u16 gcfgc = 0;
6765
6766         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6767
6768         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6769         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6770                 return 266667;
6771         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6772                 return 333333;
6773         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6774                 return 444444;
6775         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6776                 return 200000;
6777         default:
6778                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6779         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6780                 return 133333;
6781         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6782                 return 166667;
6783         }
6784 }
6785
6786 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6787 {
6788         u16 gcfgc = 0;
6789
6790         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6791
6792         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6793                 return 133333;
6794         else {
6795                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6796                 case GC_DISPLAY_CLOCK_333_MHZ:
6797                         return 333333;
6798                 default:
6799                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6800                         return 190000;
6801                 }
6802         }
6803 }
6804
6805 static int i865_get_display_clock_speed(struct drm_device *dev)
6806 {
6807         return 266667;
6808 }
6809
6810 static int i85x_get_display_clock_speed(struct drm_device *dev)
6811 {
6812         u16 hpllcc = 0;
6813
6814         /*
6815          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6816          * encoding is different :(
6817          * FIXME is this the right way to detect 852GM/852GMV?
6818          */
6819         if (dev->pdev->revision == 0x1)
6820                 return 133333;
6821
6822         pci_bus_read_config_word(dev->pdev->bus,
6823                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6824
6825         /* Assume that the hardware is in the high speed state.  This
6826          * should be the default.
6827          */
6828         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6829         case GC_CLOCK_133_200:
6830         case GC_CLOCK_133_200_2:
6831         case GC_CLOCK_100_200:
6832                 return 200000;
6833         case GC_CLOCK_166_250:
6834                 return 250000;
6835         case GC_CLOCK_100_133:
6836                 return 133333;
6837         case GC_CLOCK_133_266:
6838         case GC_CLOCK_133_266_2:
6839         case GC_CLOCK_166_266:
6840                 return 266667;
6841         }
6842
6843         /* Shouldn't happen */
6844         return 0;
6845 }
6846
6847 static int i830_get_display_clock_speed(struct drm_device *dev)
6848 {
6849         return 133333;
6850 }
6851
6852 static unsigned int intel_hpll_vco(struct drm_device *dev)
6853 {
6854         struct drm_i915_private *dev_priv = dev->dev_private;
6855         static const unsigned int blb_vco[8] = {
6856                 [0] = 3200000,
6857                 [1] = 4000000,
6858                 [2] = 5333333,
6859                 [3] = 4800000,
6860                 [4] = 6400000,
6861         };
6862         static const unsigned int pnv_vco[8] = {
6863                 [0] = 3200000,
6864                 [1] = 4000000,
6865                 [2] = 5333333,
6866                 [3] = 4800000,
6867                 [4] = 2666667,
6868         };
6869         static const unsigned int cl_vco[8] = {
6870                 [0] = 3200000,
6871                 [1] = 4000000,
6872                 [2] = 5333333,
6873                 [3] = 6400000,
6874                 [4] = 3333333,
6875                 [5] = 3566667,
6876                 [6] = 4266667,
6877         };
6878         static const unsigned int elk_vco[8] = {
6879                 [0] = 3200000,
6880                 [1] = 4000000,
6881                 [2] = 5333333,
6882                 [3] = 4800000,
6883         };
6884         static const unsigned int ctg_vco[8] = {
6885                 [0] = 3200000,
6886                 [1] = 4000000,
6887                 [2] = 5333333,
6888                 [3] = 6400000,
6889                 [4] = 2666667,
6890                 [5] = 4266667,
6891         };
6892         const unsigned int *vco_table;
6893         unsigned int vco;
6894         uint8_t tmp = 0;
6895
6896         /* FIXME other chipsets? */
6897         if (IS_GM45(dev))
6898                 vco_table = ctg_vco;
6899         else if (IS_G4X(dev))
6900                 vco_table = elk_vco;
6901         else if (IS_CRESTLINE(dev))
6902                 vco_table = cl_vco;
6903         else if (IS_PINEVIEW(dev))
6904                 vco_table = pnv_vco;
6905         else if (IS_G33(dev))
6906                 vco_table = blb_vco;
6907         else
6908                 return 0;
6909
6910         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6911
6912         vco = vco_table[tmp & 0x7];
6913         if (vco == 0)
6914                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6915         else
6916                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6917
6918         return vco;
6919 }
6920
6921 static int gm45_get_display_clock_speed(struct drm_device *dev)
6922 {
6923         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6924         uint16_t tmp = 0;
6925
6926         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6927
6928         cdclk_sel = (tmp >> 12) & 0x1;
6929
6930         switch (vco) {
6931         case 2666667:
6932         case 4000000:
6933         case 5333333:
6934                 return cdclk_sel ? 333333 : 222222;
6935         case 3200000:
6936                 return cdclk_sel ? 320000 : 228571;
6937         default:
6938                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6939                 return 222222;
6940         }
6941 }
6942
6943 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6944 {
6945         static const uint8_t div_3200[] = { 16, 10,  8 };
6946         static const uint8_t div_4000[] = { 20, 12, 10 };
6947         static const uint8_t div_5333[] = { 24, 16, 14 };
6948         const uint8_t *div_table;
6949         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6950         uint16_t tmp = 0;
6951
6952         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6953
6954         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6955
6956         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6957                 goto fail;
6958
6959         switch (vco) {
6960         case 3200000:
6961                 div_table = div_3200;
6962                 break;
6963         case 4000000:
6964                 div_table = div_4000;
6965                 break;
6966         case 5333333:
6967                 div_table = div_5333;
6968                 break;
6969         default:
6970                 goto fail;
6971         }
6972
6973         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6974
6975 fail:
6976         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6977         return 200000;
6978 }
6979
6980 static int g33_get_display_clock_speed(struct drm_device *dev)
6981 {
6982         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
6983         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
6984         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6985         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6986         const uint8_t *div_table;
6987         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6988         uint16_t tmp = 0;
6989
6990         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6991
6992         cdclk_sel = (tmp >> 4) & 0x7;
6993
6994         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6995                 goto fail;
6996
6997         switch (vco) {
6998         case 3200000:
6999                 div_table = div_3200;
7000                 break;
7001         case 4000000:
7002                 div_table = div_4000;
7003                 break;
7004         case 4800000:
7005                 div_table = div_4800;
7006                 break;
7007         case 5333333:
7008                 div_table = div_5333;
7009                 break;
7010         default:
7011                 goto fail;
7012         }
7013
7014         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7015
7016 fail:
7017         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7018         return 190476;
7019 }
7020
7021 static void
7022 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7023 {
7024         while (*num > DATA_LINK_M_N_MASK ||
7025                *den > DATA_LINK_M_N_MASK) {
7026                 *num >>= 1;
7027                 *den >>= 1;
7028         }
7029 }
7030
7031 static void compute_m_n(unsigned int m, unsigned int n,
7032                         uint32_t *ret_m, uint32_t *ret_n)
7033 {
7034         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7035         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7036         intel_reduce_m_n_ratio(ret_m, ret_n);
7037 }
7038
7039 void
7040 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7041                        int pixel_clock, int link_clock,
7042                        struct intel_link_m_n *m_n)
7043 {
7044         m_n->tu = 64;
7045
7046         compute_m_n(bits_per_pixel * pixel_clock,
7047                     link_clock * nlanes * 8,
7048                     &m_n->gmch_m, &m_n->gmch_n);
7049
7050         compute_m_n(pixel_clock, link_clock,
7051                     &m_n->link_m, &m_n->link_n);
7052 }
7053
7054 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7055 {
7056         if (i915.panel_use_ssc >= 0)
7057                 return i915.panel_use_ssc != 0;
7058         return dev_priv->vbt.lvds_use_ssc
7059                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7060 }
7061
7062 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7063                            int num_connectors)
7064 {
7065         struct drm_device *dev = crtc_state->base.crtc->dev;
7066         struct drm_i915_private *dev_priv = dev->dev_private;
7067         int refclk;
7068
7069         WARN_ON(!crtc_state->base.state);
7070
7071         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) {
7072                 refclk = 100000;
7073         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7074             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7075                 refclk = dev_priv->vbt.lvds_ssc_freq;
7076                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7077         } else if (!IS_GEN2(dev)) {
7078                 refclk = 96000;
7079         } else {
7080                 refclk = 48000;
7081         }
7082
7083         return refclk;
7084 }
7085
7086 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7087 {
7088         return (1 << dpll->n) << 16 | dpll->m2;
7089 }
7090
7091 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7092 {
7093         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7094 }
7095
7096 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7097                                      struct intel_crtc_state *crtc_state,
7098                                      intel_clock_t *reduced_clock)
7099 {
7100         struct drm_device *dev = crtc->base.dev;
7101         u32 fp, fp2 = 0;
7102
7103         if (IS_PINEVIEW(dev)) {
7104                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7105                 if (reduced_clock)
7106                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7107         } else {
7108                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7109                 if (reduced_clock)
7110                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7111         }
7112
7113         crtc_state->dpll_hw_state.fp0 = fp;
7114
7115         crtc->lowfreq_avail = false;
7116         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7117             reduced_clock) {
7118                 crtc_state->dpll_hw_state.fp1 = fp2;
7119                 crtc->lowfreq_avail = true;
7120         } else {
7121                 crtc_state->dpll_hw_state.fp1 = fp;
7122         }
7123 }
7124
7125 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7126                 pipe)
7127 {
7128         u32 reg_val;
7129
7130         /*
7131          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7132          * and set it to a reasonable value instead.
7133          */
7134         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7135         reg_val &= 0xffffff00;
7136         reg_val |= 0x00000030;
7137         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7138
7139         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7140         reg_val &= 0x8cffffff;
7141         reg_val = 0x8c000000;
7142         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7143
7144         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7145         reg_val &= 0xffffff00;
7146         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7147
7148         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7149         reg_val &= 0x00ffffff;
7150         reg_val |= 0xb0000000;
7151         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7152 }
7153
7154 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7155                                          struct intel_link_m_n *m_n)
7156 {
7157         struct drm_device *dev = crtc->base.dev;
7158         struct drm_i915_private *dev_priv = dev->dev_private;
7159         int pipe = crtc->pipe;
7160
7161         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7162         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7163         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7164         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7165 }
7166
7167 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7168                                          struct intel_link_m_n *m_n,
7169                                          struct intel_link_m_n *m2_n2)
7170 {
7171         struct drm_device *dev = crtc->base.dev;
7172         struct drm_i915_private *dev_priv = dev->dev_private;
7173         int pipe = crtc->pipe;
7174         enum transcoder transcoder = crtc->config->cpu_transcoder;
7175
7176         if (INTEL_INFO(dev)->gen >= 5) {
7177                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7178                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7179                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7180                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7181                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7182                  * for gen < 8) and if DRRS is supported (to make sure the
7183                  * registers are not unnecessarily accessed).
7184                  */
7185                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7186                         crtc->config->has_drrs) {
7187                         I915_WRITE(PIPE_DATA_M2(transcoder),
7188                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7189                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7190                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7191                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7192                 }
7193         } else {
7194                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7195                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7196                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7197                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7198         }
7199 }
7200
7201 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7202 {
7203         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7204
7205         if (m_n == M1_N1) {
7206                 dp_m_n = &crtc->config->dp_m_n;
7207                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7208         } else if (m_n == M2_N2) {
7209
7210                 /*
7211                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7212                  * needs to be programmed into M1_N1.
7213                  */
7214                 dp_m_n = &crtc->config->dp_m2_n2;
7215         } else {
7216                 DRM_ERROR("Unsupported divider value\n");
7217                 return;
7218         }
7219
7220         if (crtc->config->has_pch_encoder)
7221                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7222         else
7223                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7224 }
7225
7226 static void vlv_compute_dpll(struct intel_crtc *crtc,
7227                              struct intel_crtc_state *pipe_config)
7228 {
7229         u32 dpll, dpll_md;
7230
7231         /*
7232          * Enable DPIO clock input. We should never disable the reference
7233          * clock for pipe B, since VGA hotplug / manual detection depends
7234          * on it.
7235          */
7236         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7237                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7238         /* We should never disable this, set it here for state tracking */
7239         if (crtc->pipe == PIPE_B)
7240                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7241         dpll |= DPLL_VCO_ENABLE;
7242         pipe_config->dpll_hw_state.dpll = dpll;
7243
7244         dpll_md = (pipe_config->pixel_multiplier - 1)
7245                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7246         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7247 }
7248
7249 static void vlv_prepare_pll(struct intel_crtc *crtc,
7250                             const struct intel_crtc_state *pipe_config)
7251 {
7252         struct drm_device *dev = crtc->base.dev;
7253         struct drm_i915_private *dev_priv = dev->dev_private;
7254         int pipe = crtc->pipe;
7255         u32 mdiv;
7256         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7257         u32 coreclk, reg_val;
7258
7259         mutex_lock(&dev_priv->sb_lock);
7260
7261         bestn = pipe_config->dpll.n;
7262         bestm1 = pipe_config->dpll.m1;
7263         bestm2 = pipe_config->dpll.m2;
7264         bestp1 = pipe_config->dpll.p1;
7265         bestp2 = pipe_config->dpll.p2;
7266
7267         /* See eDP HDMI DPIO driver vbios notes doc */
7268
7269         /* PLL B needs special handling */
7270         if (pipe == PIPE_B)
7271                 vlv_pllb_recal_opamp(dev_priv, pipe);
7272
7273         /* Set up Tx target for periodic Rcomp update */
7274         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7275
7276         /* Disable target IRef on PLL */
7277         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7278         reg_val &= 0x00ffffff;
7279         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7280
7281         /* Disable fast lock */
7282         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7283
7284         /* Set idtafcrecal before PLL is enabled */
7285         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7286         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7287         mdiv |= ((bestn << DPIO_N_SHIFT));
7288         mdiv |= (1 << DPIO_K_SHIFT);
7289
7290         /*
7291          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7292          * but we don't support that).
7293          * Note: don't use the DAC post divider as it seems unstable.
7294          */
7295         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7296         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7297
7298         mdiv |= DPIO_ENABLE_CALIBRATION;
7299         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7300
7301         /* Set HBR and RBR LPF coefficients */
7302         if (pipe_config->port_clock == 162000 ||
7303             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7304             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7305                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7306                                  0x009f0003);
7307         else
7308                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7309                                  0x00d0000f);
7310
7311         if (pipe_config->has_dp_encoder) {
7312                 /* Use SSC source */
7313                 if (pipe == PIPE_A)
7314                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7315                                          0x0df40000);
7316                 else
7317                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7318                                          0x0df70000);
7319         } else { /* HDMI or VGA */
7320                 /* Use bend source */
7321                 if (pipe == PIPE_A)
7322                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7323                                          0x0df70000);
7324                 else
7325                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7326                                          0x0df40000);
7327         }
7328
7329         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7330         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7331         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7332             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7333                 coreclk |= 0x01000000;
7334         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7335
7336         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7337         mutex_unlock(&dev_priv->sb_lock);
7338 }
7339
7340 static void chv_compute_dpll(struct intel_crtc *crtc,
7341                              struct intel_crtc_state *pipe_config)
7342 {
7343         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7344                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7345                 DPLL_VCO_ENABLE;
7346         if (crtc->pipe != PIPE_A)
7347                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7348
7349         pipe_config->dpll_hw_state.dpll_md =
7350                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7351 }
7352
7353 static void chv_prepare_pll(struct intel_crtc *crtc,
7354                             const struct intel_crtc_state *pipe_config)
7355 {
7356         struct drm_device *dev = crtc->base.dev;
7357         struct drm_i915_private *dev_priv = dev->dev_private;
7358         int pipe = crtc->pipe;
7359         i915_reg_t dpll_reg = DPLL(crtc->pipe);
7360         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7361         u32 loopfilter, tribuf_calcntr;
7362         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7363         u32 dpio_val;
7364         int vco;
7365
7366         bestn = pipe_config->dpll.n;
7367         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7368         bestm1 = pipe_config->dpll.m1;
7369         bestm2 = pipe_config->dpll.m2 >> 22;
7370         bestp1 = pipe_config->dpll.p1;
7371         bestp2 = pipe_config->dpll.p2;
7372         vco = pipe_config->dpll.vco;
7373         dpio_val = 0;
7374         loopfilter = 0;
7375
7376         /*
7377          * Enable Refclk and SSC
7378          */
7379         I915_WRITE(dpll_reg,
7380                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7381
7382         mutex_lock(&dev_priv->sb_lock);
7383
7384         /* p1 and p2 divider */
7385         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7386                         5 << DPIO_CHV_S1_DIV_SHIFT |
7387                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7388                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7389                         1 << DPIO_CHV_K_DIV_SHIFT);
7390
7391         /* Feedback post-divider - m2 */
7392         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7393
7394         /* Feedback refclk divider - n and m1 */
7395         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7396                         DPIO_CHV_M1_DIV_BY_2 |
7397                         1 << DPIO_CHV_N_DIV_SHIFT);
7398
7399         /* M2 fraction division */
7400         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7401
7402         /* M2 fraction division enable */
7403         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7404         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7405         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7406         if (bestm2_frac)
7407                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7408         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7409
7410         /* Program digital lock detect threshold */
7411         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7412         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7413                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7414         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7415         if (!bestm2_frac)
7416                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7417         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7418
7419         /* Loop filter */
7420         if (vco == 5400000) {
7421                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7422                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7423                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7424                 tribuf_calcntr = 0x9;
7425         } else if (vco <= 6200000) {
7426                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7427                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7428                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7429                 tribuf_calcntr = 0x9;
7430         } else if (vco <= 6480000) {
7431                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7432                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7433                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7434                 tribuf_calcntr = 0x8;
7435         } else {
7436                 /* Not supported. Apply the same limits as in the max case */
7437                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7438                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7439                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7440                 tribuf_calcntr = 0;
7441         }
7442         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7443
7444         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7445         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7446         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7447         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7448
7449         /* AFC Recal */
7450         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7451                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7452                         DPIO_AFC_RECAL);
7453
7454         mutex_unlock(&dev_priv->sb_lock);
7455 }
7456
7457 /**
7458  * vlv_force_pll_on - forcibly enable just the PLL
7459  * @dev_priv: i915 private structure
7460  * @pipe: pipe PLL to enable
7461  * @dpll: PLL configuration
7462  *
7463  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7464  * in cases where we need the PLL enabled even when @pipe is not going to
7465  * be enabled.
7466  */
7467 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7468                      const struct dpll *dpll)
7469 {
7470         struct intel_crtc *crtc =
7471                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7472         struct intel_crtc_state *pipe_config;
7473
7474         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7475         if (!pipe_config)
7476                 return -ENOMEM;
7477
7478         pipe_config->base.crtc = &crtc->base;
7479         pipe_config->pixel_multiplier = 1;
7480         pipe_config->dpll = *dpll;
7481
7482         if (IS_CHERRYVIEW(dev)) {
7483                 chv_compute_dpll(crtc, pipe_config);
7484                 chv_prepare_pll(crtc, pipe_config);
7485                 chv_enable_pll(crtc, pipe_config);
7486         } else {
7487                 vlv_compute_dpll(crtc, pipe_config);
7488                 vlv_prepare_pll(crtc, pipe_config);
7489                 vlv_enable_pll(crtc, pipe_config);
7490         }
7491
7492         kfree(pipe_config);
7493
7494         return 0;
7495 }
7496
7497 /**
7498  * vlv_force_pll_off - forcibly disable just the PLL
7499  * @dev_priv: i915 private structure
7500  * @pipe: pipe PLL to disable
7501  *
7502  * Disable the PLL for @pipe. To be used in cases where we need
7503  * the PLL enabled even when @pipe is not going to be enabled.
7504  */
7505 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7506 {
7507         if (IS_CHERRYVIEW(dev))
7508                 chv_disable_pll(to_i915(dev), pipe);
7509         else
7510                 vlv_disable_pll(to_i915(dev), pipe);
7511 }
7512
7513 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7514                               struct intel_crtc_state *crtc_state,
7515                               intel_clock_t *reduced_clock,
7516                               int num_connectors)
7517 {
7518         struct drm_device *dev = crtc->base.dev;
7519         struct drm_i915_private *dev_priv = dev->dev_private;
7520         u32 dpll;
7521         bool is_sdvo;
7522         struct dpll *clock = &crtc_state->dpll;
7523
7524         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7525
7526         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7527                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7528
7529         dpll = DPLL_VGA_MODE_DIS;
7530
7531         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7532                 dpll |= DPLLB_MODE_LVDS;
7533         else
7534                 dpll |= DPLLB_MODE_DAC_SERIAL;
7535
7536         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7537                 dpll |= (crtc_state->pixel_multiplier - 1)
7538                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7539         }
7540
7541         if (is_sdvo)
7542                 dpll |= DPLL_SDVO_HIGH_SPEED;
7543
7544         if (crtc_state->has_dp_encoder)
7545                 dpll |= DPLL_SDVO_HIGH_SPEED;
7546
7547         /* compute bitmask from p1 value */
7548         if (IS_PINEVIEW(dev))
7549                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7550         else {
7551                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7552                 if (IS_G4X(dev) && reduced_clock)
7553                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7554         }
7555         switch (clock->p2) {
7556         case 5:
7557                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7558                 break;
7559         case 7:
7560                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7561                 break;
7562         case 10:
7563                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7564                 break;
7565         case 14:
7566                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7567                 break;
7568         }
7569         if (INTEL_INFO(dev)->gen >= 4)
7570                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7571
7572         if (crtc_state->sdvo_tv_clock)
7573                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7574         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7575                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7576                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7577         else
7578                 dpll |= PLL_REF_INPUT_DREFCLK;
7579
7580         dpll |= DPLL_VCO_ENABLE;
7581         crtc_state->dpll_hw_state.dpll = dpll;
7582
7583         if (INTEL_INFO(dev)->gen >= 4) {
7584                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7585                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7586                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7587         }
7588 }
7589
7590 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7591                               struct intel_crtc_state *crtc_state,
7592                               intel_clock_t *reduced_clock,
7593                               int num_connectors)
7594 {
7595         struct drm_device *dev = crtc->base.dev;
7596         struct drm_i915_private *dev_priv = dev->dev_private;
7597         u32 dpll;
7598         struct dpll *clock = &crtc_state->dpll;
7599
7600         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7601
7602         dpll = DPLL_VGA_MODE_DIS;
7603
7604         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7605                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7606         } else {
7607                 if (clock->p1 == 2)
7608                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7609                 else
7610                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7611                 if (clock->p2 == 4)
7612                         dpll |= PLL_P2_DIVIDE_BY_4;
7613         }
7614
7615         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7616                 dpll |= DPLL_DVO_2X_MODE;
7617
7618         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7619                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7620                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7621         else
7622                 dpll |= PLL_REF_INPUT_DREFCLK;
7623
7624         dpll |= DPLL_VCO_ENABLE;
7625         crtc_state->dpll_hw_state.dpll = dpll;
7626 }
7627
7628 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7629 {
7630         struct drm_device *dev = intel_crtc->base.dev;
7631         struct drm_i915_private *dev_priv = dev->dev_private;
7632         enum pipe pipe = intel_crtc->pipe;
7633         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7634         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7635         uint32_t crtc_vtotal, crtc_vblank_end;
7636         int vsyncshift = 0;
7637
7638         /* We need to be careful not to changed the adjusted mode, for otherwise
7639          * the hw state checker will get angry at the mismatch. */
7640         crtc_vtotal = adjusted_mode->crtc_vtotal;
7641         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7642
7643         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7644                 /* the chip adds 2 halflines automatically */
7645                 crtc_vtotal -= 1;
7646                 crtc_vblank_end -= 1;
7647
7648                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7649                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7650                 else
7651                         vsyncshift = adjusted_mode->crtc_hsync_start -
7652                                 adjusted_mode->crtc_htotal / 2;
7653                 if (vsyncshift < 0)
7654                         vsyncshift += adjusted_mode->crtc_htotal;
7655         }
7656
7657         if (INTEL_INFO(dev)->gen > 3)
7658                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7659
7660         I915_WRITE(HTOTAL(cpu_transcoder),
7661                    (adjusted_mode->crtc_hdisplay - 1) |
7662                    ((adjusted_mode->crtc_htotal - 1) << 16));
7663         I915_WRITE(HBLANK(cpu_transcoder),
7664                    (adjusted_mode->crtc_hblank_start - 1) |
7665                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7666         I915_WRITE(HSYNC(cpu_transcoder),
7667                    (adjusted_mode->crtc_hsync_start - 1) |
7668                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7669
7670         I915_WRITE(VTOTAL(cpu_transcoder),
7671                    (adjusted_mode->crtc_vdisplay - 1) |
7672                    ((crtc_vtotal - 1) << 16));
7673         I915_WRITE(VBLANK(cpu_transcoder),
7674                    (adjusted_mode->crtc_vblank_start - 1) |
7675                    ((crtc_vblank_end - 1) << 16));
7676         I915_WRITE(VSYNC(cpu_transcoder),
7677                    (adjusted_mode->crtc_vsync_start - 1) |
7678                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7679
7680         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7681          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7682          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7683          * bits. */
7684         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7685             (pipe == PIPE_B || pipe == PIPE_C))
7686                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7687
7688 }
7689
7690 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7691 {
7692         struct drm_device *dev = intel_crtc->base.dev;
7693         struct drm_i915_private *dev_priv = dev->dev_private;
7694         enum pipe pipe = intel_crtc->pipe;
7695
7696         /* pipesrc controls the size that is scaled from, which should
7697          * always be the user's requested size.
7698          */
7699         I915_WRITE(PIPESRC(pipe),
7700                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7701                    (intel_crtc->config->pipe_src_h - 1));
7702 }
7703
7704 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7705                                    struct intel_crtc_state *pipe_config)
7706 {
7707         struct drm_device *dev = crtc->base.dev;
7708         struct drm_i915_private *dev_priv = dev->dev_private;
7709         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7710         uint32_t tmp;
7711
7712         tmp = I915_READ(HTOTAL(cpu_transcoder));
7713         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7714         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7715         tmp = I915_READ(HBLANK(cpu_transcoder));
7716         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7717         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7718         tmp = I915_READ(HSYNC(cpu_transcoder));
7719         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7720         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7721
7722         tmp = I915_READ(VTOTAL(cpu_transcoder));
7723         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7724         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7725         tmp = I915_READ(VBLANK(cpu_transcoder));
7726         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7727         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7728         tmp = I915_READ(VSYNC(cpu_transcoder));
7729         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7730         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7731
7732         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7733                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7734                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7735                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7736         }
7737 }
7738
7739 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7740                                     struct intel_crtc_state *pipe_config)
7741 {
7742         struct drm_device *dev = crtc->base.dev;
7743         struct drm_i915_private *dev_priv = dev->dev_private;
7744         u32 tmp;
7745
7746         tmp = I915_READ(PIPESRC(crtc->pipe));
7747         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7748         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7749
7750         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7751         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7752 }
7753
7754 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7755                                  struct intel_crtc_state *pipe_config)
7756 {
7757         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7758         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7759         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7760         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7761
7762         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7763         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7764         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7765         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7766
7767         mode->flags = pipe_config->base.adjusted_mode.flags;
7768         mode->type = DRM_MODE_TYPE_DRIVER;
7769
7770         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7771         mode->flags |= pipe_config->base.adjusted_mode.flags;
7772
7773         mode->hsync = drm_mode_hsync(mode);
7774         mode->vrefresh = drm_mode_vrefresh(mode);
7775         drm_mode_set_name(mode);
7776 }
7777
7778 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7779 {
7780         struct drm_device *dev = intel_crtc->base.dev;
7781         struct drm_i915_private *dev_priv = dev->dev_private;
7782         uint32_t pipeconf;
7783
7784         pipeconf = 0;
7785
7786         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7787             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7788                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7789
7790         if (intel_crtc->config->double_wide)
7791                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7792
7793         /* only g4x and later have fancy bpc/dither controls */
7794         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7795                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7796                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7797                         pipeconf |= PIPECONF_DITHER_EN |
7798                                     PIPECONF_DITHER_TYPE_SP;
7799
7800                 switch (intel_crtc->config->pipe_bpp) {
7801                 case 18:
7802                         pipeconf |= PIPECONF_6BPC;
7803                         break;
7804                 case 24:
7805                         pipeconf |= PIPECONF_8BPC;
7806                         break;
7807                 case 30:
7808                         pipeconf |= PIPECONF_10BPC;
7809                         break;
7810                 default:
7811                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7812                         BUG();
7813                 }
7814         }
7815
7816         if (HAS_PIPE_CXSR(dev)) {
7817                 if (intel_crtc->lowfreq_avail) {
7818                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7819                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7820                 } else {
7821                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7822                 }
7823         }
7824
7825         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7826                 if (INTEL_INFO(dev)->gen < 4 ||
7827                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7828                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7829                 else
7830                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7831         } else
7832                 pipeconf |= PIPECONF_PROGRESSIVE;
7833
7834         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7835              intel_crtc->config->limited_color_range)
7836                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7837
7838         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7839         POSTING_READ(PIPECONF(intel_crtc->pipe));
7840 }
7841
7842 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7843                                    struct intel_crtc_state *crtc_state)
7844 {
7845         struct drm_device *dev = crtc->base.dev;
7846         struct drm_i915_private *dev_priv = dev->dev_private;
7847         int refclk, num_connectors = 0;
7848         intel_clock_t clock;
7849         bool ok;
7850         const intel_limit_t *limit;
7851         struct drm_atomic_state *state = crtc_state->base.state;
7852         struct drm_connector *connector;
7853         struct drm_connector_state *connector_state;
7854         int i;
7855
7856         memset(&crtc_state->dpll_hw_state, 0,
7857                sizeof(crtc_state->dpll_hw_state));
7858
7859         if (crtc_state->has_dsi_encoder)
7860                 return 0;
7861
7862         for_each_connector_in_state(state, connector, connector_state, i) {
7863                 if (connector_state->crtc == &crtc->base)
7864                         num_connectors++;
7865         }
7866
7867         if (!crtc_state->clock_set) {
7868                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7869
7870                 /*
7871                  * Returns a set of divisors for the desired target clock with
7872                  * the given refclk, or FALSE.  The returned values represent
7873                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7874                  * 2) / p1 / p2.
7875                  */
7876                 limit = intel_limit(crtc_state, refclk);
7877                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7878                                                  crtc_state->port_clock,
7879                                                  refclk, NULL, &clock);
7880                 if (!ok) {
7881                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7882                         return -EINVAL;
7883                 }
7884
7885                 /* Compat-code for transition, will disappear. */
7886                 crtc_state->dpll.n = clock.n;
7887                 crtc_state->dpll.m1 = clock.m1;
7888                 crtc_state->dpll.m2 = clock.m2;
7889                 crtc_state->dpll.p1 = clock.p1;
7890                 crtc_state->dpll.p2 = clock.p2;
7891         }
7892
7893         if (IS_GEN2(dev)) {
7894                 i8xx_compute_dpll(crtc, crtc_state, NULL,
7895                                   num_connectors);
7896         } else if (IS_CHERRYVIEW(dev)) {
7897                 chv_compute_dpll(crtc, crtc_state);
7898         } else if (IS_VALLEYVIEW(dev)) {
7899                 vlv_compute_dpll(crtc, crtc_state);
7900         } else {
7901                 i9xx_compute_dpll(crtc, crtc_state, NULL,
7902                                   num_connectors);
7903         }
7904
7905         return 0;
7906 }
7907
7908 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7909                                  struct intel_crtc_state *pipe_config)
7910 {
7911         struct drm_device *dev = crtc->base.dev;
7912         struct drm_i915_private *dev_priv = dev->dev_private;
7913         uint32_t tmp;
7914
7915         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7916                 return;
7917
7918         tmp = I915_READ(PFIT_CONTROL);
7919         if (!(tmp & PFIT_ENABLE))
7920                 return;
7921
7922         /* Check whether the pfit is attached to our pipe. */
7923         if (INTEL_INFO(dev)->gen < 4) {
7924                 if (crtc->pipe != PIPE_B)
7925                         return;
7926         } else {
7927                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7928                         return;
7929         }
7930
7931         pipe_config->gmch_pfit.control = tmp;
7932         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7933         if (INTEL_INFO(dev)->gen < 5)
7934                 pipe_config->gmch_pfit.lvds_border_bits =
7935                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7936 }
7937
7938 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7939                                struct intel_crtc_state *pipe_config)
7940 {
7941         struct drm_device *dev = crtc->base.dev;
7942         struct drm_i915_private *dev_priv = dev->dev_private;
7943         int pipe = pipe_config->cpu_transcoder;
7944         intel_clock_t clock;
7945         u32 mdiv;
7946         int refclk = 100000;
7947
7948         /* In case of MIPI DPLL will not even be used */
7949         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7950                 return;
7951
7952         mutex_lock(&dev_priv->sb_lock);
7953         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7954         mutex_unlock(&dev_priv->sb_lock);
7955
7956         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7957         clock.m2 = mdiv & DPIO_M2DIV_MASK;
7958         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7959         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7960         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7961
7962         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7963 }
7964
7965 static void
7966 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7967                               struct intel_initial_plane_config *plane_config)
7968 {
7969         struct drm_device *dev = crtc->base.dev;
7970         struct drm_i915_private *dev_priv = dev->dev_private;
7971         u32 val, base, offset;
7972         int pipe = crtc->pipe, plane = crtc->plane;
7973         int fourcc, pixel_format;
7974         unsigned int aligned_height;
7975         struct drm_framebuffer *fb;
7976         struct intel_framebuffer *intel_fb;
7977
7978         val = I915_READ(DSPCNTR(plane));
7979         if (!(val & DISPLAY_PLANE_ENABLE))
7980                 return;
7981
7982         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7983         if (!intel_fb) {
7984                 DRM_DEBUG_KMS("failed to alloc fb\n");
7985                 return;
7986         }
7987
7988         fb = &intel_fb->base;
7989
7990         if (INTEL_INFO(dev)->gen >= 4) {
7991                 if (val & DISPPLANE_TILED) {
7992                         plane_config->tiling = I915_TILING_X;
7993                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7994                 }
7995         }
7996
7997         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7998         fourcc = i9xx_format_to_fourcc(pixel_format);
7999         fb->pixel_format = fourcc;
8000         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8001
8002         if (INTEL_INFO(dev)->gen >= 4) {
8003                 if (plane_config->tiling)
8004                         offset = I915_READ(DSPTILEOFF(plane));
8005                 else
8006                         offset = I915_READ(DSPLINOFF(plane));
8007                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8008         } else {
8009                 base = I915_READ(DSPADDR(plane));
8010         }
8011         plane_config->base = base;
8012
8013         val = I915_READ(PIPESRC(pipe));
8014         fb->width = ((val >> 16) & 0xfff) + 1;
8015         fb->height = ((val >> 0) & 0xfff) + 1;
8016
8017         val = I915_READ(DSPSTRIDE(pipe));
8018         fb->pitches[0] = val & 0xffffffc0;
8019
8020         aligned_height = intel_fb_align_height(dev, fb->height,
8021                                                fb->pixel_format,
8022                                                fb->modifier[0]);
8023
8024         plane_config->size = fb->pitches[0] * aligned_height;
8025
8026         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8027                       pipe_name(pipe), plane, fb->width, fb->height,
8028                       fb->bits_per_pixel, base, fb->pitches[0],
8029                       plane_config->size);
8030
8031         plane_config->fb = intel_fb;
8032 }
8033
8034 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8035                                struct intel_crtc_state *pipe_config)
8036 {
8037         struct drm_device *dev = crtc->base.dev;
8038         struct drm_i915_private *dev_priv = dev->dev_private;
8039         int pipe = pipe_config->cpu_transcoder;
8040         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8041         intel_clock_t clock;
8042         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8043         int refclk = 100000;
8044
8045         mutex_lock(&dev_priv->sb_lock);
8046         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8047         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8048         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8049         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8050         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8051         mutex_unlock(&dev_priv->sb_lock);
8052
8053         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8054         clock.m2 = (pll_dw0 & 0xff) << 22;
8055         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8056                 clock.m2 |= pll_dw2 & 0x3fffff;
8057         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8058         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8059         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8060
8061         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8062 }
8063
8064 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8065                                  struct intel_crtc_state *pipe_config)
8066 {
8067         struct drm_device *dev = crtc->base.dev;
8068         struct drm_i915_private *dev_priv = dev->dev_private;
8069         enum intel_display_power_domain power_domain;
8070         uint32_t tmp;
8071         bool ret;
8072
8073         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8074         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8075                 return false;
8076
8077         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8078         pipe_config->shared_dpll = NULL;
8079
8080         ret = false;
8081
8082         tmp = I915_READ(PIPECONF(crtc->pipe));
8083         if (!(tmp & PIPECONF_ENABLE))
8084                 goto out;
8085
8086         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8087                 switch (tmp & PIPECONF_BPC_MASK) {
8088                 case PIPECONF_6BPC:
8089                         pipe_config->pipe_bpp = 18;
8090                         break;
8091                 case PIPECONF_8BPC:
8092                         pipe_config->pipe_bpp = 24;
8093                         break;
8094                 case PIPECONF_10BPC:
8095                         pipe_config->pipe_bpp = 30;
8096                         break;
8097                 default:
8098                         break;
8099                 }
8100         }
8101
8102         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8103             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8104                 pipe_config->limited_color_range = true;
8105
8106         if (INTEL_INFO(dev)->gen < 4)
8107                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8108
8109         intel_get_pipe_timings(crtc, pipe_config);
8110         intel_get_pipe_src_size(crtc, pipe_config);
8111
8112         i9xx_get_pfit_config(crtc, pipe_config);
8113
8114         if (INTEL_INFO(dev)->gen >= 4) {
8115                 tmp = I915_READ(DPLL_MD(crtc->pipe));
8116                 pipe_config->pixel_multiplier =
8117                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8118                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8119                 pipe_config->dpll_hw_state.dpll_md = tmp;
8120         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8121                 tmp = I915_READ(DPLL(crtc->pipe));
8122                 pipe_config->pixel_multiplier =
8123                         ((tmp & SDVO_MULTIPLIER_MASK)
8124                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8125         } else {
8126                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8127                  * port and will be fixed up in the encoder->get_config
8128                  * function. */
8129                 pipe_config->pixel_multiplier = 1;
8130         }
8131         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8132         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8133                 /*
8134                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8135                  * on 830. Filter it out here so that we don't
8136                  * report errors due to that.
