drm/i915: Convert wait_for(I915_READ(reg)) to intel_wait_for_register()
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_gem_dmabuf.h"
40 #include "intel_dsi.h"
41 #include "i915_trace.h"
42 #include <drm/drm_atomic.h>
43 #include <drm/drm_atomic_helper.h>
44 #include <drm/drm_dp_helper.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_plane_helper.h>
47 #include <drm/drm_rect.h>
48 #include <linux/dma_remapping.h>
49 #include <linux/reservation.h>
50
51 static bool is_mmio_work(struct intel_flip_work *work)
52 {
53         return work->mmio_work.func;
54 }
55
56 /* Primary plane formats for gen <= 3 */
57 static const uint32_t i8xx_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB1555,
61         DRM_FORMAT_XRGB8888,
62 };
63
64 /* Primary plane formats for gen >= 4 */
65 static const uint32_t i965_primary_formats[] = {
66         DRM_FORMAT_C8,
67         DRM_FORMAT_RGB565,
68         DRM_FORMAT_XRGB8888,
69         DRM_FORMAT_XBGR8888,
70         DRM_FORMAT_XRGB2101010,
71         DRM_FORMAT_XBGR2101010,
72 };
73
74 static const uint32_t skl_primary_formats[] = {
75         DRM_FORMAT_C8,
76         DRM_FORMAT_RGB565,
77         DRM_FORMAT_XRGB8888,
78         DRM_FORMAT_XBGR8888,
79         DRM_FORMAT_ARGB8888,
80         DRM_FORMAT_ABGR8888,
81         DRM_FORMAT_XRGB2101010,
82         DRM_FORMAT_XBGR2101010,
83         DRM_FORMAT_YUYV,
84         DRM_FORMAT_YVYU,
85         DRM_FORMAT_UYVY,
86         DRM_FORMAT_VYUY,
87 };
88
89 /* Cursor formats */
90 static const uint32_t intel_cursor_formats[] = {
91         DRM_FORMAT_ARGB8888,
92 };
93
94 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
95                                 struct intel_crtc_state *pipe_config);
96 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
97                                    struct intel_crtc_state *pipe_config);
98
99 static int intel_framebuffer_init(struct drm_device *dev,
100                                   struct intel_framebuffer *ifb,
101                                   struct drm_mode_fb_cmd2 *mode_cmd,
102                                   struct drm_i915_gem_object *obj);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107                                          struct intel_link_m_n *m_n,
108                                          struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113                             const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115                             const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
119         struct intel_crtc_state *crtc_state);
120 static void skylake_pfit_enable(struct intel_crtc *crtc);
121 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122 static void ironlake_pfit_enable(struct intel_crtc *crtc);
123 static void intel_modeset_setup_hw_state(struct drm_device *dev);
124 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
125 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
126 static int bxt_calc_cdclk(int max_pixclk);
127
128 struct intel_limit {
129         struct {
130                 int min, max;
131         } dot, vco, n, m, m1, m2, p, p1;
132
133         struct {
134                 int dot_limit;
135                 int p2_slow, p2_fast;
136         } p2;
137 };
138
139 /* returns HPLL frequency in kHz */
140 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
141 {
142         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
143
144         /* Obtain SKU information */
145         mutex_lock(&dev_priv->sb_lock);
146         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
147                 CCK_FUSE_HPLL_FREQ_MASK;
148         mutex_unlock(&dev_priv->sb_lock);
149
150         return vco_freq[hpll_freq] * 1000;
151 }
152
153 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
154                       const char *name, u32 reg, int ref_freq)
155 {
156         u32 val;
157         int divider;
158
159         mutex_lock(&dev_priv->sb_lock);
160         val = vlv_cck_read(dev_priv, reg);
161         mutex_unlock(&dev_priv->sb_lock);
162
163         divider = val & CCK_FREQUENCY_VALUES;
164
165         WARN((val & CCK_FREQUENCY_STATUS) !=
166              (divider << CCK_FREQUENCY_STATUS_SHIFT),
167              "%s change in progress\n", name);
168
169         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
170 }
171
172 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
173                                   const char *name, u32 reg)
174 {
175         if (dev_priv->hpll_freq == 0)
176                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
177
178         return vlv_get_cck_clock(dev_priv, name, reg,
179                                  dev_priv->hpll_freq);
180 }
181
182 static int
183 intel_pch_rawclk(struct drm_i915_private *dev_priv)
184 {
185         return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
186 }
187
188 static int
189 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
190 {
191         /* RAWCLK_FREQ_VLV register updated from power well code */
192         return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
193                                       CCK_DISPLAY_REF_CLOCK_CONTROL);
194 }
195
196 static int
197 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
198 {
199         uint32_t clkcfg;
200
201         /* hrawclock is 1/4 the FSB frequency */
202         clkcfg = I915_READ(CLKCFG);
203         switch (clkcfg & CLKCFG_FSB_MASK) {
204         case CLKCFG_FSB_400:
205                 return 100000;
206         case CLKCFG_FSB_533:
207                 return 133333;
208         case CLKCFG_FSB_667:
209                 return 166667;
210         case CLKCFG_FSB_800:
211                 return 200000;
212         case CLKCFG_FSB_1067:
213                 return 266667;
214         case CLKCFG_FSB_1333:
215                 return 333333;
216         /* these two are just a guess; one of them might be right */
217         case CLKCFG_FSB_1600:
218         case CLKCFG_FSB_1600_ALT:
219                 return 400000;
220         default:
221                 return 133333;
222         }
223 }
224
225 void intel_update_rawclk(struct drm_i915_private *dev_priv)
226 {
227         if (HAS_PCH_SPLIT(dev_priv))
228                 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
229         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
230                 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
231         else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
232                 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
233         else
234                 return; /* no rawclk on other platforms, or no need to know it */
235
236         DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
237 }
238
239 static void intel_update_czclk(struct drm_i915_private *dev_priv)
240 {
241         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
242                 return;
243
244         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
245                                                       CCK_CZ_CLOCK_CONTROL);
246
247         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
248 }
249
250 static inline u32 /* units of 100MHz */
251 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
252                     const struct intel_crtc_state *pipe_config)
253 {
254         if (HAS_DDI(dev_priv))
255                 return pipe_config->port_clock; /* SPLL */
256         else if (IS_GEN5(dev_priv))
257                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
258         else
259                 return 270000;
260 }
261
262 static const struct intel_limit intel_limits_i8xx_dac = {
263         .dot = { .min = 25000, .max = 350000 },
264         .vco = { .min = 908000, .max = 1512000 },
265         .n = { .min = 2, .max = 16 },
266         .m = { .min = 96, .max = 140 },
267         .m1 = { .min = 18, .max = 26 },
268         .m2 = { .min = 6, .max = 16 },
269         .p = { .min = 4, .max = 128 },
270         .p1 = { .min = 2, .max = 33 },
271         .p2 = { .dot_limit = 165000,
272                 .p2_slow = 4, .p2_fast = 2 },
273 };
274
275 static const struct intel_limit intel_limits_i8xx_dvo = {
276         .dot = { .min = 25000, .max = 350000 },
277         .vco = { .min = 908000, .max = 1512000 },
278         .n = { .min = 2, .max = 16 },
279         .m = { .min = 96, .max = 140 },
280         .m1 = { .min = 18, .max = 26 },
281         .m2 = { .min = 6, .max = 16 },
282         .p = { .min = 4, .max = 128 },
283         .p1 = { .min = 2, .max = 33 },
284         .p2 = { .dot_limit = 165000,
285                 .p2_slow = 4, .p2_fast = 4 },
286 };
287
288 static const struct intel_limit intel_limits_i8xx_lvds = {
289         .dot = { .min = 25000, .max = 350000 },
290         .vco = { .min = 908000, .max = 1512000 },
291         .n = { .min = 2, .max = 16 },
292         .m = { .min = 96, .max = 140 },
293         .m1 = { .min = 18, .max = 26 },
294         .m2 = { .min = 6, .max = 16 },
295         .p = { .min = 4, .max = 128 },
296         .p1 = { .min = 1, .max = 6 },
297         .p2 = { .dot_limit = 165000,
298                 .p2_slow = 14, .p2_fast = 7 },
299 };
300
301 static const struct intel_limit intel_limits_i9xx_sdvo = {
302         .dot = { .min = 20000, .max = 400000 },
303         .vco = { .min = 1400000, .max = 2800000 },
304         .n = { .min = 1, .max = 6 },
305         .m = { .min = 70, .max = 120 },
306         .m1 = { .min = 8, .max = 18 },
307         .m2 = { .min = 3, .max = 7 },
308         .p = { .min = 5, .max = 80 },
309         .p1 = { .min = 1, .max = 8 },
310         .p2 = { .dot_limit = 200000,
311                 .p2_slow = 10, .p2_fast = 5 },
312 };
313
314 static const struct intel_limit intel_limits_i9xx_lvds = {
315         .dot = { .min = 20000, .max = 400000 },
316         .vco = { .min = 1400000, .max = 2800000 },
317         .n = { .min = 1, .max = 6 },
318         .m = { .min = 70, .max = 120 },
319         .m1 = { .min = 8, .max = 18 },
320         .m2 = { .min = 3, .max = 7 },
321         .p = { .min = 7, .max = 98 },
322         .p1 = { .min = 1, .max = 8 },
323         .p2 = { .dot_limit = 112000,
324                 .p2_slow = 14, .p2_fast = 7 },
325 };
326
327
328 static const struct intel_limit intel_limits_g4x_sdvo = {
329         .dot = { .min = 25000, .max = 270000 },
330         .vco = { .min = 1750000, .max = 3500000},
331         .n = { .min = 1, .max = 4 },
332         .m = { .min = 104, .max = 138 },
333         .m1 = { .min = 17, .max = 23 },
334         .m2 = { .min = 5, .max = 11 },
335         .p = { .min = 10, .max = 30 },
336         .p1 = { .min = 1, .max = 3},
337         .p2 = { .dot_limit = 270000,
338                 .p2_slow = 10,
339                 .p2_fast = 10
340         },
341 };
342
343 static const struct intel_limit intel_limits_g4x_hdmi = {
344         .dot = { .min = 22000, .max = 400000 },
345         .vco = { .min = 1750000, .max = 3500000},
346         .n = { .min = 1, .max = 4 },
347         .m = { .min = 104, .max = 138 },
348         .m1 = { .min = 16, .max = 23 },
349         .m2 = { .min = 5, .max = 11 },
350         .p = { .min = 5, .max = 80 },
351         .p1 = { .min = 1, .max = 8},
352         .p2 = { .dot_limit = 165000,
353                 .p2_slow = 10, .p2_fast = 5 },
354 };
355
356 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
357         .dot = { .min = 20000, .max = 115000 },
358         .vco = { .min = 1750000, .max = 3500000 },
359         .n = { .min = 1, .max = 3 },
360         .m = { .min = 104, .max = 138 },
361         .m1 = { .min = 17, .max = 23 },
362         .m2 = { .min = 5, .max = 11 },
363         .p = { .min = 28, .max = 112 },
364         .p1 = { .min = 2, .max = 8 },
365         .p2 = { .dot_limit = 0,
366                 .p2_slow = 14, .p2_fast = 14
367         },
368 };
369
370 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
371         .dot = { .min = 80000, .max = 224000 },
372         .vco = { .min = 1750000, .max = 3500000 },
373         .n = { .min = 1, .max = 3 },
374         .m = { .min = 104, .max = 138 },
375         .m1 = { .min = 17, .max = 23 },
376         .m2 = { .min = 5, .max = 11 },
377         .p = { .min = 14, .max = 42 },
378         .p1 = { .min = 2, .max = 6 },
379         .p2 = { .dot_limit = 0,
380                 .p2_slow = 7, .p2_fast = 7
381         },
382 };
383
384 static const struct intel_limit intel_limits_pineview_sdvo = {
385         .dot = { .min = 20000, .max = 400000},
386         .vco = { .min = 1700000, .max = 3500000 },
387         /* Pineview's Ncounter is a ring counter */
388         .n = { .min = 3, .max = 6 },
389         .m = { .min = 2, .max = 256 },
390         /* Pineview only has one combined m divider, which we treat as m2. */
391         .m1 = { .min = 0, .max = 0 },
392         .m2 = { .min = 0, .max = 254 },
393         .p = { .min = 5, .max = 80 },
394         .p1 = { .min = 1, .max = 8 },
395         .p2 = { .dot_limit = 200000,
396                 .p2_slow = 10, .p2_fast = 5 },
397 };
398
399 static const struct intel_limit intel_limits_pineview_lvds = {
400         .dot = { .min = 20000, .max = 400000 },
401         .vco = { .min = 1700000, .max = 3500000 },
402         .n = { .min = 3, .max = 6 },
403         .m = { .min = 2, .max = 256 },
404         .m1 = { .min = 0, .max = 0 },
405         .m2 = { .min = 0, .max = 254 },
406         .p = { .min = 7, .max = 112 },
407         .p1 = { .min = 1, .max = 8 },
408         .p2 = { .dot_limit = 112000,
409                 .p2_slow = 14, .p2_fast = 14 },
410 };
411
412 /* Ironlake / Sandybridge
413  *
414  * We calculate clock using (register_value + 2) for N/M1/M2, so here
415  * the range value for them is (actual_value - 2).
416  */
417 static const struct intel_limit intel_limits_ironlake_dac = {
418         .dot = { .min = 25000, .max = 350000 },
419         .vco = { .min = 1760000, .max = 3510000 },
420         .n = { .min = 1, .max = 5 },
421         .m = { .min = 79, .max = 127 },
422         .m1 = { .min = 12, .max = 22 },
423         .m2 = { .min = 5, .max = 9 },
424         .p = { .min = 5, .max = 80 },
425         .p1 = { .min = 1, .max = 8 },
426         .p2 = { .dot_limit = 225000,
427                 .p2_slow = 10, .p2_fast = 5 },
428 };
429
430 static const struct intel_limit intel_limits_ironlake_single_lvds = {
431         .dot = { .min = 25000, .max = 350000 },
432         .vco = { .min = 1760000, .max = 3510000 },
433         .n = { .min = 1, .max = 3 },
434         .m = { .min = 79, .max = 118 },
435         .m1 = { .min = 12, .max = 22 },
436         .m2 = { .min = 5, .max = 9 },
437         .p = { .min = 28, .max = 112 },
438         .p1 = { .min = 2, .max = 8 },
439         .p2 = { .dot_limit = 225000,
440                 .p2_slow = 14, .p2_fast = 14 },
441 };
442
443 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
444         .dot = { .min = 25000, .max = 350000 },
445         .vco = { .min = 1760000, .max = 3510000 },
446         .n = { .min = 1, .max = 3 },
447         .m = { .min = 79, .max = 127 },
448         .m1 = { .min = 12, .max = 22 },
449         .m2 = { .min = 5, .max = 9 },
450         .p = { .min = 14, .max = 56 },
451         .p1 = { .min = 2, .max = 8 },
452         .p2 = { .dot_limit = 225000,
453                 .p2_slow = 7, .p2_fast = 7 },
454 };
455
456 /* LVDS 100mhz refclk limits. */
457 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
458         .dot = { .min = 25000, .max = 350000 },
459         .vco = { .min = 1760000, .max = 3510000 },
460         .n = { .min = 1, .max = 2 },
461         .m = { .min = 79, .max = 126 },
462         .m1 = { .min = 12, .max = 22 },
463         .m2 = { .min = 5, .max = 9 },
464         .p = { .min = 28, .max = 112 },
465         .p1 = { .min = 2, .max = 8 },
466         .p2 = { .dot_limit = 225000,
467                 .p2_slow = 14, .p2_fast = 14 },
468 };
469
470 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
471         .dot = { .min = 25000, .max = 350000 },
472         .vco = { .min = 1760000, .max = 3510000 },
473         .n = { .min = 1, .max = 3 },
474         .m = { .min = 79, .max = 126 },
475         .m1 = { .min = 12, .max = 22 },
476         .m2 = { .min = 5, .max = 9 },
477         .p = { .min = 14, .max = 42 },
478         .p1 = { .min = 2, .max = 6 },
479         .p2 = { .dot_limit = 225000,
480                 .p2_slow = 7, .p2_fast = 7 },
481 };
482
483 static const struct intel_limit intel_limits_vlv = {
484          /*
485           * These are the data rate limits (measured in fast clocks)
486           * since those are the strictest limits we have. The fast
487           * clock and actual rate limits are more relaxed, so checking
488           * them would make no difference.
489           */
490         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
491         .vco = { .min = 4000000, .max = 6000000 },
492         .n = { .min = 1, .max = 7 },
493         .m1 = { .min = 2, .max = 3 },
494         .m2 = { .min = 11, .max = 156 },
495         .p1 = { .min = 2, .max = 3 },
496         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
497 };
498
499 static const struct intel_limit intel_limits_chv = {
500         /*
501          * These are the data rate limits (measured in fast clocks)
502          * since those are the strictest limits we have.  The fast
503          * clock and actual rate limits are more relaxed, so checking
504          * them would make no difference.
505          */
506         .dot = { .min = 25000 * 5, .max = 540000 * 5},
507         .vco = { .min = 4800000, .max = 6480000 },
508         .n = { .min = 1, .max = 1 },
509         .m1 = { .min = 2, .max = 2 },
510         .m2 = { .min = 24 << 22, .max = 175 << 22 },
511         .p1 = { .min = 2, .max = 4 },
512         .p2 = { .p2_slow = 1, .p2_fast = 14 },
513 };
514
515 static const struct intel_limit intel_limits_bxt = {
516         /* FIXME: find real dot limits */
517         .dot = { .min = 0, .max = INT_MAX },
518         .vco = { .min = 4800000, .max = 6700000 },
519         .n = { .min = 1, .max = 1 },
520         .m1 = { .min = 2, .max = 2 },
521         /* FIXME: find real m2 limits */
522         .m2 = { .min = 2 << 22, .max = 255 << 22 },
523         .p1 = { .min = 2, .max = 4 },
524         .p2 = { .p2_slow = 1, .p2_fast = 20 },
525 };
526
527 static bool
528 needs_modeset(struct drm_crtc_state *state)
529 {
530         return drm_atomic_crtc_needs_modeset(state);
531 }
532
533 /**
534  * Returns whether any output on the specified pipe is of the specified type
535  */
536 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
537 {
538         struct drm_device *dev = crtc->base.dev;
539         struct intel_encoder *encoder;
540
541         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
542                 if (encoder->type == type)
543                         return true;
544
545         return false;
546 }
547
548 /**
549  * Returns whether any output on the specified pipe will have the specified
550  * type after a staged modeset is complete, i.e., the same as
551  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
552  * encoder->crtc.
553  */
554 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
555                                       int type)
556 {
557         struct drm_atomic_state *state = crtc_state->base.state;
558         struct drm_connector *connector;
559         struct drm_connector_state *connector_state;
560         struct intel_encoder *encoder;
561         int i, num_connectors = 0;
562
563         for_each_connector_in_state(state, connector, connector_state, i) {
564                 if (connector_state->crtc != crtc_state->base.crtc)
565                         continue;
566
567                 num_connectors++;
568
569                 encoder = to_intel_encoder(connector_state->best_encoder);
570                 if (encoder->type == type)
571                         return true;
572         }
573
574         WARN_ON(num_connectors == 0);
575
576         return false;
577 }
578
579 /*
580  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
581  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
582  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
583  * The helpers' return value is the rate of the clock that is fed to the
584  * display engine's pipe which can be the above fast dot clock rate or a
585  * divided-down version of it.
586  */
587 /* m1 is reserved as 0 in Pineview, n is a ring counter */
588 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
589 {
590         clock->m = clock->m2 + 2;
591         clock->p = clock->p1 * clock->p2;
592         if (WARN_ON(clock->n == 0 || clock->p == 0))
593                 return 0;
594         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
595         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
596
597         return clock->dot;
598 }
599
600 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
601 {
602         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
603 }
604
605 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
606 {
607         clock->m = i9xx_dpll_compute_m(clock);
608         clock->p = clock->p1 * clock->p2;
609         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
610                 return 0;
611         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
612         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
613
614         return clock->dot;
615 }
616
617 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
618 {
619         clock->m = clock->m1 * clock->m2;
620         clock->p = clock->p1 * clock->p2;
621         if (WARN_ON(clock->n == 0 || clock->p == 0))
622                 return 0;
623         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
624         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
625
626         return clock->dot / 5;
627 }
628
629 int chv_calc_dpll_params(int refclk, struct dpll *clock)
630 {
631         clock->m = clock->m1 * clock->m2;
632         clock->p = clock->p1 * clock->p2;
633         if (WARN_ON(clock->n == 0 || clock->p == 0))
634                 return 0;
635         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
636                         clock->n << 22);
637         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
638
639         return clock->dot / 5;
640 }
641
642 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
643 /**
644  * Returns whether the given set of divisors are valid for a given refclk with
645  * the given connectors.
646  */
647
648 static bool intel_PLL_is_valid(struct drm_device *dev,
649                                const struct intel_limit *limit,
650                                const struct dpll *clock)
651 {
652         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
653                 INTELPllInvalid("n out of range\n");
654         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
655                 INTELPllInvalid("p1 out of range\n");
656         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
657                 INTELPllInvalid("m2 out of range\n");
658         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
659                 INTELPllInvalid("m1 out of range\n");
660
661         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
662             !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
663                 if (clock->m1 <= clock->m2)
664                         INTELPllInvalid("m1 <= m2\n");
665
666         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
667                 if (clock->p < limit->p.min || limit->p.max < clock->p)
668                         INTELPllInvalid("p out of range\n");
669                 if (clock->m < limit->m.min || limit->m.max < clock->m)
670                         INTELPllInvalid("m out of range\n");
671         }
672
673         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
674                 INTELPllInvalid("vco out of range\n");
675         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676          * connector, etc., rather than just a single range.
677          */
678         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
679                 INTELPllInvalid("dot out of range\n");
680
681         return true;
682 }
683
684 static int
685 i9xx_select_p2_div(const struct intel_limit *limit,
686                    const struct intel_crtc_state *crtc_state,
687                    int target)
688 {
689         struct drm_device *dev = crtc_state->base.crtc->dev;
690
691         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
692                 /*
693                  * For LVDS just rely on its current settings for dual-channel.
694                  * We haven't figured out how to reliably set up different
695                  * single/dual channel state, if we even can.
696                  */
697                 if (intel_is_dual_link_lvds(dev))
698                         return limit->p2.p2_fast;
699                 else
700                         return limit->p2.p2_slow;
701         } else {
702                 if (target < limit->p2.dot_limit)
703                         return limit->p2.p2_slow;
704                 else
705                         return limit->p2.p2_fast;
706         }
707 }
708
709 /*
710  * Returns a set of divisors for the desired target clock with the given
711  * refclk, or FALSE.  The returned values represent the clock equation:
712  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
713  *
714  * Target and reference clocks are specified in kHz.
715  *
716  * If match_clock is provided, then best_clock P divider must match the P
717  * divider from @match_clock used for LVDS downclocking.
718  */
719 static bool
720 i9xx_find_best_dpll(const struct intel_limit *limit,
721                     struct intel_crtc_state *crtc_state,
722                     int target, int refclk, struct dpll *match_clock,
723                     struct dpll *best_clock)
724 {
725         struct drm_device *dev = crtc_state->base.crtc->dev;
726         struct dpll clock;
727         int err = target;
728
729         memset(best_clock, 0, sizeof(*best_clock));
730
731         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
732
733         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
734              clock.m1++) {
735                 for (clock.m2 = limit->m2.min;
736                      clock.m2 <= limit->m2.max; clock.m2++) {
737                         if (clock.m2 >= clock.m1)
738                                 break;
739                         for (clock.n = limit->n.min;
740                              clock.n <= limit->n.max; clock.n++) {
741                                 for (clock.p1 = limit->p1.min;
742                                         clock.p1 <= limit->p1.max; clock.p1++) {
743                                         int this_err;
744
745                                         i9xx_calc_dpll_params(refclk, &clock);
746                                         if (!intel_PLL_is_valid(dev, limit,
747                                                                 &clock))
748                                                 continue;
749                                         if (match_clock &&
750                                             clock.p != match_clock->p)
751                                                 continue;
752
753                                         this_err = abs(clock.dot - target);
754                                         if (this_err < err) {
755                                                 *best_clock = clock;
756                                                 err = this_err;
757                                         }
758                                 }
759                         }
760                 }
761         }
762
763         return (err != target);
764 }
765
766 /*
767  * Returns a set of divisors for the desired target clock with the given
768  * refclk, or FALSE.  The returned values represent the clock equation:
769  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
770  *
771  * Target and reference clocks are specified in kHz.
772  *
773  * If match_clock is provided, then best_clock P divider must match the P
774  * divider from @match_clock used for LVDS downclocking.
775  */
776 static bool
777 pnv_find_best_dpll(const struct intel_limit *limit,
778                    struct intel_crtc_state *crtc_state,
779                    int target, int refclk, struct dpll *match_clock,
780                    struct dpll *best_clock)
781 {
782         struct drm_device *dev = crtc_state->base.crtc->dev;
783         struct dpll clock;
784         int err = target;
785
786         memset(best_clock, 0, sizeof(*best_clock));
787
788         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
789
790         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
791              clock.m1++) {
792                 for (clock.m2 = limit->m2.min;
793                      clock.m2 <= limit->m2.max; clock.m2++) {
794                         for (clock.n = limit->n.min;
795                              clock.n <= limit->n.max; clock.n++) {
796                                 for (clock.p1 = limit->p1.min;
797                                         clock.p1 <= limit->p1.max; clock.p1++) {
798                                         int this_err;
799
800                                         pnv_calc_dpll_params(refclk, &clock);
801                                         if (!intel_PLL_is_valid(dev, limit,
802                                                                 &clock))
803                                                 continue;
804                                         if (match_clock &&
805                                             clock.p != match_clock->p)
806                                                 continue;
807
808                                         this_err = abs(clock.dot - target);
809                                         if (this_err < err) {
810                                                 *best_clock = clock;
811                                                 err = this_err;
812                                         }
813                                 }
814                         }
815                 }
816         }
817
818         return (err != target);
819 }
820
821 /*
822  * Returns a set of divisors for the desired target clock with the given
823  * refclk, or FALSE.  The returned values represent the clock equation:
824  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
825  *
826  * Target and reference clocks are specified in kHz.
827  *
828  * If match_clock is provided, then best_clock P divider must match the P
829  * divider from @match_clock used for LVDS downclocking.
830  */
831 static bool
832 g4x_find_best_dpll(const struct intel_limit *limit,
833                    struct intel_crtc_state *crtc_state,
834                    int target, int refclk, struct dpll *match_clock,
835                    struct dpll *best_clock)
836 {
837         struct drm_device *dev = crtc_state->base.crtc->dev;
838         struct dpll clock;
839         int max_n;
840         bool found = false;
841         /* approximately equals target * 0.00585 */
842         int err_most = (target >> 8) + (target >> 9);
843
844         memset(best_clock, 0, sizeof(*best_clock));
845
846         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
847
848         max_n = limit->n.max;
849         /* based on hardware requirement, prefer smaller n to precision */
850         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
851                 /* based on hardware requirement, prefere larger m1,m2 */
852                 for (clock.m1 = limit->m1.max;
853                      clock.m1 >= limit->m1.min; clock.m1--) {
854                         for (clock.m2 = limit->m2.max;
855                              clock.m2 >= limit->m2.min; clock.m2--) {
856                                 for (clock.p1 = limit->p1.max;
857                                      clock.p1 >= limit->p1.min; clock.p1--) {
858                                         int this_err;
859
860                                         i9xx_calc_dpll_params(refclk, &clock);
861                                         if (!intel_PLL_is_valid(dev, limit,
862                                                                 &clock))
863                                                 continue;
864
865                                         this_err = abs(clock.dot - target);
866                                         if (this_err < err_most) {
867                                                 *best_clock = clock;
868                                                 err_most = this_err;
869                                                 max_n = clock.n;
870                                                 found = true;
871                                         }
872                                 }
873                         }
874                 }
875         }
876         return found;
877 }
878
879 /*
880  * Check if the calculated PLL configuration is more optimal compared to the
881  * best configuration and error found so far. Return the calculated error.
882  */
883 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
884                                const struct dpll *calculated_clock,
885                                const struct dpll *best_clock,
886                                unsigned int best_error_ppm,
887                                unsigned int *error_ppm)
888 {
889         /*
890          * For CHV ignore the error and consider only the P value.
891          * Prefer a bigger P value based on HW requirements.
892          */
893         if (IS_CHERRYVIEW(dev)) {
894                 *error_ppm = 0;
895
896                 return calculated_clock->p > best_clock->p;
897         }
898
899         if (WARN_ON_ONCE(!target_freq))
900                 return false;
901
902         *error_ppm = div_u64(1000000ULL *
903                                 abs(target_freq - calculated_clock->dot),
904                              target_freq);
905         /*
906          * Prefer a better P value over a better (smaller) error if the error
907          * is small. Ensure this preference for future configurations too by
908          * setting the error to 0.
909          */
910         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
911                 *error_ppm = 0;
912
913                 return true;
914         }
915
916         return *error_ppm + 10 < best_error_ppm;
917 }
918
919 /*
920  * Returns a set of divisors for the desired target clock with the given
921  * refclk, or FALSE.  The returned values represent the clock equation:
922  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
923  */
924 static bool
925 vlv_find_best_dpll(const struct intel_limit *limit,
926                    struct intel_crtc_state *crtc_state,
927                    int target, int refclk, struct dpll *match_clock,
928                    struct dpll *best_clock)
929 {
930         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
931         struct drm_device *dev = crtc->base.dev;
932         struct dpll clock;
933         unsigned int bestppm = 1000000;
934         /* min update 19.2 MHz */
935         int max_n = min(limit->n.max, refclk / 19200);
936         bool found = false;
937
938         target *= 5; /* fast clock */
939
940         memset(best_clock, 0, sizeof(*best_clock));
941
942         /* based on hardware requirement, prefer smaller n to precision */
943         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
944                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
945                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
946                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
947                                 clock.p = clock.p1 * clock.p2;
948                                 /* based on hardware requirement, prefer bigger m1,m2 values */
949                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
950                                         unsigned int ppm;
951
952                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
953                                                                      refclk * clock.m1);
954
955                                         vlv_calc_dpll_params(refclk, &clock);
956
957                                         if (!intel_PLL_is_valid(dev, limit,
958                                                                 &clock))
959                                                 continue;
960
961                                         if (!vlv_PLL_is_optimal(dev, target,
962                                                                 &clock,
963                                                                 best_clock,
964                                                                 bestppm, &ppm))
965                                                 continue;
966
967                                         *best_clock = clock;
968                                         bestppm = ppm;
969                                         found = true;
970                                 }
971                         }
972                 }
973         }
974
975         return found;
976 }
977
978 /*
979  * Returns a set of divisors for the desired target clock with the given
980  * refclk, or FALSE.  The returned values represent the clock equation:
981  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
982  */
983 static bool
984 chv_find_best_dpll(const struct intel_limit *limit,
985                    struct intel_crtc_state *crtc_state,
986                    int target, int refclk, struct dpll *match_clock,
987                    struct dpll *best_clock)
988 {
989         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
990         struct drm_device *dev = crtc->base.dev;
991         unsigned int best_error_ppm;
992         struct dpll clock;
993         uint64_t m2;
994         int found = false;
995
996         memset(best_clock, 0, sizeof(*best_clock));
997         best_error_ppm = 1000000;
998
999         /*
1000          * Based on hardware doc, the n always set to 1, and m1 always
1001          * set to 2.  If requires to support 200Mhz refclk, we need to
1002          * revisit this because n may not 1 anymore.
1003          */
1004         clock.n = 1, clock.m1 = 2;
1005         target *= 5;    /* fast clock */
1006
1007         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1008                 for (clock.p2 = limit->p2.p2_fast;
1009                                 clock.p2 >= limit->p2.p2_slow;
1010                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1011                         unsigned int error_ppm;
1012
1013                         clock.p = clock.p1 * clock.p2;
1014
1015                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1016                                         clock.n) << 22, refclk * clock.m1);
1017
1018                         if (m2 > INT_MAX/clock.m1)
1019                                 continue;
1020
1021                         clock.m2 = m2;
1022
1023                         chv_calc_dpll_params(refclk, &clock);
1024
1025                         if (!intel_PLL_is_valid(dev, limit, &clock))
1026                                 continue;
1027
1028                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1029                                                 best_error_ppm, &error_ppm))
1030                                 continue;
1031
1032                         *best_clock = clock;
1033                         best_error_ppm = error_ppm;
1034                         found = true;
1035                 }
1036         }
1037
1038         return found;
1039 }
1040
1041 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1042                         struct dpll *best_clock)
1043 {
1044         int refclk = 100000;
1045         const struct intel_limit *limit = &intel_limits_bxt;
1046
1047         return chv_find_best_dpll(limit, crtc_state,
1048                                   target_clock, refclk, NULL, best_clock);
1049 }
1050
1051 bool intel_crtc_active(struct drm_crtc *crtc)
1052 {
1053         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1054
1055         /* Be paranoid as we can arrive here with only partial
1056          * state retrieved from the hardware during setup.
1057          *
1058          * We can ditch the adjusted_mode.crtc_clock check as soon
1059          * as Haswell has gained clock readout/fastboot support.
1060          *
1061          * We can ditch the crtc->primary->fb check as soon as we can
1062          * properly reconstruct framebuffers.
1063          *
1064          * FIXME: The intel_crtc->active here should be switched to
1065          * crtc->state->active once we have proper CRTC states wired up
1066          * for atomic.
1067          */
1068         return intel_crtc->active && crtc->primary->state->fb &&
1069                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1070 }
1071
1072 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1073                                              enum pipe pipe)
1074 {
1075         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1076         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1077
1078         return intel_crtc->config->cpu_transcoder;
1079 }
1080
1081 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1082 {
1083         struct drm_i915_private *dev_priv = dev->dev_private;
1084         i915_reg_t reg = PIPEDSL(pipe);
1085         u32 line1, line2;
1086         u32 line_mask;
1087
1088         if (IS_GEN2(dev))
1089                 line_mask = DSL_LINEMASK_GEN2;
1090         else
1091                 line_mask = DSL_LINEMASK_GEN3;
1092
1093         line1 = I915_READ(reg) & line_mask;
1094         msleep(5);
1095         line2 = I915_READ(reg) & line_mask;
1096
1097         return line1 == line2;
1098 }
1099
1100 /*
1101  * intel_wait_for_pipe_off - wait for pipe to turn off
1102  * @crtc: crtc whose pipe to wait for
1103  *
1104  * After disabling a pipe, we can't wait for vblank in the usual way,
1105  * spinning on the vblank interrupt status bit, since we won't actually
1106  * see an interrupt when the pipe is disabled.
1107  *
1108  * On Gen4 and above:
1109  *   wait for the pipe register state bit to turn off
1110  *
1111  * Otherwise:
1112  *   wait for the display line value to settle (it usually
1113  *   ends up stopping at the start of the next frame).
1114  *
1115  */
1116 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1117 {
1118         struct drm_device *dev = crtc->base.dev;
1119         struct drm_i915_private *dev_priv = dev->dev_private;
1120         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1121         enum pipe pipe = crtc->pipe;
1122
1123         if (INTEL_INFO(dev)->gen >= 4) {
1124                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1125
1126                 /* Wait for the Pipe State to go off */
1127                 if (intel_wait_for_register(dev_priv,
1128                                             reg, I965_PIPECONF_ACTIVE, 0,
1129                                             100))
1130                         WARN(1, "pipe_off wait timed out\n");
1131         } else {
1132                 /* Wait for the display line to settle */
1133                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1134                         WARN(1, "pipe_off wait timed out\n");
1135         }
1136 }
1137
1138 /* Only for pre-ILK configs */
1139 void assert_pll(struct drm_i915_private *dev_priv,
1140                 enum pipe pipe, bool state)
1141 {
1142         u32 val;
1143         bool cur_state;
1144
1145         val = I915_READ(DPLL(pipe));
1146         cur_state = !!(val & DPLL_VCO_ENABLE);
1147         I915_STATE_WARN(cur_state != state,
1148              "PLL state assertion failure (expected %s, current %s)\n",
1149                         onoff(state), onoff(cur_state));
1150 }
1151
1152 /* XXX: the dsi pll is shared between MIPI DSI ports */
1153 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1154 {
1155         u32 val;
1156         bool cur_state;
1157
1158         mutex_lock(&dev_priv->sb_lock);
1159         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1160         mutex_unlock(&dev_priv->sb_lock);
1161
1162         cur_state = val & DSI_PLL_VCO_EN;
1163         I915_STATE_WARN(cur_state != state,
1164              "DSI PLL state assertion failure (expected %s, current %s)\n",
1165                         onoff(state), onoff(cur_state));
1166 }
1167
1168 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1169                           enum pipe pipe, bool state)
1170 {
1171         bool cur_state;
1172         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1173                                                                       pipe);
1174
1175         if (HAS_DDI(dev_priv)) {
1176                 /* DDI does not have a specific FDI_TX register */
1177                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1178                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1179         } else {
1180                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1181                 cur_state = !!(val & FDI_TX_ENABLE);
1182         }
1183         I915_STATE_WARN(cur_state != state,
1184              "FDI TX state assertion failure (expected %s, current %s)\n",
1185                         onoff(state), onoff(cur_state));
1186 }
1187 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1188 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1189
1190 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1191                           enum pipe pipe, bool state)
1192 {
1193         u32 val;
1194         bool cur_state;
1195
1196         val = I915_READ(FDI_RX_CTL(pipe));
1197         cur_state = !!(val & FDI_RX_ENABLE);
1198         I915_STATE_WARN(cur_state != state,
1199              "FDI RX state assertion failure (expected %s, current %s)\n",
1200                         onoff(state), onoff(cur_state));
1201 }
1202 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1203 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1204
1205 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1206                                       enum pipe pipe)
1207 {
1208         u32 val;
1209
1210         /* ILK FDI PLL is always enabled */
1211         if (IS_GEN5(dev_priv))
1212                 return;
1213
1214         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1215         if (HAS_DDI(dev_priv))
1216                 return;
1217
1218         val = I915_READ(FDI_TX_CTL(pipe));
1219         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1220 }
1221
1222 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1223                        enum pipe pipe, bool state)
1224 {
1225         u32 val;
1226         bool cur_state;
1227
1228         val = I915_READ(FDI_RX_CTL(pipe));
1229         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1230         I915_STATE_WARN(cur_state != state,
1231              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1232                         onoff(state), onoff(cur_state));
1233 }
1234
1235 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1236                            enum pipe pipe)
1237 {
1238         struct drm_device *dev = dev_priv->dev;
1239         i915_reg_t pp_reg;
1240         u32 val;
1241         enum pipe panel_pipe = PIPE_A;
1242         bool locked = true;
1243
1244         if (WARN_ON(HAS_DDI(dev)))
1245                 return;
1246
1247         if (HAS_PCH_SPLIT(dev)) {
1248                 u32 port_sel;
1249
1250                 pp_reg = PCH_PP_CONTROL;
1251                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1252
1253                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1254                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1255                         panel_pipe = PIPE_B;
1256                 /* XXX: else fix for eDP */
1257         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1258                 /* presumably write lock depends on pipe, not port select */
1259                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1260                 panel_pipe = pipe;
1261         } else {
1262                 pp_reg = PP_CONTROL;
1263                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1264                         panel_pipe = PIPE_B;
1265         }
1266
1267         val = I915_READ(pp_reg);
1268         if (!(val & PANEL_POWER_ON) ||
1269             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1270                 locked = false;
1271
1272         I915_STATE_WARN(panel_pipe == pipe && locked,
1273              "panel assertion failure, pipe %c regs locked\n",
1274              pipe_name(pipe));
1275 }
1276
1277 static void assert_cursor(struct drm_i915_private *dev_priv,
1278                           enum pipe pipe, bool state)
1279 {
1280         struct drm_device *dev = dev_priv->dev;
1281         bool cur_state;
1282
1283         if (IS_845G(dev) || IS_I865G(dev))
1284                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1285         else
1286                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1287
1288         I915_STATE_WARN(cur_state != state,
1289              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1290                         pipe_name(pipe), onoff(state), onoff(cur_state));
1291 }
1292 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1293 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1294
1295 void assert_pipe(struct drm_i915_private *dev_priv,
1296                  enum pipe pipe, bool state)
1297 {
1298         bool cur_state;
1299         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1300                                                                       pipe);
1301         enum intel_display_power_domain power_domain;
1302
1303         /* if we need the pipe quirk it must be always on */
1304         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1305             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1306                 state = true;
1307
1308         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1309         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1310                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1311                 cur_state = !!(val & PIPECONF_ENABLE);
1312
1313                 intel_display_power_put(dev_priv, power_domain);
1314         } else {
1315                 cur_state = false;
1316         }
1317
1318         I915_STATE_WARN(cur_state != state,
1319              "pipe %c assertion failure (expected %s, current %s)\n",
1320                         pipe_name(pipe), onoff(state), onoff(cur_state));
1321 }
1322
1323 static void assert_plane(struct drm_i915_private *dev_priv,
1324                          enum plane plane, bool state)
1325 {
1326         u32 val;
1327         bool cur_state;
1328
1329         val = I915_READ(DSPCNTR(plane));
1330         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1331         I915_STATE_WARN(cur_state != state,
1332              "plane %c assertion failure (expected %s, current %s)\n",
1333                         plane_name(plane), onoff(state), onoff(cur_state));
1334 }
1335
1336 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1337 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1338
1339 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1340                                    enum pipe pipe)
1341 {
1342         struct drm_device *dev = dev_priv->dev;
1343         int i;
1344
1345         /* Primary planes are fixed to pipes on gen4+ */
1346         if (INTEL_INFO(dev)->gen >= 4) {
1347                 u32 val = I915_READ(DSPCNTR(pipe));
1348                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1349                      "plane %c assertion failure, should be disabled but not\n",
1350                      plane_name(pipe));
1351                 return;
1352         }
1353
1354         /* Need to check both planes against the pipe */
1355         for_each_pipe(dev_priv, i) {
1356                 u32 val = I915_READ(DSPCNTR(i));
1357                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1358                         DISPPLANE_SEL_PIPE_SHIFT;
1359                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1360                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1361                      plane_name(i), pipe_name(pipe));
1362         }
1363 }
1364
1365 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1366                                     enum pipe pipe)
1367 {
1368         struct drm_device *dev = dev_priv->dev;
1369         int sprite;
1370
1371         if (INTEL_INFO(dev)->gen >= 9) {
1372                 for_each_sprite(dev_priv, pipe, sprite) {
1373                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1374                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1375                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1376                              sprite, pipe_name(pipe));
1377                 }
1378         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1379                 for_each_sprite(dev_priv, pipe, sprite) {
1380                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1381                         I915_STATE_WARN(val & SP_ENABLE,
1382                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1383                              sprite_name(pipe, sprite), pipe_name(pipe));
1384                 }
1385         } else if (INTEL_INFO(dev)->gen >= 7) {
1386                 u32 val = I915_READ(SPRCTL(pipe));
1387                 I915_STATE_WARN(val & SPRITE_ENABLE,
1388                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1389                      plane_name(pipe), pipe_name(pipe));
1390         } else if (INTEL_INFO(dev)->gen >= 5) {
1391                 u32 val = I915_READ(DVSCNTR(pipe));
1392                 I915_STATE_WARN(val & DVS_ENABLE,
1393                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1394                      plane_name(pipe), pipe_name(pipe));
1395         }
1396 }
1397
1398 static void assert_vblank_disabled(struct drm_crtc *crtc)
1399 {
1400         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1401                 drm_crtc_vblank_put(crtc);
1402 }
1403
1404 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1405                                     enum pipe pipe)
1406 {
1407         u32 val;
1408         bool enabled;
1409
1410         val = I915_READ(PCH_TRANSCONF(pipe));
1411         enabled = !!(val & TRANS_ENABLE);
1412         I915_STATE_WARN(enabled,
1413              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1414              pipe_name(pipe));
1415 }
1416
1417 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1418                             enum pipe pipe, u32 port_sel, u32 val)
1419 {
1420         if ((val & DP_PORT_EN) == 0)
1421                 return false;
1422
1423         if (HAS_PCH_CPT(dev_priv)) {
1424                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1425                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1426                         return false;
1427         } else if (IS_CHERRYVIEW(dev_priv)) {
1428                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1429                         return false;
1430         } else {
1431                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1432                         return false;
1433         }
1434         return true;
1435 }
1436
1437 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1438                               enum pipe pipe, u32 val)
1439 {
1440         if ((val & SDVO_ENABLE) == 0)
1441                 return false;
1442
1443         if (HAS_PCH_CPT(dev_priv)) {
1444                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1445                         return false;
1446         } else if (IS_CHERRYVIEW(dev_priv)) {
1447                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1448                         return false;
1449         } else {
1450                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1451                         return false;
1452         }
1453         return true;
1454 }
1455
1456 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1457                               enum pipe pipe, u32 val)
1458 {
1459         if ((val & LVDS_PORT_EN) == 0)
1460                 return false;
1461
1462         if (HAS_PCH_CPT(dev_priv)) {
1463                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1464                         return false;
1465         } else {
1466                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1467                         return false;
1468         }
1469         return true;
1470 }
1471
1472 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1473                               enum pipe pipe, u32 val)
1474 {
1475         if ((val & ADPA_DAC_ENABLE) == 0)
1476                 return false;
1477         if (HAS_PCH_CPT(dev_priv)) {
1478                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1479                         return false;
1480         } else {
1481                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1482                         return false;
1483         }
1484         return true;
1485 }
1486
1487 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1488                                    enum pipe pipe, i915_reg_t reg,
1489                                    u32 port_sel)
1490 {
1491         u32 val = I915_READ(reg);
1492         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1493              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1494              i915_mmio_reg_offset(reg), pipe_name(pipe));
1495
1496         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1497              && (val & DP_PIPEB_SELECT),
1498              "IBX PCH dp port still using transcoder B\n");
1499 }
1500
1501 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1502                                      enum pipe pipe, i915_reg_t reg)
1503 {
1504         u32 val = I915_READ(reg);
1505         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1506              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1507              i915_mmio_reg_offset(reg), pipe_name(pipe));
1508
1509         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1510              && (val & SDVO_PIPE_B_SELECT),
1511              "IBX PCH hdmi port still using transcoder B\n");
1512 }
1513
1514 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1515                                       enum pipe pipe)
1516 {
1517         u32 val;
1518
1519         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1520         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1521         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1522
1523         val = I915_READ(PCH_ADPA);
1524         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1525              "PCH VGA enabled on transcoder %c, should be disabled\n",
1526              pipe_name(pipe));
1527
1528         val = I915_READ(PCH_LVDS);
1529         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1530              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1531              pipe_name(pipe));
1532
1533         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1534         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1535         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1536 }
1537
1538 static void _vlv_enable_pll(struct intel_crtc *crtc,
1539                             const struct intel_crtc_state *pipe_config)
1540 {
1541         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1542         enum pipe pipe = crtc->pipe;
1543
1544         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1545         POSTING_READ(DPLL(pipe));
1546         udelay(150);
1547
1548         if (intel_wait_for_register(dev_priv,
1549                                     DPLL(pipe),
1550                                     DPLL_LOCK_VLV,
1551                                     DPLL_LOCK_VLV,
1552                                     1))
1553                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1554 }
1555
1556 static void vlv_enable_pll(struct intel_crtc *crtc,
1557                            const struct intel_crtc_state *pipe_config)
1558 {
1559         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1560         enum pipe pipe = crtc->pipe;
1561
1562         assert_pipe_disabled(dev_priv, pipe);
1563
1564         /* PLL is protected by panel, make sure we can write it */
1565         assert_panel_unlocked(dev_priv, pipe);
1566
1567         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1568                 _vlv_enable_pll(crtc, pipe_config);
1569
1570         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1571         POSTING_READ(DPLL_MD(pipe));
1572 }
1573
1574
1575 static void _chv_enable_pll(struct intel_crtc *crtc,
1576                             const struct intel_crtc_state *pipe_config)
1577 {
1578         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1579         enum pipe pipe = crtc->pipe;
1580         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1581         u32 tmp;
1582
1583         mutex_lock(&dev_priv->sb_lock);
1584
1585         /* Enable back the 10bit clock to display controller */
1586         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1587         tmp |= DPIO_DCLKP_EN;
1588         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1589
1590         mutex_unlock(&dev_priv->sb_lock);
1591
1592         /*
1593          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1594          */
1595         udelay(1);
1596
1597         /* Enable PLL */
1598         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1599
1600         /* Check PLL is locked */
1601         if (intel_wait_for_register(dev_priv,
1602                                     DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1603                                     1))
1604                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1605 }
1606
1607 static void chv_enable_pll(struct intel_crtc *crtc,
1608                            const struct intel_crtc_state *pipe_config)
1609 {
1610         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1611         enum pipe pipe = crtc->pipe;
1612
1613         assert_pipe_disabled(dev_priv, pipe);
1614
1615         /* PLL is protected by panel, make sure we can write it */
1616         assert_panel_unlocked(dev_priv, pipe);
1617
1618         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1619                 _chv_enable_pll(crtc, pipe_config);
1620
1621         if (pipe != PIPE_A) {
1622                 /*
1623                  * WaPixelRepeatModeFixForC0:chv
1624                  *
1625                  * DPLLCMD is AWOL. Use chicken bits to propagate
1626                  * the value from DPLLBMD to either pipe B or C.
1627                  */
1628                 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1629                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1630                 I915_WRITE(CBR4_VLV, 0);
1631                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1632
1633                 /*
1634                  * DPLLB VGA mode also seems to cause problems.
1635                  * We should always have it disabled.
1636                  */
1637                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1638         } else {
1639                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1640                 POSTING_READ(DPLL_MD(pipe));
1641         }
1642 }
1643
1644 static int intel_num_dvo_pipes(struct drm_device *dev)
1645 {
1646         struct intel_crtc *crtc;
1647         int count = 0;
1648
1649         for_each_intel_crtc(dev, crtc)
1650                 count += crtc->base.state->active &&
1651                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1652
1653         return count;
1654 }
1655
1656 static void i9xx_enable_pll(struct intel_crtc *crtc)
1657 {
1658         struct drm_device *dev = crtc->base.dev;
1659         struct drm_i915_private *dev_priv = dev->dev_private;
1660         i915_reg_t reg = DPLL(crtc->pipe);
1661         u32 dpll = crtc->config->dpll_hw_state.dpll;
1662
1663         assert_pipe_disabled(dev_priv, crtc->pipe);
1664
1665         /* PLL is protected by panel, make sure we can write it */
1666         if (IS_MOBILE(dev) && !IS_I830(dev))
1667                 assert_panel_unlocked(dev_priv, crtc->pipe);
1668
1669         /* Enable DVO 2x clock on both PLLs if necessary */
1670         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1671                 /*
1672                  * It appears to be important that we don't enable this
1673                  * for the current pipe before otherwise configuring the
1674                  * PLL. No idea how this should be handled if multiple
1675                  * DVO outputs are enabled simultaneosly.
1676                  */
1677                 dpll |= DPLL_DVO_2X_MODE;
1678                 I915_WRITE(DPLL(!crtc->pipe),
1679                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1680         }
1681
1682         /*
1683          * Apparently we need to have VGA mode enabled prior to changing
1684          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1685          * dividers, even though the register value does change.
1686          */
1687         I915_WRITE(reg, 0);
1688
1689         I915_WRITE(reg, dpll);
1690
1691         /* Wait for the clocks to stabilize. */
1692         POSTING_READ(reg);
1693         udelay(150);
1694
1695         if (INTEL_INFO(dev)->gen >= 4) {
1696                 I915_WRITE(DPLL_MD(crtc->pipe),
1697                            crtc->config->dpll_hw_state.dpll_md);
1698         } else {
1699                 /* The pixel multiplier can only be updated once the
1700                  * DPLL is enabled and the clocks are stable.
1701                  *
1702                  * So write it again.
1703                  */
1704                 I915_WRITE(reg, dpll);
1705         }
1706
1707         /* We do this three times for luck */
1708         I915_WRITE(reg, dpll);
1709         POSTING_READ(reg);
1710         udelay(150); /* wait for warmup */
1711         I915_WRITE(reg, dpll);
1712         POSTING_READ(reg);
1713         udelay(150); /* wait for warmup */
1714         I915_WRITE(reg, dpll);
1715         POSTING_READ(reg);
1716         udelay(150); /* wait for warmup */
1717 }
1718
1719 /**
1720  * i9xx_disable_pll - disable a PLL
1721  * @dev_priv: i915 private structure
1722  * @pipe: pipe PLL to disable
1723  *
1724  * Disable the PLL for @pipe, making sure the pipe is off first.
1725  *
1726  * Note!  This is for pre-ILK only.
1727  */
1728 static void i9xx_disable_pll(struct intel_crtc *crtc)
1729 {
1730         struct drm_device *dev = crtc->base.dev;
1731         struct drm_i915_private *dev_priv = dev->dev_private;
1732         enum pipe pipe = crtc->pipe;
1733
1734         /* Disable DVO 2x clock on both PLLs if necessary */
1735         if (IS_I830(dev) &&
1736             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1737             !intel_num_dvo_pipes(dev)) {
1738                 I915_WRITE(DPLL(PIPE_B),
1739                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1740                 I915_WRITE(DPLL(PIPE_A),
1741                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1742         }
1743
1744         /* Don't disable pipe or pipe PLLs if needed */
1745         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1746             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1747                 return;
1748
1749         /* Make sure the pipe isn't still relying on us */
1750         assert_pipe_disabled(dev_priv, pipe);
1751
1752         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1753         POSTING_READ(DPLL(pipe));
1754 }
1755
1756 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1757 {
1758         u32 val;
1759
1760         /* Make sure the pipe isn't still relying on us */
1761         assert_pipe_disabled(dev_priv, pipe);
1762
1763         val = DPLL_INTEGRATED_REF_CLK_VLV |
1764                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1765         if (pipe != PIPE_A)
1766                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1767
1768         I915_WRITE(DPLL(pipe), val);
1769         POSTING_READ(DPLL(pipe));
1770 }
1771
1772 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1773 {
1774         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1775         u32 val;
1776
1777         /* Make sure the pipe isn't still relying on us */
1778         assert_pipe_disabled(dev_priv, pipe);
1779
1780         val = DPLL_SSC_REF_CLK_CHV |
1781                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1782         if (pipe != PIPE_A)
1783                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1784
1785         I915_WRITE(DPLL(pipe), val);
1786         POSTING_READ(DPLL(pipe));
1787
1788         mutex_lock(&dev_priv->sb_lock);
1789
1790         /* Disable 10bit clock to display controller */
1791         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1792         val &= ~DPIO_DCLKP_EN;
1793         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1794
1795         mutex_unlock(&dev_priv->sb_lock);
1796 }
1797
1798 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1799                          struct intel_digital_port *dport,
1800                          unsigned int expected_mask)
1801 {
1802         u32 port_mask;
1803         i915_reg_t dpll_reg;
1804
1805         switch (dport->port) {
1806         case PORT_B:
1807                 port_mask = DPLL_PORTB_READY_MASK;
1808                 dpll_reg = DPLL(0);
1809                 break;
1810         case PORT_C:
1811                 port_mask = DPLL_PORTC_READY_MASK;
1812                 dpll_reg = DPLL(0);
1813                 expected_mask <<= 4;
1814                 break;
1815         case PORT_D:
1816                 port_mask = DPLL_PORTD_READY_MASK;
1817                 dpll_reg = DPIO_PHY_STATUS;
1818                 break;
1819         default:
1820                 BUG();
1821         }
1822
1823         if (intel_wait_for_register(dev_priv,
1824                                     dpll_reg, port_mask, expected_mask,
1825                                     1000))
1826                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1827                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1828 }
1829
1830 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1831                                            enum pipe pipe)
1832 {
1833         struct drm_device *dev = dev_priv->dev;
1834         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1835         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1836         i915_reg_t reg;
1837         uint32_t val, pipeconf_val;
1838
1839         /* Make sure PCH DPLL is enabled */
1840         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1841
1842         /* FDI must be feeding us bits for PCH ports */
1843         assert_fdi_tx_enabled(dev_priv, pipe);
1844         assert_fdi_rx_enabled(dev_priv, pipe);
1845
1846         if (HAS_PCH_CPT(dev)) {
1847                 /* Workaround: Set the timing override bit before enabling the
1848                  * pch transcoder. */
1849                 reg = TRANS_CHICKEN2(pipe);
1850                 val = I915_READ(reg);
1851                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1852                 I915_WRITE(reg, val);
1853         }
1854
1855         reg = PCH_TRANSCONF(pipe);
1856         val = I915_READ(reg);
1857         pipeconf_val = I915_READ(PIPECONF(pipe));
1858
1859         if (HAS_PCH_IBX(dev_priv)) {
1860                 /*
1861                  * Make the BPC in transcoder be consistent with
1862                  * that in pipeconf reg. For HDMI we must use 8bpc
1863                  * here for both 8bpc and 12bpc.
1864                  */
1865                 val &= ~PIPECONF_BPC_MASK;
1866                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1867                         val |= PIPECONF_8BPC;
1868                 else
1869                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1870         }
1871
1872         val &= ~TRANS_INTERLACE_MASK;
1873         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1874                 if (HAS_PCH_IBX(dev_priv) &&
1875                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1876                         val |= TRANS_LEGACY_INTERLACED_ILK;
1877                 else
1878                         val |= TRANS_INTERLACED;
1879         else
1880                 val |= TRANS_PROGRESSIVE;
1881
1882         I915_WRITE(reg, val | TRANS_ENABLE);
1883         if (intel_wait_for_register(dev_priv,
1884                                     reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1885                                     100))
1886                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1887 }
1888
1889 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1890                                       enum transcoder cpu_transcoder)
1891 {
1892         u32 val, pipeconf_val;
1893
1894         /* FDI must be feeding us bits for PCH ports */
1895         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1896         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1897
1898         /* Workaround: set timing override bit. */
1899         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1900         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1901         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1902
1903         val = TRANS_ENABLE;
1904         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1905
1906         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1907             PIPECONF_INTERLACED_ILK)
1908                 val |= TRANS_INTERLACED;
1909         else
1910                 val |= TRANS_PROGRESSIVE;
1911
1912         I915_WRITE(LPT_TRANSCONF, val);
1913         if (intel_wait_for_register(dev_priv,
1914                                     LPT_TRANSCONF,
1915                                     TRANS_STATE_ENABLE,
1916                                     TRANS_STATE_ENABLE,
1917                                     100))
1918                 DRM_ERROR("Failed to enable PCH transcoder\n");
1919 }
1920
1921 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1922                                             enum pipe pipe)
1923 {
1924         struct drm_device *dev = dev_priv->dev;
1925         i915_reg_t reg;
1926         uint32_t val;
1927
1928         /* FDI relies on the transcoder */
1929         assert_fdi_tx_disabled(dev_priv, pipe);
1930         assert_fdi_rx_disabled(dev_priv, pipe);
1931
1932         /* Ports must be off as well */
1933         assert_pch_ports_disabled(dev_priv, pipe);
1934
1935         reg = PCH_TRANSCONF(pipe);
1936         val = I915_READ(reg);
1937         val &= ~TRANS_ENABLE;
1938         I915_WRITE(reg, val);
1939         /* wait for PCH transcoder off, transcoder state */
1940         if (intel_wait_for_register(dev_priv,
1941                                     reg, TRANS_STATE_ENABLE, 0,
1942                                     50))
1943                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1944
1945         if (HAS_PCH_CPT(dev)) {
1946                 /* Workaround: Clear the timing override chicken bit again. */
1947                 reg = TRANS_CHICKEN2(pipe);
1948                 val = I915_READ(reg);
1949                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1950                 I915_WRITE(reg, val);
1951         }
1952 }
1953
1954 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1955 {
1956         u32 val;
1957
1958         val = I915_READ(LPT_TRANSCONF);
1959         val &= ~TRANS_ENABLE;
1960         I915_WRITE(LPT_TRANSCONF, val);
1961         /* wait for PCH transcoder off, transcoder state */
1962         if (intel_wait_for_register(dev_priv,
1963                                     LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1964                                     50))
1965                 DRM_ERROR("Failed to disable PCH transcoder\n");
1966
1967         /* Workaround: clear timing override bit. */
1968         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1969         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1970         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1971 }
1972
1973 /**
1974  * intel_enable_pipe - enable a pipe, asserting requirements
1975  * @crtc: crtc responsible for the pipe
1976  *
1977  * Enable @crtc's pipe, making sure that various hardware specific requirements
1978  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1979  */
1980 static void intel_enable_pipe(struct intel_crtc *crtc)
1981 {
1982         struct drm_device *dev = crtc->base.dev;
1983         struct drm_i915_private *dev_priv = dev->dev_private;
1984         enum pipe pipe = crtc->pipe;
1985         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1986         enum pipe pch_transcoder;
1987         i915_reg_t reg;
1988         u32 val;
1989
1990         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1991
1992         assert_planes_disabled(dev_priv, pipe);
1993         assert_cursor_disabled(dev_priv, pipe);
1994         assert_sprites_disabled(dev_priv, pipe);
1995
1996         if (HAS_PCH_LPT(dev_priv))
1997                 pch_transcoder = TRANSCODER_A;
1998         else
1999                 pch_transcoder = pipe;
2000
2001         /*
2002          * A pipe without a PLL won't actually be able to drive bits from
2003          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2004          * need the check.
2005          */
2006         if (HAS_GMCH_DISPLAY(dev_priv))
2007                 if (crtc->config->has_dsi_encoder)
2008                         assert_dsi_pll_enabled(dev_priv);
2009                 else
2010                         assert_pll_enabled(dev_priv, pipe);
2011         else {
2012                 if (crtc->config->has_pch_encoder) {
2013                         /* if driving the PCH, we need FDI enabled */
2014                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2015                         assert_fdi_tx_pll_enabled(dev_priv,
2016                                                   (enum pipe) cpu_transcoder);
2017                 }
2018                 /* FIXME: assert CPU port conditions for SNB+ */
2019         }
2020
2021         reg = PIPECONF(cpu_transcoder);
2022         val = I915_READ(reg);
2023         if (val & PIPECONF_ENABLE) {
2024                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2025                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2026                 return;
2027         }
2028
2029         I915_WRITE(reg, val | PIPECONF_ENABLE);
2030         POSTING_READ(reg);
2031
2032         /*
2033          * Until the pipe starts DSL will read as 0, which would cause
2034          * an apparent vblank timestamp jump, which messes up also the
2035          * frame count when it's derived from the timestamps. So let's
2036          * wait for the pipe to start properly before we call
2037          * drm_crtc_vblank_on()
2038          */
2039         if (dev->max_vblank_count == 0 &&
2040             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2041                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2042 }
2043
2044 /**
2045  * intel_disable_pipe - disable a pipe, asserting requirements
2046  * @crtc: crtc whose pipes is to be disabled
2047  *
2048  * Disable the pipe of @crtc, making sure that various hardware
2049  * specific requirements are met, if applicable, e.g. plane
2050  * disabled, panel fitter off, etc.
2051  *
2052  * Will wait until the pipe has shut down before returning.
2053  */
2054 static void intel_disable_pipe(struct intel_crtc *crtc)
2055 {
2056         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2057         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2058         enum pipe pipe = crtc->pipe;
2059         i915_reg_t reg;
2060         u32 val;
2061
2062         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2063
2064         /*
2065          * Make sure planes won't keep trying to pump pixels to us,
2066          * or we might hang the display.
2067          */
2068         assert_planes_disabled(dev_priv, pipe);
2069         assert_cursor_disabled(dev_priv, pipe);
2070         assert_sprites_disabled(dev_priv, pipe);
2071
2072         reg = PIPECONF(cpu_transcoder);
2073         val = I915_READ(reg);
2074         if ((val & PIPECONF_ENABLE) == 0)
2075                 return;
2076
2077         /*
2078          * Double wide has implications for planes
2079          * so best keep it disabled when not needed.
2080          */
2081         if (crtc->config->double_wide)
2082                 val &= ~PIPECONF_DOUBLE_WIDE;
2083
2084         /* Don't disable pipe or pipe PLLs if needed */
2085         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2086             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2087                 val &= ~PIPECONF_ENABLE;
2088
2089         I915_WRITE(reg, val);
2090         if ((val & PIPECONF_ENABLE) == 0)
2091                 intel_wait_for_pipe_off(crtc);
2092 }
2093
2094 static bool need_vtd_wa(struct drm_device *dev)
2095 {
2096 #ifdef CONFIG_INTEL_IOMMU
2097         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2098                 return true;
2099 #endif
2100         return false;
2101 }
2102
2103 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2104 {
2105         return IS_GEN2(dev_priv) ? 2048 : 4096;
2106 }
2107
2108 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2109                                            uint64_t fb_modifier, unsigned int cpp)
2110 {
2111         switch (fb_modifier) {
2112         case DRM_FORMAT_MOD_NONE:
2113                 return cpp;
2114         case I915_FORMAT_MOD_X_TILED:
2115                 if (IS_GEN2(dev_priv))
2116                         return 128;
2117                 else
2118                         return 512;
2119         case I915_FORMAT_MOD_Y_TILED:
2120                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2121                         return 128;
2122                 else
2123                         return 512;
2124         case I915_FORMAT_MOD_Yf_TILED:
2125                 switch (cpp) {
2126                 case 1:
2127                         return 64;
2128                 case 2:
2129                 case 4:
2130                         return 128;
2131                 case 8:
2132                 case 16:
2133                         return 256;
2134                 default:
2135                         MISSING_CASE(cpp);
2136                         return cpp;
2137                 }
2138                 break;
2139         default:
2140                 MISSING_CASE(fb_modifier);
2141                 return cpp;
2142         }
2143 }
2144
2145 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2146                                uint64_t fb_modifier, unsigned int cpp)
2147 {
2148         if (fb_modifier == DRM_FORMAT_MOD_NONE)
2149                 return 1;
2150         else
2151                 return intel_tile_size(dev_priv) /
2152                         intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2153 }
2154
2155 /* Return the tile dimensions in pixel units */
2156 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2157                             unsigned int *tile_width,
2158                             unsigned int *tile_height,
2159                             uint64_t fb_modifier,
2160                             unsigned int cpp)
2161 {
2162         unsigned int tile_width_bytes =
2163                 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2164
2165         *tile_width = tile_width_bytes / cpp;
2166         *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2167 }
2168
2169 unsigned int
2170 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2171                       uint32_t pixel_format, uint64_t fb_modifier)
2172 {
2173         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2174         unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2175
2176         return ALIGN(height, tile_height);
2177 }
2178
2179 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2180 {
2181         unsigned int size = 0;
2182         int i;
2183
2184         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2185                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2186
2187         return size;
2188 }
2189
2190 static void
2191 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2192                         const struct drm_framebuffer *fb,
2193                         unsigned int rotation)
2194 {
2195         if (intel_rotation_90_or_270(rotation)) {
2196                 *view = i915_ggtt_view_rotated;
2197                 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2198         } else {
2199                 *view = i915_ggtt_view_normal;
2200         }
2201 }
2202
2203 static void
2204 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2205                    struct drm_framebuffer *fb)
2206 {
2207         struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2208         unsigned int tile_size, tile_width, tile_height, cpp;
2209
2210         tile_size = intel_tile_size(dev_priv);
2211
2212         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2213         intel_tile_dims(dev_priv, &tile_width, &tile_height,
2214                         fb->modifier[0], cpp);
2215
2216         info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2217         info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
2218
2219         if (info->pixel_format == DRM_FORMAT_NV12) {
2220                 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2221                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2222                                 fb->modifier[1], cpp);
2223
2224                 info->uv_offset = fb->offsets[1];
2225                 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2226                 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
2227         }
2228 }
2229
2230 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2231 {
2232         if (INTEL_INFO(dev_priv)->gen >= 9)
2233                 return 256 * 1024;
2234         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2235                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2236                 return 128 * 1024;
2237         else if (INTEL_INFO(dev_priv)->gen >= 4)
2238                 return 4 * 1024;
2239         else
2240                 return 0;
2241 }
2242
2243 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2244                                          uint64_t fb_modifier)
2245 {
2246         switch (fb_modifier) {
2247         case DRM_FORMAT_MOD_NONE:
2248                 return intel_linear_alignment(dev_priv);
2249         case I915_FORMAT_MOD_X_TILED:
2250                 if (INTEL_INFO(dev_priv)->gen >= 9)
2251                         return 256 * 1024;
2252                 return 0;
2253         case I915_FORMAT_MOD_Y_TILED:
2254         case I915_FORMAT_MOD_Yf_TILED:
2255                 return 1 * 1024 * 1024;
2256         default:
2257                 MISSING_CASE(fb_modifier);
2258                 return 0;
2259         }
2260 }
2261
2262 int
2263 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2264                            unsigned int rotation)
2265 {
2266         struct drm_device *dev = fb->dev;
2267         struct drm_i915_private *dev_priv = dev->dev_private;
2268         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2269         struct i915_ggtt_view view;
2270         u32 alignment;
2271         int ret;
2272
2273         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2274
2275         alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2276
2277         intel_fill_fb_ggtt_view(&view, fb, rotation);
2278
2279         /* Note that the w/a also requires 64 PTE of padding following the
2280          * bo. We currently fill all unused PTE with the shadow page and so
2281          * we should always have valid PTE following the scanout preventing
2282          * the VT-d warning.
2283          */
2284         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2285                 alignment = 256 * 1024;
2286
2287         /*
2288          * Global gtt pte registers are special registers which actually forward
2289          * writes to a chunk of system memory. Which means that there is no risk
2290          * that the register values disappear as soon as we call
2291          * intel_runtime_pm_put(), so it is correct to wrap only the
2292          * pin/unpin/fence and not more.
2293          */
2294         intel_runtime_pm_get(dev_priv);
2295
2296         ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2297                                                    &view);
2298         if (ret)
2299                 goto err_pm;
2300
2301         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2302          * fence, whereas 965+ only requires a fence if using
2303          * framebuffer compression.  For simplicity, we always install
2304          * a fence as the cost is not that onerous.
2305          */
2306         if (view.type == I915_GGTT_VIEW_NORMAL) {
2307                 ret = i915_gem_object_get_fence(obj);
2308                 if (ret == -EDEADLK) {
2309                         /*
2310                          * -EDEADLK means there are no free fences
2311                          * no pending flips.
2312                          *
2313                          * This is propagated to atomic, but it uses
2314                          * -EDEADLK to force a locking recovery, so
2315                          * change the returned error to -EBUSY.
2316                          */
2317                         ret = -EBUSY;
2318                         goto err_unpin;
2319                 } else if (ret)
2320                         goto err_unpin;
2321
2322                 i915_gem_object_pin_fence(obj);
2323         }
2324
2325         intel_runtime_pm_put(dev_priv);
2326         return 0;
2327
2328 err_unpin:
2329         i915_gem_object_unpin_from_display_plane(obj, &view);
2330 err_pm:
2331         intel_runtime_pm_put(dev_priv);
2332         return ret;
2333 }
2334
2335 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2336 {
2337         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2338         struct i915_ggtt_view view;
2339
2340         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2341
2342         intel_fill_fb_ggtt_view(&view, fb, rotation);
2343
2344         if (view.type == I915_GGTT_VIEW_NORMAL)
2345                 i915_gem_object_unpin_fence(obj);
2346
2347         i915_gem_object_unpin_from_display_plane(obj, &view);
2348 }
2349
2350 /*
2351  * Adjust the tile offset by moving the difference into
2352  * the x/y offsets.
2353  *
2354  * Input tile dimensions and pitch must already be
2355  * rotated to match x and y, and in pixel units.
2356  */
2357 static u32 intel_adjust_tile_offset(int *x, int *y,
2358                                     unsigned int tile_width,
2359                                     unsigned int tile_height,
2360                                     unsigned int tile_size,
2361                                     unsigned int pitch_tiles,
2362                                     u32 old_offset,
2363                                     u32 new_offset)
2364 {
2365         unsigned int tiles;
2366
2367         WARN_ON(old_offset & (tile_size - 1));
2368         WARN_ON(new_offset & (tile_size - 1));
2369         WARN_ON(new_offset > old_offset);
2370
2371         tiles = (old_offset - new_offset) / tile_size;
2372
2373         *y += tiles / pitch_tiles * tile_height;
2374         *x += tiles % pitch_tiles * tile_width;
2375
2376         return new_offset;
2377 }
2378
2379 /*
2380  * Computes the linear offset to the base tile and adjusts
2381  * x, y. bytes per pixel is assumed to be a power-of-two.
2382  *
2383  * In the 90/270 rotated case, x and y are assumed
2384  * to be already rotated to match the rotated GTT view, and
2385  * pitch is the tile_height aligned framebuffer height.
2386  */
2387 u32 intel_compute_tile_offset(int *x, int *y,
2388                               const struct drm_framebuffer *fb, int plane,
2389                               unsigned int pitch,
2390                               unsigned int rotation)
2391 {
2392         const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2393         uint64_t fb_modifier = fb->modifier[plane];
2394         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2395         u32 offset, offset_aligned, alignment;
2396
2397         alignment = intel_surf_alignment(dev_priv, fb_modifier);
2398         if (alignment)
2399                 alignment--;
2400
2401         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2402                 unsigned int tile_size, tile_width, tile_height;
2403                 unsigned int tile_rows, tiles, pitch_tiles;
2404
2405                 tile_size = intel_tile_size(dev_priv);
2406                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2407                                 fb_modifier, cpp);
2408
2409                 if (intel_rotation_90_or_270(rotation)) {
2410                         pitch_tiles = pitch / tile_height;
2411                         swap(tile_width, tile_height);
2412                 } else {
2413                         pitch_tiles = pitch / (tile_width * cpp);
2414                 }
2415
2416                 tile_rows = *y / tile_height;
2417                 *y %= tile_height;
2418
2419                 tiles = *x / tile_width;
2420                 *x %= tile_width;
2421
2422                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2423                 offset_aligned = offset & ~alignment;
2424
2425                 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2426                                          tile_size, pitch_tiles,
2427                                          offset, offset_aligned);
2428         } else {
2429                 offset = *y * pitch + *x * cpp;
2430                 offset_aligned = offset & ~alignment;
2431
2432                 *y = (offset & alignment) / pitch;
2433                 *x = ((offset & alignment) - *y * pitch) / cpp;
2434         }
2435
2436         return offset_aligned;
2437 }
2438
2439 static int i9xx_format_to_fourcc(int format)
2440 {
2441         switch (format) {
2442         case DISPPLANE_8BPP:
2443                 return DRM_FORMAT_C8;
2444         case DISPPLANE_BGRX555:
2445                 return DRM_FORMAT_XRGB1555;
2446         case DISPPLANE_BGRX565:
2447                 return DRM_FORMAT_RGB565;
2448         default:
2449         case DISPPLANE_BGRX888:
2450                 return DRM_FORMAT_XRGB8888;
2451         case DISPPLANE_RGBX888:
2452                 return DRM_FORMAT_XBGR8888;
2453         case DISPPLANE_BGRX101010:
2454                 return DRM_FORMAT_XRGB2101010;
2455         case DISPPLANE_RGBX101010:
2456                 return DRM_FORMAT_XBGR2101010;
2457         }
2458 }
2459
2460 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2461 {
2462         switch (format) {
2463         case PLANE_CTL_FORMAT_RGB_565:
2464                 return DRM_FORMAT_RGB565;
2465         default:
2466         case PLANE_CTL_FORMAT_XRGB_8888:
2467                 if (rgb_order) {
2468                         if (alpha)
2469                                 return DRM_FORMAT_ABGR8888;
2470                         else
2471                                 return DRM_FORMAT_XBGR8888;
2472                 } else {
2473                         if (alpha)
2474                                 return DRM_FORMAT_ARGB8888;
2475                         else
2476                                 return DRM_FORMAT_XRGB8888;
2477                 }
2478         case PLANE_CTL_FORMAT_XRGB_2101010:
2479                 if (rgb_order)
2480                         return DRM_FORMAT_XBGR2101010;
2481                 else
2482                         return DRM_FORMAT_XRGB2101010;
2483         }
2484 }
2485
2486 static bool
2487 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2488                               struct intel_initial_plane_config *plane_config)
2489 {
2490         struct drm_device *dev = crtc->base.dev;
2491         struct drm_i915_private *dev_priv = to_i915(dev);
2492         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2493         struct drm_i915_gem_object *obj = NULL;
2494         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2495         struct drm_framebuffer *fb = &plane_config->fb->base;
2496         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2497         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2498                                     PAGE_SIZE);
2499
2500         size_aligned -= base_aligned;
2501
2502         if (plane_config->size == 0)
2503                 return false;
2504
2505         /* If the FB is too big, just don't use it since fbdev is not very
2506          * important and we should probably use that space with FBC or other
2507          * features. */
2508         if (size_aligned * 2 > ggtt->stolen_usable_size)
2509                 return false;
2510
2511         mutex_lock(&dev->struct_mutex);
2512
2513         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2514                                                              base_aligned,
2515                                                              base_aligned,
2516                                                              size_aligned);
2517         if (!obj) {
2518                 mutex_unlock(&dev->struct_mutex);
2519                 return false;
2520         }
2521
2522         obj->tiling_mode = plane_config->tiling;
2523         if (obj->tiling_mode == I915_TILING_X)
2524                 obj->stride = fb->pitches[0];
2525
2526         mode_cmd.pixel_format = fb->pixel_format;
2527         mode_cmd.width = fb->width;
2528         mode_cmd.height = fb->height;
2529         mode_cmd.pitches[0] = fb->pitches[0];
2530         mode_cmd.modifier[0] = fb->modifier[0];
2531         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2532
2533         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2534                                    &mode_cmd, obj)) {
2535                 DRM_DEBUG_KMS("intel fb init failed\n");
2536                 goto out_unref_obj;
2537         }
2538
2539         mutex_unlock(&dev->struct_mutex);
2540
2541         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2542         return true;
2543
2544 out_unref_obj:
2545         drm_gem_object_unreference(&obj->base);
2546         mutex_unlock(&dev->struct_mutex);
2547         return false;
2548 }
2549
2550 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2551 static void
2552 update_state_fb(struct drm_plane *plane)
2553 {
2554         if (plane->fb == plane->state->fb)
2555                 return;
2556
2557         if (plane->state->fb)
2558                 drm_framebuffer_unreference(plane->state->fb);
2559         plane->state->fb = plane->fb;
2560         if (plane->state->fb)
2561                 drm_framebuffer_reference(plane->state->fb);
2562 }
2563
2564 static void
2565 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2566                              struct intel_initial_plane_config *plane_config)
2567 {
2568         struct drm_device *dev = intel_crtc->base.dev;
2569         struct drm_i915_private *dev_priv = dev->dev_private;
2570         struct drm_crtc *c;
2571         struct intel_crtc *i;
2572         struct drm_i915_gem_object *obj;
2573         struct drm_plane *primary = intel_crtc->base.primary;
2574         struct drm_plane_state *plane_state = primary->state;
2575         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2576         struct intel_plane *intel_plane = to_intel_plane(primary);
2577         struct intel_plane_state *intel_state =
2578                 to_intel_plane_state(plane_state);
2579         struct drm_framebuffer *fb;
2580
2581         if (!plane_config->fb)
2582                 return;
2583
2584         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2585                 fb = &plane_config->fb->base;
2586                 goto valid_fb;
2587         }
2588
2589         kfree(plane_config->fb);
2590
2591         /*
2592          * Failed to alloc the obj, check to see if we should share
2593          * an fb with another CRTC instead
2594          */
2595         for_each_crtc(dev, c) {
2596                 i = to_intel_crtc(c);
2597
2598                 if (c == &intel_crtc->base)
2599                         continue;
2600
2601                 if (!i->active)
2602                         continue;
2603
2604                 fb = c->primary->fb;
2605                 if (!fb)
2606                         continue;
2607
2608                 obj = intel_fb_obj(fb);
2609                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2610                         drm_framebuffer_reference(fb);
2611                         goto valid_fb;
2612                 }
2613         }
2614
2615         /*
2616          * We've failed to reconstruct the BIOS FB.  Current display state
2617          * indicates that the primary plane is visible, but has a NULL FB,
2618          * which will lead to problems later if we don't fix it up.  The
2619          * simplest solution is to just disable the primary plane now and
2620          * pretend the BIOS never had it enabled.
2621          */
2622         to_intel_plane_state(plane_state)->visible = false;
2623         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2624         intel_pre_disable_primary_noatomic(&intel_crtc->base);
2625         intel_plane->disable_plane(primary, &intel_crtc->base);
2626
2627         return;
2628
2629 valid_fb:
2630         plane_state->src_x = 0;
2631         plane_state->src_y = 0;
2632         plane_state->src_w = fb->width << 16;
2633         plane_state->src_h = fb->height << 16;
2634
2635         plane_state->crtc_x = 0;
2636         plane_state->crtc_y = 0;
2637         plane_state->crtc_w = fb->width;
2638         plane_state->crtc_h = fb->height;
2639
2640         intel_state->src.x1 = plane_state->src_x;
2641         intel_state->src.y1 = plane_state->src_y;
2642         intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2643         intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2644         intel_state->dst.x1 = plane_state->crtc_x;
2645         intel_state->dst.y1 = plane_state->crtc_y;
2646         intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2647         intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2648
2649         obj = intel_fb_obj(fb);
2650         if (obj->tiling_mode != I915_TILING_NONE)
2651                 dev_priv->preserve_bios_swizzle = true;
2652
2653         drm_framebuffer_reference(fb);
2654         primary->fb = primary->state->fb = fb;
2655         primary->crtc = primary->state->crtc = &intel_crtc->base;
2656         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2657         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2658 }
2659
2660 static void i9xx_update_primary_plane(struct drm_plane *primary,
2661                                       const struct intel_crtc_state *crtc_state,
2662                                       const struct intel_plane_state *plane_state)
2663 {
2664         struct drm_device *dev = primary->dev;
2665         struct drm_i915_private *dev_priv = dev->dev_private;
2666         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2667         struct drm_framebuffer *fb = plane_state->base.fb;
2668         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2669         int plane = intel_crtc->plane;
2670         u32 linear_offset;
2671         u32 dspcntr;
2672         i915_reg_t reg = DSPCNTR(plane);
2673         unsigned int rotation = plane_state->base.rotation;
2674         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2675         int x = plane_state->src.x1 >> 16;
2676         int y = plane_state->src.y1 >> 16;
2677
2678         dspcntr = DISPPLANE_GAMMA_ENABLE;
2679
2680         dspcntr |= DISPLAY_PLANE_ENABLE;
2681
2682         if (INTEL_INFO(dev)->gen < 4) {
2683                 if (intel_crtc->pipe == PIPE_B)
2684                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2685
2686                 /* pipesrc and dspsize control the size that is scaled from,
2687                  * which should always be the user's requested size.
2688                  */
2689                 I915_WRITE(DSPSIZE(plane),
2690                            ((crtc_state->pipe_src_h - 1) << 16) |
2691                            (crtc_state->pipe_src_w - 1));
2692                 I915_WRITE(DSPPOS(plane), 0);
2693         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2694                 I915_WRITE(PRIMSIZE(plane),
2695                            ((crtc_state->pipe_src_h - 1) << 16) |
2696                            (crtc_state->pipe_src_w - 1));
2697                 I915_WRITE(PRIMPOS(plane), 0);
2698                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2699         }
2700
2701         switch (fb->pixel_format) {
2702         case DRM_FORMAT_C8:
2703                 dspcntr |= DISPPLANE_8BPP;
2704                 break;
2705         case DRM_FORMAT_XRGB1555:
2706                 dspcntr |= DISPPLANE_BGRX555;
2707                 break;
2708         case DRM_FORMAT_RGB565:
2709                 dspcntr |= DISPPLANE_BGRX565;
2710                 break;
2711         case DRM_FORMAT_XRGB8888:
2712                 dspcntr |= DISPPLANE_BGRX888;
2713                 break;
2714         case DRM_FORMAT_XBGR8888:
2715                 dspcntr |= DISPPLANE_RGBX888;
2716                 break;
2717         case DRM_FORMAT_XRGB2101010:
2718                 dspcntr |= DISPPLANE_BGRX101010;
2719                 break;
2720         case DRM_FORMAT_XBGR2101010:
2721                 dspcntr |= DISPPLANE_RGBX101010;
2722                 break;
2723         default:
2724                 BUG();
2725         }
2726
2727         if (INTEL_INFO(dev)->gen >= 4 &&
2728             obj->tiling_mode != I915_TILING_NONE)
2729                 dspcntr |= DISPPLANE_TILED;
2730
2731         if (IS_G4X(dev))
2732                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2733
2734         linear_offset = y * fb->pitches[0] + x * cpp;
2735
2736         if (INTEL_INFO(dev)->gen >= 4) {
2737                 intel_crtc->dspaddr_offset =
2738                         intel_compute_tile_offset(&x, &y, fb, 0,
2739                                                   fb->pitches[0], rotation);
2740                 linear_offset -= intel_crtc->dspaddr_offset;
2741         } else {
2742                 intel_crtc->dspaddr_offset = linear_offset;
2743         }
2744
2745         if (rotation == BIT(DRM_ROTATE_180)) {
2746                 dspcntr |= DISPPLANE_ROTATE_180;
2747
2748                 x += (crtc_state->pipe_src_w - 1);
2749                 y += (crtc_state->pipe_src_h - 1);
2750
2751                 /* Finding the last pixel of the last line of the display
2752                 data and adding to linear_offset*/
2753                 linear_offset +=
2754                         (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2755                         (crtc_state->pipe_src_w - 1) * cpp;
2756         }
2757
2758         intel_crtc->adjusted_x = x;
2759         intel_crtc->adjusted_y = y;
2760
2761         I915_WRITE(reg, dspcntr);
2762
2763         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2764         if (INTEL_INFO(dev)->gen >= 4) {
2765                 I915_WRITE(DSPSURF(plane),
2766                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2767                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2768                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2769         } else
2770                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2771         POSTING_READ(reg);
2772 }
2773
2774 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2775                                        struct drm_crtc *crtc)
2776 {
2777         struct drm_device *dev = crtc->dev;
2778         struct drm_i915_private *dev_priv = dev->dev_private;
2779         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2780         int plane = intel_crtc->plane;
2781
2782         I915_WRITE(DSPCNTR(plane), 0);
2783         if (INTEL_INFO(dev_priv)->gen >= 4)
2784                 I915_WRITE(DSPSURF(plane), 0);
2785         else
2786                 I915_WRITE(DSPADDR(plane), 0);
2787         POSTING_READ(DSPCNTR(plane));
2788 }
2789
2790 static void ironlake_update_primary_plane(struct drm_plane *primary,
2791                                           const struct intel_crtc_state *crtc_state,
2792                                           const struct intel_plane_state *plane_state)
2793 {
2794         struct drm_device *dev = primary->dev;
2795         struct drm_i915_private *dev_priv = dev->dev_private;
2796         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2797         struct drm_framebuffer *fb = plane_state->base.fb;
2798         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2799         int plane = intel_crtc->plane;
2800         u32 linear_offset;
2801         u32 dspcntr;
2802         i915_reg_t reg = DSPCNTR(plane);
2803         unsigned int rotation = plane_state->base.rotation;
2804         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2805         int x = plane_state->src.x1 >> 16;
2806         int y = plane_state->src.y1 >> 16;
2807
2808         dspcntr = DISPPLANE_GAMMA_ENABLE;
2809         dspcntr |= DISPLAY_PLANE_ENABLE;
2810
2811         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2812                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2813
2814         switch (fb->pixel_format) {
2815         case DRM_FORMAT_C8:
2816                 dspcntr |= DISPPLANE_8BPP;
2817                 break;
2818         case DRM_FORMAT_RGB565:
2819                 dspcntr |= DISPPLANE_BGRX565;
2820                 break;
2821         case DRM_FORMAT_XRGB8888:
2822                 dspcntr |= DISPPLANE_BGRX888;
2823                 break;
2824         case DRM_FORMAT_XBGR8888:
2825                 dspcntr |= DISPPLANE_RGBX888;
2826                 break;
2827         case DRM_FORMAT_XRGB2101010:
2828                 dspcntr |= DISPPLANE_BGRX101010;
2829                 break;
2830         case DRM_FORMAT_XBGR2101010:
2831                 dspcntr |= DISPPLANE_RGBX101010;
2832                 break;
2833         default:
2834                 BUG();
2835         }
2836
2837         if (obj->tiling_mode != I915_TILING_NONE)
2838                 dspcntr |= DISPPLANE_TILED;
2839
2840         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2841                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2842
2843         linear_offset = y * fb->pitches[0] + x * cpp;
2844         intel_crtc->dspaddr_offset =
2845                 intel_compute_tile_offset(&x, &y, fb, 0,
2846                                           fb->pitches[0], rotation);
2847         linear_offset -= intel_crtc->dspaddr_offset;
2848         if (rotation == BIT(DRM_ROTATE_180)) {
2849                 dspcntr |= DISPPLANE_ROTATE_180;
2850
2851                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2852                         x += (crtc_state->pipe_src_w - 1);
2853                         y += (crtc_state->pipe_src_h - 1);
2854
2855                         /* Finding the last pixel of the last line of the display
2856                         data and adding to linear_offset*/
2857                         linear_offset +=
2858                                 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2859                                 (crtc_state->pipe_src_w - 1) * cpp;
2860                 }
2861         }
2862
2863         intel_crtc->adjusted_x = x;
2864         intel_crtc->adjusted_y = y;
2865
2866         I915_WRITE(reg, dspcntr);
2867
2868         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2869         I915_WRITE(DSPSURF(plane),
2870                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2871         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2872                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2873         } else {
2874                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2875                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2876         }
2877         POSTING_READ(reg);
2878 }
2879
2880 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2881                               uint64_t fb_modifier, uint32_t pixel_format)
2882 {
2883         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2884                 return 64;
2885         } else {
2886                 int cpp = drm_format_plane_cpp(pixel_format, 0);
2887
2888                 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2889         }
2890 }
2891
2892 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2893                            struct drm_i915_gem_object *obj,
2894                            unsigned int plane)
2895 {
2896         struct i915_ggtt_view view;
2897         struct i915_vma *vma;
2898         u64 offset;
2899
2900         intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2901                                 intel_plane->base.state->rotation);
2902
2903         vma = i915_gem_obj_to_ggtt_view(obj, &view);
2904         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2905                 view.type))
2906                 return -1;
2907
2908         offset = vma->node.start;
2909
2910         if (plane == 1) {
2911                 offset += vma->ggtt_view.params.rotated.uv_start_page *
2912                           PAGE_SIZE;
2913         }
2914
2915         WARN_ON(upper_32_bits(offset));
2916
2917         return lower_32_bits(offset);
2918 }
2919
2920 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2921 {
2922         struct drm_device *dev = intel_crtc->base.dev;
2923         struct drm_i915_private *dev_priv = dev->dev_private;
2924
2925         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2926         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2927         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2928 }
2929
2930 /*
2931  * This function detaches (aka. unbinds) unused scalers in hardware
2932  */
2933 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2934 {
2935         struct intel_crtc_scaler_state *scaler_state;
2936         int i;
2937
2938         scaler_state = &intel_crtc->config->scaler_state;
2939
2940         /* loop through and disable scalers that aren't in use */
2941         for (i = 0; i < intel_crtc->num_scalers; i++) {
2942                 if (!scaler_state->scalers[i].in_use)
2943                         skl_detach_scaler(intel_crtc, i);
2944         }
2945 }
2946
2947 u32 skl_plane_ctl_format(uint32_t pixel_format)
2948 {
2949         switch (pixel_format) {
2950         case DRM_FORMAT_C8:
2951                 return PLANE_CTL_FORMAT_INDEXED;
2952         case DRM_FORMAT_RGB565:
2953                 return PLANE_CTL_FORMAT_RGB_565;
2954         case DRM_FORMAT_XBGR8888:
2955                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2956         case DRM_FORMAT_XRGB8888:
2957                 return PLANE_CTL_FORMAT_XRGB_8888;
2958         /*
2959          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2960          * to be already pre-multiplied. We need to add a knob (or a different
2961          * DRM_FORMAT) for user-space to configure that.
2962          */
2963         case DRM_FORMAT_ABGR8888:
2964                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2965                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2966         case DRM_FORMAT_ARGB8888:
2967                 return PLANE_CTL_FORMAT_XRGB_8888 |
2968                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2969         case DRM_FORMAT_XRGB2101010:
2970                 return PLANE_CTL_FORMAT_XRGB_2101010;
2971         case DRM_FORMAT_XBGR2101010:
2972                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2973         case DRM_FORMAT_YUYV:
2974                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2975         case DRM_FORMAT_YVYU:
2976                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2977         case DRM_FORMAT_UYVY:
2978                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2979         case DRM_FORMAT_VYUY:
2980                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2981         default:
2982                 MISSING_CASE(pixel_format);
2983         }
2984
2985         return 0;
2986 }
2987
2988 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2989 {
2990         switch (fb_modifier) {
2991         case DRM_FORMAT_MOD_NONE:
2992                 break;
2993         case I915_FORMAT_MOD_X_TILED:
2994                 return PLANE_CTL_TILED_X;
2995         case I915_FORMAT_MOD_Y_TILED:
2996                 return PLANE_CTL_TILED_Y;
2997         case I915_FORMAT_MOD_Yf_TILED:
2998                 return PLANE_CTL_TILED_YF;
2999         default:
3000                 MISSING_CASE(fb_modifier);
3001         }
3002
3003         return 0;
3004 }
3005
3006 u32 skl_plane_ctl_rotation(unsigned int rotation)
3007 {
3008         switch (rotation) {
3009         case BIT(DRM_ROTATE_0):
3010                 break;
3011         /*
3012          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3013          * while i915 HW rotation is clockwise, thats why this swapping.
3014          */
3015         case BIT(DRM_ROTATE_90):
3016                 return PLANE_CTL_ROTATE_270;
3017         case BIT(DRM_ROTATE_180):
3018                 return PLANE_CTL_ROTATE_180;
3019         case BIT(DRM_ROTATE_270):
3020                 return PLANE_CTL_ROTATE_90;
3021         default:
3022                 MISSING_CASE(rotation);
3023         }
3024
3025         return 0;
3026 }
3027
3028 static void skylake_update_primary_plane(struct drm_plane *plane,
3029                                          const struct intel_crtc_state *crtc_state,
3030                                          const struct intel_plane_state *plane_state)
3031 {
3032         struct drm_device *dev = plane->dev;
3033         struct drm_i915_private *dev_priv = dev->dev_private;
3034         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3035         struct drm_framebuffer *fb = plane_state->base.fb;
3036         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3037         int pipe = intel_crtc->pipe;
3038         u32 plane_ctl, stride_div, stride;
3039         u32 tile_height, plane_offset, plane_size;
3040         unsigned int rotation = plane_state->base.rotation;
3041         int x_offset, y_offset;
3042         u32 surf_addr;
3043         int scaler_id = plane_state->scaler_id;
3044         int src_x = plane_state->src.x1 >> 16;
3045         int src_y = plane_state->src.y1 >> 16;
3046         int src_w = drm_rect_width(&plane_state->src) >> 16;
3047         int src_h = drm_rect_height(&plane_state->src) >> 16;
3048         int dst_x = plane_state->dst.x1;
3049         int dst_y = plane_state->dst.y1;
3050         int dst_w = drm_rect_width(&plane_state->dst);
3051         int dst_h = drm_rect_height(&plane_state->dst);
3052
3053         plane_ctl = PLANE_CTL_ENABLE |
3054                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3055                     PLANE_CTL_PIPE_CSC_ENABLE;
3056
3057         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3058         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3059         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3060         plane_ctl |= skl_plane_ctl_rotation(rotation);
3061
3062         stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3063                                                fb->pixel_format);
3064         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3065
3066         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3067
3068         if (intel_rotation_90_or_270(rotation)) {
3069                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3070
3071                 /* stride = Surface height in tiles */
3072                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3073                 stride = DIV_ROUND_UP(fb->height, tile_height);
3074                 x_offset = stride * tile_height - src_y - src_h;
3075                 y_offset = src_x;
3076                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3077         } else {
3078                 stride = fb->pitches[0] / stride_div;
3079                 x_offset = src_x;
3080                 y_offset = src_y;
3081                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3082         }
3083         plane_offset = y_offset << 16 | x_offset;
3084
3085         intel_crtc->adjusted_x = x_offset;
3086         intel_crtc->adjusted_y = y_offset;
3087
3088         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3089         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3090         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3091         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3092
3093         if (scaler_id >= 0) {
3094                 uint32_t ps_ctrl = 0;
3095
3096                 WARN_ON(!dst_w || !dst_h);
3097                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3098                         crtc_state->scaler_state.scalers[scaler_id].mode;
3099                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3100                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3101                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3102                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3103                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3104         } else {
3105                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3106         }
3107
3108         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3109
3110         POSTING_READ(PLANE_SURF(pipe, 0));
3111 }
3112
3113 static void skylake_disable_primary_plane(struct drm_plane *primary,
3114                                           struct drm_crtc *crtc)
3115 {
3116         struct drm_device *dev = crtc->dev;
3117         struct drm_i915_private *dev_priv = dev->dev_private;
3118         int pipe = to_intel_crtc(crtc)->pipe;
3119
3120         I915_WRITE(PLANE_CTL(pipe, 0), 0);
3121         I915_WRITE(PLANE_SURF(pipe, 0), 0);
3122         POSTING_READ(PLANE_SURF(pipe, 0));
3123 }
3124
3125 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3126 static int
3127 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3128                            int x, int y, enum mode_set_atomic state)
3129 {
3130         /* Support for kgdboc is disabled, this needs a major rework. */
3131         DRM_ERROR("legacy panic handler not supported any more.\n");
3132
3133         return -ENODEV;
3134 }
3135
3136 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3137 {
3138         struct intel_crtc *crtc;
3139
3140         for_each_intel_crtc(dev_priv->dev, crtc)
3141                 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3142 }
3143
3144 static void intel_update_primary_planes(struct drm_device *dev)
3145 {
3146         struct drm_crtc *crtc;
3147
3148         for_each_crtc(dev, crtc) {
3149                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3150                 struct intel_plane_state *plane_state;
3151
3152                 drm_modeset_lock_crtc(crtc, &plane->base);
3153                 plane_state = to_intel_plane_state(plane->base.state);
3154
3155                 if (plane_state->visible)
3156                         plane->update_plane(&plane->base,
3157                                             to_intel_crtc_state(crtc->state),
3158                                             plane_state);
3159
3160                 drm_modeset_unlock_crtc(crtc);
3161         }
3162 }
3163
3164 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3165 {
3166         /* no reset support for gen2 */
3167         if (IS_GEN2(dev_priv))
3168                 return;
3169
3170         /* reset doesn't touch the display */
3171         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
3172                 return;
3173
3174         drm_modeset_lock_all(dev_priv->dev);
3175         /*
3176          * Disabling the crtcs gracefully seems nicer. Also the
3177          * g33 docs say we should at least disable all the planes.
3178          */
3179         intel_display_suspend(dev_priv->dev);
3180 }
3181
3182 void intel_finish_reset(struct drm_i915_private *dev_priv)
3183 {
3184         /*
3185          * Flips in the rings will be nuked by the reset,
3186          * so complete all pending flips so that user space
3187          * will get its events and not get stuck.
3188          */
3189         intel_complete_page_flips(dev_priv);
3190
3191         /* no reset support for gen2 */
3192         if (IS_GEN2(dev_priv))
3193                 return;
3194
3195         /* reset doesn't touch the display */
3196         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
3197                 /*
3198                  * Flips in the rings have been nuked by the reset,
3199                  * so update the base address of all primary
3200                  * planes to the the last fb to make sure we're
3201                  * showing the correct fb after a reset.
3202                  *
3203                  * FIXME: Atomic will make this obsolete since we won't schedule
3204                  * CS-based flips (which might get lost in gpu resets) any more.
3205                  */
3206                 intel_update_primary_planes(dev_priv->dev);
3207                 return;
3208         }
3209
3210         /*
3211          * The display has been reset as well,
3212          * so need a full re-initialization.
3213          */
3214         intel_runtime_pm_disable_interrupts(dev_priv);
3215         intel_runtime_pm_enable_interrupts(dev_priv);
3216
3217         intel_modeset_init_hw(dev_priv->dev);
3218
3219         spin_lock_irq(&dev_priv->irq_lock);
3220         if (dev_priv->display.hpd_irq_setup)
3221                 dev_priv->display.hpd_irq_setup(dev_priv);
3222         spin_unlock_irq(&dev_priv->irq_lock);
3223
3224         intel_display_resume(dev_priv->dev);
3225
3226         intel_hpd_init(dev_priv);
3227
3228         drm_modeset_unlock_all(dev_priv->dev);
3229 }
3230
3231 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3232 {
3233         struct drm_device *dev = crtc->dev;
3234         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3235         unsigned reset_counter;
3236         bool pending;
3237
3238         reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
3239         if (intel_crtc->reset_counter != reset_counter)
3240                 return false;
3241
3242         spin_lock_irq(&dev->event_lock);
3243         pending = to_intel_crtc(crtc)->flip_work != NULL;
3244         spin_unlock_irq(&dev->event_lock);
3245
3246         return pending;
3247 }
3248
3249 static void intel_update_pipe_config(struct intel_crtc *crtc,
3250                                      struct intel_crtc_state *old_crtc_state)
3251 {
3252         struct drm_device *dev = crtc->base.dev;
3253         struct drm_i915_private *dev_priv = dev->dev_private;
3254         struct intel_crtc_state *pipe_config =
3255                 to_intel_crtc_state(crtc->base.state);
3256
3257         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3258         crtc->base.mode = crtc->base.state->mode;
3259
3260         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3261                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3262                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3263
3264         /*
3265          * Update pipe size and adjust fitter if needed: the reason for this is
3266          * that in compute_mode_changes we check the native mode (not the pfit
3267          * mode) to see if we can flip rather than do a full mode set. In the
3268          * fastboot case, we'll flip, but if we don't update the pipesrc and
3269          * pfit state, we'll end up with a big fb scanned out into the wrong
3270          * sized surface.
3271          */
3272
3273         I915_WRITE(PIPESRC(crtc->pipe),
3274                    ((pipe_config->pipe_src_w - 1) << 16) |
3275                    (pipe_config->pipe_src_h - 1));
3276
3277         /* on skylake this is done by detaching scalers */
3278         if (INTEL_INFO(dev)->gen >= 9) {
3279                 skl_detach_scalers(crtc);
3280
3281                 if (pipe_config->pch_pfit.enabled)
3282                         skylake_pfit_enable(crtc);
3283         } else if (HAS_PCH_SPLIT(dev)) {
3284                 if (pipe_config->pch_pfit.enabled)
3285                         ironlake_pfit_enable(crtc);
3286                 else if (old_crtc_state->pch_pfit.enabled)
3287                         ironlake_pfit_disable(crtc, true);
3288         }
3289 }
3290
3291 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3292 {
3293         struct drm_device *dev = crtc->dev;
3294         struct drm_i915_private *dev_priv = dev->dev_private;
3295         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3296         int pipe = intel_crtc->pipe;
3297         i915_reg_t reg;
3298         u32 temp;
3299
3300         /* enable normal train */
3301         reg = FDI_TX_CTL(pipe);
3302         temp = I915_READ(reg);
3303         if (IS_IVYBRIDGE(dev)) {
3304                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3305                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3306         } else {
3307                 temp &= ~FDI_LINK_TRAIN_NONE;
3308                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3309         }
3310         I915_WRITE(reg, temp);
3311
3312         reg = FDI_RX_CTL(pipe);
3313         temp = I915_READ(reg);
3314         if (HAS_PCH_CPT(dev)) {
3315                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3316                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3317         } else {
3318                 temp &= ~FDI_LINK_TRAIN_NONE;
3319                 temp |= FDI_LINK_TRAIN_NONE;
3320         }
3321         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3322
3323         /* wait one idle pattern time */
3324         POSTING_READ(reg);
3325         udelay(1000);
3326
3327         /* IVB wants error correction enabled */
3328         if (IS_IVYBRIDGE(dev))
3329                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3330                            FDI_FE_ERRC_ENABLE);
3331 }
3332
3333 /* The FDI link training functions for ILK/Ibexpeak. */
3334 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3335 {
3336         struct drm_device *dev = crtc->dev;
3337         struct drm_i915_private *dev_priv = dev->dev_private;
3338         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3339         int pipe = intel_crtc->pipe;
3340         i915_reg_t reg;
3341         u32 temp, tries;
3342
3343         /* FDI needs bits from pipe first */
3344         assert_pipe_enabled(dev_priv, pipe);
3345
3346         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3347            for train result */
3348         reg = FDI_RX_IMR(pipe);
3349         temp = I915_READ(reg);
3350         temp &= ~FDI_RX_SYMBOL_LOCK;
3351         temp &= ~FDI_RX_BIT_LOCK;
3352         I915_WRITE(reg, temp);
3353         I915_READ(reg);
3354         udelay(150);
3355
3356         /* enable CPU FDI TX and PCH FDI RX */
3357         reg = FDI_TX_CTL(pipe);
3358         temp = I915_READ(reg);
3359         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3360         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3361         temp &= ~FDI_LINK_TRAIN_NONE;
3362         temp |= FDI_LINK_TRAIN_PATTERN_1;
3363         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3364
3365         reg = FDI_RX_CTL(pipe);
3366         temp = I915_READ(reg);
3367         temp &= ~FDI_LINK_TRAIN_NONE;
3368         temp |= FDI_LINK_TRAIN_PATTERN_1;
3369         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3370
3371         POSTING_READ(reg);
3372         udelay(150);
3373
3374         /* Ironlake workaround, enable clock pointer after FDI enable*/
3375         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3376         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3377                    FDI_RX_PHASE_SYNC_POINTER_EN);
3378
3379         reg = FDI_RX_IIR(pipe);
3380         for (tries = 0; tries < 5; tries++) {
3381                 temp = I915_READ(reg);
3382                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3383
3384                 if ((temp & FDI_RX_BIT_LOCK)) {
3385                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3386                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3387                         break;
3388                 }
3389         }
3390         if (tries == 5)
3391                 DRM_ERROR("FDI train 1 fail!\n");
3392
3393         /* Train 2 */
3394         reg = FDI_TX_CTL(pipe);
3395         temp = I915_READ(reg);
3396         temp &= ~FDI_LINK_TRAIN_NONE;
3397         temp |= FDI_LINK_TRAIN_PATTERN_2;
3398         I915_WRITE(reg, temp);
3399
3400         reg = FDI_RX_CTL(pipe);
3401         temp = I915_READ(reg);
3402         temp &= ~FDI_LINK_TRAIN_NONE;
3403         temp |= FDI_LINK_TRAIN_PATTERN_2;
3404         I915_WRITE(reg, temp);
3405
3406         POSTING_READ(reg);
3407         udelay(150);
3408
3409         reg = FDI_RX_IIR(pipe);
3410         for (tries = 0; tries < 5; tries++) {
3411                 temp = I915_READ(reg);
3412                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3413
3414                 if (temp & FDI_RX_SYMBOL_LOCK) {
3415                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3416                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3417                         break;
3418                 }
3419         }
3420         if (tries == 5)
3421                 DRM_ERROR("FDI train 2 fail!\n");
3422
3423         DRM_DEBUG_KMS("FDI train done\n");
3424
3425 }
3426
3427 static const int snb_b_fdi_train_param[] = {
3428         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3429         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3430         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3431         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3432 };
3433
3434 /* The FDI link training functions for SNB/Cougarpoint. */
3435 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3436 {
3437         struct drm_device *dev = crtc->dev;
3438         struct drm_i915_private *dev_priv = dev->dev_private;
3439         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3440         int pipe = intel_crtc->pipe;
3441         i915_reg_t reg;
3442         u32 temp, i, retry;
3443
3444         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3445            for train result */
3446         reg = FDI_RX_IMR(pipe);
3447         temp = I915_READ(reg);
3448         temp &= ~FDI_RX_SYMBOL_LOCK;
3449         temp &= ~FDI_RX_BIT_LOCK;
3450         I915_WRITE(reg, temp);
3451
3452         POSTING_READ(reg);
3453         udelay(150);
3454
3455         /* enable CPU FDI TX and PCH FDI RX */
3456         reg = FDI_TX_CTL(pipe);
3457         temp = I915_READ(reg);
3458         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3459         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3460         temp &= ~FDI_LINK_TRAIN_NONE;
3461         temp |= FDI_LINK_TRAIN_PATTERN_1;
3462         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3463         /* SNB-B */
3464         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3465         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3466
3467         I915_WRITE(FDI_RX_MISC(pipe),
3468                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3469
3470         reg = FDI_RX_CTL(pipe);
3471         temp = I915_READ(reg);
3472         if (HAS_PCH_CPT(dev)) {
3473                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3474                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3475         } else {
3476                 temp &= ~FDI_LINK_TRAIN_NONE;
3477                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3478         }
3479         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3480
3481         POSTING_READ(reg);
3482         udelay(150);
3483
3484         for (i = 0; i < 4; i++) {
3485                 reg = FDI_TX_CTL(pipe);
3486                 temp = I915_READ(reg);
3487                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3488                 temp |= snb_b_fdi_train_param[i];
3489                 I915_WRITE(reg, temp);
3490
3491                 POSTING_READ(reg);
3492                 udelay(500);
3493
3494                 for (retry = 0; retry < 5; retry++) {
3495                         reg = FDI_RX_IIR(pipe);
3496                         temp = I915_READ(reg);
3497                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3498                         if (temp & FDI_RX_BIT_LOCK) {
3499                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3500                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3501                                 break;
3502                         }
3503                         udelay(50);
3504                 }
3505                 if (retry < 5)
3506                         break;
3507         }
3508         if (i == 4)
3509                 DRM_ERROR("FDI train 1 fail!\n");
3510
3511         /* Train 2 */
3512         reg = FDI_TX_CTL(pipe);
3513         temp = I915_READ(reg);
3514         temp &= ~FDI_LINK_TRAIN_NONE;
3515         temp |= FDI_LINK_TRAIN_PATTERN_2;
3516         if (IS_GEN6(dev)) {
3517                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3518                 /* SNB-B */
3519                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3520         }
3521         I915_WRITE(reg, temp);
3522
3523         reg = FDI_RX_CTL(pipe);
3524         temp = I915_READ(reg);
3525         if (HAS_PCH_CPT(dev)) {
3526                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3527                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3528         } else {
3529                 temp &= ~FDI_LINK_TRAIN_NONE;
3530                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3531         }
3532         I915_WRITE(reg, temp);
3533
3534         POSTING_READ(reg);
3535         udelay(150);
3536
3537         for (i = 0; i < 4; i++) {
3538                 reg = FDI_TX_CTL(pipe);
3539                 temp = I915_READ(reg);
3540                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3541                 temp |= snb_b_fdi_train_param[i];
3542                 I915_WRITE(reg, temp);
3543
3544                 POSTING_READ(reg);
3545                 udelay(500);
3546
3547                 for (retry = 0; retry < 5; retry++) {
3548                         reg = FDI_RX_IIR(pipe);
3549                         temp = I915_READ(reg);
3550                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3551                         if (temp & FDI_RX_SYMBOL_LOCK) {
3552                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3553                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3554                                 break;
3555                         }
3556                         udelay(50);
3557                 }
3558                 if (retry < 5)
3559                         break;
3560         }
3561         if (i == 4)
3562                 DRM_ERROR("FDI train 2 fail!\n");
3563
3564         DRM_DEBUG_KMS("FDI train done.\n");
3565 }
3566
3567 /* Manual link training for Ivy Bridge A0 parts */
3568 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3569 {
3570         struct drm_device *dev = crtc->dev;
3571         struct drm_i915_private *dev_priv = dev->dev_private;
3572         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3573         int pipe = intel_crtc->pipe;
3574         i915_reg_t reg;
3575         u32 temp, i, j;
3576
3577         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3578            for train result */
3579         reg = FDI_RX_IMR(pipe);
3580         temp = I915_READ(reg);
3581         temp &= ~FDI_RX_SYMBOL_LOCK;
3582         temp &= ~FDI_RX_BIT_LOCK;
3583         I915_WRITE(reg, temp);
3584
3585         POSTING_READ(reg);
3586         udelay(150);
3587
3588         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3589                       I915_READ(FDI_RX_IIR(pipe)));
3590
3591         /* Try each vswing and preemphasis setting twice before moving on */
3592         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3593                 /* disable first in case we need to retry */
3594                 reg = FDI_TX_CTL(pipe);
3595                 temp = I915_READ(reg);
3596                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3597                 temp &= ~FDI_TX_ENABLE;
3598                 I915_WRITE(reg, temp);
3599
3600                 reg = FDI_RX_CTL(pipe);
3601                 temp = I915_READ(reg);
3602                 temp &= ~FDI_LINK_TRAIN_AUTO;
3603                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3604                 temp &= ~FDI_RX_ENABLE;
3605                 I915_WRITE(reg, temp);
3606
3607                 /* enable CPU FDI TX and PCH FDI RX */
3608                 reg = FDI_TX_CTL(pipe);
3609                 temp = I915_READ(reg);
3610                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3611                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3612                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3613                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3614                 temp |= snb_b_fdi_train_param[j/2];
3615                 temp |= FDI_COMPOSITE_SYNC;
3616                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3617
3618                 I915_WRITE(FDI_RX_MISC(pipe),
3619                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3620
3621                 reg = FDI_RX_CTL(pipe);
3622                 temp = I915_READ(reg);
3623                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3624                 temp |= FDI_COMPOSITE_SYNC;
3625                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3626
3627                 POSTING_READ(reg);
3628                 udelay(1); /* should be 0.5us */
3629
3630                 for (i = 0; i < 4; i++) {
3631                         reg = FDI_RX_IIR(pipe);
3632                         temp = I915_READ(reg);
3633                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3634
3635                         if (temp & FDI_RX_BIT_LOCK ||
3636                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3637                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3638                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3639                                               i);
3640                                 break;
3641                         }
3642                         udelay(1); /* should be 0.5us */
3643                 }
3644                 if (i == 4) {
3645                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3646                         continue;
3647                 }
3648
3649                 /* Train 2 */
3650                 reg = FDI_TX_CTL(pipe);
3651                 temp = I915_READ(reg);
3652                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3653                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3654                 I915_WRITE(reg, temp);
3655
3656                 reg = FDI_RX_CTL(pipe);
3657                 temp = I915_READ(reg);
3658                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3659                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3660                 I915_WRITE(reg, temp);
3661
3662                 POSTING_READ(reg);
3663                 udelay(2); /* should be 1.5us */
3664
3665                 for (i = 0; i < 4; i++) {
3666                         reg = FDI_RX_IIR(pipe);
3667                         temp = I915_READ(reg);
3668                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3669
3670                         if (temp & FDI_RX_SYMBOL_LOCK ||
3671                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3672                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3673                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3674                                               i);
3675                                 goto train_done;
3676                         }
3677                         udelay(2); /* should be 1.5us */
3678                 }
3679                 if (i == 4)
3680                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3681         }
3682
3683 train_done:
3684         DRM_DEBUG_KMS("FDI train done.\n");
3685 }
3686
3687 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3688 {
3689         struct drm_device *dev = intel_crtc->base.dev;
3690         struct drm_i915_private *dev_priv = dev->dev_private;
3691         int pipe = intel_crtc->pipe;
3692         i915_reg_t reg;
3693         u32 temp;
3694
3695         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3696         reg = FDI_RX_CTL(pipe);
3697         temp = I915_READ(reg);
3698         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3699         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3700         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3701         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3702
3703         POSTING_READ(reg);
3704         udelay(200);
3705
3706         /* Switch from Rawclk to PCDclk */
3707         temp = I915_READ(reg);
3708         I915_WRITE(reg, temp | FDI_PCDCLK);
3709
3710         POSTING_READ(reg);
3711         udelay(200);
3712
3713         /* Enable CPU FDI TX PLL, always on for Ironlake */
3714         reg = FDI_TX_CTL(pipe);
3715         temp = I915_READ(reg);
3716         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3717                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3718
3719                 POSTING_READ(reg);
3720                 udelay(100);
3721         }
3722 }
3723
3724 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3725 {
3726         struct drm_device *dev = intel_crtc->base.dev;
3727         struct drm_i915_private *dev_priv = dev->dev_private;
3728         int pipe = intel_crtc->pipe;
3729         i915_reg_t reg;
3730         u32 temp;
3731
3732         /* Switch from PCDclk to Rawclk */
3733         reg = FDI_RX_CTL(pipe);
3734         temp = I915_READ(reg);
3735         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3736
3737         /* Disable CPU FDI TX PLL */
3738         reg = FDI_TX_CTL(pipe);
3739         temp = I915_READ(reg);
3740         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3741
3742         POSTING_READ(reg);
3743         udelay(100);
3744
3745         reg = FDI_RX_CTL(pipe);
3746         temp = I915_READ(reg);
3747         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3748
3749         /* Wait for the clocks to turn off. */
3750         POSTING_READ(reg);
3751         udelay(100);
3752 }
3753
3754 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3755 {
3756         struct drm_device *dev = crtc->dev;
3757         struct drm_i915_private *dev_priv = dev->dev_private;
3758         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3759         int pipe = intel_crtc->pipe;
3760         i915_reg_t reg;
3761         u32 temp;
3762
3763         /* disable CPU FDI tx and PCH FDI rx */
3764         reg = FDI_TX_CTL(pipe);
3765         temp = I915_READ(reg);
3766         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3767         POSTING_READ(reg);
3768
3769         reg = FDI_RX_CTL(pipe);
3770         temp = I915_READ(reg);
3771         temp &= ~(0x7 << 16);
3772         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3773         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3774
3775         POSTING_READ(reg);
3776         udelay(100);
3777
3778         /* Ironlake workaround, disable clock pointer after downing FDI */
3779         if (HAS_PCH_IBX(dev))
3780                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3781
3782         /* still set train pattern 1 */
3783         reg = FDI_TX_CTL(pipe);
3784         temp = I915_READ(reg);
3785         temp &= ~FDI_LINK_TRAIN_NONE;
3786         temp |= FDI_LINK_TRAIN_PATTERN_1;
3787         I915_WRITE(reg, temp);
3788
3789         reg = FDI_RX_CTL(pipe);
3790         temp = I915_READ(reg);
3791         if (HAS_PCH_CPT(dev)) {
3792                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3793                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3794         } else {
3795                 temp &= ~FDI_LINK_TRAIN_NONE;
3796                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3797         }
3798         /* BPC in FDI rx is consistent with that in PIPECONF */
3799         temp &= ~(0x07 << 16);
3800         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3801         I915_WRITE(reg, temp);
3802
3803         POSTING_READ(reg);
3804         udelay(100);
3805 }
3806
3807 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3808 {
3809         struct intel_crtc *crtc;
3810
3811         /* Note that we don't need to be called with mode_config.lock here
3812          * as our list of CRTC objects is static for the lifetime of the
3813          * device and so cannot disappear as we iterate. Similarly, we can
3814          * happily treat the predicates as racy, atomic checks as userspace
3815          * cannot claim and pin a new fb without at least acquring the
3816          * struct_mutex and so serialising with us.