8137                  */
8138                 if (IS_I830(dev))
8139                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8140
8141                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8142                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8143         } else {
8144                 /* Mask out read-only status bits. */
8145                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8146                                                      DPLL_PORTC_READY_MASK |
8147                                                      DPLL_PORTB_READY_MASK);
8148         }
8149
8150         if (IS_CHERRYVIEW(dev))
8151                 chv_crtc_clock_get(crtc, pipe_config);
8152         else if (IS_VALLEYVIEW(dev))
8153                 vlv_crtc_clock_get(crtc, pipe_config);
8154         else
8155                 i9xx_crtc_clock_get(crtc, pipe_config);
8156
8157         /*
8158          * Normally the dotclock is filled in by the encoder .get_config()
8159          * but in case the pipe is enabled w/o any ports we need a sane
8160          * default.
8161          */
8162         pipe_config->base.adjusted_mode.crtc_clock =
8163                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8164
8165         ret = true;
8166
8167 out:
8168         intel_display_power_put(dev_priv, power_domain);
8169
8170         return ret;
8171 }
8172
8173 static void ironlake_init_pch_refclk(struct drm_device *dev)
8174 {
8175         struct drm_i915_private *dev_priv = dev->dev_private;
8176         struct intel_encoder *encoder;
8177         u32 val, final;
8178         bool has_lvds = false;
8179         bool has_cpu_edp = false;
8180         bool has_panel = false;
8181         bool has_ck505 = false;
8182         bool can_ssc = false;
8183
8184         /* We need to take the global config into account */
8185         for_each_intel_encoder(dev, encoder) {
8186                 switch (encoder->type) {
8187                 case INTEL_OUTPUT_LVDS:
8188                         has_panel = true;
8189                         has_lvds = true;
8190                         break;
8191                 case INTEL_OUTPUT_EDP:
8192                         has_panel = true;
8193                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8194                                 has_cpu_edp = true;
8195                         break;
8196                 default:
8197                         break;
8198                 }
8199         }
8200
8201         if (HAS_PCH_IBX(dev)) {
8202                 has_ck505 = dev_priv->vbt.display_clock_mode;
8203                 can_ssc = has_ck505;
8204         } else {
8205                 has_ck505 = false;
8206                 can_ssc = true;
8207         }
8208
8209         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8210                       has_panel, has_lvds, has_ck505);
8211
8212         /* Ironlake: try to setup display ref clock before DPLL
8213          * enabling. This is only under driver's control after
8214          * PCH B stepping, previous chipset stepping should be
8215          * ignoring this setting.
8216          */
8217         val = I915_READ(PCH_DREF_CONTROL);
8218
8219         /* As we must carefully and slowly disable/enable each source in turn,
8220          * compute the final state we want first and check if we need to
8221          * make any changes at all.
8222          */
8223         final = val;
8224         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8225         if (has_ck505)
8226                 final |= DREF_NONSPREAD_CK505_ENABLE;
8227         else
8228                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8229
8230         final &= ~DREF_SSC_SOURCE_MASK;
8231         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8232         final &= ~DREF_SSC1_ENABLE;
8233
8234         if (has_panel) {
8235                 final |= DREF_SSC_SOURCE_ENABLE;
8236
8237                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8238                         final |= DREF_SSC1_ENABLE;
8239
8240                 if (has_cpu_edp) {
8241                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8242                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8243                         else
8244                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8245                 } else
8246                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8247         } else {
8248                 final |= DREF_SSC_SOURCE_DISABLE;
8249                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8250         }
8251
8252         if (final == val)
8253                 return;
8254
8255         /* Always enable nonspread source */
8256         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8257
8258         if (has_ck505)
8259                 val |= DREF_NONSPREAD_CK505_ENABLE;
8260         else
8261                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8262
8263         if (has_panel) {
8264                 val &= ~DREF_SSC_SOURCE_MASK;
8265                 val |= DREF_SSC_SOURCE_ENABLE;
8266
8267                 /* SSC must be turned on before enabling the CPU output  */
8268                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8269                         DRM_DEBUG_KMS("Using SSC on panel\n");
8270                         val |= DREF_SSC1_ENABLE;
8271                 } else
8272                         val &= ~DREF_SSC1_ENABLE;
8273
8274                 /* Get SSC going before enabling the outputs */
8275                 I915_WRITE(PCH_DREF_CONTROL, val);
8276                 POSTING_READ(PCH_DREF_CONTROL);
8277                 udelay(200);
8278
8279                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8280
8281                 /* Enable CPU source on CPU attached eDP */
8282                 if (has_cpu_edp) {
8283                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8284                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8285                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8286                         } else
8287                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8288                 } else
8289                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8290
8291                 I915_WRITE(PCH_DREF_CONTROL, val);
8292                 POSTING_READ(PCH_DREF_CONTROL);
8293                 udelay(200);
8294         } else {
8295                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8296
8297                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8298
8299                 /* Turn off CPU output */
8300                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8301
8302                 I915_WRITE(PCH_DREF_CONTROL, val);
8303                 POSTING_READ(PCH_DREF_CONTROL);
8304                 udelay(200);
8305
8306                 /* Turn off the SSC source */
8307                 val &= ~DREF_SSC_SOURCE_MASK;
8308                 val |= DREF_SSC_SOURCE_DISABLE;
8309
8310                 /* Turn off SSC1 */
8311                 val &= ~DREF_SSC1_ENABLE;
8312
8313                 I915_WRITE(PCH_DREF_CONTROL, val);
8314                 POSTING_READ(PCH_DREF_CONTROL);
8315                 udelay(200);
8316         }
8317
8318         BUG_ON(val != final);
8319 }
8320
8321 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8322 {
8323         uint32_t tmp;
8324
8325         tmp = I915_READ(SOUTH_CHICKEN2);
8326         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8327         I915_WRITE(SOUTH_CHICKEN2, tmp);
8328
8329         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8330                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8331                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8332
8333         tmp = I915_READ(SOUTH_CHICKEN2);
8334         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8335         I915_WRITE(SOUTH_CHICKEN2, tmp);
8336
8337         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8338                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8339                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8340 }
8341
8342 /* WaMPhyProgramming:hsw */
8343 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8344 {
8345         uint32_t tmp;
8346
8347         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8348         tmp &= ~(0xFF << 24);
8349         tmp |= (0x12 << 24);
8350         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8351
8352         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8353         tmp |= (1 << 11);
8354         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8355
8356         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8357         tmp |= (1 << 11);
8358         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8359
8360         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8361         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8362         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8363
8364         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8365         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8366         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8367
8368         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8369         tmp &= ~(7 << 13);
8370         tmp |= (5 << 13);
8371         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8372
8373         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8374         tmp &= ~(7 << 13);
8375         tmp |= (5 << 13);
8376         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8377
8378         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8379         tmp &= ~0xFF;
8380         tmp |= 0x1C;
8381         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8382
8383         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8384         tmp &= ~0xFF;
8385         tmp |= 0x1C;
8386         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8387
8388         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8389         tmp &= ~(0xFF << 16);
8390         tmp |= (0x1C << 16);
8391         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8392
8393         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8394         tmp &= ~(0xFF << 16);
8395         tmp |= (0x1C << 16);
8396         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8397
8398         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8399         tmp |= (1 << 27);
8400         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8401
8402         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8403         tmp |= (1 << 27);
8404         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8405
8406         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8407         tmp &= ~(0xF << 28);
8408         tmp |= (4 << 28);
8409         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8410
8411         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8412         tmp &= ~(0xF << 28);
8413         tmp |= (4 << 28);
8414         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8415 }
8416
8417 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8418  * Programming" based on the parameters passed:
8419  * - Sequence to enable CLKOUT_DP
8420  * - Sequence to enable CLKOUT_DP without spread
8421  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8422  */
8423 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8424                                  bool with_fdi)
8425 {
8426         struct drm_i915_private *dev_priv = dev->dev_private;
8427         uint32_t reg, tmp;
8428
8429         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8430                 with_spread = true;
8431         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8432                 with_fdi = false;
8433
8434         mutex_lock(&dev_priv->sb_lock);
8435
8436         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8437         tmp &= ~SBI_SSCCTL_DISABLE;
8438         tmp |= SBI_SSCCTL_PATHALT;
8439         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8440
8441         udelay(24);
8442
8443         if (with_spread) {
8444                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8445                 tmp &= ~SBI_SSCCTL_PATHALT;
8446                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8447
8448                 if (with_fdi) {
8449                         lpt_reset_fdi_mphy(dev_priv);
8450                         lpt_program_fdi_mphy(dev_priv);
8451                 }
8452         }
8453
8454         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8455         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8456         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8457         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8458
8459         mutex_unlock(&dev_priv->sb_lock);
8460 }
8461
8462 /* Sequence to disable CLKOUT_DP */
8463 static void lpt_disable_clkout_dp(struct drm_device *dev)
8464 {
8465         struct drm_i915_private *dev_priv = dev->dev_private;
8466         uint32_t reg, tmp;
8467
8468         mutex_lock(&dev_priv->sb_lock);
8469
8470         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8471         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8472         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8473         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8474
8475         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8476         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8477                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8478                         tmp |= SBI_SSCCTL_PATHALT;
8479                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8480                         udelay(32);
8481                 }
8482                 tmp |= SBI_SSCCTL_DISABLE;
8483                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8484         }
8485
8486         mutex_unlock(&dev_priv->sb_lock);
8487 }
8488
8489 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8490
8491 static const uint16_t sscdivintphase[] = {
8492         [BEND_IDX( 50)] = 0x3B23,
8493         [BEND_IDX( 45)] = 0x3B23,
8494         [BEND_IDX( 40)] = 0x3C23,
8495         [BEND_IDX( 35)] = 0x3C23,
8496         [BEND_IDX( 30)] = 0x3D23,
8497         [BEND_IDX( 25)] = 0x3D23,
8498         [BEND_IDX( 20)] = 0x3E23,
8499         [BEND_IDX( 15)] = 0x3E23,
8500         [BEND_IDX( 10)] = 0x3F23,
8501         [BEND_IDX(  5)] = 0x3F23,
8502         [BEND_IDX(  0)] = 0x0025,
8503         [BEND_IDX( -5)] = 0x0025,
8504         [BEND_IDX(-10)] = 0x0125,
8505         [BEND_IDX(-15)] = 0x0125,
8506         [BEND_IDX(-20)] = 0x0225,
8507         [BEND_IDX(-25)] = 0x0225,
8508         [BEND_IDX(-30)] = 0x0325,
8509         [BEND_IDX(-35)] = 0x0325,
8510         [BEND_IDX(-40)] = 0x0425,
8511         [BEND_IDX(-45)] = 0x0425,
8512         [BEND_IDX(-50)] = 0x0525,
8513 };
8514
8515 /*
8516  * Bend CLKOUT_DP
8517  * steps -50 to 50 inclusive, in steps of 5
8518  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8519  * change in clock period = -(steps / 10) * 5.787 ps
8520  */
8521 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8522 {
8523         uint32_t tmp;
8524         int idx = BEND_IDX(steps);
8525
8526         if (WARN_ON(steps % 5 != 0))
8527                 return;
8528
8529         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8530                 return;
8531
8532         mutex_lock(&dev_priv->sb_lock);
8533
8534         if (steps % 10 != 0)
8535                 tmp = 0xAAAAAAAB;
8536         else
8537                 tmp = 0x00000000;
8538         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8539
8540         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8541         tmp &= 0xffff0000;
8542         tmp |= sscdivintphase[idx];
8543         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8544
8545         mutex_unlock(&dev_priv->sb_lock);
8546 }
8547
8548 #undef BEND_IDX
8549
8550 static void lpt_init_pch_refclk(struct drm_device *dev)
8551 {
8552         struct intel_encoder *encoder;
8553         bool has_vga = false;
8554
8555         for_each_intel_encoder(dev, encoder) {
8556                 switch (encoder->type) {
8557                 case INTEL_OUTPUT_ANALOG:
8558                         has_vga = true;
8559                         break;
8560                 default:
8561                         break;
8562                 }
8563         }
8564
8565         if (has_vga) {
8566                 lpt_bend_clkout_dp(to_i915(dev), 0);
8567                 lpt_enable_clkout_dp(dev, true, true);
8568         } else {
8569                 lpt_disable_clkout_dp(dev);
8570         }
8571 }
8572
8573 /*
8574  * Initialize reference clocks when the driver loads
8575  */
8576 void intel_init_pch_refclk(struct drm_device *dev)
8577 {
8578         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8579                 ironlake_init_pch_refclk(dev);
8580         else if (HAS_PCH_LPT(dev))
8581                 lpt_init_pch_refclk(dev);
8582 }
8583
8584 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8585 {
8586         struct drm_device *dev = crtc_state->base.crtc->dev;
8587         struct drm_i915_private *dev_priv = dev->dev_private;
8588         struct drm_atomic_state *state = crtc_state->base.state;
8589         struct drm_connector *connector;
8590         struct drm_connector_state *connector_state;
8591         struct intel_encoder *encoder;
8592         int num_connectors = 0, i;
8593         bool is_lvds = false;
8594
8595         for_each_connector_in_state(state, connector, connector_state, i) {
8596                 if (connector_state->crtc != crtc_state->base.crtc)
8597                         continue;
8598
8599                 encoder = to_intel_encoder(connector_state->best_encoder);
8600
8601                 switch (encoder->type) {
8602                 case INTEL_OUTPUT_LVDS:
8603                         is_lvds = true;
8604                         break;
8605                 default:
8606                         break;
8607                 }
8608                 num_connectors++;
8609         }
8610
8611         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8612                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8613                               dev_priv->vbt.lvds_ssc_freq);
8614                 return dev_priv->vbt.lvds_ssc_freq;
8615         }
8616
8617         return 120000;
8618 }
8619
8620 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8621 {
8622         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8623         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8624         int pipe = intel_crtc->pipe;
8625         uint32_t val;
8626
8627         val = 0;
8628
8629         switch (intel_crtc->config->pipe_bpp) {
8630         case 18:
8631                 val |= PIPECONF_6BPC;
8632                 break;
8633         case 24:
8634                 val |= PIPECONF_8BPC;
8635                 break;
8636         case 30:
8637                 val |= PIPECONF_10BPC;
8638                 break;
8639         case 36:
8640                 val |= PIPECONF_12BPC;
8641                 break;
8642         default:
8643                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8644                 BUG();
8645         }
8646
8647         if (intel_crtc->config->dither)
8648                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8649
8650         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8651                 val |= PIPECONF_INTERLACED_ILK;
8652         else
8653                 val |= PIPECONF_PROGRESSIVE;
8654
8655         if (intel_crtc->config->limited_color_range)
8656                 val |= PIPECONF_COLOR_RANGE_SELECT;
8657
8658         I915_WRITE(PIPECONF(pipe), val);
8659         POSTING_READ(PIPECONF(pipe));
8660 }
8661
8662 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8663 {
8664         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8665         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8666         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8667         u32 val = 0;
8668
8669         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8670                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8671
8672         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8673                 val |= PIPECONF_INTERLACED_ILK;
8674         else
8675                 val |= PIPECONF_PROGRESSIVE;
8676
8677         I915_WRITE(PIPECONF(cpu_transcoder), val);
8678         POSTING_READ(PIPECONF(cpu_transcoder));
8679 }
8680
8681 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8682 {
8683         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8684         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8685
8686         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8687                 u32 val = 0;
8688
8689                 switch (intel_crtc->config->pipe_bpp) {
8690                 case 18:
8691                         val |= PIPEMISC_DITHER_6_BPC;
8692                         break;
8693                 case 24:
8694                         val |= PIPEMISC_DITHER_8_BPC;
8695                         break;
8696                 case 30:
8697                         val |= PIPEMISC_DITHER_10_BPC;
8698                         break;
8699                 case 36:
8700                         val |= PIPEMISC_DITHER_12_BPC;
8701                         break;
8702                 default:
8703                         /* Case prevented by pipe_config_set_bpp. */
8704                         BUG();
8705                 }
8706
8707                 if (intel_crtc->config->dither)
8708                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8709
8710                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8711         }
8712 }
8713
8714 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8715                                     struct intel_crtc_state *crtc_state,
8716                                     intel_clock_t *clock,
8717                                     bool *has_reduced_clock,
8718                                     intel_clock_t *reduced_clock)
8719 {
8720         struct drm_device *dev = crtc->dev;
8721         struct drm_i915_private *dev_priv = dev->dev_private;
8722         int refclk;
8723         const intel_limit_t *limit;
8724         bool ret;
8725
8726         refclk = ironlake_get_refclk(crtc_state);
8727
8728         /*
8729          * Returns a set of divisors for the desired target clock with the given
8730          * refclk, or FALSE.  The returned values represent the clock equation:
8731          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8732          */
8733         limit = intel_limit(crtc_state, refclk);
8734         ret = dev_priv->display.find_dpll(limit, crtc_state,
8735                                           crtc_state->port_clock,
8736                                           refclk, NULL, clock);
8737         if (!ret)
8738                 return false;
8739
8740         return true;
8741 }
8742
8743 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8744 {
8745         /*
8746          * Account for spread spectrum to avoid
8747          * oversubscribing the link. Max center spread
8748          * is 2.5%; use 5% for safety's sake.
8749          */
8750         u32 bps = target_clock * bpp * 21 / 20;
8751         return DIV_ROUND_UP(bps, link_bw * 8);
8752 }
8753
8754 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8755 {
8756         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8757 }
8758
8759 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8760                                       struct intel_crtc_state *crtc_state,
8761                                       u32 *fp,
8762                                       intel_clock_t *reduced_clock, u32 *fp2)
8763 {
8764         struct drm_crtc *crtc = &intel_crtc->base;
8765         struct drm_device *dev = crtc->dev;
8766         struct drm_i915_private *dev_priv = dev->dev_private;
8767         struct drm_atomic_state *state = crtc_state->base.state;
8768         struct drm_connector *connector;
8769         struct drm_connector_state *connector_state;
8770         struct intel_encoder *encoder;
8771         uint32_t dpll;
8772         int factor, num_connectors = 0, i;
8773         bool is_lvds = false, is_sdvo = false;
8774
8775         for_each_connector_in_state(state, connector, connector_state, i) {
8776                 if (connector_state->crtc != crtc_state->base.crtc)
8777                         continue;
8778
8779                 encoder = to_intel_encoder(connector_state->best_encoder);
8780
8781                 switch (encoder->type) {
8782                 case INTEL_OUTPUT_LVDS:
8783                         is_lvds = true;
8784                         break;
8785                 case INTEL_OUTPUT_SDVO:
8786                 case INTEL_OUTPUT_HDMI:
8787                         is_sdvo = true;
8788                         break;
8789                 default:
8790                         break;
8791                 }
8792
8793                 num_connectors++;
8794         }
8795
8796         /* Enable autotuning of the PLL clock (if permissible) */
8797         factor = 21;
8798         if (is_lvds) {
8799                 if ((intel_panel_use_ssc(dev_priv) &&
8800                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8801                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8802                         factor = 25;
8803         } else if (crtc_state->sdvo_tv_clock)
8804                 factor = 20;
8805
8806         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8807                 *fp |= FP_CB_TUNE;
8808
8809         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8810                 *fp2 |= FP_CB_TUNE;
8811
8812         dpll = 0;
8813
8814         if (is_lvds)
8815                 dpll |= DPLLB_MODE_LVDS;
8816         else
8817                 dpll |= DPLLB_MODE_DAC_SERIAL;
8818
8819         dpll |= (crtc_state->pixel_multiplier - 1)
8820                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8821
8822         if (is_sdvo)
8823                 dpll |= DPLL_SDVO_HIGH_SPEED;
8824         if (crtc_state->has_dp_encoder)
8825                 dpll |= DPLL_SDVO_HIGH_SPEED;
8826
8827         /* compute bitmask from p1 value */
8828         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8829         /* also FPA1 */
8830         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8831
8832         switch (crtc_state->dpll.p2) {
8833         case 5:
8834                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8835                 break;
8836         case 7:
8837                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8838                 break;
8839         case 10:
8840                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8841                 break;
8842         case 14:
8843                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8844                 break;
8845         }
8846
8847         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8848                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8849         else
8850                 dpll |= PLL_REF_INPUT_DREFCLK;
8851
8852         return dpll | DPLL_VCO_ENABLE;
8853 }
8854
8855 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8856                                        struct intel_crtc_state *crtc_state)
8857 {
8858         struct drm_device *dev = crtc->base.dev;
8859         intel_clock_t clock, reduced_clock;
8860         u32 dpll = 0, fp = 0, fp2 = 0;
8861         bool ok, has_reduced_clock = false;
8862         bool is_lvds = false;
8863         struct intel_shared_dpll *pll;
8864
8865         memset(&crtc_state->dpll_hw_state, 0,
8866                sizeof(crtc_state->dpll_hw_state));
8867
8868         is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
8869
8870         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8871              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8872
8873         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8874                                      &has_reduced_clock, &reduced_clock);
8875         if (!ok && !crtc_state->clock_set) {
8876                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8877                 return -EINVAL;
8878         }
8879         /* Compat-code for transition, will disappear. */
8880         if (!crtc_state->clock_set) {
8881                 crtc_state->dpll.n = clock.n;
8882                 crtc_state->dpll.m1 = clock.m1;
8883                 crtc_state->dpll.m2 = clock.m2;
8884                 crtc_state->dpll.p1 = clock.p1;
8885                 crtc_state->dpll.p2 = clock.p2;
8886         }
8887
8888         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8889         if (crtc_state->has_pch_encoder) {
8890                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8891                 if (has_reduced_clock)
8892                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8893
8894                 dpll = ironlake_compute_dpll(crtc, crtc_state,
8895                                              &fp, &reduced_clock,
8896                                              has_reduced_clock ? &fp2 : NULL);
8897
8898                 crtc_state->dpll_hw_state.dpll = dpll;
8899                 crtc_state->dpll_hw_state.fp0 = fp;
8900                 if (has_reduced_clock)
8901                         crtc_state->dpll_hw_state.fp1 = fp2;
8902                 else
8903                         crtc_state->dpll_hw_state.fp1 = fp;
8904
8905                 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
8906                 if (pll == NULL) {
8907                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8908                                          pipe_name(crtc->pipe));
8909                         return -EINVAL;
8910                 }
8911         }
8912
8913         if (is_lvds && has_reduced_clock)
8914                 crtc->lowfreq_avail = true;
8915         else
8916                 crtc->lowfreq_avail = false;
8917
8918         return 0;
8919 }
8920
8921 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8922                                          struct intel_link_m_n *m_n)
8923 {
8924         struct drm_device *dev = crtc->base.dev;
8925         struct drm_i915_private *dev_priv = dev->dev_private;
8926         enum pipe pipe = crtc->pipe;
8927
8928         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8929         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8930         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8931                 & ~TU_SIZE_MASK;
8932         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8933         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8934                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8935 }
8936
8937 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8938                                          enum transcoder transcoder,
8939                                          struct intel_link_m_n *m_n,
8940                                          struct intel_link_m_n *m2_n2)
8941 {
8942         struct drm_device *dev = crtc->base.dev;
8943         struct drm_i915_private *dev_priv = dev->dev_private;
8944         enum pipe pipe = crtc->pipe;
8945
8946         if (INTEL_INFO(dev)->gen >= 5) {
8947                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8948                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8949                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8950                         & ~TU_SIZE_MASK;
8951                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8952                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8953                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8954                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8955                  * gen < 8) and if DRRS is supported (to make sure the
8956                  * registers are not unnecessarily read).
8957                  */
8958                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8959                         crtc->config->has_drrs) {
8960                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8961                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8962                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8963                                         & ~TU_SIZE_MASK;
8964                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8965                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8966                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8967                 }
8968         } else {
8969                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8970                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8971                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8972                         & ~TU_SIZE_MASK;
8973                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8974                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8975                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8976         }
8977 }
8978
8979 void intel_dp_get_m_n(struct intel_crtc *crtc,
8980                       struct intel_crtc_state *pipe_config)
8981 {
8982         if (pipe_config->has_pch_encoder)
8983                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8984         else
8985                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8986                                              &pipe_config->dp_m_n,
8987                                              &pipe_config->dp_m2_n2);
8988 }
8989
8990 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8991                                         struct intel_crtc_state *pipe_config)
8992 {
8993         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8994                                      &pipe_config->fdi_m_n, NULL);
8995 }
8996
8997 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8998                                     struct intel_crtc_state *pipe_config)
8999 {
9000         struct drm_device *dev = crtc->base.dev;
9001         struct drm_i915_private *dev_priv = dev->dev_private;
9002         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9003         uint32_t ps_ctrl = 0;
9004         int id = -1;
9005         int i;
9006
9007         /* find scaler attached to this pipe */
9008         for (i = 0; i < crtc->num_scalers; i++) {
9009                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9010                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9011                         id = i;
9012                         pipe_config->pch_pfit.enabled = true;
9013                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9014                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9015                         break;
9016                 }
9017         }
9018
9019         scaler_state->scaler_id = id;
9020         if (id >= 0) {
9021                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9022         } else {
9023                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9024         }
9025 }
9026
9027 static void
9028 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9029                                  struct intel_initial_plane_config *plane_config)
9030 {
9031         struct drm_device *dev = crtc->base.dev;
9032         struct drm_i915_private *dev_priv = dev->dev_private;
9033         u32 val, base, offset, stride_mult, tiling;
9034         int pipe = crtc->pipe;
9035         int fourcc, pixel_format;
9036         unsigned int aligned_height;
9037         struct drm_framebuffer *fb;
9038         struct intel_framebuffer *intel_fb;
9039
9040         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9041         if (!intel_fb) {
9042                 DRM_DEBUG_KMS("failed to alloc fb\n");
9043                 return;
9044         }
9045
9046         fb = &intel_fb->base;
9047
9048         val = I915_READ(PLANE_CTL(pipe, 0));
9049         if (!(val & PLANE_CTL_ENABLE))
9050                 goto error;
9051
9052         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9053         fourcc = skl_format_to_fourcc(pixel_format,
9054                                       val & PLANE_CTL_ORDER_RGBX,
9055                                       val & PLANE_CTL_ALPHA_MASK);
9056         fb->pixel_format = fourcc;
9057         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9058
9059         tiling = val & PLANE_CTL_TILED_MASK;
9060         switch (tiling) {
9061         case PLANE_CTL_TILED_LINEAR:
9062                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9063                 break;
9064         case PLANE_CTL_TILED_X:
9065                 plane_config->tiling = I915_TILING_X;
9066                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9067                 break;
9068         case PLANE_CTL_TILED_Y:
9069                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9070                 break;
9071         case PLANE_CTL_TILED_YF:
9072                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9073                 break;
9074         default:
9075                 MISSING_CASE(tiling);
9076                 goto error;
9077         }
9078
9079         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9080         plane_config->base = base;
9081
9082         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9083
9084         val = I915_READ(PLANE_SIZE(pipe, 0));
9085         fb->height = ((val >> 16) & 0xfff) + 1;
9086         fb->width = ((val >> 0) & 0x1fff) + 1;
9087
9088         val = I915_READ(PLANE_STRIDE(pipe, 0));
9089         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9090                                                 fb->pixel_format);
9091         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9092
9093         aligned_height = intel_fb_align_height(dev, fb->height,
9094                                                fb->pixel_format,
9095                                                fb->modifier[0]);
9096
9097         plane_config->size = fb->pitches[0] * aligned_height;
9098
9099         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9100                       pipe_name(pipe), fb->width, fb->height,
9101                       fb->bits_per_pixel, base, fb->pitches[0],
9102                       plane_config->size);
9103
9104         plane_config->fb = intel_fb;
9105         return;
9106
9107 error:
9108         kfree(fb);
9109 }
9110
9111 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9112                                      struct intel_crtc_state *pipe_config)
9113 {
9114         struct drm_device *dev = crtc->base.dev;
9115         struct drm_i915_private *dev_priv = dev->dev_private;
9116         uint32_t tmp;
9117
9118         tmp = I915_READ(PF_CTL(crtc->pipe));
9119
9120         if (tmp & PF_ENABLE) {
9121                 pipe_config->pch_pfit.enabled = true;
9122                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9123                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9124
9125                 /* We currently do not free assignements of panel fitters on
9126                  * ivb/hsw (since we don't use the higher upscaling modes which
9127                  * differentiates them) so just WARN about this case for now. */
9128                 if (IS_GEN7(dev)) {
9129                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9130                                 PF_PIPE_SEL_IVB(crtc->pipe));
9131                 }
9132         }
9133 }
9134
9135 static void
9136 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9137                                   struct intel_initial_plane_config *plane_config)
9138 {
9139         struct drm_device *dev = crtc->base.dev;
9140         struct drm_i915_private *dev_priv = dev->dev_private;
9141         u32 val, base, offset;
9142         int pipe = crtc->pipe;
9143         int fourcc, pixel_format;
9144         unsigned int aligned_height;
9145         struct drm_framebuffer *fb;
9146         struct intel_framebuffer *intel_fb;
9147
9148         val = I915_READ(DSPCNTR(pipe));
9149         if (!(val & DISPLAY_PLANE_ENABLE))
9150                 return;
9151
9152         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9153         if (!intel_fb) {
9154                 DRM_DEBUG_KMS("failed to alloc fb\n");
9155                 return;
9156         }
9157
9158         fb = &intel_fb->base;
9159
9160         if (INTEL_INFO(dev)->gen >= 4) {
9161                 if (val & DISPPLANE_TILED) {
9162                         plane_config->tiling = I915_TILING_X;
9163                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9164                 }
9165         }
9166
9167         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9168         fourcc = i9xx_format_to_fourcc(pixel_format);
9169         fb->pixel_format = fourcc;
9170         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9171
9172         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9173         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9174                 offset = I915_READ(DSPOFFSET(pipe));
9175         } else {
9176                 if (plane_config->tiling)
9177                         offset = I915_READ(DSPTILEOFF(pipe));
9178                 else
9179                         offset = I915_READ(DSPLINOFF(pipe));
9180         }
9181         plane_config->base = base;
9182
9183         val = I915_READ(PIPESRC(pipe));
9184         fb->width = ((val >> 16) & 0xfff) + 1;
9185         fb->height = ((val >> 0) & 0xfff) + 1;
9186
9187         val = I915_READ(DSPSTRIDE(pipe));
9188         fb->pitches[0] = val & 0xffffffc0;
9189
9190         aligned_height = intel_fb_align_height(dev, fb->height,
9191                                                fb->pixel_format,
9192                                                fb->modifier[0]);
9193
9194         plane_config->size = fb->pitches[0] * aligned_height;
9195
9196         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9197                       pipe_name(pipe), fb->width, fb->height,
9198                       fb->bits_per_pixel, base, fb->pitches[0],
9199                       plane_config->size);
9200
9201         plane_config->fb = intel_fb;
9202 }
9203
9204 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9205                                      struct intel_crtc_state *pipe_config)
9206 {
9207         struct drm_device *dev = crtc->base.dev;
9208         struct drm_i915_private *dev_priv = dev->dev_private;
9209         enum intel_display_power_domain power_domain;
9210         uint32_t tmp;
9211         bool ret;
9212
9213         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9214         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9215                 return false;
9216
9217         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9218         pipe_config->shared_dpll = NULL;
9219
9220         ret = false;
9221         tmp = I915_READ(PIPECONF(crtc->pipe));
9222         if (!(tmp & PIPECONF_ENABLE))
9223                 goto out;
9224
9225         switch (tmp & PIPECONF_BPC_MASK) {
9226         case PIPECONF_6BPC:
9227                 pipe_config->pipe_bpp = 18;
9228                 break;
9229         case PIPECONF_8BPC:
9230                 pipe_config->pipe_bpp = 24;
9231                 break;
9232         case PIPECONF_10BPC:
9233                 pipe_config->pipe_bpp = 30;
9234                 break;
9235         case PIPECONF_12BPC:
9236                 pipe_config->pipe_bpp = 36;
9237                 break;
9238         default:
9239                 break;
9240         }
9241
9242         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9243                 pipe_config->limited_color_range = true;
9244
9245         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9246                 struct intel_shared_dpll *pll;
9247                 enum intel_dpll_id pll_id;
9248
9249                 pipe_config->has_pch_encoder = true;
9250
9251                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9252                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9253                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9254
9255                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9256
9257                 if (HAS_PCH_IBX(dev_priv->dev)) {
9258                         pll_id = (enum intel_dpll_id) crtc->pipe;
9259                 } else {
9260                         tmp = I915_READ(PCH_DPLL_SEL);
9261                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9262                                 pll_id = DPLL_ID_PCH_PLL_B;
9263                         else
9264                                 pll_id= DPLL_ID_PCH_PLL_A;
9265                 }
9266
9267                 pipe_config->shared_dpll =
9268                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
9269                 pll = pipe_config->shared_dpll;
9270
9271                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9272                                                  &pipe_config->dpll_hw_state));
9273
9274                 tmp = pipe_config->dpll_hw_state.dpll;
9275                 pipe_config->pixel_multiplier =
9276                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9277                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9278
9279                 ironlake_pch_clock_get(crtc, pipe_config);
9280         } else {
9281                 pipe_config->pixel_multiplier = 1;
9282         }
9283
9284         intel_get_pipe_timings(crtc, pipe_config);
9285         intel_get_pipe_src_size(crtc, pipe_config);
9286
9287         ironlake_get_pfit_config(crtc, pipe_config);
9288
9289         ret = true;
9290
9291 out:
9292         intel_display_power_put(dev_priv, power_domain);
9293
9294         return ret;
9295 }
9296
9297 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9298 {
9299         struct drm_device *dev = dev_priv->dev;
9300         struct intel_crtc *crtc;
9301
9302         for_each_intel_crtc(dev, crtc)
9303                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9304                      pipe_name(crtc->pipe));
9305
9306         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9307         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9308         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9309         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9310         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9311         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9312              "CPU PWM1 enabled\n");
9313         if (IS_HASWELL(dev))
9314                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9315                      "CPU PWM2 enabled\n");
9316         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9317              "PCH PWM1 enabled\n");
9318         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9319              "Utility pin enabled\n");
9320         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9321
9322         /*
9323          * In theory we can still leave IRQs enabled, as long as only the HPD
9324          * interrupts remain enabled. We used to check for that, but since it's
9325          * gen-specific and since we only disable LCPLL after we fully disable
9326          * the interrupts, the check below should be enough.