3817          */
3818         for_each_intel_crtc(dev, crtc) {
3819                 if (atomic_read(&crtc->unpin_work_count) == 0)
3820                         continue;
3821
3822                 if (crtc->flip_work)
3823                         intel_wait_for_vblank(dev, crtc->pipe);
3824
3825                 return true;
3826         }
3827
3828         return false;
3829 }
3830
3831 static void page_flip_completed(struct intel_crtc *intel_crtc)
3832 {
3833         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3834         struct intel_flip_work *work = intel_crtc->flip_work;
3835
3836         intel_crtc->flip_work = NULL;
3837
3838         if (work->event)
3839                 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
3840
3841         drm_crtc_vblank_put(&intel_crtc->base);
3842
3843         wake_up_all(&dev_priv->pending_flip_queue);
3844         queue_work(dev_priv->wq, &work->unpin_work);
3845
3846         trace_i915_flip_complete(intel_crtc->plane,
3847                                  work->pending_flip_obj);
3848 }
3849
3850 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3851 {
3852         struct drm_device *dev = crtc->dev;
3853         struct drm_i915_private *dev_priv = dev->dev_private;
3854         long ret;
3855
3856         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3857
3858         ret = wait_event_interruptible_timeout(
3859                                         dev_priv->pending_flip_queue,
3860                                         !intel_crtc_has_pending_flip(crtc),
3861                                         60*HZ);
3862
3863         if (ret < 0)
3864                 return ret;
3865
3866         if (ret == 0) {
3867                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3868                 struct intel_flip_work *work;
3869
3870                 spin_lock_irq(&dev->event_lock);
3871                 work = intel_crtc->flip_work;
3872                 if (work && !is_mmio_work(work)) {
3873                         WARN_ONCE(1, "Removing stuck page flip\n");
3874                         page_flip_completed(intel_crtc);
3875                 }
3876                 spin_unlock_irq(&dev->event_lock);
3877         }
3878
3879         return 0;
3880 }
3881
3882 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3883 {
3884         u32 temp;
3885
3886         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3887
3888         mutex_lock(&dev_priv->sb_lock);
3889
3890         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3891         temp |= SBI_SSCCTL_DISABLE;
3892         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3893
3894         mutex_unlock(&dev_priv->sb_lock);
3895 }
3896
3897 /* Program iCLKIP clock to the desired frequency */
3898 static void lpt_program_iclkip(struct drm_crtc *crtc)
3899 {
3900         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3901         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3902         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3903         u32 temp;
3904
3905         lpt_disable_iclkip(dev_priv);
3906
3907         /* The iCLK virtual clock root frequency is in MHz,
3908          * but the adjusted_mode->crtc_clock in in KHz. To get the
3909          * divisors, it is necessary to divide one by another, so we
3910          * convert the virtual clock precision to KHz here for higher
3911          * precision.
3912          */
3913         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
3914                 u32 iclk_virtual_root_freq = 172800 * 1000;
3915                 u32 iclk_pi_range = 64;
3916                 u32 desired_divisor;
3917
3918                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3919                                                     clock << auxdiv);
3920                 divsel = (desired_divisor / iclk_pi_range) - 2;
3921                 phaseinc = desired_divisor % iclk_pi_range;
3922
3923                 /*
3924                  * Near 20MHz is a corner case which is
3925                  * out of range for the 7-bit divisor
3926                  */
3927                 if (divsel <= 0x7f)
3928                         break;
3929         }
3930
3931         /* This should not happen with any sane values */
3932         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3933                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3934         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3935                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3936
3937         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3938                         clock,
3939                         auxdiv,
3940                         divsel,
3941                         phasedir,
3942                         phaseinc);
3943
3944         mutex_lock(&dev_priv->sb_lock);
3945
3946         /* Program SSCDIVINTPHASE6 */
3947         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3948         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3949         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3950         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3951         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3952         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3953         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3954         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3955
3956         /* Program SSCAUXDIV */
3957         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3958         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3959         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3960         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3961
3962         /* Enable modulator and associated divider */
3963         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3964         temp &= ~SBI_SSCCTL_DISABLE;
3965         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3966
3967         mutex_unlock(&dev_priv->sb_lock);
3968
3969         /* Wait for initialization time */
3970         udelay(24);
3971
3972         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3973 }
3974
3975 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3976 {
3977         u32 divsel, phaseinc, auxdiv;
3978         u32 iclk_virtual_root_freq = 172800 * 1000;
3979         u32 iclk_pi_range = 64;
3980         u32 desired_divisor;
3981         u32 temp;
3982
3983         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3984                 return 0;
3985
3986         mutex_lock(&dev_priv->sb_lock);
3987
3988         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3989         if (temp & SBI_SSCCTL_DISABLE) {
3990                 mutex_unlock(&dev_priv->sb_lock);
3991                 return 0;
3992         }
3993
3994         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3995         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
3996                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
3997         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
3998                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
3999
4000         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4001         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4002                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4003
4004         mutex_unlock(&dev_priv->sb_lock);
4005
4006         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4007
4008         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4009                                  desired_divisor << auxdiv);
4010 }
4011
4012 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4013                                                 enum pipe pch_transcoder)
4014 {
4015         struct drm_device *dev = crtc->base.dev;
4016         struct drm_i915_private *dev_priv = dev->dev_private;
4017         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4018
4019         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4020                    I915_READ(HTOTAL(cpu_transcoder)));
4021         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4022                    I915_READ(HBLANK(cpu_transcoder)));
4023         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4024                    I915_READ(HSYNC(cpu_transcoder)));
4025
4026         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4027                    I915_READ(VTOTAL(cpu_transcoder)));
4028         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4029                    I915_READ(VBLANK(cpu_transcoder)));
4030         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4031                    I915_READ(VSYNC(cpu_transcoder)));
4032         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4033                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4034 }
4035
4036 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4037 {
4038         struct drm_i915_private *dev_priv = dev->dev_private;
4039         uint32_t temp;
4040
4041         temp = I915_READ(SOUTH_CHICKEN1);
4042         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4043                 return;
4044
4045         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4046         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4047
4048         temp &= ~FDI_BC_BIFURCATION_SELECT;
4049         if (enable)
4050                 temp |= FDI_BC_BIFURCATION_SELECT;
4051
4052         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4053         I915_WRITE(SOUTH_CHICKEN1, temp);
4054         POSTING_READ(SOUTH_CHICKEN1);
4055 }
4056
4057 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4058 {
4059         struct drm_device *dev = intel_crtc->base.dev;
4060
4061         switch (intel_crtc->pipe) {
4062         case PIPE_A:
4063                 break;
4064         case PIPE_B:
4065                 if (intel_crtc->config->fdi_lanes > 2)
4066                         cpt_set_fdi_bc_bifurcation(dev, false);
4067                 else
4068                         cpt_set_fdi_bc_bifurcation(dev, true);
4069
4070                 break;
4071         case PIPE_C:
4072                 cpt_set_fdi_bc_bifurcation(dev, true);
4073
4074                 break;
4075         default:
4076                 BUG();
4077         }
4078 }
4079
4080 /* Return which DP Port should be selected for Transcoder DP control */
4081 static enum port
4082 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4083 {
4084         struct drm_device *dev = crtc->dev;
4085         struct intel_encoder *encoder;
4086
4087         for_each_encoder_on_crtc(dev, crtc, encoder) {
4088                 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4089                     encoder->type == INTEL_OUTPUT_EDP)
4090                         return enc_to_dig_port(&encoder->base)->port;
4091         }
4092
4093         return -1;
4094 }
4095
4096 /*
4097  * Enable PCH resources required for PCH ports:
4098  *   - PCH PLLs
4099  *   - FDI training & RX/TX
4100  *   - update transcoder timings
4101  *   - DP transcoding bits
4102  *   - transcoder
4103  */
4104 static void ironlake_pch_enable(struct drm_crtc *crtc)
4105 {
4106         struct drm_device *dev = crtc->dev;
4107         struct drm_i915_private *dev_priv = dev->dev_private;
4108         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4109         int pipe = intel_crtc->pipe;
4110         u32 temp;
4111
4112         assert_pch_transcoder_disabled(dev_priv, pipe);
4113
4114         if (IS_IVYBRIDGE(dev))
4115                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4116
4117         /* Write the TU size bits before fdi link training, so that error
4118          * detection works. */
4119         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4120                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4121
4122         /* For PCH output, training FDI link */
4123         dev_priv->display.fdi_link_train(crtc);
4124
4125         /* We need to program the right clock selection before writing the pixel
4126          * mutliplier into the DPLL. */
4127         if (HAS_PCH_CPT(dev)) {
4128                 u32 sel;
4129
4130                 temp = I915_READ(PCH_DPLL_SEL);
4131                 temp |= TRANS_DPLL_ENABLE(pipe);
4132                 sel = TRANS_DPLLB_SEL(pipe);
4133                 if (intel_crtc->config->shared_dpll ==
4134                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4135                         temp |= sel;
4136                 else
4137                         temp &= ~sel;
4138                 I915_WRITE(PCH_DPLL_SEL, temp);
4139         }
4140
4141         /* XXX: pch pll's can be enabled any time before we enable the PCH
4142          * transcoder, and we actually should do this to not upset any PCH
4143          * transcoder that already use the clock when we share it.
4144          *
4145          * Note that enable_shared_dpll tries to do the right thing, but
4146          * get_shared_dpll unconditionally resets the pll - we need that to have
4147          * the right LVDS enable sequence. */
4148         intel_enable_shared_dpll(intel_crtc);
4149
4150         /* set transcoder timing, panel must allow it */
4151         assert_panel_unlocked(dev_priv, pipe);
4152         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4153
4154         intel_fdi_normal_train(crtc);
4155
4156         /* For PCH DP, enable TRANS_DP_CTL */
4157         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4158                 const struct drm_display_mode *adjusted_mode =
4159                         &intel_crtc->config->base.adjusted_mode;
4160                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4161                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4162                 temp = I915_READ(reg);
4163                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4164                           TRANS_DP_SYNC_MASK |
4165                           TRANS_DP_BPC_MASK);
4166                 temp |= TRANS_DP_OUTPUT_ENABLE;
4167                 temp |= bpc << 9; /* same format but at 11:9 */
4168
4169                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4170                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4171                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4172                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4173
4174                 switch (intel_trans_dp_port_sel(crtc)) {
4175                 case PORT_B:
4176                         temp |= TRANS_DP_PORT_SEL_B;
4177                         break;
4178                 case PORT_C:
4179                         temp |= TRANS_DP_PORT_SEL_C;
4180                         break;
4181                 case PORT_D:
4182                         temp |= TRANS_DP_PORT_SEL_D;
4183                         break;
4184                 default:
4185                         BUG();
4186                 }
4187
4188                 I915_WRITE(reg, temp);
4189         }
4190
4191         ironlake_enable_pch_transcoder(dev_priv, pipe);
4192 }
4193
4194 static void lpt_pch_enable(struct drm_crtc *crtc)
4195 {
4196         struct drm_device *dev = crtc->dev;
4197         struct drm_i915_private *dev_priv = dev->dev_private;
4198         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4199         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4200
4201         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4202
4203         lpt_program_iclkip(crtc);
4204
4205         /* Set transcoder timing. */
4206         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4207
4208         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4209 }
4210
4211 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4212 {
4213         struct drm_i915_private *dev_priv = dev->dev_private;
4214         i915_reg_t dslreg = PIPEDSL(pipe);
4215         u32 temp;
4216
4217         temp = I915_READ(dslreg);
4218         udelay(500);
4219         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4220                 if (wait_for(I915_READ(dslreg) != temp, 5))
4221                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4222         }
4223 }
4224
4225 static int
4226 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4227                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4228                   int src_w, int src_h, int dst_w, int dst_h)
4229 {
4230         struct intel_crtc_scaler_state *scaler_state =
4231                 &crtc_state->scaler_state;
4232         struct intel_crtc *intel_crtc =
4233                 to_intel_crtc(crtc_state->base.crtc);
4234         int need_scaling;
4235
4236         need_scaling = intel_rotation_90_or_270(rotation) ?
4237                 (src_h != dst_w || src_w != dst_h):
4238                 (src_w != dst_w || src_h != dst_h);
4239
4240         /*
4241          * if plane is being disabled or scaler is no more required or force detach
4242          *  - free scaler binded to this plane/crtc
4243          *  - in order to do this, update crtc->scaler_usage
4244          *
4245          * Here scaler state in crtc_state is set free so that
4246          * scaler can be assigned to other user. Actual register
4247          * update to free the scaler is done in plane/panel-fit programming.
4248          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4249          */
4250         if (force_detach || !need_scaling) {
4251                 if (*scaler_id >= 0) {
4252                         scaler_state->scaler_users &= ~(1 << scaler_user);
4253                         scaler_state->scalers[*scaler_id].in_use = 0;
4254
4255                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4256                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4257                                 intel_crtc->pipe, scaler_user, *scaler_id,
4258                                 scaler_state->scaler_users);
4259                         *scaler_id = -1;
4260                 }
4261                 return 0;
4262         }
4263
4264         /* range checks */
4265         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4266                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4267
4268                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4269                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4270                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4271                         "size is out of scaler range\n",
4272                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4273                 return -EINVAL;
4274         }
4275
4276         /* mark this plane as a scaler user in crtc_state */
4277         scaler_state->scaler_users |= (1 << scaler_user);
4278         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4279                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4280                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4281                 scaler_state->scaler_users);
4282
4283         return 0;
4284 }
4285
4286 /**
4287  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4288  *
4289  * @state: crtc's scaler state
4290  *
4291  * Return
4292  *     0 - scaler_usage updated successfully
4293  *    error - requested scaling cannot be supported or other error condition
4294  */
4295 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4296 {
4297         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4298         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4299
4300         DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n",
4301                       intel_crtc->base.base.id, intel_crtc->base.name,
4302                       intel_crtc->pipe, SKL_CRTC_INDEX);
4303
4304         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4305                 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4306                 state->pipe_src_w, state->pipe_src_h,
4307                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4308 }
4309
4310 /**
4311  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4312  *
4313  * @state: crtc's scaler state
4314  * @plane_state: atomic plane state to update
4315  *
4316  * Return
4317  *     0 - scaler_usage updated successfully
4318  *    error - requested scaling cannot be supported or other error condition
4319  */
4320 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4321                                    struct intel_plane_state *plane_state)
4322 {
4323
4324         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4325         struct intel_plane *intel_plane =
4326                 to_intel_plane(plane_state->base.plane);
4327         struct drm_framebuffer *fb = plane_state->base.fb;
4328         int ret;
4329
4330         bool force_detach = !fb || !plane_state->visible;
4331
4332         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n",
4333                       intel_plane->base.base.id, intel_plane->base.name,
4334                       intel_crtc->pipe, drm_plane_index(&intel_plane->base));
4335
4336         ret = skl_update_scaler(crtc_state, force_detach,
4337                                 drm_plane_index(&intel_plane->base),
4338                                 &plane_state->scaler_id,
4339                                 plane_state->base.rotation,
4340                                 drm_rect_width(&plane_state->src) >> 16,
4341                                 drm_rect_height(&plane_state->src) >> 16,
4342                                 drm_rect_width(&plane_state->dst),
4343                                 drm_rect_height(&plane_state->dst));
4344
4345         if (ret || plane_state->scaler_id < 0)
4346                 return ret;
4347
4348         /* check colorkey */
4349         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4350                 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4351                               intel_plane->base.base.id,
4352                               intel_plane->base.name);
4353                 return -EINVAL;
4354         }
4355
4356         /* Check src format */
4357         switch (fb->pixel_format) {
4358         case DRM_FORMAT_RGB565:
4359         case DRM_FORMAT_XBGR8888:
4360         case DRM_FORMAT_XRGB8888:
4361         case DRM_FORMAT_ABGR8888:
4362         case DRM_FORMAT_ARGB8888:
4363         case DRM_FORMAT_XRGB2101010:
4364         case DRM_FORMAT_XBGR2101010:
4365         case DRM_FORMAT_YUYV:
4366         case DRM_FORMAT_YVYU:
4367         case DRM_FORMAT_UYVY:
4368         case DRM_FORMAT_VYUY:
4369                 break;
4370         default:
4371                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4372                               intel_plane->base.base.id, intel_plane->base.name,
4373                               fb->base.id, fb->pixel_format);
4374                 return -EINVAL;
4375         }
4376
4377         return 0;
4378 }
4379
4380 static void skylake_scaler_disable(struct intel_crtc *crtc)
4381 {
4382         int i;
4383
4384         for (i = 0; i < crtc->num_scalers; i++)
4385                 skl_detach_scaler(crtc, i);
4386 }
4387
4388 static void skylake_pfit_enable(struct intel_crtc *crtc)
4389 {
4390         struct drm_device *dev = crtc->base.dev;
4391         struct drm_i915_private *dev_priv = dev->dev_private;
4392         int pipe = crtc->pipe;
4393         struct intel_crtc_scaler_state *scaler_state =
4394                 &crtc->config->scaler_state;
4395
4396         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4397
4398         if (crtc->config->pch_pfit.enabled) {
4399                 int id;
4400
4401                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4402                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4403                         return;
4404                 }
4405
4406                 id = scaler_state->scaler_id;
4407                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4408                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4409                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4410                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4411
4412                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4413         }
4414 }
4415
4416 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4417 {
4418         struct drm_device *dev = crtc->base.dev;
4419         struct drm_i915_private *dev_priv = dev->dev_private;
4420         int pipe = crtc->pipe;
4421
4422         if (crtc->config->pch_pfit.enabled) {
4423                 /* Force use of hard-coded filter coefficients
4424                  * as some pre-programmed values are broken,
4425                  * e.g. x201.
4426                  */
4427                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4428                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4429                                                  PF_PIPE_SEL_IVB(pipe));
4430                 else
4431                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4432                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4433                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4434         }
4435 }
4436
4437 void hsw_enable_ips(struct intel_crtc *crtc)
4438 {
4439         struct drm_device *dev = crtc->base.dev;
4440         struct drm_i915_private *dev_priv = dev->dev_private;
4441
4442         if (!crtc->config->ips_enabled)
4443                 return;
4444
4445         /*
4446          * We can only enable IPS after we enable a plane and wait for a vblank
4447          * This function is called from post_plane_update, which is run after
4448          * a vblank wait.
4449          */
4450
4451         assert_plane_enabled(dev_priv, crtc->plane);
4452         if (IS_BROADWELL(dev)) {
4453                 mutex_lock(&dev_priv->rps.hw_lock);
4454                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4455                 mutex_unlock(&dev_priv->rps.hw_lock);
4456                 /* Quoting Art Runyan: "its not safe to expect any particular
4457                  * value in IPS_CTL bit 31 after enabling IPS through the
4458                  * mailbox." Moreover, the mailbox may return a bogus state,
4459                  * so we need to just enable it and continue on.
4460                  */
4461         } else {
4462                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4463                 /* The bit only becomes 1 in the next vblank, so this wait here
4464                  * is essentially intel_wait_for_vblank. If we don't have this
4465                  * and don't wait for vblanks until the end of crtc_enable, then
4466                  * the HW state readout code will complain that the expected
4467                  * IPS_CTL value is not the one we read. */
4468                 if (intel_wait_for_register(dev_priv,
4469                                             IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4470                                             50))
4471                         DRM_ERROR("Timed out waiting for IPS enable\n");
4472         }
4473 }
4474
4475 void hsw_disable_ips(struct intel_crtc *crtc)
4476 {
4477         struct drm_device *dev = crtc->base.dev;
4478         struct drm_i915_private *dev_priv = dev->dev_private;
4479
4480         if (!crtc->config->ips_enabled)
4481                 return;
4482
4483         assert_plane_enabled(dev_priv, crtc->plane);
4484         if (IS_BROADWELL(dev)) {
4485                 mutex_lock(&dev_priv->rps.hw_lock);
4486                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4487                 mutex_unlock(&dev_priv->rps.hw_lock);
4488                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4489                 if (intel_wait_for_register(dev_priv,
4490                                             IPS_CTL, IPS_ENABLE, 0,
4491                                             42))
4492                         DRM_ERROR("Timed out waiting for IPS disable\n");
4493         } else {
4494                 I915_WRITE(IPS_CTL, 0);
4495                 POSTING_READ(IPS_CTL);
4496         }
4497
4498         /* We need to wait for a vblank before we can disable the plane. */
4499         intel_wait_for_vblank(dev, crtc->pipe);
4500 }
4501
4502 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4503 {
4504         if (intel_crtc->overlay) {
4505                 struct drm_device *dev = intel_crtc->base.dev;
4506                 struct drm_i915_private *dev_priv = dev->dev_private;
4507
4508                 mutex_lock(&dev->struct_mutex);
4509                 dev_priv->mm.interruptible = false;
4510                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4511                 dev_priv->mm.interruptible = true;
4512                 mutex_unlock(&dev->struct_mutex);
4513         }
4514
4515         /* Let userspace switch the overlay on again. In most cases userspace
4516          * has to recompute where to put it anyway.
4517          */
4518 }
4519
4520 /**
4521  * intel_post_enable_primary - Perform operations after enabling primary plane
4522  * @crtc: the CRTC whose primary plane was just enabled
4523  *
4524  * Performs potentially sleeping operations that must be done after the primary
4525  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4526  * called due to an explicit primary plane update, or due to an implicit
4527  * re-enable that is caused when a sprite plane is updated to no longer
4528  * completely hide the primary plane.
4529  */
4530 static void
4531 intel_post_enable_primary(struct drm_crtc *crtc)
4532 {
4533         struct drm_device *dev = crtc->dev;
4534         struct drm_i915_private *dev_priv = dev->dev_private;
4535         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4536         int pipe = intel_crtc->pipe;
4537
4538         /*
4539          * FIXME IPS should be fine as long as one plane is
4540          * enabled, but in practice it seems to have problems
4541          * when going from primary only to sprite only and vice
4542          * versa.
4543          */
4544         hsw_enable_ips(intel_crtc);
4545
4546         /*
4547          * Gen2 reports pipe underruns whenever all planes are disabled.
4548          * So don't enable underrun reporting before at least some planes
4549          * are enabled.
4550          * FIXME: Need to fix the logic to work when we turn off all planes
4551          * but leave the pipe running.
4552          */
4553         if (IS_GEN2(dev))
4554                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4555
4556         /* Underruns don't always raise interrupts, so check manually. */
4557         intel_check_cpu_fifo_underruns(dev_priv);
4558         intel_check_pch_fifo_underruns(dev_priv);
4559 }
4560
4561 /* FIXME move all this to pre_plane_update() with proper state tracking */
4562 static void
4563 intel_pre_disable_primary(struct drm_crtc *crtc)
4564 {
4565         struct drm_device *dev = crtc->dev;
4566         struct drm_i915_private *dev_priv = dev->dev_private;
4567         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4568         int pipe = intel_crtc->pipe;
4569
4570         /*
4571          * Gen2 reports pipe underruns whenever all planes are disabled.
4572          * So diasble underrun reporting before all the planes get disabled.
4573          * FIXME: Need to fix the logic to work when we turn off all planes
4574          * but leave the pipe running.
4575          */
4576         if (IS_GEN2(dev))
4577                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4578
4579         /*
4580          * FIXME IPS should be fine as long as one plane is
4581          * enabled, but in practice it seems to have problems
4582          * when going from primary only to sprite only and vice
4583          * versa.
4584          */
4585         hsw_disable_ips(intel_crtc);
4586 }
4587
4588 /* FIXME get rid of this and use pre_plane_update */
4589 static void
4590 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4591 {
4592         struct drm_device *dev = crtc->dev;
4593         struct drm_i915_private *dev_priv = dev->dev_private;
4594         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4595         int pipe = intel_crtc->pipe;
4596
4597         intel_pre_disable_primary(crtc);
4598
4599         /*
4600          * Vblank time updates from the shadow to live plane control register
4601          * are blocked if the memory self-refresh mode is active at that
4602          * moment. So to make sure the plane gets truly disabled, disable
4603          * first the self-refresh mode. The self-refresh enable bit in turn
4604          * will be checked/applied by the HW only at the next frame start
4605          * event which is after the vblank start event, so we need to have a
4606          * wait-for-vblank between disabling the plane and the pipe.
4607          */
4608         if (HAS_GMCH_DISPLAY(dev)) {
4609                 intel_set_memory_cxsr(dev_priv, false);
4610                 dev_priv->wm.vlv.cxsr = false;
4611                 intel_wait_for_vblank(dev, pipe);
4612         }
4613 }
4614
4615 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4616 {
4617         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4618         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4619         struct intel_crtc_state *pipe_config =
4620                 to_intel_crtc_state(crtc->base.state);
4621         struct drm_device *dev = crtc->base.dev;
4622         struct drm_plane *primary = crtc->base.primary;
4623         struct drm_plane_state *old_pri_state =
4624                 drm_atomic_get_existing_plane_state(old_state, primary);
4625
4626         intel_frontbuffer_flip(dev, pipe_config->fb_bits);
4627
4628         crtc->wm.cxsr_allowed = true;
4629
4630         if (pipe_config->update_wm_post && pipe_config->base.active)
4631                 intel_update_watermarks(&crtc->base);
4632
4633         if (old_pri_state) {
4634                 struct intel_plane_state *primary_state =
4635                         to_intel_plane_state(primary->state);
4636                 struct intel_plane_state *old_primary_state =
4637                         to_intel_plane_state(old_pri_state);
4638
4639                 intel_fbc_post_update(crtc);
4640
4641                 if (primary_state->visible &&
4642                     (needs_modeset(&pipe_config->base) ||
4643                      !old_primary_state->visible))
4644                         intel_post_enable_primary(&crtc->base);
4645         }
4646 }
4647
4648 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4649 {
4650         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4651         struct drm_device *dev = crtc->base.dev;
4652         struct drm_i915_private *dev_priv = dev->dev_private;
4653         struct intel_crtc_state *pipe_config =
4654                 to_intel_crtc_state(crtc->base.state);
4655         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4656         struct drm_plane *primary = crtc->base.primary;
4657         struct drm_plane_state *old_pri_state =
4658                 drm_atomic_get_existing_plane_state(old_state, primary);
4659         bool modeset = needs_modeset(&pipe_config->base);
4660
4661         if (old_pri_state) {
4662                 struct intel_plane_state *primary_state =
4663                         to_intel_plane_state(primary->state);
4664                 struct intel_plane_state *old_primary_state =
4665                         to_intel_plane_state(old_pri_state);
4666
4667                 intel_fbc_pre_update(crtc, pipe_config, primary_state);
4668
4669                 if (old_primary_state->visible &&
4670                     (modeset || !primary_state->visible))
4671                         intel_pre_disable_primary(&crtc->base);
4672         }
4673
4674         if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev)) {
4675                 crtc->wm.cxsr_allowed = false;
4676
4677                 /*
4678                  * Vblank time updates from the shadow to live plane control register
4679                  * are blocked if the memory self-refresh mode is active at that
4680                  * moment. So to make sure the plane gets truly disabled, disable
4681                  * first the self-refresh mode. The self-refresh enable bit in turn
4682                  * will be checked/applied by the HW only at the next frame start
4683                  * event which is after the vblank start event, so we need to have a
4684                  * wait-for-vblank between disabling the plane and the pipe.
4685                  */
4686                 if (old_crtc_state->base.active) {
4687                         intel_set_memory_cxsr(dev_priv, false);
4688                         dev_priv->wm.vlv.cxsr = false;
4689                         intel_wait_for_vblank(dev, crtc->pipe);
4690                 }
4691         }
4692
4693         /*
4694          * IVB workaround: must disable low power watermarks for at least
4695          * one frame before enabling scaling.  LP watermarks can be re-enabled
4696          * when scaling is disabled.
4697          *
4698          * WaCxSRDisabledForSpriteScaling:ivb
4699          */
4700         if (pipe_config->disable_lp_wm) {
4701                 ilk_disable_lp_wm(dev);
4702                 intel_wait_for_vblank(dev, crtc->pipe);
4703         }
4704
4705         /*
4706          * If we're doing a modeset, we're done.  No need to do any pre-vblank
4707          * watermark programming here.
4708          */
4709         if (needs_modeset(&pipe_config->base))
4710                 return;
4711
4712         /*
4713          * For platforms that support atomic watermarks, program the
4714          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
4715          * will be the intermediate values that are safe for both pre- and
4716          * post- vblank; when vblank happens, the 'active' values will be set
4717          * to the final 'target' values and we'll do this again to get the
4718          * optimal watermarks.  For gen9+ platforms, the values we program here
4719          * will be the final target values which will get automatically latched
4720          * at vblank time; no further programming will be necessary.
4721          *
4722          * If a platform hasn't been transitioned to atomic watermarks yet,
4723          * we'll continue to update watermarks the old way, if flags tell
4724          * us to.
4725          */
4726         if (dev_priv->display.initial_watermarks != NULL)
4727                 dev_priv->display.initial_watermarks(pipe_config);
4728         else if (pipe_config->update_wm_pre)
4729                 intel_update_watermarks(&crtc->base);
4730 }
4731
4732 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4733 {
4734         struct drm_device *dev = crtc->dev;
4735         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4736         struct drm_plane *p;
4737         int pipe = intel_crtc->pipe;
4738
4739         intel_crtc_dpms_overlay_disable(intel_crtc);
4740
4741         drm_for_each_plane_mask(p, dev, plane_mask)
4742                 to_intel_plane(p)->disable_plane(p, crtc);
4743
4744         /*
4745          * FIXME: Once we grow proper nuclear flip support out of this we need
4746          * to compute the mask of flip planes precisely. For the time being
4747          * consider this a flip to a NULL plane.
4748          */
4749         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4750 }
4751
4752 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4753 {
4754         struct drm_device *dev = crtc->dev;
4755         struct drm_i915_private *dev_priv = dev->dev_private;
4756         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4757         struct intel_encoder *encoder;
4758         int pipe = intel_crtc->pipe;
4759         struct intel_crtc_state *pipe_config =
4760                 to_intel_crtc_state(crtc->state);
4761
4762         if (WARN_ON(intel_crtc->active))
4763                 return;
4764
4765         /*
4766          * Sometimes spurious CPU pipe underruns happen during FDI
4767          * training, at least with VGA+HDMI cloning. Suppress them.
4768          *
4769          * On ILK we get an occasional spurious CPU pipe underruns
4770          * between eDP port A enable and vdd enable. Also PCH port
4771          * enable seems to result in the occasional CPU pipe underrun.
4772          *
4773          * Spurious PCH underruns also occur during PCH enabling.
4774          */
4775         if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
4776                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4777         if (intel_crtc->config->has_pch_encoder)
4778                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4779
4780         if (intel_crtc->config->has_pch_encoder)
4781                 intel_prepare_shared_dpll(intel_crtc);
4782
4783         if (intel_crtc->config->has_dp_encoder)
4784                 intel_dp_set_m_n(intel_crtc, M1_N1);
4785
4786         intel_set_pipe_timings(intel_crtc);
4787         intel_set_pipe_src_size(intel_crtc);
4788
4789         if (intel_crtc->config->has_pch_encoder) {
4790                 intel_cpu_transcoder_set_m_n(intel_crtc,
4791                                      &intel_crtc->config->fdi_m_n, NULL);
4792         }
4793
4794         ironlake_set_pipeconf(crtc);
4795
4796         intel_crtc->active = true;
4797
4798         for_each_encoder_on_crtc(dev, crtc, encoder)
4799                 if (encoder->pre_enable)
4800                         encoder->pre_enable(encoder);
4801
4802         if (intel_crtc->config->has_pch_encoder) {
4803                 /* Note: FDI PLL enabling _must_ be done before we enable the
4804                  * cpu pipes, hence this is separate from all the other fdi/pch
4805                  * enabling. */
4806                 ironlake_fdi_pll_enable(intel_crtc);
4807         } else {
4808                 assert_fdi_tx_disabled(dev_priv, pipe);
4809                 assert_fdi_rx_disabled(dev_priv, pipe);
4810         }
4811
4812         ironlake_pfit_enable(intel_crtc);
4813
4814         /*
4815          * On ILK+ LUT must be loaded before the pipe is running but with
4816          * clocks enabled
4817          */
4818         intel_color_load_luts(&pipe_config->base);
4819
4820         if (dev_priv->display.initial_watermarks != NULL)
4821                 dev_priv->display.initial_watermarks(intel_crtc->config);
4822         intel_enable_pipe(intel_crtc);
4823
4824         if (intel_crtc->config->has_pch_encoder)
4825                 ironlake_pch_enable(crtc);
4826
4827         assert_vblank_disabled(crtc);
4828         drm_crtc_vblank_on(crtc);
4829
4830         for_each_encoder_on_crtc(dev, crtc, encoder)
4831                 encoder->enable(encoder);
4832
4833         if (HAS_PCH_CPT(dev))
4834                 cpt_verify_modeset(dev, intel_crtc->pipe);
4835
4836         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4837         if (intel_crtc->config->has_pch_encoder)
4838                 intel_wait_for_vblank(dev, pipe);
4839         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4840         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4841 }
4842
4843 /* IPS only exists on ULT machines and is tied to pipe A. */
4844 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4845 {
4846         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4847 }
4848
4849 static void haswell_crtc_enable(struct drm_crtc *crtc)
4850 {
4851         struct drm_device *dev = crtc->dev;
4852         struct drm_i915_private *dev_priv = dev->dev_private;
4853         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4854         struct intel_encoder *encoder;
4855         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4856         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4857         struct intel_crtc_state *pipe_config =
4858                 to_intel_crtc_state(crtc->state);
4859
4860         if (WARN_ON(intel_crtc->active))
4861                 return;
4862
4863         if (intel_crtc->config->has_pch_encoder)
4864                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4865                                                       false);
4866
4867         for_each_encoder_on_crtc(dev, crtc, encoder)
4868                 if (encoder->pre_pll_enable)
4869                         encoder->pre_pll_enable(encoder);
4870
4871         if (intel_crtc->config->shared_dpll)
4872                 intel_enable_shared_dpll(intel_crtc);
4873
4874         if (intel_crtc->config->has_dp_encoder)
4875                 intel_dp_set_m_n(intel_crtc, M1_N1);
4876
4877         if (!intel_crtc->config->has_dsi_encoder)
4878                 intel_set_pipe_timings(intel_crtc);
4879
4880         intel_set_pipe_src_size(intel_crtc);
4881
4882         if (cpu_transcoder != TRANSCODER_EDP &&
4883             !transcoder_is_dsi(cpu_transcoder)) {
4884                 I915_WRITE(PIPE_MULT(cpu_transcoder),
4885                            intel_crtc->config->pixel_multiplier - 1);
4886         }
4887
4888         if (intel_crtc->config->has_pch_encoder) {
4889                 intel_cpu_transcoder_set_m_n(intel_crtc,
4890                                      &intel_crtc->config->fdi_m_n, NULL);
4891         }
4892
4893         if (!intel_crtc->config->has_dsi_encoder)
4894                 haswell_set_pipeconf(crtc);
4895
4896         haswell_set_pipemisc(crtc);
4897
4898         intel_color_set_csc(&pipe_config->base);
4899
4900         intel_crtc->active = true;
4901
4902         if (intel_crtc->config->has_pch_encoder)
4903                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4904         else
4905                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4906
4907         for_each_encoder_on_crtc(dev, crtc, encoder) {
4908                 if (encoder->pre_enable)
4909                         encoder->pre_enable(encoder);
4910         }
4911
4912         if (intel_crtc->config->has_pch_encoder)
4913                 dev_priv->display.fdi_link_train(crtc);
4914
4915         if (!intel_crtc->config->has_dsi_encoder)
4916                 intel_ddi_enable_pipe_clock(intel_crtc);
4917
4918         if (INTEL_INFO(dev)->gen >= 9)
4919                 skylake_pfit_enable(intel_crtc);
4920         else
4921                 ironlake_pfit_enable(intel_crtc);
4922
4923         /*
4924          * On ILK+ LUT must be loaded before the pipe is running but with
4925          * clocks enabled
4926          */
4927         intel_color_load_luts(&pipe_config->base);
4928
4929         intel_ddi_set_pipe_settings(crtc);
4930         if (!intel_crtc->config->has_dsi_encoder)
4931                 intel_ddi_enable_transcoder_func(crtc);
4932
4933         if (dev_priv->display.initial_watermarks != NULL)
4934                 dev_priv->display.initial_watermarks(pipe_config);
4935         else
4936                 intel_update_watermarks(crtc);
4937
4938         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4939         if (!intel_crtc->config->has_dsi_encoder)
4940                 intel_enable_pipe(intel_crtc);
4941
4942         if (intel_crtc->config->has_pch_encoder)
4943                 lpt_pch_enable(crtc);
4944
4945         if (intel_crtc->config->dp_encoder_is_mst)
4946                 intel_ddi_set_vc_payload_alloc(crtc, true);
4947
4948         assert_vblank_disabled(crtc);
4949         drm_crtc_vblank_on(crtc);
4950
4951         for_each_encoder_on_crtc(dev, crtc, encoder) {
4952                 encoder->enable(encoder);
4953                 intel_opregion_notify_encoder(encoder, true);
4954         }
4955
4956         if (intel_crtc->config->has_pch_encoder) {
4957                 intel_wait_for_vblank(dev, pipe);
4958                 intel_wait_for_vblank(dev, pipe);
4959                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4960                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4961                                                       true);
4962         }
4963
4964         /* If we change the relative order between pipe/planes enabling, we need
4965          * to change the workaround. */
4966         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4967         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4968                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4969                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4970         }
4971 }
4972
4973 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4974 {
4975         struct drm_device *dev = crtc->base.dev;
4976         struct drm_i915_private *dev_priv = dev->dev_private;
4977         int pipe = crtc->pipe;
4978
4979         /* To avoid upsetting the power well on haswell only disable the pfit if
4980          * it's in use. The hw state code will make sure we get this right. */
4981         if (force || crtc->config->pch_pfit.enabled) {
4982                 I915_WRITE(PF_CTL(pipe), 0);
4983                 I915_WRITE(PF_WIN_POS(pipe), 0);
4984                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4985         }
4986 }
4987
4988 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4989 {
4990         struct drm_device *dev = crtc->dev;
4991         struct drm_i915_private *dev_priv = dev->dev_private;
4992         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4993         struct intel_encoder *encoder;
4994         int pipe = intel_crtc->pipe;
4995
4996         /*
4997          * Sometimes spurious CPU pipe underruns happen when the
4998          * pipe is already disabled, but FDI RX/TX is still enabled.
4999          * Happens at least with VGA+HDMI cloning. Suppress them.
5000          */
5001         if (intel_crtc->config->has_pch_encoder) {
5002                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5003                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5004         }
5005
5006         for_each_encoder_on_crtc(dev, crtc, encoder)
5007                 encoder->disable(encoder);
5008
5009         drm_crtc_vblank_off(crtc);
5010         assert_vblank_disabled(crtc);
5011
5012         intel_disable_pipe(intel_crtc);
5013
5014         ironlake_pfit_disable(intel_crtc, false);
5015
5016         if (intel_crtc->config->has_pch_encoder)
5017                 ironlake_fdi_disable(crtc);
5018
5019         for_each_encoder_on_crtc(dev, crtc, encoder)
5020                 if (encoder->post_disable)
5021                         encoder->post_disable(encoder);
5022
5023         if (intel_crtc->config->has_pch_encoder) {
5024                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5025
5026                 if (HAS_PCH_CPT(dev)) {
5027                         i915_reg_t reg;
5028                         u32 temp;
5029
5030                         /* disable TRANS_DP_CTL */
5031                         reg = TRANS_DP_CTL(pipe);
5032                         temp = I915_READ(reg);
5033                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5034                                   TRANS_DP_PORT_SEL_MASK);
5035                         temp |= TRANS_DP_PORT_SEL_NONE;
5036                         I915_WRITE(reg, temp);
5037
5038                         /* disable DPLL_SEL */
5039                         temp = I915_READ(PCH_DPLL_SEL);
5040                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5041                         I915_WRITE(PCH_DPLL_SEL, temp);
5042                 }
5043
5044                 ironlake_fdi_pll_disable(intel_crtc);
5045         }
5046
5047         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5048         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5049 }
5050
5051 static void haswell_crtc_disable(struct drm_crtc *crtc)
5052 {
5053         struct drm_device *dev = crtc->dev;
5054         struct drm_i915_private *dev_priv = dev->dev_private;
5055         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5056         struct intel_encoder *encoder;
5057         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5058
5059         if (intel_crtc->config->has_pch_encoder)
5060                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5061                                                       false);
5062
5063         for_each_encoder_on_crtc(dev, crtc, encoder) {
5064                 intel_opregion_notify_encoder(encoder, false);
5065                 encoder->disable(encoder);
5066         }
5067
5068         drm_crtc_vblank_off(crtc);
5069         assert_vblank_disabled(crtc);
5070
5071         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5072         if (!intel_crtc->config->has_dsi_encoder)
5073                 intel_disable_pipe(intel_crtc);
5074
5075         if (intel_crtc->config->dp_encoder_is_mst)
5076                 intel_ddi_set_vc_payload_alloc(crtc, false);
5077
5078         if (!intel_crtc->config->has_dsi_encoder)
5079                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5080
5081         if (INTEL_INFO(dev)->gen >= 9)
5082                 skylake_scaler_disable(intel_crtc);
5083         else
5084                 ironlake_pfit_disable(intel_crtc, false);
5085
5086         if (!intel_crtc->config->has_dsi_encoder)
5087                 intel_ddi_disable_pipe_clock(intel_crtc);
5088
5089         for_each_encoder_on_crtc(dev, crtc, encoder)
5090                 if (encoder->post_disable)
5091                         encoder->post_disable(encoder);
5092
5093         if (intel_crtc->config->has_pch_encoder) {
5094                 lpt_disable_pch_transcoder(dev_priv);
5095                 lpt_disable_iclkip(dev_priv);
5096                 intel_ddi_fdi_disable(crtc);
5097
5098                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5099                                                       true);
5100         }
5101 }
5102
5103 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5104 {
5105         struct drm_device *dev = crtc->base.dev;
5106         struct drm_i915_private *dev_priv = dev->dev_private;
5107         struct intel_crtc_state *pipe_config = crtc->config;
5108
5109         if (!pipe_config->gmch_pfit.control)
5110                 return;
5111
5112         /*
5113          * The panel fitter should only be adjusted whilst the pipe is disabled,
5114          * according to register description and PRM.
5115          */
5116         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5117         assert_pipe_disabled(dev_priv, crtc->pipe);
5118
5119         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5120         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5121
5122         /* Border color in case we don't scale up to the full screen. Black by
5123          * default, change to something else for debugging. */
5124         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5125 }
5126
5127 static enum intel_display_power_domain port_to_power_domain(enum port port)
5128 {
5129         switch (port) {
5130         case PORT_A:
5131                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5132         case PORT_B:
5133                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5134         case PORT_C:
5135                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5136         case PORT_D:
5137                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5138         case PORT_E:
5139                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5140         default:
5141                 MISSING_CASE(port);
5142                 return POWER_DOMAIN_PORT_OTHER;
5143         }
5144 }
5145
5146 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5147 {
5148         switch (port) {
5149         case PORT_A:
5150                 return POWER_DOMAIN_AUX_A;
5151         case PORT_B:
5152                 return POWER_DOMAIN_AUX_B;
5153         case PORT_C:
5154                 return POWER_DOMAIN_AUX_C;
5155         case PORT_D:
5156                 return POWER_DOMAIN_AUX_D;
5157         case PORT_E:
5158                 /* FIXME: Check VBT for actual wiring of PORT E */
5159                 return POWER_DOMAIN_AUX_D;
5160         default:
5161                 MISSING_CASE(port);
5162                 return POWER_DOMAIN_AUX_A;
5163         }
5164 }
5165
5166 enum intel_display_power_domain
5167 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5168 {
5169         struct drm_device *dev = intel_encoder->base.dev;
5170         struct intel_digital_port *intel_dig_port;
5171
5172         switch (intel_encoder->type) {
5173         case INTEL_OUTPUT_UNKNOWN:
5174                 /* Only DDI platforms should ever use this output type */
5175                 WARN_ON_ONCE(!HAS_DDI(dev));
5176         case INTEL_OUTPUT_DISPLAYPORT:
5177         case INTEL_OUTPUT_HDMI:
5178         case INTEL_OUTPUT_EDP:
5179                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5180                 return port_to_power_domain(intel_dig_port->port);
5181         case INTEL_OUTPUT_DP_MST:
5182                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5183                 return port_to_power_domain(intel_dig_port->port);
5184         case INTEL_OUTPUT_ANALOG:
5185                 return POWER_DOMAIN_PORT_CRT;
5186         case INTEL_OUTPUT_DSI:
5187                 return POWER_DOMAIN_PORT_DSI;
5188         default:
5189                 return POWER_DOMAIN_PORT_OTHER;
5190         }
5191 }
5192
5193 enum intel_display_power_domain
5194 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5195 {
5196         struct drm_device *dev = intel_encoder->base.dev;
5197         struct intel_digital_port *intel_dig_port;
5198
5199         switch (intel_encoder->type) {
5200         case INTEL_OUTPUT_UNKNOWN:
5201         case INTEL_OUTPUT_HDMI:
5202                 /*
5203                  * Only DDI platforms should ever use these output types.
5204                  * We can get here after the HDMI detect code has already set
5205                  * the type of the shared encoder. Since we can't be sure
5206                  * what's the status of the given connectors, play safe and
5207                  * run the DP detection too.
5208                  */
5209                 WARN_ON_ONCE(!HAS_DDI(dev));
5210         case INTEL_OUTPUT_DISPLAYPORT:
5211         case INTEL_OUTPUT_EDP:
5212                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5213                 return port_to_aux_power_domain(intel_dig_port->port);
5214         case INTEL_OUTPUT_DP_MST:
5215                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5216                 return port_to_aux_power_domain(intel_dig_port->port);
5217         default:
5218                 MISSING_CASE(intel_encoder->type);
5219                 return POWER_DOMAIN_AUX_A;
5220         }
5221 }
5222
5223 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5224                                             struct intel_crtc_state *crtc_state)
5225 {
5226         struct drm_device *dev = crtc->dev;
5227         struct drm_encoder *encoder;
5228         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5229         enum pipe pipe = intel_crtc->pipe;
5230         unsigned long mask;
5231         enum transcoder transcoder = crtc_state->cpu_transcoder;
5232
5233         if (!crtc_state->base.active)
5234                 return 0;
5235
5236         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5237         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5238         if (crtc_state->pch_pfit.enabled ||
5239             crtc_state->pch_pfit.force_thru)
5240                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5241
5242         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5243                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5244
5245                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5246         }
5247
5248         if (crtc_state->shared_dpll)
5249                 mask |= BIT(POWER_DOMAIN_PLLS);
5250
5251         return mask;
5252 }
5253
5254 static unsigned long
5255 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5256                                struct intel_crtc_state *crtc_state)
5257 {
5258         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5259         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5260         enum intel_display_power_domain domain;
5261         unsigned long domains, new_domains, old_domains;
5262
5263         old_domains = intel_crtc->enabled_power_domains;
5264         intel_crtc->enabled_power_domains = new_domains =
5265                 get_crtc_power_domains(crtc, crtc_state);
5266
5267         domains = new_domains & ~old_domains;
5268
5269         for_each_power_domain(domain, domains)
5270                 intel_display_power_get(dev_priv, domain);
5271
5272         return old_domains & ~new_domains;
5273 }
5274
5275 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5276                                       unsigned long domains)
5277 {
5278         enum intel_display_power_domain domain;
5279
5280         for_each_power_domain(domain, domains)
5281                 intel_display_power_put(dev_priv, domain);
5282 }
5283
5284 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5285 {
5286         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5287
5288         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5289             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5290                 return max_cdclk_freq;
5291         else if (IS_CHERRYVIEW(dev_priv))
5292                 return max_cdclk_freq*95/100;
5293         else if (INTEL_INFO(dev_priv)->gen < 4)
5294                 return 2*max_cdclk_freq*90/100;
5295         else
5296                 return max_cdclk_freq*90/100;
5297 }
5298
5299 static int skl_calc_cdclk(int max_pixclk, int vco);
5300
5301 static void intel_update_max_cdclk(struct drm_device *dev)
5302 {
5303         struct drm_i915_private *dev_priv = dev->dev_private;
5304
5305         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5306                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5307                 int max_cdclk, vco;
5308
5309                 vco = dev_priv->skl_preferred_vco_freq;
5310                 WARN_ON(vco != 8100000 && vco != 8640000);
5311
5312                 /*
5313                  * Use the lower (vco 8640) cdclk values as a
5314                  * first guess. skl_calc_cdclk() will correct it
5315                  * if the preferred vco is 8100 instead.
5316                  */
5317                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5318                         max_cdclk = 617143;
5319                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5320                         max_cdclk = 540000;
5321                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5322                         max_cdclk = 432000;
5323                 else
5324                         max_cdclk = 308571;
5325
5326                 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5327         } else if (IS_BROXTON(dev)) {
5328                 dev_priv->max_cdclk_freq = 624000;
5329         } else if (IS_BROADWELL(dev))  {
5330                 /*
5331                  * FIXME with extra cooling we can allow
5332                  * 540 MHz for ULX and 675 Mhz for ULT.
5333                  * How can we know if extra cooling is
5334                  * available? PCI ID, VTB, something else?
5335                  */
5336                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5337                         dev_priv->max_cdclk_freq = 450000;
5338                 else if (IS_BDW_ULX(dev))
5339                         dev_priv->max_cdclk_freq = 450000;
5340                 else if (IS_BDW_ULT(dev))
5341                         dev_priv->max_cdclk_freq = 540000;
5342                 else
5343                         dev_priv->max_cdclk_freq = 675000;
5344         } else if (IS_CHERRYVIEW(dev)) {
5345                 dev_priv->max_cdclk_freq = 320000;
5346         } else if (IS_VALLEYVIEW(dev)) {
5347                 dev_priv->max_cdclk_freq = 400000;
5348         } else {
5349                 /* otherwise assume cdclk is fixed */
5350                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5351         }
5352
5353         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5354
5355         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5356                          dev_priv->max_cdclk_freq);
5357
5358         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5359                          dev_priv->max_dotclk_freq);
5360 }
5361
5362 static void intel_update_cdclk(struct drm_device *dev)
5363 {
5364         struct drm_i915_private *dev_priv = dev->dev_private;
5365
5366         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5367
5368         if (INTEL_GEN(dev_priv) >= 9)
5369                 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5370                                  dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5371                                  dev_priv->cdclk_pll.ref);
5372         else
5373                 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5374                                  dev_priv->cdclk_freq);
5375
5376         /*
5377          * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5378          * Programmng [sic] note: bit[9:2] should be programmed to the number
5379          * of cdclk that generates 4MHz reference clock freq which is used to
5380          * generate GMBus clock. This will vary with the cdclk freq.
5381          */
5382         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5383                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5384 }
5385
5386 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5387 static int skl_cdclk_decimal(int cdclk)
5388 {
5389         return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5390 }
5391
5392 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5393 {
5394         int ratio;
5395
5396         if (cdclk == dev_priv->cdclk_pll.ref)
5397                 return 0;
5398
5399         switch (cdclk) {
5400         default:
5401                 MISSING_CASE(cdclk);
5402         case 144000:
5403         case 288000:
5404         case 384000:
5405         case 576000:
5406                 ratio = 60;
5407                 break;
5408         case 624000:
5409                 ratio = 65;
5410                 break;
5411         }
5412
5413         return dev_priv->cdclk_pll.ref * ratio;
5414 }
5415
5416 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5417 {
5418         I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5419
5420         /* Timeout 200us */
5421         if (intel_wait_for_register(dev_priv,
5422                                     BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5423                                     1))
5424                 DRM_ERROR("timeout waiting for DE PLL unlock\n");
5425
5426         dev_priv->cdclk_pll.vco = 0;
5427 }
5428
5429 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5430 {
5431         int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5432         u32 val;
5433
5434         val = I915_READ(BXT_DE_PLL_CTL);
5435         val &= ~BXT_DE_PLL_RATIO_MASK;
5436         val |= BXT_DE_PLL_RATIO(ratio);
5437         I915_WRITE(BXT_DE_PLL_CTL, val);
5438
5439         I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5440
5441         /* Timeout 200us */
5442         if (intel_wait_for_register(dev_priv,
5443                                     BXT_DE_PLL_ENABLE,
5444                                     BXT_DE_PLL_LOCK,
5445                                     BXT_DE_PLL_LOCK,
5446                                     1))
5447                 DRM_ERROR("timeout waiting for DE PLL lock\n");
5448
5449         dev_priv->cdclk_pll.vco = vco;
5450 }
5451
5452 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5453 {
5454         u32 val, divider;
5455         int vco, ret;
5456
5457         vco = bxt_de_pll_vco(dev_priv, cdclk);
5458
5459         DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5460
5461         /* cdclk = vco / 2 / div{1,1.5,2,4} */
5462         switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5463         case 8:
5464                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5465                 break;
5466         case 4:
5467                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5468                 break;
5469         case 3:
5470                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5471                 break;
5472         case 2:
5473                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5474                 break;
5475         default:
5476                 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
5477                 WARN_ON(vco != 0);
5478
5479                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5480                 break;
5481         }
5482
5483         /* Inform power controller of upcoming frequency change */
5484         mutex_lock(&dev_priv->rps.hw_lock);
5485         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5486                                       0x80000000);
5487         mutex_unlock(&dev_priv->rps.hw_lock);
5488
5489         if (ret) {
5490                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5491                           ret, cdclk);
5492                 return;
5493         }
5494
5495         if (dev_priv->cdclk_pll.vco != 0 &&
5496             dev_priv->cdclk_pll.vco != vco)
5497                 bxt_de_pll_disable(dev_priv);
5498
5499         if (dev_priv->cdclk_pll.vco != vco)
5500                 bxt_de_pll_enable(dev_priv, vco);
5501
5502         val = divider | skl_cdclk_decimal(cdclk);
5503         /*
5504          * FIXME if only the cd2x divider needs changing, it could be done
5505          * without shutting off the pipe (if only one pipe is active).
5506          */
5507         val |= BXT_CDCLK_CD2X_PIPE_NONE;
5508         /*
5509          * Disable SSA Precharge when CD clock frequency < 500 MHz,
5510          * enable otherwise.
5511          */
5512         if (cdclk >= 500000)
5513                 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5514         I915_WRITE(CDCLK_CTL, val);
5515
5516         mutex_lock(&dev_priv->rps.hw_lock);
5517         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5518                                       DIV_ROUND_UP(cdclk, 25000));
5519         mutex_unlock(&dev_priv->rps.hw_lock);
5520
5521         if (ret) {
5522                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5523                           ret, cdclk);
5524                 return;
5525         }
5526
5527         intel_update_cdclk(dev_priv->dev);
5528 }
5529
5530 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
5531 {
5532         u32 cdctl, expected;
5533
5534         intel_update_cdclk(dev_priv->dev);
5535
5536         if (dev_priv->cdclk_pll.vco == 0 ||
5537             dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
5538                 goto sanitize;
5539
5540         /* DPLL okay; verify the cdclock
5541          *
5542          * Some BIOS versions leave an incorrect decimal frequency value and
5543          * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
5544          * so sanitize this register.
5545          */
5546         cdctl = I915_READ(CDCLK_CTL);
5547         /*
5548          * Let's ignore the pipe field, since BIOS could have configured the
5549          * dividers both synching to an active pipe, or asynchronously
5550          * (PIPE_NONE).
5551          */
5552         cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
5553
5554         expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
5555                    skl_cdclk_decimal(dev_priv->cdclk_freq);
5556         /*
5557          * Disable SSA Precharge when CD clock frequency < 500 MHz,
5558          * enable otherwise.
5559          */
5560         if (dev_priv->cdclk_freq >= 500000)
5561                 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5562
5563         if (cdctl == expected)
5564                 /* All well; nothing to sanitize */
5565                 return;
5566
5567 sanitize:
5568         DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
5569
5570         /* force cdclk programming */
5571         dev_priv->cdclk_freq = 0;
5572
5573         /* force full PLL disable + enable */
5574         dev_priv->cdclk_pll.vco = -1;
5575 }
5576
5577 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
5578 {
5579         bxt_sanitize_cdclk(dev_priv);
5580
5581         if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
5582                 return;
5583
5584         /*
5585          * FIXME:
5586          * - The initial CDCLK needs to be read from VBT.
5587          *   Need to make this change after VBT has changes for BXT.
5588          */
5589         bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
5590 }
5591
5592 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
5593 {
5594         bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
5595 }
5596
5597 static int skl_calc_cdclk(int max_pixclk, int vco)
5598 {
5599         if (vco == 8640000) {
5600                 if (max_pixclk > 540000)
5601                         return 617143;
5602                 else if (max_pixclk > 432000)
5603                         return 540000;
5604                 else if (max_pixclk > 308571)
5605                         return 432000;
5606                 else
5607                         return 308571;
5608         } else {
5609                 if (max_pixclk > 540000)
5610                         return 675000;
5611                 else if (max_pixclk > 450000)
5612                         return 540000;
5613                 else if (max_pixclk > 337500)
5614                         return 450000;
5615                 else
5616                         return 337500;
5617         }
5618 }
5619
5620 static void
5621 skl_dpll0_update(struct drm_i915_private *dev_priv)
5622 {
5623         u32 val;
5624
5625         dev_priv->cdclk_pll.ref = 24000;
5626         dev_priv->cdclk_pll.vco = 0;
5627
5628         val = I915_READ(LCPLL1_CTL);
5629         if ((val & LCPLL_PLL_ENABLE) == 0)
5630                 return;
5631
5632         if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
5633                 return;
5634
5635         val = I915_READ(DPLL_CTRL1);
5636
5637         if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
5638                             DPLL_CTRL1_SSC(SKL_DPLL0) |
5639                             DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
5640                     DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
5641                 return;
5642
5643         switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
5644         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
5645         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
5646         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
5647         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
5648                 dev_priv->cdclk_pll.vco = 8100000;
5649                 break;
5650         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
5651         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
5652                 dev_priv->cdclk_pll.vco = 8640000;
5653                 break;
5654         default:
5655                 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5656                 break;
5657         }
5658 }
5659
5660 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
5661 {
5662         bool changed = dev_priv->skl_preferred_vco_freq != vco;
5663
5664         dev_priv->skl_preferred_vco_freq = vco;
5665
5666         if (changed)
5667                 intel_update_max_cdclk(dev_priv->dev);
5668 }
5669
5670 static void
5671 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
5672 {
5673         int min_cdclk = skl_calc_cdclk(0, vco);
5674         u32 val;
5675
5676         WARN_ON(vco != 8100000 && vco != 8640000);
5677
5678         /* select the minimum CDCLK before enabling DPLL 0 */
5679         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
5680         I915_WRITE(CDCLK_CTL, val);
5681         POSTING_READ(CDCLK_CTL);
5682
5683         /*
5684          * We always enable DPLL0 with the lowest link rate possible, but still
5685          * taking into account the VCO required to operate the eDP panel at the
5686          * desired frequency. The usual DP link rates operate with a VCO of
5687          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5688          * The modeset code is responsible for the selection of the exact link
5689          * rate later on, with the constraint of choosing a frequency that
5690          * works with vco.
5691          */
5692         val = I915_READ(DPLL_CTRL1);
5693
5694         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5695                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5696         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5697         if (vco == 8640000)
5698                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5699                                             SKL_DPLL0);
5700         else
5701                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5702                                             SKL_DPLL0);
5703
5704         I915_WRITE(DPLL_CTRL1, val);
5705         POSTING_READ(DPLL_CTRL1);
5706
5707         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5708
5709         if (intel_wait_for_register(dev_priv,
5710                                     LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
5711                                     5))
5712                 DRM_ERROR("DPLL0 not locked\n");
5713
5714         dev_priv->cdclk_pll.vco = vco;
5715
5716         /* We'll want to keep using the current vco from now on. */
5717         skl_set_preferred_cdclk_vco(dev_priv, vco);
5718 }
5719
5720 static void
5721 skl_dpll0_disable(struct drm_i915_private *dev_priv)
5722 {
5723         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5724         if (intel_wait_for_register(dev_priv,
5725                                    LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
5726                                    1))
5727                 DRM_ERROR("Couldn't disable DPLL0\n");
5728
5729         dev_priv->cdclk_pll.vco = 0;
5730 }
5731
5732 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5733 {
5734         int ret;
5735         u32 val;
5736
5737         /* inform PCU we want to change CDCLK */
5738         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5739         mutex_lock(&dev_priv->rps.hw_lock);
5740         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5741         mutex_unlock(&dev_priv->rps.hw_lock);
5742
5743         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5744 }
5745
5746 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5747 {
5748         unsigned int i;
5749
5750         for (i = 0; i < 15; i++) {
5751                 if (skl_cdclk_pcu_ready(dev_priv))
5752                         return true;
5753                 udelay(10);
5754         }
5755
5756         return false;
5757 }
5758
5759 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
5760 {
5761         struct drm_device *dev = dev_priv->dev;
5762         u32 freq_select, pcu_ack;
5763
5764         WARN_ON((cdclk == 24000) != (vco == 0));
5765
5766         DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5767
5768         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5769                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5770                 return;
5771         }
5772
5773         /* set CDCLK_CTL */
5774         switch (cdclk) {
5775         case 450000:
5776         case 432000:
5777                 freq_select = CDCLK_FREQ_450_432;
5778                 pcu_ack = 1;
5779                 break;
5780         case 540000:
5781                 freq_select = CDCLK_FREQ_540;
5782                 pcu_ack = 2;
5783                 break;
5784         case 308571:
5785         case 337500:
5786         default:
5787                 freq_select = CDCLK_FREQ_337_308;
5788                 pcu_ack = 0;
5789                 break;
5790         case 617143:
5791         case 675000:
5792                 freq_select = CDCLK_FREQ_675_617;
5793                 pcu_ack = 3;
5794                 break;
5795         }
5796
5797         if (dev_priv->cdclk_pll.vco != 0 &&
5798             dev_priv->cdclk_pll.vco != vco)
5799                 skl_dpll0_disable(dev_priv);
5800
5801         if (dev_priv->cdclk_pll.vco != vco)
5802                 skl_dpll0_enable(dev_priv, vco);
5803
5804         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
5805         POSTING_READ(CDCLK_CTL);
5806
5807         /* inform PCU of the change */
5808         mutex_lock(&dev_priv->rps.hw_lock);
5809         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5810         mutex_unlock(&dev_priv->rps.hw_lock);
5811
5812         intel_update_cdclk(dev);
5813 }
5814
5815 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
5816
5817 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5818 {
5819         skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
5820 }
5821
5822 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5823 {
5824         int cdclk, vco;
5825
5826         skl_sanitize_cdclk(dev_priv);
5827
5828         if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
5829                 /*
5830                  * Use the current vco as our initial
5831                  * guess as to what the preferred vco is.
5832                  */
5833                 if (dev_priv->skl_preferred_vco_freq == 0)
5834                         skl_set_preferred_cdclk_vco(dev_priv,
5835                                                     dev_priv->cdclk_pll.vco);
5836                 return;
5837         }
5838
5839         vco = dev_priv->skl_preferred_vco_freq;
5840         if (vco == 0)
5841                 vco = 8100000;
5842         cdclk = skl_calc_cdclk(0, vco);
5843
5844         skl_set_cdclk(dev_priv, cdclk, vco);
5845 }
5846
5847 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5848 {
5849         uint32_t cdctl, expected;
5850
5851         /*
5852          * check if the pre-os intialized the display
5853          * There is SWF18 scratchpad register defined which is set by the
5854          * pre-os which can be used by the OS drivers to check the status
5855          */
5856         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5857                 goto sanitize;
5858
5859         intel_update_cdclk(dev_priv->dev);
5860         /* Is PLL enabled and locked ? */
5861         if (dev_priv->cdclk_pll.vco == 0 ||
5862             dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
5863                 goto sanitize;
5864
5865         /* DPLL okay; verify the cdclock
5866          *
5867          * Noticed in some instances that the freq selection is correct but
5868          * decimal part is programmed wrong from BIOS where pre-os does not
5869          * enable display. Verify the same as well.
5870          */
5871         cdctl = I915_READ(CDCLK_CTL);
5872         expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
5873                 skl_cdclk_decimal(dev_priv->cdclk_freq);
5874         if (cdctl == expected)
5875                 /* All well; nothing to sanitize */
5876                 return;
5877
5878 sanitize:
5879         DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
5880
5881         /* force cdclk programming */
5882         dev_priv->cdclk_freq = 0;
5883         /* force full PLL disable + enable */
5884         dev_priv->cdclk_pll.vco = -1;
5885 }
5886
5887 /* Adjust CDclk dividers to allow high res or save power if possible */
5888 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5889 {
5890         struct drm_i915_private *dev_priv = dev->dev_private;
5891         u32 val, cmd;
5892
5893         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5894                                         != dev_priv->cdclk_freq);
5895
5896         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5897                 cmd = 2;
5898         else if (cdclk == 266667)
5899                 cmd = 1;
5900         else
5901                 cmd = 0;
5902
5903         mutex_lock(&dev_priv->rps.hw_lock);
5904         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5905         val &= ~DSPFREQGUAR_MASK;
5906         val |= (cmd << DSPFREQGUAR_SHIFT);
5907         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5908         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5909                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5910                      50)) {
5911                 DRM_ERROR("timed out waiting for CDclk change\n");
5912         }
5913         mutex_unlock(&dev_priv->rps.hw_lock);
5914
5915         mutex_lock(&dev_priv->sb_lock);
5916
5917         if (cdclk == 400000) {
5918                 u32 divider;
5919
5920                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5921
5922                 /* adjust cdclk divider */
5923                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5924                 val &= ~CCK_FREQUENCY_VALUES;
5925                 val |= divider;
5926                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5927
5928                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5929                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5930                              50))
5931                         DRM_ERROR("timed out waiting for CDclk change\n");
5932         }
5933
5934         /* adjust self-refresh exit latency value */
5935         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5936         val &= ~0x7f;
5937
5938         /*
5939          * For high bandwidth configs, we set a higher latency in the bunit
5940          * so that the core display fetch happens in time to avoid underruns.
5941          */
5942         if (cdclk == 400000)
5943                 val |= 4500 / 250; /* 4.5 usec */
5944         else
5945                 val |= 3000 / 250; /* 3.0 usec */
5946         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5947
5948         mutex_unlock(&dev_priv->sb_lock);
5949
5950         intel_update_cdclk(dev);
5951 }
5952
5953 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5954 {
5955         struct drm_i915_private *dev_priv = dev->dev_private;
5956         u32 val, cmd;
5957
5958         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5959                                                 != dev_priv->cdclk_freq);
5960
5961         switch (cdclk) {
5962         case 333333:
5963         case 320000:
5964         case 266667:
5965         case 200000:
5966                 break;
5967         default:
5968                 MISSING_CASE(cdclk);
5969                 return;
5970         }
5971
5972         /*
5973          * Specs are full of misinformation, but testing on actual
5974          * hardware has shown that we just need to write the desired
5975          * CCK divider into the Punit register.
5976          */
5977         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5978
5979         mutex_lock(&dev_priv->rps.hw_lock);
5980         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5981         val &= ~DSPFREQGUAR_MASK_CHV;
5982         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5983         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5984         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5985                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5986                      50)) {
5987                 DRM_ERROR("timed out waiting for CDclk change\n");
5988         }
5989         mutex_unlock(&dev_priv->rps.hw_lock);
5990
5991         intel_update_cdclk(dev);
5992 }
5993
5994 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5995                                  int max_pixclk)
5996 {
5997         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5998         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5999
6000         /*
6001          * Really only a few cases to deal with, as only 4 CDclks are supported:
6002          *   200MHz
6003          *   267MHz
6004          *   320/333MHz (depends on HPLL freq)
6005          *   400MHz (VLV only)
6006          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6007          * of the lower bin and adjust if needed.
6008          *
6009          * We seem to get an unstable or solid color picture at 200MHz.
6010          * Not sure what's wrong. For now use 200MHz only when all pipes
6011          * are off.
6012          */
6013         if (!IS_CHERRYVIEW(dev_priv) &&
6014             max_pixclk > freq_320*limit/100)
6015                 return 400000;
6016         else if (max_pixclk > 266667*limit/100)
6017                 return freq_320;
6018         else if (max_pixclk > 0)
6019                 return 266667;
6020         else
6021                 return 200000;
6022 }
6023
6024 static int bxt_calc_cdclk(int max_pixclk)
6025 {
6026         if (max_pixclk > 576000)
6027                 return 624000;
6028         else if (max_pixclk > 384000)
6029                 return 576000;
6030         else if (max_pixclk > 288000)
6031                 return 384000;
6032         else if (max_pixclk > 144000)
6033                 return 288000;
6034         else
6035                 return 144000;
6036 }
6037
6038 /* Compute the max pixel clock for new configuration. */
6039 static int intel_mode_max_pixclk(struct drm_device *dev,
6040                                  struct drm_atomic_state *state)
6041 {
6042         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6043         struct drm_i915_private *dev_priv = dev->dev_private;
6044         struct drm_crtc *crtc;
6045         struct drm_crtc_state *crtc_state;
6046         unsigned max_pixclk = 0, i;
6047         enum pipe pipe;
6048
6049         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6050                sizeof(intel_state->min_pixclk));
6051
6052         for_each_crtc_in_state(state, crtc, crtc_state, i) {
6053                 int pixclk = 0;
6054
6055                 if (crtc_state->enable)
6056                         pixclk = crtc_state->adjusted_mode.crtc_clock;
6057
6058                 intel_state->min_pixclk[i] = pixclk;
6059         }
6060
6061         for_each_pipe(dev_priv, pipe)
6062                 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6063
6064         return max_pixclk;
6065 }
6066
6067 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6068 {
6069         struct drm_device *dev = state->dev;
6070         struct drm_i915_private *dev_priv = dev->dev_private;
6071         int max_pixclk = intel_mode_max_pixclk(dev, state);
6072         struct intel_atomic_state *intel_state =
6073                 to_intel_atomic_state(state);
6074
6075         intel_state->cdclk = intel_state->dev_cdclk =
6076                 valleyview_calc_cdclk(dev_priv, max_pixclk);
6077
6078         if (!intel_state->active_crtcs)
6079                 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6080
6081         return 0;
6082 }
6083
6084 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6085 {
6086         int max_pixclk = ilk_max_pixel_rate(state);
6087         struct intel_atomic_state *intel_state =
6088                 to_intel_atomic_state(state);
6089
6090         intel_state->cdclk = intel_state->dev_cdclk =
6091                 bxt_calc_cdclk(max_pixclk);
6092
6093         if (!intel_state->active_crtcs)
6094                 intel_state->dev_cdclk = bxt_calc_cdclk(0);
6095
6096         return 0;
6097 }
6098
6099 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6100 {
6101         unsigned int credits, default_credits;
6102
6103         if (IS_CHERRYVIEW(dev_priv))
6104                 default_credits = PFI_CREDIT(12);
6105         else
6106                 default_credits = PFI_CREDIT(8);
6107
6108         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6109                 /* CHV suggested value is 31 or 63 */
6110                 if (IS_CHERRYVIEW(dev_priv))
6111                         credits = PFI_CREDIT_63;
6112                 else
6113                         credits = PFI_CREDIT(15);
6114         } else {
6115                 credits = default_credits;
6116         }
6117
6118         /*
6119          * WA - write default credits before re-programming
6120          * FIXME: should we also set the resend bit here?
6121          */
6122         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6123                    default_credits);
6124
6125         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6126                    credits | PFI_CREDIT_RESEND);
6127
6128         /*
6129          * FIXME is this guaranteed to clear
6130          * immediately or should we poll for it?
6131          */
6132         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6133 }
6134
6135 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6136 {
6137         struct drm_device *dev = old_state->dev;
6138         struct drm_i915_private *dev_priv = dev->dev_private;
6139         struct intel_atomic_state *old_intel_state =
6140                 to_intel_atomic_state(old_state);
6141         unsigned req_cdclk = old_intel_state->dev_cdclk;
6142
6143         /*
6144          * FIXME: We can end up here with all power domains off, yet
6145          * with a CDCLK frequency other than the minimum. To account
6146          * for this take the PIPE-A power domain, which covers the HW
6147          * blocks needed for the following programming. This can be
6148          * removed once it's guaranteed that we get here either with
6149          * the minimum CDCLK set, or the required power domains
6150          * enabled.
6151          */
6152         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6153
6154         if (IS_CHERRYVIEW(dev))
6155                 cherryview_set_cdclk(dev, req_cdclk);
6156         else
6157                 valleyview_set_cdclk(dev, req_cdclk);
6158
6159         vlv_program_pfi_credits(dev_priv);
6160
6161         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6162 }
6163
6164 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6165 {
6166         struct drm_device *dev = crtc->dev;
6167         struct drm_i915_private *dev_priv = to_i915(dev);
6168         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6169         struct intel_encoder *encoder;
6170         struct intel_crtc_state *pipe_config =
6171                 to_intel_crtc_state(crtc->state);
6172         int pipe = intel_crtc->pipe;
6173
6174         if (WARN_ON(intel_crtc->active))
6175                 return;
6176
6177         if (intel_crtc->config->has_dp_encoder)
6178                 intel_dp_set_m_n(intel_crtc, M1_N1);
6179
6180         intel_set_pipe_timings(intel_crtc);
6181         intel_set_pipe_src_size(intel_crtc);
6182
6183         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6184                 struct drm_i915_private *dev_priv = dev->dev_private;
6185
6186                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6187                 I915_WRITE(CHV_CANVAS(pipe), 0);
6188         }
6189
6190         i9xx_set_pipeconf(intel_crtc);
6191
6192         intel_crtc->active = true;
6193
6194         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6195
6196         for_each_encoder_on_crtc(dev, crtc, encoder)
6197                 if (encoder->pre_pll_enable)
6198                         encoder->pre_pll_enable(encoder);
6199
6200         if (IS_CHERRYVIEW(dev)) {
6201                 chv_prepare_pll(intel_crtc, intel_crtc->config);
6202                 chv_enable_pll(intel_crtc, intel_crtc->config);
6203         } else {
6204                 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6205                 vlv_enable_pll(intel_crtc, intel_crtc->config);
6206         }
6207
6208         for_each_encoder_on_crtc(dev, crtc, encoder)
6209                 if (encoder->pre_enable)
6210                         encoder->pre_enable(encoder);
6211
6212         i9xx_pfit_enable(intel_crtc);
6213
6214         intel_color_load_luts(&pipe_config->base);
6215
6216         intel_update_watermarks(crtc);
6217         intel_enable_pipe(intel_crtc);
6218
6219         assert_vblank_disabled(crtc);
6220         drm_crtc_vblank_on(crtc);
6221
6222         for_each_encoder_on_crtc(dev, crtc, encoder)
6223                 encoder->enable(encoder);
6224 }
6225
6226 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6227 {
6228         struct drm_device *dev = crtc->base.dev;
6229         struct drm_i915_private *dev_priv = dev->dev_private;
6230
6231         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6232         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6233 }
6234
6235 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6236 {
6237         struct drm_device *dev = crtc->dev;
6238         struct drm_i915_private *dev_priv = to_i915(dev);
6239         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6240         struct intel_encoder *encoder;
6241         struct intel_crtc_state *pipe_config =
6242                 to_intel_crtc_state(crtc->state);
6243         enum pipe pipe = intel_crtc->pipe;
6244
6245         if (WARN_ON(intel_crtc->active))
6246                 return;
6247
6248         i9xx_set_pll_dividers(intel_crtc);
6249
6250         if (intel_crtc->config->has_dp_encoder)
6251                 intel_dp_set_m_n(intel_crtc, M1_N1);
6252
6253         intel_set_pipe_timings(intel_crtc);
6254         intel_set_pipe_src_size(intel_crtc);
6255
6256         i9xx_set_pipeconf(intel_crtc);
6257
6258         intel_crtc->active = true;
6259
6260         if (!IS_GEN2(dev))
6261                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6262
6263         for_each_encoder_on_crtc(dev, crtc, encoder)
6264                 if (encoder->pre_enable)
6265                         encoder->pre_enable(encoder);
6266
6267         i9xx_enable_pll(intel_crtc);
6268
6269         i9xx_pfit_enable(intel_crtc);
6270
6271         intel_color_load_luts(&pipe_config->base);
6272
6273         intel_update_watermarks(crtc);
6274         intel_enable_pipe(intel_crtc);
6275
6276         assert_vblank_disabled(crtc);
6277         drm_crtc_vblank_on(crtc);
6278
6279         for_each_encoder_on_crtc(dev, crtc, encoder)
6280                 encoder->enable(encoder);
6281 }
6282
6283 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6284 {
6285         struct drm_device *dev = crtc->base.dev;
6286         struct drm_i915_private *dev_priv = dev->dev_private;
6287
6288         if (!crtc->config->gmch_pfit.control)
6289                 return;
6290
6291         assert_pipe_disabled(dev_priv, crtc->pipe);
6292
6293         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6294                          I915_READ(PFIT_CONTROL));
6295         I915_WRITE(PFIT_CONTROL, 0);
6296 }
6297
6298 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6299 {
6300         struct drm_device *dev = crtc->dev;
6301         struct drm_i915_private *dev_priv = dev->dev_private;
6302         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6303         struct intel_encoder *encoder;
6304         int pipe = intel_crtc->pipe;
6305
6306         /*
6307          * On gen2 planes are double buffered but the pipe isn't, so we must
6308          * wait for planes to fully turn off before disabling the pipe.
6309          */
6310         if (IS_GEN2(dev))
6311                 intel_wait_for_vblank(dev, pipe);
6312
6313         for_each_encoder_on_crtc(dev, crtc, encoder)
6314                 encoder->disable(encoder);
6315
6316         drm_crtc_vblank_off(crtc);
6317         assert_vblank_disabled(crtc);
6318
6319         intel_disable_pipe(intel_crtc);
6320
6321         i9xx_pfit_disable(intel_crtc);
6322
6323         for_each_encoder_on_crtc(dev, crtc, encoder)
6324                 if (encoder->post_disable)
6325                         encoder->post_disable(encoder);
6326
6327         if (!intel_crtc->config->has_dsi_encoder) {
6328                 if (IS_CHERRYVIEW(dev))
6329                         chv_disable_pll(dev_priv, pipe);
6330                 else if (IS_VALLEYVIEW(dev))
6331                         vlv_disable_pll(dev_priv, pipe);
6332                 else
6333                         i9xx_disable_pll(intel_crtc);
6334         }
6335
6336         for_each_encoder_on_crtc(dev, crtc, encoder)
6337                 if (encoder->post_pll_disable)
6338                         encoder->post_pll_disable(encoder);
6339
6340         if (!IS_GEN2(dev))
6341                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6342 }
6343
6344 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6345 {
6346         struct intel_encoder *encoder;
6347         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6348         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6349         enum intel_display_power_domain domain;
6350         unsigned long domains;
6351
6352         if (!intel_crtc->active)
6353                 return;
6354
6355         if (to_intel_plane_state(crtc->primary->state)->visible) {
6356                 WARN_ON(intel_crtc->flip_work);
6357
6358                 intel_pre_disable_primary_noatomic(crtc);
6359
6360                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6361                 to_intel_plane_state(crtc->primary->state)->visible = false;
6362         }
6363
6364         dev_priv->display.crtc_disable(crtc);
6365
6366         DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6367                       crtc->base.id, crtc->name);
6368
6369         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6370         crtc->state->active = false;
6371         intel_crtc->active = false;
6372         crtc->enabled = false;
6373         crtc->state->connector_mask = 0;
6374         crtc->state->encoder_mask = 0;
6375
6376         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6377                 encoder->base.crtc = NULL;
6378
6379         intel_fbc_disable(intel_crtc);
6380         intel_update_watermarks(crtc);
6381         intel_disable_shared_dpll(intel_crtc);
6382
6383         domains = intel_crtc->enabled_power_domains;
6384         for_each_power_domain(domain, domains)
6385                 intel_display_power_put(dev_priv, domain);
6386         intel_crtc->enabled_power_domains = 0;
6387
6388         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6389         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6390 }
6391
6392 /*
6393  * turn all crtc's off, but do not adjust state
6394  * This has to be paired with a call to intel_modeset_setup_hw_state.
6395  */
6396 int intel_display_suspend(struct drm_device *dev)
6397 {
6398         struct drm_i915_private *dev_priv = to_i915(dev);
6399         struct drm_atomic_state *state;
6400         int ret;
6401
6402         state = drm_atomic_helper_suspend(dev);
6403         ret = PTR_ERR_OR_ZERO(state);
6404         if (ret)
6405                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6406         else
6407                 dev_priv->modeset_restore_state = state;
6408         return ret;
6409 }
6410
6411 void intel_encoder_destroy(struct drm_encoder *encoder)
6412 {
6413         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6414
6415         drm_encoder_cleanup(encoder);
6416         kfree(intel_encoder);
6417 }
6418
6419 /* Cross check the actual hw state with our own modeset state tracking (and it's
6420  * internal consistency). */
6421 static void intel_connector_verify_state(struct intel_connector *connector)
6422 {
6423         struct drm_crtc *crtc = connector->base.state->crtc;
6424
6425         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6426                       connector->base.base.id,
6427                       connector->base.name);
6428
6429         if (connector->get_hw_state(connector)) {
6430                 struct intel_encoder *encoder = connector->encoder;
6431                 struct drm_connector_state *conn_state = connector->base.state;
6432
6433                 I915_STATE_WARN(!crtc,
6434                          "connector enabled without attached crtc\n");
6435
6436                 if (!crtc)
6437                         return;
6438
6439                 I915_STATE_WARN(!crtc->state->active,
6440                       "connector is active, but attached crtc isn't\n");
6441
6442                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6443                         return;
6444
6445                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6446                         "atomic encoder doesn't match attached encoder\n");
6447
6448                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6449                         "attached encoder crtc differs from connector crtc\n");
6450         } else {
6451                 I915_STATE_WARN(crtc && crtc->state->active,
6452                         "attached crtc is active, but connector isn't\n");
6453                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6454                         "best encoder set without crtc!\n");
6455         }
6456 }
6457
6458 int intel_connector_init(struct intel_connector *connector)
6459 {
6460         drm_atomic_helper_connector_reset(&connector->base);
6461
6462         if (!connector->base.state)
6463                 return -ENOMEM;
6464
6465         return 0;
6466 }
6467
6468 struct intel_connector *intel_connector_alloc(void)
6469 {
6470         struct intel_connector *connector;
6471
6472         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6473         if (!connector)
6474                 return NULL;
6475
6476         if (intel_connector_init(connector) < 0) {
6477                 kfree(connector);
6478                 return NULL;
6479         }
6480
6481         return connector;
6482 }
6483
6484 /* Simple connector->get_hw_state implementation for encoders that support only
6485  * one connector and no cloning and hence the encoder state determines the state
6486  * of the connector. */
6487 bool intel_connector_get_hw_state(struct intel_connector *connector)
6488 {
6489         enum pipe pipe = 0;
6490         struct intel_encoder *encoder = connector->encoder;
6491
6492         return encoder->get_hw_state(encoder, &pipe);
6493 }
6494
6495 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6496 {
6497         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6498                 return crtc_state->fdi_lanes;
6499
6500         return 0;
6501 }
6502
6503 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6504                                      struct intel_crtc_state *pipe_config)
6505 {
6506         struct drm_atomic_state *state = pipe_config->base.state;
6507         struct intel_crtc *other_crtc;
6508         struct intel_crtc_state *other_crtc_state;
6509
6510         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6511                       pipe_name(pipe), pipe_config->fdi_lanes);
6512         if (pipe_config->fdi_lanes > 4) {
6513                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6514                               pipe_name(pipe), pipe_config->fdi_lanes);
6515                 return -EINVAL;
6516         }
6517
6518         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6519                 if (pipe_config->fdi_lanes > 2) {
6520                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6521                                       pipe_config->fdi_lanes);
6522                         return -EINVAL;
6523                 } else {
6524                         return 0;
6525                 }
6526         }
6527
6528         if (INTEL_INFO(dev)->num_pipes == 2)
6529                 return 0;
6530
6531         /* Ivybridge 3 pipe is really complicated */
6532         switch (pipe) {
6533         case PIPE_A:
6534                 return 0;
6535         case PIPE_B:
6536                 if (pipe_config->fdi_lanes <= 2)
6537                         return 0;
6538
6539                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6540                 other_crtc_state =
6541                         intel_atomic_get_crtc_state(state, other_crtc);
6542                 if (IS_ERR(other_crtc_state))
6543                         return PTR_ERR(other_crtc_state);
6544
6545                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6546                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6547                                       pipe_name(pipe), pipe_config->fdi_lanes);
6548                         return -EINVAL;
6549                 }
6550                 return 0;
6551         case PIPE_C:
6552                 if (pipe_config->fdi_lanes > 2) {
6553                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6554                                       pipe_name(pipe), pipe_config->fdi_lanes);
6555                         return -EINVAL;
6556                 }
6557
6558                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6559                 other_crtc_state =
6560                         intel_atomic_get_crtc_state(state, other_crtc);
6561                 if (IS_ERR(other_crtc_state))
6562                         return PTR_ERR(other_crtc_state);
6563
6564                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6565                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6566                         return -EINVAL;
6567                 }
6568                 return 0;
6569         default:
6570                 BUG();
6571         }
6572 }
6573
6574 #define RETRY 1
6575 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6576                                        struct intel_crtc_state *pipe_config)
6577 {
6578         struct drm_device *dev = intel_crtc->base.dev;
6579         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6580         int lane, link_bw, fdi_dotclock, ret;
6581         bool needs_recompute = false;
6582
6583 retry:
6584         /* FDI is a binary signal running at ~2.7GHz, encoding
6585          * each output octet as 10 bits. The actual frequency
6586          * is stored as a divider into a 100MHz clock, and the
6587          * mode pixel clock is stored in units of 1KHz.
6588          * Hence the bw of each lane in terms of the mode signal
6589          * is:
6590          */
6591         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6592
6593         fdi_dotclock = adjusted_mode->crtc_clock;
6594
6595         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6596                                            pipe_config->pipe_bpp);
6597
6598         pipe_config->fdi_lanes = lane;
6599
6600         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6601                                link_bw, &pipe_config->fdi_m_n);
6602
6603         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6604         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6605                 pipe_config->pipe_bpp -= 2*3;
6606                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6607                               pipe_config->pipe_bpp);
6608                 needs_recompute = true;
6609                 pipe_config->bw_constrained = true;
6610
6611                 goto retry;
6612         }
6613
6614         if (needs_recompute)
6615                 return RETRY;
6616
6617         return ret;
6618 }
6619
6620 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6621                                      struct intel_crtc_state *pipe_config)
6622 {
6623         if (pipe_config->pipe_bpp > 24)
6624                 return false;
6625
6626         /* HSW can handle pixel rate up to cdclk? */
6627         if (IS_HASWELL(dev_priv))
6628                 return true;
6629
6630         /*
6631          * We compare against max which means we must take
6632          * the increased cdclk requirement into account when
6633          * calculating the new cdclk.
6634          *
6635          * Should measure whether using a lower cdclk w/o IPS
6636          */
6637         return ilk_pipe_pixel_rate(pipe_config) <=
6638                 dev_priv->max_cdclk_freq * 95 / 100;
6639 }
6640
6641 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6642                                    struct intel_crtc_state *pipe_config)
6643 {
6644         struct drm_device *dev = crtc->base.dev;
6645         struct drm_i915_private *dev_priv = dev->dev_private;
6646
6647         pipe_config->ips_enabled = i915.enable_ips &&
6648                 hsw_crtc_supports_ips(crtc) &&
6649                 pipe_config_supports_ips(dev_priv, pipe_config);
6650 }
6651
6652 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6653 {
6654         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6655
6656         /* GDG double wide on either pipe, otherwise pipe A only */
6657         return INTEL_INFO(dev_priv)->gen < 4 &&
6658                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6659 }
6660
6661 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6662                                      struct intel_crtc_state *pipe_config)
6663 {
6664         struct drm_device *dev = crtc->base.dev;
6665         struct drm_i915_private *dev_priv = dev->dev_private;
6666         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6667         int clock_limit = dev_priv->max_dotclk_freq;
6668
6669         if (INTEL_INFO(dev)->gen < 4) {
6670                 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6671
6672                 /*
6673                  * Enable double wide mode when the dot clock
6674                  * is > 90% of the (display) core speed.
6675                  */
6676                 if (intel_crtc_supports_double_wide(crtc) &&
6677                     adjusted_mode->crtc_clock > clock_limit) {
6678                         clock_limit = dev_priv->max_dotclk_freq;
6679                         pipe_config->double_wide = true;
6680                 }
6681         }
6682
6683         if (adjusted_mode->crtc_clock > clock_limit) {
6684                 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6685                               adjusted_mode->crtc_clock, clock_limit,
6686                               yesno(pipe_config->double_wide));
6687                 return -EINVAL;
6688         }
6689
6690         /*
6691          * Pipe horizontal size must be even in:
6692          * - DVO ganged mode
6693          * - LVDS dual channel mode
6694          * - Double wide pipe
6695          */
6696         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6697              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6698                 pipe_config->pipe_src_w &= ~1;
6699
6700         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6701          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6702          */
6703         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6704                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6705                 return -EINVAL;
6706
6707         if (HAS_IPS(dev))
6708                 hsw_compute_ips_config(crtc, pipe_config);
6709
6710         if (pipe_config->has_pch_encoder)
6711                 return ironlake_fdi_compute_config(crtc, pipe_config);
6712
6713         return 0;
6714 }
6715
6716 static int skylake_get_display_clock_speed(struct drm_device *dev)
6717 {
6718         struct drm_i915_private *dev_priv = to_i915(dev);
6719         uint32_t cdctl;
6720
6721         skl_dpll0_update(dev_priv);
6722
6723         if (dev_priv->cdclk_pll.vco == 0)
6724                 return dev_priv->cdclk_pll.ref;
6725
6726         cdctl = I915_READ(CDCLK_CTL);
6727
6728         if (dev_priv->cdclk_pll.vco == 8640000) {
6729                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6730                 case CDCLK_FREQ_450_432:
6731                         return 432000;
6732                 case CDCLK_FREQ_337_308:
6733                         return 308571;
6734                 case CDCLK_FREQ_540:
6735                         return 540000;
6736                 case CDCLK_FREQ_675_617:
6737                         return 617143;
6738                 default:
6739                         MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
6740                 }
6741         } else {
6742                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6743                 case CDCLK_FREQ_450_432:
6744                         return 450000;
6745                 case CDCLK_FREQ_337_308:
6746                         return 337500;
6747                 case CDCLK_FREQ_540:
6748                         return 540000;
6749                 case CDCLK_FREQ_675_617:
6750                         return 675000;
6751                 default:
6752                         MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
6753                 }
6754         }
6755
6756         return dev_priv->cdclk_pll.ref;
6757 }
6758
6759 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
6760 {
6761         u32 val;
6762
6763         dev_priv->cdclk_pll.ref = 19200;
6764         dev_priv->cdclk_pll.vco = 0;
6765
6766         val = I915_READ(BXT_DE_PLL_ENABLE);
6767         if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
6768                 return;
6769
6770         if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
6771                 return;
6772
6773         val = I915_READ(BXT_DE_PLL_CTL);
6774         dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
6775                 dev_priv->cdclk_pll.ref;
6776 }
6777
6778 static int broxton_get_display_clock_speed(struct drm_device *dev)
6779 {
6780         struct drm_i915_private *dev_priv = to_i915(dev);
6781         u32 divider;
6782         int div, vco;
6783
6784         bxt_de_pll_update(dev_priv);
6785
6786         vco = dev_priv->cdclk_pll.vco;
6787         if (vco == 0)
6788                 return dev_priv->cdclk_pll.ref;
6789
6790         divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
6791
6792         switch (divider) {
6793         case BXT_CDCLK_CD2X_DIV_SEL_1:
6794                 div = 2;
6795                 break;
6796         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6797                 div = 3;
6798                 break;
6799         case BXT_CDCLK_CD2X_DIV_SEL_2:
6800                 div = 4;
6801                 break;
6802         case BXT_CDCLK_CD2X_DIV_SEL_4:
6803                 div = 8;
6804                 break;
6805         default:
6806                 MISSING_CASE(divider);
6807                 return dev_priv->cdclk_pll.ref;
6808         }
6809
6810         return DIV_ROUND_CLOSEST(vco, div);
6811 }
6812
6813 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6814 {
6815         struct drm_i915_private *dev_priv = dev->dev_private;
6816         uint32_t lcpll = I915_READ(LCPLL_CTL);
6817         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6818
6819         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6820                 return 800000;
6821         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6822                 return 450000;
6823         else if (freq == LCPLL_CLK_FREQ_450)
6824                 return 450000;
6825         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6826                 return 540000;
6827         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6828                 return 337500;
6829         else
6830                 return 675000;
6831 }
6832
6833 static int haswell_get_display_clock_speed(struct drm_device *dev)
6834 {
6835         struct drm_i915_private *dev_priv = dev->dev_private;
6836         uint32_t lcpll = I915_READ(LCPLL_CTL);
6837         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6838
6839         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6840                 return 800000;
6841         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6842                 return 450000;
6843         else if (freq == LCPLL_CLK_FREQ_450)
6844                 return 450000;
6845         else if (IS_HSW_ULT(dev))
6846                 return 337500;
6847         else
6848                 return 540000;
6849 }
6850
6851 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6852 {
6853         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6854                                       CCK_DISPLAY_CLOCK_CONTROL);
6855 }
6856
6857 static int ilk_get_display_clock_speed(struct drm_device *dev)
6858 {
6859         return 450000;
6860 }
6861
6862 static int i945_get_display_clock_speed(struct drm_device *dev)
6863 {
6864         return 400000;
6865 }
6866
6867 static int i915_get_display_clock_speed(struct drm_device *dev)
6868 {
6869         return 333333;
6870 }
6871
6872 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6873 {
6874         return 200000;
6875 }
6876
6877 static int pnv_get_display_clock_speed(struct drm_device *dev)
6878 {
6879         u16 gcfgc = 0;
6880
6881         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6882
6883         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6884         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6885                 return 266667;
6886         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6887                 return 333333;
6888         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6889                 return 444444;
6890         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6891                 return 200000;
6892         default:
6893                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6894         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6895                 return 133333;
6896         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6897                 return 166667;
6898         }
6899 }
6900
6901 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6902 {
6903         u16 gcfgc = 0;
6904
6905         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6906
6907         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6908                 return 133333;
6909         else {
6910                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6911                 case GC_DISPLAY_CLOCK_333_MHZ:
6912                         return 333333;
6913                 default:
6914                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6915                         return 190000;
6916                 }
6917         }
6918 }
6919
6920 static int i865_get_display_clock_speed(struct drm_device *dev)
6921 {
6922         return 266667;
6923 }
6924
6925 static int i85x_get_display_clock_speed(struct drm_device *dev)
6926 {
6927         u16 hpllcc = 0;
6928
6929         /*
6930          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6931          * encoding is different :(
6932          * FIXME is this the right way to detect 852GM/852GMV?
6933          */
6934         if (dev->pdev->revision == 0x1)
6935                 return 133333;
6936
6937         pci_bus_read_config_word(dev->pdev->bus,
6938                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6939
6940         /* Assume that the hardware is in the high speed state.  This
6941          * should be the default.
6942          */
6943         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6944         case GC_CLOCK_133_200:
6945         case GC_CLOCK_133_200_2:
6946         case GC_CLOCK_100_200:
6947                 return 200000;
6948         case GC_CLOCK_166_250:
6949                 return 250000;
6950         case GC_CLOCK_100_133:
6951                 return 133333;
6952         case GC_CLOCK_133_266:
6953         case GC_CLOCK_133_266_2:
6954         case GC_CLOCK_166_266:
6955                 return 266667;
6956         }
6957
6958         /* Shouldn't happen */
6959         return 0;
6960 }
6961
6962 static int i830_get_display_clock_speed(struct drm_device *dev)
6963 {
6964         return 133333;
6965 }
6966
6967 static unsigned int intel_hpll_vco(struct drm_device *dev)
6968 {
6969         struct drm_i915_private *dev_priv = dev->dev_private;
6970         static const unsigned int blb_vco[8] = {
6971                 [0] = 3200000,
6972                 [1] = 4000000,
6973                 [2] = 5333333,
6974                 [3] = 4800000,
6975                 [4] = 6400000,
6976         };
6977         static const unsigned int pnv_vco[8] = {
6978                 [0] = 3200000,
6979                 [1] = 4000000,
6980                 [2] = 5333333,
6981                 [3] = 4800000,
6982                 [4] = 2666667,
6983         };
6984         static const unsigned int cl_vco[8] = {
6985                 [0] = 3200000,
6986                 [1] = 4000000,
6987                 [2] = 5333333,
6988                 [3] = 6400000,
6989                 [4] = 3333333,
6990                 [5] = 3566667,
6991                 [6] = 4266667,
6992         };
6993         static const unsigned int elk_vco[8] = {
6994                 [0] = 3200000,
6995                 [1] = 4000000,
6996                 [2] = 5333333,
6997                 [3] = 4800000,
6998         };
6999         static const unsigned int ctg_vco[8] = {
7000                 [0] = 3200000,
7001                 [1] = 4000000,
7002                 [2] = 5333333,
7003                 [3] = 6400000,
7004                 [4] = 2666667,
7005                 [5] = 4266667,
7006         };
7007         const unsigned int *vco_table;
7008         unsigned int vco;
7009         uint8_t tmp = 0;
7010
7011         /* FIXME other chipsets? */
7012         if (IS_GM45(dev))
7013                 vco_table = ctg_vco;
7014         else if (IS_G4X(dev))
7015                 vco_table = elk_vco;
7016         else if (IS_CRESTLINE(dev))
7017                 vco_table = cl_vco;
7018         else if (IS_PINEVIEW(dev))
7019                 vco_table = pnv_vco;
7020         else if (IS_G33(dev))
7021                 vco_table = blb_vco;
7022         else
7023                 return 0;
7024
7025         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7026
7027         vco = vco_table[tmp & 0x7];
7028         if (vco == 0)
7029                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7030         else
7031                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7032
7033         return vco;
7034 }
7035
7036 static int gm45_get_display_clock_speed(struct drm_device *dev)
7037 {
7038         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7039         uint16_t tmp = 0;
7040
7041         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7042
7043         cdclk_sel = (tmp >> 12) & 0x1;
7044
7045         switch (vco) {
7046         case 2666667:
7047         case 4000000:
7048         case 5333333:
7049                 return cdclk_sel ? 333333 : 222222;
7050         case 3200000:
7051                 return cdclk_sel ? 320000 : 228571;
7052         default:
7053                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7054                 return 222222;
7055         }
7056 }
7057
7058 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7059 {
7060         static const uint8_t div_3200[] = { 16, 10,  8 };
7061         static const uint8_t div_4000[] = { 20, 12, 10 };
7062         static const uint8_t div_5333[] = { 24, 16, 14 };
7063         const uint8_t *div_table;
7064         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7065         uint16_t tmp = 0;
7066
7067         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7068
7069         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7070
7071         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7072                 goto fail;
7073
7074         switch (vco) {
7075         case 3200000:
7076                 div_table = div_3200;
7077                 break;
7078         case 4000000:
7079                 div_table = div_4000;
7080                 break;
7081         case 5333333:
7082                 div_table = div_5333;
7083                 break;
7084         default:
7085                 goto fail;
7086         }
7087
7088         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7089
7090 fail:
7091         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7092         return 200000;
7093 }
7094
7095 static int g33_get_display_clock_speed(struct drm_device *dev)
7096 {
7097         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7098         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7099         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7100         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7101         const uint8_t *div_table;
7102         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7103         uint16_t tmp = 0;
7104
7105         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7106
7107         cdclk_sel = (tmp >> 4) & 0x7;
7108
7109         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7110                 goto fail;
7111
7112         switch (vco) {
7113         case 3200000:
7114                 div_table = div_3200;
7115                 break;
7116         case 4000000:
7117                 div_table = div_4000;
7118                 break;
7119         case 4800000:
7120                 div_table = div_4800;
7121                 break;
7122         case 5333333:
7123                 div_table = div_5333;
7124                 break;
7125         default:
7126                 goto fail;
7127         }
7128
7129         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7130
7131 fail:
7132         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7133         return 190476;
7134 }
7135
7136 static void
7137 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7138 {
7139         while (*num > DATA_LINK_M_N_MASK ||
7140                *den > DATA_LINK_M_N_MASK) {
7141                 *num >>= 1;
7142                 *den >>= 1;
7143         }
7144 }
7145
7146 static void compute_m_n(unsigned int m, unsigned int n,
7147                         uint32_t *ret_m, uint32_t *ret_n)
7148 {
7149         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7150         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7151         intel_reduce_m_n_ratio(ret_m, ret_n);
7152 }
7153
7154 void
7155 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7156                        int pixel_clock, int link_clock,
7157                        struct intel_link_m_n *m_n)
7158 {
7159         m_n->tu = 64;
7160
7161         compute_m_n(bits_per_pixel * pixel_clock,
7162                     link_clock * nlanes * 8,
7163                     &m_n->gmch_m, &m_n->gmch_n);
7164
7165         compute_m_n(pixel_clock, link_clock,
7166                     &m_n->link_m, &m_n->link_n);
7167 }
7168
7169 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7170 {
7171         if (i915.panel_use_ssc >= 0)
7172                 return i915.panel_use_ssc != 0;
7173         return dev_priv->vbt.lvds_use_ssc
7174                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7175 }
7176
7177 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7178 {
7179         return (1 << dpll->n) << 16 | dpll->m2;
7180 }
7181
7182 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7183 {
7184         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7185 }
7186
7187 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7188                                      struct intel_crtc_state *crtc_state,
7189                                      struct dpll *reduced_clock)
7190 {
7191         struct drm_device *dev = crtc->base.dev;
7192         u32 fp, fp2 = 0;
7193
7194         if (IS_PINEVIEW(dev)) {
7195                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7196                 if (reduced_clock)
7197                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7198         } else {
7199                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7200                 if (reduced_clock)
7201                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7202         }
7203
7204         crtc_state->dpll_hw_state.fp0 = fp;
7205
7206         crtc->lowfreq_avail = false;
7207         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7208             reduced_clock) {
7209                 crtc_state->dpll_hw_state.fp1 = fp2;
7210                 crtc->lowfreq_avail = true;
7211         } else {
7212                 crtc_state->dpll_hw_state.fp1 = fp;
7213         }
7214 }
7215
7216 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7217                 pipe)
7218 {
7219         u32 reg_val;
7220
7221         /*
7222          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7223          * and set it to a reasonable value instead.
7224          */
7225         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7226         reg_val &= 0xffffff00;
7227         reg_val |= 0x00000030;
7228         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7229
7230         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7231         reg_val &= 0x8cffffff;
7232         reg_val = 0x8c000000;
7233         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7234
7235         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7236         reg_val &= 0xffffff00;
7237         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7238
7239         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7240         reg_val &= 0x00ffffff;
7241         reg_val |= 0xb0000000;
7242         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7243 }
7244
7245 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7246                                          struct intel_link_m_n *m_n)
7247 {
7248         struct drm_device *dev = crtc->base.dev;
7249         struct drm_i915_private *dev_priv = dev->dev_private;
7250         int pipe = crtc->pipe;
7251
7252         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7253         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7254         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7255         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7256 }
7257
7258 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7259                                          struct intel_link_m_n *m_n,
7260                                          struct intel_link_m_n *m2_n2)
7261 {
7262         struct drm_device *dev = crtc->base.dev;
7263         struct drm_i915_private *dev_priv = dev->dev_private;
7264         int pipe = crtc->pipe;
7265         enum transcoder transcoder = crtc->config->cpu_transcoder;
7266
7267         if (INTEL_INFO(dev)->gen >= 5) {
7268                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7269                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7270                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7271                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7272                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7273                  * for gen < 8) and if DRRS is supported (to make sure the
7274                  * registers are not unnecessarily accessed).
7275                  */
7276                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7277                         crtc->config->has_drrs) {
7278                         I915_WRITE(PIPE_DATA_M2(transcoder),
7279                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7280                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7281                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7282                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7283                 }
7284         } else {
7285                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7286                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7287                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7288                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7289         }
7290 }
7291
7292 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7293 {
7294         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7295
7296         if (m_n == M1_N1) {
7297                 dp_m_n = &crtc->config->dp_m_n;
7298                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7299         } else if (m_n == M2_N2) {
7300
7301                 /*
7302                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7303                  * needs to be programmed into M1_N1.
7304                  */
7305                 dp_m_n = &crtc->config->dp_m2_n2;
7306         } else {
7307                 DRM_ERROR("Unsupported divider value\n");
7308                 return;
7309         }
7310
7311         if (crtc->config->has_pch_encoder)
7312                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7313         else
7314                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7315 }
7316
7317 static void vlv_compute_dpll(struct intel_crtc *crtc,
7318                              struct intel_crtc_state *pipe_config)
7319 {
7320         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7321                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7322         if (crtc->pipe != PIPE_A)
7323                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7324
7325         /* DPLL not used with DSI, but still need the rest set up */
7326         if (!pipe_config->has_dsi_encoder)
7327                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7328                         DPLL_EXT_BUFFER_ENABLE_VLV;
7329
7330         pipe_config->dpll_hw_state.dpll_md =
7331                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7332 }
7333
7334 static void chv_compute_dpll(struct intel_crtc *crtc,
7335                              struct intel_crtc_state *pipe_config)
7336 {
7337         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7338                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7339         if (crtc->pipe != PIPE_A)
7340                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7341
7342         /* DPLL not used with DSI, but still need the rest set up */
7343         if (!pipe_config->has_dsi_encoder)
7344                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7345
7346         pipe_config->dpll_hw_state.dpll_md =
7347                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7348 }
7349
7350 static void vlv_prepare_pll(struct intel_crtc *crtc,
7351                             const struct intel_crtc_state *pipe_config)
7352 {
7353         struct drm_device *dev = crtc->base.dev;
7354         struct drm_i915_private *dev_priv = dev->dev_private;
7355         enum pipe pipe = crtc->pipe;
7356         u32 mdiv;
7357         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7358         u32 coreclk, reg_val;
7359
7360         /* Enable Refclk */
7361         I915_WRITE(DPLL(pipe),
7362                    pipe_config->dpll_hw_state.dpll &
7363                    ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7364
7365         /* No need to actually set up the DPLL with DSI */
7366         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7367                 return;
7368
7369         mutex_lock(&dev_priv->sb_lock);
7370
7371         bestn = pipe_config->dpll.n;
7372         bestm1 = pipe_config->dpll.m1;
7373         bestm2 = pipe_config->dpll.m2;
7374         bestp1 = pipe_config->dpll.p1;
7375         bestp2 = pipe_config->dpll.p2;
7376
7377         /* See eDP HDMI DPIO driver vbios notes doc */
7378
7379         /* PLL B needs special handling */
7380         if (pipe == PIPE_B)
7381                 vlv_pllb_recal_opamp(dev_priv, pipe);
7382
7383         /* Set up Tx target for periodic Rcomp update */
7384         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7385
7386         /* Disable target IRef on PLL */
7387         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7388         reg_val &= 0x00ffffff;
7389         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7390
7391         /* Disable fast lock */
7392         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7393
7394         /* Set idtafcrecal before PLL is enabled */
7395         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7396         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7397         mdiv |= ((bestn << DPIO_N_SHIFT));
7398         mdiv |= (1 << DPIO_K_SHIFT);
7399
7400         /*
7401          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7402          * but we don't support that).
7403          * Note: don't use the DAC post divider as it seems unstable.
7404          */
7405         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7406         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7407
7408         mdiv |= DPIO_ENABLE_CALIBRATION;
7409         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7410
7411         /* Set HBR and RBR LPF coefficients */
7412         if (pipe_config->port_clock == 162000 ||
7413             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7414             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7415                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7416                                  0x009f0003);
7417         else
7418                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7419                                  0x00d0000f);
7420
7421         if (pipe_config->has_dp_encoder) {
7422                 /* Use SSC source */
7423                 if (pipe == PIPE_A)
7424                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7425                                          0x0df40000);
7426                 else
7427                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7428                                          0x0df70000);
7429         } else { /* HDMI or VGA */
7430                 /* Use bend source */
7431                 if (pipe == PIPE_A)
7432                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7433                                          0x0df70000);
7434                 else
7435                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7436                                          0x0df40000);
7437         }
7438
7439         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7440         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7441         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7442             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7443                 coreclk |= 0x01000000;
7444         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7445
7446         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7447         mutex_unlock(&dev_priv->sb_lock);
7448 }
7449
7450 static void chv_prepare_pll(struct intel_crtc *crtc,
7451                             const struct intel_crtc_state *pipe_config)
7452 {
7453         struct drm_device *dev = crtc->base.dev;
7454         struct drm_i915_private *dev_priv = dev->dev_private;
7455         enum pipe pipe = crtc->pipe;
7456         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7457         u32 loopfilter, tribuf_calcntr;
7458         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7459         u32 dpio_val;
7460         int vco;
7461
7462         /* Enable Refclk and SSC */
7463         I915_WRITE(DPLL(pipe),
7464                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7465
7466         /* No need to actually set up the DPLL with DSI */
7467         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7468                 return;
7469
7470         bestn = pipe_config->dpll.n;
7471         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7472         bestm1 = pipe_config->dpll.m1;
7473         bestm2 = pipe_config->dpll.m2 >> 22;
7474         bestp1 = pipe_config->dpll.p1;
7475         bestp2 = pipe_config->dpll.p2;
7476         vco = pipe_config->dpll.vco;
7477         dpio_val = 0;
7478         loopfilter = 0;
7479
7480         mutex_lock(&dev_priv->sb_lock);
7481
7482         /* p1 and p2 divider */
7483         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7484                         5 << DPIO_CHV_S1_DIV_SHIFT |
7485                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7486                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7487                         1 << DPIO_CHV_K_DIV_SHIFT);
7488
7489         /* Feedback post-divider - m2 */
7490         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7491
7492         /* Feedback refclk divider - n and m1 */
7493         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7494                         DPIO_CHV_M1_DIV_BY_2 |
7495                         1 << DPIO_CHV_N_DIV_SHIFT);
7496
7497         /* M2 fraction division */
7498         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7499
7500         /* M2 fraction division enable */
7501         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7502         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7503         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7504         if (bestm2_frac)
7505                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7506         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7507
7508         /* Program digital lock detect threshold */
7509         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7510         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7511                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7512         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7513         if (!bestm2_frac)
7514                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7515         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7516
7517         /* Loop filter */
7518         if (vco == 5400000) {
7519                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7520                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7521                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7522                 tribuf_calcntr = 0x9;
7523         } else if (vco <= 6200000) {
7524                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7525                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7526                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7527                 tribuf_calcntr = 0x9;
7528         } else if (vco <= 6480000) {
7529                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7530                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7531                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7532                 tribuf_calcntr = 0x8;
7533         } else {
7534                 /* Not supported. Apply the same limits as in the max case */
7535                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7536                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7537                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7538                 tribuf_calcntr = 0;
7539         }
7540         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7541
7542         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7543         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7544         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7545         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7546
7547         /* AFC Recal */
7548         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7549                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7550                         DPIO_AFC_RECAL);
7551
7552         mutex_unlock(&dev_priv->sb_lock);
7553 }
7554
7555 /**
7556  * vlv_force_pll_on - forcibly enable just the PLL
7557  * @dev_priv: i915 private structure
7558  * @pipe: pipe PLL to enable
7559  * @dpll: PLL configuration
7560  *
7561  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7562  * in cases where we need the PLL enabled even when @pipe is not going to
7563  * be enabled.
7564  */
7565 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7566                      const struct dpll *dpll)
7567 {
7568         struct intel_crtc *crtc =
7569                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7570         struct intel_crtc_state *pipe_config;
7571
7572         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7573         if (!pipe_config)
7574                 return -ENOMEM;
7575
7576         pipe_config->base.crtc = &crtc->base;
7577         pipe_config->pixel_multiplier = 1;
7578         pipe_config->dpll = *dpll;
7579
7580         if (IS_CHERRYVIEW(dev)) {
7581                 chv_compute_dpll(crtc, pipe_config);
7582                 chv_prepare_pll(crtc, pipe_config);
7583                 chv_enable_pll(crtc, pipe_config);
7584         } else {
7585                 vlv_compute_dpll(crtc, pipe_config);
7586                 vlv_prepare_pll(crtc, pipe_config);
7587                 vlv_enable_pll(crtc, pipe_config);
7588         }
7589
7590         kfree(pipe_config);
7591
7592         return 0;
7593 }
7594
7595 /**
7596  * vlv_force_pll_off - forcibly disable just the PLL
7597  * @dev_priv: i915 private structure
7598  * @pipe: pipe PLL to disable
7599  *
7600  * Disable the PLL for @pipe. To be used in cases where we need
7601  * the PLL enabled even when @pipe is not going to be enabled.