9327          */
9328         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9329 }
9330
9331 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9332 {
9333         struct drm_device *dev = dev_priv->dev;
9334
9335         if (IS_HASWELL(dev))
9336                 return I915_READ(D_COMP_HSW);
9337         else
9338                 return I915_READ(D_COMP_BDW);
9339 }
9340
9341 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9342 {
9343         struct drm_device *dev = dev_priv->dev;
9344
9345         if (IS_HASWELL(dev)) {
9346                 mutex_lock(&dev_priv->rps.hw_lock);
9347                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9348                                             val))
9349                         DRM_ERROR("Failed to write to D_COMP\n");
9350                 mutex_unlock(&dev_priv->rps.hw_lock);
9351         } else {
9352                 I915_WRITE(D_COMP_BDW, val);
9353                 POSTING_READ(D_COMP_BDW);
9354         }
9355 }
9356
9357 /*
9358  * This function implements pieces of two sequences from BSpec:
9359  * - Sequence for display software to disable LCPLL
9360  * - Sequence for display software to allow package C8+
9361  * The steps implemented here are just the steps that actually touch the LCPLL
9362  * register. Callers should take care of disabling all the display engine
9363  * functions, doing the mode unset, fixing interrupts, etc.
9364  */
9365 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9366                               bool switch_to_fclk, bool allow_power_down)
9367 {
9368         uint32_t val;
9369
9370         assert_can_disable_lcpll(dev_priv);
9371
9372         val = I915_READ(LCPLL_CTL);
9373
9374         if (switch_to_fclk) {
9375                 val |= LCPLL_CD_SOURCE_FCLK;
9376                 I915_WRITE(LCPLL_CTL, val);
9377
9378                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9379                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9380                         DRM_ERROR("Switching to FCLK failed\n");
9381
9382                 val = I915_READ(LCPLL_CTL);
9383         }
9384
9385         val |= LCPLL_PLL_DISABLE;
9386         I915_WRITE(LCPLL_CTL, val);
9387         POSTING_READ(LCPLL_CTL);
9388
9389         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9390                 DRM_ERROR("LCPLL still locked\n");
9391
9392         val = hsw_read_dcomp(dev_priv);
9393         val |= D_COMP_COMP_DISABLE;
9394         hsw_write_dcomp(dev_priv, val);
9395         ndelay(100);
9396
9397         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9398                      1))
9399                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9400
9401         if (allow_power_down) {
9402                 val = I915_READ(LCPLL_CTL);
9403                 val |= LCPLL_POWER_DOWN_ALLOW;
9404                 I915_WRITE(LCPLL_CTL, val);
9405                 POSTING_READ(LCPLL_CTL);
9406         }
9407 }
9408
9409 /*
9410  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9411  * source.
9412  */
9413 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9414 {
9415         uint32_t val;
9416
9417         val = I915_READ(LCPLL_CTL);
9418
9419         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9420                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9421                 return;
9422
9423         /*
9424          * Make sure we're not on PC8 state before disabling PC8, otherwise
9425          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9426          */
9427         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9428
9429         if (val & LCPLL_POWER_DOWN_ALLOW) {
9430                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9431                 I915_WRITE(LCPLL_CTL, val);
9432                 POSTING_READ(LCPLL_CTL);
9433         }
9434
9435         val = hsw_read_dcomp(dev_priv);
9436         val |= D_COMP_COMP_FORCE;
9437         val &= ~D_COMP_COMP_DISABLE;
9438         hsw_write_dcomp(dev_priv, val);
9439
9440         val = I915_READ(LCPLL_CTL);
9441         val &= ~LCPLL_PLL_DISABLE;
9442         I915_WRITE(LCPLL_CTL, val);
9443
9444         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9445                 DRM_ERROR("LCPLL not locked yet\n");
9446
9447         if (val & LCPLL_CD_SOURCE_FCLK) {
9448                 val = I915_READ(LCPLL_CTL);
9449                 val &= ~LCPLL_CD_SOURCE_FCLK;
9450                 I915_WRITE(LCPLL_CTL, val);
9451
9452                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9453                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9454                         DRM_ERROR("Switching back to LCPLL failed\n");
9455         }
9456
9457         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9458         intel_update_cdclk(dev_priv->dev);
9459 }
9460
9461 /*
9462  * Package states C8 and deeper are really deep PC states that can only be
9463  * reached when all the devices on the system allow it, so even if the graphics
9464  * device allows PC8+, it doesn't mean the system will actually get to these
9465  * states. Our driver only allows PC8+ when going into runtime PM.
9466  *
9467  * The requirements for PC8+ are that all the outputs are disabled, the power
9468  * well is disabled and most interrupts are disabled, and these are also
9469  * requirements for runtime PM. When these conditions are met, we manually do
9470  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9471  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9472  * hang the machine.
9473  *
9474  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9475  * the state of some registers, so when we come back from PC8+ we need to
9476  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9477  * need to take care of the registers kept by RC6. Notice that this happens even
9478  * if we don't put the device in PCI D3 state (which is what currently happens
9479  * because of the runtime PM support).
9480  *
9481  * For more, read "Display Sequences for Package C8" on the hardware
9482  * documentation.
9483  */
9484 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9485 {
9486         struct drm_device *dev = dev_priv->dev;
9487         uint32_t val;
9488
9489         DRM_DEBUG_KMS("Enabling package C8+\n");
9490
9491         if (HAS_PCH_LPT_LP(dev)) {
9492                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9493                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9494                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9495         }
9496
9497         lpt_disable_clkout_dp(dev);
9498         hsw_disable_lcpll(dev_priv, true, true);
9499 }
9500
9501 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9502 {
9503         struct drm_device *dev = dev_priv->dev;
9504         uint32_t val;
9505
9506         DRM_DEBUG_KMS("Disabling package C8+\n");
9507
9508         hsw_restore_lcpll(dev_priv);
9509         lpt_init_pch_refclk(dev);
9510
9511         if (HAS_PCH_LPT_LP(dev)) {
9512                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9513                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9514                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9515         }
9516 }
9517
9518 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9519 {
9520         struct drm_device *dev = old_state->dev;
9521         struct intel_atomic_state *old_intel_state =
9522                 to_intel_atomic_state(old_state);
9523         unsigned int req_cdclk = old_intel_state->dev_cdclk;
9524
9525         broxton_set_cdclk(dev, req_cdclk);
9526 }
9527
9528 /* compute the max rate for new configuration */
9529 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9530 {
9531         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9532         struct drm_i915_private *dev_priv = state->dev->dev_private;
9533         struct drm_crtc *crtc;
9534         struct drm_crtc_state *cstate;
9535         struct intel_crtc_state *crtc_state;
9536         unsigned max_pixel_rate = 0, i;
9537         enum pipe pipe;
9538
9539         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9540                sizeof(intel_state->min_pixclk));
9541
9542         for_each_crtc_in_state(state, crtc, cstate, i) {
9543                 int pixel_rate;
9544
9545                 crtc_state = to_intel_crtc_state(cstate);
9546                 if (!crtc_state->base.enable) {
9547                         intel_state->min_pixclk[i] = 0;
9548                         continue;
9549                 }
9550
9551                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9552
9553                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9554                 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9555                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9556
9557                 intel_state->min_pixclk[i] = pixel_rate;
9558         }
9559
9560         for_each_pipe(dev_priv, pipe)
9561                 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9562
9563         return max_pixel_rate;
9564 }
9565
9566 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9567 {
9568         struct drm_i915_private *dev_priv = dev->dev_private;
9569         uint32_t val, data;
9570         int ret;
9571
9572         if (WARN((I915_READ(LCPLL_CTL) &
9573                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9574                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9575                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9576                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9577                  "trying to change cdclk frequency with cdclk not enabled\n"))
9578                 return;
9579
9580         mutex_lock(&dev_priv->rps.hw_lock);
9581         ret = sandybridge_pcode_write(dev_priv,
9582                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9583         mutex_unlock(&dev_priv->rps.hw_lock);
9584         if (ret) {
9585                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9586                 return;
9587         }
9588
9589         val = I915_READ(LCPLL_CTL);
9590         val |= LCPLL_CD_SOURCE_FCLK;
9591         I915_WRITE(LCPLL_CTL, val);
9592
9593         if (wait_for_us(I915_READ(LCPLL_CTL) &
9594                         LCPLL_CD_SOURCE_FCLK_DONE, 1))
9595                 DRM_ERROR("Switching to FCLK failed\n");
9596
9597         val = I915_READ(LCPLL_CTL);
9598         val &= ~LCPLL_CLK_FREQ_MASK;
9599
9600         switch (cdclk) {
9601         case 450000:
9602                 val |= LCPLL_CLK_FREQ_450;
9603                 data = 0;
9604                 break;
9605         case 540000:
9606                 val |= LCPLL_CLK_FREQ_54O_BDW;
9607                 data = 1;
9608                 break;
9609         case 337500:
9610                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9611                 data = 2;
9612                 break;
9613         case 675000:
9614                 val |= LCPLL_CLK_FREQ_675_BDW;
9615                 data = 3;
9616                 break;
9617         default:
9618                 WARN(1, "invalid cdclk frequency\n");
9619                 return;
9620         }
9621
9622         I915_WRITE(LCPLL_CTL, val);
9623
9624         val = I915_READ(LCPLL_CTL);
9625         val &= ~LCPLL_CD_SOURCE_FCLK;
9626         I915_WRITE(LCPLL_CTL, val);
9627
9628         if (wait_for_us((I915_READ(LCPLL_CTL) &
9629                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9630                 DRM_ERROR("Switching back to LCPLL failed\n");
9631
9632         mutex_lock(&dev_priv->rps.hw_lock);
9633         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9634         mutex_unlock(&dev_priv->rps.hw_lock);
9635
9636         intel_update_cdclk(dev);
9637
9638         WARN(cdclk != dev_priv->cdclk_freq,
9639              "cdclk requested %d kHz but got %d kHz\n",
9640              cdclk, dev_priv->cdclk_freq);
9641 }
9642
9643 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9644 {
9645         struct drm_i915_private *dev_priv = to_i915(state->dev);
9646         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9647         int max_pixclk = ilk_max_pixel_rate(state);
9648         int cdclk;
9649
9650         /*
9651          * FIXME should also account for plane ratio
9652          * once 64bpp pixel formats are supported.
9653          */
9654         if (max_pixclk > 540000)
9655                 cdclk = 675000;
9656         else if (max_pixclk > 450000)
9657                 cdclk = 540000;
9658         else if (max_pixclk > 337500)
9659                 cdclk = 450000;
9660         else
9661                 cdclk = 337500;
9662
9663         if (cdclk > dev_priv->max_cdclk_freq) {
9664                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9665                               cdclk, dev_priv->max_cdclk_freq);
9666                 return -EINVAL;
9667         }
9668
9669         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9670         if (!intel_state->active_crtcs)
9671                 intel_state->dev_cdclk = 337500;
9672
9673         return 0;
9674 }
9675
9676 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9677 {
9678         struct drm_device *dev = old_state->dev;
9679         struct intel_atomic_state *old_intel_state =
9680                 to_intel_atomic_state(old_state);
9681         unsigned req_cdclk = old_intel_state->dev_cdclk;
9682
9683         broadwell_set_cdclk(dev, req_cdclk);
9684 }
9685
9686 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9687                                       struct intel_crtc_state *crtc_state)
9688 {
9689         struct intel_encoder *intel_encoder =
9690                 intel_ddi_get_crtc_new_encoder(crtc_state);
9691
9692         if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9693                 if (!intel_ddi_pll_select(crtc, crtc_state))
9694                         return -EINVAL;
9695         }
9696
9697         crtc->lowfreq_avail = false;
9698
9699         return 0;
9700 }
9701
9702 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9703                                 enum port port,
9704                                 struct intel_crtc_state *pipe_config)
9705 {
9706         enum intel_dpll_id id;
9707
9708         switch (port) {
9709         case PORT_A:
9710                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9711                 id = DPLL_ID_SKL_DPLL0;
9712                 break;
9713         case PORT_B:
9714                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9715                 id = DPLL_ID_SKL_DPLL1;
9716                 break;
9717         case PORT_C:
9718                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9719                 id = DPLL_ID_SKL_DPLL2;
9720                 break;
9721         default:
9722                 DRM_ERROR("Incorrect port type\n");
9723                 return;
9724         }
9725
9726         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9727 }
9728
9729 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9730                                 enum port port,
9731                                 struct intel_crtc_state *pipe_config)
9732 {
9733         enum intel_dpll_id id;
9734         u32 temp;
9735
9736         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9737         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9738
9739         switch (pipe_config->ddi_pll_sel) {
9740         case SKL_DPLL0:
9741                 id = DPLL_ID_SKL_DPLL0;
9742                 break;
9743         case SKL_DPLL1:
9744                 id = DPLL_ID_SKL_DPLL1;
9745                 break;
9746         case SKL_DPLL2:
9747                 id = DPLL_ID_SKL_DPLL2;
9748                 break;
9749         case SKL_DPLL3:
9750                 id = DPLL_ID_SKL_DPLL3;
9751                 break;
9752         default:
9753                 MISSING_CASE(pipe_config->ddi_pll_sel);
9754                 return;
9755         }
9756
9757         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9758 }
9759
9760 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9761                                 enum port port,
9762                                 struct intel_crtc_state *pipe_config)
9763 {
9764         enum intel_dpll_id id;
9765
9766         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9767
9768         switch (pipe_config->ddi_pll_sel) {
9769         case PORT_CLK_SEL_WRPLL1:
9770                 id = DPLL_ID_WRPLL1;
9771                 break;
9772         case PORT_CLK_SEL_WRPLL2:
9773                 id = DPLL_ID_WRPLL2;
9774                 break;
9775         case PORT_CLK_SEL_SPLL:
9776                 id = DPLL_ID_SPLL;
9777                 break;
9778         case PORT_CLK_SEL_LCPLL_810:
9779                 id = DPLL_ID_LCPLL_810;
9780                 break;
9781         case PORT_CLK_SEL_LCPLL_1350:
9782                 id = DPLL_ID_LCPLL_1350;
9783                 break;
9784         case PORT_CLK_SEL_LCPLL_2700:
9785                 id = DPLL_ID_LCPLL_2700;
9786                 break;
9787         default:
9788                 MISSING_CASE(pipe_config->ddi_pll_sel);
9789                 /* fall through */
9790         case PORT_CLK_SEL_NONE:
9791                 return;
9792         }
9793
9794         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9795 }
9796
9797 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9798                                      struct intel_crtc_state *pipe_config,
9799                                      unsigned long *power_domain_mask)
9800 {
9801         struct drm_device *dev = crtc->base.dev;
9802         struct drm_i915_private *dev_priv = dev->dev_private;
9803         enum intel_display_power_domain power_domain;
9804         u32 tmp;
9805
9806         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9807
9808         /*
9809          * XXX: Do intel_display_power_get_if_enabled before reading this (for
9810          * consistency and less surprising code; it's in always on power).
9811          */
9812         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9813         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9814                 enum pipe trans_edp_pipe;
9815                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9816                 default:
9817                         WARN(1, "unknown pipe linked to edp transcoder\n");
9818                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9819                 case TRANS_DDI_EDP_INPUT_A_ON:
9820                         trans_edp_pipe = PIPE_A;
9821                         break;
9822                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9823                         trans_edp_pipe = PIPE_B;
9824                         break;
9825                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9826                         trans_edp_pipe = PIPE_C;
9827                         break;
9828                 }
9829
9830                 if (trans_edp_pipe == crtc->pipe)
9831                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9832         }
9833
9834         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9835         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9836                 return false;
9837         *power_domain_mask |= BIT(power_domain);
9838
9839         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9840
9841         return tmp & PIPECONF_ENABLE;
9842 }
9843
9844 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9845                                          struct intel_crtc_state *pipe_config,
9846                                          unsigned long *power_domain_mask)
9847 {
9848         struct drm_device *dev = crtc->base.dev;
9849         struct drm_i915_private *dev_priv = dev->dev_private;
9850         enum intel_display_power_domain power_domain;
9851         enum port port;
9852         enum transcoder cpu_transcoder;
9853         u32 tmp;
9854
9855         pipe_config->has_dsi_encoder = false;
9856
9857         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9858                 if (port == PORT_A)
9859                         cpu_transcoder = TRANSCODER_DSI_A;
9860                 else
9861                         cpu_transcoder = TRANSCODER_DSI_C;
9862
9863                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9864                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9865                         continue;
9866                 *power_domain_mask |= BIT(power_domain);
9867
9868                 /* XXX: this works for video mode only */
9869                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9870                 if (!(tmp & DPI_ENABLE))
9871                         continue;
9872
9873                 tmp = I915_READ(MIPI_CTRL(port));
9874                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9875                         continue;
9876
9877                 pipe_config->cpu_transcoder = cpu_transcoder;
9878                 pipe_config->has_dsi_encoder = true;
9879                 break;
9880         }
9881
9882         return pipe_config->has_dsi_encoder;
9883 }
9884
9885 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9886                                        struct intel_crtc_state *pipe_config)
9887 {
9888         struct drm_device *dev = crtc->base.dev;
9889         struct drm_i915_private *dev_priv = dev->dev_private;
9890         struct intel_shared_dpll *pll;
9891         enum port port;
9892         uint32_t tmp;
9893
9894         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9895
9896         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9897
9898         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9899                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9900         else if (IS_BROXTON(dev))
9901                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9902         else
9903                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9904
9905         pll = pipe_config->shared_dpll;
9906         if (pll) {
9907                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9908                                                  &pipe_config->dpll_hw_state));
9909         }
9910
9911         /*
9912          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9913          * DDI E. So just check whether this pipe is wired to DDI E and whether
9914          * the PCH transcoder is on.
9915          */
9916         if (INTEL_INFO(dev)->gen < 9 &&
9917             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9918                 pipe_config->has_pch_encoder = true;
9919
9920                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9921                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9922                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9923
9924                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9925         }
9926 }
9927
9928 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9929                                     struct intel_crtc_state *pipe_config)
9930 {
9931         struct drm_device *dev = crtc->base.dev;
9932         struct drm_i915_private *dev_priv = dev->dev_private;
9933         enum intel_display_power_domain power_domain;
9934         unsigned long power_domain_mask;
9935         bool active;
9936
9937         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9938         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9939                 return false;
9940         power_domain_mask = BIT(power_domain);
9941
9942         pipe_config->shared_dpll = NULL;
9943
9944         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
9945
9946         if (IS_BROXTON(dev_priv)) {
9947                 bxt_get_dsi_transcoder_state(crtc, pipe_config,
9948                                              &power_domain_mask);
9949                 WARN_ON(active && pipe_config->has_dsi_encoder);
9950                 if (pipe_config->has_dsi_encoder)
9951                         active = true;
9952         }
9953
9954         if (!active)
9955                 goto out;
9956
9957         if (!pipe_config->has_dsi_encoder) {
9958                 haswell_get_ddi_port_state(crtc, pipe_config);
9959                 intel_get_pipe_timings(crtc, pipe_config);
9960         }
9961
9962         intel_get_pipe_src_size(crtc, pipe_config);
9963
9964         pipe_config->gamma_mode =
9965                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
9966
9967         if (INTEL_INFO(dev)->gen >= 9) {
9968                 skl_init_scalers(dev, crtc, pipe_config);
9969         }
9970
9971         if (INTEL_INFO(dev)->gen >= 9) {
9972                 pipe_config->scaler_state.scaler_id = -1;
9973                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9974         }
9975
9976         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9977         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
9978                 power_domain_mask |= BIT(power_domain);
9979                 if (INTEL_INFO(dev)->gen >= 9)
9980                         skylake_get_pfit_config(crtc, pipe_config);
9981                 else
9982                         ironlake_get_pfit_config(crtc, pipe_config);
9983         }
9984
9985         if (IS_HASWELL(dev))
9986                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9987                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9988
9989         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
9990             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9991                 pipe_config->pixel_multiplier =
9992                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9993         } else {
9994                 pipe_config->pixel_multiplier = 1;
9995         }
9996
9997 out:
9998         for_each_power_domain(power_domain, power_domain_mask)
9999                 intel_display_power_put(dev_priv, power_domain);
10000
10001         return active;
10002 }
10003
10004 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10005                                const struct intel_plane_state *plane_state)
10006 {
10007         struct drm_device *dev = crtc->dev;
10008         struct drm_i915_private *dev_priv = dev->dev_private;
10009         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10010         uint32_t cntl = 0, size = 0;
10011
10012         if (plane_state && plane_state->visible) {
10013                 unsigned int width = plane_state->base.crtc_w;
10014                 unsigned int height = plane_state->base.crtc_h;
10015                 unsigned int stride = roundup_pow_of_two(width) * 4;
10016
10017                 switch (stride) {
10018                 default:
10019                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10020                                   width, stride);
10021                         stride = 256;
10022                         /* fallthrough */
10023                 case 256:
10024                 case 512:
10025                 case 1024:
10026                 case 2048:
10027                         break;
10028                 }
10029
10030                 cntl |= CURSOR_ENABLE |
10031                         CURSOR_GAMMA_ENABLE |
10032                         CURSOR_FORMAT_ARGB |
10033                         CURSOR_STRIDE(stride);
10034
10035                 size = (height << 12) | width;
10036         }
10037
10038         if (intel_crtc->cursor_cntl != 0 &&
10039             (intel_crtc->cursor_base != base ||
10040              intel_crtc->cursor_size != size ||
10041              intel_crtc->cursor_cntl != cntl)) {
10042                 /* On these chipsets we can only modify the base/size/stride
10043                  * whilst the cursor is disabled.
10044                  */
10045                 I915_WRITE(CURCNTR(PIPE_A), 0);
10046                 POSTING_READ(CURCNTR(PIPE_A));
10047                 intel_crtc->cursor_cntl = 0;
10048         }
10049
10050         if (intel_crtc->cursor_base != base) {
10051                 I915_WRITE(CURBASE(PIPE_A), base);
10052                 intel_crtc->cursor_base = base;
10053         }
10054
10055         if (intel_crtc->cursor_size != size) {
10056                 I915_WRITE(CURSIZE, size);
10057                 intel_crtc->cursor_size = size;
10058         }
10059
10060         if (intel_crtc->cursor_cntl != cntl) {
10061                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10062                 POSTING_READ(CURCNTR(PIPE_A));
10063                 intel_crtc->cursor_cntl = cntl;
10064         }
10065 }
10066
10067 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10068                                const struct intel_plane_state *plane_state)
10069 {
10070         struct drm_device *dev = crtc->dev;
10071         struct drm_i915_private *dev_priv = dev->dev_private;
10072         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10073         int pipe = intel_crtc->pipe;
10074         uint32_t cntl = 0;
10075
10076         if (plane_state && plane_state->visible) {
10077                 cntl = MCURSOR_GAMMA_ENABLE;
10078                 switch (plane_state->base.crtc_w) {
10079                         case 64:
10080                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10081                                 break;
10082                         case 128:
10083                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10084                                 break;
10085                         case 256:
10086                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10087                                 break;
10088                         default:
10089                                 MISSING_CASE(plane_state->base.crtc_w);
10090                                 return;
10091                 }
10092                 cntl |= pipe << 28; /* Connect to correct pipe */
10093
10094                 if (HAS_DDI(dev))
10095                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10096
10097                 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10098                         cntl |= CURSOR_ROTATE_180;
10099         }
10100
10101         if (intel_crtc->cursor_cntl != cntl) {
10102                 I915_WRITE(CURCNTR(pipe), cntl);
10103                 POSTING_READ(CURCNTR(pipe));
10104                 intel_crtc->cursor_cntl = cntl;
10105         }
10106
10107         /* and commit changes on next vblank */
10108         I915_WRITE(CURBASE(pipe), base);
10109         POSTING_READ(CURBASE(pipe));
10110
10111         intel_crtc->cursor_base = base;
10112 }
10113
10114 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10115 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10116                                      const struct intel_plane_state *plane_state)
10117 {
10118         struct drm_device *dev = crtc->dev;
10119         struct drm_i915_private *dev_priv = dev->dev_private;
10120         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10121         int pipe = intel_crtc->pipe;
10122         u32 base = intel_crtc->cursor_addr;
10123         u32 pos = 0;
10124
10125         if (plane_state) {
10126                 int x = plane_state->base.crtc_x;
10127                 int y = plane_state->base.crtc_y;
10128
10129                 if (x < 0) {
10130                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10131                         x = -x;
10132                 }
10133                 pos |= x << CURSOR_X_SHIFT;
10134
10135                 if (y < 0) {
10136                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10137                         y = -y;
10138                 }
10139                 pos |= y << CURSOR_Y_SHIFT;
10140
10141                 /* ILK+ do this automagically */
10142                 if (HAS_GMCH_DISPLAY(dev) &&
10143                     plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10144                         base += (plane_state->base.crtc_h *
10145                                  plane_state->base.crtc_w - 1) * 4;
10146                 }
10147         }
10148
10149         I915_WRITE(CURPOS(pipe), pos);
10150
10151         if (IS_845G(dev) || IS_I865G(dev))
10152                 i845_update_cursor(crtc, base, plane_state);
10153         else
10154                 i9xx_update_cursor(crtc, base, plane_state);
10155 }
10156
10157 static bool cursor_size_ok(struct drm_device *dev,
10158                            uint32_t width, uint32_t height)
10159 {
10160         if (width == 0 || height == 0)
10161                 return false;
10162
10163         /*
10164          * 845g/865g are special in that they are only limited by
10165          * the width of their cursors, the height is arbitrary up to
10166          * the precision of the register. Everything else requires
10167          * square cursors, limited to a few power-of-two sizes.
10168          */
10169         if (IS_845G(dev) || IS_I865G(dev)) {
10170                 if ((width & 63) != 0)
10171                         return false;
10172
10173                 if (width > (IS_845G(dev) ? 64 : 512))
10174                         return false;
10175
10176                 if (height > 1023)
10177                         return false;
10178         } else {
10179                 switch (width | height) {
10180                 case 256:
10181                 case 128:
10182                         if (IS_GEN2(dev))
10183                                 return false;
10184                 case 64:
10185                         break;
10186                 default:
10187                         return false;
10188                 }
10189         }
10190
10191         return true;
10192 }
10193
10194 /* VESA 640x480x72Hz mode to set on the pipe */
10195 static struct drm_display_mode load_detect_mode = {
10196         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10197                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10198 };
10199
10200 struct drm_framebuffer *
10201 __intel_framebuffer_create(struct drm_device *dev,
10202                            struct drm_mode_fb_cmd2 *mode_cmd,
10203                            struct drm_i915_gem_object *obj)
10204 {
10205         struct intel_framebuffer *intel_fb;
10206         int ret;
10207
10208         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10209         if (!intel_fb)
10210                 return ERR_PTR(-ENOMEM);
10211
10212         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10213         if (ret)
10214                 goto err;
10215
10216         return &intel_fb->base;
10217
10218 err:
10219         kfree(intel_fb);
10220         return ERR_PTR(ret);
10221 }
10222
10223 static struct drm_framebuffer *
10224 intel_framebuffer_create(struct drm_device *dev,
10225                          struct drm_mode_fb_cmd2 *mode_cmd,
10226                          struct drm_i915_gem_object *obj)
10227 {
10228         struct drm_framebuffer *fb;
10229         int ret;
10230
10231         ret = i915_mutex_lock_interruptible(dev);
10232         if (ret)
10233                 return ERR_PTR(ret);
10234         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10235         mutex_unlock(&dev->struct_mutex);
10236
10237         return fb;
10238 }
10239
10240 static u32
10241 intel_framebuffer_pitch_for_width(int width, int bpp)
10242 {
10243         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10244         return ALIGN(pitch, 64);
10245 }
10246
10247 static u32
10248 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10249 {
10250         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10251         return PAGE_ALIGN(pitch * mode->vdisplay);
10252 }
10253
10254 static struct drm_framebuffer *
10255 intel_framebuffer_create_for_mode(struct drm_device *dev,
10256                                   struct drm_display_mode *mode,
10257                                   int depth, int bpp)
10258 {
10259         struct drm_framebuffer *fb;
10260         struct drm_i915_gem_object *obj;
10261         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10262
10263         obj = i915_gem_alloc_object(dev,
10264                                     intel_framebuffer_size_for_mode(mode, bpp));
10265         if (obj == NULL)
10266                 return ERR_PTR(-ENOMEM);
10267
10268         mode_cmd.width = mode->hdisplay;
10269         mode_cmd.height = mode->vdisplay;
10270         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10271                                                                 bpp);
10272         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10273
10274         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10275         if (IS_ERR(fb))
10276                 drm_gem_object_unreference_unlocked(&obj->base);
10277
10278         return fb;
10279 }
10280
10281 static struct drm_framebuffer *
10282 mode_fits_in_fbdev(struct drm_device *dev,
10283                    struct drm_display_mode *mode)
10284 {
10285 #ifdef CONFIG_DRM_FBDEV_EMULATION
10286         struct drm_i915_private *dev_priv = dev->dev_private;
10287         struct drm_i915_gem_object *obj;
10288         struct drm_framebuffer *fb;
10289
10290         if (!dev_priv->fbdev)
10291                 return NULL;
10292
10293         if (!dev_priv->fbdev->fb)
10294                 return NULL;
10295
10296         obj = dev_priv->fbdev->fb->obj;
10297         BUG_ON(!obj);
10298
10299         fb = &dev_priv->fbdev->fb->base;
10300         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10301                                                                fb->bits_per_pixel))
10302                 return NULL;
10303
10304         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10305                 return NULL;
10306
10307         drm_framebuffer_reference(fb);
10308         return fb;
10309 #else
10310         return NULL;
10311 #endif
10312 }
10313
10314 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10315                                            struct drm_crtc *crtc,
10316                                            struct drm_display_mode *mode,
10317                                            struct drm_framebuffer *fb,
10318                                            int x, int y)
10319 {
10320         struct drm_plane_state *plane_state;
10321         int hdisplay, vdisplay;
10322         int ret;
10323
10324         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10325         if (IS_ERR(plane_state))
10326                 return PTR_ERR(plane_state);
10327
10328         if (mode)
10329                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10330         else
10331                 hdisplay = vdisplay = 0;
10332
10333         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10334         if (ret)
10335                 return ret;
10336         drm_atomic_set_fb_for_plane(plane_state, fb);
10337         plane_state->crtc_x = 0;
10338         plane_state->crtc_y = 0;
10339         plane_state->crtc_w = hdisplay;
10340         plane_state->crtc_h = vdisplay;
10341         plane_state->src_x = x << 16;
10342         plane_state->src_y = y << 16;
10343         plane_state->src_w = hdisplay << 16;
10344         plane_state->src_h = vdisplay << 16;
10345
10346         return 0;
10347 }
10348
10349 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10350                                 struct drm_display_mode *mode,
10351                                 struct intel_load_detect_pipe *old,
10352                                 struct drm_modeset_acquire_ctx *ctx)
10353 {
10354         struct intel_crtc *intel_crtc;
10355         struct intel_encoder *intel_encoder =
10356                 intel_attached_encoder(connector);
10357         struct drm_crtc *possible_crtc;
10358         struct drm_encoder *encoder = &intel_encoder->base;
10359         struct drm_crtc *crtc = NULL;
10360         struct drm_device *dev = encoder->dev;
10361         struct drm_framebuffer *fb;
10362         struct drm_mode_config *config = &dev->mode_config;
10363         struct drm_atomic_state *state = NULL, *restore_state = NULL;
10364         struct drm_connector_state *connector_state;
10365         struct intel_crtc_state *crtc_state;
10366         int ret, i = -1;
10367
10368         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10369                       connector->base.id, connector->name,
10370                       encoder->base.id, encoder->name);
10371
10372         old->restore_state = NULL;
10373
10374 retry:
10375         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10376         if (ret)
10377                 goto fail;
10378
10379         /*
10380          * Algorithm gets a little messy:
10381          *
10382          *   - if the connector already has an assigned crtc, use it (but make
10383          *     sure it's on first)
10384          *
10385          *   - try to find the first unused crtc that can drive this connector,
10386          *     and use that if we find one
10387          */
10388
10389         /* See if we already have a CRTC for this connector */
10390         if (connector->state->crtc) {
10391                 crtc = connector->state->crtc;
10392
10393                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10394                 if (ret)
10395                         goto fail;
10396
10397                 /* Make sure the crtc and connector are running */
10398                 goto found;
10399         }
10400
10401         /* Find an unused one (if possible) */
10402         for_each_crtc(dev, possible_crtc) {
10403                 i++;
10404                 if (!(encoder->possible_crtcs & (1 << i)))
10405                         continue;
10406
10407                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10408                 if (ret)
10409                         goto fail;
10410
10411                 if (possible_crtc->state->enable) {
10412                         drm_modeset_unlock(&possible_crtc->mutex);
10413                         continue;
10414                 }
10415
10416                 crtc = possible_crtc;
10417                 break;
10418         }
10419
10420         /*
10421          * If we didn't find an unused CRTC, don't use any.
10422          */
10423         if (!crtc) {
10424                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10425                 goto fail;
10426         }
10427
10428 found:
10429         intel_crtc = to_intel_crtc(crtc);
10430
10431         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10432         if (ret)
10433                 goto fail;
10434
10435         state = drm_atomic_state_alloc(dev);
10436         restore_state = drm_atomic_state_alloc(dev);
10437         if (!state || !restore_state) {
10438                 ret = -ENOMEM;
10439                 goto fail;
10440         }
10441
10442         state->acquire_ctx = ctx;
10443         restore_state->acquire_ctx = ctx;
10444
10445         connector_state = drm_atomic_get_connector_state(state, connector);
10446         if (IS_ERR(connector_state)) {
10447                 ret = PTR_ERR(connector_state);
10448                 goto fail;
10449         }
10450
10451         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10452         if (ret)
10453                 goto fail;
10454
10455         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10456         if (IS_ERR(crtc_state)) {
10457                 ret = PTR_ERR(crtc_state);
10458                 goto fail;
10459         }
10460
10461         crtc_state->base.active = crtc_state->base.enable = true;
10462
10463         if (!mode)
10464                 mode = &load_detect_mode;
10465
10466         /* We need a framebuffer large enough to accommodate all accesses
10467          * that the plane may generate whilst we perform load detection.
10468          * We can not rely on the fbcon either being present (we get called
10469          * during its initialisation to detect all boot displays, or it may
10470          * not even exist) or that it is large enough to satisfy the
10471          * requested mode.