7602  */
7603 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7604 {
7605         if (IS_CHERRYVIEW(dev))
7606                 chv_disable_pll(to_i915(dev), pipe);
7607         else
7608                 vlv_disable_pll(to_i915(dev), pipe);
7609 }
7610
7611 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7612                               struct intel_crtc_state *crtc_state,
7613                               struct dpll *reduced_clock)
7614 {
7615         struct drm_device *dev = crtc->base.dev;
7616         struct drm_i915_private *dev_priv = dev->dev_private;
7617         u32 dpll;
7618         bool is_sdvo;
7619         struct dpll *clock = &crtc_state->dpll;
7620
7621         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7622
7623         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7624                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7625
7626         dpll = DPLL_VGA_MODE_DIS;
7627
7628         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7629                 dpll |= DPLLB_MODE_LVDS;
7630         else
7631                 dpll |= DPLLB_MODE_DAC_SERIAL;
7632
7633         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7634                 dpll |= (crtc_state->pixel_multiplier - 1)
7635                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7636         }
7637
7638         if (is_sdvo)
7639                 dpll |= DPLL_SDVO_HIGH_SPEED;
7640
7641         if (crtc_state->has_dp_encoder)
7642                 dpll |= DPLL_SDVO_HIGH_SPEED;
7643
7644         /* compute bitmask from p1 value */
7645         if (IS_PINEVIEW(dev))
7646                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7647         else {
7648                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7649                 if (IS_G4X(dev) && reduced_clock)
7650                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7651         }
7652         switch (clock->p2) {
7653         case 5:
7654                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7655                 break;
7656         case 7:
7657                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7658                 break;
7659         case 10:
7660                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7661                 break;
7662         case 14:
7663                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7664                 break;
7665         }
7666         if (INTEL_INFO(dev)->gen >= 4)
7667                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7668
7669         if (crtc_state->sdvo_tv_clock)
7670                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7671         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7672                  intel_panel_use_ssc(dev_priv))
7673                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7674         else
7675                 dpll |= PLL_REF_INPUT_DREFCLK;
7676
7677         dpll |= DPLL_VCO_ENABLE;
7678         crtc_state->dpll_hw_state.dpll = dpll;
7679
7680         if (INTEL_INFO(dev)->gen >= 4) {
7681                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7682                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7683                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7684         }
7685 }
7686
7687 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7688                               struct intel_crtc_state *crtc_state,
7689                               struct dpll *reduced_clock)
7690 {
7691         struct drm_device *dev = crtc->base.dev;
7692         struct drm_i915_private *dev_priv = dev->dev_private;
7693         u32 dpll;
7694         struct dpll *clock = &crtc_state->dpll;
7695
7696         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7697
7698         dpll = DPLL_VGA_MODE_DIS;
7699
7700         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7701                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7702         } else {
7703                 if (clock->p1 == 2)
7704                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7705                 else
7706                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7707                 if (clock->p2 == 4)
7708                         dpll |= PLL_P2_DIVIDE_BY_4;
7709         }
7710
7711         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7712                 dpll |= DPLL_DVO_2X_MODE;
7713
7714         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7715             intel_panel_use_ssc(dev_priv))
7716                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7717         else
7718                 dpll |= PLL_REF_INPUT_DREFCLK;
7719
7720         dpll |= DPLL_VCO_ENABLE;
7721         crtc_state->dpll_hw_state.dpll = dpll;
7722 }
7723
7724 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7725 {
7726         struct drm_device *dev = intel_crtc->base.dev;
7727         struct drm_i915_private *dev_priv = dev->dev_private;
7728         enum pipe pipe = intel_crtc->pipe;
7729         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7730         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7731         uint32_t crtc_vtotal, crtc_vblank_end;
7732         int vsyncshift = 0;
7733
7734         /* We need to be careful not to changed the adjusted mode, for otherwise
7735          * the hw state checker will get angry at the mismatch. */
7736         crtc_vtotal = adjusted_mode->crtc_vtotal;
7737         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7738
7739         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7740                 /* the chip adds 2 halflines automatically */
7741                 crtc_vtotal -= 1;
7742                 crtc_vblank_end -= 1;
7743
7744                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7745                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7746                 else
7747                         vsyncshift = adjusted_mode->crtc_hsync_start -
7748                                 adjusted_mode->crtc_htotal / 2;
7749                 if (vsyncshift < 0)
7750                         vsyncshift += adjusted_mode->crtc_htotal;
7751         }
7752
7753         if (INTEL_INFO(dev)->gen > 3)
7754                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7755
7756         I915_WRITE(HTOTAL(cpu_transcoder),
7757                    (adjusted_mode->crtc_hdisplay - 1) |
7758                    ((adjusted_mode->crtc_htotal - 1) << 16));
7759         I915_WRITE(HBLANK(cpu_transcoder),
7760                    (adjusted_mode->crtc_hblank_start - 1) |
7761                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7762         I915_WRITE(HSYNC(cpu_transcoder),
7763                    (adjusted_mode->crtc_hsync_start - 1) |
7764                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7765
7766         I915_WRITE(VTOTAL(cpu_transcoder),
7767                    (adjusted_mode->crtc_vdisplay - 1) |
7768                    ((crtc_vtotal - 1) << 16));
7769         I915_WRITE(VBLANK(cpu_transcoder),
7770                    (adjusted_mode->crtc_vblank_start - 1) |
7771                    ((crtc_vblank_end - 1) << 16));
7772         I915_WRITE(VSYNC(cpu_transcoder),
7773                    (adjusted_mode->crtc_vsync_start - 1) |
7774                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7775
7776         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7777          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7778          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7779          * bits. */
7780         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7781             (pipe == PIPE_B || pipe == PIPE_C))
7782                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7783
7784 }
7785
7786 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7787 {
7788         struct drm_device *dev = intel_crtc->base.dev;
7789         struct drm_i915_private *dev_priv = dev->dev_private;
7790         enum pipe pipe = intel_crtc->pipe;
7791
7792         /* pipesrc controls the size that is scaled from, which should
7793          * always be the user's requested size.
7794          */
7795         I915_WRITE(PIPESRC(pipe),
7796                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7797                    (intel_crtc->config->pipe_src_h - 1));
7798 }
7799
7800 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7801                                    struct intel_crtc_state *pipe_config)
7802 {
7803         struct drm_device *dev = crtc->base.dev;
7804         struct drm_i915_private *dev_priv = dev->dev_private;
7805         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7806         uint32_t tmp;
7807
7808         tmp = I915_READ(HTOTAL(cpu_transcoder));
7809         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7810         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7811         tmp = I915_READ(HBLANK(cpu_transcoder));
7812         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7813         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7814         tmp = I915_READ(HSYNC(cpu_transcoder));
7815         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7816         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7817
7818         tmp = I915_READ(VTOTAL(cpu_transcoder));
7819         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7820         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7821         tmp = I915_READ(VBLANK(cpu_transcoder));
7822         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7823         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7824         tmp = I915_READ(VSYNC(cpu_transcoder));
7825         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7826         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7827
7828         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7829                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7830                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7831                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7832         }
7833 }
7834
7835 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7836                                     struct intel_crtc_state *pipe_config)
7837 {
7838         struct drm_device *dev = crtc->base.dev;
7839         struct drm_i915_private *dev_priv = dev->dev_private;
7840         u32 tmp;
7841
7842         tmp = I915_READ(PIPESRC(crtc->pipe));
7843         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7844         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7845
7846         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7847         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7848 }
7849
7850 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7851                                  struct intel_crtc_state *pipe_config)
7852 {
7853         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7854         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7855         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7856         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7857
7858         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7859         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7860         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7861         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7862
7863         mode->flags = pipe_config->base.adjusted_mode.flags;
7864         mode->type = DRM_MODE_TYPE_DRIVER;
7865
7866         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7867         mode->flags |= pipe_config->base.adjusted_mode.flags;
7868
7869         mode->hsync = drm_mode_hsync(mode);
7870         mode->vrefresh = drm_mode_vrefresh(mode);
7871         drm_mode_set_name(mode);
7872 }
7873
7874 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7875 {
7876         struct drm_device *dev = intel_crtc->base.dev;
7877         struct drm_i915_private *dev_priv = dev->dev_private;
7878         uint32_t pipeconf;
7879
7880         pipeconf = 0;
7881
7882         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7883             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7884                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7885
7886         if (intel_crtc->config->double_wide)
7887                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7888
7889         /* only g4x and later have fancy bpc/dither controls */
7890         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7891                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7892                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7893                         pipeconf |= PIPECONF_DITHER_EN |
7894                                     PIPECONF_DITHER_TYPE_SP;
7895
7896                 switch (intel_crtc->config->pipe_bpp) {
7897                 case 18:
7898                         pipeconf |= PIPECONF_6BPC;
7899                         break;
7900                 case 24:
7901                         pipeconf |= PIPECONF_8BPC;
7902                         break;
7903                 case 30:
7904                         pipeconf |= PIPECONF_10BPC;
7905                         break;
7906                 default:
7907                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7908                         BUG();
7909                 }
7910         }
7911
7912         if (HAS_PIPE_CXSR(dev)) {
7913                 if (intel_crtc->lowfreq_avail) {
7914                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7915                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7916                 } else {
7917                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7918                 }
7919         }
7920
7921         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7922                 if (INTEL_INFO(dev)->gen < 4 ||
7923                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7924                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7925                 else
7926                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7927         } else
7928                 pipeconf |= PIPECONF_PROGRESSIVE;
7929
7930         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7931              intel_crtc->config->limited_color_range)
7932                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7933
7934         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7935         POSTING_READ(PIPECONF(intel_crtc->pipe));
7936 }
7937
7938 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7939                                    struct intel_crtc_state *crtc_state)
7940 {
7941         struct drm_device *dev = crtc->base.dev;
7942         struct drm_i915_private *dev_priv = dev->dev_private;
7943         const struct intel_limit *limit;
7944         int refclk = 48000;
7945
7946         memset(&crtc_state->dpll_hw_state, 0,
7947                sizeof(crtc_state->dpll_hw_state));
7948
7949         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7950                 if (intel_panel_use_ssc(dev_priv)) {
7951                         refclk = dev_priv->vbt.lvds_ssc_freq;
7952                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7953                 }
7954
7955                 limit = &intel_limits_i8xx_lvds;
7956         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO)) {
7957                 limit = &intel_limits_i8xx_dvo;
7958         } else {
7959                 limit = &intel_limits_i8xx_dac;
7960         }
7961
7962         if (!crtc_state->clock_set &&
7963             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7964                                  refclk, NULL, &crtc_state->dpll)) {
7965                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7966                 return -EINVAL;
7967         }
7968
7969         i8xx_compute_dpll(crtc, crtc_state, NULL);
7970
7971         return 0;
7972 }
7973
7974 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7975                                   struct intel_crtc_state *crtc_state)
7976 {
7977         struct drm_device *dev = crtc->base.dev;
7978         struct drm_i915_private *dev_priv = dev->dev_private;
7979         const struct intel_limit *limit;
7980         int refclk = 96000;
7981
7982         memset(&crtc_state->dpll_hw_state, 0,
7983                sizeof(crtc_state->dpll_hw_state));
7984
7985         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7986                 if (intel_panel_use_ssc(dev_priv)) {
7987                         refclk = dev_priv->vbt.lvds_ssc_freq;
7988                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7989                 }
7990
7991                 if (intel_is_dual_link_lvds(dev))
7992                         limit = &intel_limits_g4x_dual_channel_lvds;
7993                 else
7994                         limit = &intel_limits_g4x_single_channel_lvds;
7995         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7996                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7997                 limit = &intel_limits_g4x_hdmi;
7998         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7999                 limit = &intel_limits_g4x_sdvo;
8000         } else {
8001                 /* The option is for other outputs */
8002                 limit = &intel_limits_i9xx_sdvo;
8003         }
8004
8005         if (!crtc_state->clock_set &&
8006             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8007                                 refclk, NULL, &crtc_state->dpll)) {
8008                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8009                 return -EINVAL;
8010         }
8011
8012         i9xx_compute_dpll(crtc, crtc_state, NULL);
8013
8014         return 0;
8015 }
8016
8017 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8018                                   struct intel_crtc_state *crtc_state)
8019 {
8020         struct drm_device *dev = crtc->base.dev;
8021         struct drm_i915_private *dev_priv = dev->dev_private;
8022         const struct intel_limit *limit;
8023         int refclk = 96000;
8024
8025         memset(&crtc_state->dpll_hw_state, 0,
8026                sizeof(crtc_state->dpll_hw_state));
8027
8028         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8029                 if (intel_panel_use_ssc(dev_priv)) {
8030                         refclk = dev_priv->vbt.lvds_ssc_freq;
8031                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8032                 }
8033
8034                 limit = &intel_limits_pineview_lvds;
8035         } else {
8036                 limit = &intel_limits_pineview_sdvo;
8037         }
8038
8039         if (!crtc_state->clock_set &&
8040             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8041                                 refclk, NULL, &crtc_state->dpll)) {
8042                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8043                 return -EINVAL;
8044         }
8045
8046         i9xx_compute_dpll(crtc, crtc_state, NULL);
8047
8048         return 0;
8049 }
8050
8051 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8052                                    struct intel_crtc_state *crtc_state)
8053 {
8054         struct drm_device *dev = crtc->base.dev;
8055         struct drm_i915_private *dev_priv = dev->dev_private;
8056         const struct intel_limit *limit;
8057         int refclk = 96000;
8058
8059         memset(&crtc_state->dpll_hw_state, 0,
8060                sizeof(crtc_state->dpll_hw_state));
8061
8062         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8063                 if (intel_panel_use_ssc(dev_priv)) {
8064                         refclk = dev_priv->vbt.lvds_ssc_freq;
8065                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8066                 }
8067
8068                 limit = &intel_limits_i9xx_lvds;
8069         } else {
8070                 limit = &intel_limits_i9xx_sdvo;
8071         }
8072
8073         if (!crtc_state->clock_set &&
8074             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8075                                  refclk, NULL, &crtc_state->dpll)) {
8076                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8077                 return -EINVAL;
8078         }
8079
8080         i9xx_compute_dpll(crtc, crtc_state, NULL);
8081
8082         return 0;
8083 }
8084
8085 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8086                                   struct intel_crtc_state *crtc_state)
8087 {
8088         int refclk = 100000;
8089         const struct intel_limit *limit = &intel_limits_chv;
8090
8091         memset(&crtc_state->dpll_hw_state, 0,
8092                sizeof(crtc_state->dpll_hw_state));
8093
8094         if (!crtc_state->clock_set &&
8095             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8096                                 refclk, NULL, &crtc_state->dpll)) {
8097                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8098                 return -EINVAL;
8099         }
8100
8101         chv_compute_dpll(crtc, crtc_state);
8102
8103         return 0;
8104 }
8105
8106 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8107                                   struct intel_crtc_state *crtc_state)
8108 {
8109         int refclk = 100000;
8110         const struct intel_limit *limit = &intel_limits_vlv;
8111
8112         memset(&crtc_state->dpll_hw_state, 0,
8113                sizeof(crtc_state->dpll_hw_state));
8114
8115         if (!crtc_state->clock_set &&
8116             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8117                                 refclk, NULL, &crtc_state->dpll)) {
8118                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8119                 return -EINVAL;
8120         }
8121
8122         vlv_compute_dpll(crtc, crtc_state);
8123
8124         return 0;
8125 }
8126
8127 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8128                                  struct intel_crtc_state *pipe_config)
8129 {
8130         struct drm_device *dev = crtc->base.dev;
8131         struct drm_i915_private *dev_priv = dev->dev_private;
8132         uint32_t tmp;
8133
8134         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8135                 return;
8136
8137         tmp = I915_READ(PFIT_CONTROL);
8138         if (!(tmp & PFIT_ENABLE))
8139                 return;
8140
8141         /* Check whether the pfit is attached to our pipe. */
8142         if (INTEL_INFO(dev)->gen < 4) {
8143                 if (crtc->pipe != PIPE_B)
8144                         return;
8145         } else {
8146                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8147                         return;
8148         }
8149
8150         pipe_config->gmch_pfit.control = tmp;
8151         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8152 }
8153
8154 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8155                                struct intel_crtc_state *pipe_config)
8156 {
8157         struct drm_device *dev = crtc->base.dev;
8158         struct drm_i915_private *dev_priv = dev->dev_private;
8159         int pipe = pipe_config->cpu_transcoder;
8160         struct dpll clock;
8161         u32 mdiv;
8162         int refclk = 100000;
8163
8164         /* In case of DSI, DPLL will not be used */
8165         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8166                 return;
8167
8168         mutex_lock(&dev_priv->sb_lock);
8169         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8170         mutex_unlock(&dev_priv->sb_lock);
8171
8172         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8173         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8174         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8175         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8176         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8177
8178         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8179 }
8180
8181 static void
8182 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8183                               struct intel_initial_plane_config *plane_config)
8184 {
8185         struct drm_device *dev = crtc->base.dev;
8186         struct drm_i915_private *dev_priv = dev->dev_private;
8187         u32 val, base, offset;
8188         int pipe = crtc->pipe, plane = crtc->plane;
8189         int fourcc, pixel_format;
8190         unsigned int aligned_height;
8191         struct drm_framebuffer *fb;
8192         struct intel_framebuffer *intel_fb;
8193
8194         val = I915_READ(DSPCNTR(plane));
8195         if (!(val & DISPLAY_PLANE_ENABLE))
8196                 return;
8197
8198         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8199         if (!intel_fb) {
8200                 DRM_DEBUG_KMS("failed to alloc fb\n");
8201                 return;
8202         }
8203
8204         fb = &intel_fb->base;
8205
8206         if (INTEL_INFO(dev)->gen >= 4) {
8207                 if (val & DISPPLANE_TILED) {
8208                         plane_config->tiling = I915_TILING_X;
8209                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8210                 }
8211         }
8212
8213         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8214         fourcc = i9xx_format_to_fourcc(pixel_format);
8215         fb->pixel_format = fourcc;
8216         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8217
8218         if (INTEL_INFO(dev)->gen >= 4) {
8219                 if (plane_config->tiling)
8220                         offset = I915_READ(DSPTILEOFF(plane));
8221                 else
8222                         offset = I915_READ(DSPLINOFF(plane));
8223                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8224         } else {
8225                 base = I915_READ(DSPADDR(plane));
8226         }
8227         plane_config->base = base;
8228
8229         val = I915_READ(PIPESRC(pipe));
8230         fb->width = ((val >> 16) & 0xfff) + 1;
8231         fb->height = ((val >> 0) & 0xfff) + 1;
8232
8233         val = I915_READ(DSPSTRIDE(pipe));
8234         fb->pitches[0] = val & 0xffffffc0;
8235
8236         aligned_height = intel_fb_align_height(dev, fb->height,
8237                                                fb->pixel_format,
8238                                                fb->modifier[0]);
8239
8240         plane_config->size = fb->pitches[0] * aligned_height;
8241
8242         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8243                       pipe_name(pipe), plane, fb->width, fb->height,
8244                       fb->bits_per_pixel, base, fb->pitches[0],
8245                       plane_config->size);
8246
8247         plane_config->fb = intel_fb;
8248 }
8249
8250 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8251                                struct intel_crtc_state *pipe_config)
8252 {
8253         struct drm_device *dev = crtc->base.dev;
8254         struct drm_i915_private *dev_priv = dev->dev_private;
8255         int pipe = pipe_config->cpu_transcoder;
8256         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8257         struct dpll clock;
8258         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8259         int refclk = 100000;
8260
8261         /* In case of DSI, DPLL will not be used */
8262         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8263                 return;
8264
8265         mutex_lock(&dev_priv->sb_lock);
8266         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8267         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8268         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8269         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8270         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8271         mutex_unlock(&dev_priv->sb_lock);
8272
8273         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8274         clock.m2 = (pll_dw0 & 0xff) << 22;
8275         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8276                 clock.m2 |= pll_dw2 & 0x3fffff;
8277         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8278         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8279         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8280
8281         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8282 }
8283
8284 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8285                                  struct intel_crtc_state *pipe_config)
8286 {
8287         struct drm_device *dev = crtc->base.dev;
8288         struct drm_i915_private *dev_priv = dev->dev_private;
8289         enum intel_display_power_domain power_domain;
8290         uint32_t tmp;
8291         bool ret;
8292
8293         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8294         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8295                 return false;
8296
8297         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8298         pipe_config->shared_dpll = NULL;
8299
8300         ret = false;
8301
8302         tmp = I915_READ(PIPECONF(crtc->pipe));
8303         if (!(tmp & PIPECONF_ENABLE))
8304                 goto out;
8305
8306         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8307                 switch (tmp & PIPECONF_BPC_MASK) {
8308                 case PIPECONF_6BPC:
8309                         pipe_config->pipe_bpp = 18;
8310                         break;
8311                 case PIPECONF_8BPC:
8312                         pipe_config->pipe_bpp = 24;
8313                         break;
8314                 case PIPECONF_10BPC:
8315                         pipe_config->pipe_bpp = 30;
8316                         break;
8317                 default:
8318                         break;
8319                 }
8320         }
8321
8322         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8323             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8324                 pipe_config->limited_color_range = true;
8325
8326         if (INTEL_INFO(dev)->gen < 4)
8327                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8328
8329         intel_get_pipe_timings(crtc, pipe_config);
8330         intel_get_pipe_src_size(crtc, pipe_config);
8331
8332         i9xx_get_pfit_config(crtc, pipe_config);
8333
8334         if (INTEL_INFO(dev)->gen >= 4) {
8335                 /* No way to read it out on pipes B and C */
8336                 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8337                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
8338                 else
8339                         tmp = I915_READ(DPLL_MD(crtc->pipe));
8340                 pipe_config->pixel_multiplier =
8341                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8342                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8343                 pipe_config->dpll_hw_state.dpll_md = tmp;
8344         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8345                 tmp = I915_READ(DPLL(crtc->pipe));
8346                 pipe_config->pixel_multiplier =
8347                         ((tmp & SDVO_MULTIPLIER_MASK)
8348                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8349         } else {
8350                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8351                  * port and will be fixed up in the encoder->get_config
8352                  * function. */
8353                 pipe_config->pixel_multiplier = 1;
8354         }
8355         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8356         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8357                 /*
8358                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8359                  * on 830. Filter it out here so that we don't
8360                  * report errors due to that.
8361                  */
8362                 if (IS_I830(dev))
8363                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8364
8365                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8366                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8367         } else {
8368                 /* Mask out read-only status bits. */
8369                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8370                                                      DPLL_PORTC_READY_MASK |
8371                                                      DPLL_PORTB_READY_MASK);
8372         }
8373
8374         if (IS_CHERRYVIEW(dev))
8375                 chv_crtc_clock_get(crtc, pipe_config);
8376         else if (IS_VALLEYVIEW(dev))
8377                 vlv_crtc_clock_get(crtc, pipe_config);
8378         else
8379                 i9xx_crtc_clock_get(crtc, pipe_config);
8380
8381         /*
8382          * Normally the dotclock is filled in by the encoder .get_config()
8383          * but in case the pipe is enabled w/o any ports we need a sane
8384          * default.
8385          */
8386         pipe_config->base.adjusted_mode.crtc_clock =
8387                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8388
8389         ret = true;
8390
8391 out:
8392         intel_display_power_put(dev_priv, power_domain);
8393
8394         return ret;
8395 }
8396
8397 static void ironlake_init_pch_refclk(struct drm_device *dev)
8398 {
8399         struct drm_i915_private *dev_priv = dev->dev_private;
8400         struct intel_encoder *encoder;
8401         int i;
8402         u32 val, final;
8403         bool has_lvds = false;
8404         bool has_cpu_edp = false;
8405         bool has_panel = false;
8406         bool has_ck505 = false;
8407         bool can_ssc = false;
8408         bool using_ssc_source = false;
8409
8410         /* We need to take the global config into account */
8411         for_each_intel_encoder(dev, encoder) {
8412                 switch (encoder->type) {
8413                 case INTEL_OUTPUT_LVDS:
8414                         has_panel = true;
8415                         has_lvds = true;
8416                         break;
8417                 case INTEL_OUTPUT_EDP:
8418                         has_panel = true;
8419                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8420                                 has_cpu_edp = true;
8421                         break;
8422                 default:
8423                         break;
8424                 }
8425         }
8426
8427         if (HAS_PCH_IBX(dev)) {
8428                 has_ck505 = dev_priv->vbt.display_clock_mode;
8429                 can_ssc = has_ck505;
8430         } else {
8431                 has_ck505 = false;
8432                 can_ssc = true;
8433         }
8434
8435         /* Check if any DPLLs are using the SSC source */
8436         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8437                 u32 temp = I915_READ(PCH_DPLL(i));
8438
8439                 if (!(temp & DPLL_VCO_ENABLE))
8440                         continue;
8441
8442                 if ((temp & PLL_REF_INPUT_MASK) ==
8443                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8444                         using_ssc_source = true;
8445                         break;
8446                 }
8447         }
8448
8449         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8450                       has_panel, has_lvds, has_ck505, using_ssc_source);
8451
8452         /* Ironlake: try to setup display ref clock before DPLL
8453          * enabling. This is only under driver's control after
8454          * PCH B stepping, previous chipset stepping should be
8455          * ignoring this setting.
8456          */
8457         val = I915_READ(PCH_DREF_CONTROL);
8458
8459         /* As we must carefully and slowly disable/enable each source in turn,
8460          * compute the final state we want first and check if we need to
8461          * make any changes at all.
8462          */
8463         final = val;
8464         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8465         if (has_ck505)
8466                 final |= DREF_NONSPREAD_CK505_ENABLE;
8467         else
8468                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8469
8470         final &= ~DREF_SSC_SOURCE_MASK;
8471         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8472         final &= ~DREF_SSC1_ENABLE;
8473
8474         if (has_panel) {
8475                 final |= DREF_SSC_SOURCE_ENABLE;
8476
8477                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8478                         final |= DREF_SSC1_ENABLE;
8479
8480                 if (has_cpu_edp) {
8481                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8482                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8483                         else
8484                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8485                 } else
8486                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8487         } else if (using_ssc_source) {
8488                 final |= DREF_SSC_SOURCE_ENABLE;
8489                 final |= DREF_SSC1_ENABLE;
8490         }
8491
8492         if (final == val)
8493                 return;
8494
8495         /* Always enable nonspread source */
8496         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8497
8498         if (has_ck505)
8499                 val |= DREF_NONSPREAD_CK505_ENABLE;
8500         else
8501                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8502
8503         if (has_panel) {
8504                 val &= ~DREF_SSC_SOURCE_MASK;
8505                 val |= DREF_SSC_SOURCE_ENABLE;
8506
8507                 /* SSC must be turned on before enabling the CPU output  */
8508                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8509                         DRM_DEBUG_KMS("Using SSC on panel\n");
8510                         val |= DREF_SSC1_ENABLE;
8511                 } else
8512                         val &= ~DREF_SSC1_ENABLE;
8513
8514                 /* Get SSC going before enabling the outputs */
8515                 I915_WRITE(PCH_DREF_CONTROL, val);
8516                 POSTING_READ(PCH_DREF_CONTROL);
8517                 udelay(200);
8518
8519                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8520
8521                 /* Enable CPU source on CPU attached eDP */
8522                 if (has_cpu_edp) {
8523                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8524                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8525                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8526                         } else
8527                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8528                 } else
8529                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8530
8531                 I915_WRITE(PCH_DREF_CONTROL, val);
8532                 POSTING_READ(PCH_DREF_CONTROL);
8533                 udelay(200);
8534         } else {
8535                 DRM_DEBUG_KMS("Disabling CPU source output\n");
8536
8537                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8538
8539                 /* Turn off CPU output */
8540                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8541
8542                 I915_WRITE(PCH_DREF_CONTROL, val);
8543                 POSTING_READ(PCH_DREF_CONTROL);
8544                 udelay(200);
8545
8546                 if (!using_ssc_source) {
8547                         DRM_DEBUG_KMS("Disabling SSC source\n");
8548
8549                         /* Turn off the SSC source */
8550                         val &= ~DREF_SSC_SOURCE_MASK;
8551                         val |= DREF_SSC_SOURCE_DISABLE;
8552
8553                         /* Turn off SSC1 */
8554                         val &= ~DREF_SSC1_ENABLE;
8555
8556                         I915_WRITE(PCH_DREF_CONTROL, val);
8557                         POSTING_READ(PCH_DREF_CONTROL);
8558                         udelay(200);
8559                 }
8560         }
8561
8562         BUG_ON(val != final);
8563 }
8564
8565 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8566 {
8567         uint32_t tmp;
8568
8569         tmp = I915_READ(SOUTH_CHICKEN2);
8570         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8571         I915_WRITE(SOUTH_CHICKEN2, tmp);
8572
8573         if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
8574                         FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8575                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8576
8577         tmp = I915_READ(SOUTH_CHICKEN2);
8578         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8579         I915_WRITE(SOUTH_CHICKEN2, tmp);
8580
8581         if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
8582                          FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8583                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8584 }
8585
8586 /* WaMPhyProgramming:hsw */
8587 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8588 {
8589         uint32_t tmp;
8590
8591         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8592         tmp &= ~(0xFF << 24);
8593         tmp |= (0x12 << 24);
8594         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8595
8596         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8597         tmp |= (1 << 11);
8598         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8599
8600         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8601         tmp |= (1 << 11);
8602         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8603
8604         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8605         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8606         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8607
8608         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8609         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8610         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8611
8612         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8613         tmp &= ~(7 << 13);
8614         tmp |= (5 << 13);
8615         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8616
8617         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8618         tmp &= ~(7 << 13);
8619         tmp |= (5 << 13);
8620         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8621
8622         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8623         tmp &= ~0xFF;
8624         tmp |= 0x1C;
8625         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8626
8627         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8628         tmp &= ~0xFF;
8629         tmp |= 0x1C;
8630         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8631
8632         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8633         tmp &= ~(0xFF << 16);
8634         tmp |= (0x1C << 16);
8635         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8636
8637         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8638         tmp &= ~(0xFF << 16);
8639         tmp |= (0x1C << 16);
8640         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8641
8642         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8643         tmp |= (1 << 27);
8644         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8645
8646         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8647         tmp |= (1 << 27);
8648         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8649
8650         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8651         tmp &= ~(0xF << 28);
8652         tmp |= (4 << 28);
8653         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8654
8655         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8656         tmp &= ~(0xF << 28);
8657         tmp |= (4 << 28);
8658         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8659 }
8660
8661 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8662  * Programming" based on the parameters passed:
8663  * - Sequence to enable CLKOUT_DP
8664  * - Sequence to enable CLKOUT_DP without spread
8665  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8666  */
8667 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8668                                  bool with_fdi)
8669 {
8670         struct drm_i915_private *dev_priv = dev->dev_private;
8671         uint32_t reg, tmp;
8672
8673         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8674                 with_spread = true;
8675         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8676                 with_fdi = false;
8677
8678         mutex_lock(&dev_priv->sb_lock);
8679
8680         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8681         tmp &= ~SBI_SSCCTL_DISABLE;
8682         tmp |= SBI_SSCCTL_PATHALT;
8683         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8684
8685         udelay(24);
8686
8687         if (with_spread) {
8688                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8689                 tmp &= ~SBI_SSCCTL_PATHALT;
8690                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8691
8692                 if (with_fdi) {
8693                         lpt_reset_fdi_mphy(dev_priv);
8694                         lpt_program_fdi_mphy(dev_priv);
8695                 }
8696         }
8697
8698         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8699         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8700         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8701         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8702
8703         mutex_unlock(&dev_priv->sb_lock);
8704 }
8705
8706 /* Sequence to disable CLKOUT_DP */
8707 static void lpt_disable_clkout_dp(struct drm_device *dev)
8708 {
8709         struct drm_i915_private *dev_priv = dev->dev_private;
8710         uint32_t reg, tmp;
8711
8712         mutex_lock(&dev_priv->sb_lock);
8713
8714         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8715         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8716         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8717         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8718
8719         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8720         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8721                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8722                         tmp |= SBI_SSCCTL_PATHALT;
8723                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8724                         udelay(32);
8725                 }
8726                 tmp |= SBI_SSCCTL_DISABLE;
8727                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8728         }
8729
8730         mutex_unlock(&dev_priv->sb_lock);
8731 }
8732
8733 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8734
8735 static const uint16_t sscdivintphase[] = {
8736         [BEND_IDX( 50)] = 0x3B23,
8737         [BEND_IDX( 45)] = 0x3B23,
8738         [BEND_IDX( 40)] = 0x3C23,
8739         [BEND_IDX( 35)] = 0x3C23,
8740         [BEND_IDX( 30)] = 0x3D23,
8741         [BEND_IDX( 25)] = 0x3D23,
8742         [BEND_IDX( 20)] = 0x3E23,
8743         [BEND_IDX( 15)] = 0x3E23,
8744         [BEND_IDX( 10)] = 0x3F23,
8745         [BEND_IDX(  5)] = 0x3F23,
8746         [BEND_IDX(  0)] = 0x0025,
8747         [BEND_IDX( -5)] = 0x0025,
8748         [BEND_IDX(-10)] = 0x0125,
8749         [BEND_IDX(-15)] = 0x0125,
8750         [BEND_IDX(-20)] = 0x0225,
8751         [BEND_IDX(-25)] = 0x0225,
8752         [BEND_IDX(-30)] = 0x0325,
8753         [BEND_IDX(-35)] = 0x0325,
8754         [BEND_IDX(-40)] = 0x0425,
8755         [BEND_IDX(-45)] = 0x0425,
8756         [BEND_IDX(-50)] = 0x0525,
8757 };
8758
8759 /*
8760  * Bend CLKOUT_DP
8761  * steps -50 to 50 inclusive, in steps of 5
8762  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8763  * change in clock period = -(steps / 10) * 5.787 ps
8764  */
8765 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8766 {
8767         uint32_t tmp;
8768         int idx = BEND_IDX(steps);
8769
8770         if (WARN_ON(steps % 5 != 0))
8771                 return;
8772
8773         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8774                 return;
8775
8776         mutex_lock(&dev_priv->sb_lock);
8777
8778         if (steps % 10 != 0)
8779                 tmp = 0xAAAAAAAB;
8780         else
8781                 tmp = 0x00000000;
8782         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8783
8784         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8785         tmp &= 0xffff0000;
8786         tmp |= sscdivintphase[idx];
8787         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8788
8789         mutex_unlock(&dev_priv->sb_lock);
8790 }
8791
8792 #undef BEND_IDX
8793
8794 static void lpt_init_pch_refclk(struct drm_device *dev)
8795 {
8796         struct intel_encoder *encoder;
8797         bool has_vga = false;
8798
8799         for_each_intel_encoder(dev, encoder) {
8800                 switch (encoder->type) {
8801                 case INTEL_OUTPUT_ANALOG:
8802                         has_vga = true;
8803                         break;
8804                 default:
8805                         break;
8806                 }
8807         }
8808
8809         if (has_vga) {
8810                 lpt_bend_clkout_dp(to_i915(dev), 0);
8811                 lpt_enable_clkout_dp(dev, true, true);
8812         } else {
8813                 lpt_disable_clkout_dp(dev);
8814         }
8815 }
8816
8817 /*
8818  * Initialize reference clocks when the driver loads
8819  */
8820 void intel_init_pch_refclk(struct drm_device *dev)
8821 {
8822         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8823                 ironlake_init_pch_refclk(dev);
8824         else if (HAS_PCH_LPT(dev))
8825                 lpt_init_pch_refclk(dev);
8826 }
8827
8828 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8829 {
8830         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8831         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8832         int pipe = intel_crtc->pipe;
8833         uint32_t val;
8834
8835         val = 0;
8836
8837         switch (intel_crtc->config->pipe_bpp) {
8838         case 18:
8839                 val |= PIPECONF_6BPC;
8840                 break;
8841         case 24:
8842                 val |= PIPECONF_8BPC;
8843                 break;
8844         case 30:
8845                 val |= PIPECONF_10BPC;
8846                 break;
8847         case 36:
8848                 val |= PIPECONF_12BPC;
8849                 break;
8850         default:
8851                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8852                 BUG();
8853         }
8854
8855         if (intel_crtc->config->dither)
8856                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8857
8858         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8859                 val |= PIPECONF_INTERLACED_ILK;
8860         else
8861                 val |= PIPECONF_PROGRESSIVE;
8862
8863         if (intel_crtc->config->limited_color_range)
8864                 val |= PIPECONF_COLOR_RANGE_SELECT;
8865
8866         I915_WRITE(PIPECONF(pipe), val);
8867         POSTING_READ(PIPECONF(pipe));
8868 }
8869
8870 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8871 {
8872         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8873         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8874         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8875         u32 val = 0;
8876
8877         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8878                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8879
8880         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8881                 val |= PIPECONF_INTERLACED_ILK;
8882         else
8883                 val |= PIPECONF_PROGRESSIVE;
8884
8885         I915_WRITE(PIPECONF(cpu_transcoder), val);
8886         POSTING_READ(PIPECONF(cpu_transcoder));
8887 }
8888
8889 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8890 {
8891         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8892         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8893
8894         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8895                 u32 val = 0;
8896
8897                 switch (intel_crtc->config->pipe_bpp) {
8898                 case 18:
8899                         val |= PIPEMISC_DITHER_6_BPC;
8900                         break;
8901                 case 24:
8902                         val |= PIPEMISC_DITHER_8_BPC;
8903                         break;
8904                 case 30:
8905                         val |= PIPEMISC_DITHER_10_BPC;
8906                         break;
8907                 case 36:
8908                         val |= PIPEMISC_DITHER_12_BPC;
8909                         break;
8910                 default:
8911                         /* Case prevented by pipe_config_set_bpp. */
8912                         BUG();
8913                 }
8914
8915                 if (intel_crtc->config->dither)
8916                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8917
8918                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8919         }
8920 }
8921
8922 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8923 {
8924         /*
8925          * Account for spread spectrum to avoid
8926          * oversubscribing the link. Max center spread
8927          * is 2.5%; use 5% for safety's sake.
8928          */
8929         u32 bps = target_clock * bpp * 21 / 20;
8930         return DIV_ROUND_UP(bps, link_bw * 8);
8931 }
8932
8933 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8934 {
8935         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8936 }
8937
8938 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8939                                   struct intel_crtc_state *crtc_state,
8940                                   struct dpll *reduced_clock)
8941 {
8942         struct drm_crtc *crtc = &intel_crtc->base;
8943         struct drm_device *dev = crtc->dev;
8944         struct drm_i915_private *dev_priv = dev->dev_private;
8945         struct drm_atomic_state *state = crtc_state->base.state;
8946         struct drm_connector *connector;
8947         struct drm_connector_state *connector_state;
8948         struct intel_encoder *encoder;
8949         u32 dpll, fp, fp2;
8950         int factor, i;
8951         bool is_lvds = false, is_sdvo = false;
8952
8953         for_each_connector_in_state(state, connector, connector_state, i) {
8954                 if (connector_state->crtc != crtc_state->base.crtc)
8955                         continue;
8956
8957                 encoder = to_intel_encoder(connector_state->best_encoder);
8958
8959                 switch (encoder->type) {
8960                 case INTEL_OUTPUT_LVDS:
8961                         is_lvds = true;
8962                         break;
8963                 case INTEL_OUTPUT_SDVO:
8964                 case INTEL_OUTPUT_HDMI:
8965                         is_sdvo = true;
8966                         break;
8967                 default:
8968                         break;
8969                 }
8970         }
8971
8972         /* Enable autotuning of the PLL clock (if permissible) */
8973         factor = 21;
8974         if (is_lvds) {
8975                 if ((intel_panel_use_ssc(dev_priv) &&
8976                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8977                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8978                         factor = 25;
8979         } else if (crtc_state->sdvo_tv_clock)
8980                 factor = 20;
8981
8982         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8983
8984         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8985                 fp |= FP_CB_TUNE;
8986
8987         if (reduced_clock) {
8988                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8989
8990                 if (reduced_clock->m < factor * reduced_clock->n)
8991                         fp2 |= FP_CB_TUNE;
8992         } else {
8993                 fp2 = fp;
8994         }
8995
8996         dpll = 0;
8997
8998         if (is_lvds)
8999                 dpll |= DPLLB_MODE_LVDS;
9000         else
9001                 dpll |= DPLLB_MODE_DAC_SERIAL;
9002
9003         dpll |= (crtc_state->pixel_multiplier - 1)
9004                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9005
9006         if (is_sdvo)
9007                 dpll |= DPLL_SDVO_HIGH_SPEED;
9008         if (crtc_state->has_dp_encoder)
9009                 dpll |= DPLL_SDVO_HIGH_SPEED;
9010
9011         /* compute bitmask from p1 value */
9012         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9013         /* also FPA1 */
9014         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9015
9016         switch (crtc_state->dpll.p2) {
9017         case 5:
9018                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9019                 break;
9020         case 7:
9021                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9022                 break;
9023         case 10:
9024                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9025                 break;
9026         case 14:
9027                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9028                 break;
9029         }
9030
9031         if (is_lvds && intel_panel_use_ssc(dev_priv))
9032                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9033         else
9034                 dpll |= PLL_REF_INPUT_DREFCLK;
9035
9036         dpll |= DPLL_VCO_ENABLE;
9037
9038         crtc_state->dpll_hw_state.dpll = dpll;
9039         crtc_state->dpll_hw_state.fp0 = fp;
9040         crtc_state->dpll_hw_state.fp1 = fp2;
9041 }
9042
9043 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9044                                        struct intel_crtc_state *crtc_state)
9045 {
9046         struct drm_device *dev = crtc->base.dev;
9047         struct drm_i915_private *dev_priv = dev->dev_private;
9048         struct dpll reduced_clock;
9049         bool has_reduced_clock = false;
9050         struct intel_shared_dpll *pll;
9051         const struct intel_limit *limit;
9052         int refclk = 120000;
9053
9054         memset(&crtc_state->dpll_hw_state, 0,
9055                sizeof(crtc_state->dpll_hw_state));
9056
9057         crtc->lowfreq_avail = false;
9058
9059         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9060         if (!crtc_state->has_pch_encoder)
9061                 return 0;
9062
9063         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9064                 if (intel_panel_use_ssc(dev_priv)) {
9065                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9066                                       dev_priv->vbt.lvds_ssc_freq);
9067                         refclk = dev_priv->vbt.lvds_ssc_freq;
9068                 }
9069
9070                 if (intel_is_dual_link_lvds(dev)) {
9071                         if (refclk == 100000)
9072                                 limit = &intel_limits_ironlake_dual_lvds_100m;
9073                         else
9074                                 limit = &intel_limits_ironlake_dual_lvds;
9075                 } else {
9076                         if (refclk == 100000)
9077                                 limit = &intel_limits_ironlake_single_lvds_100m;
9078                         else
9079                                 limit = &intel_limits_ironlake_single_lvds;
9080                 }
9081         } else {
9082                 limit = &intel_limits_ironlake_dac;
9083         }
9084
9085         if (!crtc_state->clock_set &&
9086             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9087                                 refclk, NULL, &crtc_state->dpll)) {
9088                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9089                 return -EINVAL;
9090         }
9091
9092         ironlake_compute_dpll(crtc, crtc_state,
9093                               has_reduced_clock ? &reduced_clock : NULL);
9094
9095         pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9096         if (pll == NULL) {
9097                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9098                                  pipe_name(crtc->pipe));
9099                 return -EINVAL;
9100         }
9101
9102         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9103             has_reduced_clock)
9104                 crtc->lowfreq_avail = true;
9105
9106         return 0;
9107 }
9108
9109 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9110                                          struct intel_link_m_n *m_n)
9111 {
9112         struct drm_device *dev = crtc->base.dev;
9113         struct drm_i915_private *dev_priv = dev->dev_private;
9114         enum pipe pipe = crtc->pipe;
9115
9116         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9117         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9118         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9119                 & ~TU_SIZE_MASK;
9120         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9121         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9122                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9123 }
9124
9125 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9126                                          enum transcoder transcoder,
9127                                          struct intel_link_m_n *m_n,
9128                                          struct intel_link_m_n *m2_n2)
9129 {
9130         struct drm_device *dev = crtc->base.dev;
9131         struct drm_i915_private *dev_priv = dev->dev_private;
9132         enum pipe pipe = crtc->pipe;
9133
9134         if (INTEL_INFO(dev)->gen >= 5) {
9135                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9136                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9137                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9138                         & ~TU_SIZE_MASK;
9139                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9140                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9141                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9142                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9143                  * gen < 8) and if DRRS is supported (to make sure the
9144                  * registers are not unnecessarily read).
9145                  */
9146                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9147                         crtc->config->has_drrs) {
9148                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9149                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9150                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9151                                         & ~TU_SIZE_MASK;
9152                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9153                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9154                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9155                 }
9156         } else {
9157                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9158                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9159                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9160                         & ~TU_SIZE_MASK;
9161                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9162                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9163                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9164         }
9165 }
9166
9167 void intel_dp_get_m_n(struct intel_crtc *crtc,
9168                       struct intel_crtc_state *pipe_config)
9169 {
9170         if (pipe_config->has_pch_encoder)
9171                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9172         else
9173                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9174                                              &pipe_config->dp_m_n,
9175                                              &pipe_config->dp_m2_n2);
9176 }
9177
9178 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9179                                         struct intel_crtc_state *pipe_config)
9180 {
9181         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9182                                      &pipe_config->fdi_m_n, NULL);
9183 }
9184
9185 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9186                                     struct intel_crtc_state *pipe_config)
9187 {
9188         struct drm_device *dev = crtc->base.dev;
9189         struct drm_i915_private *dev_priv = dev->dev_private;
9190         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9191         uint32_t ps_ctrl = 0;
9192         int id = -1;
9193         int i;
9194
9195         /* find scaler attached to this pipe */
9196         for (i = 0; i < crtc->num_scalers; i++) {
9197                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9198                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9199                         id = i;
9200                         pipe_config->pch_pfit.enabled = true;
9201                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9202                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9203                         break;
9204                 }
9205         }
9206
9207         scaler_state->scaler_id = id;
9208         if (id >= 0) {
9209                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9210         } else {
9211                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9212         }
9213 }
9214
9215 static void
9216 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9217                                  struct intel_initial_plane_config *plane_config)
9218 {
9219         struct drm_device *dev = crtc->base.dev;
9220         struct drm_i915_private *dev_priv = dev->dev_private;
9221         u32 val, base, offset, stride_mult, tiling;
9222         int pipe = crtc->pipe;
9223         int fourcc, pixel_format;
9224         unsigned int aligned_height;
9225         struct drm_framebuffer *fb;
9226         struct intel_framebuffer *intel_fb;
9227
9228         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9229         if (!intel_fb) {
9230                 DRM_DEBUG_KMS("failed to alloc fb\n");
9231                 return;
9232         }
9233
9234         fb = &intel_fb->base;
9235
9236         val = I915_READ(PLANE_CTL(pipe, 0));
9237         if (!(val & PLANE_CTL_ENABLE))
9238                 goto error;
9239
9240         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9241         fourcc = skl_format_to_fourcc(pixel_format,
9242                                       val & PLANE_CTL_ORDER_RGBX,
9243                                       val & PLANE_CTL_ALPHA_MASK);
9244         fb->pixel_format = fourcc;
9245         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9246
9247         tiling = val & PLANE_CTL_TILED_MASK;
9248         switch (tiling) {
9249         case PLANE_CTL_TILED_LINEAR:
9250                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9251                 break;
9252         case PLANE_CTL_TILED_X:
9253                 plane_config->tiling = I915_TILING_X;
9254                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9255                 break;
9256         case PLANE_CTL_TILED_Y:
9257                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9258                 break;
9259         case PLANE_CTL_TILED_YF:
9260                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9261                 break;
9262         default:
9263                 MISSING_CASE(tiling);
9264                 goto error;
9265         }
9266
9267         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9268         plane_config->base = base;
9269
9270         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9271
9272         val = I915_READ(PLANE_SIZE(pipe, 0));
9273         fb->height = ((val >> 16) & 0xfff) + 1;
9274         fb->width = ((val >> 0) & 0x1fff) + 1;
9275
9276         val = I915_READ(PLANE_STRIDE(pipe, 0));
9277         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9278                                                 fb->pixel_format);
9279         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9280
9281         aligned_height = intel_fb_align_height(dev, fb->height,
9282                                                fb->pixel_format,
9283                                                fb->modifier[0]);
9284
9285         plane_config->size = fb->pitches[0] * aligned_height;
9286
9287         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9288                       pipe_name(pipe), fb->width, fb->height,
9289                       fb->bits_per_pixel, base, fb->pitches[0],
9290                       plane_config->size);
9291
9292         plane_config->fb = intel_fb;
9293         return;
9294
9295 error:
9296         kfree(fb);
9297 }
9298
9299 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9300                                      struct intel_crtc_state *pipe_config)
9301 {
9302         struct drm_device *dev = crtc->base.dev;
9303         struct drm_i915_private *dev_priv = dev->dev_private;
9304         uint32_t tmp;
9305
9306         tmp = I915_READ(PF_CTL(crtc->pipe));
9307
9308         if (tmp & PF_ENABLE) {
9309                 pipe_config->pch_pfit.enabled = true;
9310                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9311                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9312
9313                 /* We currently do not free assignements of panel fitters on
9314                  * ivb/hsw (since we don't use the higher upscaling modes which
9315                  * differentiates them) so just WARN about this case for now. */
9316                 if (IS_GEN7(dev)) {
9317                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9318                                 PF_PIPE_SEL_IVB(crtc->pipe));
9319                 }
9320         }
9321 }
9322
9323 static void
9324 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9325                                   struct intel_initial_plane_config *plane_config)
9326 {
9327         struct drm_device *dev = crtc->base.dev;
9328         struct drm_i915_private *dev_priv = dev->dev_private;
9329         u32 val, base, offset;
9330         int pipe = crtc->pipe;
9331         int fourcc, pixel_format;
9332         unsigned int aligned_height;
9333         struct drm_framebuffer *fb;
9334         struct intel_framebuffer *intel_fb;
9335
9336         val = I915_READ(DSPCNTR(pipe));
9337         if (!(val & DISPLAY_PLANE_ENABLE))
9338                 return;
9339
9340         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9341         if (!intel_fb) {
9342                 DRM_DEBUG_KMS("failed to alloc fb\n");
9343                 return;
9344         }
9345
9346         fb = &intel_fb->base;
9347
9348         if (INTEL_INFO(dev)->gen >= 4) {
9349                 if (val & DISPPLANE_TILED) {
9350                         plane_config->tiling = I915_TILING_X;
9351                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9352                 }
9353         }
9354
9355         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9356         fourcc = i9xx_format_to_fourcc(pixel_format);
9357         fb->pixel_format = fourcc;
9358         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9359
9360         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9361         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9362                 offset = I915_READ(DSPOFFSET(pipe));
9363         } else {
9364                 if (plane_config->tiling)
9365                         offset = I915_READ(DSPTILEOFF(pipe));
9366                 else
9367                         offset = I915_READ(DSPLINOFF(pipe));
9368         }
9369         plane_config->base = base;
9370
9371         val = I915_READ(PIPESRC(pipe));
9372         fb->width = ((val >> 16) & 0xfff) + 1;
9373         fb->height = ((val >> 0) & 0xfff) + 1;
9374
9375         val = I915_READ(DSPSTRIDE(pipe));
9376         fb->pitches[0] = val & 0xffffffc0;
9377
9378         aligned_height = intel_fb_align_height(dev, fb->height,
9379                                                fb->pixel_format,
9380                                                fb->modifier[0]);
9381
9382         plane_config->size = fb->pitches[0] * aligned_height;
9383
9384         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9385                       pipe_name(pipe), fb->width, fb->height,
9386                       fb->bits_per_pixel, base, fb->pitches[0],
9387                       plane_config->size);
9388
9389         plane_config->fb = intel_fb;
9390 }
9391
9392 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9393                                      struct intel_crtc_state *pipe_config)
9394 {
9395         struct drm_device *dev = crtc->base.dev;
9396         struct drm_i915_private *dev_priv = dev->dev_private;
9397         enum intel_display_power_domain power_domain;
9398         uint32_t tmp;
9399         bool ret;
9400
9401         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9402         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9403                 return false;
9404
9405         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9406         pipe_config->shared_dpll = NULL;
9407
9408         ret = false;
9409         tmp = I915_READ(PIPECONF(crtc->pipe));
9410         if (!(tmp & PIPECONF_ENABLE))
9411                 goto out;
9412
9413         switch (tmp & PIPECONF_BPC_MASK) {
9414         case PIPECONF_6BPC:
9415                 pipe_config->pipe_bpp = 18;
9416                 break;
9417         case PIPECONF_8BPC:
9418                 pipe_config->pipe_bpp = 24;
9419                 break;
9420         case PIPECONF_10BPC:
9421                 pipe_config->pipe_bpp = 30;
9422                 break;
9423         case PIPECONF_12BPC:
9424                 pipe_config->pipe_bpp = 36;
9425                 break;
9426         default:
9427                 break;
9428         }
9429
9430         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9431                 pipe_config->limited_color_range = true;
9432
9433         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9434                 struct intel_shared_dpll *pll;
9435                 enum intel_dpll_id pll_id;
9436
9437                 pipe_config->has_pch_encoder = true;
9438
9439                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9440                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9441                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9442
9443                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9444
9445                 if (HAS_PCH_IBX(dev_priv)) {
9446                         /*
9447                          * The pipe->pch transcoder and pch transcoder->pll
9448                          * mapping is fixed.
9449                          */
9450                         pll_id = (enum intel_dpll_id) crtc->pipe;
9451                 } else {
9452                         tmp = I915_READ(PCH_DPLL_SEL);
9453                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9454                                 pll_id = DPLL_ID_PCH_PLL_B;
9455                         else
9456                                 pll_id= DPLL_ID_PCH_PLL_A;
9457                 }
9458
9459                 pipe_config->shared_dpll =
9460                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
9461                 pll = pipe_config->shared_dpll;
9462
9463                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9464                                                  &pipe_config->dpll_hw_state));
9465
9466                 tmp = pipe_config->dpll_hw_state.dpll;
9467                 pipe_config->pixel_multiplier =
9468                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9469                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9470
9471                 ironlake_pch_clock_get(crtc, pipe_config);
9472         } else {
9473                 pipe_config->pixel_multiplier = 1;
9474         }
9475
9476         intel_get_pipe_timings(crtc, pipe_config);
9477         intel_get_pipe_src_size(crtc, pipe_config);
9478
9479         ironlake_get_pfit_config(crtc, pipe_config);
9480
9481         ret = true;
9482
9483 out:
9484         intel_display_power_put(dev_priv, power_domain);
9485
9486         return ret;
9487 }
9488
9489 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9490 {
9491         struct drm_device *dev = dev_priv->dev;
9492         struct intel_crtc *crtc;
9493
9494         for_each_intel_crtc(dev, crtc)
9495                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9496                      pipe_name(crtc->pipe));
9497
9498         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9499         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9500         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9501         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9502         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9503         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9504              "CPU PWM1 enabled\n");
9505         if (IS_HASWELL(dev))
9506                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9507                      "CPU PWM2 enabled\n");
9508         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9509              "PCH PWM1 enabled\n");
9510         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9511              "Utility pin enabled\n");
9512         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9513
9514         /*
9515          * In theory we can still leave IRQs enabled, as long as only the HPD
9516          * interrupts remain enabled. We used to check for that, but since it's
9517          * gen-specific and since we only disable LCPLL after we fully disable
9518          * the interrupts, the check below should be enough.
9519          */
9520         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9521 }
9522
9523 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9524 {
9525         struct drm_device *dev = dev_priv->dev;
9526
9527         if (IS_HASWELL(dev))
9528                 return I915_READ(D_COMP_HSW);
9529         else
9530                 return I915_READ(D_COMP_BDW);
9531 }
9532
9533 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9534 {
9535         struct drm_device *dev = dev_priv->dev;
9536
9537         if (IS_HASWELL(dev)) {
9538                 mutex_lock(&dev_priv->rps.hw_lock);
9539                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9540                                             val))
9541                         DRM_ERROR("Failed to write to D_COMP\n");
9542                 mutex_unlock(&dev_priv->rps.hw_lock);
9543         } else {
9544                 I915_WRITE(D_COMP_BDW, val);
9545                 POSTING_READ(D_COMP_BDW);
9546         }
9547 }
9548
9549 /*
9550  * This function implements pieces of two sequences from BSpec:
9551  * - Sequence for display software to disable LCPLL
9552  * - Sequence for display software to allow package C8+
9553  * The steps implemented here are just the steps that actually touch the LCPLL
9554  * register. Callers should take care of disabling all the display engine
9555  * functions, doing the mode unset, fixing interrupts, etc.
9556  */
9557 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9558                               bool switch_to_fclk, bool allow_power_down)
9559 {
9560         uint32_t val;
9561
9562         assert_can_disable_lcpll(dev_priv);
9563
9564         val = I915_READ(LCPLL_CTL);
9565
9566         if (switch_to_fclk) {
9567                 val |= LCPLL_CD_SOURCE_FCLK;
9568                 I915_WRITE(LCPLL_CTL, val);
9569
9570                 if (wait_for_us(I915_READ(LCPLL_CTL) &
9571                                 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9572                         DRM_ERROR("Switching to FCLK failed\n");
9573
9574                 val = I915_READ(LCPLL_CTL);
9575         }
9576
9577         val |= LCPLL_PLL_DISABLE;
9578         I915_WRITE(LCPLL_CTL, val);
9579         POSTING_READ(LCPLL_CTL);
9580
9581         if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
9582                 DRM_ERROR("LCPLL still locked\n");
9583
9584         val = hsw_read_dcomp(dev_priv);
9585         val |= D_COMP_COMP_DISABLE;
9586         hsw_write_dcomp(dev_priv, val);
9587         ndelay(100);
9588
9589         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9590                      1))
9591                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9592
9593         if (allow_power_down) {
9594                 val = I915_READ(LCPLL_CTL);
9595                 val |= LCPLL_POWER_DOWN_ALLOW;
9596                 I915_WRITE(LCPLL_CTL, val);
9597                 POSTING_READ(LCPLL_CTL);
9598         }
9599 }
9600
9601 /*
9602  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9603  * source.
9604  */
9605 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9606 {
9607         uint32_t val;
9608
9609         val = I915_READ(LCPLL_CTL);
9610
9611         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9612                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9613                 return;
9614
9615         /*
9616          * Make sure we're not on PC8 state before disabling PC8, otherwise
9617          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9618          */
9619         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9620
9621         if (val & LCPLL_POWER_DOWN_ALLOW) {
9622                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9623                 I915_WRITE(LCPLL_CTL, val);
9624                 POSTING_READ(LCPLL_CTL);
9625         }
9626
9627         val = hsw_read_dcomp(dev_priv);
9628         val |= D_COMP_COMP_FORCE;
9629         val &= ~D_COMP_COMP_DISABLE;
9630         hsw_write_dcomp(dev_priv, val);
9631
9632         val = I915_READ(LCPLL_CTL);
9633         val &= ~LCPLL_PLL_DISABLE;
9634         I915_WRITE(LCPLL_CTL, val);
9635
9636         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9637                 DRM_ERROR("LCPLL not locked yet\n");
9638
9639         if (val & LCPLL_CD_SOURCE_FCLK) {
9640                 val = I915_READ(LCPLL_CTL);
9641                 val &= ~LCPLL_CD_SOURCE_FCLK;
9642                 I915_WRITE(LCPLL_CTL, val);
9643
9644                 if (wait_for_us((I915_READ(LCPLL_CTL) &
9645                                  LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9646                         DRM_ERROR("Switching back to LCPLL failed\n");
9647         }
9648
9649         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9650         intel_update_cdclk(dev_priv->dev);
9651 }
9652
9653 /*
9654  * Package states C8 and deeper are really deep PC states that can only be
9655  * reached when all the devices on the system allow it, so even if the graphics
9656  * device allows PC8+, it doesn't mean the system will actually get to these
9657  * states. Our driver only allows PC8+ when going into runtime PM.
9658  *
9659  * The requirements for PC8+ are that all the outputs are disabled, the power
9660  * well is disabled and most interrupts are disabled, and these are also
9661  * requirements for runtime PM. When these conditions are met, we manually do
9662  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9663  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9664  * hang the machine.
9665  *
9666  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9667  * the state of some registers, so when we come back from PC8+ we need to
9668  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9669  * need to take care of the registers kept by RC6. Notice that this happens even
9670  * if we don't put the device in PCI D3 state (which is what currently happens
9671  * because of the runtime PM support).
9672  *
9673  * For more, read "Display Sequences for Package C8" on the hardware
9674  * documentation.
9675  */
9676 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9677 {
9678         struct drm_device *dev = dev_priv->dev;
9679         uint32_t val;
9680
9681         DRM_DEBUG_KMS("Enabling package C8+\n");
9682
9683         if (HAS_PCH_LPT_LP(dev)) {
9684                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9685                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9686                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9687         }
9688
9689         lpt_disable_clkout_dp(dev);
9690         hsw_disable_lcpll(dev_priv, true, true);
9691 }
9692
9693 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9694 {
9695         struct drm_device *dev = dev_priv->dev;
9696         uint32_t val;
9697
9698         DRM_DEBUG_KMS("Disabling package C8+\n");
9699
9700         hsw_restore_lcpll(dev_priv);
9701         lpt_init_pch_refclk(dev);
9702
9703         if (HAS_PCH_LPT_LP(dev)) {
9704                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9705                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9706                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9707         }
9708 }
9709
9710 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9711 {
9712         struct drm_device *dev = old_state->dev;
9713         struct intel_atomic_state *old_intel_state =
9714                 to_intel_atomic_state(old_state);
9715         unsigned int req_cdclk = old_intel_state->dev_cdclk;
9716
9717         bxt_set_cdclk(to_i915(dev), req_cdclk);
9718 }
9719
9720 /* compute the max rate for new configuration */
9721 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9722 {
9723         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9724         struct drm_i915_private *dev_priv = state->dev->dev_private;
9725         struct drm_crtc *crtc;
9726         struct drm_crtc_state *cstate;
9727         struct intel_crtc_state *crtc_state;
9728         unsigned max_pixel_rate = 0, i;
9729         enum pipe pipe;
9730
9731         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9732                sizeof(intel_state->min_pixclk));
9733
9734         for_each_crtc_in_state(state, crtc, cstate, i) {
9735                 int pixel_rate;
9736
9737                 crtc_state = to_intel_crtc_state(cstate);
9738                 if (!crtc_state->base.enable) {
9739                         intel_state->min_pixclk[i] = 0;
9740                         continue;
9741                 }
9742
9743                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9744
9745                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9746                 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9747                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9748
9749                 intel_state->min_pixclk[i] = pixel_rate;
9750         }
9751
9752         for_each_pipe(dev_priv, pipe)
9753                 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9754
9755         return max_pixel_rate;
9756 }
9757
9758 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9759 {
9760         struct drm_i915_private *dev_priv = dev->dev_private;
9761         uint32_t val, data;
9762         int ret;
9763
9764         if (WARN((I915_READ(LCPLL_CTL) &
9765                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9766                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9767                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9768                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9769                  "trying to change cdclk frequency with cdclk not enabled\n"))
9770                 return;
9771
9772         mutex_lock(&dev_priv->rps.hw_lock);
9773         ret = sandybridge_pcode_write(dev_priv,
9774                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9775         mutex_unlock(&dev_priv->rps.hw_lock);
9776         if (ret) {
9777                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9778                 return;
9779         }
9780
9781         val = I915_READ(LCPLL_CTL);
9782         val |= LCPLL_CD_SOURCE_FCLK;
9783         I915_WRITE(LCPLL_CTL, val);
9784
9785         if (wait_for_us(I915_READ(LCPLL_CTL) &
9786                         LCPLL_CD_SOURCE_FCLK_DONE, 1))
9787                 DRM_ERROR("Switching to FCLK failed\n");
9788
9789         val = I915_READ(LCPLL_CTL);
9790         val &= ~LCPLL_CLK_FREQ_MASK;
9791
9792         switch (cdclk) {
9793         case 450000:
9794                 val |= LCPLL_CLK_FREQ_450;
9795                 data = 0;
9796                 break;
9797         case 540000:
9798                 val |= LCPLL_CLK_FREQ_54O_BDW;
9799                 data = 1;
9800                 break;
9801         case 337500:
9802                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9803                 data = 2;
9804                 break;
9805         case 675000:
9806                 val |= LCPLL_CLK_FREQ_675_BDW;
9807                 data = 3;
9808                 break;
9809         default:
9810                 WARN(1, "invalid cdclk frequency\n");
9811                 return;
9812         }
9813
9814         I915_WRITE(LCPLL_CTL, val);
9815
9816         val = I915_READ(LCPLL_CTL);
9817         val &= ~LCPLL_CD_SOURCE_FCLK;
9818         I915_WRITE(LCPLL_CTL, val);
9819
9820         if (wait_for_us((I915_READ(LCPLL_CTL) &
9821                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9822                 DRM_ERROR("Switching back to LCPLL failed\n");
9823
9824         mutex_lock(&dev_priv->rps.hw_lock);
9825         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9826         mutex_unlock(&dev_priv->rps.hw_lock);
9827
9828         I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9829
9830         intel_update_cdclk(dev);
9831
9832         WARN(cdclk != dev_priv->cdclk_freq,
9833              "cdclk requested %d kHz but got %d kHz\n",
9834              cdclk, dev_priv->cdclk_freq);
9835 }
9836
9837 static int broadwell_calc_cdclk(int max_pixclk)
9838 {
9839         if (max_pixclk > 540000)
9840                 return 675000;
9841         else if (max_pixclk > 450000)
9842                 return 540000;
9843         else if (max_pixclk > 337500)
9844                 return 450000;
9845         else
9846                 return 337500;
9847 }
9848
9849 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9850 {
9851         struct drm_i915_private *dev_priv = to_i915(state->dev);
9852         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9853         int max_pixclk = ilk_max_pixel_rate(state);
9854         int cdclk;
9855
9856         /*
9857          * FIXME should also account for plane ratio
9858          * once 64bpp pixel formats are supported.
9859          */
9860         cdclk = broadwell_calc_cdclk(max_pixclk);
9861
9862         if (cdclk > dev_priv->max_cdclk_freq) {
9863                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9864                               cdclk, dev_priv->max_cdclk_freq);
9865                 return -EINVAL;
9866         }
9867
9868         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9869         if (!intel_state->active_crtcs)
9870                 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
9871
9872         return 0;
9873 }
9874
9875 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9876 {
9877         struct drm_device *dev = old_state->dev;
9878         struct intel_atomic_state *old_intel_state =
9879                 to_intel_atomic_state(old_state);
9880         unsigned req_cdclk = old_intel_state->dev_cdclk;
9881
9882         broadwell_set_cdclk(dev, req_cdclk);
9883 }
9884
9885 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
9886 {
9887         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9888         struct drm_i915_private *dev_priv = to_i915(state->dev);
9889         const int max_pixclk = ilk_max_pixel_rate(state);
9890         int vco = intel_state->cdclk_pll_vco;
9891         int cdclk;
9892
9893         /*
9894          * FIXME should also account for plane ratio
9895          * once 64bpp pixel formats are supported.
9896          */
9897         cdclk = skl_calc_cdclk(max_pixclk, vco);
9898
9899         /*
9900          * FIXME move the cdclk caclulation to
9901          * compute_config() so we can fail gracegully.
9902          */
9903         if (cdclk > dev_priv->max_cdclk_freq) {
9904                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9905                           cdclk, dev_priv->max_cdclk_freq);
9906                 cdclk = dev_priv->max_cdclk_freq;
9907         }
9908
9909         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9910         if (!intel_state->active_crtcs)
9911                 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
9912
9913         return 0;
9914 }
9915
9916 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9917 {
9918         struct drm_i915_private *dev_priv = to_i915(old_state->dev);
9919         struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
9920         unsigned int req_cdclk = intel_state->dev_cdclk;
9921         unsigned int req_vco = intel_state->cdclk_pll_vco;
9922
9923         skl_set_cdclk(dev_priv, req_cdclk, req_vco);
9924 }
9925
9926 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9927                                       struct intel_crtc_state *crtc_state)
9928 {
9929         struct intel_encoder *intel_encoder =
9930                 intel_ddi_get_crtc_new_encoder(crtc_state);
9931
9932         if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9933                 if (!intel_ddi_pll_select(crtc, crtc_state))
9934                         return -EINVAL;
9935         }
9936
9937         crtc->lowfreq_avail = false;
9938
9939         return 0;
9940 }
9941
9942 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9943                                 enum port port,
9944                                 struct intel_crtc_state *pipe_config)
9945 {
9946         enum intel_dpll_id id;
9947
9948         switch (port) {
9949         case PORT_A:
9950                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9951                 id = DPLL_ID_SKL_DPLL0;
9952                 break;
9953         case PORT_B:
9954                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9955                 id = DPLL_ID_SKL_DPLL1;
9956                 break;
9957         case PORT_C:
9958                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9959                 id = DPLL_ID_SKL_DPLL2;
9960                 break;
9961         default:
9962                 DRM_ERROR("Incorrect port type\n");
9963                 return;
9964         }
9965
9966         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9967 }
9968
9969 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9970                                 enum port port,
9971                                 struct intel_crtc_state *pipe_config)
9972 {
9973         enum intel_dpll_id id;
9974         u32 temp;
9975
9976         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9977         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9978
9979         switch (pipe_config->ddi_pll_sel) {
9980         case SKL_DPLL0:
9981                 id = DPLL_ID_SKL_DPLL0;
9982                 break;
9983         case SKL_DPLL1:
9984                 id = DPLL_ID_SKL_DPLL1;
9985                 break;
9986         case SKL_DPLL2:
9987                 id = DPLL_ID_SKL_DPLL2;
9988                 break;
9989         case SKL_DPLL3:
9990                 id = DPLL_ID_SKL_DPLL3;
9991                 break;
9992         default:
9993                 MISSING_CASE(pipe_config->ddi_pll_sel);
9994                 return;
9995         }
9996
9997         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9998 }
9999
10000 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10001                                 enum port port,
10002                                 struct intel_crtc_state *pipe_config)
10003 {
10004         enum intel_dpll_id id;
10005
10006         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10007
10008         switch (pipe_config->ddi_pll_sel) {
10009         case PORT_CLK_SEL_WRPLL1:
10010                 id = DPLL_ID_WRPLL1;
10011                 break;
10012         case PORT_CLK_SEL_WRPLL2:
10013                 id = DPLL_ID_WRPLL2;
10014                 break;
10015         case PORT_CLK_SEL_SPLL:
10016                 id = DPLL_ID_SPLL;
10017                 break;
10018         case PORT_CLK_SEL_LCPLL_810:
10019                 id = DPLL_ID_LCPLL_810;
10020                 break;
10021         case PORT_CLK_SEL_LCPLL_1350:
10022                 id = DPLL_ID_LCPLL_1350;
10023                 break;
10024         case PORT_CLK_SEL_LCPLL_2700:
10025                 id = DPLL_ID_LCPLL_2700;
10026                 break;
10027         default:
10028                 MISSING_CASE(pipe_config->ddi_pll_sel);
10029                 /* fall through */
10030         case PORT_CLK_SEL_NONE:
10031                 return;
10032         }
10033
10034         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10035 }
10036
10037 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10038                                      struct intel_crtc_state *pipe_config,
10039                                      unsigned long *power_domain_mask)
10040 {
10041         struct drm_device *dev = crtc->base.dev;
10042         struct drm_i915_private *dev_priv = dev->dev_private;
10043         enum intel_display_power_domain power_domain;
10044         u32 tmp;
10045
10046         /*
10047          * The pipe->transcoder mapping is fixed with the exception of the eDP
10048          * transcoder handled below.
10049          */
10050         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10051
10052         /*
10053          * XXX: Do intel_display_power_get_if_enabled before reading this (for
10054          * consistency and less surprising code; it's in always on power).
10055          */
10056         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10057         if (tmp & TRANS_DDI_FUNC_ENABLE) {
10058                 enum pipe trans_edp_pipe;
10059                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10060                 default:
10061                         WARN(1, "unknown pipe linked to edp transcoder\n");
10062                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10063                 case TRANS_DDI_EDP_INPUT_A_ON:
10064                         trans_edp_pipe = PIPE_A;
10065                         break;
10066                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10067                         trans_edp_pipe = PIPE_B;
10068                         break;
10069                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10070                         trans_edp_pipe = PIPE_C;
10071                         break;
10072                 }
10073
10074                 if (trans_edp_pipe == crtc->pipe)
10075                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
10076         }
10077
10078         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10079         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10080                 return false;
10081         *power_domain_mask |= BIT(power_domain);
10082
10083         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10084
10085         return tmp & PIPECONF_ENABLE;
10086 }
10087
10088 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10089                                          struct intel_crtc_state *pipe_config,
10090                                          unsigned long *power_domain_mask)
10091 {
10092         struct drm_device *dev = crtc->base.dev;
10093         struct drm_i915_private *dev_priv = dev->dev_private;
10094         enum intel_display_power_domain power_domain;
10095         enum port port;
10096         enum transcoder cpu_transcoder;
10097         u32 tmp;
10098
10099         pipe_config->has_dsi_encoder = false;
10100
10101         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10102                 if (port == PORT_A)
10103                         cpu_transcoder = TRANSCODER_DSI_A;
10104                 else
10105                         cpu_transcoder = TRANSCODER_DSI_C;
10106
10107                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10108                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10109                         continue;
10110                 *power_domain_mask |= BIT(power_domain);
10111
10112                 /*
10113                  * The PLL needs to be enabled with a valid divider
10114                  * configuration, otherwise accessing DSI registers will hang
10115                  * the machine. See BSpec North Display Engine
10116                  * registers/MIPI[BXT]. We can break out here early, since we
10117                  * need the same DSI PLL to be enabled for both DSI ports.
10118                  */
10119                 if (!intel_dsi_pll_is_enabled(dev_priv))
10120                         break;
10121
10122                 /* XXX: this works for video mode only */
10123                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10124                 if (!(tmp & DPI_ENABLE))
10125                         continue;
10126
10127                 tmp = I915_READ(MIPI_CTRL(port));
10128                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10129                         continue;
10130
10131                 pipe_config->cpu_transcoder = cpu_transcoder;
10132                 pipe_config->has_dsi_encoder = true;
10133                 break;
10134         }
10135
10136         return pipe_config->has_dsi_encoder;
10137 }
10138
10139 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10140                                        struct intel_crtc_state *pipe_config)
10141 {
10142         struct drm_device *dev = crtc->base.dev;
10143         struct drm_i915_private *dev_priv = dev->dev_private;
10144         struct intel_shared_dpll *pll;
10145         enum port port;
10146         uint32_t tmp;
10147
10148         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10149
10150         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10151
10152         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
10153                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10154         else if (IS_BROXTON(dev))
10155                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10156         else
10157                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10158
10159         pll = pipe_config->shared_dpll;
10160         if (pll) {
10161                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10162                                                  &pipe_config->dpll_hw_state));
10163         }
10164
10165         /*
10166          * Haswell has only FDI/PCH transcoder A. It is which is connected to
10167          * DDI E. So just check whether this pipe is wired to DDI E and whether
10168          * the PCH transcoder is on.
10169          */
10170         if (INTEL_INFO(dev)->gen < 9 &&
10171             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10172                 pipe_config->has_pch_encoder = true;
10173
10174                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10175                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10176                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
10177
10178                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10179         }
10180 }
10181
10182 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10183                                     struct intel_crtc_state *pipe_config)
10184 {
10185         struct drm_device *dev = crtc->base.dev;
10186         struct drm_i915_private *dev_priv = dev->dev_private;
10187         enum intel_display_power_domain power_domain;
10188         unsigned long power_domain_mask;
10189         bool active;
10190
10191         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10192         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10193                 return false;
10194         power_domain_mask = BIT(power_domain);
10195
10196         pipe_config->shared_dpll = NULL;
10197
10198         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10199
10200         if (IS_BROXTON(dev_priv)) {
10201                 bxt_get_dsi_transcoder_state(crtc, pipe_config,
10202                                              &power_domain_mask);
10203                 WARN_ON(active && pipe_config->has_dsi_encoder);
10204                 if (pipe_config->has_dsi_encoder)
10205                         active = true;
10206         }
10207
10208         if (!active)
10209                 goto out;
10210
10211         if (!pipe_config->has_dsi_encoder) {
10212                 haswell_get_ddi_port_state(crtc, pipe_config);
10213                 intel_get_pipe_timings(crtc, pipe_config);
10214         }
10215
10216         intel_get_pipe_src_size(crtc, pipe_config);
10217
10218         pipe_config->gamma_mode =
10219                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10220
10221         if (INTEL_INFO(dev)->gen >= 9) {
10222                 skl_init_scalers(dev, crtc, pipe_config);
10223         }
10224
10225         if (INTEL_INFO(dev)->gen >= 9) {
10226                 pipe_config->scaler_state.scaler_id = -1;
10227                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10228         }
10229
10230         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10231         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10232                 power_domain_mask |= BIT(power_domain);
10233                 if (INTEL_INFO(dev)->gen >= 9)
10234                         skylake_get_pfit_config(crtc, pipe_config);
10235                 else
10236                         ironlake_get_pfit_config(crtc, pipe_config);
10237         }
10238
10239         if (IS_HASWELL(dev))
10240                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10241                         (I915_READ(IPS_CTL) & IPS_ENABLE);
10242
10243         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10244             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10245                 pipe_config->pixel_multiplier =
10246                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10247         } else {
10248                 pipe_config->pixel_multiplier = 1;
10249         }
10250
10251 out:
10252         for_each_power_domain(power_domain, power_domain_mask)
10253                 intel_display_power_put(dev_priv, power_domain);
10254
10255         return active;
10256 }
10257
10258 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10259                                const struct intel_plane_state *plane_state)
10260 {
10261         struct drm_device *dev = crtc->dev;
10262         struct drm_i915_private *dev_priv = dev->dev_private;
10263         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10264         uint32_t cntl = 0, size = 0;
10265
10266         if (plane_state && plane_state->visible) {
10267                 unsigned int width = plane_state->base.crtc_w;
10268                 unsigned int height = plane_state->base.crtc_h;
10269                 unsigned int stride = roundup_pow_of_two(width) * 4;
10270
10271                 switch (stride) {
10272                 default:
10273                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10274                                   width, stride);
10275                         stride = 256;
10276                         /* fallthrough */
10277                 case 256:
10278                 case 512:
10279                 case 1024:
10280                 case 2048:
10281                         break;
10282                 }
10283
10284                 cntl |= CURSOR_ENABLE |
10285                         CURSOR_GAMMA_ENABLE |
10286                         CURSOR_FORMAT_ARGB |
10287                         CURSOR_STRIDE(stride);
10288
10289                 size = (height << 12) | width;
10290         }
10291
10292         if (intel_crtc->cursor_cntl != 0 &&
10293             (intel_crtc->cursor_base != base ||
10294              intel_crtc->cursor_size != size ||
10295              intel_crtc->cursor_cntl != cntl)) {
10296                 /* On these chipsets we can only modify the base/size/stride
10297                  * whilst the cursor is disabled.
10298                  */
10299                 I915_WRITE(CURCNTR(PIPE_A), 0);
10300                 POSTING_READ(CURCNTR(PIPE_A));
10301                 intel_crtc->cursor_cntl = 0;
10302         }
10303
10304         if (intel_crtc->cursor_base != base) {
10305                 I915_WRITE(CURBASE(PIPE_A), base);
10306                 intel_crtc->cursor_base = base;
10307         }
10308
10309         if (intel_crtc->cursor_size != size) {
10310                 I915_WRITE(CURSIZE, size);
10311                 intel_crtc->cursor_size = size;
10312         }
10313
10314         if (intel_crtc->cursor_cntl != cntl) {
10315                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10316                 POSTING_READ(CURCNTR(PIPE_A));
10317                 intel_crtc->cursor_cntl = cntl;
10318         }
10319 }
10320
10321 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10322                                const struct intel_plane_state *plane_state)
10323 {
10324         struct drm_device *dev = crtc->dev;
10325         struct drm_i915_private *dev_priv = dev->dev_private;
10326         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10327         int pipe = intel_crtc->pipe;
10328         uint32_t cntl = 0;
10329
10330         if (plane_state && plane_state->visible) {
10331                 cntl = MCURSOR_GAMMA_ENABLE;
10332                 switch (plane_state->base.crtc_w) {
10333                         case 64:
10334                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10335                                 break;
10336                         case 128:
10337                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10338                                 break;
10339                         case 256:
10340                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10341                                 break;
10342                         default:
10343                                 MISSING_CASE(plane_state->base.crtc_w);
10344                                 return;
10345                 }
10346                 cntl |= pipe << 28; /* Connect to correct pipe */
10347
10348                 if (HAS_DDI(dev))
10349                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10350
10351                 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10352                         cntl |= CURSOR_ROTATE_180;
10353         }
10354
10355         if (intel_crtc->cursor_cntl != cntl) {
10356                 I915_WRITE(CURCNTR(pipe), cntl);
10357                 POSTING_READ(CURCNTR(pipe));
10358                 intel_crtc->cursor_cntl = cntl;
10359         }
10360
10361         /* and commit changes on next vblank */
10362         I915_WRITE(CURBASE(pipe), base);
10363         POSTING_READ(CURBASE(pipe));
10364
10365         intel_crtc->cursor_base = base;
10366 }
10367
10368 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10369 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10370                                      const struct intel_plane_state *plane_state)
10371 {
10372         struct drm_device *dev = crtc->dev;
10373         struct drm_i915_private *dev_priv = dev->dev_private;
10374         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10375         int pipe = intel_crtc->pipe;
10376         u32 base = intel_crtc->cursor_addr;
10377         u32 pos = 0;
10378
10379         if (plane_state) {
10380                 int x = plane_state->base.crtc_x;
10381                 int y = plane_state->base.crtc_y;
10382
10383                 if (x < 0) {
10384                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10385                         x = -x;
10386                 }
10387                 pos |= x << CURSOR_X_SHIFT;
10388
10389                 if (y < 0) {
10390                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10391                         y = -y;
10392                 }
10393                 pos |= y << CURSOR_Y_SHIFT;
10394
10395                 /* ILK+ do this automagically */
10396                 if (HAS_GMCH_DISPLAY(dev) &&
10397                     plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10398                         base += (plane_state->base.crtc_h *
10399                                  plane_state->base.crtc_w - 1) * 4;
10400                 }
10401         }
10402
10403         I915_WRITE(CURPOS(pipe), pos);
10404
10405         if (IS_845G(dev) || IS_I865G(dev))
10406                 i845_update_cursor(crtc, base, plane_state);
10407         else
10408                 i9xx_update_cursor(crtc, base, plane_state);
10409 }
10410
10411 static bool cursor_size_ok(struct drm_device *dev,
10412                            uint32_t width, uint32_t height)
10413 {
10414         if (width == 0 || height == 0)
10415                 return false;
10416
10417         /*
10418          * 845g/865g are special in that they are only limited by
10419          * the width of their cursors, the height is arbitrary up to
10420          * the precision of the register. Everything else requires
10421          * square cursors, limited to a few power-of-two sizes.
10422          */
10423         if (IS_845G(dev) || IS_I865G(dev)) {
10424                 if ((width & 63) != 0)
10425                         return false;
10426
10427                 if (width > (IS_845G(dev) ? 64 : 512))
10428                         return false;
10429
10430                 if (height > 1023)
10431                         return false;
10432         } else {
10433                 switch (width | height) {
10434                 case 256:
10435                 case 128:
10436                         if (IS_GEN2(dev))
10437                                 return false;
10438                 case 64:
10439                         break;
10440                 default:
10441                         return false;
10442                 }
10443         }
10444
10445         return true;
10446 }
10447
10448 /* VESA 640x480x72Hz mode to set on the pipe */
10449 static struct drm_display_mode load_detect_mode = {
10450         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10451                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10452 };
10453
10454 struct drm_framebuffer *
10455 __intel_framebuffer_create(struct drm_device *dev,
10456                            struct drm_mode_fb_cmd2 *mode_cmd,
10457                            struct drm_i915_gem_object *obj)
10458 {
10459         struct intel_framebuffer *intel_fb;
10460         int ret;
10461
10462         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10463         if (!intel_fb)
10464                 return ERR_PTR(-ENOMEM);
10465
10466         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10467         if (ret)
10468                 goto err;
10469
10470         return &intel_fb->base;
10471
10472 err:
10473         kfree(intel_fb);
10474         return ERR_PTR(ret);
10475 }
10476
10477 static struct drm_framebuffer *
10478 intel_framebuffer_create(struct drm_device *dev,
10479                          struct drm_mode_fb_cmd2 *mode_cmd,
10480                          struct drm_i915_gem_object *obj)
10481 {
10482         struct drm_framebuffer *fb;
10483         int ret;
10484
10485         ret = i915_mutex_lock_interruptible(dev);
10486         if (ret)
10487                 return ERR_PTR(ret);
10488         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10489         mutex_unlock(&dev->struct_mutex);
10490
10491         return fb;
10492 }
10493
10494 static u32
10495 intel_framebuffer_pitch_for_width(int width, int bpp)
10496 {
10497         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10498         return ALIGN(pitch, 64);
10499 }
10500
10501 static u32
10502 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10503 {
10504         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10505         return PAGE_ALIGN(pitch * mode->vdisplay);
10506 }
10507
10508 static struct drm_framebuffer *
10509 intel_framebuffer_create_for_mode(struct drm_device *dev,
10510                                   struct drm_display_mode *mode,
10511                                   int depth, int bpp)
10512 {
10513         struct drm_framebuffer *fb;
10514         struct drm_i915_gem_object *obj;
10515         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10516
10517         obj = i915_gem_object_create(dev,
10518                                     intel_framebuffer_size_for_mode(mode, bpp));
10519         if (IS_ERR(obj))
10520                 return ERR_CAST(obj);
10521
10522         mode_cmd.width = mode->hdisplay;
10523         mode_cmd.height = mode->vdisplay;
10524         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10525                                                                 bpp);
10526         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10527
10528         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10529         if (IS_ERR(fb))
10530                 drm_gem_object_unreference_unlocked(&obj->base);
10531
10532         return fb;
10533 }
10534
10535 static struct drm_framebuffer *
10536 mode_fits_in_fbdev(struct drm_device *dev,
10537                    struct drm_display_mode *mode)
10538 {
10539 #ifdef CONFIG_DRM_FBDEV_EMULATION
10540         struct drm_i915_private *dev_priv = dev->dev_private;
10541         struct drm_i915_gem_object *obj;
10542         struct drm_framebuffer *fb;
10543
10544         if (!dev_priv->fbdev)
10545                 return NULL;
10546
10547         if (!dev_priv->fbdev->fb)
10548                 return NULL;
10549
10550         obj = dev_priv->fbdev->fb->obj;
10551         BUG_ON(!obj);
10552
10553         fb = &dev_priv->fbdev->fb->base;
10554         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10555                                                                fb->bits_per_pixel))
10556                 return NULL;
10557
10558         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10559                 return NULL;
10560
10561         drm_framebuffer_reference(fb);
10562         return fb;
10563 #else
10564         return NULL;
10565 #endif
10566 }
10567
10568 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10569                                            struct drm_crtc *crtc,
10570                                            struct drm_display_mode *mode,
10571                                            struct drm_framebuffer *fb,
10572                                            int x, int y)
10573 {
10574         struct drm_plane_state *plane_state;
10575         int hdisplay, vdisplay;
10576         int ret;
10577
10578         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10579         if (IS_ERR(plane_state))
10580                 return PTR_ERR(plane_state);
10581
10582         if (mode)
10583                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10584         else
10585                 hdisplay = vdisplay = 0;
10586
10587         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10588         if (ret)
10589                 return ret;
10590         drm_atomic_set_fb_for_plane(plane_state, fb);
10591         plane_state->crtc_x = 0;
10592         plane_state->crtc_y = 0;
10593         plane_state->crtc_w = hdisplay;
10594         plane_state->crtc_h = vdisplay;
10595         plane_state->src_x = x << 16;
10596         plane_state->src_y = y << 16;
10597         plane_state->src_w = hdisplay << 16;
10598         plane_state->src_h = vdisplay << 16;
10599
10600         return 0;
10601 }
10602
10603 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10604                                 struct drm_display_mode *mode,
10605                                 struct intel_load_detect_pipe *old,
10606                                 struct drm_modeset_acquire_ctx *ctx)
10607 {
10608         struct intel_crtc *intel_crtc;
10609         struct intel_encoder *intel_encoder =
10610                 intel_attached_encoder(connector);
10611         struct drm_crtc *possible_crtc;
10612         struct drm_encoder *encoder = &intel_encoder->base;
10613         struct drm_crtc *crtc = NULL;
10614         struct drm_device *dev = encoder->dev;
10615         struct drm_framebuffer *fb;
10616         struct drm_mode_config *config = &dev->mode_config;
10617         struct drm_atomic_state *state = NULL, *restore_state = NULL;
10618         struct drm_connector_state *connector_state;
10619         struct intel_crtc_state *crtc_state;
10620         int ret, i = -1;
10621
10622         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10623                       connector->base.id, connector->name,
10624                       encoder->base.id, encoder->name);
10625
10626         old->restore_state = NULL;
10627
10628 retry:
10629         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10630         if (ret)
10631                 goto fail;
10632
10633         /*
10634          * Algorithm gets a little messy:
10635          *
10636          *   - if the connector already has an assigned crtc, use it (but make
10637          *     sure it's on first)
10638          *
10639          *   - try to find the first unused crtc that can drive this connector,
10640          *     and use that if we find one
10641          */
10642
10643         /* See if we already have a CRTC for this connector */
10644         if (connector->state->crtc) {
10645                 crtc = connector->state->crtc;
10646
10647                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10648                 if (ret)
10649                         goto fail;
10650
10651                 /* Make sure the crtc and connector are running */
10652                 goto found;
10653         }
10654
10655         /* Find an unused one (if possible) */
10656         for_each_crtc(dev, possible_crtc) {
10657                 i++;
10658                 if (!(encoder->possible_crtcs & (1 << i)))
10659                         continue;
10660
10661                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10662                 if (ret)
10663                         goto fail;
10664
10665                 if (possible_crtc->state->enable) {
10666                         drm_modeset_unlock(&possible_crtc->mutex);
10667                         continue;
10668                 }
10669
10670                 crtc = possible_crtc;
10671                 break;
10672         }
10673
10674         /*
10675          * If we didn't find an unused CRTC, don't use any.
10676          */
10677         if (!crtc) {
10678                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10679                 goto fail;
10680         }
10681
10682 found:
10683         intel_crtc = to_intel_crtc(crtc);
10684
10685         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10686         if (ret)
10687                 goto fail;
10688
10689         state = drm_atomic_state_alloc(dev);
10690         restore_state = drm_atomic_state_alloc(dev);
10691         if (!state || !restore_state) {
10692                 ret = -ENOMEM;
10693                 goto fail;
10694         }
10695
10696         state->acquire_ctx = ctx;
10697         restore_state->acquire_ctx = ctx;
10698
10699         connector_state = drm_atomic_get_connector_state(state, connector);
10700         if (IS_ERR(connector_state)) {
10701                 ret = PTR_ERR(connector_state);
10702                 goto fail;
10703         }
10704
10705         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10706         if (ret)
10707                 goto fail;
10708
10709         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10710         if (IS_ERR(crtc_state)) {
10711                 ret = PTR_ERR(crtc_state);
10712                 goto fail;
10713         }
10714
10715         crtc_state->base.active = crtc_state->base.enable = true;
10716
10717         if (!mode)
10718                 mode = &load_detect_mode;
10719
10720         /* We need a framebuffer large enough to accommodate all accesses
10721          * that the plane may generate whilst we perform load detection.
10722          * We can not rely on the fbcon either being present (we get called
10723          * during its initialisation to detect all boot displays, or it may
10724          * not even exist) or that it is large enough to satisfy the
10725          * requested mode.
10726          */
10727         fb = mode_fits_in_fbdev(dev, mode);
10728         if (fb == NULL) {
10729                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10730                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10731         } else
10732                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10733         if (IS_ERR(fb)) {
10734                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10735                 goto fail;
10736         }
10737
10738         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10739         if (ret)
10740                 goto fail;
10741
10742         drm_framebuffer_unreference(fb);
10743
10744         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10745         if (ret)
10746                 goto fail;
10747
10748         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10749         if (!ret)
10750                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10751         if (!ret)
10752                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10753         if (ret) {
10754                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10755                 goto fail;
10756         }
10757
10758         ret = drm_atomic_commit(state);
10759         if (ret) {
10760                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10761                 goto fail;
10762         }
10763
10764         old->restore_state = restore_state;
10765
10766         /* let the connector get through one full cycle before testing */
10767         intel_wait_for_vblank(dev, intel_crtc->pipe);
10768         return true;
10769
10770 fail:
10771         drm_atomic_state_free(state);
10772         drm_atomic_state_free(restore_state);
10773         restore_state = state = NULL;
10774
10775         if (ret == -EDEADLK) {
10776                 drm_modeset_backoff(ctx);
10777                 goto retry;
10778         }
10779
10780         return false;
10781 }
10782
10783 void intel_release_load_detect_pipe(struct drm_connector *connector,
10784                                     struct intel_load_detect_pipe *old,
10785                                     struct drm_modeset_acquire_ctx *ctx)
10786 {
10787         struct intel_encoder *intel_encoder =
10788                 intel_attached_encoder(connector);
10789         struct drm_encoder *encoder = &intel_encoder->base;
10790         struct drm_atomic_state *state = old->restore_state;
10791         int ret;
10792
10793         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10794                       connector->base.id, connector->name,
10795                       encoder->base.id, encoder->name);
10796
10797         if (!state)
10798                 return;
10799
10800         ret = drm_atomic_commit(state);
10801         if (ret) {
10802                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10803                 drm_atomic_state_free(state);
10804         }
10805 }
10806
10807 static int i9xx_pll_refclk(struct drm_device *dev,
10808                            const struct intel_crtc_state *pipe_config)
10809 {
10810         struct drm_i915_private *dev_priv = dev->dev_private;
10811         u32 dpll = pipe_config->dpll_hw_state.dpll;
10812
10813         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10814                 return dev_priv->vbt.lvds_ssc_freq;
10815         else if (HAS_PCH_SPLIT(dev))
10816                 return 120000;
10817         else if (!IS_GEN2(dev))
10818                 return 96000;
10819         else
10820                 return 48000;
10821 }
10822
10823 /* Returns the clock of the currently programmed mode of the given pipe. */
10824 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10825                                 struct intel_crtc_state *pipe_config)
10826 {
10827         struct drm_device *dev = crtc->base.dev;
10828         struct drm_i915_private *dev_priv = dev->dev_private;
10829         int pipe = pipe_config->cpu_transcoder;
10830         u32 dpll = pipe_config->dpll_hw_state.dpll;
10831         u32 fp;
10832         struct dpll clock;
10833         int port_clock;
10834         int refclk = i9xx_pll_refclk(dev, pipe_config);
10835
10836         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10837                 fp = pipe_config->dpll_hw_state.fp0;
10838         else
10839                 fp = pipe_config->dpll_hw_state.fp1;
10840
10841         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10842         if (IS_PINEVIEW(dev)) {
10843                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10844                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10845         } else {
10846                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10847                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10848         }
10849
10850         if (!IS_GEN2(dev)) {
10851                 if (IS_PINEVIEW(dev))
10852                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10853                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10854                 else
10855                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10856                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10857
10858                 switch (dpll & DPLL_MODE_MASK) {
10859                 case DPLLB_MODE_DAC_SERIAL:
10860                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10861                                 5 : 10;
10862                         break;
10863                 case DPLLB_MODE_LVDS:
10864                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10865                                 7 : 14;
10866                         break;
10867                 default:
10868                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10869                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10870                         return;
10871                 }
10872
10873                 if (IS_PINEVIEW(dev))
10874                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10875                 else
10876                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10877         } else {
10878                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10879                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10880
10881                 if (is_lvds) {
10882                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10883                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10884
10885                         if (lvds & LVDS_CLKB_POWER_UP)
10886                                 clock.p2 = 7;
10887                         else
10888                                 clock.p2 = 14;
10889                 } else {
10890                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10891                                 clock.p1 = 2;
10892                         else {
10893                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10894                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10895                         }
10896                         if (dpll & PLL_P2_DIVIDE_BY_4)
10897                                 clock.p2 = 4;
10898                         else
10899                                 clock.p2 = 2;
10900                 }
10901
10902                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10903         }
10904
10905         /*
10906          * This value includes pixel_multiplier. We will use
10907          * port_clock to compute adjusted_mode.crtc_clock in the
10908          * encoder's get_config() function.
10909          */
10910         pipe_config->port_clock = port_clock;
10911 }
10912
10913 int intel_dotclock_calculate(int link_freq,
10914                              const struct intel_link_m_n *m_n)
10915 {
10916         /*
10917          * The calculation for the data clock is:
10918          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10919          * But we want to avoid losing precison if possible, so:
10920          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10921          *
10922          * and the link clock is simpler:
10923          * link_clock = (m * link_clock) / n
10924          */
10925
10926         if (!m_n->link_n)
10927                 return 0;
10928
10929         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10930 }
10931
10932 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10933                                    struct intel_crtc_state *pipe_config)
10934 {
10935         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10936
10937         /* read out port_clock from the DPLL */
10938         i9xx_crtc_clock_get(crtc, pipe_config);
10939
10940         /*
10941          * In case there is an active pipe without active ports,
10942          * we may need some idea for the dotclock anyway.
10943          * Calculate one based on the FDI configuration.
10944          */
10945         pipe_config->base.adjusted_mode.crtc_clock =
10946                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10947                                          &pipe_config->fdi_m_n);
10948 }
10949
10950 /** Returns the currently programmed mode of the given pipe. */
10951 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10952                                              struct drm_crtc *crtc)
10953 {
10954         struct drm_i915_private *dev_priv = dev->dev_private;
10955         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10956         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10957         struct drm_display_mode *mode;
10958         struct intel_crtc_state *pipe_config;
10959         int htot = I915_READ(HTOTAL(cpu_transcoder));
10960         int hsync = I915_READ(HSYNC(cpu_transcoder));
10961         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10962         int vsync = I915_READ(VSYNC(cpu_transcoder));
10963         enum pipe pipe = intel_crtc->pipe;
10964
10965         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10966         if (!mode)
10967                 return NULL;
10968
10969         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10970         if (!pipe_config) {
10971                 kfree(mode);
10972                 return NULL;
10973         }
10974
10975         /*
10976          * Construct a pipe_config sufficient for getting the clock info
10977          * back out of crtc_clock_get.
10978          *
10979          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10980          * to use a real value here instead.
10981          */
10982         pipe_config->cpu_transcoder = (enum transcoder) pipe;
10983         pipe_config->pixel_multiplier = 1;
10984         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10985         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10986         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10987         i9xx_crtc_clock_get(intel_crtc, pipe_config);
10988
10989         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10990         mode->hdisplay = (htot & 0xffff) + 1;
10991         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10992         mode->hsync_start = (hsync & 0xffff) + 1;
10993         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10994         mode->vdisplay = (vtot & 0xffff) + 1;
10995         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10996         mode->vsync_start = (vsync & 0xffff) + 1;
10997         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10998
10999         drm_mode_set_name(mode);
11000
11001         kfree(pipe_config);
11002
11003         return mode;
11004 }
11005
11006 void intel_mark_busy(struct drm_i915_private *dev_priv)
11007 {
11008         if (dev_priv->mm.busy)
11009                 return;
11010
11011         intel_runtime_pm_get(dev_priv);
11012         i915_update_gfx_val(dev_priv);
11013         if (INTEL_GEN(dev_priv) >= 6)
11014                 gen6_rps_busy(dev_priv);
11015         dev_priv->mm.busy = true;
11016 }
11017
11018 void intel_mark_idle(struct drm_i915_private *dev_priv)
11019 {
11020         if (!dev_priv->mm.busy)
11021                 return;
11022
11023         dev_priv->mm.busy = false;
11024
11025         if (INTEL_GEN(dev_priv) >= 6)
11026                 gen6_rps_idle(dev_priv);
11027
11028         intel_runtime_pm_put(dev_priv);
11029 }
11030
11031 static void intel_crtc_destroy(struct drm_crtc *crtc)
11032 {
11033         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11034         struct drm_device *dev = crtc->dev;
11035         struct intel_flip_work *work;
11036
11037         spin_lock_irq(&dev->event_lock);
11038         work = intel_crtc->flip_work;
11039         intel_crtc->flip_work = NULL;
11040         spin_unlock_irq(&dev->event_lock);
11041
11042         if (work) {
11043                 cancel_work_sync(&work->mmio_work);
11044                 cancel_work_sync(&work->unpin_work);
11045                 kfree(work);
11046         }
11047
11048         drm_crtc_cleanup(crtc);
11049
11050         kfree(intel_crtc);
11051 }
11052
11053 static void intel_unpin_work_fn(struct work_struct *__work)
11054 {
11055         struct intel_flip_work *work =
11056                 container_of(__work, struct intel_flip_work, unpin_work);
11057         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11058         struct drm_device *dev = crtc->base.dev;
11059         struct drm_plane *primary = crtc->base.primary;
11060
11061         if (is_mmio_work(work))
11062                 flush_work(&work->mmio_work);
11063
11064         mutex_lock(&dev->struct_mutex);
11065         intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
11066         drm_gem_object_unreference(&work->pending_flip_obj->base);
11067
11068         if (work->flip_queued_req)
11069                 i915_gem_request_assign(&work->flip_queued_req, NULL);
11070         mutex_unlock(&dev->struct_mutex);
11071
11072         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
11073         intel_fbc_post_update(crtc);
11074         drm_framebuffer_unreference(work->old_fb);
11075
11076         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11077         atomic_dec(&crtc->unpin_work_count);
11078
11079         kfree(work);
11080 }
11081
11082 /* Is 'a' after or equal to 'b'? */
11083 static bool g4x_flip_count_after_eq(u32 a, u32 b)
11084 {
11085         return !((a - b) & 0x80000000);
11086 }
11087
11088 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11089                                    struct intel_flip_work *work)
11090 {
11091         struct drm_device *dev = crtc->base.dev;
11092         struct drm_i915_private *dev_priv = dev->dev_private;
11093         unsigned reset_counter;
11094
11095         reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11096         if (crtc->reset_counter != reset_counter)
11097                 return true;
11098
11099         /*
11100          * The relevant registers doen't exist on pre-ctg.
11101          * As the flip done interrupt doesn't trigger for mmio
11102          * flips on gmch platforms, a flip count check isn't
11103          * really needed there. But since ctg has the registers,
11104          * include it in the check anyway.
11105          */
11106         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
11107                 return true;
11108
11109         /*
11110          * BDW signals flip done immediately if the plane
11111          * is disabled, even if the plane enable is already
11112          * armed to occur at the next vblank :(
11113          */
11114
11115         /*
11116          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11117          * used the same base address. In that case the mmio flip might
11118          * have completed, but the CS hasn't even executed the flip yet.
11119          *
11120          * A flip count check isn't enough as the CS might have updated
11121          * the base address just after start of vblank, but before we
11122          * managed to process the interrupt. This means we'd complete the
11123          * CS flip too soon.
11124          *
11125          * Combining both checks should get us a good enough result. It may
11126          * still happen that the CS flip has been executed, but has not
11127          * yet actually completed. But in case the base address is the same
11128          * anyway, we don't really care.
11129          */
11130         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11131                 crtc->flip_work->gtt_offset &&
11132                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11133                                     crtc->flip_work->flip_count);
11134 }
11135
11136 static bool
11137 __pageflip_finished_mmio(struct intel_crtc *crtc,
11138                                struct intel_flip_work *work)
11139 {
11140         /*
11141          * MMIO work completes when vblank is different from
11142          * flip_queued_vblank.
11143          *
11144          * Reset counter value doesn't matter, this is handled by
11145          * i915_wait_request finishing early, so no need to handle
11146          * reset here.
11147          */
11148         return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11149 }
11150
11151
11152 static bool pageflip_finished(struct intel_crtc *crtc,
11153                               struct intel_flip_work *work)
11154 {
11155         if (!atomic_read(&work->pending))
11156                 return false;
11157
11158         smp_rmb();
11159
11160         if (is_mmio_work(work))
11161                 return __pageflip_finished_mmio(crtc, work);
11162         else
11163                 return __pageflip_finished_cs(crtc, work);
11164 }
11165
11166 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11167 {
11168         struct drm_device *dev = dev_priv->dev;
11169         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11170         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11171         struct intel_flip_work *work;
11172         unsigned long flags;
11173
11174         /* Ignore early vblank irqs */
11175         if (!crtc)
11176                 return;
11177
11178         /*
11179          * This is called both by irq handlers and the reset code (to complete
11180          * lost pageflips) so needs the full irqsave spinlocks.
11181          */
11182         spin_lock_irqsave(&dev->event_lock, flags);
11183         work = intel_crtc->flip_work;
11184
11185         if (work != NULL &&
11186             !is_mmio_work(work) &&
11187             pageflip_finished(intel_crtc, work))
11188                 page_flip_completed(intel_crtc);
11189
11190         spin_unlock_irqrestore(&dev->event_lock, flags);
11191 }
11192
11193 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11194 {
11195         struct drm_device *dev = dev_priv->dev;
11196         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11197         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11198         struct intel_flip_work *work;
11199         unsigned long flags;
11200
11201         /* Ignore early vblank irqs */
11202         if (!crtc)
11203                 return;
11204
11205         /*
11206          * This is called both by irq handlers and the reset code (to complete
11207          * lost pageflips) so needs the full irqsave spinlocks.
11208          */
11209         spin_lock_irqsave(&dev->event_lock, flags);
11210         work = intel_crtc->flip_work;
11211
11212         if (work != NULL &&
11213             is_mmio_work(work) &&
11214             pageflip_finished(intel_crtc, work))
11215                 page_flip_completed(intel_crtc);
11216
11217         spin_unlock_irqrestore(&dev->event_lock, flags);
11218 }
11219
11220 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11221                                                struct intel_flip_work *work)
11222 {
11223         work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11224
11225         /* Ensure that the work item is consistent when activating it ... */
11226         smp_mb__before_atomic();
11227         atomic_set(&work->pending, 1);
11228 }
11229
11230 static int intel_gen2_queue_flip(struct drm_device *dev,
11231                                  struct drm_crtc *crtc,
11232                                  struct drm_framebuffer *fb,
11233                                  struct drm_i915_gem_object *obj,
11234                                  struct drm_i915_gem_request *req,
11235                                  uint32_t flags)
11236 {
11237         struct intel_engine_cs *engine = req->engine;
11238         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11239         u32 flip_mask;
11240         int ret;
11241
11242         ret = intel_ring_begin(req, 6);
11243         if (ret)
11244                 return ret;
11245
11246         /* Can't queue multiple flips, so wait for the previous
11247          * one to finish before executing the next.
11248          */
11249         if (intel_crtc->plane)
11250                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11251         else
11252                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11253         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11254         intel_ring_emit(engine, MI_NOOP);
11255         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11256                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11257         intel_ring_emit(engine, fb->pitches[0]);
11258         intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11259         intel_ring_emit(engine, 0); /* aux display base address, unused */
11260
11261         return 0;
11262 }
11263
11264 static int intel_gen3_queue_flip(struct drm_device *dev,
11265                                  struct drm_crtc *crtc,
11266                                  struct drm_framebuffer *fb,
11267                                  struct drm_i915_gem_object *obj,
11268                                  struct drm_i915_gem_request *req,
11269                                  uint32_t flags)
11270 {
11271         struct intel_engine_cs *engine = req->engine;
11272         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11273         u32 flip_mask;
11274         int ret;
11275
11276         ret = intel_ring_begin(req, 6);
11277         if (ret)
11278                 return ret;
11279
11280         if (intel_crtc->plane)
11281                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11282         else
11283                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11284         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11285         intel_ring_emit(engine, MI_NOOP);
11286         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
11287                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11288         intel_ring_emit(engine, fb->pitches[0]);
11289         intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11290         intel_ring_emit(engine, MI_NOOP);
11291
11292         return 0;
11293 }
11294
11295 static int intel_gen4_queue_flip(struct drm_device *dev,
11296                                  struct drm_crtc *crtc,
11297                                  struct drm_framebuffer *fb,
11298                                  struct drm_i915_gem_object *obj,
11299                                  struct drm_i915_gem_request *req,
11300                                  uint32_t flags)
11301 {
11302         struct intel_engine_cs *engine = req->engine;
11303         struct drm_i915_private *dev_priv = dev->dev_private;
11304         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11305         uint32_t pf, pipesrc;
11306         int ret;
11307
11308         ret = intel_ring_begin(req, 4);
11309         if (ret)
11310                 return ret;
11311
11312         /* i965+ uses the linear or tiled offsets from the
11313          * Display Registers (which do not change across a page-flip)
11314          * so we need only reprogram the base address.
11315          */
11316         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11317                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11318         intel_ring_emit(engine, fb->pitches[0]);
11319         intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset |
11320                         obj->tiling_mode);
11321
11322         /* XXX Enabling the panel-fitter across page-flip is so far
11323          * untested on non-native modes, so ignore it for now.
11324          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11325          */
11326         pf = 0;
11327         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11328         intel_ring_emit(engine, pf | pipesrc);
11329
11330         return 0;
11331 }
11332
11333 static int intel_gen6_queue_flip(struct drm_device *dev,
11334                                  struct drm_crtc *crtc,
11335                                  struct drm_framebuffer *fb,
11336                                  struct drm_i915_gem_object *obj,
11337                                  struct drm_i915_gem_request *req,
11338                                  uint32_t flags)
11339 {
11340         struct intel_engine_cs *engine = req->engine;
11341         struct drm_i915_private *dev_priv = dev->dev_private;
11342         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11343         uint32_t pf, pipesrc;
11344         int ret;
11345
11346         ret = intel_ring_begin(req, 4);
11347         if (ret)
11348                 return ret;
11349
11350         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11351                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11352         intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11353         intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11354
11355         /* Contrary to the suggestions in the documentation,
11356          * "Enable Panel Fitter" does not seem to be required when page
11357          * flipping with a non-native mode, and worse causes a normal
11358          * modeset to fail.
11359          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11360          */
11361         pf = 0;
11362         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11363         intel_ring_emit(engine, pf | pipesrc);
11364
11365         return 0;
11366 }
11367
11368 static int intel_gen7_queue_flip(struct drm_device *dev,
11369                                  struct drm_crtc *crtc,
11370                                  struct drm_framebuffer *fb,
11371                                  struct drm_i915_gem_object *obj,
11372                                  struct drm_i915_gem_request *req,
11373                                  uint32_t flags)
11374 {
11375         struct intel_engine_cs *engine = req->engine;
11376         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11377         uint32_t plane_bit = 0;
11378         int len, ret;
11379
11380         switch (intel_crtc->plane) {
11381         case PLANE_A:
11382                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11383                 break;
11384         case PLANE_B:
11385                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11386                 break;
11387         case PLANE_C:
11388                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11389                 break;
11390         default:
11391                 WARN_ONCE(1, "unknown plane in flip command\n");
11392                 return -ENODEV;
11393         }
11394
11395         len = 4;
11396         if (engine->id == RCS) {
11397                 len += 6;
11398                 /*
11399                  * On Gen 8, SRM is now taking an extra dword to accommodate
11400                  * 48bits addresses, and we need a NOOP for the batch size to
11401                  * stay even.
11402                  */
11403                 if (IS_GEN8(dev))
11404                         len += 2;
11405         }
11406
11407         /*
11408          * BSpec MI_DISPLAY_FLIP for IVB:
11409          * "The full packet must be contained within the same cache line."
11410          *
11411          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11412          * cacheline, if we ever start emitting more commands before
11413          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11414          * then do the cacheline alignment, and finally emit the
11415          * MI_DISPLAY_FLIP.
11416          */
11417         ret = intel_ring_cacheline_align(req);
11418         if (ret)
11419                 return ret;
11420
11421         ret = intel_ring_begin(req, len);
11422         if (ret)
11423                 return ret;
11424
11425         /* Unmask the flip-done completion message. Note that the bspec says that
11426          * we should do this for both the BCS and RCS, and that we must not unmask
11427          * more than one flip event at any time (or ensure that one flip message
11428          * can be sent by waiting for flip-done prior to queueing new flips).
11429          * Experimentation says that BCS works despite DERRMR masking all
11430          * flip-done completion events and that unmasking all planes at once
11431          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11432          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11433          */
11434         if (engine->id == RCS) {
11435                 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11436                 intel_ring_emit_reg(engine, DERRMR);
11437                 intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11438                                           DERRMR_PIPEB_PRI_FLIP_DONE |
11439                                           DERRMR_PIPEC_PRI_FLIP_DONE));
11440                 if (IS_GEN8(dev))
11441                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
11442                                               MI_SRM_LRM_GLOBAL_GTT);
11443                 else
11444                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
11445                                               MI_SRM_LRM_GLOBAL_GTT);
11446                 intel_ring_emit_reg(engine, DERRMR);
11447                 intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
11448                 if (IS_GEN8(dev)) {
11449                         intel_ring_emit(engine, 0);
11450                         intel_ring_emit(engine, MI_NOOP);
11451                 }
11452         }
11453
11454         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11455         intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11456         intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11457         intel_ring_emit(engine, (MI_NOOP));
11458
11459         return 0;
11460 }
11461
11462 static bool use_mmio_flip(struct intel_engine_cs *engine,
11463                           struct drm_i915_gem_object *obj)
11464 {
11465         struct reservation_object *resv;
11466
11467         /*
11468          * This is not being used for older platforms, because
11469          * non-availability of flip done interrupt forces us to use
11470          * CS flips. Older platforms derive flip done using some clever
11471          * tricks involving the flip_pending status bits and vblank irqs.
11472          * So using MMIO flips there would disrupt this mechanism.
11473          */
11474
11475         if (engine == NULL)
11476                 return true;
11477
11478         if (INTEL_GEN(engine->i915) < 5)
11479                 return false;
11480
11481         if (i915.use_mmio_flip < 0)
11482                 return false;
11483         else if (i915.use_mmio_flip > 0)
11484                 return true;
11485         else if (i915.enable_execlists)
11486                 return true;
11487
11488         resv = i915_gem_object_get_dmabuf_resv(obj);
11489         if (resv && !reservation_object_test_signaled_rcu(resv, false))
11490                 return true;
11491
11492         return engine != i915_gem_request_get_engine(obj->last_write_req);
11493 }
11494
11495 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11496                              unsigned int rotation,
11497                              struct intel_flip_work *work)
11498 {
11499         struct drm_device *dev = intel_crtc->base.dev;
11500         struct drm_i915_private *dev_priv = dev->dev_private;
11501         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11502         const enum pipe pipe = intel_crtc->pipe;
11503         u32 ctl, stride, tile_height;
11504
11505         ctl = I915_READ(PLANE_CTL(pipe, 0));
11506         ctl &= ~PLANE_CTL_TILED_MASK;
11507         switch (fb->modifier[0]) {
11508         case DRM_FORMAT_MOD_NONE:
11509                 break;
11510         case I915_FORMAT_MOD_X_TILED:
11511                 ctl |= PLANE_CTL_TILED_X;
11512                 break;
11513         case I915_FORMAT_MOD_Y_TILED:
11514                 ctl |= PLANE_CTL_TILED_Y;
11515                 break;
11516         case I915_FORMAT_MOD_Yf_TILED:
11517                 ctl |= PLANE_CTL_TILED_YF;
11518                 break;
11519         default:
11520                 MISSING_CASE(fb->modifier[0]);
11521         }
11522
11523         /*
11524          * The stride is either expressed as a multiple of 64 bytes chunks for
11525          * linear buffers or in number of tiles for tiled buffers.