10472          */
10473         fb = mode_fits_in_fbdev(dev, mode);
10474         if (fb == NULL) {
10475                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10476                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10477         } else
10478                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10479         if (IS_ERR(fb)) {
10480                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10481                 goto fail;
10482         }
10483
10484         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10485         if (ret)
10486                 goto fail;
10487
10488         drm_framebuffer_unreference(fb);
10489
10490         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10491         if (ret)
10492                 goto fail;
10493
10494         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10495         if (!ret)
10496                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10497         if (!ret)
10498                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10499         if (ret) {
10500                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10501                 goto fail;
10502         }
10503
10504         ret = drm_atomic_commit(state);
10505         if (ret) {
10506                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10507                 goto fail;
10508         }
10509
10510         old->restore_state = restore_state;
10511
10512         /* let the connector get through one full cycle before testing */
10513         intel_wait_for_vblank(dev, intel_crtc->pipe);
10514         return true;
10515
10516 fail:
10517         drm_atomic_state_free(state);
10518         drm_atomic_state_free(restore_state);
10519         restore_state = state = NULL;
10520
10521         if (ret == -EDEADLK) {
10522                 drm_modeset_backoff(ctx);
10523                 goto retry;
10524         }
10525
10526         return false;
10527 }
10528
10529 void intel_release_load_detect_pipe(struct drm_connector *connector,
10530                                     struct intel_load_detect_pipe *old,
10531                                     struct drm_modeset_acquire_ctx *ctx)
10532 {
10533         struct intel_encoder *intel_encoder =
10534                 intel_attached_encoder(connector);
10535         struct drm_encoder *encoder = &intel_encoder->base;
10536         struct drm_atomic_state *state = old->restore_state;
10537         int ret;
10538
10539         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10540                       connector->base.id, connector->name,
10541                       encoder->base.id, encoder->name);
10542
10543         if (!state)
10544                 return;
10545
10546         ret = drm_atomic_commit(state);
10547         if (ret) {
10548                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10549                 drm_atomic_state_free(state);
10550         }
10551 }
10552
10553 static int i9xx_pll_refclk(struct drm_device *dev,
10554                            const struct intel_crtc_state *pipe_config)
10555 {
10556         struct drm_i915_private *dev_priv = dev->dev_private;
10557         u32 dpll = pipe_config->dpll_hw_state.dpll;
10558
10559         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10560                 return dev_priv->vbt.lvds_ssc_freq;
10561         else if (HAS_PCH_SPLIT(dev))
10562                 return 120000;
10563         else if (!IS_GEN2(dev))
10564                 return 96000;
10565         else
10566                 return 48000;
10567 }
10568
10569 /* Returns the clock of the currently programmed mode of the given pipe. */
10570 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10571                                 struct intel_crtc_state *pipe_config)
10572 {
10573         struct drm_device *dev = crtc->base.dev;
10574         struct drm_i915_private *dev_priv = dev->dev_private;
10575         int pipe = pipe_config->cpu_transcoder;
10576         u32 dpll = pipe_config->dpll_hw_state.dpll;
10577         u32 fp;
10578         intel_clock_t clock;
10579         int port_clock;
10580         int refclk = i9xx_pll_refclk(dev, pipe_config);
10581
10582         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10583                 fp = pipe_config->dpll_hw_state.fp0;
10584         else
10585                 fp = pipe_config->dpll_hw_state.fp1;
10586
10587         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10588         if (IS_PINEVIEW(dev)) {
10589                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10590                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10591         } else {
10592                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10593                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10594         }
10595
10596         if (!IS_GEN2(dev)) {
10597                 if (IS_PINEVIEW(dev))
10598                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10599                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10600                 else
10601                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10602                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10603
10604                 switch (dpll & DPLL_MODE_MASK) {
10605                 case DPLLB_MODE_DAC_SERIAL:
10606                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10607                                 5 : 10;
10608                         break;
10609                 case DPLLB_MODE_LVDS:
10610                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10611                                 7 : 14;
10612                         break;
10613                 default:
10614                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10615                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10616                         return;
10617                 }
10618
10619                 if (IS_PINEVIEW(dev))
10620                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10621                 else
10622                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10623         } else {
10624                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10625                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10626
10627                 if (is_lvds) {
10628                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10629                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10630
10631                         if (lvds & LVDS_CLKB_POWER_UP)
10632                                 clock.p2 = 7;
10633                         else
10634                                 clock.p2 = 14;
10635                 } else {
10636                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10637                                 clock.p1 = 2;
10638                         else {
10639                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10640                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10641                         }
10642                         if (dpll & PLL_P2_DIVIDE_BY_4)
10643                                 clock.p2 = 4;
10644                         else
10645                                 clock.p2 = 2;
10646                 }
10647
10648                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10649         }
10650
10651         /*
10652          * This value includes pixel_multiplier. We will use
10653          * port_clock to compute adjusted_mode.crtc_clock in the
10654          * encoder's get_config() function.
10655          */
10656         pipe_config->port_clock = port_clock;
10657 }
10658
10659 int intel_dotclock_calculate(int link_freq,
10660                              const struct intel_link_m_n *m_n)
10661 {
10662         /*
10663          * The calculation for the data clock is:
10664          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10665          * But we want to avoid losing precison if possible, so:
10666          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10667          *
10668          * and the link clock is simpler:
10669          * link_clock = (m * link_clock) / n
10670          */
10671
10672         if (!m_n->link_n)
10673                 return 0;
10674
10675         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10676 }
10677
10678 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10679                                    struct intel_crtc_state *pipe_config)
10680 {
10681         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10682
10683         /* read out port_clock from the DPLL */
10684         i9xx_crtc_clock_get(crtc, pipe_config);
10685
10686         /*
10687          * In case there is an active pipe without active ports,
10688          * we may need some idea for the dotclock anyway.
10689          * Calculate one based on the FDI configuration.
10690          */
10691         pipe_config->base.adjusted_mode.crtc_clock =
10692                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10693                                          &pipe_config->fdi_m_n);
10694 }
10695
10696 /** Returns the currently programmed mode of the given pipe. */
10697 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10698                                              struct drm_crtc *crtc)
10699 {
10700         struct drm_i915_private *dev_priv = dev->dev_private;
10701         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10702         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10703         struct drm_display_mode *mode;
10704         struct intel_crtc_state *pipe_config;
10705         int htot = I915_READ(HTOTAL(cpu_transcoder));
10706         int hsync = I915_READ(HSYNC(cpu_transcoder));
10707         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10708         int vsync = I915_READ(VSYNC(cpu_transcoder));
10709         enum pipe pipe = intel_crtc->pipe;
10710
10711         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10712         if (!mode)
10713                 return NULL;
10714
10715         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10716         if (!pipe_config) {
10717                 kfree(mode);
10718                 return NULL;
10719         }
10720
10721         /*
10722          * Construct a pipe_config sufficient for getting the clock info
10723          * back out of crtc_clock_get.
10724          *
10725          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10726          * to use a real value here instead.
10727          */
10728         pipe_config->cpu_transcoder = (enum transcoder) pipe;
10729         pipe_config->pixel_multiplier = 1;
10730         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10731         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10732         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10733         i9xx_crtc_clock_get(intel_crtc, pipe_config);
10734
10735         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10736         mode->hdisplay = (htot & 0xffff) + 1;
10737         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10738         mode->hsync_start = (hsync & 0xffff) + 1;
10739         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10740         mode->vdisplay = (vtot & 0xffff) + 1;
10741         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10742         mode->vsync_start = (vsync & 0xffff) + 1;
10743         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10744
10745         drm_mode_set_name(mode);
10746
10747         kfree(pipe_config);
10748
10749         return mode;
10750 }
10751
10752 void intel_mark_busy(struct drm_device *dev)
10753 {
10754         struct drm_i915_private *dev_priv = dev->dev_private;
10755
10756         if (dev_priv->mm.busy)
10757                 return;
10758
10759         intel_runtime_pm_get(dev_priv);
10760         i915_update_gfx_val(dev_priv);
10761         if (INTEL_INFO(dev)->gen >= 6)
10762                 gen6_rps_busy(dev_priv);
10763         dev_priv->mm.busy = true;
10764 }
10765
10766 void intel_mark_idle(struct drm_device *dev)
10767 {
10768         struct drm_i915_private *dev_priv = dev->dev_private;
10769
10770         if (!dev_priv->mm.busy)
10771                 return;
10772
10773         dev_priv->mm.busy = false;
10774
10775         if (INTEL_INFO(dev)->gen >= 6)
10776                 gen6_rps_idle(dev->dev_private);
10777
10778         intel_runtime_pm_put(dev_priv);
10779 }
10780
10781 static void intel_crtc_destroy(struct drm_crtc *crtc)
10782 {
10783         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10784         struct drm_device *dev = crtc->dev;
10785         struct intel_unpin_work *work;
10786
10787         spin_lock_irq(&dev->event_lock);
10788         work = intel_crtc->unpin_work;
10789         intel_crtc->unpin_work = NULL;
10790         spin_unlock_irq(&dev->event_lock);
10791
10792         if (work) {
10793                 cancel_work_sync(&work->work);
10794                 kfree(work);
10795         }
10796
10797         drm_crtc_cleanup(crtc);
10798
10799         kfree(intel_crtc);
10800 }
10801
10802 static void intel_unpin_work_fn(struct work_struct *__work)
10803 {
10804         struct intel_unpin_work *work =
10805                 container_of(__work, struct intel_unpin_work, work);
10806         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10807         struct drm_device *dev = crtc->base.dev;
10808         struct drm_plane *primary = crtc->base.primary;
10809
10810         mutex_lock(&dev->struct_mutex);
10811         intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
10812         drm_gem_object_unreference(&work->pending_flip_obj->base);
10813
10814         if (work->flip_queued_req)
10815                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10816         mutex_unlock(&dev->struct_mutex);
10817
10818         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10819         intel_fbc_post_update(crtc);
10820         drm_framebuffer_unreference(work->old_fb);
10821
10822         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10823         atomic_dec(&crtc->unpin_work_count);
10824
10825         kfree(work);
10826 }
10827
10828 static void do_intel_finish_page_flip(struct drm_device *dev,
10829                                       struct drm_crtc *crtc)
10830 {
10831         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10832         struct intel_unpin_work *work;
10833         unsigned long flags;
10834
10835         /* Ignore early vblank irqs */
10836         if (intel_crtc == NULL)
10837                 return;
10838
10839         /*
10840          * This is called both by irq handlers and the reset code (to complete
10841          * lost pageflips) so needs the full irqsave spinlocks.
10842          */
10843         spin_lock_irqsave(&dev->event_lock, flags);
10844         work = intel_crtc->unpin_work;
10845
10846         /* Ensure we don't miss a work->pending update ... */
10847         smp_rmb();
10848
10849         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10850                 spin_unlock_irqrestore(&dev->event_lock, flags);
10851                 return;
10852         }
10853
10854         page_flip_completed(intel_crtc);
10855
10856         spin_unlock_irqrestore(&dev->event_lock, flags);
10857 }
10858
10859 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10860 {
10861         struct drm_i915_private *dev_priv = dev->dev_private;
10862         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10863
10864         do_intel_finish_page_flip(dev, crtc);
10865 }
10866
10867 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10868 {
10869         struct drm_i915_private *dev_priv = dev->dev_private;
10870         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10871
10872         do_intel_finish_page_flip(dev, crtc);
10873 }
10874
10875 /* Is 'a' after or equal to 'b'? */
10876 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10877 {
10878         return !((a - b) & 0x80000000);
10879 }
10880
10881 static bool page_flip_finished(struct intel_crtc *crtc)
10882 {
10883         struct drm_device *dev = crtc->base.dev;
10884         struct drm_i915_private *dev_priv = dev->dev_private;
10885
10886         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10887             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10888                 return true;
10889
10890         /*
10891          * The relevant registers doen't exist on pre-ctg.
10892          * As the flip done interrupt doesn't trigger for mmio
10893          * flips on gmch platforms, a flip count check isn't
10894          * really needed there. But since ctg has the registers,
10895          * include it in the check anyway.
10896          */
10897         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10898                 return true;
10899
10900         /*
10901          * BDW signals flip done immediately if the plane
10902          * is disabled, even if the plane enable is already
10903          * armed to occur at the next vblank :(
10904          */
10905
10906         /*
10907          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10908          * used the same base address. In that case the mmio flip might
10909          * have completed, but the CS hasn't even executed the flip yet.
10910          *
10911          * A flip count check isn't enough as the CS might have updated
10912          * the base address just after start of vblank, but before we
10913          * managed to process the interrupt. This means we'd complete the
10914          * CS flip too soon.
10915          *
10916          * Combining both checks should get us a good enough result. It may
10917          * still happen that the CS flip has been executed, but has not
10918          * yet actually completed. But in case the base address is the same
10919          * anyway, we don't really care.
10920          */
10921         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10922                 crtc->unpin_work->gtt_offset &&
10923                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10924                                     crtc->unpin_work->flip_count);
10925 }
10926
10927 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10928 {
10929         struct drm_i915_private *dev_priv = dev->dev_private;
10930         struct intel_crtc *intel_crtc =
10931                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10932         unsigned long flags;
10933
10934
10935         /*
10936          * This is called both by irq handlers and the reset code (to complete
10937          * lost pageflips) so needs the full irqsave spinlocks.
10938          *
10939          * NB: An MMIO update of the plane base pointer will also
10940          * generate a page-flip completion irq, i.e. every modeset
10941          * is also accompanied by a spurious intel_prepare_page_flip().
10942          */
10943         spin_lock_irqsave(&dev->event_lock, flags);
10944         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10945                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10946         spin_unlock_irqrestore(&dev->event_lock, flags);
10947 }
10948
10949 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
10950 {
10951         /* Ensure that the work item is consistent when activating it ... */
10952         smp_wmb();
10953         atomic_set(&work->pending, INTEL_FLIP_PENDING);
10954         /* and that it is marked active as soon as the irq could fire. */
10955         smp_wmb();
10956 }
10957
10958 static int intel_gen2_queue_flip(struct drm_device *dev,
10959                                  struct drm_crtc *crtc,
10960                                  struct drm_framebuffer *fb,
10961                                  struct drm_i915_gem_object *obj,
10962                                  struct drm_i915_gem_request *req,
10963                                  uint32_t flags)
10964 {
10965         struct intel_engine_cs *engine = req->engine;
10966         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10967         u32 flip_mask;
10968         int ret;
10969
10970         ret = intel_ring_begin(req, 6);
10971         if (ret)
10972                 return ret;
10973
10974         /* Can't queue multiple flips, so wait for the previous
10975          * one to finish before executing the next.
10976          */
10977         if (intel_crtc->plane)
10978                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10979         else
10980                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10981         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
10982         intel_ring_emit(engine, MI_NOOP);
10983         intel_ring_emit(engine, MI_DISPLAY_FLIP |
10984                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10985         intel_ring_emit(engine, fb->pitches[0]);
10986         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
10987         intel_ring_emit(engine, 0); /* aux display base address, unused */
10988
10989         intel_mark_page_flip_active(intel_crtc->unpin_work);
10990         return 0;
10991 }
10992
10993 static int intel_gen3_queue_flip(struct drm_device *dev,
10994                                  struct drm_crtc *crtc,
10995                                  struct drm_framebuffer *fb,
10996                                  struct drm_i915_gem_object *obj,
10997                                  struct drm_i915_gem_request *req,
10998                                  uint32_t flags)
10999 {
11000         struct intel_engine_cs *engine = req->engine;
11001         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11002         u32 flip_mask;
11003         int ret;
11004
11005         ret = intel_ring_begin(req, 6);
11006         if (ret)
11007                 return ret;
11008
11009         if (intel_crtc->plane)
11010                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11011         else
11012                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11013         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11014         intel_ring_emit(engine, MI_NOOP);
11015         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
11016                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11017         intel_ring_emit(engine, fb->pitches[0]);
11018         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11019         intel_ring_emit(engine, MI_NOOP);
11020
11021         intel_mark_page_flip_active(intel_crtc->unpin_work);
11022         return 0;
11023 }
11024
11025 static int intel_gen4_queue_flip(struct drm_device *dev,
11026                                  struct drm_crtc *crtc,
11027                                  struct drm_framebuffer *fb,
11028                                  struct drm_i915_gem_object *obj,
11029                                  struct drm_i915_gem_request *req,
11030                                  uint32_t flags)
11031 {
11032         struct intel_engine_cs *engine = req->engine;
11033         struct drm_i915_private *dev_priv = dev->dev_private;
11034         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11035         uint32_t pf, pipesrc;
11036         int ret;
11037
11038         ret = intel_ring_begin(req, 4);
11039         if (ret)
11040                 return ret;
11041
11042         /* i965+ uses the linear or tiled offsets from the
11043          * Display Registers (which do not change across a page-flip)
11044          * so we need only reprogram the base address.
11045          */
11046         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11047                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11048         intel_ring_emit(engine, fb->pitches[0]);
11049         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset |
11050                         obj->tiling_mode);
11051
11052         /* XXX Enabling the panel-fitter across page-flip is so far
11053          * untested on non-native modes, so ignore it for now.
11054          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11055          */
11056         pf = 0;
11057         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11058         intel_ring_emit(engine, pf | pipesrc);
11059
11060         intel_mark_page_flip_active(intel_crtc->unpin_work);
11061         return 0;
11062 }
11063
11064 static int intel_gen6_queue_flip(struct drm_device *dev,
11065                                  struct drm_crtc *crtc,
11066                                  struct drm_framebuffer *fb,
11067                                  struct drm_i915_gem_object *obj,
11068                                  struct drm_i915_gem_request *req,
11069                                  uint32_t flags)
11070 {
11071         struct intel_engine_cs *engine = req->engine;
11072         struct drm_i915_private *dev_priv = dev->dev_private;
11073         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11074         uint32_t pf, pipesrc;
11075         int ret;
11076
11077         ret = intel_ring_begin(req, 4);
11078         if (ret)
11079                 return ret;
11080
11081         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11082                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11083         intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11084         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11085
11086         /* Contrary to the suggestions in the documentation,
11087          * "Enable Panel Fitter" does not seem to be required when page
11088          * flipping with a non-native mode, and worse causes a normal
11089          * modeset to fail.
11090          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11091          */
11092         pf = 0;
11093         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11094         intel_ring_emit(engine, pf | pipesrc);
11095
11096         intel_mark_page_flip_active(intel_crtc->unpin_work);
11097         return 0;
11098 }
11099
11100 static int intel_gen7_queue_flip(struct drm_device *dev,
11101                                  struct drm_crtc *crtc,
11102                                  struct drm_framebuffer *fb,
11103                                  struct drm_i915_gem_object *obj,
11104                                  struct drm_i915_gem_request *req,
11105                                  uint32_t flags)
11106 {
11107         struct intel_engine_cs *engine = req->engine;
11108         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11109         uint32_t plane_bit = 0;
11110         int len, ret;
11111
11112         switch (intel_crtc->plane) {
11113         case PLANE_A:
11114                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11115                 break;
11116         case PLANE_B:
11117                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11118                 break;
11119         case PLANE_C:
11120                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11121                 break;
11122         default:
11123                 WARN_ONCE(1, "unknown plane in flip command\n");
11124                 return -ENODEV;
11125         }
11126
11127         len = 4;
11128         if (engine->id == RCS) {
11129                 len += 6;
11130                 /*
11131                  * On Gen 8, SRM is now taking an extra dword to accommodate
11132                  * 48bits addresses, and we need a NOOP for the batch size to
11133                  * stay even.
11134                  */
11135                 if (IS_GEN8(dev))
11136                         len += 2;
11137         }
11138
11139         /*
11140          * BSpec MI_DISPLAY_FLIP for IVB:
11141          * "The full packet must be contained within the same cache line."
11142          *
11143          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11144          * cacheline, if we ever start emitting more commands before
11145          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11146          * then do the cacheline alignment, and finally emit the
11147          * MI_DISPLAY_FLIP.
11148          */
11149         ret = intel_ring_cacheline_align(req);
11150         if (ret)
11151                 return ret;
11152
11153         ret = intel_ring_begin(req, len);
11154         if (ret)
11155                 return ret;
11156
11157         /* Unmask the flip-done completion message. Note that the bspec says that
11158          * we should do this for both the BCS and RCS, and that we must not unmask
11159          * more than one flip event at any time (or ensure that one flip message
11160          * can be sent by waiting for flip-done prior to queueing new flips).
11161          * Experimentation says that BCS works despite DERRMR masking all
11162          * flip-done completion events and that unmasking all planes at once
11163          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11164          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11165          */
11166         if (engine->id == RCS) {
11167                 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11168                 intel_ring_emit_reg(engine, DERRMR);
11169                 intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11170                                           DERRMR_PIPEB_PRI_FLIP_DONE |
11171                                           DERRMR_PIPEC_PRI_FLIP_DONE));
11172                 if (IS_GEN8(dev))
11173                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
11174                                               MI_SRM_LRM_GLOBAL_GTT);
11175                 else
11176                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
11177                                               MI_SRM_LRM_GLOBAL_GTT);
11178                 intel_ring_emit_reg(engine, DERRMR);
11179                 intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
11180                 if (IS_GEN8(dev)) {
11181                         intel_ring_emit(engine, 0);
11182                         intel_ring_emit(engine, MI_NOOP);
11183                 }
11184         }
11185
11186         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11187         intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11188         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11189         intel_ring_emit(engine, (MI_NOOP));
11190
11191         intel_mark_page_flip_active(intel_crtc->unpin_work);
11192         return 0;
11193 }
11194
11195 static bool use_mmio_flip(struct intel_engine_cs *engine,
11196                           struct drm_i915_gem_object *obj)
11197 {
11198         /*
11199          * This is not being used for older platforms, because
11200          * non-availability of flip done interrupt forces us to use
11201          * CS flips. Older platforms derive flip done using some clever
11202          * tricks involving the flip_pending status bits and vblank irqs.
11203          * So using MMIO flips there would disrupt this mechanism.
11204          */
11205
11206         if (engine == NULL)
11207                 return true;
11208
11209         if (INTEL_INFO(engine->dev)->gen < 5)
11210                 return false;
11211
11212         if (i915.use_mmio_flip < 0)
11213                 return false;
11214         else if (i915.use_mmio_flip > 0)
11215                 return true;
11216         else if (i915.enable_execlists)
11217                 return true;
11218         else if (obj->base.dma_buf &&
11219                  !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11220                                                        false))
11221                 return true;
11222         else
11223                 return engine != i915_gem_request_get_engine(obj->last_write_req);
11224 }
11225
11226 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11227                              unsigned int rotation,
11228                              struct intel_unpin_work *work)
11229 {
11230         struct drm_device *dev = intel_crtc->base.dev;
11231         struct drm_i915_private *dev_priv = dev->dev_private;
11232         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11233         const enum pipe pipe = intel_crtc->pipe;
11234         u32 ctl, stride, tile_height;
11235
11236         ctl = I915_READ(PLANE_CTL(pipe, 0));
11237         ctl &= ~PLANE_CTL_TILED_MASK;
11238         switch (fb->modifier[0]) {
11239         case DRM_FORMAT_MOD_NONE:
11240                 break;
11241         case I915_FORMAT_MOD_X_TILED:
11242                 ctl |= PLANE_CTL_TILED_X;
11243                 break;
11244         case I915_FORMAT_MOD_Y_TILED:
11245                 ctl |= PLANE_CTL_TILED_Y;
11246                 break;
11247         case I915_FORMAT_MOD_Yf_TILED:
11248                 ctl |= PLANE_CTL_TILED_YF;
11249                 break;
11250         default:
11251                 MISSING_CASE(fb->modifier[0]);
11252         }
11253
11254         /*
11255          * The stride is either expressed as a multiple of 64 bytes chunks for
11256          * linear buffers or in number of tiles for tiled buffers.
11257          */
11258         if (intel_rotation_90_or_270(rotation)) {
11259                 /* stride = Surface height in tiles */
11260                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11261                 stride = DIV_ROUND_UP(fb->height, tile_height);
11262         } else {
11263                 stride = fb->pitches[0] /
11264                         intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11265                                                   fb->pixel_format);
11266         }
11267
11268         /*
11269          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11270          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11271          */
11272         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11273         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11274
11275         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11276         POSTING_READ(PLANE_SURF(pipe, 0));
11277 }
11278
11279 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11280                              struct intel_unpin_work *work)
11281 {
11282         struct drm_device *dev = intel_crtc->base.dev;
11283         struct drm_i915_private *dev_priv = dev->dev_private;
11284         struct intel_framebuffer *intel_fb =
11285                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11286         struct drm_i915_gem_object *obj = intel_fb->obj;
11287         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11288         u32 dspcntr;
11289
11290         dspcntr = I915_READ(reg);
11291
11292         if (obj->tiling_mode != I915_TILING_NONE)
11293                 dspcntr |= DISPPLANE_TILED;
11294         else
11295                 dspcntr &= ~DISPPLANE_TILED;
11296
11297         I915_WRITE(reg, dspcntr);
11298
11299         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11300         POSTING_READ(DSPSURF(intel_crtc->plane));
11301 }
11302
11303 /*
11304  * XXX: This is the temporary way to update the plane registers until we get
11305  * around to using the usual plane update functions for MMIO flips
11306  */
11307 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11308 {
11309         struct intel_crtc *crtc = mmio_flip->crtc;
11310         struct intel_unpin_work *work;
11311
11312         spin_lock_irq(&crtc->base.dev->event_lock);
11313         work = crtc->unpin_work;
11314         spin_unlock_irq(&crtc->base.dev->event_lock);
11315         if (work == NULL)
11316                 return;
11317
11318         intel_mark_page_flip_active(work);
11319
11320         intel_pipe_update_start(crtc);
11321
11322         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11323                 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11324         else
11325                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11326                 ilk_do_mmio_flip(crtc, work);
11327
11328         intel_pipe_update_end(crtc);
11329 }
11330
11331 static void intel_mmio_flip_work_func(struct work_struct *work)
11332 {
11333         struct intel_mmio_flip *mmio_flip =
11334                 container_of(work, struct intel_mmio_flip, work);
11335         struct intel_framebuffer *intel_fb =
11336                 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11337         struct drm_i915_gem_object *obj = intel_fb->obj;
11338
11339         if (mmio_flip->req) {
11340                 WARN_ON(__i915_wait_request(mmio_flip->req,
11341                                             mmio_flip->crtc->reset_counter,
11342                                             false, NULL,
11343                                             &mmio_flip->i915->rps.mmioflips));
11344                 i915_gem_request_unreference__unlocked(mmio_flip->req);
11345         }
11346
11347         /* For framebuffer backed by dmabuf, wait for fence */
11348         if (obj->base.dma_buf)
11349                 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11350                                                             false, false,
11351                                                             MAX_SCHEDULE_TIMEOUT) < 0);
11352
11353         intel_do_mmio_flip(mmio_flip);
11354         kfree(mmio_flip);
11355 }
11356
11357 static int intel_queue_mmio_flip(struct drm_device *dev,
11358                                  struct drm_crtc *crtc,
11359                                  struct drm_i915_gem_object *obj)
11360 {
11361         struct intel_mmio_flip *mmio_flip;
11362
11363         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11364         if (mmio_flip == NULL)
11365                 return -ENOMEM;
11366
11367         mmio_flip->i915 = to_i915(dev);
11368         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11369         mmio_flip->crtc = to_intel_crtc(crtc);
11370         mmio_flip->rotation = crtc->primary->state->rotation;
11371
11372         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11373         schedule_work(&mmio_flip->work);
11374
11375         return 0;
11376 }
11377
11378 static int intel_default_queue_flip(struct drm_device *dev,
11379                                     struct drm_crtc *crtc,
11380                                     struct drm_framebuffer *fb,
11381                                     struct drm_i915_gem_object *obj,
11382                                     struct drm_i915_gem_request *req,
11383                                     uint32_t flags)
11384 {
11385         return -ENODEV;
11386 }
11387
11388 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11389                                          struct drm_crtc *crtc)
11390 {
11391         struct drm_i915_private *dev_priv = dev->dev_private;
11392         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11393         struct intel_unpin_work *work = intel_crtc->unpin_work;
11394         u32 addr;
11395
11396         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11397                 return true;
11398
11399         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11400                 return false;
11401
11402         if (!work->enable_stall_check)
11403                 return false;
11404
11405         if (work->flip_ready_vblank == 0) {
11406                 if (work->flip_queued_req &&
11407                     !i915_gem_request_completed(work->flip_queued_req, true))
11408                         return false;
11409
11410                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11411         }
11412
11413         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11414                 return false;
11415
11416         /* Potential stall - if we see that the flip has happened,
11417          * assume a missed interrupt. */
11418         if (INTEL_INFO(dev)->gen >= 4)
11419                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11420         else
11421                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11422
11423         /* There is a potential issue here with a false positive after a flip
11424          * to the same address. We could address this by checking for a
11425          * non-incrementing frame counter.
11426          */
11427         return addr == work->gtt_offset;
11428 }
11429
11430 void intel_check_page_flip(struct drm_device *dev, int pipe)
11431 {
11432         struct drm_i915_private *dev_priv = dev->dev_private;
11433         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11434         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11435         struct intel_unpin_work *work;
11436
11437         WARN_ON(!in_interrupt());
11438
11439         if (crtc == NULL)
11440                 return;
11441
11442         spin_lock(&dev->event_lock);
11443         work = intel_crtc->unpin_work;
11444         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11445                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11446                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11447                 page_flip_completed(intel_crtc);
11448                 work = NULL;
11449         }
11450         if (work != NULL &&
11451             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11452                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11453         spin_unlock(&dev->event_lock);
11454 }
11455
11456 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11457                                 struct drm_framebuffer *fb,
11458                                 struct drm_pending_vblank_event *event,
11459                                 uint32_t page_flip_flags)
11460 {
11461         struct drm_device *dev = crtc->dev;
11462         struct drm_i915_private *dev_priv = dev->dev_private;
11463         struct drm_framebuffer *old_fb = crtc->primary->fb;
11464         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11465         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11466         struct drm_plane *primary = crtc->primary;
11467         enum pipe pipe = intel_crtc->pipe;
11468         struct intel_unpin_work *work;
11469         struct intel_engine_cs *engine;
11470         bool mmio_flip;
11471         struct drm_i915_gem_request *request = NULL;
11472         int ret;
11473
11474         /*
11475          * drm_mode_page_flip_ioctl() should already catch this, but double
11476          * check to be safe.  In the future we may enable pageflipping from
11477          * a disabled primary plane.
11478          */
11479         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11480                 return -EBUSY;
11481
11482         /* Can't change pixel format via MI display flips. */
11483         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11484                 return -EINVAL;
11485
11486         /*
11487          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11488          * Note that pitch changes could also affect these register.
11489          */
11490         if (INTEL_INFO(dev)->gen > 3 &&
11491             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11492              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11493                 return -EINVAL;
11494
11495         if (i915_terminally_wedged(&dev_priv->gpu_error))
11496                 goto out_hang;
11497
11498         work = kzalloc(sizeof(*work), GFP_KERNEL);
11499         if (work == NULL)
11500                 return -ENOMEM;
11501
11502         work->event = event;
11503         work->crtc = crtc;
11504         work->old_fb = old_fb;
11505         INIT_WORK(&work->work, intel_unpin_work_fn);
11506
11507         ret = drm_crtc_vblank_get(crtc);
11508         if (ret)
11509                 goto free_work;
11510
11511         /* We borrow the event spin lock for protecting unpin_work */
11512         spin_lock_irq(&dev->event_lock);
11513         if (intel_crtc->unpin_work) {
11514                 /* Before declaring the flip queue wedged, check if
11515                  * the hardware completed the operation behind our backs.
11516                  */
11517                 if (__intel_pageflip_stall_check(dev, crtc)) {
11518                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11519                         page_flip_completed(intel_crtc);
11520                 } else {
11521                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11522                         spin_unlock_irq(&dev->event_lock);
11523
11524                         drm_crtc_vblank_put(crtc);
11525                         kfree(work);
11526                         return -EBUSY;
11527                 }
11528         }
11529         intel_crtc->unpin_work = work;
11530         spin_unlock_irq(&dev->event_lock);
11531
11532         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11533                 flush_workqueue(dev_priv->wq);
11534
11535         /* Reference the objects for the scheduled work. */
11536         drm_framebuffer_reference(work->old_fb);
11537         drm_gem_object_reference(&obj->base);
11538
11539         crtc->primary->fb = fb;
11540         update_state_fb(crtc->primary);
11541         intel_fbc_pre_update(intel_crtc);
11542
11543         work->pending_flip_obj = obj;
11544
11545         ret = i915_mutex_lock_interruptible(dev);
11546         if (ret)
11547                 goto cleanup;
11548
11549         atomic_inc(&intel_crtc->unpin_work_count);
11550         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11551
11552         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11553                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11554
11555         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11556                 engine = &dev_priv->engine[BCS];
11557                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11558                         /* vlv: DISPLAY_FLIP fails to change tiling */
11559                         engine = NULL;
11560         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11561                 engine = &dev_priv->engine[BCS];
11562         } else if (INTEL_INFO(dev)->gen >= 7) {
11563                 engine = i915_gem_request_get_engine(obj->last_write_req);
11564                 if (engine == NULL || engine->id != RCS)
11565                         engine = &dev_priv->engine[BCS];
11566         } else {
11567                 engine = &dev_priv->engine[RCS];
11568         }
11569
11570         mmio_flip = use_mmio_flip(engine, obj);
11571
11572         /* When using CS flips, we want to emit semaphores between rings.
11573          * However, when using mmio flips we will create a task to do the
11574          * synchronisation, so all we want here is to pin the framebuffer
11575          * into the display plane and skip any waits.
11576          */
11577         if (!mmio_flip) {
11578                 ret = i915_gem_object_sync(obj, engine, &request);
11579                 if (ret)
11580                         goto cleanup_pending;
11581         }
11582
11583         ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11584         if (ret)
11585                 goto cleanup_pending;
11586
11587         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11588                                                   obj, 0);
11589         work->gtt_offset += intel_crtc->dspaddr_offset;
11590
11591         if (mmio_flip) {
11592                 ret = intel_queue_mmio_flip(dev, crtc, obj);
11593                 if (ret)
11594                         goto cleanup_unpin;
11595
11596                 i915_gem_request_assign(&work->flip_queued_req,
11597                                         obj->last_write_req);
11598         } else {
11599                 if (!request) {
11600                         request = i915_gem_request_alloc(engine, NULL);
11601                         if (IS_ERR(request)) {
11602                                 ret = PTR_ERR(request);
11603                                 goto cleanup_unpin;
11604                         }
11605                 }
11606
11607                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11608                                                    page_flip_flags);
11609                 if (ret)
11610                         goto cleanup_unpin;
11611
11612                 i915_gem_request_assign(&work->flip_queued_req, request);
11613         }
11614
11615         if (request)
11616                 i915_add_request_no_flush(request);
11617
11618         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11619         work->enable_stall_check = true;
11620
11621         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11622                           to_intel_plane(primary)->frontbuffer_bit);
11623         mutex_unlock(&dev->struct_mutex);
11624
11625         intel_frontbuffer_flip_prepare(dev,
11626                                        to_intel_plane(primary)->frontbuffer_bit);
11627
11628         trace_i915_flip_request(intel_crtc->plane, obj);
11629
11630         return 0;
11631
11632 cleanup_unpin:
11633         intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11634 cleanup_pending:
11635         if (!IS_ERR_OR_NULL(request))
11636                 i915_gem_request_cancel(request);
11637         atomic_dec(&intel_crtc->unpin_work_count);
11638         mutex_unlock(&dev->struct_mutex);
11639 cleanup:
11640         crtc->primary->fb = old_fb;
11641         update_state_fb(crtc->primary);
11642
11643         drm_gem_object_unreference_unlocked(&obj->base);
11644         drm_framebuffer_unreference(work->old_fb);
11645
11646         spin_lock_irq(&dev->event_lock);
11647         intel_crtc->unpin_work = NULL;
11648         spin_unlock_irq(&dev->event_lock);
11649
11650         drm_crtc_vblank_put(crtc);
11651 free_work:
11652         kfree(work);
11653
11654         if (ret == -EIO) {
11655                 struct drm_atomic_state *state;
11656                 struct drm_plane_state *plane_state;
11657
11658 out_hang:
11659                 state = drm_atomic_state_alloc(dev);
11660                 if (!state)
11661                         return -ENOMEM;
11662                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11663
11664 retry:
11665                 plane_state = drm_atomic_get_plane_state(state, primary);
11666                 ret = PTR_ERR_OR_ZERO(plane_state);
11667                 if (!ret) {
11668                         drm_atomic_set_fb_for_plane(plane_state, fb);
11669
11670                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11671                         if (!ret)
11672                                 ret = drm_atomic_commit(state);
11673                 }
11674
11675                 if (ret == -EDEADLK) {
11676                         drm_modeset_backoff(state->acquire_ctx);
11677                         drm_atomic_state_clear(state);
11678                         goto retry;
11679                 }
11680
11681                 if (ret)
11682                         drm_atomic_state_free(state);
11683
11684                 if (ret == 0 && event) {
11685                         spin_lock_irq(&dev->event_lock);
11686                         drm_send_vblank_event(dev, pipe, event);
11687                         spin_unlock_irq(&dev->event_lock);
11688                 }
11689         }
11690         return ret;
11691 }
11692
11693
11694 /**
11695  * intel_wm_need_update - Check whether watermarks need updating
11696  * @plane: drm plane
11697  * @state: new plane state
11698  *
11699  * Check current plane state versus the new one to determine whether
11700  * watermarks need to be recalculated.
11701  *
11702  * Returns true or false.
11703  */
11704 static bool intel_wm_need_update(struct drm_plane *plane,
11705                                  struct drm_plane_state *state)
11706 {
11707         struct intel_plane_state *new = to_intel_plane_state(state);
11708         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11709
11710         /* Update watermarks on tiling or size changes. */
11711         if (new->visible != cur->visible)
11712                 return true;
11713
11714         if (!cur->base.fb || !new->base.fb)
11715                 return false;
11716
11717         if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11718             cur->base.rotation != new->base.rotation ||
11719             drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11720             drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11721             drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11722             drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11723                 return true;
11724
11725         return false;
11726 }
11727
11728 static bool needs_scaling(struct intel_plane_state *state)
11729 {
11730         int src_w = drm_rect_width(&state->src) >> 16;
11731         int src_h = drm_rect_height(&state->src) >> 16;
11732         int dst_w = drm_rect_width(&state->dst);
11733         int dst_h = drm_rect_height(&state->dst);
11734
11735         return (src_w != dst_w || src_h != dst_h);
11736 }
11737
11738 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11739                                     struct drm_plane_state *plane_state)
11740 {
11741         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11742         struct drm_crtc *crtc = crtc_state->crtc;
11743         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11744         struct drm_plane *plane = plane_state->plane;
11745         struct drm_device *dev = crtc->dev;
11746         struct drm_i915_private *dev_priv = to_i915(dev);
11747         struct intel_plane_state *old_plane_state =
11748                 to_intel_plane_state(plane->state);
11749         int idx = intel_crtc->base.base.id, ret;
11750         bool mode_changed = needs_modeset(crtc_state);
11751         bool was_crtc_enabled = crtc->state->active;
11752         bool is_crtc_enabled = crtc_state->active;
11753         bool turn_off, turn_on, visible, was_visible;
11754         struct drm_framebuffer *fb = plane_state->fb;
11755
11756         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11757             plane->type != DRM_PLANE_TYPE_CURSOR) {
11758                 ret = skl_update_scaler_plane(
11759                         to_intel_crtc_state(crtc_state),
11760                         to_intel_plane_state(plane_state));
11761                 if (ret)
11762                         return ret;
11763         }
11764
11765         was_visible = old_plane_state->visible;
11766         visible = to_intel_plane_state(plane_state)->visible;
11767
11768         if (!was_crtc_enabled && WARN_ON(was_visible))
11769                 was_visible = false;
11770
11771         /*
11772          * Visibility is calculated as if the crtc was on, but
11773          * after scaler setup everything depends on it being off
11774          * when the crtc isn't active.
11775          */
11776         if (!is_crtc_enabled)
11777                 to_intel_plane_state(plane_state)->visible = visible = false;
11778
11779         if (!was_visible && !visible)
11780                 return 0;
11781
11782         if (fb != old_plane_state->base.fb)
11783                 pipe_config->fb_changed = true;
11784
11785         turn_off = was_visible && (!visible || mode_changed);
11786         turn_on = visible && (!was_visible || mode_changed);
11787
11788         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11789                          plane->base.id, fb ? fb->base.id : -1);
11790
11791         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11792                          plane->base.id, was_visible, visible,
11793                          turn_off, turn_on, mode_changed);
11794
11795         if (turn_on) {
11796                 pipe_config->update_wm_pre = true;
11797
11798                 /* must disable cxsr around plane enable/disable */
11799                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11800                         pipe_config->disable_cxsr = true;
11801         } else if (turn_off) {
11802                 pipe_config->update_wm_post = true;
11803
11804                 /* must disable cxsr around plane enable/disable */
11805                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11806                         pipe_config->disable_cxsr = true;
11807         } else if (intel_wm_need_update(plane, plane_state)) {
11808                 /* FIXME bollocks */
11809                 pipe_config->update_wm_pre = true;
11810                 pipe_config->update_wm_post = true;
11811         }
11812
11813         /* Pre-gen9 platforms need two-step watermark updates */
11814         if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
11815             INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
11816                 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
11817
11818         if (visible || was_visible)
11819                 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
11820
11821         /*
11822          * WaCxSRDisabledForSpriteScaling:ivb
11823          *
11824          * cstate->update_wm was already set above, so this flag will
11825          * take effect when we commit and program watermarks.
11826          */
11827         if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
11828             needs_scaling(to_intel_plane_state(plane_state)) &&
11829             !needs_scaling(old_plane_state))
11830                 pipe_config->disable_lp_wm = true;
11831
11832         return 0;
11833 }
11834
11835 static bool encoders_cloneable(const struct intel_encoder *a,
11836                                const struct intel_encoder *b)
11837 {
11838         /* masks could be asymmetric, so check both ways */
11839         return a == b || (a->cloneable & (1 << b->type) &&
11840                           b->cloneable & (1 << a->type));
11841 }
11842
11843 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11844                                          struct intel_crtc *crtc,
11845                                          struct intel_encoder *encoder)
11846 {
11847         struct intel_encoder *source_encoder;
11848         struct drm_connector *connector;
11849         struct drm_connector_state *connector_state;
11850         int i;
11851
11852         for_each_connector_in_state(state, connector, connector_state, i) {
11853                 if (connector_state->crtc != &crtc->base)
11854                         continue;
11855
11856                 source_encoder =
11857                         to_intel_encoder(connector_state->best_encoder);
11858                 if (!encoders_cloneable(encoder, source_encoder))
11859                         return false;
11860         }
11861
11862         return true;
11863 }
11864
11865 static bool check_encoder_cloning(struct drm_atomic_state *state,
11866                                   struct intel_crtc *crtc)
11867 {
11868         struct intel_encoder *encoder;
11869         struct drm_connector *connector;
11870         struct drm_connector_state *connector_state;
11871         int i;
11872
11873         for_each_connector_in_state(state, connector, connector_state, i) {
11874                 if (connector_state->crtc != &crtc->base)
11875                         continue;
11876
11877                 encoder = to_intel_encoder(connector_state->best_encoder);
11878                 if (!check_single_encoder_cloning(state, crtc, encoder))
11879                         return false;
11880         }
11881
11882         return true;
11883 }
11884
11885 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11886                                    struct drm_crtc_state *crtc_state)
11887 {
11888         struct drm_device *dev = crtc->dev;
11889         struct drm_i915_private *dev_priv = dev->dev_private;
11890         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11891         struct intel_crtc_state *pipe_config =
11892                 to_intel_crtc_state(crtc_state);
11893         struct drm_atomic_state *state = crtc_state->state;
11894         int ret;
11895         bool mode_changed = needs_modeset(crtc_state);
11896
11897         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11898                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11899                 return -EINVAL;
11900         }
11901
11902         if (mode_changed && !crtc_state->active)
11903                 pipe_config->update_wm_post = true;
11904
11905         if (mode_changed && crtc_state->enable &&
11906             dev_priv->display.crtc_compute_clock &&
11907             !WARN_ON(pipe_config->shared_dpll)) {
11908                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11909                                                            pipe_config);
11910                 if (ret)
11911                         return ret;
11912         }
11913
11914         if (crtc_state->color_mgmt_changed) {
11915                 ret = intel_color_check(crtc, crtc_state);
11916                 if (ret)
11917                         return ret;
11918         }
11919
11920         ret = 0;
11921         if (dev_priv->display.compute_pipe_wm) {
11922                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
11923                 if (ret) {
11924                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
11925                         return ret;
11926                 }
11927         }
11928
11929         if (dev_priv->display.compute_intermediate_wm &&
11930             !to_intel_atomic_state(state)->skip_intermediate_wm) {
11931                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
11932                         return 0;
11933
11934                 /*
11935                  * Calculate 'intermediate' watermarks that satisfy both the
11936                  * old state and the new state.  We can program these
11937                  * immediately.
11938                  */
11939                 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
11940                                                                 intel_crtc,
11941                                                                 pipe_config);
11942                 if (ret) {
11943                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
11944                         return ret;
11945                 }
11946         }
11947
11948         if (INTEL_INFO(dev)->gen >= 9) {
11949                 if (mode_changed)
11950                         ret = skl_update_scaler_crtc(pipe_config);
11951
11952                 if (!ret)
11953                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
11954                                                          pipe_config);
11955         }
11956
11957         return ret;
11958 }
11959
11960 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11961         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11962         .atomic_begin = intel_begin_crtc_commit,
11963         .atomic_flush = intel_finish_crtc_commit,
11964         .atomic_check = intel_crtc_atomic_check,
11965 };
11966
11967 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11968 {
11969         struct intel_connector *connector;
11970
11971         for_each_intel_connector(dev, connector) {
11972                 if (connector->base.encoder) {
11973                         connector->base.state->best_encoder =
11974                                 connector->base.encoder;
11975                         connector->base.state->crtc =
11976                                 connector->base.encoder->crtc;
11977                 } else {
11978                         connector->base.state->best_encoder = NULL;
11979                         connector->base.state->crtc = NULL;
11980                 }
11981         }
11982 }
11983
11984 static void
11985 connected_sink_compute_bpp(struct intel_connector *connector,
11986                            struct intel_crtc_state *pipe_config)
11987 {
11988         int bpp = pipe_config->pipe_bpp;
11989
11990         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11991                 connector->base.base.id,
11992                 connector->base.name);
11993
11994         /* Don't use an invalid EDID bpc value */
11995         if (connector->base.display_info.bpc &&
11996             connector->base.display_info.bpc * 3 < bpp) {
11997                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11998                               bpp, connector->base.display_info.bpc*3);
11999                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12000         }
12001
12002         /* Clamp bpp to default limit on screens without EDID 1.4 */
12003         if (connector->base.display_info.bpc == 0) {
12004                 int type = connector->base.connector_type;
12005                 int clamp_bpp = 24;
12006
12007                 /* Fall back to 18 bpp when DP sink capability is unknown. */
12008                 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12009                     type == DRM_MODE_CONNECTOR_eDP)
12010                         clamp_bpp = 18;
12011
12012                 if (bpp > clamp_bpp) {
12013                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12014                                       bpp, clamp_bpp);
12015                         pipe_config->pipe_bpp = clamp_bpp;
12016                 }
12017         }
12018 }
12019
12020 static int
12021 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12022                           struct intel_crtc_state *pipe_config)
12023 {
12024         struct drm_device *dev = crtc->base.dev;
12025         struct drm_atomic_state *state;
12026         struct drm_connector *connector;
12027         struct drm_connector_state *connector_state;
12028         int bpp, i;
12029
12030         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12031                 bpp = 10*3;
12032         else if (INTEL_INFO(dev)->gen >= 5)
12033                 bpp = 12*3;
12034         else
12035                 bpp = 8*3;
12036
12037
12038         pipe_config->pipe_bpp = bpp;
12039
12040         state = pipe_config->base.state;
12041
12042         /* Clamp display bpp to EDID value */
12043         for_each_connector_in_state(state, connector, connector_state, i) {
12044                 if (connector_state->crtc != &crtc->base)
12045                         continue;
12046
12047                 connected_sink_compute_bpp(to_intel_connector(connector),
12048                                            pipe_config);
12049         }
12050
12051         return bpp;
12052 }
12053
12054 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12055 {
12056         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12057                         "type: 0x%x flags: 0x%x\n",
12058                 mode->crtc_clock,
12059                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12060                 mode->crtc_hsync_end, mode->crtc_htotal,
12061                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12062                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12063 }
12064
12065 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12066                                    struct intel_crtc_state *pipe_config,
12067                                    const char *context)
12068 {
12069         struct drm_device *dev = crtc->base.dev;
12070         struct drm_plane *plane;
12071         struct intel_plane *intel_plane;
12072         struct intel_plane_state *state;
12073         struct drm_framebuffer *fb;
12074
12075         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12076                       context, pipe_config, pipe_name(crtc->pipe));
12077
12078         DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12079         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12080                       pipe_config->pipe_bpp, pipe_config->dither);
12081         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12082                       pipe_config->has_pch_encoder,
12083                       pipe_config->fdi_lanes,
12084                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12085                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12086                       pipe_config->fdi_m_n.tu);
12087         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12088                       pipe_config->has_dp_encoder,
12089                       pipe_config->lane_count,
12090                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12091                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12092                       pipe_config->dp_m_n.tu);
12093
12094         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12095                       pipe_config->has_dp_encoder,
12096                       pipe_config->lane_count,
12097                       pipe_config->dp_m2_n2.gmch_m,
12098                       pipe_config->dp_m2_n2.gmch_n,
12099                       pipe_config->dp_m2_n2.link_m,
12100                       pipe_config->dp_m2_n2.link_n,
12101                       pipe_config->dp_m2_n2.tu);
12102
12103         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12104                       pipe_config->has_audio,
12105                       pipe_config->has_infoframe);
12106
12107         DRM_DEBUG_KMS("requested mode:\n");
12108         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12109         DRM_DEBUG_KMS("adjusted mode:\n");
12110         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12111         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12112         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12113         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12114                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12115         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12116                       crtc->num_scalers,
12117                       pipe_config->scaler_state.scaler_users,
12118                       pipe_config->scaler_state.scaler_id);
12119         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12120                       pipe_config->gmch_pfit.control,
12121                       pipe_config->gmch_pfit.pgm_ratios,
12122                       pipe_config->gmch_pfit.lvds_border_bits);
12123         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12124                       pipe_config->pch_pfit.pos,
12125                       pipe_config->pch_pfit.size,
12126                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12127         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12128         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12129
12130         if (IS_BROXTON(dev)) {
12131                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12132                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12133                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12134                               pipe_config->ddi_pll_sel,
12135                               pipe_config->dpll_hw_state.ebb0,
12136                               pipe_config->dpll_hw_state.ebb4,
12137                               pipe_config->dpll_hw_state.pll0,
12138                               pipe_config->dpll_hw_state.pll1,
12139                               pipe_config->dpll_hw_state.pll2,
12140                               pipe_config->dpll_hw_state.pll3,
12141                               pipe_config->dpll_hw_state.pll6,
12142                               pipe_config->dpll_hw_state.pll8,
12143                               pipe_config->dpll_hw_state.pll9,
12144                               pipe_config->dpll_hw_state.pll10,
12145                               pipe_config->dpll_hw_state.pcsdw12);
12146         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12147                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12148                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12149                               pipe_config->ddi_pll_sel,
12150                               pipe_config->dpll_hw_state.ctrl1,
12151                               pipe_config->dpll_hw_state.cfgcr1,
12152                               pipe_config->dpll_hw_state.cfgcr2);
12153         } else if (HAS_DDI(dev)) {
12154                 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12155                               pipe_config->ddi_pll_sel,
12156                               pipe_config->dpll_hw_state.wrpll,
12157                               pipe_config->dpll_hw_state.spll);
12158         } else {
12159                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12160                               "fp0: 0x%x, fp1: 0x%x\n",
12161                               pipe_config->dpll_hw_state.dpll,
12162                               pipe_config->dpll_hw_state.dpll_md,
12163                               pipe_config->dpll_hw_state.fp0,
12164                               pipe_config->dpll_hw_state.fp1);
12165         }
12166
12167         DRM_DEBUG_KMS("planes on this crtc\n");
12168         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12169                 intel_plane = to_intel_plane(plane);
12170                 if (intel_plane->pipe != crtc->pipe)
12171                         continue;
12172
12173                 state = to_intel_plane_state(plane->state);
12174                 fb = state->base.fb;
12175                 if (!fb) {
12176                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12177                                 "disabled, scaler_id = %d\n",
12178                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12179                                 plane->base.id, intel_plane->pipe,
12180                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12181                                 drm_plane_index(plane), state->scaler_id);
12182                         continue;
12183                 }
12184
12185                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12186                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12187                         plane->base.id, intel_plane->pipe,
12188                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12189                         drm_plane_index(plane));
12190                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12191                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12192                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12193                         state->scaler_id,
12194                         state->src.x1 >> 16, state->src.y1 >> 16,
12195                         drm_rect_width(&state->src) >> 16,
12196                         drm_rect_height(&state->src) >> 16,
12197                         state->dst.x1, state->dst.y1,
12198                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12199         }
12200 }
12201
12202 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12203 {
12204         struct drm_device *dev = state->dev;
12205         struct drm_connector *connector;
12206         unsigned int used_ports = 0;
12207
12208         /*
12209          * Walk the connector list instead of the encoder
12210          * list to detect the problem on ddi platforms
12211          * where there's just one encoder per digital port.
12212          */
12213         drm_for_each_connector(connector, dev) {
12214                 struct drm_connector_state *connector_state;
12215                 struct intel_encoder *encoder;
12216
12217                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12218                 if (!connector_state)
12219                         connector_state = connector->state;
12220
12221                 if (!connector_state->best_encoder)
12222                         continue;
12223
12224                 encoder = to_intel_encoder(connector_state->best_encoder);
12225
12226                 WARN_ON(!connector_state->crtc);
12227
12228                 switch (encoder->type) {
12229                         unsigned int port_mask;
12230                 case INTEL_OUTPUT_UNKNOWN:
12231                         if (WARN_ON(!HAS_DDI(dev)))
12232                                 break;
12233                 case INTEL_OUTPUT_DISPLAYPORT:
12234                 case INTEL_OUTPUT_HDMI:
12235                 case INTEL_OUTPUT_EDP:
12236                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12237
12238                         /* the same port mustn't appear more than once */
12239                         if (used_ports & port_mask)
12240                                 return false;
12241
12242                         used_ports |= port_mask;
12243                 default:
12244                         break;
12245                 }
12246         }
12247
12248         return true;
12249 }
12250
12251 static void
12252 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12253 {
12254         struct drm_crtc_state tmp_state;
12255         struct intel_crtc_scaler_state scaler_state;
12256         struct intel_dpll_hw_state dpll_hw_state;
12257         struct intel_shared_dpll *shared_dpll;
12258         uint32_t ddi_pll_sel;
12259         bool force_thru;
12260
12261         /* FIXME: before the switch to atomic started, a new pipe_config was
12262          * kzalloc'd. Code that depends on any field being zero should be
12263          * fixed, so that the crtc_state can be safely duplicated. For now,
12264          * only fields that are know to not cause problems are preserved. */
12265
12266         tmp_state = crtc_state->base;
12267         scaler_state = crtc_state->scaler_state;
12268         shared_dpll = crtc_state->shared_dpll;
12269         dpll_hw_state = crtc_state->dpll_hw_state;
12270         ddi_pll_sel = crtc_state->ddi_pll_sel;
12271         force_thru = crtc_state->pch_pfit.force_thru;
12272
12273         memset(crtc_state, 0, sizeof *crtc_state);
12274
12275         crtc_state->base = tmp_state;
12276         crtc_state->scaler_state = scaler_state;
12277         crtc_state->shared_dpll = shared_dpll;
12278         crtc_state->dpll_hw_state = dpll_hw_state;
12279         crtc_state->ddi_pll_sel = ddi_pll_sel;
12280         crtc_state->pch_pfit.force_thru = force_thru;
12281 }
12282
12283 static int
12284 intel_modeset_pipe_config(struct drm_crtc *crtc,
12285                           struct intel_crtc_state *pipe_config)
12286 {
12287         struct drm_atomic_state *state = pipe_config->base.state;
12288         struct intel_encoder *encoder;
12289         struct drm_connector *connector;
12290         struct drm_connector_state *connector_state;
12291         int base_bpp, ret = -EINVAL;
12292         int i;
12293         bool retry = true;
12294
12295         clear_intel_crtc_state(pipe_config);
12296
12297         pipe_config->cpu_transcoder =
12298                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12299
12300         /*
12301          * Sanitize sync polarity flags based on requested ones. If neither
12302          * positive or negative polarity is requested, treat this as meaning
12303          * negative polarity.
12304          */
12305         if (!(pipe_config->base.adjusted_mode.flags &
12306               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12307                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12308
12309         if (!(pipe_config->base.adjusted_mode.flags &
12310               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12311                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12312
12313         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12314                                              pipe_config);
12315         if (base_bpp < 0)
12316                 goto fail;
12317
12318         /*
12319          * Determine the real pipe dimensions. Note that stereo modes can
12320          * increase the actual pipe size due to the frame doubling and
12321          * insertion of additional space for blanks between the frame. This
12322          * is stored in the crtc timings. We use the requested mode to do this
12323          * computation to clearly distinguish it from the adjusted mode, which
12324          * can be changed by the connectors in the below retry loop.
12325          */
12326         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12327                                &pipe_config->pipe_src_w,
12328                                &pipe_config->pipe_src_h);
12329
12330 encoder_retry:
12331         /* Ensure the port clock defaults are reset when retrying. */
12332         pipe_config->port_clock = 0;
12333         pipe_config->pixel_multiplier = 1;
12334
12335         /* Fill in default crtc timings, allow encoders to overwrite them. */
12336         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12337                               CRTC_STEREO_DOUBLE);
12338
12339         /* Pass our mode to the connectors and the CRTC to give them a chance to
12340          * adjust it according to limitations or connector properties, and also
12341          * a chance to reject the mode entirely.
12342          */
12343         for_each_connector_in_state(state, connector, connector_state, i) {
12344                 if (connector_state->crtc != crtc)
12345                         continue;
12346
12347                 encoder = to_intel_encoder(connector_state->best_encoder);
12348
12349                 if (!(encoder->compute_config(encoder, pipe_config))) {
12350                         DRM_DEBUG_KMS("Encoder config failure\n");
12351                         goto fail;
12352                 }
12353         }
12354
12355         /* Set default port clock if not overwritten by the encoder. Needs to be
12356          * done afterwards in case the encoder adjusts the mode. */
12357         if (!pipe_config->port_clock)
12358                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12359                         * pipe_config->pixel_multiplier;
12360
12361         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12362         if (ret < 0) {
12363                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12364                 goto fail;
12365         }
12366
12367         if (ret == RETRY) {
12368                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12369                         ret = -EINVAL;
12370                         goto fail;
12371                 }
12372
12373                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12374                 retry = false;
12375                 goto encoder_retry;
12376         }
12377
12378         /* Dithering seems to not pass-through bits correctly when it should, so
12379          * only enable it on 6bpc panels. */
12380         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12381         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12382                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12383
12384 fail:
12385         return ret;
12386 }
12387
12388 static void
12389 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12390 {
12391         struct drm_crtc *crtc;
12392         struct drm_crtc_state *crtc_state;
12393         int i;
12394
12395         /* Double check state. */
12396         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12397                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12398
12399                 /* Update hwmode for vblank functions */
12400                 if (crtc->state->active)
12401                         crtc->hwmode = crtc->state->adjusted_mode;
12402                 else
12403                         crtc->hwmode.crtc_clock = 0;
12404
12405                 /*
12406                  * Update legacy state to satisfy fbc code. This can
12407                  * be removed when fbc uses the atomic state.
12408                  */
12409                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12410                         struct drm_plane_state *plane_state = crtc->primary->state;
12411
12412                         crtc->primary->fb = plane_state->fb;
12413                         crtc->x = plane_state->src_x >> 16;
12414                         crtc->y = plane_state->src_y >> 16;
12415                 }
12416         }
12417 }
12418
12419 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12420 {
12421         int diff;
12422
12423         if (clock1 == clock2)
12424                 return true;
12425
12426         if (!clock1 || !clock2)
12427                 return false;
12428
12429         diff = abs(clock1 - clock2);
12430
12431         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12432                 return true;
12433
12434         return false;
12435 }
12436
12437 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12438         list_for_each_entry((intel_crtc), \
12439                             &(dev)->mode_config.crtc_list, \
12440                             base.head) \
12441                 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12442
12443 static bool
12444 intel_compare_m_n(unsigned int m, unsigned int n,
12445                   unsigned int m2, unsigned int n2,
12446                   bool exact)
12447 {
12448         if (m == m2 && n == n2)
12449                 return true;
12450
12451         if (exact || !m || !n || !m2 || !n2)
12452                 return false;
12453
12454         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12455
12456         if (n > n2) {
12457                 while (n > n2) {
12458                         m2 <<= 1;
12459                         n2 <<= 1;
12460                 }
12461         } else if (n < n2) {
12462                 while (n < n2) {
12463                         m <<= 1;
12464                         n <<= 1;
12465                 }
12466         }
12467
12468         if (n != n2)
12469                 return false;
12470
12471         return intel_fuzzy_clock_check(m, m2);
12472 }
12473
12474 static bool
12475 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12476                        struct intel_link_m_n *m2_n2,
12477                        bool adjust)
12478 {
12479         if (m_n->tu == m2_n2->tu &&
12480             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12481                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12482             intel_compare_m_n(m_n->link_m, m_n->link_n,
12483                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12484                 if (adjust)
12485                         *m2_n2 = *m_n;
12486
12487                 return true;
12488         }
12489
12490         return false;
12491 }
12492
12493 static bool
12494 intel_pipe_config_compare(struct drm_device *dev,
12495                           struct intel_crtc_state *current_config,
12496                           struct intel_crtc_state *pipe_config,
12497                           bool adjust)
12498 {
12499         bool ret = true;
12500
12501 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12502         do { \
12503                 if (!adjust) \
12504                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12505                 else \
12506                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12507         } while (0)
12508
12509 #define PIPE_CONF_CHECK_X(name) \
12510         if (current_config->name != pipe_config->name) { \
12511                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12512                           "(expected 0x%08x, found 0x%08x)\n", \
12513                           current_config->name, \
12514                           pipe_config->name); \
12515                 ret = false; \
12516         }
12517
12518 #define PIPE_CONF_CHECK_I(name) \
12519         if (current_config->name != pipe_config->name) { \
12520                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12521                           "(expected %i, found %i)\n", \
12522                           current_config->name, \
12523                           pipe_config->name); \
12524                 ret = false; \
12525         }
12526
12527 #define PIPE_CONF_CHECK_P(name) \
12528         if (current_config->name != pipe_config->name) { \
12529                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12530                           "(expected %p, found %p)\n", \
12531                           current_config->name, \
12532                           pipe_config->name); \
12533                 ret = false; \
12534         }
12535
12536 #define PIPE_CONF_CHECK_M_N(name) \
12537         if (!intel_compare_link_m_n(&current_config->name, \
12538                                     &pipe_config->name,\
12539                                     adjust)) { \
12540                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12541                           "(expected tu %i gmch %i/%i link %i/%i, " \
12542                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12543                           current_config->name.tu, \
12544                           current_config->name.gmch_m, \
12545                           current_config->name.gmch_n, \
12546                           current_config->name.link_m, \
12547                           current_config->name.link_n, \
12548                           pipe_config->name.tu, \
12549                           pipe_config->name.gmch_m, \
12550                           pipe_config->name.gmch_n, \
12551                           pipe_config->name.link_m, \
12552                           pipe_config->name.link_n); \
12553                 ret = false; \
12554         }
12555
12556 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12557         if (!intel_compare_link_m_n(&current_config->name, \
12558                                     &pipe_config->name, adjust) && \
12559             !intel_compare_link_m_n(&current_config->alt_name, \
12560                                     &pipe_config->name, adjust)) { \
12561                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12562                           "(expected tu %i gmch %i/%i link %i/%i, " \
12563                           "or tu %i gmch %i/%i link %i/%i, " \
12564                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12565                           current_config->name.tu, \
12566                           current_config->name.gmch_m, \
12567                           current_config->name.gmch_n, \
12568                           current_config->name.link_m, \
12569                           current_config->name.link_n, \
12570                           current_config->alt_name.tu, \
12571                           current_config->alt_name.gmch_m, \
12572                           current_config->alt_name.gmch_n, \
12573                           current_config->alt_name.link_m, \
12574                           current_config->alt_name.link_n, \
12575                           pipe_config->name.tu, \
12576                           pipe_config->name.gmch_m, \
12577                           pipe_config->name.gmch_n, \
12578                           pipe_config->name.link_m, \
12579                           pipe_config->name.link_n); \
12580                 ret = false; \
12581         }
12582
12583 /* This is required for BDW+ where there is only one set of registers for
12584  * switching between high and low RR.
12585  * This macro can be used whenever a comparison has to be made between one
12586  * hw state and multiple sw state variables.
12587  */
12588 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12589         if ((current_config->name != pipe_config->name) && \
12590                 (current_config->alt_name != pipe_config->name)) { \
12591                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12592                                   "(expected %i or %i, found %i)\n", \
12593                                   current_config->name, \
12594                                   current_config->alt_name, \
12595                                   pipe_config->name); \
12596                         ret = false; \
12597         }
12598
12599 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12600         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12601                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12602                           "(expected %i, found %i)\n", \
12603                           current_config->name & (mask), \
12604                           pipe_config->name & (mask)); \
12605                 ret = false; \
12606         }
12607
12608 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12609         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12610                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12611                           "(expected %i, found %i)\n", \
12612                           current_config->name, \
12613                           pipe_config->name); \
12614                 ret = false; \
12615         }
12616
12617 #define PIPE_CONF_QUIRK(quirk)  \
12618         ((current_config->quirks | pipe_config->quirks) & (quirk))
12619
12620         PIPE_CONF_CHECK_I(cpu_transcoder);
12621
12622         PIPE_CONF_CHECK_I(has_pch_encoder);
12623         PIPE_CONF_CHECK_I(fdi_lanes);
12624         PIPE_CONF_CHECK_M_N(fdi_m_n);
12625
12626         PIPE_CONF_CHECK_I(has_dp_encoder);
12627         PIPE_CONF_CHECK_I(lane_count);
12628
12629         if (INTEL_INFO(dev)->gen < 8) {
12630                 PIPE_CONF_CHECK_M_N(dp_m_n);
12631
12632                 if (current_config->has_drrs)
12633                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12634         } else
12635                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12636
12637         PIPE_CONF_CHECK_I(has_dsi_encoder);
12638
12639         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12640         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12641         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12642         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12643         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12644         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12645
12646         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12647         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12648         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12649         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12650         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12651         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12652
12653         PIPE_CONF_CHECK_I(pixel_multiplier);
12654         PIPE_CONF_CHECK_I(has_hdmi_sink);
12655         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12656             IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12657                 PIPE_CONF_CHECK_I(limited_color_range);
12658         PIPE_CONF_CHECK_I(has_infoframe);
12659
12660         PIPE_CONF_CHECK_I(has_audio);
12661
12662         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12663                               DRM_MODE_FLAG_INTERLACE);
12664
12665         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12666                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12667                                       DRM_MODE_FLAG_PHSYNC);
12668                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12669                                       DRM_MODE_FLAG_NHSYNC);
12670                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12671                                       DRM_MODE_FLAG_PVSYNC);
12672                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12673                                       DRM_MODE_FLAG_NVSYNC);
12674         }
12675
12676         PIPE_CONF_CHECK_X(gmch_pfit.control);
12677         /* pfit ratios are autocomputed by the hw on gen4+ */
12678         if (INTEL_INFO(dev)->gen < 4)
12679                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12680         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12681
12682         if (!adjust) {
12683                 PIPE_CONF_CHECK_I(pipe_src_w);
12684                 PIPE_CONF_CHECK_I(pipe_src_h);
12685
12686                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12687                 if (current_config->pch_pfit.enabled) {
12688                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12689                         PIPE_CONF_CHECK_X(pch_pfit.size);
12690                 }
12691
12692                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12693         }
12694
12695         /* BDW+ don't expose a synchronous way to read the state */
12696         if (IS_HASWELL(dev))
12697                 PIPE_CONF_CHECK_I(ips_enabled);
12698
12699         PIPE_CONF_CHECK_I(double_wide);
12700
12701         PIPE_CONF_CHECK_X(ddi_pll_sel);
12702
12703         PIPE_CONF_CHECK_P(shared_dpll);
12704         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12705         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12706         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12707         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12708         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12709         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12710         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12711         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12712         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12713
12714         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12715                 PIPE_CONF_CHECK_I(pipe_bpp);
12716
12717         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12718         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12719
12720 #undef PIPE_CONF_CHECK_X
12721 #undef PIPE_CONF_CHECK_I
12722 #undef PIPE_CONF_CHECK_P
12723 #undef PIPE_CONF_CHECK_I_ALT
12724 #undef PIPE_CONF_CHECK_FLAGS
12725 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12726 #undef PIPE_CONF_QUIRK
12727 #undef INTEL_ERR_OR_DBG_KMS
12728
12729         return ret;
12730 }
12731
12732 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12733                                            const struct intel_crtc_state *pipe_config)
12734 {
12735         if (pipe_config->has_pch_encoder) {
12736                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12737                                                             &pipe_config->fdi_m_n);
12738                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12739
12740                 /*
12741                  * FDI already provided one idea for the dotclock.
12742                  * Yell if the encoder disagrees.