11526          */
11527         if (intel_rotation_90_or_270(rotation)) {
11528                 /* stride = Surface height in tiles */
11529                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11530                 stride = DIV_ROUND_UP(fb->height, tile_height);
11531         } else {
11532                 stride = fb->pitches[0] /
11533                         intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11534                                                   fb->pixel_format);
11535         }
11536
11537         /*
11538          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11539          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11540          */
11541         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11542         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11543
11544         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11545         POSTING_READ(PLANE_SURF(pipe, 0));
11546 }
11547
11548 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11549                              struct intel_flip_work *work)
11550 {
11551         struct drm_device *dev = intel_crtc->base.dev;
11552         struct drm_i915_private *dev_priv = dev->dev_private;
11553         struct intel_framebuffer *intel_fb =
11554                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11555         struct drm_i915_gem_object *obj = intel_fb->obj;
11556         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11557         u32 dspcntr;
11558
11559         dspcntr = I915_READ(reg);
11560
11561         if (obj->tiling_mode != I915_TILING_NONE)
11562                 dspcntr |= DISPPLANE_TILED;
11563         else
11564                 dspcntr &= ~DISPPLANE_TILED;
11565
11566         I915_WRITE(reg, dspcntr);
11567
11568         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11569         POSTING_READ(DSPSURF(intel_crtc->plane));
11570 }
11571
11572 static void intel_mmio_flip_work_func(struct work_struct *w)
11573 {
11574         struct intel_flip_work *work =
11575                 container_of(w, struct intel_flip_work, mmio_work);
11576         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11577         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11578         struct intel_framebuffer *intel_fb =
11579                 to_intel_framebuffer(crtc->base.primary->fb);
11580         struct drm_i915_gem_object *obj = intel_fb->obj;
11581         struct reservation_object *resv;
11582
11583         if (work->flip_queued_req)
11584                 WARN_ON(__i915_wait_request(work->flip_queued_req,
11585                                             false, NULL,
11586                                             &dev_priv->rps.mmioflips));
11587
11588         /* For framebuffer backed by dmabuf, wait for fence */
11589         resv = i915_gem_object_get_dmabuf_resv(obj);
11590         if (resv)
11591                 WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false,
11592                                                             MAX_SCHEDULE_TIMEOUT) < 0);
11593
11594         intel_pipe_update_start(crtc);
11595
11596         if (INTEL_GEN(dev_priv) >= 9)
11597                 skl_do_mmio_flip(crtc, work->rotation, work);
11598         else
11599                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11600                 ilk_do_mmio_flip(crtc, work);
11601
11602         intel_pipe_update_end(crtc, work);
11603 }
11604
11605 static int intel_default_queue_flip(struct drm_device *dev,
11606                                     struct drm_crtc *crtc,
11607                                     struct drm_framebuffer *fb,
11608                                     struct drm_i915_gem_object *obj,
11609                                     struct drm_i915_gem_request *req,
11610                                     uint32_t flags)
11611 {
11612         return -ENODEV;
11613 }
11614
11615 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
11616                                       struct intel_crtc *intel_crtc,
11617                                       struct intel_flip_work *work)
11618 {
11619         u32 addr, vblank;
11620
11621         if (!atomic_read(&work->pending))
11622                 return false;
11623
11624         smp_rmb();
11625
11626         vblank = intel_crtc_get_vblank_counter(intel_crtc);
11627         if (work->flip_ready_vblank == 0) {
11628                 if (work->flip_queued_req &&
11629                     !i915_gem_request_completed(work->flip_queued_req, true))
11630                         return false;
11631
11632                 work->flip_ready_vblank = vblank;
11633         }
11634
11635         if (vblank - work->flip_ready_vblank < 3)
11636                 return false;
11637
11638         /* Potential stall - if we see that the flip has happened,
11639          * assume a missed interrupt. */
11640         if (INTEL_GEN(dev_priv) >= 4)
11641                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11642         else
11643                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11644
11645         /* There is a potential issue here with a false positive after a flip
11646          * to the same address. We could address this by checking for a
11647          * non-incrementing frame counter.
11648          */
11649         return addr == work->gtt_offset;
11650 }
11651
11652 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
11653 {
11654         struct drm_device *dev = dev_priv->dev;
11655         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11656         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11657         struct intel_flip_work *work;
11658
11659         WARN_ON(!in_interrupt());
11660
11661         if (crtc == NULL)
11662                 return;
11663
11664         spin_lock(&dev->event_lock);
11665         work = intel_crtc->flip_work;
11666
11667         if (work != NULL && !is_mmio_work(work) &&
11668             __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
11669                 WARN_ONCE(1,
11670                           "Kicking stuck page flip: queued at %d, now %d\n",
11671                         work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
11672                 page_flip_completed(intel_crtc);
11673                 work = NULL;
11674         }
11675
11676         if (work != NULL && !is_mmio_work(work) &&
11677             intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
11678                 intel_queue_rps_boost_for_request(work->flip_queued_req);
11679         spin_unlock(&dev->event_lock);
11680 }
11681
11682 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11683                                 struct drm_framebuffer *fb,
11684                                 struct drm_pending_vblank_event *event,
11685                                 uint32_t page_flip_flags)
11686 {
11687         struct drm_device *dev = crtc->dev;
11688         struct drm_i915_private *dev_priv = dev->dev_private;
11689         struct drm_framebuffer *old_fb = crtc->primary->fb;
11690         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11691         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11692         struct drm_plane *primary = crtc->primary;
11693         enum pipe pipe = intel_crtc->pipe;
11694         struct intel_flip_work *work;
11695         struct intel_engine_cs *engine;
11696         bool mmio_flip;
11697         struct drm_i915_gem_request *request = NULL;
11698         int ret;
11699
11700         /*
11701          * drm_mode_page_flip_ioctl() should already catch this, but double
11702          * check to be safe.  In the future we may enable pageflipping from
11703          * a disabled primary plane.
11704          */
11705         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11706                 return -EBUSY;
11707
11708         /* Can't change pixel format via MI display flips. */
11709         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11710                 return -EINVAL;
11711
11712         /*
11713          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11714          * Note that pitch changes could also affect these register.
11715          */
11716         if (INTEL_INFO(dev)->gen > 3 &&
11717             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11718              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11719                 return -EINVAL;
11720
11721         if (i915_terminally_wedged(&dev_priv->gpu_error))
11722                 goto out_hang;
11723
11724         work = kzalloc(sizeof(*work), GFP_KERNEL);
11725         if (work == NULL)
11726                 return -ENOMEM;
11727
11728         work->event = event;
11729         work->crtc = crtc;
11730         work->old_fb = old_fb;
11731         INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
11732
11733         ret = drm_crtc_vblank_get(crtc);
11734         if (ret)
11735                 goto free_work;
11736
11737         /* We borrow the event spin lock for protecting flip_work */
11738         spin_lock_irq(&dev->event_lock);
11739         if (intel_crtc->flip_work) {
11740                 /* Before declaring the flip queue wedged, check if
11741                  * the hardware completed the operation behind our backs.
11742                  */
11743                 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
11744                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11745                         page_flip_completed(intel_crtc);
11746                 } else {
11747                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11748                         spin_unlock_irq(&dev->event_lock);
11749
11750                         drm_crtc_vblank_put(crtc);
11751                         kfree(work);
11752                         return -EBUSY;
11753                 }
11754         }
11755         intel_crtc->flip_work = work;
11756         spin_unlock_irq(&dev->event_lock);
11757
11758         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11759                 flush_workqueue(dev_priv->wq);
11760
11761         /* Reference the objects for the scheduled work. */
11762         drm_framebuffer_reference(work->old_fb);
11763         drm_gem_object_reference(&obj->base);
11764
11765         crtc->primary->fb = fb;
11766         update_state_fb(crtc->primary);
11767
11768         intel_fbc_pre_update(intel_crtc, intel_crtc->config,
11769                              to_intel_plane_state(primary->state));
11770
11771         work->pending_flip_obj = obj;
11772
11773         ret = i915_mutex_lock_interruptible(dev);
11774         if (ret)
11775                 goto cleanup;
11776
11777         intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11778         if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
11779                 ret = -EIO;
11780                 goto cleanup;
11781         }
11782
11783         atomic_inc(&intel_crtc->unpin_work_count);
11784
11785         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11786                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11787
11788         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11789                 engine = &dev_priv->engine[BCS];
11790                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11791                         /* vlv: DISPLAY_FLIP fails to change tiling */
11792                         engine = NULL;
11793         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11794                 engine = &dev_priv->engine[BCS];
11795         } else if (INTEL_INFO(dev)->gen >= 7) {
11796                 engine = i915_gem_request_get_engine(obj->last_write_req);
11797                 if (engine == NULL || engine->id != RCS)
11798                         engine = &dev_priv->engine[BCS];
11799         } else {
11800                 engine = &dev_priv->engine[RCS];
11801         }
11802
11803         mmio_flip = use_mmio_flip(engine, obj);
11804
11805         /* When using CS flips, we want to emit semaphores between rings.
11806          * However, when using mmio flips we will create a task to do the
11807          * synchronisation, so all we want here is to pin the framebuffer
11808          * into the display plane and skip any waits.
11809          */
11810         if (!mmio_flip) {
11811                 ret = i915_gem_object_sync(obj, engine, &request);
11812                 if (!ret && !request) {
11813                         request = i915_gem_request_alloc(engine, NULL);
11814                         ret = PTR_ERR_OR_ZERO(request);
11815                 }
11816
11817                 if (ret)
11818                         goto cleanup_pending;
11819         }
11820
11821         ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11822         if (ret)
11823                 goto cleanup_pending;
11824
11825         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11826                                                   obj, 0);
11827         work->gtt_offset += intel_crtc->dspaddr_offset;
11828         work->rotation = crtc->primary->state->rotation;
11829
11830         if (mmio_flip) {
11831                 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
11832
11833                 i915_gem_request_assign(&work->flip_queued_req,
11834                                         obj->last_write_req);
11835
11836                 schedule_work(&work->mmio_work);
11837         } else {
11838                 i915_gem_request_assign(&work->flip_queued_req, request);
11839                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11840                                                    page_flip_flags);
11841                 if (ret)
11842                         goto cleanup_unpin;
11843
11844                 intel_mark_page_flip_active(intel_crtc, work);
11845
11846                 i915_add_request_no_flush(request);
11847         }
11848
11849         i915_gem_track_fb(intel_fb_obj(old_fb), obj,
11850                           to_intel_plane(primary)->frontbuffer_bit);
11851         mutex_unlock(&dev->struct_mutex);
11852
11853         intel_frontbuffer_flip_prepare(dev,
11854                                        to_intel_plane(primary)->frontbuffer_bit);
11855
11856         trace_i915_flip_request(intel_crtc->plane, obj);
11857
11858         return 0;
11859
11860 cleanup_unpin:
11861         intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11862 cleanup_pending:
11863         if (!IS_ERR_OR_NULL(request))
11864                 i915_add_request_no_flush(request);
11865         atomic_dec(&intel_crtc->unpin_work_count);
11866         mutex_unlock(&dev->struct_mutex);
11867 cleanup:
11868         crtc->primary->fb = old_fb;
11869         update_state_fb(crtc->primary);
11870
11871         drm_gem_object_unreference_unlocked(&obj->base);
11872         drm_framebuffer_unreference(work->old_fb);
11873
11874         spin_lock_irq(&dev->event_lock);
11875         intel_crtc->flip_work = NULL;
11876         spin_unlock_irq(&dev->event_lock);
11877
11878         drm_crtc_vblank_put(crtc);
11879 free_work:
11880         kfree(work);
11881
11882         if (ret == -EIO) {
11883                 struct drm_atomic_state *state;
11884                 struct drm_plane_state *plane_state;
11885
11886 out_hang:
11887                 state = drm_atomic_state_alloc(dev);
11888                 if (!state)
11889                         return -ENOMEM;
11890                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11891
11892 retry:
11893                 plane_state = drm_atomic_get_plane_state(state, primary);
11894                 ret = PTR_ERR_OR_ZERO(plane_state);
11895                 if (!ret) {
11896                         drm_atomic_set_fb_for_plane(plane_state, fb);
11897
11898                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11899                         if (!ret)
11900                                 ret = drm_atomic_commit(state);
11901                 }
11902
11903                 if (ret == -EDEADLK) {
11904                         drm_modeset_backoff(state->acquire_ctx);
11905                         drm_atomic_state_clear(state);
11906                         goto retry;
11907                 }
11908
11909                 if (ret)
11910                         drm_atomic_state_free(state);
11911
11912                 if (ret == 0 && event) {
11913                         spin_lock_irq(&dev->event_lock);
11914                         drm_crtc_send_vblank_event(crtc, event);
11915                         spin_unlock_irq(&dev->event_lock);
11916                 }
11917         }
11918         return ret;
11919 }
11920
11921
11922 /**
11923  * intel_wm_need_update - Check whether watermarks need updating
11924  * @plane: drm plane
11925  * @state: new plane state
11926  *
11927  * Check current plane state versus the new one to determine whether
11928  * watermarks need to be recalculated.
11929  *
11930  * Returns true or false.
11931  */
11932 static bool intel_wm_need_update(struct drm_plane *plane,
11933                                  struct drm_plane_state *state)
11934 {
11935         struct intel_plane_state *new = to_intel_plane_state(state);
11936         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11937
11938         /* Update watermarks on tiling or size changes. */
11939         if (new->visible != cur->visible)
11940                 return true;
11941
11942         if (!cur->base.fb || !new->base.fb)
11943                 return false;
11944
11945         if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11946             cur->base.rotation != new->base.rotation ||
11947             drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11948             drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11949             drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11950             drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11951                 return true;
11952
11953         return false;
11954 }
11955
11956 static bool needs_scaling(struct intel_plane_state *state)
11957 {
11958         int src_w = drm_rect_width(&state->src) >> 16;
11959         int src_h = drm_rect_height(&state->src) >> 16;
11960         int dst_w = drm_rect_width(&state->dst);
11961         int dst_h = drm_rect_height(&state->dst);
11962
11963         return (src_w != dst_w || src_h != dst_h);
11964 }
11965
11966 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11967                                     struct drm_plane_state *plane_state)
11968 {
11969         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11970         struct drm_crtc *crtc = crtc_state->crtc;
11971         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11972         struct drm_plane *plane = plane_state->plane;
11973         struct drm_device *dev = crtc->dev;
11974         struct drm_i915_private *dev_priv = to_i915(dev);
11975         struct intel_plane_state *old_plane_state =
11976                 to_intel_plane_state(plane->state);
11977         bool mode_changed = needs_modeset(crtc_state);
11978         bool was_crtc_enabled = crtc->state->active;
11979         bool is_crtc_enabled = crtc_state->active;
11980         bool turn_off, turn_on, visible, was_visible;
11981         struct drm_framebuffer *fb = plane_state->fb;
11982         int ret;
11983
11984         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11985             plane->type != DRM_PLANE_TYPE_CURSOR) {
11986                 ret = skl_update_scaler_plane(
11987                         to_intel_crtc_state(crtc_state),
11988                         to_intel_plane_state(plane_state));
11989                 if (ret)
11990                         return ret;
11991         }
11992
11993         was_visible = old_plane_state->visible;
11994         visible = to_intel_plane_state(plane_state)->visible;
11995
11996         if (!was_crtc_enabled && WARN_ON(was_visible))
11997                 was_visible = false;
11998
11999         /*
12000          * Visibility is calculated as if the crtc was on, but
12001          * after scaler setup everything depends on it being off
12002          * when the crtc isn't active.
12003          *
12004          * FIXME this is wrong for watermarks. Watermarks should also
12005          * be computed as if the pipe would be active. Perhaps move
12006          * per-plane wm computation to the .check_plane() hook, and
12007          * only combine the results from all planes in the current place?
12008          */
12009         if (!is_crtc_enabled)
12010                 to_intel_plane_state(plane_state)->visible = visible = false;
12011
12012         if (!was_visible && !visible)
12013                 return 0;
12014
12015         if (fb != old_plane_state->base.fb)
12016                 pipe_config->fb_changed = true;
12017
12018         turn_off = was_visible && (!visible || mode_changed);
12019         turn_on = visible && (!was_visible || mode_changed);
12020
12021         DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
12022                          intel_crtc->base.base.id,
12023                          intel_crtc->base.name,
12024                          plane->base.id, plane->name,
12025                          fb ? fb->base.id : -1);
12026
12027         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12028                          plane->base.id, plane->name,
12029                          was_visible, visible,
12030                          turn_off, turn_on, mode_changed);
12031
12032         if (turn_on) {
12033                 pipe_config->update_wm_pre = true;
12034
12035                 /* must disable cxsr around plane enable/disable */
12036                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12037                         pipe_config->disable_cxsr = true;
12038         } else if (turn_off) {
12039                 pipe_config->update_wm_post = true;
12040
12041                 /* must disable cxsr around plane enable/disable */
12042                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12043                         pipe_config->disable_cxsr = true;
12044         } else if (intel_wm_need_update(plane, plane_state)) {
12045                 /* FIXME bollocks */
12046                 pipe_config->update_wm_pre = true;
12047                 pipe_config->update_wm_post = true;
12048         }
12049
12050         /* Pre-gen9 platforms need two-step watermark updates */
12051         if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12052             INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
12053                 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12054
12055         if (visible || was_visible)
12056                 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12057
12058         /*
12059          * WaCxSRDisabledForSpriteScaling:ivb
12060          *
12061          * cstate->update_wm was already set above, so this flag will
12062          * take effect when we commit and program watermarks.
12063          */
12064         if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
12065             needs_scaling(to_intel_plane_state(plane_state)) &&
12066             !needs_scaling(old_plane_state))
12067                 pipe_config->disable_lp_wm = true;
12068
12069         return 0;
12070 }
12071
12072 static bool encoders_cloneable(const struct intel_encoder *a,
12073                                const struct intel_encoder *b)
12074 {
12075         /* masks could be asymmetric, so check both ways */
12076         return a == b || (a->cloneable & (1 << b->type) &&
12077                           b->cloneable & (1 << a->type));
12078 }
12079
12080 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12081                                          struct intel_crtc *crtc,
12082                                          struct intel_encoder *encoder)
12083 {
12084         struct intel_encoder *source_encoder;
12085         struct drm_connector *connector;
12086         struct drm_connector_state *connector_state;
12087         int i;
12088
12089         for_each_connector_in_state(state, connector, connector_state, i) {
12090                 if (connector_state->crtc != &crtc->base)
12091                         continue;
12092
12093                 source_encoder =
12094                         to_intel_encoder(connector_state->best_encoder);
12095                 if (!encoders_cloneable(encoder, source_encoder))
12096                         return false;
12097         }
12098
12099         return true;
12100 }
12101
12102 static bool check_encoder_cloning(struct drm_atomic_state *state,
12103                                   struct intel_crtc *crtc)
12104 {
12105         struct intel_encoder *encoder;
12106         struct drm_connector *connector;
12107         struct drm_connector_state *connector_state;
12108         int i;
12109
12110         for_each_connector_in_state(state, connector, connector_state, i) {
12111                 if (connector_state->crtc != &crtc->base)
12112                         continue;
12113
12114                 encoder = to_intel_encoder(connector_state->best_encoder);
12115                 if (!check_single_encoder_cloning(state, crtc, encoder))
12116                         return false;
12117         }
12118
12119         return true;
12120 }
12121
12122 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12123                                    struct drm_crtc_state *crtc_state)
12124 {
12125         struct drm_device *dev = crtc->dev;
12126         struct drm_i915_private *dev_priv = dev->dev_private;
12127         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12128         struct intel_crtc_state *pipe_config =
12129                 to_intel_crtc_state(crtc_state);
12130         struct drm_atomic_state *state = crtc_state->state;
12131         int ret;
12132         bool mode_changed = needs_modeset(crtc_state);
12133
12134         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
12135                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12136                 return -EINVAL;
12137         }
12138
12139         if (mode_changed && !crtc_state->active)
12140                 pipe_config->update_wm_post = true;
12141
12142         if (mode_changed && crtc_state->enable &&
12143             dev_priv->display.crtc_compute_clock &&
12144             !WARN_ON(pipe_config->shared_dpll)) {
12145                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12146                                                            pipe_config);
12147                 if (ret)
12148                         return ret;
12149         }
12150
12151         if (crtc_state->color_mgmt_changed) {
12152                 ret = intel_color_check(crtc, crtc_state);
12153                 if (ret)
12154                         return ret;
12155         }
12156
12157         ret = 0;
12158         if (dev_priv->display.compute_pipe_wm) {
12159                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12160                 if (ret) {
12161                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12162                         return ret;
12163                 }
12164         }
12165
12166         if (dev_priv->display.compute_intermediate_wm &&
12167             !to_intel_atomic_state(state)->skip_intermediate_wm) {
12168                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12169                         return 0;
12170
12171                 /*
12172                  * Calculate 'intermediate' watermarks that satisfy both the
12173                  * old state and the new state.  We can program these
12174                  * immediately.
12175                  */
12176                 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12177                                                                 intel_crtc,
12178                                                                 pipe_config);
12179                 if (ret) {
12180                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12181                         return ret;
12182                 }
12183         } else if (dev_priv->display.compute_intermediate_wm) {
12184                 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12185                         pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12186         }
12187
12188         if (INTEL_INFO(dev)->gen >= 9) {
12189                 if (mode_changed)
12190                         ret = skl_update_scaler_crtc(pipe_config);
12191
12192                 if (!ret)
12193                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
12194                                                          pipe_config);
12195         }
12196
12197         return ret;
12198 }
12199
12200 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12201         .mode_set_base_atomic = intel_pipe_set_base_atomic,
12202         .atomic_begin = intel_begin_crtc_commit,
12203         .atomic_flush = intel_finish_crtc_commit,
12204         .atomic_check = intel_crtc_atomic_check,
12205 };
12206
12207 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12208 {
12209         struct intel_connector *connector;
12210
12211         for_each_intel_connector(dev, connector) {
12212                 if (connector->base.state->crtc)
12213                         drm_connector_unreference(&connector->base);
12214
12215                 if (connector->base.encoder) {
12216                         connector->base.state->best_encoder =
12217                                 connector->base.encoder;
12218                         connector->base.state->crtc =
12219                                 connector->base.encoder->crtc;
12220
12221                         drm_connector_reference(&connector->base);
12222                 } else {
12223                         connector->base.state->best_encoder = NULL;
12224                         connector->base.state->crtc = NULL;
12225                 }
12226         }
12227 }
12228
12229 static void
12230 connected_sink_compute_bpp(struct intel_connector *connector,
12231                            struct intel_crtc_state *pipe_config)
12232 {
12233         int bpp = pipe_config->pipe_bpp;
12234
12235         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12236                 connector->base.base.id,
12237                 connector->base.name);
12238
12239         /* Don't use an invalid EDID bpc value */
12240         if (connector->base.display_info.bpc &&
12241             connector->base.display_info.bpc * 3 < bpp) {
12242                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12243                               bpp, connector->base.display_info.bpc*3);
12244                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12245         }
12246
12247         /* Clamp bpp to default limit on screens without EDID 1.4 */
12248         if (connector->base.display_info.bpc == 0) {
12249                 int type = connector->base.connector_type;
12250                 int clamp_bpp = 24;
12251
12252                 /* Fall back to 18 bpp when DP sink capability is unknown. */
12253                 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12254                     type == DRM_MODE_CONNECTOR_eDP)
12255                         clamp_bpp = 18;
12256
12257                 if (bpp > clamp_bpp) {
12258                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12259                                       bpp, clamp_bpp);
12260                         pipe_config->pipe_bpp = clamp_bpp;
12261                 }
12262         }
12263 }
12264
12265 static int
12266 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12267                           struct intel_crtc_state *pipe_config)
12268 {
12269         struct drm_device *dev = crtc->base.dev;
12270         struct drm_atomic_state *state;
12271         struct drm_connector *connector;
12272         struct drm_connector_state *connector_state;
12273         int bpp, i;
12274
12275         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12276                 bpp = 10*3;
12277         else if (INTEL_INFO(dev)->gen >= 5)
12278                 bpp = 12*3;
12279         else
12280                 bpp = 8*3;
12281
12282
12283         pipe_config->pipe_bpp = bpp;
12284
12285         state = pipe_config->base.state;
12286
12287         /* Clamp display bpp to EDID value */
12288         for_each_connector_in_state(state, connector, connector_state, i) {
12289                 if (connector_state->crtc != &crtc->base)
12290                         continue;
12291
12292                 connected_sink_compute_bpp(to_intel_connector(connector),
12293                                            pipe_config);
12294         }
12295
12296         return bpp;
12297 }
12298
12299 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12300 {
12301         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12302                         "type: 0x%x flags: 0x%x\n",
12303                 mode->crtc_clock,
12304                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12305                 mode->crtc_hsync_end, mode->crtc_htotal,
12306                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12307                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12308 }
12309
12310 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12311                                    struct intel_crtc_state *pipe_config,
12312                                    const char *context)
12313 {
12314         struct drm_device *dev = crtc->base.dev;
12315         struct drm_plane *plane;
12316         struct intel_plane *intel_plane;
12317         struct intel_plane_state *state;
12318         struct drm_framebuffer *fb;
12319
12320         DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n",
12321                       crtc->base.base.id, crtc->base.name,
12322                       context, pipe_config, pipe_name(crtc->pipe));
12323
12324         DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12325         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12326                       pipe_config->pipe_bpp, pipe_config->dither);
12327         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12328                       pipe_config->has_pch_encoder,
12329                       pipe_config->fdi_lanes,
12330                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12331                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12332                       pipe_config->fdi_m_n.tu);
12333         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12334                       pipe_config->has_dp_encoder,
12335                       pipe_config->lane_count,
12336                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12337                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12338                       pipe_config->dp_m_n.tu);
12339
12340         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12341                       pipe_config->has_dp_encoder,
12342                       pipe_config->lane_count,
12343                       pipe_config->dp_m2_n2.gmch_m,
12344                       pipe_config->dp_m2_n2.gmch_n,
12345                       pipe_config->dp_m2_n2.link_m,
12346                       pipe_config->dp_m2_n2.link_n,
12347                       pipe_config->dp_m2_n2.tu);
12348
12349         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12350                       pipe_config->has_audio,
12351                       pipe_config->has_infoframe);
12352
12353         DRM_DEBUG_KMS("requested mode:\n");
12354         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12355         DRM_DEBUG_KMS("adjusted mode:\n");
12356         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12357         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12358         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12359         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12360                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12361         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12362                       crtc->num_scalers,
12363                       pipe_config->scaler_state.scaler_users,
12364                       pipe_config->scaler_state.scaler_id);
12365         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12366                       pipe_config->gmch_pfit.control,
12367                       pipe_config->gmch_pfit.pgm_ratios,
12368                       pipe_config->gmch_pfit.lvds_border_bits);
12369         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12370                       pipe_config->pch_pfit.pos,
12371                       pipe_config->pch_pfit.size,
12372                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12373         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12374         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12375
12376         if (IS_BROXTON(dev)) {
12377                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12378                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12379                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12380                               pipe_config->ddi_pll_sel,
12381                               pipe_config->dpll_hw_state.ebb0,
12382                               pipe_config->dpll_hw_state.ebb4,
12383                               pipe_config->dpll_hw_state.pll0,
12384                               pipe_config->dpll_hw_state.pll1,
12385                               pipe_config->dpll_hw_state.pll2,
12386                               pipe_config->dpll_hw_state.pll3,
12387                               pipe_config->dpll_hw_state.pll6,
12388                               pipe_config->dpll_hw_state.pll8,
12389                               pipe_config->dpll_hw_state.pll9,
12390                               pipe_config->dpll_hw_state.pll10,
12391                               pipe_config->dpll_hw_state.pcsdw12);
12392         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12393                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12394                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12395                               pipe_config->ddi_pll_sel,
12396                               pipe_config->dpll_hw_state.ctrl1,
12397                               pipe_config->dpll_hw_state.cfgcr1,
12398                               pipe_config->dpll_hw_state.cfgcr2);
12399         } else if (HAS_DDI(dev)) {
12400                 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12401                               pipe_config->ddi_pll_sel,
12402                               pipe_config->dpll_hw_state.wrpll,
12403                               pipe_config->dpll_hw_state.spll);
12404         } else {
12405                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12406                               "fp0: 0x%x, fp1: 0x%x\n",
12407                               pipe_config->dpll_hw_state.dpll,
12408                               pipe_config->dpll_hw_state.dpll_md,
12409                               pipe_config->dpll_hw_state.fp0,
12410                               pipe_config->dpll_hw_state.fp1);
12411         }
12412
12413         DRM_DEBUG_KMS("planes on this crtc\n");
12414         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12415                 intel_plane = to_intel_plane(plane);
12416                 if (intel_plane->pipe != crtc->pipe)
12417                         continue;
12418
12419                 state = to_intel_plane_state(plane->state);
12420                 fb = state->base.fb;
12421                 if (!fb) {
12422                         DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12423                                       plane->base.id, plane->name, state->scaler_id);
12424                         continue;
12425                 }
12426
12427                 DRM_DEBUG_KMS("[PLANE:%d:%s] enabled",
12428                               plane->base.id, plane->name);
12429                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s",
12430                               fb->base.id, fb->width, fb->height,
12431                               drm_get_format_name(fb->pixel_format));
12432                 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12433                               state->scaler_id,
12434                               state->src.x1 >> 16, state->src.y1 >> 16,
12435                               drm_rect_width(&state->src) >> 16,
12436                               drm_rect_height(&state->src) >> 16,
12437                               state->dst.x1, state->dst.y1,
12438                               drm_rect_width(&state->dst),
12439                               drm_rect_height(&state->dst));
12440         }
12441 }
12442
12443 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12444 {
12445         struct drm_device *dev = state->dev;
12446         struct drm_connector *connector;
12447         unsigned int used_ports = 0;
12448
12449         /*
12450          * Walk the connector list instead of the encoder
12451          * list to detect the problem on ddi platforms
12452          * where there's just one encoder per digital port.
12453          */
12454         drm_for_each_connector(connector, dev) {
12455                 struct drm_connector_state *connector_state;
12456                 struct intel_encoder *encoder;
12457
12458                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12459                 if (!connector_state)
12460                         connector_state = connector->state;
12461
12462                 if (!connector_state->best_encoder)
12463                         continue;
12464
12465                 encoder = to_intel_encoder(connector_state->best_encoder);
12466
12467                 WARN_ON(!connector_state->crtc);
12468
12469                 switch (encoder->type) {
12470                         unsigned int port_mask;
12471                 case INTEL_OUTPUT_UNKNOWN:
12472                         if (WARN_ON(!HAS_DDI(dev)))
12473                                 break;
12474                 case INTEL_OUTPUT_DISPLAYPORT:
12475                 case INTEL_OUTPUT_HDMI:
12476                 case INTEL_OUTPUT_EDP:
12477                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12478
12479                         /* the same port mustn't appear more than once */
12480                         if (used_ports & port_mask)
12481                                 return false;
12482
12483                         used_ports |= port_mask;
12484                 default:
12485                         break;
12486                 }
12487         }
12488
12489         return true;
12490 }
12491
12492 static void
12493 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12494 {
12495         struct drm_crtc_state tmp_state;
12496         struct intel_crtc_scaler_state scaler_state;
12497         struct intel_dpll_hw_state dpll_hw_state;
12498         struct intel_shared_dpll *shared_dpll;
12499         uint32_t ddi_pll_sel;
12500         bool force_thru;
12501
12502         /* FIXME: before the switch to atomic started, a new pipe_config was
12503          * kzalloc'd. Code that depends on any field being zero should be
12504          * fixed, so that the crtc_state can be safely duplicated. For now,
12505          * only fields that are know to not cause problems are preserved. */
12506
12507         tmp_state = crtc_state->base;
12508         scaler_state = crtc_state->scaler_state;
12509         shared_dpll = crtc_state->shared_dpll;
12510         dpll_hw_state = crtc_state->dpll_hw_state;
12511         ddi_pll_sel = crtc_state->ddi_pll_sel;
12512         force_thru = crtc_state->pch_pfit.force_thru;
12513
12514         memset(crtc_state, 0, sizeof *crtc_state);
12515
12516         crtc_state->base = tmp_state;
12517         crtc_state->scaler_state = scaler_state;
12518         crtc_state->shared_dpll = shared_dpll;
12519         crtc_state->dpll_hw_state = dpll_hw_state;
12520         crtc_state->ddi_pll_sel = ddi_pll_sel;
12521         crtc_state->pch_pfit.force_thru = force_thru;
12522 }
12523
12524 static int
12525 intel_modeset_pipe_config(struct drm_crtc *crtc,
12526                           struct intel_crtc_state *pipe_config)
12527 {
12528         struct drm_atomic_state *state = pipe_config->base.state;
12529         struct intel_encoder *encoder;
12530         struct drm_connector *connector;
12531         struct drm_connector_state *connector_state;
12532         int base_bpp, ret = -EINVAL;
12533         int i;
12534         bool retry = true;
12535
12536         clear_intel_crtc_state(pipe_config);
12537
12538         pipe_config->cpu_transcoder =
12539                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12540
12541         /*
12542          * Sanitize sync polarity flags based on requested ones. If neither
12543          * positive or negative polarity is requested, treat this as meaning
12544          * negative polarity.
12545          */
12546         if (!(pipe_config->base.adjusted_mode.flags &
12547               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12548                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12549
12550         if (!(pipe_config->base.adjusted_mode.flags &
12551               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12552                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12553
12554         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12555                                              pipe_config);
12556         if (base_bpp < 0)
12557                 goto fail;
12558
12559         /*
12560          * Determine the real pipe dimensions. Note that stereo modes can
12561          * increase the actual pipe size due to the frame doubling and
12562          * insertion of additional space for blanks between the frame. This
12563          * is stored in the crtc timings. We use the requested mode to do this
12564          * computation to clearly distinguish it from the adjusted mode, which
12565          * can be changed by the connectors in the below retry loop.
12566          */
12567         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12568                                &pipe_config->pipe_src_w,
12569                                &pipe_config->pipe_src_h);
12570
12571 encoder_retry:
12572         /* Ensure the port clock defaults are reset when retrying. */
12573         pipe_config->port_clock = 0;
12574         pipe_config->pixel_multiplier = 1;
12575
12576         /* Fill in default crtc timings, allow encoders to overwrite them. */
12577         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12578                               CRTC_STEREO_DOUBLE);
12579
12580         /* Pass our mode to the connectors and the CRTC to give them a chance to
12581          * adjust it according to limitations or connector properties, and also
12582          * a chance to reject the mode entirely.
12583          */
12584         for_each_connector_in_state(state, connector, connector_state, i) {
12585                 if (connector_state->crtc != crtc)
12586                         continue;
12587
12588                 encoder = to_intel_encoder(connector_state->best_encoder);
12589
12590                 if (!(encoder->compute_config(encoder, pipe_config))) {
12591                         DRM_DEBUG_KMS("Encoder config failure\n");
12592                         goto fail;
12593                 }
12594         }
12595
12596         /* Set default port clock if not overwritten by the encoder. Needs to be
12597          * done afterwards in case the encoder adjusts the mode. */
12598         if (!pipe_config->port_clock)
12599                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12600                         * pipe_config->pixel_multiplier;
12601
12602         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12603         if (ret < 0) {
12604                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12605                 goto fail;
12606         }
12607
12608         if (ret == RETRY) {
12609                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12610                         ret = -EINVAL;
12611                         goto fail;
12612                 }
12613
12614                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12615                 retry = false;
12616                 goto encoder_retry;
12617         }
12618
12619         /* Dithering seems to not pass-through bits correctly when it should, so
12620          * only enable it on 6bpc panels. */
12621         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12622         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12623                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12624
12625 fail:
12626         return ret;
12627 }
12628
12629 static void
12630 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12631 {
12632         struct drm_crtc *crtc;
12633         struct drm_crtc_state *crtc_state;
12634         int i;
12635
12636         /* Double check state. */
12637         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12638                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12639
12640                 /* Update hwmode for vblank functions */
12641                 if (crtc->state->active)
12642                         crtc->hwmode = crtc->state->adjusted_mode;
12643                 else
12644                         crtc->hwmode.crtc_clock = 0;
12645
12646                 /*
12647                  * Update legacy state to satisfy fbc code. This can
12648                  * be removed when fbc uses the atomic state.
12649                  */
12650                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12651                         struct drm_plane_state *plane_state = crtc->primary->state;
12652
12653                         crtc->primary->fb = plane_state->fb;
12654                         crtc->x = plane_state->src_x >> 16;
12655                         crtc->y = plane_state->src_y >> 16;
12656                 }
12657         }
12658 }
12659
12660 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12661 {
12662         int diff;
12663
12664         if (clock1 == clock2)
12665                 return true;
12666
12667         if (!clock1 || !clock2)
12668                 return false;
12669
12670         diff = abs(clock1 - clock2);
12671
12672         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12673                 return true;
12674
12675         return false;
12676 }
12677
12678 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12679         list_for_each_entry((intel_crtc), \
12680                             &(dev)->mode_config.crtc_list, \
12681                             base.head) \
12682                 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12683
12684 static bool
12685 intel_compare_m_n(unsigned int m, unsigned int n,
12686                   unsigned int m2, unsigned int n2,
12687                   bool exact)
12688 {
12689         if (m == m2 && n == n2)
12690                 return true;
12691
12692         if (exact || !m || !n || !m2 || !n2)
12693                 return false;
12694
12695         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12696
12697         if (n > n2) {
12698                 while (n > n2) {
12699                         m2 <<= 1;
12700                         n2 <<= 1;
12701                 }
12702         } else if (n < n2) {
12703                 while (n < n2) {
12704                         m <<= 1;
12705                         n <<= 1;
12706                 }
12707         }
12708
12709         if (n != n2)
12710                 return false;
12711
12712         return intel_fuzzy_clock_check(m, m2);
12713 }
12714
12715 static bool
12716 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12717                        struct intel_link_m_n *m2_n2,
12718                        bool adjust)
12719 {
12720         if (m_n->tu == m2_n2->tu &&
12721             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12722                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12723             intel_compare_m_n(m_n->link_m, m_n->link_n,
12724                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12725                 if (adjust)
12726                         *m2_n2 = *m_n;
12727
12728                 return true;
12729         }
12730
12731         return false;
12732 }
12733
12734 static bool
12735 intel_pipe_config_compare(struct drm_device *dev,
12736                           struct intel_crtc_state *current_config,
12737                           struct intel_crtc_state *pipe_config,
12738                           bool adjust)
12739 {
12740         bool ret = true;
12741
12742 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12743         do { \
12744                 if (!adjust) \
12745                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12746                 else \
12747                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12748         } while (0)
12749
12750 #define PIPE_CONF_CHECK_X(name) \
12751         if (current_config->name != pipe_config->name) { \
12752                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12753                           "(expected 0x%08x, found 0x%08x)\n", \
12754                           current_config->name, \
12755                           pipe_config->name); \
12756                 ret = false; \
12757         }
12758
12759 #define PIPE_CONF_CHECK_I(name) \
12760         if (current_config->name != pipe_config->name) { \
12761                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12762                           "(expected %i, found %i)\n", \
12763                           current_config->name, \
12764                           pipe_config->name); \
12765                 ret = false; \
12766         }
12767
12768 #define PIPE_CONF_CHECK_P(name) \
12769         if (current_config->name != pipe_config->name) { \
12770                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12771                           "(expected %p, found %p)\n", \
12772                           current_config->name, \
12773                           pipe_config->name); \
12774                 ret = false; \
12775         }
12776
12777 #define PIPE_CONF_CHECK_M_N(name) \
12778         if (!intel_compare_link_m_n(&current_config->name, \
12779                                     &pipe_config->name,\
12780                                     adjust)) { \
12781                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12782                           "(expected tu %i gmch %i/%i link %i/%i, " \
12783                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12784                           current_config->name.tu, \
12785                           current_config->name.gmch_m, \
12786                           current_config->name.gmch_n, \
12787                           current_config->name.link_m, \
12788                           current_config->name.link_n, \
12789                           pipe_config->name.tu, \
12790                           pipe_config->name.gmch_m, \
12791                           pipe_config->name.gmch_n, \
12792                           pipe_config->name.link_m, \
12793                           pipe_config->name.link_n); \
12794                 ret = false; \
12795         }
12796
12797 /* This is required for BDW+ where there is only one set of registers for
12798  * switching between high and low RR.
12799  * This macro can be used whenever a comparison has to be made between one
12800  * hw state and multiple sw state variables.
12801  */
12802 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12803         if (!intel_compare_link_m_n(&current_config->name, \
12804                                     &pipe_config->name, adjust) && \
12805             !intel_compare_link_m_n(&current_config->alt_name, \
12806                                     &pipe_config->name, adjust)) { \
12807                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12808                           "(expected tu %i gmch %i/%i link %i/%i, " \
12809                           "or tu %i gmch %i/%i link %i/%i, " \
12810                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12811                           current_config->name.tu, \
12812                           current_config->name.gmch_m, \
12813                           current_config->name.gmch_n, \
12814                           current_config->name.link_m, \
12815                           current_config->name.link_n, \
12816                           current_config->alt_name.tu, \
12817                           current_config->alt_name.gmch_m, \
12818                           current_config->alt_name.gmch_n, \
12819                           current_config->alt_name.link_m, \
12820                           current_config->alt_name.link_n, \
12821                           pipe_config->name.tu, \
12822                           pipe_config->name.gmch_m, \
12823                           pipe_config->name.gmch_n, \
12824                           pipe_config->name.link_m, \
12825                           pipe_config->name.link_n); \
12826                 ret = false; \
12827         }
12828
12829 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12830         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12831                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12832                           "(expected %i, found %i)\n", \
12833                           current_config->name & (mask), \
12834                           pipe_config->name & (mask)); \
12835                 ret = false; \
12836         }
12837
12838 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12839         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12840                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12841                           "(expected %i, found %i)\n", \
12842                           current_config->name, \
12843                           pipe_config->name); \
12844                 ret = false; \
12845         }
12846
12847 #define PIPE_CONF_QUIRK(quirk)  \
12848         ((current_config->quirks | pipe_config->quirks) & (quirk))
12849
12850         PIPE_CONF_CHECK_I(cpu_transcoder);
12851
12852         PIPE_CONF_CHECK_I(has_pch_encoder);
12853         PIPE_CONF_CHECK_I(fdi_lanes);
12854         PIPE_CONF_CHECK_M_N(fdi_m_n);
12855
12856         PIPE_CONF_CHECK_I(has_dp_encoder);
12857         PIPE_CONF_CHECK_I(lane_count);
12858         PIPE_CONF_CHECK_X(lane_lat_optim_mask);
12859
12860         if (INTEL_INFO(dev)->gen < 8) {
12861                 PIPE_CONF_CHECK_M_N(dp_m_n);
12862
12863                 if (current_config->has_drrs)
12864                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12865         } else
12866                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12867
12868         PIPE_CONF_CHECK_I(has_dsi_encoder);
12869
12870         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12871         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12872         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12873         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12874         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12875         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12876
12877         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12878         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12879         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12880         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12881         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12882         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12883
12884         PIPE_CONF_CHECK_I(pixel_multiplier);
12885         PIPE_CONF_CHECK_I(has_hdmi_sink);
12886         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12887             IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12888                 PIPE_CONF_CHECK_I(limited_color_range);
12889         PIPE_CONF_CHECK_I(has_infoframe);
12890
12891         PIPE_CONF_CHECK_I(has_audio);
12892
12893         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12894                               DRM_MODE_FLAG_INTERLACE);
12895
12896         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12897                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12898                                       DRM_MODE_FLAG_PHSYNC);
12899                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12900                                       DRM_MODE_FLAG_NHSYNC);
12901                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12902                                       DRM_MODE_FLAG_PVSYNC);
12903                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12904                                       DRM_MODE_FLAG_NVSYNC);
12905         }
12906
12907         PIPE_CONF_CHECK_X(gmch_pfit.control);
12908         /* pfit ratios are autocomputed by the hw on gen4+ */
12909         if (INTEL_INFO(dev)->gen < 4)
12910                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
12911         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12912
12913         if (!adjust) {
12914                 PIPE_CONF_CHECK_I(pipe_src_w);
12915                 PIPE_CONF_CHECK_I(pipe_src_h);
12916
12917                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12918                 if (current_config->pch_pfit.enabled) {
12919                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12920                         PIPE_CONF_CHECK_X(pch_pfit.size);
12921                 }
12922
12923                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12924         }
12925
12926         /* BDW+ don't expose a synchronous way to read the state */
12927         if (IS_HASWELL(dev))
12928                 PIPE_CONF_CHECK_I(ips_enabled);
12929
12930         PIPE_CONF_CHECK_I(double_wide);
12931
12932         PIPE_CONF_CHECK_X(ddi_pll_sel);
12933
12934         PIPE_CONF_CHECK_P(shared_dpll);
12935         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12936         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12937         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12938         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12939         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12940         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12941         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12942         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12943         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12944
12945         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12946         PIPE_CONF_CHECK_X(dsi_pll.div);
12947
12948         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12949                 PIPE_CONF_CHECK_I(pipe_bpp);
12950
12951         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12952         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12953
12954 #undef PIPE_CONF_CHECK_X
12955 #undef PIPE_CONF_CHECK_I
12956 #undef PIPE_CONF_CHECK_P
12957 #undef PIPE_CONF_CHECK_FLAGS
12958 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12959 #undef PIPE_CONF_QUIRK
12960 #undef INTEL_ERR_OR_DBG_KMS
12961
12962         return ret;
12963 }
12964
12965 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12966                                            const struct intel_crtc_state *pipe_config)
12967 {
12968         if (pipe_config->has_pch_encoder) {
12969                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12970                                                             &pipe_config->fdi_m_n);
12971                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12972
12973                 /*
12974                  * FDI already provided one idea for the dotclock.
12975                  * Yell if the encoder disagrees.
12976                  */
12977                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12978                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12979                      fdi_dotclock, dotclock);
12980         }
12981 }
12982
12983 static void verify_wm_state(struct drm_crtc *crtc,
12984                             struct drm_crtc_state *new_state)
12985 {
12986         struct drm_device *dev = crtc->dev;
12987         struct drm_i915_private *dev_priv = dev->dev_private;
12988         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12989         struct skl_ddb_entry *hw_entry, *sw_entry;
12990         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12991         const enum pipe pipe = intel_crtc->pipe;
12992         int plane;
12993
12994         if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
12995                 return;
12996
12997         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12998         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12999
13000         /* planes */
13001         for_each_plane(dev_priv, pipe, plane) {
13002                 hw_entry = &hw_ddb.plane[pipe][plane];
13003                 sw_entry = &sw_ddb->plane[pipe][plane];
13004
13005                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
13006                         continue;
13007
13008                 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
13009                           "(expected (%u,%u), found (%u,%u))\n",
13010                           pipe_name(pipe), plane + 1,
13011                           sw_entry->start, sw_entry->end,
13012                           hw_entry->start, hw_entry->end);
13013         }
13014
13015         /* cursor */
13016         hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13017         sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
13018
13019         if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
13020                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
13021                           "(expected (%u,%u), found (%u,%u))\n",
13022                           pipe_name(pipe),
13023                           sw_entry->start, sw_entry->end,
13024                           hw_entry->start, hw_entry->end);
13025         }
13026 }
13027
13028 static void
13029 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
13030 {
13031         struct drm_connector *connector;
13032
13033         drm_for_each_connector(connector, dev) {
13034                 struct drm_encoder *encoder = connector->encoder;
13035                 struct drm_connector_state *state = connector->state;
13036
13037                 if (state->crtc != crtc)
13038                         continue;
13039
13040                 intel_connector_verify_state(to_intel_connector(connector));
13041
13042                 I915_STATE_WARN(state->best_encoder != encoder,
13043                      "connector's atomic encoder doesn't match legacy encoder\n");
13044         }
13045 }
13046
13047 static void
13048 verify_encoder_state(struct drm_device *dev)
13049 {
13050         struct intel_encoder *encoder;
13051         struct intel_connector *connector;
13052
13053         for_each_intel_encoder(dev, encoder) {
13054                 bool enabled = false;
13055                 enum pipe pipe;
13056
13057                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13058                               encoder->base.base.id,
13059                               encoder->base.name);
13060
13061                 for_each_intel_connector(dev, connector) {
13062                         if (connector->base.state->best_encoder != &encoder->base)
13063                                 continue;
13064                         enabled = true;
13065
13066                         I915_STATE_WARN(connector->base.state->crtc !=
13067                                         encoder->base.crtc,
13068                              "connector's crtc doesn't match encoder crtc\n");
13069                 }
13070
13071                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
13072                      "encoder's enabled state mismatch "
13073                      "(expected %i, found %i)\n",
13074                      !!encoder->base.crtc, enabled);
13075
13076                 if (!encoder->base.crtc) {
13077                         bool active;
13078
13079                         active = encoder->get_hw_state(encoder, &pipe);
13080                         I915_STATE_WARN(active,
13081                              "encoder detached but still enabled on pipe %c.\n",
13082                              pipe_name(pipe));
13083                 }
13084         }
13085 }
13086
13087 static void
13088 verify_crtc_state(struct drm_crtc *crtc,
13089                   struct drm_crtc_state *old_crtc_state,
13090                   struct drm_crtc_state *new_crtc_state)
13091 {
13092         struct drm_device *dev = crtc->dev;
13093         struct drm_i915_private *dev_priv = dev->dev_private;
13094         struct intel_encoder *encoder;
13095         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13096         struct intel_crtc_state *pipe_config, *sw_config;
13097         struct drm_atomic_state *old_state;
13098         bool active;
13099
13100         old_state = old_crtc_state->state;
13101         __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13102         pipe_config = to_intel_crtc_state(old_crtc_state);
13103         memset(pipe_config, 0, sizeof(*pipe_config));
13104         pipe_config->base.crtc = crtc;
13105         pipe_config->base.state = old_state;
13106
13107         DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13108
13109         active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13110
13111         /* hw state is inconsistent with the pipe quirk */
13112         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13113             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13114                 active = new_crtc_state->active;
13115
13116         I915_STATE_WARN(new_crtc_state->active != active,
13117              "crtc active state doesn't match with hw state "
13118              "(expected %i, found %i)\n", new_crtc_state->active, active);
13119
13120         I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13121              "transitional active state does not match atomic hw state "
13122              "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13123
13124         for_each_encoder_on_crtc(dev, crtc, encoder) {
13125                 enum pipe pipe;
13126
13127                 active = encoder->get_hw_state(encoder, &pipe);
13128                 I915_STATE_WARN(active != new_crtc_state->active,
13129                         "[ENCODER:%i] active %i with crtc active %i\n",
13130                         encoder->base.base.id, active, new_crtc_state->active);
13131
13132                 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13133                                 "Encoder connected to wrong pipe %c\n",
13134                                 pipe_name(pipe));
13135
13136                 if (active)
13137                         encoder->get_config(encoder, pipe_config);
13138         }
13139
13140         if (!new_crtc_state->active)
13141                 return;
13142
13143         intel_pipe_config_sanity_check(dev_priv, pipe_config);
13144
13145         sw_config = to_intel_crtc_state(crtc->state);
13146         if (!intel_pipe_config_compare(dev, sw_config,
13147                                        pipe_config, false)) {
13148                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13149                 intel_dump_pipe_config(intel_crtc, pipe_config,
13150                                        "[hw state]");
13151                 intel_dump_pipe_config(intel_crtc, sw_config,
13152                                        "[sw state]");
13153         }
13154 }
13155
13156 static void
13157 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13158                          struct intel_shared_dpll *pll,
13159                          struct drm_crtc *crtc,
13160                          struct drm_crtc_state *new_state)
13161 {
13162         struct intel_dpll_hw_state dpll_hw_state;
13163         unsigned crtc_mask;
13164         bool active;
13165
13166         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13167
13168         DRM_DEBUG_KMS("%s\n", pll->name);
13169
13170         active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13171
13172         if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13173                 I915_STATE_WARN(!pll->on && pll->active_mask,
13174                      "pll in active use but not on in sw tracking\n");
13175                 I915_STATE_WARN(pll->on && !pll->active_mask,
13176                      "pll is on but not used by any active crtc\n");
13177                 I915_STATE_WARN(pll->on != active,
13178                      "pll on state mismatch (expected %i, found %i)\n",
13179                      pll->on, active);
13180         }
13181
13182         if (!crtc) {
13183                 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13184                                 "more active pll users than references: %x vs %x\n",
13185                                 pll->active_mask, pll->config.crtc_mask);
13186
13187                 return;
13188         }
13189
13190         crtc_mask = 1 << drm_crtc_index(crtc);
13191
13192         if (new_state->active)
13193                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13194                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13195                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13196         else
13197                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13198                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13199                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13200
13201         I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13202                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13203                         crtc_mask, pll->config.crtc_mask);
13204
13205         I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13206                                           &dpll_hw_state,
13207                                           sizeof(dpll_hw_state)),
13208                         "pll hw state mismatch\n");
13209 }
13210
13211 static void
13212 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13213                          struct drm_crtc_state *old_crtc_state,
13214                          struct drm_crtc_state *new_crtc_state)
13215 {
13216         struct drm_i915_private *dev_priv = dev->dev_private;
13217         struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13218         struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13219
13220         if (new_state->shared_dpll)
13221                 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13222
13223         if (old_state->shared_dpll &&
13224             old_state->shared_dpll != new_state->shared_dpll) {
13225                 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13226                 struct intel_shared_dpll *pll = old_state->shared_dpll;
13227
13228                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13229                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13230                                 pipe_name(drm_crtc_index(crtc)));
13231                 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13232                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13233                                 pipe_name(drm_crtc_index(crtc)));
13234         }
13235 }
13236
13237 static void
13238 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13239                          struct drm_crtc_state *old_state,
13240                          struct drm_crtc_state *new_state)
13241 {
13242         if (!needs_modeset(new_state) &&
13243             !to_intel_crtc_state(new_state)->update_pipe)
13244                 return;
13245
13246         verify_wm_state(crtc, new_state);
13247         verify_connector_state(crtc->dev, crtc);
13248         verify_crtc_state(crtc, old_state, new_state);
13249         verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13250 }
13251
13252 static void
13253 verify_disabled_dpll_state(struct drm_device *dev)
13254 {
13255         struct drm_i915_private *dev_priv = dev->dev_private;
13256         int i;
13257
13258         for (i = 0; i < dev_priv->num_shared_dpll; i++)
13259                 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13260 }
13261
13262 static void
13263 intel_modeset_verify_disabled(struct drm_device *dev)
13264 {
13265         verify_encoder_state(dev);
13266         verify_connector_state(dev, NULL);
13267         verify_disabled_dpll_state(dev);
13268 }
13269
13270 static void update_scanline_offset(struct intel_crtc *crtc)
13271 {
13272         struct drm_device *dev = crtc->base.dev;
13273
13274         /*
13275          * The scanline counter increments at the leading edge of hsync.
13276          *
13277          * On most platforms it starts counting from vtotal-1 on the
13278          * first active line. That means the scanline counter value is
13279          * always one less than what we would expect. Ie. just after
13280          * start of vblank, which also occurs at start of hsync (on the
13281          * last active line), the scanline counter will read vblank_start-1.
13282          *
13283          * On gen2 the scanline counter starts counting from 1 instead
13284          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13285          * to keep the value positive), instead of adding one.
13286          *
13287          * On HSW+ the behaviour of the scanline counter depends on the output
13288          * type. For DP ports it behaves like most other platforms, but on HDMI
13289          * there's an extra 1 line difference. So we need to add two instead of
13290          * one to the value.