12743                  */
12744                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12745                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12746                      fdi_dotclock, dotclock);
12747         }
12748 }
12749
12750 static void check_wm_state(struct drm_device *dev)
12751 {
12752         struct drm_i915_private *dev_priv = dev->dev_private;
12753         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12754         struct intel_crtc *intel_crtc;
12755         int plane;
12756
12757         if (INTEL_INFO(dev)->gen < 9)
12758                 return;
12759
12760         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12761         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12762
12763         for_each_intel_crtc(dev, intel_crtc) {
12764                 struct skl_ddb_entry *hw_entry, *sw_entry;
12765                 const enum pipe pipe = intel_crtc->pipe;
12766
12767                 if (!intel_crtc->active)
12768                         continue;
12769
12770                 /* planes */
12771                 for_each_plane(dev_priv, pipe, plane) {
12772                         hw_entry = &hw_ddb.plane[pipe][plane];
12773                         sw_entry = &sw_ddb->plane[pipe][plane];
12774
12775                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12776                                 continue;
12777
12778                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12779                                   "(expected (%u,%u), found (%u,%u))\n",
12780                                   pipe_name(pipe), plane + 1,
12781                                   sw_entry->start, sw_entry->end,
12782                                   hw_entry->start, hw_entry->end);
12783                 }
12784
12785                 /* cursor */
12786                 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12787                 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12788
12789                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12790                         continue;
12791
12792                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12793                           "(expected (%u,%u), found (%u,%u))\n",
12794                           pipe_name(pipe),
12795                           sw_entry->start, sw_entry->end,
12796                           hw_entry->start, hw_entry->end);
12797         }
12798 }
12799
12800 static void
12801 check_connector_state(struct drm_device *dev,
12802                       struct drm_atomic_state *old_state)
12803 {
12804         struct drm_connector_state *old_conn_state;
12805         struct drm_connector *connector;
12806         int i;
12807
12808         for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12809                 struct drm_encoder *encoder = connector->encoder;
12810                 struct drm_connector_state *state = connector->state;
12811
12812                 /* This also checks the encoder/connector hw state with the
12813                  * ->get_hw_state callbacks. */
12814                 intel_connector_check_state(to_intel_connector(connector));
12815
12816                 I915_STATE_WARN(state->best_encoder != encoder,
12817                      "connector's atomic encoder doesn't match legacy encoder\n");
12818         }
12819 }
12820
12821 static void
12822 check_encoder_state(struct drm_device *dev)
12823 {
12824         struct intel_encoder *encoder;
12825         struct intel_connector *connector;
12826
12827         for_each_intel_encoder(dev, encoder) {
12828                 bool enabled = false;
12829                 enum pipe pipe;
12830
12831                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12832                               encoder->base.base.id,
12833                               encoder->base.name);
12834
12835                 for_each_intel_connector(dev, connector) {
12836                         if (connector->base.state->best_encoder != &encoder->base)
12837                                 continue;
12838                         enabled = true;
12839
12840                         I915_STATE_WARN(connector->base.state->crtc !=
12841                                         encoder->base.crtc,
12842                              "connector's crtc doesn't match encoder crtc\n");
12843                 }
12844
12845                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12846                      "encoder's enabled state mismatch "
12847                      "(expected %i, found %i)\n",
12848                      !!encoder->base.crtc, enabled);
12849
12850                 if (!encoder->base.crtc) {
12851                         bool active;
12852
12853                         active = encoder->get_hw_state(encoder, &pipe);
12854                         I915_STATE_WARN(active,
12855                              "encoder detached but still enabled on pipe %c.\n",
12856                              pipe_name(pipe));
12857                 }
12858         }
12859 }
12860
12861 static void
12862 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12863 {
12864         struct drm_i915_private *dev_priv = dev->dev_private;
12865         struct intel_encoder *encoder;
12866         struct drm_crtc_state *old_crtc_state;
12867         struct drm_crtc *crtc;
12868         int i;
12869
12870         for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12871                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12872                 struct intel_crtc_state *pipe_config, *sw_config;
12873                 bool active;
12874
12875                 if (!needs_modeset(crtc->state) &&
12876                     !to_intel_crtc_state(crtc->state)->update_pipe)
12877                         continue;
12878
12879                 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12880                 pipe_config = to_intel_crtc_state(old_crtc_state);
12881                 memset(pipe_config, 0, sizeof(*pipe_config));
12882                 pipe_config->base.crtc = crtc;
12883                 pipe_config->base.state = old_state;
12884
12885                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12886                               crtc->base.id);
12887
12888                 active = dev_priv->display.get_pipe_config(intel_crtc,
12889                                                            pipe_config);
12890
12891                 /* hw state is inconsistent with the pipe quirk */
12892                 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12893                     (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12894                         active = crtc->state->active;
12895
12896                 I915_STATE_WARN(crtc->state->active != active,
12897                      "crtc active state doesn't match with hw state "
12898                      "(expected %i, found %i)\n", crtc->state->active, active);
12899
12900                 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12901                      "transitional active state does not match atomic hw state "
12902                      "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12903
12904                 for_each_encoder_on_crtc(dev, crtc, encoder) {
12905                         enum pipe pipe;
12906
12907                         active = encoder->get_hw_state(encoder, &pipe);
12908                         I915_STATE_WARN(active != crtc->state->active,
12909                                 "[ENCODER:%i] active %i with crtc active %i\n",
12910                                 encoder->base.base.id, active, crtc->state->active);
12911
12912                         I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12913                                         "Encoder connected to wrong pipe %c\n",
12914                                         pipe_name(pipe));
12915
12916                         if (active)
12917                                 encoder->get_config(encoder, pipe_config);
12918                 }
12919
12920                 if (!crtc->state->active)
12921                         continue;
12922
12923                 intel_pipe_config_sanity_check(dev_priv, pipe_config);
12924
12925                 sw_config = to_intel_crtc_state(crtc->state);
12926                 if (!intel_pipe_config_compare(dev, sw_config,
12927                                                pipe_config, false)) {
12928                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12929                         intel_dump_pipe_config(intel_crtc, pipe_config,
12930                                                "[hw state]");
12931                         intel_dump_pipe_config(intel_crtc, sw_config,
12932                                                "[sw state]");
12933                 }
12934         }
12935 }
12936
12937 static void
12938 check_shared_dpll_state(struct drm_device *dev)
12939 {
12940         struct drm_i915_private *dev_priv = dev->dev_private;
12941         struct intel_crtc *crtc;
12942         struct intel_dpll_hw_state dpll_hw_state;
12943         int i;
12944
12945         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12946                 struct intel_shared_dpll *pll =
12947                         intel_get_shared_dpll_by_id(dev_priv, i);
12948                 unsigned enabled_crtcs = 0, active_crtcs = 0;
12949                 bool active;
12950
12951                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12952
12953                 DRM_DEBUG_KMS("%s\n", pll->name);
12954
12955                 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
12956
12957                 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
12958                      "more active pll users than references: %x vs %x\n",
12959                      pll->active_mask, pll->config.crtc_mask);
12960
12961                 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12962                         I915_STATE_WARN(!pll->on && pll->active_mask,
12963                              "pll in active use but not on in sw tracking\n");
12964                         I915_STATE_WARN(pll->on && !pll->active_mask,
12965                              "pll is on but not used by any active crtc\n");
12966                         I915_STATE_WARN(pll->on != active,
12967                              "pll on state mismatch (expected %i, found %i)\n",
12968                              pll->on, active);
12969                 }
12970
12971                 for_each_intel_crtc(dev, crtc) {
12972                         if (crtc->base.state->enable && crtc->config->shared_dpll == pll)
12973                                 enabled_crtcs |= 1 << drm_crtc_index(&crtc->base);
12974                         if (crtc->base.state->active && crtc->config->shared_dpll == pll)
12975                                 active_crtcs |= 1 << drm_crtc_index(&crtc->base);
12976                 }
12977
12978                 I915_STATE_WARN(pll->active_mask != active_crtcs,
12979                      "pll active crtcs mismatch (expected %x, found %x)\n",
12980                      pll->active_mask, active_crtcs);
12981                 I915_STATE_WARN(pll->config.crtc_mask != enabled_crtcs,
12982                      "pll enabled crtcs mismatch (expected %x, found %x)\n",
12983                      pll->config.crtc_mask, enabled_crtcs);
12984
12985                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12986                                        sizeof(dpll_hw_state)),
12987                      "pll hw state mismatch\n");
12988         }
12989 }
12990
12991 static void
12992 intel_modeset_check_state(struct drm_device *dev,
12993                           struct drm_atomic_state *old_state)
12994 {
12995         check_wm_state(dev);
12996         check_connector_state(dev, old_state);
12997         check_encoder_state(dev);
12998         check_crtc_state(dev, old_state);
12999         check_shared_dpll_state(dev);
13000 }
13001
13002 static void update_scanline_offset(struct intel_crtc *crtc)
13003 {
13004         struct drm_device *dev = crtc->base.dev;
13005
13006         /*
13007          * The scanline counter increments at the leading edge of hsync.
13008          *
13009          * On most platforms it starts counting from vtotal-1 on the
13010          * first active line. That means the scanline counter value is
13011          * always one less than what we would expect. Ie. just after
13012          * start of vblank, which also occurs at start of hsync (on the
13013          * last active line), the scanline counter will read vblank_start-1.
13014          *
13015          * On gen2 the scanline counter starts counting from 1 instead
13016          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13017          * to keep the value positive), instead of adding one.
13018          *
13019          * On HSW+ the behaviour of the scanline counter depends on the output
13020          * type. For DP ports it behaves like most other platforms, but on HDMI
13021          * there's an extra 1 line difference. So we need to add two instead of
13022          * one to the value.
13023          */
13024         if (IS_GEN2(dev)) {
13025                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13026                 int vtotal;
13027
13028                 vtotal = adjusted_mode->crtc_vtotal;
13029                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13030                         vtotal /= 2;
13031
13032                 crtc->scanline_offset = vtotal - 1;
13033         } else if (HAS_DDI(dev) &&
13034                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13035                 crtc->scanline_offset = 2;
13036         } else
13037                 crtc->scanline_offset = 1;
13038 }
13039
13040 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13041 {
13042         struct drm_device *dev = state->dev;
13043         struct drm_i915_private *dev_priv = to_i915(dev);
13044         struct intel_shared_dpll_config *shared_dpll = NULL;
13045         struct drm_crtc *crtc;
13046         struct drm_crtc_state *crtc_state;
13047         int i;
13048
13049         if (!dev_priv->display.crtc_compute_clock)
13050                 return;
13051
13052         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13053                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13054                 struct intel_shared_dpll *old_dpll =
13055                         to_intel_crtc_state(crtc->state)->shared_dpll;
13056
13057                 if (!needs_modeset(crtc_state))
13058                         continue;
13059
13060                 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13061
13062                 if (!old_dpll)
13063                         continue;
13064
13065                 if (!shared_dpll)
13066                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13067
13068                 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13069         }
13070 }
13071
13072 /*
13073  * This implements the workaround described in the "notes" section of the mode
13074  * set sequence documentation. When going from no pipes or single pipe to
13075  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13076  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13077  */
13078 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13079 {
13080         struct drm_crtc_state *crtc_state;
13081         struct intel_crtc *intel_crtc;
13082         struct drm_crtc *crtc;
13083         struct intel_crtc_state *first_crtc_state = NULL;
13084         struct intel_crtc_state *other_crtc_state = NULL;
13085         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13086         int i;
13087
13088         /* look at all crtc's that are going to be enabled in during modeset */
13089         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13090                 intel_crtc = to_intel_crtc(crtc);
13091
13092                 if (!crtc_state->active || !needs_modeset(crtc_state))
13093                         continue;
13094
13095                 if (first_crtc_state) {
13096                         other_crtc_state = to_intel_crtc_state(crtc_state);
13097                         break;
13098                 } else {
13099                         first_crtc_state = to_intel_crtc_state(crtc_state);
13100                         first_pipe = intel_crtc->pipe;
13101                 }
13102         }
13103
13104         /* No workaround needed? */
13105         if (!first_crtc_state)
13106                 return 0;
13107
13108         /* w/a possibly needed, check how many crtc's are already enabled. */
13109         for_each_intel_crtc(state->dev, intel_crtc) {
13110                 struct intel_crtc_state *pipe_config;
13111
13112                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13113                 if (IS_ERR(pipe_config))
13114                         return PTR_ERR(pipe_config);
13115
13116                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13117
13118                 if (!pipe_config->base.active ||
13119                     needs_modeset(&pipe_config->base))
13120                         continue;
13121
13122                 /* 2 or more enabled crtcs means no need for w/a */
13123                 if (enabled_pipe != INVALID_PIPE)
13124                         return 0;
13125
13126                 enabled_pipe = intel_crtc->pipe;
13127         }
13128
13129         if (enabled_pipe != INVALID_PIPE)
13130                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13131         else if (other_crtc_state)
13132                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13133
13134         return 0;
13135 }
13136
13137 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13138 {
13139         struct drm_crtc *crtc;
13140         struct drm_crtc_state *crtc_state;
13141         int ret = 0;
13142
13143         /* add all active pipes to the state */
13144         for_each_crtc(state->dev, crtc) {
13145                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13146                 if (IS_ERR(crtc_state))
13147                         return PTR_ERR(crtc_state);
13148
13149                 if (!crtc_state->active || needs_modeset(crtc_state))
13150                         continue;
13151
13152                 crtc_state->mode_changed = true;
13153
13154                 ret = drm_atomic_add_affected_connectors(state, crtc);
13155                 if (ret)
13156                         break;
13157
13158                 ret = drm_atomic_add_affected_planes(state, crtc);
13159                 if (ret)
13160                         break;
13161         }
13162
13163         return ret;
13164 }
13165
13166 static int intel_modeset_checks(struct drm_atomic_state *state)
13167 {
13168         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13169         struct drm_i915_private *dev_priv = state->dev->dev_private;
13170         struct drm_crtc *crtc;
13171         struct drm_crtc_state *crtc_state;
13172         int ret = 0, i;
13173
13174         if (!check_digital_port_conflicts(state)) {
13175                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13176                 return -EINVAL;
13177         }
13178
13179         intel_state->modeset = true;
13180         intel_state->active_crtcs = dev_priv->active_crtcs;
13181
13182         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13183                 if (crtc_state->active)
13184                         intel_state->active_crtcs |= 1 << i;
13185                 else
13186                         intel_state->active_crtcs &= ~(1 << i);
13187         }
13188
13189         /*
13190          * See if the config requires any additional preparation, e.g.
13191          * to adjust global state with pipes off.  We need to do this
13192          * here so we can get the modeset_pipe updated config for the new
13193          * mode set on this crtc.  For other crtcs we need to use the
13194          * adjusted_mode bits in the crtc directly.
13195          */
13196         if (dev_priv->display.modeset_calc_cdclk) {
13197                 ret = dev_priv->display.modeset_calc_cdclk(state);
13198
13199                 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
13200                         ret = intel_modeset_all_pipes(state);
13201
13202                 if (ret < 0)
13203                         return ret;
13204
13205                 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13206                               intel_state->cdclk, intel_state->dev_cdclk);
13207         } else
13208                 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13209
13210         intel_modeset_clear_plls(state);
13211
13212         if (IS_HASWELL(dev_priv))
13213                 return haswell_mode_set_planes_workaround(state);
13214
13215         return 0;
13216 }
13217
13218 /*
13219  * Handle calculation of various watermark data at the end of the atomic check
13220  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13221  * handlers to ensure that all derived state has been updated.
13222  */
13223 static void calc_watermark_data(struct drm_atomic_state *state)
13224 {
13225         struct drm_device *dev = state->dev;
13226         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13227         struct drm_crtc *crtc;
13228         struct drm_crtc_state *cstate;
13229         struct drm_plane *plane;
13230         struct drm_plane_state *pstate;
13231
13232         /*
13233          * Calculate watermark configuration details now that derived
13234          * plane/crtc state is all properly updated.
13235          */
13236         drm_for_each_crtc(crtc, dev) {
13237                 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13238                         crtc->state;
13239
13240                 if (cstate->active)
13241                         intel_state->wm_config.num_pipes_active++;
13242         }
13243         drm_for_each_legacy_plane(plane, dev) {
13244                 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13245                         plane->state;
13246
13247                 if (!to_intel_plane_state(pstate)->visible)
13248                         continue;
13249
13250                 intel_state->wm_config.sprites_enabled = true;
13251                 if (pstate->crtc_w != pstate->src_w >> 16 ||
13252                     pstate->crtc_h != pstate->src_h >> 16)
13253                         intel_state->wm_config.sprites_scaled = true;
13254         }
13255 }
13256
13257 /**
13258  * intel_atomic_check - validate state object
13259  * @dev: drm device
13260  * @state: state to validate
13261  */
13262 static int intel_atomic_check(struct drm_device *dev,
13263                               struct drm_atomic_state *state)
13264 {
13265         struct drm_i915_private *dev_priv = to_i915(dev);
13266         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13267         struct drm_crtc *crtc;
13268         struct drm_crtc_state *crtc_state;
13269         int ret, i;
13270         bool any_ms = false;
13271
13272         ret = drm_atomic_helper_check_modeset(dev, state);
13273         if (ret)
13274                 return ret;
13275
13276         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13277                 struct intel_crtc_state *pipe_config =
13278                         to_intel_crtc_state(crtc_state);
13279
13280                 /* Catch I915_MODE_FLAG_INHERITED */
13281                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13282                         crtc_state->mode_changed = true;
13283
13284                 if (!crtc_state->enable) {
13285                         if (needs_modeset(crtc_state))
13286                                 any_ms = true;
13287                         continue;
13288                 }
13289
13290                 if (!needs_modeset(crtc_state))
13291                         continue;
13292
13293                 /* FIXME: For only active_changed we shouldn't need to do any
13294                  * state recomputation at all. */
13295
13296                 ret = drm_atomic_add_affected_connectors(state, crtc);
13297                 if (ret)
13298                         return ret;
13299
13300                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13301                 if (ret)
13302                         return ret;
13303
13304                 if (i915.fastboot &&
13305                     intel_pipe_config_compare(dev,
13306                                         to_intel_crtc_state(crtc->state),
13307                                         pipe_config, true)) {
13308                         crtc_state->mode_changed = false;
13309                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13310                 }
13311
13312                 if (needs_modeset(crtc_state)) {
13313                         any_ms = true;
13314
13315                         ret = drm_atomic_add_affected_planes(state, crtc);
13316                         if (ret)
13317                                 return ret;
13318                 }
13319
13320                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13321                                        needs_modeset(crtc_state) ?
13322                                        "[modeset]" : "[fastset]");
13323         }
13324
13325         if (any_ms) {
13326                 ret = intel_modeset_checks(state);
13327
13328                 if (ret)
13329                         return ret;
13330         } else
13331                 intel_state->cdclk = dev_priv->cdclk_freq;
13332
13333         ret = drm_atomic_helper_check_planes(dev, state);
13334         if (ret)
13335                 return ret;
13336
13337         intel_fbc_choose_crtc(dev_priv, state);
13338         calc_watermark_data(state);
13339
13340         return 0;
13341 }
13342
13343 static int intel_atomic_prepare_commit(struct drm_device *dev,
13344                                        struct drm_atomic_state *state,
13345                                        bool async)
13346 {
13347         struct drm_i915_private *dev_priv = dev->dev_private;
13348         struct drm_plane_state *plane_state;
13349         struct drm_crtc_state *crtc_state;
13350         struct drm_plane *plane;
13351         struct drm_crtc *crtc;
13352         int i, ret;
13353
13354         if (async) {
13355                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13356                 return -EINVAL;
13357         }
13358
13359         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13360                 ret = intel_crtc_wait_for_pending_flips(crtc);
13361                 if (ret)
13362                         return ret;
13363
13364                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13365                         flush_workqueue(dev_priv->wq);
13366         }
13367
13368         ret = mutex_lock_interruptible(&dev->struct_mutex);
13369         if (ret)
13370                 return ret;
13371
13372         ret = drm_atomic_helper_prepare_planes(dev, state);
13373         if (!ret && !async && !i915_reset_in_progress(&dev_priv->gpu_error)) {
13374                 u32 reset_counter;
13375
13376                 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
13377                 mutex_unlock(&dev->struct_mutex);
13378
13379                 for_each_plane_in_state(state, plane, plane_state, i) {
13380                         struct intel_plane_state *intel_plane_state =
13381                                 to_intel_plane_state(plane_state);
13382
13383                         if (!intel_plane_state->wait_req)
13384                                 continue;
13385
13386                         ret = __i915_wait_request(intel_plane_state->wait_req,
13387                                                   reset_counter, true,
13388                                                   NULL, NULL);
13389
13390                         /* Swallow -EIO errors to allow updates during hw lockup. */
13391                         if (ret == -EIO)
13392                                 ret = 0;
13393
13394                         if (ret)
13395                                 break;
13396                 }
13397
13398                 if (!ret)
13399                         return 0;
13400
13401                 mutex_lock(&dev->struct_mutex);
13402                 drm_atomic_helper_cleanup_planes(dev, state);
13403         }
13404
13405         mutex_unlock(&dev->struct_mutex);
13406         return ret;
13407 }
13408
13409 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13410                                           struct drm_i915_private *dev_priv,
13411                                           unsigned crtc_mask)
13412 {
13413         unsigned last_vblank_count[I915_MAX_PIPES];
13414         enum pipe pipe;
13415         int ret;
13416
13417         if (!crtc_mask)
13418                 return;
13419
13420         for_each_pipe(dev_priv, pipe) {
13421                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13422
13423                 if (!((1 << pipe) & crtc_mask))
13424                         continue;
13425
13426                 ret = drm_crtc_vblank_get(crtc);
13427                 if (WARN_ON(ret != 0)) {
13428                         crtc_mask &= ~(1 << pipe);
13429                         continue;
13430                 }
13431
13432                 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13433         }
13434
13435         for_each_pipe(dev_priv, pipe) {
13436                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13437                 long lret;
13438
13439                 if (!((1 << pipe) & crtc_mask))
13440                         continue;
13441
13442                 lret = wait_event_timeout(dev->vblank[pipe].queue,
13443                                 last_vblank_count[pipe] !=
13444                                         drm_crtc_vblank_count(crtc),
13445                                 msecs_to_jiffies(50));
13446
13447                 WARN_ON(!lret);
13448
13449                 drm_crtc_vblank_put(crtc);
13450         }
13451 }
13452
13453 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13454 {
13455         /* fb updated, need to unpin old fb */
13456         if (crtc_state->fb_changed)
13457                 return true;
13458
13459         /* wm changes, need vblank before final wm's */
13460         if (crtc_state->update_wm_post)
13461                 return true;
13462
13463         /*
13464          * cxsr is re-enabled after vblank.
13465          * This is already handled by crtc_state->update_wm_post,
13466          * but added for clarity.
13467          */
13468         if (crtc_state->disable_cxsr)
13469                 return true;
13470
13471         return false;
13472 }
13473
13474 /**
13475  * intel_atomic_commit - commit validated state object
13476  * @dev: DRM device
13477  * @state: the top-level driver state object
13478  * @async: asynchronous commit
13479  *
13480  * This function commits a top-level state object that has been validated
13481  * with drm_atomic_helper_check().
13482  *
13483  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13484  * we can only handle plane-related operations and do not yet support
13485  * asynchronous commit.
13486  *
13487  * RETURNS
13488  * Zero for success or -errno.
13489  */
13490 static int intel_atomic_commit(struct drm_device *dev,
13491                                struct drm_atomic_state *state,
13492                                bool async)
13493 {
13494         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13495         struct drm_i915_private *dev_priv = dev->dev_private;
13496         struct drm_crtc_state *old_crtc_state;
13497         struct drm_crtc *crtc;
13498         struct intel_crtc_state *intel_cstate;
13499         int ret = 0, i;
13500         bool hw_check = intel_state->modeset;
13501         unsigned long put_domains[I915_MAX_PIPES] = {};
13502         unsigned crtc_vblank_mask = 0;
13503
13504         ret = intel_atomic_prepare_commit(dev, state, async);
13505         if (ret) {
13506                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13507                 return ret;
13508         }
13509
13510         drm_atomic_helper_swap_state(dev, state);
13511         dev_priv->wm.config = intel_state->wm_config;
13512         intel_shared_dpll_commit(state);
13513
13514         if (intel_state->modeset) {
13515                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13516                        sizeof(intel_state->min_pixclk));
13517                 dev_priv->active_crtcs = intel_state->active_crtcs;
13518                 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13519
13520                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13521         }
13522
13523         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13524                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13525
13526                 if (needs_modeset(crtc->state) ||
13527                     to_intel_crtc_state(crtc->state)->update_pipe) {
13528                         hw_check = true;
13529
13530                         put_domains[to_intel_crtc(crtc)->pipe] =
13531                                 modeset_get_crtc_power_domains(crtc,
13532                                         to_intel_crtc_state(crtc->state));
13533                 }
13534
13535                 if (!needs_modeset(crtc->state))
13536                         continue;
13537
13538                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13539
13540                 if (old_crtc_state->active) {
13541                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13542                         dev_priv->display.crtc_disable(crtc);
13543                         intel_crtc->active = false;
13544                         intel_fbc_disable(intel_crtc);
13545                         intel_disable_shared_dpll(intel_crtc);
13546
13547                         /*
13548                          * Underruns don't always raise
13549                          * interrupts, so check manually.
13550                          */
13551                         intel_check_cpu_fifo_underruns(dev_priv);
13552                         intel_check_pch_fifo_underruns(dev_priv);
13553
13554                         if (!crtc->state->active)
13555                                 intel_update_watermarks(crtc);
13556                 }
13557         }
13558
13559         /* Only after disabling all output pipelines that will be changed can we
13560          * update the the output configuration. */
13561         intel_modeset_update_crtc_state(state);
13562
13563         if (intel_state->modeset) {
13564                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13565
13566                 if (dev_priv->display.modeset_commit_cdclk &&
13567                     intel_state->dev_cdclk != dev_priv->cdclk_freq)
13568                         dev_priv->display.modeset_commit_cdclk(state);
13569         }
13570
13571         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13572         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13573                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13574                 bool modeset = needs_modeset(crtc->state);
13575                 struct intel_crtc_state *pipe_config =
13576                         to_intel_crtc_state(crtc->state);
13577                 bool update_pipe = !modeset && pipe_config->update_pipe;
13578
13579                 if (modeset && crtc->state->active) {
13580                         update_scanline_offset(to_intel_crtc(crtc));
13581                         dev_priv->display.crtc_enable(crtc);
13582                 }
13583
13584                 if (!modeset &&
13585                     crtc->state->active &&
13586                     crtc->state->color_mgmt_changed) {
13587                         /*
13588                          * Only update color management when not doing
13589                          * a modeset as this will be done by
13590                          * crtc_enable already.
13591                          */
13592                         intel_color_set_csc(crtc);
13593                         intel_color_load_luts(crtc);
13594                 }
13595
13596                 if (!modeset)
13597                         intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13598
13599                 if (crtc->state->active &&
13600                     drm_atomic_get_existing_plane_state(state, crtc->primary))
13601                         intel_fbc_enable(intel_crtc);
13602
13603                 if (crtc->state->active &&
13604                     (crtc->state->planes_changed || update_pipe))
13605                         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
13606
13607                 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13608                         crtc_vblank_mask |= 1 << i;
13609         }
13610
13611         /* FIXME: add subpixel order */
13612
13613         if (!state->legacy_cursor_update)
13614                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13615
13616         /*
13617          * Now that the vblank has passed, we can go ahead and program the
13618          * optimal watermarks on platforms that need two-step watermark
13619          * programming.
13620          *
13621          * TODO: Move this (and other cleanup) to an async worker eventually.
13622          */
13623         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13624                 intel_cstate = to_intel_crtc_state(crtc->state);
13625
13626                 if (dev_priv->display.optimize_watermarks)
13627                         dev_priv->display.optimize_watermarks(intel_cstate);
13628         }
13629
13630         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13631                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13632
13633                 if (put_domains[i])
13634                         modeset_put_power_domains(dev_priv, put_domains[i]);
13635         }
13636
13637         if (intel_state->modeset)
13638                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13639
13640         mutex_lock(&dev->struct_mutex);
13641         drm_atomic_helper_cleanup_planes(dev, state);
13642         mutex_unlock(&dev->struct_mutex);
13643
13644         if (hw_check)
13645                 intel_modeset_check_state(dev, state);
13646
13647         drm_atomic_state_free(state);
13648
13649         /* As one of the primary mmio accessors, KMS has a high likelihood
13650          * of triggering bugs in unclaimed access. After we finish
13651          * modesetting, see if an error has been flagged, and if so
13652          * enable debugging for the next modeset - and hope we catch
13653          * the culprit.
13654          *
13655          * XXX note that we assume display power is on at this point.
13656          * This might hold true now but we need to add pm helper to check
13657          * unclaimed only when the hardware is on, as atomic commits
13658          * can happen also when the device is completely off.
13659          */
13660         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13661
13662         return 0;
13663 }
13664
13665 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13666 {
13667         struct drm_device *dev = crtc->dev;
13668         struct drm_atomic_state *state;
13669         struct drm_crtc_state *crtc_state;
13670         int ret;
13671
13672         state = drm_atomic_state_alloc(dev);
13673         if (!state) {
13674                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13675                               crtc->base.id);
13676                 return;
13677         }
13678
13679         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13680
13681 retry:
13682         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13683         ret = PTR_ERR_OR_ZERO(crtc_state);
13684         if (!ret) {
13685                 if (!crtc_state->active)
13686                         goto out;
13687
13688                 crtc_state->mode_changed = true;
13689                 ret = drm_atomic_commit(state);
13690         }
13691
13692         if (ret == -EDEADLK) {
13693                 drm_atomic_state_clear(state);
13694                 drm_modeset_backoff(state->acquire_ctx);
13695                 goto retry;
13696         }
13697
13698         if (ret)
13699 out:
13700                 drm_atomic_state_free(state);
13701 }
13702
13703 #undef for_each_intel_crtc_masked
13704
13705 static const struct drm_crtc_funcs intel_crtc_funcs = {
13706         .gamma_set = drm_atomic_helper_legacy_gamma_set,
13707         .set_config = drm_atomic_helper_set_config,
13708         .set_property = drm_atomic_helper_crtc_set_property,
13709         .destroy = intel_crtc_destroy,
13710         .page_flip = intel_crtc_page_flip,
13711         .atomic_duplicate_state = intel_crtc_duplicate_state,
13712         .atomic_destroy_state = intel_crtc_destroy_state,
13713 };
13714
13715 /**
13716  * intel_prepare_plane_fb - Prepare fb for usage on plane
13717  * @plane: drm plane to prepare for
13718  * @fb: framebuffer to prepare for presentation
13719  *
13720  * Prepares a framebuffer for usage on a display plane.  Generally this
13721  * involves pinning the underlying object and updating the frontbuffer tracking
13722  * bits.  Some older platforms need special physical address handling for
13723  * cursor planes.
13724  *
13725  * Must be called with struct_mutex held.
13726  *
13727  * Returns 0 on success, negative error code on failure.
13728  */
13729 int
13730 intel_prepare_plane_fb(struct drm_plane *plane,
13731                        const struct drm_plane_state *new_state)
13732 {
13733         struct drm_device *dev = plane->dev;
13734         struct drm_framebuffer *fb = new_state->fb;
13735         struct intel_plane *intel_plane = to_intel_plane(plane);
13736         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13737         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13738         int ret = 0;
13739
13740         if (!obj && !old_obj)
13741                 return 0;
13742
13743         if (old_obj) {
13744                 struct drm_crtc_state *crtc_state =
13745                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13746
13747                 /* Big Hammer, we also need to ensure that any pending
13748                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13749                  * current scanout is retired before unpinning the old
13750                  * framebuffer. Note that we rely on userspace rendering
13751                  * into the buffer attached to the pipe they are waiting
13752                  * on. If not, userspace generates a GPU hang with IPEHR
13753                  * point to the MI_WAIT_FOR_EVENT.
13754                  *
13755                  * This should only fail upon a hung GPU, in which case we
13756                  * can safely continue.
13757                  */
13758                 if (needs_modeset(crtc_state))
13759                         ret = i915_gem_object_wait_rendering(old_obj, true);
13760
13761                 /* Swallow -EIO errors to allow updates during hw lockup. */
13762                 if (ret && ret != -EIO)
13763                         return ret;
13764         }
13765
13766         /* For framebuffer backed by dmabuf, wait for fence */
13767         if (obj && obj->base.dma_buf) {
13768                 long lret;
13769
13770                 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13771                                                            false, true,
13772                                                            MAX_SCHEDULE_TIMEOUT);
13773                 if (lret == -ERESTARTSYS)
13774                         return lret;
13775
13776                 WARN(lret < 0, "waiting returns %li\n", lret);
13777         }
13778
13779         if (!obj) {
13780                 ret = 0;
13781         } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13782             INTEL_INFO(dev)->cursor_needs_physical) {
13783                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13784                 ret = i915_gem_object_attach_phys(obj, align);
13785                 if (ret)
13786                         DRM_DEBUG_KMS("failed to attach phys object\n");
13787         } else {
13788                 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13789         }
13790
13791         if (ret == 0) {
13792                 if (obj) {
13793                         struct intel_plane_state *plane_state =
13794                                 to_intel_plane_state(new_state);
13795
13796                         i915_gem_request_assign(&plane_state->wait_req,
13797                                                 obj->last_write_req);
13798                 }
13799
13800                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13801         }
13802
13803         return ret;
13804 }
13805
13806 /**
13807  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13808  * @plane: drm plane to clean up for
13809  * @fb: old framebuffer that was on plane
13810  *
13811  * Cleans up a framebuffer that has just been removed from a plane.
13812  *
13813  * Must be called with struct_mutex held.
13814  */
13815 void
13816 intel_cleanup_plane_fb(struct drm_plane *plane,
13817                        const struct drm_plane_state *old_state)
13818 {
13819         struct drm_device *dev = plane->dev;
13820         struct intel_plane *intel_plane = to_intel_plane(plane);
13821         struct intel_plane_state *old_intel_state;
13822         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13823         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13824
13825         old_intel_state = to_intel_plane_state(old_state);
13826
13827         if (!obj && !old_obj)
13828                 return;
13829
13830         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13831             !INTEL_INFO(dev)->cursor_needs_physical))
13832                 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
13833
13834         /* prepare_fb aborted? */
13835         if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13836             (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13837                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13838
13839         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13840 }
13841
13842 int
13843 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13844 {
13845         int max_scale;
13846         struct drm_device *dev;
13847         struct drm_i915_private *dev_priv;
13848         int crtc_clock, cdclk;
13849
13850         if (!intel_crtc || !crtc_state->base.enable)
13851                 return DRM_PLANE_HELPER_NO_SCALING;
13852
13853         dev = intel_crtc->base.dev;
13854         dev_priv = dev->dev_private;
13855         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13856         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13857
13858         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13859                 return DRM_PLANE_HELPER_NO_SCALING;
13860
13861         /*
13862          * skl max scale is lower of:
13863          *    close to 3 but not 3, -1 is for that purpose
13864          *            or
13865          *    cdclk/crtc_clock
13866          */
13867         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13868
13869         return max_scale;
13870 }
13871
13872 static int
13873 intel_check_primary_plane(struct drm_plane *plane,
13874                           struct intel_crtc_state *crtc_state,
13875                           struct intel_plane_state *state)
13876 {
13877         struct drm_crtc *crtc = state->base.crtc;
13878         struct drm_framebuffer *fb = state->base.fb;
13879         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13880         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13881         bool can_position = false;
13882
13883         if (INTEL_INFO(plane->dev)->gen >= 9) {
13884                 /* use scaler when colorkey is not required */
13885                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13886                         min_scale = 1;
13887                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13888                 }
13889                 can_position = true;
13890         }
13891
13892         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13893                                              &state->dst, &state->clip,
13894                                              min_scale, max_scale,
13895                                              can_position, true,
13896                                              &state->visible);
13897 }
13898
13899 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13900                                     struct drm_crtc_state *old_crtc_state)
13901 {
13902         struct drm_device *dev = crtc->dev;
13903         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13904         struct intel_crtc_state *old_intel_state =
13905                 to_intel_crtc_state(old_crtc_state);
13906         bool modeset = needs_modeset(crtc->state);
13907
13908         /* Perform vblank evasion around commit operation */
13909         intel_pipe_update_start(intel_crtc);
13910
13911         if (modeset)
13912                 return;
13913
13914         if (to_intel_crtc_state(crtc->state)->update_pipe)
13915                 intel_update_pipe_config(intel_crtc, old_intel_state);
13916         else if (INTEL_INFO(dev)->gen >= 9)
13917                 skl_detach_scalers(intel_crtc);
13918 }
13919
13920 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13921                                      struct drm_crtc_state *old_crtc_state)
13922 {
13923         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13924
13925         intel_pipe_update_end(intel_crtc);
13926 }
13927
13928 /**
13929  * intel_plane_destroy - destroy a plane
13930  * @plane: plane to destroy
13931  *
13932  * Common destruction function for all types of planes (primary, cursor,
13933  * sprite).
13934  */
13935 void intel_plane_destroy(struct drm_plane *plane)
13936 {
13937         struct intel_plane *intel_plane = to_intel_plane(plane);
13938         drm_plane_cleanup(plane);
13939         kfree(intel_plane);
13940 }
13941
13942 const struct drm_plane_funcs intel_plane_funcs = {
13943         .update_plane = drm_atomic_helper_update_plane,
13944         .disable_plane = drm_atomic_helper_disable_plane,
13945         .destroy = intel_plane_destroy,
13946         .set_property = drm_atomic_helper_plane_set_property,
13947         .atomic_get_property = intel_plane_atomic_get_property,
13948         .atomic_set_property = intel_plane_atomic_set_property,
13949         .atomic_duplicate_state = intel_plane_duplicate_state,
13950         .atomic_destroy_state = intel_plane_destroy_state,
13951
13952 };
13953
13954 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13955                                                     int pipe)
13956 {
13957         struct intel_plane *primary;
13958         struct intel_plane_state *state;
13959         const uint32_t *intel_primary_formats;
13960         unsigned int num_formats;
13961
13962         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13963         if (primary == NULL)
13964                 return NULL;
13965
13966         state = intel_create_plane_state(&primary->base);
13967         if (!state) {
13968                 kfree(primary);
13969                 return NULL;
13970         }
13971         primary->base.state = &state->base;
13972
13973         primary->can_scale = false;
13974         primary->max_downscale = 1;
13975         if (INTEL_INFO(dev)->gen >= 9) {
13976                 primary->can_scale = true;
13977                 state->scaler_id = -1;
13978         }
13979         primary->pipe = pipe;
13980         primary->plane = pipe;
13981         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13982         primary->check_plane = intel_check_primary_plane;
13983         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13984                 primary->plane = !pipe;
13985
13986         if (INTEL_INFO(dev)->gen >= 9) {
13987                 intel_primary_formats = skl_primary_formats;
13988                 num_formats = ARRAY_SIZE(skl_primary_formats);
13989
13990                 primary->update_plane = skylake_update_primary_plane;
13991                 primary->disable_plane = skylake_disable_primary_plane;
13992         } else if (HAS_PCH_SPLIT(dev)) {
13993                 intel_primary_formats = i965_primary_formats;
13994                 num_formats = ARRAY_SIZE(i965_primary_formats);
13995
13996                 primary->update_plane = ironlake_update_primary_plane;
13997                 primary->disable_plane = i9xx_disable_primary_plane;
13998         } else if (INTEL_INFO(dev)->gen >= 4) {
13999                 intel_primary_formats = i965_primary_formats;
14000                 num_formats = ARRAY_SIZE(i965_primary_formats);
14001
14002                 primary->update_plane = i9xx_update_primary_plane;
14003                 primary->disable_plane = i9xx_disable_primary_plane;
14004         } else {
14005                 intel_primary_formats = i8xx_primary_formats;
14006                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14007
14008                 primary->update_plane = i9xx_update_primary_plane;
14009                 primary->disable_plane = i9xx_disable_primary_plane;
14010         }
14011
14012         drm_universal_plane_init(dev, &primary->base, 0,
14013                                  &intel_plane_funcs,
14014                                  intel_primary_formats, num_formats,
14015                                  DRM_PLANE_TYPE_PRIMARY, NULL);
14016
14017         if (INTEL_INFO(dev)->gen >= 4)
14018                 intel_create_rotation_property(dev, primary);
14019
14020         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14021
14022         return &primary->base;
14023 }
14024
14025 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14026 {
14027         if (!dev->mode_config.rotation_property) {
14028                 unsigned long flags = BIT(DRM_ROTATE_0) |
14029                         BIT(DRM_ROTATE_180);
14030
14031                 if (INTEL_INFO(dev)->gen >= 9)
14032                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14033
14034                 dev->mode_config.rotation_property =
14035                         drm_mode_create_rotation_property(dev, flags);
14036         }
14037         if (dev->mode_config.rotation_property)
14038                 drm_object_attach_property(&plane->base.base,
14039                                 dev->mode_config.rotation_property,
14040                                 plane->base.state->rotation);
14041 }
14042
14043 static int
14044 intel_check_cursor_plane(struct drm_plane *plane,
14045                          struct intel_crtc_state *crtc_state,
14046                          struct intel_plane_state *state)
14047 {
14048         struct drm_crtc *crtc = crtc_state->base.crtc;
14049         struct drm_framebuffer *fb = state->base.fb;
14050         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14051         enum pipe pipe = to_intel_plane(plane)->pipe;
14052         unsigned stride;
14053         int ret;
14054
14055         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14056                                             &state->dst, &state->clip,
14057                                             DRM_PLANE_HELPER_NO_SCALING,
14058                                             DRM_PLANE_HELPER_NO_SCALING,
14059                                             true, true, &state->visible);
14060         if (ret)
14061                 return ret;
14062
14063         /* if we want to turn off the cursor ignore width and height */
14064         if (!obj)
14065                 return 0;
14066
14067         /* Check for which cursor types we support */
14068         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14069                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14070                           state->base.crtc_w, state->base.crtc_h);
14071                 return -EINVAL;
14072         }
14073
14074         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14075         if (obj->base.size < stride * state->base.crtc_h) {
14076                 DRM_DEBUG_KMS("buffer is too small\n");
14077                 return -ENOMEM;
14078         }
14079
14080         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14081                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14082                 return -EINVAL;
14083         }
14084
14085         /*
14086          * There's something wrong with the cursor on CHV pipe C.
14087          * If it straddles the left edge of the screen then
14088          * moving it away from the edge or disabling it often
14089          * results in a pipe underrun, and often that can lead to
14090          * dead pipe (constant underrun reported, and it scans
14091          * out just a solid color). To recover from that, the
14092          * display power well must be turned off and on again.
14093          * Refuse the put the cursor into that compromised position.
14094          */
14095         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14096             state->visible && state->base.crtc_x < 0) {
14097                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14098                 return -EINVAL;
14099         }
14100
14101         return 0;
14102 }
14103
14104 static void
14105 intel_disable_cursor_plane(struct drm_plane *plane,
14106                            struct drm_crtc *crtc)
14107 {
14108         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14109
14110         intel_crtc->cursor_addr = 0;
14111         intel_crtc_update_cursor(crtc, NULL);
14112 }
14113
14114 static void
14115 intel_update_cursor_plane(struct drm_plane *plane,
14116                           const struct intel_crtc_state *crtc_state,
14117                           const struct intel_plane_state *state)
14118 {
14119         struct drm_crtc *crtc = crtc_state->base.crtc;
14120         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14121         struct drm_device *dev = plane->dev;
14122         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14123         uint32_t addr;
14124
14125         if (!obj)
14126                 addr = 0;
14127         else if (!INTEL_INFO(dev)->cursor_needs_physical)
14128                 addr = i915_gem_obj_ggtt_offset(obj);
14129         else
14130                 addr = obj->phys_handle->busaddr;
14131
14132         intel_crtc->cursor_addr = addr;
14133         intel_crtc_update_cursor(crtc, state);
14134 }
14135
14136 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14137                                                    int pipe)
14138 {
14139         struct intel_plane *cursor;
14140         struct intel_plane_state *state;
14141
14142         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14143         if (cursor == NULL)
14144                 return NULL;
14145
14146         state = intel_create_plane_state(&cursor->base);
14147         if (!state) {
14148                 kfree(cursor);
14149                 return NULL;
14150         }
14151         cursor->base.state = &state->base;
14152
14153         cursor->can_scale = false;
14154         cursor->max_downscale = 1;
14155         cursor->pipe = pipe;
14156         cursor->plane = pipe;
14157         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14158         cursor->check_plane = intel_check_cursor_plane;
14159         cursor->update_plane = intel_update_cursor_plane;
14160         cursor->disable_plane = intel_disable_cursor_plane;
14161
14162         drm_universal_plane_init(dev, &cursor->base, 0,
14163                                  &intel_plane_funcs,
14164                                  intel_cursor_formats,
14165                                  ARRAY_SIZE(intel_cursor_formats),
14166                                  DRM_PLANE_TYPE_CURSOR, NULL);
14167
14168         if (INTEL_INFO(dev)->gen >= 4) {
14169                 if (!dev->mode_config.rotation_property)
14170                         dev->mode_config.rotation_property =
14171                                 drm_mode_create_rotation_property(dev,
14172                                                         BIT(DRM_ROTATE_0) |
14173                                                         BIT(DRM_ROTATE_180));
14174                 if (dev->mode_config.rotation_property)
14175                         drm_object_attach_property(&cursor->base.base,
14176                                 dev->mode_config.rotation_property,
14177                                 state->base.rotation);
14178         }
14179
14180         if (INTEL_INFO(dev)->gen >=9)
14181                 state->scaler_id = -1;
14182
14183         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14184
14185         return &cursor->base;
14186 }
14187
14188 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14189         struct intel_crtc_state *crtc_state)
14190 {
14191         int i;
14192         struct intel_scaler *intel_scaler;
14193         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14194
14195         for (i = 0; i < intel_crtc->num_scalers; i++) {
14196                 intel_scaler = &scaler_state->scalers[i];
14197                 intel_scaler->in_use = 0;
14198                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14199         }
14200
14201         scaler_state->scaler_id = -1;
14202 }
14203
14204 static void intel_crtc_init(struct drm_device *dev, int pipe)
14205 {
14206         struct drm_i915_private *dev_priv = dev->dev_private;
14207         struct intel_crtc *intel_crtc;
14208         struct intel_crtc_state *crtc_state = NULL;
14209         struct drm_plane *primary = NULL;
14210         struct drm_plane *cursor = NULL;
14211         int ret;
14212
14213         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14214         if (intel_crtc == NULL)
14215                 return;
14216
14217         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14218         if (!crtc_state)
14219                 goto fail;
14220         intel_crtc->config = crtc_state;
14221         intel_crtc->base.state = &crtc_state->base;
14222         crtc_state->base.crtc = &intel_crtc->base;
14223
14224         /* initialize shared scalers */
14225         if (INTEL_INFO(dev)->gen >= 9) {
14226                 if (pipe == PIPE_C)
14227                         intel_crtc->num_scalers = 1;
14228                 else
14229                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14230
14231                 skl_init_scalers(dev, intel_crtc, crtc_state);
14232         }
14233
14234         primary = intel_primary_plane_create(dev, pipe);
14235         if (!primary)
14236                 goto fail;
14237
14238         cursor = intel_cursor_plane_create(dev, pipe);
14239         if (!cursor)
14240                 goto fail;
14241
14242         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14243                                         cursor, &intel_crtc_funcs, NULL);
14244         if (ret)
14245                 goto fail;
14246
14247         /*
14248          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14249          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14250          */
14251         intel_crtc->pipe = pipe;
14252         intel_crtc->plane = pipe;
14253         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14254                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14255                 intel_crtc->plane = !pipe;
14256         }
14257
14258         intel_crtc->cursor_base = ~0;
14259         intel_crtc->cursor_cntl = ~0;
14260         intel_crtc->cursor_size = ~0;
14261
14262         intel_crtc->wm.cxsr_allowed = true;
14263
14264         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14265                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14266         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14267         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14268
14269         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14270
14271         intel_color_init(&intel_crtc->base);
14272
14273         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14274         return;
14275
14276 fail:
14277         if (primary)
14278                 drm_plane_cleanup(primary);
14279         if (cursor)
14280                 drm_plane_cleanup(cursor);
14281         kfree(crtc_state);
14282         kfree(intel_crtc);
14283 }
14284
14285 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14286 {
14287         struct drm_encoder *encoder = connector->base.encoder;
14288         struct drm_device *dev = connector->base.dev;
14289
14290         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14291
14292         if (!encoder || WARN_ON(!encoder->crtc))
14293                 return INVALID_PIPE;
14294
14295         return to_intel_crtc(encoder->crtc)->pipe;
14296 }
14297
14298 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14299                                 struct drm_file *file)
14300 {
14301         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14302         struct drm_crtc *drmmode_crtc;
14303         struct intel_crtc *crtc;
14304
14305         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14306
14307         if (!drmmode_crtc) {
14308                 DRM_ERROR("no such CRTC id\n");
14309                 return -ENOENT;
14310         }
14311
14312         crtc = to_intel_crtc(drmmode_crtc);
14313         pipe_from_crtc_id->pipe = crtc->pipe;
14314
14315         return 0;
14316 }
14317
14318 static int intel_encoder_clones(struct intel_encoder *encoder)
14319 {
14320         struct drm_device *dev = encoder->base.dev;
14321         struct intel_encoder *source_encoder;
14322         int index_mask = 0;
14323         int entry = 0;
14324
14325         for_each_intel_encoder(dev, source_encoder) {
14326                 if (encoders_cloneable(encoder, source_encoder))
14327                         index_mask |= (1 << entry);
14328
14329                 entry++;
14330         }
14331
14332         return index_mask;
14333 }
14334
14335 static bool has_edp_a(struct drm_device *dev)
14336 {
14337         struct drm_i915_private *dev_priv = dev->dev_private;
14338
14339         if (!IS_MOBILE(dev))
14340                 return false;
14341
14342         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14343                 return false;
14344
14345         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14346                 return false;
14347
14348         return true;
14349 }
14350
14351 static bool intel_crt_present(struct drm_device *dev)
14352 {
14353         struct drm_i915_private *dev_priv = dev->dev_private;
14354
14355         if (INTEL_INFO(dev)->gen >= 9)
14356                 return false;
14357
14358         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14359                 return false;
14360
14361         if (IS_CHERRYVIEW(dev))
14362                 return false;
14363
14364         if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14365                 return false;
14366
14367         /* DDI E can't be used if DDI A requires 4 lanes */
14368         if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14369                 return false;
14370
14371         if (!dev_priv->vbt.int_crt_support)
14372                 return false;
14373
14374         return true;
14375 }
14376
14377 static void intel_setup_outputs(struct drm_device *dev)
14378 {
14379         struct drm_i915_private *dev_priv = dev->dev_private;
14380         struct intel_encoder *encoder;
14381         bool dpd_is_edp = false;
14382
14383         intel_lvds_init(dev);
14384
14385         if (intel_crt_present(dev))
14386                 intel_crt_init(dev);
14387
14388         if (IS_BROXTON(dev)) {
14389                 /*
14390                  * FIXME: Broxton doesn't support port detection via the
14391                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14392                  * detect the ports.
14393                  */
14394                 intel_ddi_init(dev, PORT_A);
14395                 intel_ddi_init(dev, PORT_B);
14396                 intel_ddi_init(dev, PORT_C);
14397         } else if (HAS_DDI(dev)) {
14398                 int found;
14399
14400                 /*
14401                  * Haswell uses DDI functions to detect digital outputs.
14402                  * On SKL pre-D0 the strap isn't connected, so we assume
14403                  * it's there.
14404                  */
14405                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14406                 /* WaIgnoreDDIAStrap: skl */
14407                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14408                         intel_ddi_init(dev, PORT_A);
14409
14410                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14411                  * register */
14412                 found = I915_READ(SFUSE_STRAP);
14413
14414                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14415                         intel_ddi_init(dev, PORT_B);
14416                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14417                         intel_ddi_init(dev, PORT_C);
14418                 if (found & SFUSE_STRAP_DDID_DETECTED)
14419                         intel_ddi_init(dev, PORT_D);
14420                 /*
14421                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14422                  */
14423                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14424                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14425                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14426                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14427                         intel_ddi_init(dev, PORT_E);
14428
14429         } else if (HAS_PCH_SPLIT(dev)) {
14430                 int found;
14431                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14432
14433                 if (has_edp_a(dev))
14434                         intel_dp_init(dev, DP_A, PORT_A);
14435
14436                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14437                         /* PCH SDVOB multiplex with HDMIB */
14438                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14439                         if (!found)
14440                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14441                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14442                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14443                 }
14444
14445                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14446                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14447
14448                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14449                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14450
14451                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14452                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14453
14454                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14455                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14456         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14457                 /*
14458                  * The DP_DETECTED bit is the latched state of the DDC
14459                  * SDA pin at boot. However since eDP doesn't require DDC
14460                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14461                  * eDP ports may have been muxed to an alternate function.
14462                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14463                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14464                  * detect eDP ports.
14465                  */
14466                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14467                     !intel_dp_is_edp(dev, PORT_B))
14468                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14469                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14470                     intel_dp_is_edp(dev, PORT_B))
14471                         intel_dp_init(dev, VLV_DP_B, PORT_B);
14472
14473                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14474                     !intel_dp_is_edp(dev, PORT_C))
14475                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14476                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14477                     intel_dp_is_edp(dev, PORT_C))
14478                         intel_dp_init(dev, VLV_DP_C, PORT_C);
14479
14480                 if (IS_CHERRYVIEW(dev)) {
14481                         /* eDP not supported on port D, so don't check VBT */
14482                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14483                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14484                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
14485                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14486                 }
14487
14488                 intel_dsi_init(dev);
14489         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14490                 bool found = false;
14491
14492                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14493                         DRM_DEBUG_KMS("probing SDVOB\n");
14494                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14495                         if (!found && IS_G4X(dev)) {
14496                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14497                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14498                         }
14499
14500                         if (!found && IS_G4X(dev))
14501                                 intel_dp_init(dev, DP_B, PORT_B);
14502                 }
14503
14504                 /* Before G4X SDVOC doesn't have its own detect register */
14505
14506                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14507                         DRM_DEBUG_KMS("probing SDVOC\n");
14508                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14509                 }
14510
14511                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14512
14513                         if (IS_G4X(dev)) {
14514                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14515                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14516                         }
14517                         if (IS_G4X(dev))
14518                                 intel_dp_init(dev, DP_C, PORT_C);
14519                 }
14520
14521                 if (IS_G4X(dev) &&
14522                     (I915_READ(DP_D) & DP_DETECTED))
14523                         intel_dp_init(dev, DP_D, PORT_D);
14524         } else if (IS_GEN2(dev))
14525                 intel_dvo_init(dev);
14526
14527         if (SUPPORTS_TV(dev))
14528                 intel_tv_init(dev);
14529
14530         intel_psr_init(dev);
14531
14532         for_each_intel_encoder(dev, encoder) {
14533                 encoder->base.possible_crtcs = encoder->crtc_mask;
14534                 encoder->base.possible_clones =
14535                         intel_encoder_clones(encoder);
14536         }
14537
14538         intel_init_pch_refclk(dev);
14539
14540         drm_helper_move_panel_connectors_to_head(dev);
14541 }
14542
14543 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14544 {
14545         struct drm_device *dev = fb->dev;
14546         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14547
14548         drm_framebuffer_cleanup(fb);
14549         mutex_lock(&dev->struct_mutex);
14550         WARN_ON(!intel_fb->obj->framebuffer_references--);
14551         drm_gem_object_unreference(&intel_fb->obj->base);
14552         mutex_unlock(&dev->struct_mutex);
14553         kfree(intel_fb);
14554 }
14555
14556 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14557                                                 struct drm_file *file,
14558                                                 unsigned int *handle)
14559 {
14560         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14561         struct drm_i915_gem_object *obj = intel_fb->obj;
14562
14563         if (obj->userptr.mm) {
14564                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14565                 return -EINVAL;
14566         }
14567
14568         return drm_gem_handle_create(file, &obj->base, handle);
14569 }
14570
14571 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14572                                         struct drm_file *file,
14573                                         unsigned flags, unsigned color,
14574                                         struct drm_clip_rect *clips,
14575                                         unsigned num_clips)
14576 {
14577         struct drm_device *dev = fb->dev;
14578         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14579         struct drm_i915_gem_object *obj = intel_fb->obj;
14580
14581         mutex_lock(&dev->struct_mutex);
14582         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14583         mutex_unlock(&dev->struct_mutex);
14584
14585         return 0;
14586 }
14587
14588 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14589         .destroy = intel_user_framebuffer_destroy,
14590         .create_handle = intel_user_framebuffer_create_handle,
14591         .dirty = intel_user_framebuffer_dirty,
14592 };
14593
14594 static
14595 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14596                          uint32_t pixel_format)
14597 {
14598         u32 gen = INTEL_INFO(dev)->gen;
14599
14600         if (gen >= 9) {
14601                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14602
14603                 /* "The stride in bytes must not exceed the of the size of 8K
14604                  *  pixels and 32K bytes."
14605                  */
14606                 return min(8192 * cpp, 32768);
14607         } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14608                 return 32*1024;
14609         } else if (gen >= 4) {
14610                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14611                         return 16*1024;
14612                 else
14613                         return 32*1024;
14614         } else if (gen >= 3) {
14615                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14616                         return 8*1024;
14617                 else
14618                         return 16*1024;
14619         } else {
14620                 /* XXX DSPC is limited to 4k tiled */
14621                 return 8*1024;
14622         }
14623 }
14624
14625 static int intel_framebuffer_init(struct drm_device *dev,
14626                                   struct intel_framebuffer *intel_fb,
14627                                   struct drm_mode_fb_cmd2 *mode_cmd,
14628                                   struct drm_i915_gem_object *obj)
14629 {
14630         struct drm_i915_private *dev_priv = to_i915(dev);
14631         unsigned int aligned_height;
14632         int ret;
14633         u32 pitch_limit, stride_alignment;
14634
14635         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14636
14637         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14638                 /* Enforce that fb modifier and tiling mode match, but only for
14639                  * X-tiled. This is needed for FBC. */
14640                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14641                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14642                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14643                         return -EINVAL;
14644                 }
14645         } else {
14646                 if (obj->tiling_mode == I915_TILING_X)
14647                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14648                 else if (obj->tiling_mode == I915_TILING_Y) {
14649                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14650                         return -EINVAL;
14651                 }
14652         }
14653
14654         /* Passed in modifier sanity checking. */
14655         switch (mode_cmd->modifier[0]) {
14656         case I915_FORMAT_MOD_Y_TILED:
14657         case I915_FORMAT_MOD_Yf_TILED:
14658                 if (INTEL_INFO(dev)->gen < 9) {
14659                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14660                                   mode_cmd->modifier[0]);
14661                         return -EINVAL;
14662                 }
14663         case DRM_FORMAT_MOD_NONE:
14664         case I915_FORMAT_MOD_X_TILED:
14665                 break;
14666         default:
14667                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14668                           mode_cmd->modifier[0]);
14669                 return -EINVAL;
14670         }
14671
14672         stride_alignment = intel_fb_stride_alignment(dev_priv,
14673                                                      mode_cmd->modifier[0],
14674                                                      mode_cmd->pixel_format);
14675         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14676                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14677                           mode_cmd->pitches[0], stride_alignment);
14678                 return -EINVAL;
14679         }
14680
14681         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14682                                            mode_cmd->pixel_format);
14683         if (mode_cmd->pitches[0] > pitch_limit) {
14684                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14685                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14686                           "tiled" : "linear",
14687                           mode_cmd->pitches[0], pitch_limit);
14688                 return -EINVAL;
14689         }
14690
14691         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14692             mode_cmd->pitches[0] != obj->stride) {
14693                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14694                           mode_cmd->pitches[0], obj->stride);
14695                 return -EINVAL;
14696         }
14697
14698         /* Reject formats not supported by any plane early. */
14699         switch (mode_cmd->pixel_format) {
14700         case DRM_FORMAT_C8:
14701         case DRM_FORMAT_RGB565:
14702         case DRM_FORMAT_XRGB8888:
14703         case DRM_FORMAT_ARGB8888:
14704                 break;
14705         case DRM_FORMAT_XRGB1555:
14706                 if (INTEL_INFO(dev)->gen > 3) {
14707                         DRM_DEBUG("unsupported pixel format: %s\n",
14708                                   drm_get_format_name(mode_cmd->pixel_format));
14709                         return -EINVAL;
14710                 }
14711                 break;
14712         case DRM_FORMAT_ABGR8888:
14713                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14714                     INTEL_INFO(dev)->gen < 9) {
14715                         DRM_DEBUG("unsupported pixel format: %s\n",
14716                                   drm_get_format_name(mode_cmd->pixel_format));
14717                         return -EINVAL;
14718                 }
14719                 break;
14720         case DRM_FORMAT_XBGR8888:
14721         case DRM_FORMAT_XRGB2101010:
14722         case DRM_FORMAT_XBGR2101010:
14723                 if (INTEL_INFO(dev)->gen < 4) {
14724                         DRM_DEBUG("unsupported pixel format: %s\n",
14725                                   drm_get_format_name(mode_cmd->pixel_format));
14726                         return -EINVAL;
14727                 }
14728                 break;
14729         case DRM_FORMAT_ABGR2101010:
14730                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14731                         DRM_DEBUG("unsupported pixel format: %s\n",
14732                                   drm_get_format_name(mode_cmd->pixel_format));
14733                         return -EINVAL;
14734                 }
14735                 break;
14736         case DRM_FORMAT_YUYV:
14737         case DRM_FORMAT_UYVY:
14738         case DRM_FORMAT_YVYU:
14739         case DRM_FORMAT_VYUY:
14740                 if (INTEL_INFO(dev)->gen < 5) {
14741                         DRM_DEBUG("unsupported pixel format: %s\n",
14742                                   drm_get_format_name(mode_cmd->pixel_format));
14743                         return -EINVAL;
14744                 }
14745                 break;
14746         default:
14747                 DRM_DEBUG("unsupported pixel format: %s\n",
14748                           drm_get_format_name(mode_cmd->pixel_format));
14749                 return -EINVAL;
14750         }
14751
14752         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14753         if (mode_cmd->offsets[0] != 0)
14754                 return -EINVAL;
14755
14756         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14757                                                mode_cmd->pixel_format,
14758                                                mode_cmd->modifier[0]);
14759         /* FIXME drm helper for size checks (especially planar formats)? */
14760         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14761                 return -EINVAL;
14762
14763         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14764         intel_fb->obj = obj;
14765
14766         intel_fill_fb_info(dev_priv, &intel_fb->base);
14767
14768         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14769         if (ret) {
14770                 DRM_ERROR("framebuffer init failed %d\n", ret);
14771                 return ret;
14772         }
14773
14774         intel_fb->obj->framebuffer_references++;
14775
14776         return 0;
14777 }
14778
14779 static struct drm_framebuffer *
14780 intel_user_framebuffer_create(struct drm_device *dev,
14781                               struct drm_file *filp,
14782                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14783 {
14784         struct drm_framebuffer *fb;
14785         struct drm_i915_gem_object *obj;
14786         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14787
14788         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14789                                                 mode_cmd.handles[0]));
14790         if (&obj->base == NULL)
14791                 return ERR_PTR(-ENOENT);
14792
14793         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14794         if (IS_ERR(fb))
14795                 drm_gem_object_unreference_unlocked(&obj->base);
14796
14797         return fb;
14798 }
14799
14800 #ifndef CONFIG_DRM_FBDEV_EMULATION
14801 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14802 {
14803 }
14804 #endif
14805
14806 static const struct drm_mode_config_funcs intel_mode_funcs = {
14807         .fb_create = intel_user_framebuffer_create,
14808         .output_poll_changed = intel_fbdev_output_poll_changed,
14809         .atomic_check = intel_atomic_check,
14810         .atomic_commit = intel_atomic_commit,
14811         .atomic_state_alloc = intel_atomic_state_alloc,
14812         .atomic_state_clear = intel_atomic_state_clear,
14813 };
14814
14815 /**
14816  * intel_init_display_hooks - initialize the display modesetting hooks
14817  * @dev_priv: device private
14818  */
14819 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14820 {
14821         if (HAS_PCH_SPLIT(dev_priv) || IS_G4X(dev_priv))
14822                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14823         else if (IS_CHERRYVIEW(dev_priv))
14824                 dev_priv->display.find_dpll = chv_find_best_dpll;
14825         else if (IS_VALLEYVIEW(dev_priv))
14826                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14827         else if (IS_PINEVIEW(dev_priv))
14828                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14829         else
14830                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14831
14832         if (INTEL_INFO(dev_priv)->gen >= 9) {
14833                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14834                 dev_priv->display.get_initial_plane_config =
14835                         skylake_get_initial_plane_config;
14836                 dev_priv->display.crtc_compute_clock =
14837                         haswell_crtc_compute_clock;
14838                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14839                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14840         } else if (HAS_DDI(dev_priv)) {
14841                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14842                 dev_priv->display.get_initial_plane_config =
14843                         ironlake_get_initial_plane_config;
14844                 dev_priv->display.crtc_compute_clock =
14845                         haswell_crtc_compute_clock;
14846                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14847                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14848         } else if (HAS_PCH_SPLIT(dev_priv)) {
14849                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14850                 dev_priv->display.get_initial_plane_config =
14851                         ironlake_get_initial_plane_config;
14852                 dev_priv->display.crtc_compute_clock =
14853                         ironlake_crtc_compute_clock;
14854                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14855                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14856         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
14857                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14858                 dev_priv->display.get_initial_plane_config =
14859                         i9xx_get_initial_plane_config;
14860                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14861                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14862                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14863         } else {
14864                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14865                 dev_priv->display.get_initial_plane_config =
14866                         i9xx_get_initial_plane_config;
14867                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14868                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14869                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14870         }
14871
14872         /* Returns the core display clock speed */
14873         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
14874                 dev_priv->display.get_display_clock_speed =
14875                         skylake_get_display_clock_speed;
14876         else if (IS_BROXTON(dev_priv))
14877                 dev_priv->display.get_display_clock_speed =
14878                         broxton_get_display_clock_speed;
14879         else if (IS_BROADWELL(dev_priv))
14880                 dev_priv->display.get_display_clock_speed =
14881                         broadwell_get_display_clock_speed;
14882         else if (IS_HASWELL(dev_priv))
14883                 dev_priv->display.get_display_clock_speed =
14884                         haswell_get_display_clock_speed;
14885         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14886                 dev_priv->display.get_display_clock_speed =
14887                         valleyview_get_display_clock_speed;
14888         else if (IS_GEN5(dev_priv))
14889                 dev_priv->display.get_display_clock_speed =
14890                         ilk_get_display_clock_speed;
14891         else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
14892                  IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
14893                 dev_priv->display.get_display_clock_speed =
14894                         i945_get_display_clock_speed;
14895         else if (IS_GM45(dev_priv))
14896                 dev_priv->display.get_display_clock_speed =
14897                         gm45_get_display_clock_speed;
14898         else if (IS_CRESTLINE(dev_priv))
14899                 dev_priv->display.get_display_clock_speed =
14900                         i965gm_get_display_clock_speed;
14901         else if (IS_PINEVIEW(dev_priv))
14902                 dev_priv->display.get_display_clock_speed =
14903                         pnv_get_display_clock_speed;
14904         else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
14905                 dev_priv->display.get_display_clock_speed =
14906                         g33_get_display_clock_speed;
14907         else if (IS_I915G(dev_priv))
14908                 dev_priv->display.get_display_clock_speed =
14909                         i915_get_display_clock_speed;
14910         else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
14911                 dev_priv->display.get_display_clock_speed =
14912                         i9xx_misc_get_display_clock_speed;
14913         else if (IS_I915GM(dev_priv))
14914                 dev_priv->display.get_display_clock_speed =
14915                         i915gm_get_display_clock_speed;
14916         else if (IS_I865G(dev_priv))
14917                 dev_priv->display.get_display_clock_speed =
14918                         i865_get_display_clock_speed;
14919         else if (IS_I85X(dev_priv))
14920                 dev_priv->display.get_display_clock_speed =
14921                         i85x_get_display_clock_speed;
14922         else { /* 830 */
14923                 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
14924                 dev_priv->display.get_display_clock_speed =
14925                         i830_get_display_clock_speed;
14926         }
14927
14928         if (IS_GEN5(dev_priv)) {
14929                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14930         } else if (IS_GEN6(dev_priv)) {
14931                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14932         } else if (IS_IVYBRIDGE(dev_priv)) {
14933                 /* FIXME: detect B0+ stepping and use auto training */
14934                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14935         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
14936                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14937                 if (IS_BROADWELL(dev_priv)) {
14938                         dev_priv->display.modeset_commit_cdclk =
14939                                 broadwell_modeset_commit_cdclk;
14940                         dev_priv->display.modeset_calc_cdclk =
14941                                 broadwell_modeset_calc_cdclk;
14942                 }
14943         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
14944                 dev_priv->display.modeset_commit_cdclk =
14945                         valleyview_modeset_commit_cdclk;
14946                 dev_priv->display.modeset_calc_cdclk =
14947                         valleyview_modeset_calc_cdclk;
14948         } else if (IS_BROXTON(dev_priv)) {
14949                 dev_priv->display.modeset_commit_cdclk =
14950                         broxton_modeset_commit_cdclk;
14951                 dev_priv->display.modeset_calc_cdclk =
14952                         broxton_modeset_calc_cdclk;
14953         }
14954
14955         switch (INTEL_INFO(dev_priv)->gen) {
14956         case 2:
14957                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14958                 break;
14959
14960         case 3:
14961                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14962                 break;
14963
14964         case 4:
14965         case 5:
14966                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14967                 break;
14968
14969         case 6:
14970                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14971                 break;
14972         case 7:
14973         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14974                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14975                 break;
14976         case 9:
14977                 /* Drop through - unsupported since execlist only. */
14978         default:
14979                 /* Default just returns -ENODEV to indicate unsupported */
14980                 dev_priv->display.queue_flip = intel_default_queue_flip;
14981         }
14982 }
14983
14984 /*
14985  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14986  * resume, or other times.  This quirk makes sure that's the case for
14987  * affected systems.
14988  */
14989 static void quirk_pipea_force(struct drm_device *dev)
14990 {
14991         struct drm_i915_private *dev_priv = dev->dev_private;
14992
14993         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14994         DRM_INFO("applying pipe a force quirk\n");
14995 }
14996
14997 static void quirk_pipeb_force(struct drm_device *dev)
14998 {
14999         struct drm_i915_private *dev_priv = dev->dev_private;
15000
15001         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15002         DRM_INFO("applying pipe b force quirk\n");
15003 }
15004
15005 /*
15006  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15007  */
15008 static void quirk_ssc_force_disable(struct drm_device *dev)
15009 {
15010         struct drm_i915_private *dev_priv = dev->dev_private;
15011         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15012         DRM_INFO("applying lvds SSC disable quirk\n");
15013 }
15014
15015 /*
15016  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15017  * brightness value
15018  */
15019 static void quirk_invert_brightness(struct drm_device *dev)
15020 {
15021         struct drm_i915_private *dev_priv = dev->dev_private;
15022         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15023         DRM_INFO("applying inverted panel brightness quirk\n");
15024 }
15025
15026 /* Some VBT's incorrectly indicate no backlight is present */
15027 static void quirk_backlight_present(struct drm_device *dev)
15028 {
15029         struct drm_i915_private *dev_priv = dev->dev_private;
15030         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15031         DRM_INFO("applying backlight present quirk\n");
15032 }
15033
15034 struct intel_quirk {
15035         int device;
15036         int subsystem_vendor;
15037         int subsystem_device;
15038         void (*hook)(struct drm_device *dev);
15039 };
15040
15041 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15042 struct intel_dmi_quirk {
15043         void (*hook)(struct drm_device *dev);
15044         const struct dmi_system_id (*dmi_id_list)[];
15045 };
15046
15047 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15048 {
15049         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15050         return 1;
15051 }
15052
15053 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15054         {
15055                 .dmi_id_list = &(const struct dmi_system_id[]) {
15056                         {
15057                                 .callback = intel_dmi_reverse_brightness,
15058                                 .ident = "NCR Corporation",
15059                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15060                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
15061                                 },
15062                         },
15063                         { }  /* terminating entry */
15064                 },
15065                 .hook = quirk_invert_brightness,
15066         },
15067 };
15068
15069 static struct intel_quirk intel_quirks[] = {
15070         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15071         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15072
15073         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15074         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15075
15076         /* 830 needs to leave pipe A & dpll A up */
15077         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15078
15079         /* 830 needs to leave pipe B & dpll B up */
15080         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15081
15082         /* Lenovo U160 cannot use SSC on LVDS */
15083         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15084
15085         /* Sony Vaio Y cannot use SSC on LVDS */
15086         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15087
15088         /* Acer Aspire 5734Z must invert backlight brightness */
15089         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15090
15091         /* Acer/eMachines G725 */
15092         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15093
15094         /* Acer/eMachines e725 */
15095         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15096
15097         /* Acer/Packard Bell NCL20 */
15098         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15099
15100         /* Acer Aspire 4736Z */
15101         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15102
15103         /* Acer Aspire 5336 */
15104         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15105
15106         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15107         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15108
15109         /* Acer C720 Chromebook (Core i3 4005U) */
15110         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15111
15112         /* Apple Macbook 2,1 (Core 2 T7400) */
15113         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15114
15115         /* Apple Macbook 4,1 */
15116         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15117
15118         /* Toshiba CB35 Chromebook (Celeron 2955U) */
15119         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15120
15121         /* HP Chromebook 14 (Celeron 2955U) */
15122         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15123
15124         /* Dell Chromebook 11 */
15125         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15126
15127         /* Dell Chromebook 11 (2015 version) */
15128         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15129 };
15130
15131 static void intel_init_quirks(struct drm_device *dev)
15132 {
15133         struct pci_dev *d = dev->pdev;
15134         int i;
15135
15136         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15137                 struct intel_quirk *q = &intel_quirks[i];
15138
15139                 if (d->device == q->device &&
15140                     (d->subsystem_vendor == q->subsystem_vendor ||
15141                      q->subsystem_vendor == PCI_ANY_ID) &&
15142                     (d->subsystem_device == q->subsystem_device ||
15143                      q->subsystem_device == PCI_ANY_ID))
15144                         q->hook(dev);
15145         }
15146         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15147                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15148                         intel_dmi_quirks[i].hook(dev);
15149         }
15150 }
15151
15152 /* Disable the VGA plane that we never use */
15153 static void i915_disable_vga(struct drm_device *dev)
15154 {
15155         struct drm_i915_private *dev_priv = dev->dev_private;
15156         u8 sr1;
15157         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15158
15159         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15160         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15161         outb(SR01, VGA_SR_INDEX);
15162         sr1 = inb(VGA_SR_DATA);
15163         outb(sr1 | 1<<5, VGA_SR_DATA);
15164         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15165         udelay(300);
15166
15167         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15168         POSTING_READ(vga_reg);
15169 }
15170
15171 void intel_modeset_init_hw(struct drm_device *dev)
15172 {
15173         struct drm_i915_private *dev_priv = dev->dev_private;
15174
15175         intel_update_cdclk(dev);
15176
15177         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15178
15179         intel_init_clock_gating(dev);
15180         intel_enable_gt_powersave(dev);
15181 }
15182
15183 /*
15184  * Calculate what we think the watermarks should be for the state we've read
15185  * out of the hardware and then immediately program those watermarks so that
15186  * we ensure the hardware settings match our internal state.
15187  *
15188  * We can calculate what we think WM's should be by creating a duplicate of the
15189  * current state (which was constructed during hardware readout) and running it
15190  * through the atomic check code to calculate new watermark values in the
15191  * state object.
15192  */
15193 static void sanitize_watermarks(struct drm_device *dev)
15194 {
15195         struct drm_i915_private *dev_priv = to_i915(dev);
15196         struct drm_atomic_state *state;
15197         struct drm_crtc *crtc;
15198         struct drm_crtc_state *cstate;
15199         struct drm_modeset_acquire_ctx ctx;
15200         int ret;
15201         int i;
15202
15203         /* Only supported on platforms that use atomic watermark design */
15204         if (!dev_priv->display.optimize_watermarks)
15205                 return;
15206
15207         /*
15208          * We need to hold connection_mutex before calling duplicate_state so
15209          * that the connector loop is protected.
15210          */
15211         drm_modeset_acquire_init(&ctx, 0);
15212 retry:
15213         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15214         if (ret == -EDEADLK) {
15215                 drm_modeset_backoff(&ctx);
15216                 goto retry;
15217         } else if (WARN_ON(ret)) {
15218                 goto fail;
15219         }
15220
15221         state = drm_atomic_helper_duplicate_state(dev, &ctx);
15222         if (WARN_ON(IS_ERR(state)))
15223                 goto fail;
15224
15225         /*
15226          * Hardware readout is the only time we don't want to calculate
15227          * intermediate watermarks (since we don't trust the current
15228          * watermarks).
15229          */
15230         to_intel_atomic_state(state)->skip_intermediate_wm = true;
15231
15232         ret = intel_atomic_check(dev, state);
15233         if (ret) {
15234                 /*
15235                  * If we fail here, it means that the hardware appears to be
15236                  * programmed in a way that shouldn't be possible, given our
15237                  * understanding of watermark requirements.  This might mean a
15238                  * mistake in the hardware readout code or a mistake in the
15239                  * watermark calculations for a given platform.  Raise a WARN
15240                  * so that this is noticeable.
15241                  *
15242                  * If this actually happens, we'll have to just leave the
15243                  * BIOS-programmed watermarks untouched and hope for the best.
15244                  */
15245                 WARN(true, "Could not determine valid watermarks for inherited state\n");
15246                 goto fail;
15247         }
15248
15249         /* Write calculated watermark values back */
15250         to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config;
15251         for_each_crtc_in_state(state, crtc, cstate, i) {
15252                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15253
15254                 cs->wm.need_postvbl_update = true;
15255                 dev_priv->display.optimize_watermarks(cs);
15256         }
15257
15258         drm_atomic_state_free(state);
15259 fail:
15260         drm_modeset_drop_locks(&ctx);
15261         drm_modeset_acquire_fini(&ctx);
15262 }
15263
15264 void intel_modeset_init(struct drm_device *dev)
15265 {
15266         struct drm_i915_private *dev_priv = dev->dev_private;
15267         int sprite, ret;
15268         enum pipe pipe;
15269         struct intel_crtc *crtc;
15270
15271         drm_mode_config_init(dev);
15272
15273         dev->mode_config.min_width = 0;
15274         dev->mode_config.min_height = 0;
15275
15276         dev->mode_config.preferred_depth = 24;
15277         dev->mode_config.prefer_shadow = 1;
15278
15279         dev->mode_config.allow_fb_modifiers = true;
15280
15281         dev->mode_config.funcs = &intel_mode_funcs;
15282
15283         intel_init_quirks(dev);
15284
15285         intel_init_pm(dev);
15286
15287         if (INTEL_INFO(dev)->num_pipes == 0)
15288                 return;
15289
15290         /*
15291          * There may be no VBT; and if the BIOS enabled SSC we can
15292          * just keep using it to avoid unnecessary flicker.  Whereas if the
15293          * BIOS isn't using it, don't assume it will work even if the VBT
15294          * indicates as much.
15295          */
15296         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15297                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15298                                             DREF_SSC1_ENABLE);
15299
15300                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15301                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15302                                      bios_lvds_use_ssc ? "en" : "dis",
15303                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15304                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15305                 }
15306         }
15307
15308         if (IS_GEN2(dev)) {
15309                 dev->mode_config.max_width = 2048;
15310                 dev->mode_config.max_height = 2048;
15311         } else if (IS_GEN3(dev)) {
15312                 dev->mode_config.max_width = 4096;
15313                 dev->mode_config.max_height = 4096;
15314         } else {
15315                 dev->mode_config.max_width = 8192;
15316                 dev->mode_config.max_height = 8192;
15317         }
15318
15319         if (IS_845G(dev) || IS_I865G(dev)) {
15320                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15321                 dev->mode_config.cursor_height = 1023;
15322         } else if (IS_GEN2(dev)) {
15323                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15324                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15325         } else {
15326                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15327                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15328         }
15329
15330         dev->mode_config.fb_base = dev_priv->ggtt.mappable_base;
15331
15332         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15333                       INTEL_INFO(dev)->num_pipes,
15334                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15335
15336         for_each_pipe(dev_priv, pipe) {
15337                 intel_crtc_init(dev, pipe);
15338                 for_each_sprite(dev_priv, pipe, sprite) {
15339                         ret = intel_plane_init(dev, pipe, sprite);
15340                         if (ret)
15341                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15342                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15343                 }
15344         }
15345
15346         intel_update_czclk(dev_priv);
15347         intel_update_rawclk(dev_priv);
15348         intel_update_cdclk(dev);
15349
15350         intel_shared_dpll_init(dev);
15351
15352         /* Just disable it once at startup */
15353         i915_disable_vga(dev);
15354         intel_setup_outputs(dev);
15355
15356         drm_modeset_lock_all(dev);
15357         intel_modeset_setup_hw_state(dev);
15358         drm_modeset_unlock_all(dev);
15359
15360         for_each_intel_crtc(dev, crtc) {
15361                 struct intel_initial_plane_config plane_config = {};
15362
15363                 if (!crtc->active)
15364                         continue;
15365
15366                 /*
15367                  * Note that reserving the BIOS fb up front prevents us
15368                  * from stuffing other stolen allocations like the ring
15369                  * on top.  This prevents some ugliness at boot time, and
15370                  * can even allow for smooth boot transitions if the BIOS
15371                  * fb is large enough for the active pipe configuration.
15372                  */
15373                 dev_priv->display.get_initial_plane_config(crtc,
15374                                                            &plane_config);
15375
15376                 /*
15377                  * If the fb is shared between multiple heads, we'll
15378                  * just get the first one.
15379                  */
15380                 intel_find_initial_plane_obj(crtc, &plane_config);
15381         }
15382
15383         /*
15384          * Make sure hardware watermarks really match the state we read out.
15385          * Note that we need to do this after reconstructing the BIOS fb's
15386          * since the watermark calculation done here will use pstate->fb.
15387          */
15388         sanitize_watermarks(dev);
15389 }
15390
15391 static void intel_enable_pipe_a(struct drm_device *dev)
15392 {
15393         struct intel_connector *connector;
15394         struct drm_connector *crt = NULL;
15395         struct intel_load_detect_pipe load_detect_temp;
15396         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15397
15398         /* We can't just switch on the pipe A, we need to set things up with a
15399          * proper mode and output configuration. As a gross hack, enable pipe A
15400          * by enabling the load detect pipe once. */
15401         for_each_intel_connector(dev, connector) {
15402                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15403                         crt = &connector->base;
15404                         break;
15405                 }
15406         }
15407
15408         if (!crt)
15409                 return;
15410
15411         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15412                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15413 }
15414
15415 static bool
15416 intel_check_plane_mapping(struct intel_crtc *crtc)
15417 {
15418         struct drm_device *dev = crtc->base.dev;
15419         struct drm_i915_private *dev_priv = dev->dev_private;
15420         u32 val;
15421
15422         if (INTEL_INFO(dev)->num_pipes == 1)
15423                 return true;
15424
15425         val = I915_READ(DSPCNTR(!crtc->plane));
15426
15427         if ((val & DISPLAY_PLANE_ENABLE) &&
15428             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15429                 return false;
15430
15431         return true;
15432 }
15433
15434 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15435 {
15436         struct drm_device *dev = crtc->base.dev;
15437         struct intel_encoder *encoder;
15438
15439         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15440                 return true;
15441
15442         return false;
15443 }
15444
15445 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15446 {
15447         struct drm_device *dev = encoder->base.dev;
15448         struct intel_connector *connector;
15449
15450         for_each_connector_on_encoder(dev, &encoder->base, connector)
15451                 return true;
15452
15453         return false;
15454 }
15455
15456 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15457 {
15458         struct drm_device *dev = crtc->base.dev;
15459         struct drm_i915_private *dev_priv = dev->dev_private;
15460         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15461
15462         /* Clear any frame start delays used for debugging left by the BIOS */
15463         if (!transcoder_is_dsi(cpu_transcoder)) {
15464                 i915_reg_t reg = PIPECONF(cpu_transcoder);
15465
15466                 I915_WRITE(reg,
15467                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15468         }
15469
15470         /* restore vblank interrupts to correct state */
15471         drm_crtc_vblank_reset(&crtc->base);
15472         if (crtc->active) {
15473                 struct intel_plane *plane;
15474
15475                 drm_crtc_vblank_on(&crtc->base);
15476
15477                 /* Disable everything but the primary plane */
15478                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15479                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15480                                 continue;
15481
15482                         plane->disable_plane(&plane->base, &crtc->base);
15483                 }
15484         }
15485
15486         /* We need to sanitize the plane -> pipe mapping first because this will
15487          * disable the crtc (and hence change the state) if it is wrong. Note
15488          * that gen4+ has a fixed plane -> pipe mapping.  */
15489         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15490                 bool plane;
15491
15492                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15493                               crtc->base.base.id);
15494
15495                 /* Pipe has the wrong plane attached and the plane is active.
15496                  * Temporarily change the plane mapping and disable everything
15497                  * ...  */
15498                 plane = crtc->plane;
15499                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15500                 crtc->plane = !plane;
15501                 intel_crtc_disable_noatomic(&crtc->base);
15502                 crtc->plane = plane;
15503         }
15504
15505         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15506             crtc->pipe == PIPE_A && !crtc->active) {
15507                 /* BIOS forgot to enable pipe A, this mostly happens after
15508                  * resume. Force-enable the pipe to fix this, the update_dpms
15509                  * call below we restore the pipe to the right state, but leave
15510                  * the required bits on. */
15511                 intel_enable_pipe_a(dev);
15512         }
15513
15514         /* Adjust the state of the output pipe according to whether we
15515          * have active connectors/encoders. */
15516         if (crtc->active && !intel_crtc_has_encoders(crtc))
15517                 intel_crtc_disable_noatomic(&crtc->base);
15518
15519         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15520                 /*
15521                  * We start out with underrun reporting disabled to avoid races.
15522                  * For correct bookkeeping mark this on active crtcs.
15523                  *
15524                  * Also on gmch platforms we dont have any hardware bits to
15525                  * disable the underrun reporting. Which means we need to start
15526                  * out with underrun reporting disabled also on inactive pipes,
15527                  * since otherwise we'll complain about the garbage we read when
15528                  * e.g. coming up after runtime pm.
15529                  *
15530                  * No protection against concurrent access is required - at
15531                  * worst a fifo underrun happens which also sets this to false.
15532                  */
15533                 crtc->cpu_fifo_underrun_disabled = true;
15534                 crtc->pch_fifo_underrun_disabled = true;
15535         }
15536 }
15537
15538 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15539 {
15540         struct intel_connector *connector;
15541         struct drm_device *dev = encoder->base.dev;
15542
15543         /* We need to check both for a crtc link (meaning that the
15544          * encoder is active and trying to read from a pipe) and the
15545          * pipe itself being active. */
15546         bool has_active_crtc = encoder->base.crtc &&
15547                 to_intel_crtc(encoder->base.crtc)->active;
15548
15549         if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15550                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15551                               encoder->base.base.id,
15552                               encoder->base.name);
15553
15554                 /* Connector is active, but has no active pipe. This is
15555                  * fallout from our resume register restoring. Disable
15556                  * the encoder manually again. */
15557                 if (encoder->base.crtc) {
15558                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15559                                       encoder->base.base.id,
15560                                       encoder->base.name);
15561                         encoder->disable(encoder);
15562                         if (encoder->post_disable)
15563                                 encoder->post_disable(encoder);
15564                 }
15565                 encoder->base.crtc = NULL;
15566
15567                 /* Inconsistent output/port/pipe state happens presumably due to
15568                  * a bug in one of the get_hw_state functions. Or someplace else
15569                  * in our code, like the register restore mess on resume. Clamp
15570                  * things to off as a safer default. */
15571                 for_each_intel_connector(dev, connector) {
15572                         if (connector->encoder != encoder)
15573                                 continue;
15574                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15575                         connector->base.encoder = NULL;
15576                 }
15577         }
15578         /* Enabled encoders without active connectors will be fixed in
15579          * the crtc fixup. */
15580 }
15581
15582 void i915_redisable_vga_power_on(struct drm_device *dev)
15583 {
15584         struct drm_i915_private *dev_priv = dev->dev_private;
15585         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15586
15587         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15588                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15589                 i915_disable_vga(dev);
15590         }
15591 }
15592
15593 void i915_redisable_vga(struct drm_device *dev)
15594 {
15595         struct drm_i915_private *dev_priv = dev->dev_private;
15596
15597         /* This function can be called both from intel_modeset_setup_hw_state or
15598          * at a very early point in our resume sequence, where the power well
15599          * structures are not yet restored. Since this function is at a very
15600          * paranoid "someone might have enabled VGA while we were not looking"
15601          * level, just check if the power well is enabled instead of trying to
15602          * follow the "don't touch the power well if we don't need it" policy
15603          * the rest of the driver uses. */
15604         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15605                 return;
15606
15607         i915_redisable_vga_power_on(dev);
15608
15609         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15610 }
15611
15612 static bool primary_get_hw_state(struct intel_plane *plane)
15613 {
15614         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15615
15616         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15617 }
15618
15619 /* FIXME read out full plane state for all planes */
15620 static void readout_plane_state(struct intel_crtc *crtc)
15621 {
15622         struct drm_plane *primary = crtc->base.primary;
15623         struct intel_plane_state *plane_state =
15624                 to_intel_plane_state(primary->state);
15625
15626         plane_state->visible = crtc->active &&
15627                 primary_get_hw_state(to_intel_plane(primary));
15628
15629         if (plane_state->visible)
15630                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15631 }
15632
15633 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15634 {
15635         struct drm_i915_private *dev_priv = dev->dev_private;
15636         enum pipe pipe;
15637         struct intel_crtc *crtc;
15638         struct intel_encoder *encoder;
15639         struct intel_connector *connector;
15640         int i;
15641
15642         dev_priv->active_crtcs = 0;
15643
15644         for_each_intel_crtc(dev, crtc) {
15645                 struct intel_crtc_state *crtc_state = crtc->config;
15646                 int pixclk = 0;
15647
15648                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, &crtc_state->base);
15649                 memset(crtc_state, 0, sizeof(*crtc_state));
15650                 crtc_state->base.crtc = &crtc->base;
15651
15652                 crtc_state->base.active = crtc_state->base.enable =
15653                         dev_priv->display.get_pipe_config(crtc, crtc_state);
15654
15655                 crtc->base.enabled = crtc_state->base.enable;
15656                 crtc->active = crtc_state->base.active;
15657
15658                 if (crtc_state->base.active) {
15659                         dev_priv->active_crtcs |= 1 << crtc->pipe;
15660
15661                         if (IS_BROADWELL(dev_priv)) {
15662                                 pixclk = ilk_pipe_pixel_rate(crtc_state);
15663
15664                                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15665                                 if (crtc_state->ips_enabled)
15666                                         pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15667                         } else if (IS_VALLEYVIEW(dev_priv) ||
15668                                    IS_CHERRYVIEW(dev_priv) ||
15669                                    IS_BROXTON(dev_priv))
15670                                 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15671                         else
15672                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15673                 }
15674
15675                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15676
15677                 readout_plane_state(crtc);
15678
15679                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15680                               crtc->base.base.id,
15681                               crtc->active ? "enabled" : "disabled");
15682         }
15683
15684         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15685                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15686
15687                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15688                                                   &pll->config.hw_state);
15689                 pll->config.crtc_mask = 0;
15690                 for_each_intel_crtc(dev, crtc) {
15691                         if (crtc->active && crtc->config->shared_dpll == pll)
15692                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15693                 }
15694                 pll->active_mask = pll->config.crtc_mask;
15695
15696                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15697                               pll->name, pll->config.crtc_mask, pll->on);
15698         }
15699
15700         for_each_intel_encoder(dev, encoder) {
15701                 pipe = 0;
15702
15703                 if (encoder->get_hw_state(encoder, &pipe)) {
15704                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15705                         encoder->base.crtc = &crtc->base;
15706                         encoder->get_config(encoder, crtc->config);
15707                 } else {
15708                         encoder->base.crtc = NULL;
15709                 }
15710
15711                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15712                               encoder->base.base.id,
15713                               encoder->base.name,
15714                               encoder->base.crtc ? "enabled" : "disabled",
15715                               pipe_name(pipe));
15716         }
15717
15718         for_each_intel_connector(dev, connector) {
15719                 if (connector->get_hw_state(connector)) {
15720                         connector->base.dpms = DRM_MODE_DPMS_ON;
15721
15722                         encoder = connector->encoder;
15723                         connector->base.encoder = &encoder->base;
15724
15725                         if (encoder->base.crtc &&
15726                             encoder->base.crtc->state->active) {
15727                                 /*
15728                                  * This has to be done during hardware readout
15729                                  * because anything calling .crtc_disable may
15730                                  * rely on the connector_mask being accurate.
15731                                  */
15732                                 encoder->base.crtc->state->connector_mask |=
15733                                         1 << drm_connector_index(&connector->base);
15734                                 encoder->base.crtc->state->encoder_mask |=
15735                                         1 << drm_encoder_index(&encoder->base);
15736                         }
15737
15738                 } else {
15739                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15740                         connector->base.encoder = NULL;
15741                 }
15742                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15743                               connector->base.base.id,
15744                               connector->base.name,
15745                               connector->base.encoder ? "enabled" : "disabled");
15746         }
15747
15748         for_each_intel_crtc(dev, crtc) {
15749                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15750
15751                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15752                 if (crtc->base.state->active) {
15753                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15754                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15755                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15756
15757                         /*
15758                          * The initial mode needs to be set in order to keep
15759                          * the atomic core happy. It wants a valid mode if the
15760                          * crtc's enabled, so we do the above call.
15761                          *
15762                          * At this point some state updated by the connectors
15763                          * in their ->detect() callback has not run yet, so
15764                          * no recalculation can be done yet.
15765                          *
15766                          * Even if we could do a recalculation and modeset
15767                          * right now it would cause a double modeset if
15768                          * fbdev or userspace chooses a different initial mode.
15769                          *
15770                          * If that happens, someone indicated they wanted a
15771                          * mode change, which means it's safe to do a full
15772                          * recalculation.
15773                          */
15774                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15775
15776                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15777                         update_scanline_offset(crtc);
15778                 }
15779
15780                 intel_pipe_config_sanity_check(dev_priv, crtc->config);
15781         }
15782 }
15783
15784 /* Scan out the current hw modeset state,
15785  * and sanitizes it to the current state
15786  */
15787 static void
15788 intel_modeset_setup_hw_state(struct drm_device *dev)
15789 {
15790         struct drm_i915_private *dev_priv = dev->dev_private;
15791         enum pipe pipe;
15792         struct intel_crtc *crtc;
15793         struct intel_encoder *encoder;
15794         int i;
15795
15796         intel_modeset_readout_hw_state(dev);
15797
15798         /* HW state is read out, now we need to sanitize this mess. */
15799         for_each_intel_encoder(dev, encoder) {
15800                 intel_sanitize_encoder(encoder);
15801         }
15802
15803         for_each_pipe(dev_priv, pipe) {
15804                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15805                 intel_sanitize_crtc(crtc);
15806                 intel_dump_pipe_config(crtc, crtc->config,
15807                                        "[setup_hw_state]");
15808         }
15809
15810         intel_modeset_update_connector_atomic_state(dev);
15811
15812         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15813                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15814
15815                 if (!pll->on || pll->active_mask)
15816                         continue;
15817
15818                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15819
15820                 pll->funcs.disable(dev_priv, pll);
15821                 pll->on = false;
15822         }
15823
15824         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
15825                 vlv_wm_get_hw_state(dev);
15826         else if (IS_GEN9(dev))
15827                 skl_wm_get_hw_state(dev);
15828         else if (HAS_PCH_SPLIT(dev))
15829                 ilk_wm_get_hw_state(dev);
15830
15831         for_each_intel_crtc(dev, crtc) {
15832                 unsigned long put_domains;
15833
15834                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15835                 if (WARN_ON(put_domains))
15836                         modeset_put_power_domains(dev_priv, put_domains);
15837         }
15838         intel_display_set_init_power(dev_priv, false);
15839
15840         intel_fbc_init_pipe_state(dev_priv);
15841 }
15842
15843 void intel_display_resume(struct drm_device *dev)
15844 {
15845         struct drm_i915_private *dev_priv = to_i915(dev);
15846         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15847         struct drm_modeset_acquire_ctx ctx;
15848         int ret;
15849         bool setup = false;
15850
15851         dev_priv->modeset_restore_state = NULL;
15852
15853         /*
15854          * This is a cludge because with real atomic modeset mode_config.mutex
15855          * won't be taken. Unfortunately some probed state like
15856          * audio_codec_enable is still protected by mode_config.mutex, so lock
15857          * it here for now.
15858          */
15859         mutex_lock(&dev->mode_config.mutex);
15860         drm_modeset_acquire_init(&ctx, 0);
15861
15862 retry:
15863         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15864
15865         if (ret == 0 && !setup) {
15866                 setup = true;
15867
15868                 intel_modeset_setup_hw_state(dev);
15869                 i915_redisable_vga(dev);
15870         }
15871
15872         if (ret == 0 && state) {
15873                 struct drm_crtc_state *crtc_state;
15874                 struct drm_crtc *crtc;
15875                 int i;
15876
15877                 state->acquire_ctx = &ctx;
15878
15879                 for_each_crtc_in_state(state, crtc, crtc_state, i) {
15880                         /*
15881                          * Force recalculation even if we restore
15882                          * current state. With fast modeset this may not result
15883                          * in a modeset when the state is compatible.
15884                          */
15885                         crtc_state->mode_changed = true;
15886                 }
15887
15888                 ret = drm_atomic_commit(state);
15889         }
15890
15891         if (ret == -EDEADLK) {
15892                 drm_modeset_backoff(&ctx);
15893                 goto retry;
15894         }
15895
15896         drm_modeset_drop_locks(&ctx);
15897         drm_modeset_acquire_fini(&ctx);
15898         mutex_unlock(&dev->mode_config.mutex);
15899
15900         if (ret) {
15901                 DRM_ERROR("Restoring old state failed with %i\n", ret);
15902                 drm_atomic_state_free(state);
15903         }
15904 }
15905
15906 void intel_modeset_gem_init(struct drm_device *dev)
15907 {
15908         struct drm_crtc *c;
15909         struct drm_i915_gem_object *obj;
15910         int ret;
15911
15912         intel_init_gt_powersave(dev);
15913
15914         intel_modeset_init_hw(dev);
15915
15916         intel_setup_overlay(dev);
15917
15918         /*
15919          * Make sure any fbs we allocated at startup are properly
15920          * pinned & fenced.  When we do the allocation it's too early
15921          * for this.
15922          */
15923         for_each_crtc(dev, c) {
15924                 obj = intel_fb_obj(c->primary->fb);
15925                 if (obj == NULL)
15926                         continue;
15927
15928                 mutex_lock(&dev->struct_mutex);
15929                 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
15930                                                  c->primary->state->rotation);
15931                 mutex_unlock(&dev->struct_mutex);
15932                 if (ret) {
15933                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15934                                   to_intel_crtc(c)->pipe);
15935                         drm_framebuffer_unreference(c->primary->fb);
15936                         c->primary->fb = NULL;
15937                         c->primary->crtc = c->primary->state->crtc = NULL;
15938                         update_state_fb(c->primary);
15939                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15940                 }
15941         }
15942
15943         intel_backlight_register(dev);
15944 }
15945
15946 void intel_connector_unregister(struct intel_connector *intel_connector)
15947 {
15948         struct drm_connector *connector = &intel_connector->base;
15949
15950         intel_panel_destroy_backlight(connector);
15951         drm_connector_unregister(connector);
15952 }
15953
15954 void intel_modeset_cleanup(struct drm_device *dev)
15955 {
15956         struct drm_i915_private *dev_priv = dev->dev_private;
15957         struct intel_connector *connector;
15958
15959         intel_disable_gt_powersave(dev);
15960
15961         intel_backlight_unregister(dev);
15962
15963         /*
15964          * Interrupts and polling as the first thing to avoid creating havoc.
15965          * Too much stuff here (turning of connectors, ...) would
15966          * experience fancy races otherwise.
15967          */
15968         intel_irq_uninstall(dev_priv);
15969
15970         /*
15971          * Due to the hpd irq storm handling the hotplug work can re-arm the
15972          * poll handlers. Hence disable polling after hpd handling is shut down.
15973          */
15974         drm_kms_helper_poll_fini(dev);
15975
15976         intel_unregister_dsm_handler();
15977
15978         intel_fbc_global_disable(dev_priv);
15979
15980         /* flush any delayed tasks or pending work */
15981         flush_scheduled_work();
15982
15983         /* destroy the backlight and sysfs files before encoders/connectors */
15984         for_each_intel_connector(dev, connector)
15985                 connector->unregister(connector);
15986
15987         drm_mode_config_cleanup(dev);
15988
15989         intel_cleanup_overlay(dev);
15990
15991         intel_cleanup_gt_powersave(dev);
15992
15993         intel_teardown_gmbus(dev);
15994 }
15995
15996 /*
15997  * Return which encoder is currently attached for connector.
15998  */
15999 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
16000 {
16001         return &intel_attached_encoder(connector)->base;
16002 }
16003
16004 void intel_connector_attach_encoder(struct intel_connector *connector,
16005                                     struct intel_encoder *encoder)
16006 {
16007         connector->encoder = encoder;
16008         drm_mode_connector_attach_encoder(&connector->base,
16009                                           &encoder->base);
16010 }
16011
16012 /*
16013  * set vga decode state - true == enable VGA decode
16014  */
16015 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16016 {
16017         struct drm_i915_private *dev_priv = dev->dev_private;
16018         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16019         u16 gmch_ctrl;
16020
16021         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16022                 DRM_ERROR("failed to read control word\n");
16023                 return -EIO;
16024         }
16025
16026         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16027                 return 0;
16028
16029         if (state)
16030                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16031         else
16032                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16033
16034         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16035                 DRM_ERROR("failed to write control word\n");
16036                 return -EIO;
16037         }
16038
16039         return 0;
16040 }
16041
16042 struct intel_display_error_state {
16043
16044         u32 power_well_driver;
16045
16046         int num_transcoders;
16047
16048         struct intel_cursor_error_state {
16049                 u32 control;
16050                 u32 position;
16051                 u32 base;
16052                 u32 size;
16053         } cursor[I915_MAX_PIPES];
16054
16055         struct intel_pipe_error_state {
16056                 bool power_domain_on;
16057                 u32 source;
16058                 u32 stat;
16059         } pipe[I915_MAX_PIPES];
16060
16061         struct intel_plane_error_state {
16062                 u32 control;
16063                 u32 stride;
16064                 u32 size;
16065                 u32 pos;
16066                 u32 addr;
16067                 u32 surface;
16068                 u32 tile_offset;
16069         } plane[I915_MAX_PIPES];
16070
16071         struct intel_transcoder_error_state {
16072                 bool power_domain_on;
16073                 enum transcoder cpu_transcoder;
16074
16075                 u32 conf;
16076
16077                 u32 htotal;
16078                 u32 hblank;
16079                 u32 hsync;
16080                 u32 vtotal;
16081                 u32 vblank;
16082                 u32 vsync;
16083         } transcoder[4];
16084 };
16085
16086 struct intel_display_error_state *
16087 intel_display_capture_error_state(struct drm_device *dev)
16088 {
16089         struct drm_i915_private *dev_priv = dev->dev_private;
16090         struct intel_display_error_state *error;
16091         int transcoders[] = {
16092                 TRANSCODER_A,
16093                 TRANSCODER_B,
16094                 TRANSCODER_C,
16095                 TRANSCODER_EDP,
16096         };
16097         int i;
16098
16099         if (INTEL_INFO(dev)->num_pipes == 0)
16100                 return NULL;
16101
16102         error = kzalloc(sizeof(*error), GFP_ATOMIC);
16103         if (error == NULL)
16104                 return NULL;
16105
16106         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16107                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16108
16109         for_each_pipe(dev_priv, i) {
16110                 error->pipe[i].power_domain_on =
16111                         __intel_display_power_is_enabled(dev_priv,
16112                                                          POWER_DOMAIN_PIPE(i));
16113                 if (!error->pipe[i].power_domain_on)
16114                         continue;
16115
16116                 error->cursor[i].control = I915_READ(CURCNTR(i));
16117                 error->cursor[i].position = I915_READ(CURPOS(i));
16118                 error->cursor[i].base = I915_READ(CURBASE(i));
16119
16120                 error->plane[i].control = I915_READ(DSPCNTR(i));
16121                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16122                 if (INTEL_INFO(dev)->gen <= 3) {
16123                         error->plane[i].size = I915_READ(DSPSIZE(i));
16124                         error->plane[i].pos = I915_READ(DSPPOS(i));
16125                 }
16126                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16127                         error->plane[i].addr = I915_READ(DSPADDR(i));
16128                 if (INTEL_INFO(dev)->gen >= 4) {
16129                         error->plane[i].surface = I915_READ(DSPSURF(i));
16130                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16131                 }
16132
16133                 error->pipe[i].source = I915_READ(PIPESRC(i));
16134
16135                 if (HAS_GMCH_DISPLAY(dev))
16136                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
16137         }
16138
16139         /* Note: this does not include DSI transcoders. */
16140         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
16141         if (HAS_DDI(dev_priv->dev))
16142                 error->num_transcoders++; /* Account for eDP. */
16143
16144         for (i = 0; i < error->num_transcoders; i++) {
16145                 enum transcoder cpu_transcoder = transcoders[i];
16146
16147                 error->transcoder[i].power_domain_on =
16148                         __intel_display_power_is_enabled(dev_priv,
16149                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16150                 if (!error->transcoder[i].power_domain_on)
16151                         continue;
16152
16153                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16154
16155                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16156                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16157                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16158                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16159                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16160                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16161                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16162         }
16163
16164         return error;
16165 }
16166
16167 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16168
16169 void
16170 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16171                                 struct drm_device *dev,
16172                                 struct intel_display_error_state *error)
16173 {
16174         struct drm_i915_private *dev_priv = dev->dev_private;
16175         int i;
16176
16177         if (!error)
16178                 return;
16179
16180         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16181         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16182                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16183                            error->power_well_driver);
16184         for_each_pipe(dev_priv, i) {
16185                 err_printf(m, "Pipe [%d]:\n", i);
16186                 err_printf(m, "  Power: %s\n",
16187                            onoff(error->pipe[i].power_domain_on));
16188                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16189                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16190
16191                 err_printf(m, "Plane [%d]:\n", i);
16192                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16193                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16194                 if (INTEL_INFO(dev)->gen <= 3) {
16195                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16196                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16197                 }
16198                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16199                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16200                 if (INTEL_INFO(dev)->gen >= 4) {
16201                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16202                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16203                 }
16204
16205                 err_printf(m, "Cursor [%d]:\n", i);
16206                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16207                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16208                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16209         }
16210
16211         for (i = 0; i < error->num_transcoders; i++) {
16212                 err_printf(m, "CPU transcoder: %s\n",
16213                            transcoder_name(error->transcoder[i].cpu_transcoder));
16214                 err_printf(m, "  Power: %s\n",
16215                            onoff(error->transcoder[i].power_domain_on));
16216                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16217                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16218                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16219                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16220                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16221                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16222                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16223         }
16224 }