13291          */
13292         if (IS_GEN2(dev)) {
13293                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13294                 int vtotal;
13295
13296                 vtotal = adjusted_mode->crtc_vtotal;
13297                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13298                         vtotal /= 2;
13299
13300                 crtc->scanline_offset = vtotal - 1;
13301         } else if (HAS_DDI(dev) &&
13302                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13303                 crtc->scanline_offset = 2;
13304         } else
13305                 crtc->scanline_offset = 1;
13306 }
13307
13308 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13309 {
13310         struct drm_device *dev = state->dev;
13311         struct drm_i915_private *dev_priv = to_i915(dev);
13312         struct intel_shared_dpll_config *shared_dpll = NULL;
13313         struct drm_crtc *crtc;
13314         struct drm_crtc_state *crtc_state;
13315         int i;
13316
13317         if (!dev_priv->display.crtc_compute_clock)
13318                 return;
13319
13320         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13321                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13322                 struct intel_shared_dpll *old_dpll =
13323                         to_intel_crtc_state(crtc->state)->shared_dpll;
13324
13325                 if (!needs_modeset(crtc_state))
13326                         continue;
13327
13328                 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13329
13330                 if (!old_dpll)
13331                         continue;
13332
13333                 if (!shared_dpll)
13334                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13335
13336                 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13337         }
13338 }
13339
13340 /*
13341  * This implements the workaround described in the "notes" section of the mode
13342  * set sequence documentation. When going from no pipes or single pipe to
13343  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13344  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13345  */
13346 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13347 {
13348         struct drm_crtc_state *crtc_state;
13349         struct intel_crtc *intel_crtc;
13350         struct drm_crtc *crtc;
13351         struct intel_crtc_state *first_crtc_state = NULL;
13352         struct intel_crtc_state *other_crtc_state = NULL;
13353         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13354         int i;
13355
13356         /* look at all crtc's that are going to be enabled in during modeset */
13357         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13358                 intel_crtc = to_intel_crtc(crtc);
13359
13360                 if (!crtc_state->active || !needs_modeset(crtc_state))
13361                         continue;
13362
13363                 if (first_crtc_state) {
13364                         other_crtc_state = to_intel_crtc_state(crtc_state);
13365                         break;
13366                 } else {
13367                         first_crtc_state = to_intel_crtc_state(crtc_state);
13368                         first_pipe = intel_crtc->pipe;
13369                 }
13370         }
13371
13372         /* No workaround needed? */
13373         if (!first_crtc_state)
13374                 return 0;
13375
13376         /* w/a possibly needed, check how many crtc's are already enabled. */
13377         for_each_intel_crtc(state->dev, intel_crtc) {
13378                 struct intel_crtc_state *pipe_config;
13379
13380                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13381                 if (IS_ERR(pipe_config))
13382                         return PTR_ERR(pipe_config);
13383
13384                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13385
13386                 if (!pipe_config->base.active ||
13387                     needs_modeset(&pipe_config->base))
13388                         continue;
13389
13390                 /* 2 or more enabled crtcs means no need for w/a */
13391                 if (enabled_pipe != INVALID_PIPE)
13392                         return 0;
13393
13394                 enabled_pipe = intel_crtc->pipe;
13395         }
13396
13397         if (enabled_pipe != INVALID_PIPE)
13398                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13399         else if (other_crtc_state)
13400                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13401
13402         return 0;
13403 }
13404
13405 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13406 {
13407         struct drm_crtc *crtc;
13408         struct drm_crtc_state *crtc_state;
13409         int ret = 0;
13410
13411         /* add all active pipes to the state */
13412         for_each_crtc(state->dev, crtc) {
13413                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13414                 if (IS_ERR(crtc_state))
13415                         return PTR_ERR(crtc_state);
13416
13417                 if (!crtc_state->active || needs_modeset(crtc_state))
13418                         continue;
13419
13420                 crtc_state->mode_changed = true;
13421
13422                 ret = drm_atomic_add_affected_connectors(state, crtc);
13423                 if (ret)
13424                         break;
13425
13426                 ret = drm_atomic_add_affected_planes(state, crtc);
13427                 if (ret)
13428                         break;
13429         }
13430
13431         return ret;
13432 }
13433
13434 static int intel_modeset_checks(struct drm_atomic_state *state)
13435 {
13436         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13437         struct drm_i915_private *dev_priv = state->dev->dev_private;
13438         struct drm_crtc *crtc;
13439         struct drm_crtc_state *crtc_state;
13440         int ret = 0, i;
13441
13442         if (!check_digital_port_conflicts(state)) {
13443                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13444                 return -EINVAL;
13445         }
13446
13447         intel_state->modeset = true;
13448         intel_state->active_crtcs = dev_priv->active_crtcs;
13449
13450         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13451                 if (crtc_state->active)
13452                         intel_state->active_crtcs |= 1 << i;
13453                 else
13454                         intel_state->active_crtcs &= ~(1 << i);
13455
13456                 if (crtc_state->active != crtc->state->active)
13457                         intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13458         }
13459
13460         /*
13461          * See if the config requires any additional preparation, e.g.
13462          * to adjust global state with pipes off.  We need to do this
13463          * here so we can get the modeset_pipe updated config for the new
13464          * mode set on this crtc.  For other crtcs we need to use the
13465          * adjusted_mode bits in the crtc directly.
13466          */
13467         if (dev_priv->display.modeset_calc_cdclk) {
13468                 if (!intel_state->cdclk_pll_vco)
13469                         intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
13470                 if (!intel_state->cdclk_pll_vco)
13471                         intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
13472
13473                 ret = dev_priv->display.modeset_calc_cdclk(state);
13474                 if (ret < 0)
13475                         return ret;
13476
13477                 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13478                     intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
13479                         ret = intel_modeset_all_pipes(state);
13480
13481                 if (ret < 0)
13482                         return ret;
13483
13484                 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13485                               intel_state->cdclk, intel_state->dev_cdclk);
13486         } else
13487                 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13488
13489         intel_modeset_clear_plls(state);
13490
13491         if (IS_HASWELL(dev_priv))
13492                 return haswell_mode_set_planes_workaround(state);
13493
13494         return 0;
13495 }
13496
13497 /*
13498  * Handle calculation of various watermark data at the end of the atomic check
13499  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13500  * handlers to ensure that all derived state has been updated.
13501  */
13502 static int calc_watermark_data(struct drm_atomic_state *state)
13503 {
13504         struct drm_device *dev = state->dev;
13505         struct drm_i915_private *dev_priv = to_i915(dev);
13506
13507         /* Is there platform-specific watermark information to calculate? */
13508         if (dev_priv->display.compute_global_watermarks)
13509                 return dev_priv->display.compute_global_watermarks(state);
13510
13511         return 0;
13512 }
13513
13514 /**
13515  * intel_atomic_check - validate state object
13516  * @dev: drm device
13517  * @state: state to validate
13518  */
13519 static int intel_atomic_check(struct drm_device *dev,
13520                               struct drm_atomic_state *state)
13521 {
13522         struct drm_i915_private *dev_priv = to_i915(dev);
13523         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13524         struct drm_crtc *crtc;
13525         struct drm_crtc_state *crtc_state;
13526         int ret, i;
13527         bool any_ms = false;
13528
13529         ret = drm_atomic_helper_check_modeset(dev, state);
13530         if (ret)
13531                 return ret;
13532
13533         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13534                 struct intel_crtc_state *pipe_config =
13535                         to_intel_crtc_state(crtc_state);
13536
13537                 /* Catch I915_MODE_FLAG_INHERITED */
13538                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13539                         crtc_state->mode_changed = true;
13540
13541                 if (!needs_modeset(crtc_state))
13542                         continue;
13543
13544                 if (!crtc_state->enable) {
13545                         any_ms = true;
13546                         continue;
13547                 }
13548
13549                 /* FIXME: For only active_changed we shouldn't need to do any
13550                  * state recomputation at all. */
13551
13552                 ret = drm_atomic_add_affected_connectors(state, crtc);
13553                 if (ret)
13554                         return ret;
13555
13556                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13557                 if (ret) {
13558                         intel_dump_pipe_config(to_intel_crtc(crtc),
13559                                                pipe_config, "[failed]");
13560                         return ret;
13561                 }
13562
13563                 if (i915.fastboot &&
13564                     intel_pipe_config_compare(dev,
13565                                         to_intel_crtc_state(crtc->state),
13566                                         pipe_config, true)) {
13567                         crtc_state->mode_changed = false;
13568                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13569                 }
13570
13571                 if (needs_modeset(crtc_state))
13572                         any_ms = true;
13573
13574                 ret = drm_atomic_add_affected_planes(state, crtc);
13575                 if (ret)
13576                         return ret;
13577
13578                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13579                                        needs_modeset(crtc_state) ?
13580                                        "[modeset]" : "[fastset]");
13581         }
13582
13583         if (any_ms) {
13584                 ret = intel_modeset_checks(state);
13585
13586                 if (ret)
13587                         return ret;
13588         } else
13589                 intel_state->cdclk = dev_priv->cdclk_freq;
13590
13591         ret = drm_atomic_helper_check_planes(dev, state);
13592         if (ret)
13593                 return ret;
13594
13595         intel_fbc_choose_crtc(dev_priv, state);
13596         return calc_watermark_data(state);
13597 }
13598
13599 static int intel_atomic_prepare_commit(struct drm_device *dev,
13600                                        struct drm_atomic_state *state,
13601                                        bool nonblock)
13602 {
13603         struct drm_i915_private *dev_priv = dev->dev_private;
13604         struct drm_plane_state *plane_state;
13605         struct drm_crtc_state *crtc_state;
13606         struct drm_plane *plane;
13607         struct drm_crtc *crtc;
13608         int i, ret;
13609
13610         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13611                 if (state->legacy_cursor_update)
13612                         continue;
13613
13614                 ret = intel_crtc_wait_for_pending_flips(crtc);
13615                 if (ret)
13616                         return ret;
13617
13618                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13619                         flush_workqueue(dev_priv->wq);
13620         }
13621
13622         ret = mutex_lock_interruptible(&dev->struct_mutex);
13623         if (ret)
13624                 return ret;
13625
13626         ret = drm_atomic_helper_prepare_planes(dev, state);
13627         mutex_unlock(&dev->struct_mutex);
13628
13629         if (!ret && !nonblock) {
13630                 for_each_plane_in_state(state, plane, plane_state, i) {
13631                         struct intel_plane_state *intel_plane_state =
13632                                 to_intel_plane_state(plane_state);
13633
13634                         if (!intel_plane_state->wait_req)
13635                                 continue;
13636
13637                         ret = __i915_wait_request(intel_plane_state->wait_req,
13638                                                   true, NULL, NULL);
13639                         if (ret) {
13640                                 /* Any hang should be swallowed by the wait */
13641                                 WARN_ON(ret == -EIO);
13642                                 mutex_lock(&dev->struct_mutex);
13643                                 drm_atomic_helper_cleanup_planes(dev, state);
13644                                 mutex_unlock(&dev->struct_mutex);
13645                                 break;
13646                         }
13647                 }
13648         }
13649
13650         return ret;
13651 }
13652
13653 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
13654 {
13655         struct drm_device *dev = crtc->base.dev;
13656
13657         if (!dev->max_vblank_count)
13658                 return drm_accurate_vblank_count(&crtc->base);
13659
13660         return dev->driver->get_vblank_counter(dev, crtc->pipe);
13661 }
13662
13663 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13664                                           struct drm_i915_private *dev_priv,
13665                                           unsigned crtc_mask)
13666 {
13667         unsigned last_vblank_count[I915_MAX_PIPES];
13668         enum pipe pipe;
13669         int ret;
13670
13671         if (!crtc_mask)
13672                 return;
13673
13674         for_each_pipe(dev_priv, pipe) {
13675                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13676
13677                 if (!((1 << pipe) & crtc_mask))
13678                         continue;
13679
13680                 ret = drm_crtc_vblank_get(crtc);
13681                 if (WARN_ON(ret != 0)) {
13682                         crtc_mask &= ~(1 << pipe);
13683                         continue;
13684                 }
13685
13686                 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13687         }
13688
13689         for_each_pipe(dev_priv, pipe) {
13690                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13691                 long lret;
13692
13693                 if (!((1 << pipe) & crtc_mask))
13694                         continue;
13695
13696                 lret = wait_event_timeout(dev->vblank[pipe].queue,
13697                                 last_vblank_count[pipe] !=
13698                                         drm_crtc_vblank_count(crtc),
13699                                 msecs_to_jiffies(50));
13700
13701                 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
13702
13703                 drm_crtc_vblank_put(crtc);
13704         }
13705 }
13706
13707 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13708 {
13709         /* fb updated, need to unpin old fb */
13710         if (crtc_state->fb_changed)
13711                 return true;
13712
13713         /* wm changes, need vblank before final wm's */
13714         if (crtc_state->update_wm_post)
13715                 return true;
13716
13717         /*
13718          * cxsr is re-enabled after vblank.
13719          * This is already handled by crtc_state->update_wm_post,
13720          * but added for clarity.
13721          */
13722         if (crtc_state->disable_cxsr)
13723                 return true;
13724
13725         return false;
13726 }
13727
13728 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
13729 {
13730         struct drm_device *dev = state->dev;
13731         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13732         struct drm_i915_private *dev_priv = dev->dev_private;
13733         struct drm_crtc_state *old_crtc_state;
13734         struct drm_crtc *crtc;
13735         struct intel_crtc_state *intel_cstate;
13736         struct drm_plane *plane;
13737         struct drm_plane_state *plane_state;
13738         bool hw_check = intel_state->modeset;
13739         unsigned long put_domains[I915_MAX_PIPES] = {};
13740         unsigned crtc_vblank_mask = 0;
13741         int i, ret;
13742
13743         for_each_plane_in_state(state, plane, plane_state, i) {
13744                 struct intel_plane_state *intel_plane_state =
13745                         to_intel_plane_state(plane_state);
13746
13747                 if (!intel_plane_state->wait_req)
13748                         continue;
13749
13750                 ret = __i915_wait_request(intel_plane_state->wait_req,
13751                                           true, NULL, NULL);
13752                 /* EIO should be eaten, and we can't get interrupted in the
13753                  * worker, and blocking commits have waited already. */
13754                 WARN_ON(ret);
13755         }
13756
13757         drm_atomic_helper_wait_for_dependencies(state);
13758
13759         if (intel_state->modeset) {
13760                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13761                        sizeof(intel_state->min_pixclk));
13762                 dev_priv->active_crtcs = intel_state->active_crtcs;
13763                 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13764
13765                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13766         }
13767
13768         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13769                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13770
13771                 if (needs_modeset(crtc->state) ||
13772                     to_intel_crtc_state(crtc->state)->update_pipe) {
13773                         hw_check = true;
13774
13775                         put_domains[to_intel_crtc(crtc)->pipe] =
13776                                 modeset_get_crtc_power_domains(crtc,
13777                                         to_intel_crtc_state(crtc->state));
13778                 }
13779
13780                 if (!needs_modeset(crtc->state))
13781                         continue;
13782
13783                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13784
13785                 if (old_crtc_state->active) {
13786                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13787                         dev_priv->display.crtc_disable(crtc);
13788                         intel_crtc->active = false;
13789                         intel_fbc_disable(intel_crtc);
13790                         intel_disable_shared_dpll(intel_crtc);
13791
13792                         /*
13793                          * Underruns don't always raise
13794                          * interrupts, so check manually.
13795                          */
13796                         intel_check_cpu_fifo_underruns(dev_priv);
13797                         intel_check_pch_fifo_underruns(dev_priv);
13798
13799                         if (!crtc->state->active)
13800                                 intel_update_watermarks(crtc);
13801                 }
13802         }
13803
13804         /* Only after disabling all output pipelines that will be changed can we
13805          * update the the output configuration. */
13806         intel_modeset_update_crtc_state(state);
13807
13808         if (intel_state->modeset) {
13809                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13810
13811                 if (dev_priv->display.modeset_commit_cdclk &&
13812                     (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13813                      intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
13814                         dev_priv->display.modeset_commit_cdclk(state);
13815
13816                 intel_modeset_verify_disabled(dev);
13817         }
13818
13819         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13820         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13821                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13822                 bool modeset = needs_modeset(crtc->state);
13823                 struct intel_crtc_state *pipe_config =
13824                         to_intel_crtc_state(crtc->state);
13825
13826                 if (modeset && crtc->state->active) {
13827                         update_scanline_offset(to_intel_crtc(crtc));
13828                         dev_priv->display.crtc_enable(crtc);
13829                 }
13830
13831                 /* Complete events for now disable pipes here. */
13832                 if (modeset && !crtc->state->active && crtc->state->event) {
13833                         spin_lock_irq(&dev->event_lock);
13834                         drm_crtc_send_vblank_event(crtc, crtc->state->event);
13835                         spin_unlock_irq(&dev->event_lock);
13836
13837                         crtc->state->event = NULL;
13838                 }
13839
13840                 if (!modeset)
13841                         intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13842
13843                 if (crtc->state->active &&
13844                     drm_atomic_get_existing_plane_state(state, crtc->primary))
13845                         intel_fbc_enable(intel_crtc, pipe_config, to_intel_plane_state(crtc->primary->state));
13846
13847                 if (crtc->state->active)
13848                         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
13849
13850                 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13851                         crtc_vblank_mask |= 1 << i;
13852         }
13853
13854         /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
13855          * already, but still need the state for the delayed optimization. To
13856          * fix this:
13857          * - wrap the optimization/post_plane_update stuff into a per-crtc work.
13858          * - schedule that vblank worker _before_ calling hw_done
13859          * - at the start of commit_tail, cancel it _synchrously
13860          * - switch over to the vblank wait helper in the core after that since
13861          *   we don't need out special handling any more.
13862          */
13863         if (!state->legacy_cursor_update)
13864                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13865
13866         /*
13867          * Now that the vblank has passed, we can go ahead and program the
13868          * optimal watermarks on platforms that need two-step watermark
13869          * programming.
13870          *
13871          * TODO: Move this (and other cleanup) to an async worker eventually.
13872          */
13873         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13874                 intel_cstate = to_intel_crtc_state(crtc->state);
13875
13876                 if (dev_priv->display.optimize_watermarks)
13877                         dev_priv->display.optimize_watermarks(intel_cstate);
13878         }
13879
13880         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13881                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13882
13883                 if (put_domains[i])
13884                         modeset_put_power_domains(dev_priv, put_domains[i]);
13885
13886                 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
13887         }
13888
13889         drm_atomic_helper_commit_hw_done(state);
13890
13891         if (intel_state->modeset)
13892                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13893
13894         mutex_lock(&dev->struct_mutex);
13895         drm_atomic_helper_cleanup_planes(dev, state);
13896         mutex_unlock(&dev->struct_mutex);
13897
13898         drm_atomic_helper_commit_cleanup_done(state);
13899
13900         drm_atomic_state_free(state);
13901
13902         /* As one of the primary mmio accessors, KMS has a high likelihood
13903          * of triggering bugs in unclaimed access. After we finish
13904          * modesetting, see if an error has been flagged, and if so
13905          * enable debugging for the next modeset - and hope we catch
13906          * the culprit.
13907          *
13908          * XXX note that we assume display power is on at this point.
13909          * This might hold true now but we need to add pm helper to check
13910          * unclaimed only when the hardware is on, as atomic commits
13911          * can happen also when the device is completely off.
13912          */
13913         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13914 }
13915
13916 static void intel_atomic_commit_work(struct work_struct *work)
13917 {
13918         struct drm_atomic_state *state = container_of(work,
13919                                                       struct drm_atomic_state,
13920                                                       commit_work);
13921         intel_atomic_commit_tail(state);
13922 }
13923
13924 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
13925 {
13926         struct drm_plane_state *old_plane_state;
13927         struct drm_plane *plane;
13928         struct drm_i915_gem_object *obj, *old_obj;
13929         struct intel_plane *intel_plane;
13930         int i;
13931
13932         mutex_lock(&state->dev->struct_mutex);
13933         for_each_plane_in_state(state, plane, old_plane_state, i) {
13934                 obj = intel_fb_obj(plane->state->fb);
13935                 old_obj = intel_fb_obj(old_plane_state->fb);
13936                 intel_plane = to_intel_plane(plane);
13937
13938                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13939         }
13940         mutex_unlock(&state->dev->struct_mutex);
13941 }
13942
13943 /**
13944  * intel_atomic_commit - commit validated state object
13945  * @dev: DRM device
13946  * @state: the top-level driver state object
13947  * @nonblock: nonblocking commit
13948  *
13949  * This function commits a top-level state object that has been validated
13950  * with drm_atomic_helper_check().
13951  *
13952  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13953  * nonblocking commits are only safe for pure plane updates. Everything else
13954  * should work though.
13955  *
13956  * RETURNS
13957  * Zero for success or -errno.
13958  */
13959 static int intel_atomic_commit(struct drm_device *dev,
13960                                struct drm_atomic_state *state,
13961                                bool nonblock)
13962 {
13963         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13964         struct drm_i915_private *dev_priv = dev->dev_private;
13965         int ret = 0;
13966
13967         if (intel_state->modeset && nonblock) {
13968                 DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n");
13969                 return -EINVAL;
13970         }
13971
13972         ret = drm_atomic_helper_setup_commit(state, nonblock);
13973         if (ret)
13974                 return ret;
13975
13976         INIT_WORK(&state->commit_work, intel_atomic_commit_work);
13977
13978         ret = intel_atomic_prepare_commit(dev, state, nonblock);
13979         if (ret) {
13980                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13981                 return ret;
13982         }
13983
13984         drm_atomic_helper_swap_state(state, true);
13985         dev_priv->wm.distrust_bios_wm = false;
13986         dev_priv->wm.skl_results = intel_state->wm_results;
13987         intel_shared_dpll_commit(state);
13988         intel_atomic_track_fbs(state);
13989
13990         if (nonblock)
13991                 queue_work(system_unbound_wq, &state->commit_work);
13992         else
13993                 intel_atomic_commit_tail(state);
13994
13995         return 0;
13996 }
13997
13998 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13999 {
14000         struct drm_device *dev = crtc->dev;
14001         struct drm_atomic_state *state;
14002         struct drm_crtc_state *crtc_state;
14003         int ret;
14004
14005         state = drm_atomic_state_alloc(dev);
14006         if (!state) {
14007                 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14008                               crtc->base.id, crtc->name);
14009                 return;
14010         }
14011
14012         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
14013
14014 retry:
14015         crtc_state = drm_atomic_get_crtc_state(state, crtc);
14016         ret = PTR_ERR_OR_ZERO(crtc_state);
14017         if (!ret) {
14018                 if (!crtc_state->active)
14019                         goto out;
14020
14021                 crtc_state->mode_changed = true;
14022                 ret = drm_atomic_commit(state);
14023         }
14024
14025         if (ret == -EDEADLK) {
14026                 drm_atomic_state_clear(state);
14027                 drm_modeset_backoff(state->acquire_ctx);
14028                 goto retry;
14029         }
14030
14031         if (ret)
14032 out:
14033                 drm_atomic_state_free(state);
14034 }
14035
14036 #undef for_each_intel_crtc_masked
14037
14038 static const struct drm_crtc_funcs intel_crtc_funcs = {
14039         .gamma_set = drm_atomic_helper_legacy_gamma_set,
14040         .set_config = drm_atomic_helper_set_config,
14041         .set_property = drm_atomic_helper_crtc_set_property,
14042         .destroy = intel_crtc_destroy,
14043         .page_flip = intel_crtc_page_flip,
14044         .atomic_duplicate_state = intel_crtc_duplicate_state,
14045         .atomic_destroy_state = intel_crtc_destroy_state,
14046 };
14047
14048 /**
14049  * intel_prepare_plane_fb - Prepare fb for usage on plane
14050  * @plane: drm plane to prepare for
14051  * @fb: framebuffer to prepare for presentation
14052  *
14053  * Prepares a framebuffer for usage on a display plane.  Generally this
14054  * involves pinning the underlying object and updating the frontbuffer tracking
14055  * bits.  Some older platforms need special physical address handling for
14056  * cursor planes.
14057  *
14058  * Must be called with struct_mutex held.
14059  *
14060  * Returns 0 on success, negative error code on failure.
14061  */
14062 int
14063 intel_prepare_plane_fb(struct drm_plane *plane,
14064                        const struct drm_plane_state *new_state)
14065 {
14066         struct drm_device *dev = plane->dev;
14067         struct drm_framebuffer *fb = new_state->fb;
14068         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14069         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14070         struct reservation_object *resv;
14071         int ret = 0;
14072
14073         if (!obj && !old_obj)
14074                 return 0;
14075
14076         if (old_obj) {
14077                 struct drm_crtc_state *crtc_state =
14078                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
14079
14080                 /* Big Hammer, we also need to ensure that any pending
14081                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14082                  * current scanout is retired before unpinning the old
14083                  * framebuffer. Note that we rely on userspace rendering
14084                  * into the buffer attached to the pipe they are waiting
14085                  * on. If not, userspace generates a GPU hang with IPEHR
14086                  * point to the MI_WAIT_FOR_EVENT.
14087                  *
14088                  * This should only fail upon a hung GPU, in which case we
14089                  * can safely continue.
14090                  */
14091                 if (needs_modeset(crtc_state))
14092                         ret = i915_gem_object_wait_rendering(old_obj, true);
14093                 if (ret) {
14094                         /* GPU hangs should have been swallowed by the wait */
14095                         WARN_ON(ret == -EIO);
14096                         return ret;
14097                 }
14098         }
14099
14100         if (!obj)
14101                 return 0;
14102
14103         /* For framebuffer backed by dmabuf, wait for fence */
14104         resv = i915_gem_object_get_dmabuf_resv(obj);
14105         if (resv) {
14106                 long lret;
14107
14108                 lret = reservation_object_wait_timeout_rcu(resv, false, true,
14109                                                            MAX_SCHEDULE_TIMEOUT);
14110                 if (lret == -ERESTARTSYS)
14111                         return lret;
14112
14113                 WARN(lret < 0, "waiting returns %li\n", lret);
14114         }
14115
14116         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14117             INTEL_INFO(dev)->cursor_needs_physical) {
14118                 int align = IS_I830(dev) ? 16 * 1024 : 256;
14119                 ret = i915_gem_object_attach_phys(obj, align);
14120                 if (ret)
14121                         DRM_DEBUG_KMS("failed to attach phys object\n");
14122         } else {
14123                 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14124         }
14125
14126         if (ret == 0) {
14127                 struct intel_plane_state *plane_state =
14128                         to_intel_plane_state(new_state);
14129
14130                 i915_gem_request_assign(&plane_state->wait_req,
14131                                         obj->last_write_req);
14132         }
14133
14134         return ret;
14135 }
14136
14137 /**
14138  * intel_cleanup_plane_fb - Cleans up an fb after plane use
14139  * @plane: drm plane to clean up for
14140  * @fb: old framebuffer that was on plane
14141  *
14142  * Cleans up a framebuffer that has just been removed from a plane.
14143  *
14144  * Must be called with struct_mutex held.
14145  */
14146 void
14147 intel_cleanup_plane_fb(struct drm_plane *plane,
14148                        const struct drm_plane_state *old_state)
14149 {
14150         struct drm_device *dev = plane->dev;
14151         struct intel_plane_state *old_intel_state;
14152         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14153         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
14154
14155         old_intel_state = to_intel_plane_state(old_state);
14156
14157         if (!obj && !old_obj)
14158                 return;
14159
14160         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14161             !INTEL_INFO(dev)->cursor_needs_physical))
14162                 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
14163
14164         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
14165 }
14166
14167 int
14168 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14169 {
14170         int max_scale;
14171         struct drm_device *dev;
14172         struct drm_i915_private *dev_priv;
14173         int crtc_clock, cdclk;
14174
14175         if (!intel_crtc || !crtc_state->base.enable)
14176                 return DRM_PLANE_HELPER_NO_SCALING;
14177
14178         dev = intel_crtc->base.dev;
14179         dev_priv = dev->dev_private;
14180         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14181         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14182
14183         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14184                 return DRM_PLANE_HELPER_NO_SCALING;
14185
14186         /*
14187          * skl max scale is lower of:
14188          *    close to 3 but not 3, -1 is for that purpose
14189          *            or
14190          *    cdclk/crtc_clock
14191          */
14192         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14193
14194         return max_scale;
14195 }
14196
14197 static int
14198 intel_check_primary_plane(struct drm_plane *plane,
14199                           struct intel_crtc_state *crtc_state,
14200                           struct intel_plane_state *state)
14201 {
14202         struct drm_crtc *crtc = state->base.crtc;
14203         struct drm_framebuffer *fb = state->base.fb;
14204         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14205         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14206         bool can_position = false;
14207
14208         if (INTEL_INFO(plane->dev)->gen >= 9) {
14209                 /* use scaler when colorkey is not required */
14210                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14211                         min_scale = 1;
14212                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14213                 }
14214                 can_position = true;
14215         }
14216
14217         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14218                                              &state->dst, &state->clip,
14219                                              state->base.rotation,
14220                                              min_scale, max_scale,
14221                                              can_position, true,
14222                                              &state->visible);
14223 }
14224
14225 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14226                                     struct drm_crtc_state *old_crtc_state)
14227 {
14228         struct drm_device *dev = crtc->dev;
14229         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14230         struct intel_crtc_state *old_intel_state =
14231                 to_intel_crtc_state(old_crtc_state);
14232         bool modeset = needs_modeset(crtc->state);
14233
14234         /* Perform vblank evasion around commit operation */
14235         intel_pipe_update_start(intel_crtc);
14236
14237         if (modeset)
14238                 return;
14239
14240         if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14241                 intel_color_set_csc(crtc->state);
14242                 intel_color_load_luts(crtc->state);
14243         }
14244
14245         if (to_intel_crtc_state(crtc->state)->update_pipe)
14246                 intel_update_pipe_config(intel_crtc, old_intel_state);
14247         else if (INTEL_INFO(dev)->gen >= 9)
14248                 skl_detach_scalers(intel_crtc);
14249 }
14250
14251 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14252                                      struct drm_crtc_state *old_crtc_state)
14253 {
14254         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14255
14256         intel_pipe_update_end(intel_crtc, NULL);
14257 }
14258
14259 /**
14260  * intel_plane_destroy - destroy a plane
14261  * @plane: plane to destroy
14262  *
14263  * Common destruction function for all types of planes (primary, cursor,
14264  * sprite).
14265  */
14266 void intel_plane_destroy(struct drm_plane *plane)
14267 {
14268         if (!plane)
14269                 return;
14270
14271         drm_plane_cleanup(plane);
14272         kfree(to_intel_plane(plane));
14273 }
14274
14275 const struct drm_plane_funcs intel_plane_funcs = {
14276         .update_plane = drm_atomic_helper_update_plane,
14277         .disable_plane = drm_atomic_helper_disable_plane,
14278         .destroy = intel_plane_destroy,
14279         .set_property = drm_atomic_helper_plane_set_property,
14280         .atomic_get_property = intel_plane_atomic_get_property,
14281         .atomic_set_property = intel_plane_atomic_set_property,
14282         .atomic_duplicate_state = intel_plane_duplicate_state,
14283         .atomic_destroy_state = intel_plane_destroy_state,
14284
14285 };
14286
14287 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14288                                                     int pipe)
14289 {
14290         struct intel_plane *primary = NULL;
14291         struct intel_plane_state *state = NULL;
14292         const uint32_t *intel_primary_formats;
14293         unsigned int num_formats;
14294         int ret;
14295
14296         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14297         if (!primary)
14298                 goto fail;
14299
14300         state = intel_create_plane_state(&primary->base);
14301         if (!state)
14302                 goto fail;
14303         primary->base.state = &state->base;
14304
14305         primary->can_scale = false;
14306         primary->max_downscale = 1;
14307         if (INTEL_INFO(dev)->gen >= 9) {
14308                 primary->can_scale = true;
14309                 state->scaler_id = -1;
14310         }
14311         primary->pipe = pipe;
14312         primary->plane = pipe;
14313         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14314         primary->check_plane = intel_check_primary_plane;
14315         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14316                 primary->plane = !pipe;
14317
14318         if (INTEL_INFO(dev)->gen >= 9) {
14319                 intel_primary_formats = skl_primary_formats;
14320                 num_formats = ARRAY_SIZE(skl_primary_formats);
14321
14322                 primary->update_plane = skylake_update_primary_plane;
14323                 primary->disable_plane = skylake_disable_primary_plane;
14324         } else if (HAS_PCH_SPLIT(dev)) {
14325                 intel_primary_formats = i965_primary_formats;
14326                 num_formats = ARRAY_SIZE(i965_primary_formats);
14327
14328                 primary->update_plane = ironlake_update_primary_plane;
14329                 primary->disable_plane = i9xx_disable_primary_plane;
14330         } else if (INTEL_INFO(dev)->gen >= 4) {
14331                 intel_primary_formats = i965_primary_formats;
14332                 num_formats = ARRAY_SIZE(i965_primary_formats);
14333
14334                 primary->update_plane = i9xx_update_primary_plane;
14335                 primary->disable_plane = i9xx_disable_primary_plane;
14336         } else {
14337                 intel_primary_formats = i8xx_primary_formats;
14338                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14339
14340                 primary->update_plane = i9xx_update_primary_plane;
14341                 primary->disable_plane = i9xx_disable_primary_plane;
14342         }
14343
14344         if (INTEL_INFO(dev)->gen >= 9)
14345                 ret = drm_universal_plane_init(dev, &primary->base, 0,
14346                                                &intel_plane_funcs,
14347                                                intel_primary_formats, num_formats,
14348                                                DRM_PLANE_TYPE_PRIMARY,
14349                                                "plane 1%c", pipe_name(pipe));
14350         else if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
14351                 ret = drm_universal_plane_init(dev, &primary->base, 0,
14352                                                &intel_plane_funcs,
14353                                                intel_primary_formats, num_formats,
14354                                                DRM_PLANE_TYPE_PRIMARY,
14355                                                "primary %c", pipe_name(pipe));
14356         else
14357                 ret = drm_universal_plane_init(dev, &primary->base, 0,
14358                                                &intel_plane_funcs,
14359                                                intel_primary_formats, num_formats,
14360                                                DRM_PLANE_TYPE_PRIMARY,
14361                                                "plane %c", plane_name(primary->plane));
14362         if (ret)
14363                 goto fail;
14364
14365         if (INTEL_INFO(dev)->gen >= 4)
14366                 intel_create_rotation_property(dev, primary);
14367
14368         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14369
14370         return &primary->base;
14371
14372 fail:
14373         kfree(state);
14374         kfree(primary);
14375
14376         return NULL;
14377 }
14378
14379 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14380 {
14381         if (!dev->mode_config.rotation_property) {
14382                 unsigned long flags = BIT(DRM_ROTATE_0) |
14383                         BIT(DRM_ROTATE_180);
14384
14385                 if (INTEL_INFO(dev)->gen >= 9)
14386                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14387
14388                 dev->mode_config.rotation_property =
14389                         drm_mode_create_rotation_property(dev, flags);
14390         }
14391         if (dev->mode_config.rotation_property)
14392                 drm_object_attach_property(&plane->base.base,
14393                                 dev->mode_config.rotation_property,
14394                                 plane->base.state->rotation);
14395 }
14396
14397 static int
14398 intel_check_cursor_plane(struct drm_plane *plane,
14399                          struct intel_crtc_state *crtc_state,
14400                          struct intel_plane_state *state)
14401 {
14402         struct drm_crtc *crtc = crtc_state->base.crtc;
14403         struct drm_framebuffer *fb = state->base.fb;
14404         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14405         enum pipe pipe = to_intel_plane(plane)->pipe;
14406         unsigned stride;
14407         int ret;
14408
14409         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14410                                             &state->dst, &state->clip,
14411                                             state->base.rotation,
14412                                             DRM_PLANE_HELPER_NO_SCALING,
14413                                             DRM_PLANE_HELPER_NO_SCALING,
14414                                             true, true, &state->visible);
14415         if (ret)
14416                 return ret;
14417
14418         /* if we want to turn off the cursor ignore width and height */
14419         if (!obj)
14420                 return 0;
14421
14422         /* Check for which cursor types we support */
14423         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14424                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14425                           state->base.crtc_w, state->base.crtc_h);
14426                 return -EINVAL;
14427         }
14428
14429         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14430         if (obj->base.size < stride * state->base.crtc_h) {
14431                 DRM_DEBUG_KMS("buffer is too small\n");
14432                 return -ENOMEM;
14433         }
14434
14435         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14436                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14437                 return -EINVAL;
14438         }
14439
14440         /*
14441          * There's something wrong with the cursor on CHV pipe C.
14442          * If it straddles the left edge of the screen then
14443          * moving it away from the edge or disabling it often
14444          * results in a pipe underrun, and often that can lead to
14445          * dead pipe (constant underrun reported, and it scans
14446          * out just a solid color). To recover from that, the
14447          * display power well must be turned off and on again.
14448          * Refuse the put the cursor into that compromised position.
14449          */
14450         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14451             state->visible && state->base.crtc_x < 0) {
14452                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14453                 return -EINVAL;
14454         }
14455
14456         return 0;
14457 }
14458
14459 static void
14460 intel_disable_cursor_plane(struct drm_plane *plane,
14461                            struct drm_crtc *crtc)
14462 {
14463         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14464
14465         intel_crtc->cursor_addr = 0;
14466         intel_crtc_update_cursor(crtc, NULL);
14467 }
14468
14469 static void
14470 intel_update_cursor_plane(struct drm_plane *plane,
14471                           const struct intel_crtc_state *crtc_state,
14472                           const struct intel_plane_state *state)
14473 {
14474         struct drm_crtc *crtc = crtc_state->base.crtc;
14475         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14476         struct drm_device *dev = plane->dev;
14477         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14478         uint32_t addr;
14479
14480         if (!obj)
14481                 addr = 0;
14482         else if (!INTEL_INFO(dev)->cursor_needs_physical)
14483                 addr = i915_gem_obj_ggtt_offset(obj);
14484         else
14485                 addr = obj->phys_handle->busaddr;
14486
14487         intel_crtc->cursor_addr = addr;
14488         intel_crtc_update_cursor(crtc, state);
14489 }
14490
14491 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14492                                                    int pipe)
14493 {
14494         struct intel_plane *cursor = NULL;
14495         struct intel_plane_state *state = NULL;
14496         int ret;
14497
14498         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14499         if (!cursor)
14500                 goto fail;
14501
14502         state = intel_create_plane_state(&cursor->base);
14503         if (!state)
14504                 goto fail;
14505         cursor->base.state = &state->base;
14506
14507         cursor->can_scale = false;
14508         cursor->max_downscale = 1;
14509         cursor->pipe = pipe;
14510         cursor->plane = pipe;
14511         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14512         cursor->check_plane = intel_check_cursor_plane;
14513         cursor->update_plane = intel_update_cursor_plane;
14514         cursor->disable_plane = intel_disable_cursor_plane;
14515
14516         ret = drm_universal_plane_init(dev, &cursor->base, 0,
14517                                        &intel_plane_funcs,
14518                                        intel_cursor_formats,
14519                                        ARRAY_SIZE(intel_cursor_formats),
14520                                        DRM_PLANE_TYPE_CURSOR,
14521                                        "cursor %c", pipe_name(pipe));
14522         if (ret)
14523                 goto fail;
14524
14525         if (INTEL_INFO(dev)->gen >= 4) {
14526                 if (!dev->mode_config.rotation_property)
14527                         dev->mode_config.rotation_property =
14528                                 drm_mode_create_rotation_property(dev,
14529                                                         BIT(DRM_ROTATE_0) |
14530                                                         BIT(DRM_ROTATE_180));
14531                 if (dev->mode_config.rotation_property)
14532                         drm_object_attach_property(&cursor->base.base,
14533                                 dev->mode_config.rotation_property,
14534                                 state->base.rotation);
14535         }
14536
14537         if (INTEL_INFO(dev)->gen >=9)
14538                 state->scaler_id = -1;
14539
14540         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14541
14542         return &cursor->base;
14543
14544 fail:
14545         kfree(state);
14546         kfree(cursor);
14547
14548         return NULL;
14549 }
14550
14551 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14552         struct intel_crtc_state *crtc_state)
14553 {
14554         int i;
14555         struct intel_scaler *intel_scaler;
14556         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14557
14558         for (i = 0; i < intel_crtc->num_scalers; i++) {
14559                 intel_scaler = &scaler_state->scalers[i];
14560                 intel_scaler->in_use = 0;
14561                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14562         }
14563
14564         scaler_state->scaler_id = -1;
14565 }
14566
14567 static void intel_crtc_init(struct drm_device *dev, int pipe)
14568 {
14569         struct drm_i915_private *dev_priv = dev->dev_private;
14570         struct intel_crtc *intel_crtc;
14571         struct intel_crtc_state *crtc_state = NULL;
14572         struct drm_plane *primary = NULL;
14573         struct drm_plane *cursor = NULL;
14574         int ret;
14575
14576         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14577         if (intel_crtc == NULL)
14578                 return;
14579
14580         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14581         if (!crtc_state)
14582                 goto fail;
14583         intel_crtc->config = crtc_state;
14584         intel_crtc->base.state = &crtc_state->base;
14585         crtc_state->base.crtc = &intel_crtc->base;
14586
14587         /* initialize shared scalers */
14588         if (INTEL_INFO(dev)->gen >= 9) {
14589                 if (pipe == PIPE_C)
14590                         intel_crtc->num_scalers = 1;
14591                 else
14592                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14593
14594                 skl_init_scalers(dev, intel_crtc, crtc_state);
14595         }
14596
14597         primary = intel_primary_plane_create(dev, pipe);
14598         if (!primary)
14599                 goto fail;
14600
14601         cursor = intel_cursor_plane_create(dev, pipe);
14602         if (!cursor)
14603                 goto fail;
14604
14605         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14606                                         cursor, &intel_crtc_funcs,
14607                                         "pipe %c", pipe_name(pipe));
14608         if (ret)
14609                 goto fail;
14610
14611         /*
14612          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14613          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14614          */
14615         intel_crtc->pipe = pipe;
14616         intel_crtc->plane = pipe;
14617         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14618                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14619                 intel_crtc->plane = !pipe;
14620         }
14621
14622         intel_crtc->cursor_base = ~0;
14623         intel_crtc->cursor_cntl = ~0;
14624         intel_crtc->cursor_size = ~0;
14625
14626         intel_crtc->wm.cxsr_allowed = true;
14627
14628         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14629                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14630         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14631         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14632
14633         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14634
14635         intel_color_init(&intel_crtc->base);
14636
14637         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14638         return;
14639
14640 fail:
14641         intel_plane_destroy(primary);
14642         intel_plane_destroy(cursor);
14643         kfree(crtc_state);
14644         kfree(intel_crtc);
14645 }
14646
14647 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14648 {
14649         struct drm_encoder *encoder = connector->base.encoder;
14650         struct drm_device *dev = connector->base.dev;
14651
14652         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14653
14654         if (!encoder || WARN_ON(!encoder->crtc))
14655                 return INVALID_PIPE;
14656
14657         return to_intel_crtc(encoder->crtc)->pipe;
14658 }
14659
14660 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14661                                 struct drm_file *file)
14662 {
14663         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14664         struct drm_crtc *drmmode_crtc;
14665         struct intel_crtc *crtc;
14666
14667         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14668         if (!drmmode_crtc)
14669                 return -ENOENT;
14670
14671         crtc = to_intel_crtc(drmmode_crtc);
14672         pipe_from_crtc_id->pipe = crtc->pipe;
14673
14674         return 0;
14675 }
14676
14677 static int intel_encoder_clones(struct intel_encoder *encoder)
14678 {
14679         struct drm_device *dev = encoder->base.dev;
14680         struct intel_encoder *source_encoder;
14681         int index_mask = 0;
14682         int entry = 0;
14683
14684         for_each_intel_encoder(dev, source_encoder) {
14685                 if (encoders_cloneable(encoder, source_encoder))
14686                         index_mask |= (1 << entry);
14687
14688                 entry++;
14689         }
14690
14691         return index_mask;
14692 }
14693
14694 static bool has_edp_a(struct drm_device *dev)
14695 {
14696         struct drm_i915_private *dev_priv = dev->dev_private;
14697
14698         if (!IS_MOBILE(dev))
14699                 return false;
14700
14701         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14702                 return false;
14703
14704         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14705                 return false;
14706
14707         return true;
14708 }
14709
14710 static bool intel_crt_present(struct drm_device *dev)
14711 {
14712         struct drm_i915_private *dev_priv = dev->dev_private;
14713
14714         if (INTEL_INFO(dev)->gen >= 9)
14715                 return false;
14716
14717         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14718                 return false;
14719
14720         if (IS_CHERRYVIEW(dev))
14721                 return false;
14722
14723         if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14724                 return false;
14725
14726         /* DDI E can't be used if DDI A requires 4 lanes */
14727         if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14728                 return false;
14729
14730         if (!dev_priv->vbt.int_crt_support)
14731                 return false;
14732
14733         return true;
14734 }
14735
14736 static void intel_setup_outputs(struct drm_device *dev)
14737 {
14738         struct drm_i915_private *dev_priv = dev->dev_private;
14739         struct intel_encoder *encoder;
14740         bool dpd_is_edp = false;
14741
14742         /*
14743          * intel_edp_init_connector() depends on this completing first, to
14744          * prevent the registeration of both eDP and LVDS and the incorrect
14745          * sharing of the PPS.
14746          */
14747         intel_lvds_init(dev);
14748
14749         if (intel_crt_present(dev))
14750                 intel_crt_init(dev);
14751
14752         if (IS_BROXTON(dev)) {
14753                 /*
14754                  * FIXME: Broxton doesn't support port detection via the
14755                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14756                  * detect the ports.
14757                  */
14758                 intel_ddi_init(dev, PORT_A);
14759                 intel_ddi_init(dev, PORT_B);
14760                 intel_ddi_init(dev, PORT_C);
14761
14762                 intel_dsi_init(dev);
14763         } else if (HAS_DDI(dev)) {
14764                 int found;
14765
14766                 /*
14767                  * Haswell uses DDI functions to detect digital outputs.
14768                  * On SKL pre-D0 the strap isn't connected, so we assume
14769                  * it's there.
14770                  */
14771                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14772                 /* WaIgnoreDDIAStrap: skl */
14773                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14774                         intel_ddi_init(dev, PORT_A);
14775
14776                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14777                  * register */
14778                 found = I915_READ(SFUSE_STRAP);
14779
14780                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14781                         intel_ddi_init(dev, PORT_B);
14782                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14783                         intel_ddi_init(dev, PORT_C);
14784                 if (found & SFUSE_STRAP_DDID_DETECTED)
14785                         intel_ddi_init(dev, PORT_D);
14786                 /*
14787                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14788                  */
14789                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14790                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14791                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14792                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14793                         intel_ddi_init(dev, PORT_E);
14794
14795         } else if (HAS_PCH_SPLIT(dev)) {
14796                 int found;
14797                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14798
14799                 if (has_edp_a(dev))
14800                         intel_dp_init(dev, DP_A, PORT_A);
14801
14802                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14803                         /* PCH SDVOB multiplex with HDMIB */
14804                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14805                         if (!found)
14806                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14807                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14808                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14809                 }
14810
14811                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14812                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14813
14814                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14815                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14816
14817                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14818                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14819
14820                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14821                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14822         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14823                 bool has_edp, has_port;
14824
14825                 /*
14826                  * The DP_DETECTED bit is the latched state of the DDC
14827                  * SDA pin at boot. However since eDP doesn't require DDC
14828                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14829                  * eDP ports may have been muxed to an alternate function.
14830                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14831                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14832                  * detect eDP ports.
14833                  *
14834                  * Sadly the straps seem to be missing sometimes even for HDMI
14835                  * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14836                  * and VBT for the presence of the port. Additionally we can't
14837                  * trust the port type the VBT declares as we've seen at least
14838                  * HDMI ports that the VBT claim are DP or eDP.
14839                  */
14840                 has_edp = intel_dp_is_edp(dev, PORT_B);
14841                 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14842                 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14843                         has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
14844                 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14845                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14846
14847                 has_edp = intel_dp_is_edp(dev, PORT_C);
14848                 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14849                 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14850                         has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
14851                 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14852                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14853
14854                 if (IS_CHERRYVIEW(dev)) {
14855                         /*
14856                          * eDP not supported on port D,
14857                          * so no need to worry about it
14858                          */
14859                         has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14860                         if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14861                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14862                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14863                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14864                 }
14865
14866                 intel_dsi_init(dev);
14867         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14868                 bool found = false;
14869
14870                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14871                         DRM_DEBUG_KMS("probing SDVOB\n");
14872                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14873                         if (!found && IS_G4X(dev)) {
14874                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14875                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14876                         }
14877
14878                         if (!found && IS_G4X(dev))
14879                                 intel_dp_init(dev, DP_B, PORT_B);
14880                 }
14881
14882                 /* Before G4X SDVOC doesn't have its own detect register */
14883
14884                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14885                         DRM_DEBUG_KMS("probing SDVOC\n");
14886                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14887                 }
14888
14889                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14890
14891                         if (IS_G4X(dev)) {
14892                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14893                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14894                         }
14895                         if (IS_G4X(dev))
14896                                 intel_dp_init(dev, DP_C, PORT_C);
14897                 }
14898
14899                 if (IS_G4X(dev) &&
14900                     (I915_READ(DP_D) & DP_DETECTED))
14901                         intel_dp_init(dev, DP_D, PORT_D);
14902         } else if (IS_GEN2(dev))
14903                 intel_dvo_init(dev);
14904
14905         if (SUPPORTS_TV(dev))
14906                 intel_tv_init(dev);
14907
14908         intel_psr_init(dev);
14909
14910         for_each_intel_encoder(dev, encoder) {
14911                 encoder->base.possible_crtcs = encoder->crtc_mask;
14912                 encoder->base.possible_clones =
14913                         intel_encoder_clones(encoder);
14914         }
14915
14916         intel_init_pch_refclk(dev);
14917
14918         drm_helper_move_panel_connectors_to_head(dev);
14919 }
14920
14921 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14922 {
14923         struct drm_device *dev = fb->dev;
14924         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14925
14926         drm_framebuffer_cleanup(fb);
14927         mutex_lock(&dev->struct_mutex);
14928         WARN_ON(!intel_fb->obj->framebuffer_references--);
14929         drm_gem_object_unreference(&intel_fb->obj->base);
14930         mutex_unlock(&dev->struct_mutex);
14931         kfree(intel_fb);
14932 }
14933
14934 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14935                                                 struct drm_file *file,
14936                                                 unsigned int *handle)
14937 {
14938         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14939         struct drm_i915_gem_object *obj = intel_fb->obj;
14940
14941         if (obj->userptr.mm) {
14942                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14943                 return -EINVAL;
14944         }
14945
14946         return drm_gem_handle_create(file, &obj->base, handle);
14947 }
14948
14949 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14950                                         struct drm_file *file,
14951                                         unsigned flags, unsigned color,
14952                                         struct drm_clip_rect *clips,
14953                                         unsigned num_clips)
14954 {
14955         struct drm_device *dev = fb->dev;
14956         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14957         struct drm_i915_gem_object *obj = intel_fb->obj;
14958
14959         mutex_lock(&dev->struct_mutex);
14960         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14961         mutex_unlock(&dev->struct_mutex);
14962
14963         return 0;
14964 }
14965
14966 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14967         .destroy = intel_user_framebuffer_destroy,
14968         .create_handle = intel_user_framebuffer_create_handle,
14969         .dirty = intel_user_framebuffer_dirty,
14970 };
14971
14972 static
14973 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14974                          uint32_t pixel_format)
14975 {
14976         u32 gen = INTEL_INFO(dev)->gen;
14977
14978         if (gen >= 9) {
14979                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14980
14981                 /* "The stride in bytes must not exceed the of the size of 8K
14982                  *  pixels and 32K bytes."
14983                  */
14984                 return min(8192 * cpp, 32768);
14985         } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14986                 return 32*1024;
14987         } else if (gen >= 4) {
14988                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14989                         return 16*1024;
14990                 else
14991                         return 32*1024;
14992         } else if (gen >= 3) {
14993                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14994                         return 8*1024;
14995                 else
14996                         return 16*1024;
14997         } else {
14998                 /* XXX DSPC is limited to 4k tiled */
14999                 return 8*1024;
15000         }
15001 }
15002
15003 static int intel_framebuffer_init(struct drm_device *dev,
15004                                   struct intel_framebuffer *intel_fb,
15005                                   struct drm_mode_fb_cmd2 *mode_cmd,
15006                                   struct drm_i915_gem_object *obj)
15007 {
15008         struct drm_i915_private *dev_priv = to_i915(dev);
15009         unsigned int aligned_height;
15010         int ret;
15011         u32 pitch_limit, stride_alignment;
15012
15013         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15014
15015         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15016                 /* Enforce that fb modifier and tiling mode match, but only for
15017                  * X-tiled. This is needed for FBC. */
15018                 if (!!(obj->tiling_mode == I915_TILING_X) !=
15019                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
15020                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15021                         return -EINVAL;
15022                 }
15023         } else {
15024                 if (obj->tiling_mode == I915_TILING_X)
15025                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15026                 else if (obj->tiling_mode == I915_TILING_Y) {
15027                         DRM_DEBUG("No Y tiling for legacy addfb\n");
15028                         return -EINVAL;
15029                 }
15030         }
15031
15032         /* Passed in modifier sanity checking. */
15033         switch (mode_cmd->modifier[0]) {
15034         case I915_FORMAT_MOD_Y_TILED:
15035         case I915_FORMAT_MOD_Yf_TILED:
15036                 if (INTEL_INFO(dev)->gen < 9) {
15037                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15038                                   mode_cmd->modifier[0]);
15039                         return -EINVAL;
15040                 }
15041         case DRM_FORMAT_MOD_NONE:
15042         case I915_FORMAT_MOD_X_TILED:
15043                 break;
15044         default:
15045                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15046                           mode_cmd->modifier[0]);
15047                 return -EINVAL;
15048         }
15049
15050         stride_alignment = intel_fb_stride_alignment(dev_priv,
15051                                                      mode_cmd->modifier[0],
15052                                                      mode_cmd->pixel_format);
15053         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15054                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15055                           mode_cmd->pitches[0], stride_alignment);
15056                 return -EINVAL;
15057         }
15058
15059         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
15060                                            mode_cmd->pixel_format);
15061         if (mode_cmd->pitches[0] > pitch_limit) {
15062                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15063                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15064                           "tiled" : "linear",
15065                           mode_cmd->pitches[0], pitch_limit);
15066                 return -EINVAL;
15067         }
15068
15069         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
15070             mode_cmd->pitches[0] != obj->stride) {
15071                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15072                           mode_cmd->pitches[0], obj->stride);
15073                 return -EINVAL;
15074         }
15075
15076         /* Reject formats not supported by any plane early. */
15077         switch (mode_cmd->pixel_format) {
15078         case DRM_FORMAT_C8:
15079         case DRM_FORMAT_RGB565:
15080         case DRM_FORMAT_XRGB8888:
15081         case DRM_FORMAT_ARGB8888:
15082                 break;
15083         case DRM_FORMAT_XRGB1555:
15084                 if (INTEL_INFO(dev)->gen > 3) {
15085                         DRM_DEBUG("unsupported pixel format: %s\n",
15086                                   drm_get_format_name(mode_cmd->pixel_format));
15087                         return -EINVAL;
15088                 }
15089                 break;
15090         case DRM_FORMAT_ABGR8888:
15091                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
15092                     INTEL_INFO(dev)->gen < 9) {
15093                         DRM_DEBUG("unsupported pixel format: %s\n",
15094                                   drm_get_format_name(mode_cmd->pixel_format));
15095                         return -EINVAL;
15096                 }
15097                 break;
15098         case DRM_FORMAT_XBGR8888:
15099         case DRM_FORMAT_XRGB2101010:
15100         case DRM_FORMAT_XBGR2101010:
15101                 if (INTEL_INFO(dev)->gen < 4) {
15102                         DRM_DEBUG("unsupported pixel format: %s\n",
15103                                   drm_get_format_name(mode_cmd->pixel_format));
15104                         return -EINVAL;
15105                 }
15106                 break;
15107         case DRM_FORMAT_ABGR2101010:
15108                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
15109                         DRM_DEBUG("unsupported pixel format: %s\n",
15110                                   drm_get_format_name(mode_cmd->pixel_format));
15111                         return -EINVAL;
15112                 }
15113                 break;
15114         case DRM_FORMAT_YUYV:
15115         case DRM_FORMAT_UYVY:
15116         case DRM_FORMAT_YVYU:
15117         case DRM_FORMAT_VYUY:
15118                 if (INTEL_INFO(dev)->gen < 5) {
15119                         DRM_DEBUG("unsupported pixel format: %s\n",
15120                                   drm_get_format_name(mode_cmd->pixel_format));
15121                         return -EINVAL;
15122                 }
15123                 break;
15124         default:
15125                 DRM_DEBUG("unsupported pixel format: %s\n",
15126                           drm_get_format_name(mode_cmd->pixel_format));
15127                 return -EINVAL;
15128         }
15129
15130         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15131         if (mode_cmd->offsets[0] != 0)
15132                 return -EINVAL;
15133
15134         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
15135                                                mode_cmd->pixel_format,
15136                                                mode_cmd->modifier[0]);
15137         /* FIXME drm helper for size checks (especially planar formats)? */
15138         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
15139                 return -EINVAL;
15140
15141         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15142         intel_fb->obj = obj;
15143
15144         intel_fill_fb_info(dev_priv, &intel_fb->base);
15145
15146         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15147         if (ret) {
15148                 DRM_ERROR("framebuffer init failed %d\n", ret);
15149                 return ret;
15150         }
15151
15152         intel_fb->obj->framebuffer_references++;
15153
15154         return 0;
15155 }
15156
15157 static struct drm_framebuffer *
15158 intel_user_framebuffer_create(struct drm_device *dev,
15159                               struct drm_file *filp,
15160                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
15161 {
15162         struct drm_framebuffer *fb;
15163         struct drm_i915_gem_object *obj;
15164         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15165
15166         obj = to_intel_bo(drm_gem_object_lookup(filp, mode_cmd.handles[0]));
15167         if (&obj->base == NULL)
15168                 return ERR_PTR(-ENOENT);
15169
15170         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15171         if (IS_ERR(fb))
15172                 drm_gem_object_unreference_unlocked(&obj->base);
15173
15174         return fb;
15175 }
15176
15177 #ifndef CONFIG_DRM_FBDEV_EMULATION
15178 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
15179 {
15180 }
15181 #endif
15182
15183 static const struct drm_mode_config_funcs intel_mode_funcs = {
15184         .fb_create = intel_user_framebuffer_create,
15185         .output_poll_changed = intel_fbdev_output_poll_changed,
15186         .atomic_check = intel_atomic_check,
15187         .atomic_commit = intel_atomic_commit,
15188         .atomic_state_alloc = intel_atomic_state_alloc,
15189         .atomic_state_clear = intel_atomic_state_clear,
15190 };
15191
15192 /**
15193  * intel_init_display_hooks - initialize the display modesetting hooks
15194  * @dev_priv: device private
15195  */
15196 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15197 {
15198         if (INTEL_INFO(dev_priv)->gen >= 9) {
15199                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15200                 dev_priv->display.get_initial_plane_config =
15201                         skylake_get_initial_plane_config;
15202                 dev_priv->display.crtc_compute_clock =
15203                         haswell_crtc_compute_clock;
15204                 dev_priv->display.crtc_enable = haswell_crtc_enable;
15205                 dev_priv->display.crtc_disable = haswell_crtc_disable;
15206         } else if (HAS_DDI(dev_priv)) {
15207                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15208                 dev_priv->display.get_initial_plane_config =
15209                         ironlake_get_initial_plane_config;
15210                 dev_priv->display.crtc_compute_clock =
15211                         haswell_crtc_compute_clock;
15212                 dev_priv->display.crtc_enable = haswell_crtc_enable;
15213                 dev_priv->display.crtc_disable = haswell_crtc_disable;
15214         } else if (HAS_PCH_SPLIT(dev_priv)) {
15215                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15216                 dev_priv->display.get_initial_plane_config =
15217                         ironlake_get_initial_plane_config;
15218                 dev_priv->display.crtc_compute_clock =
15219                         ironlake_crtc_compute_clock;
15220                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15221                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
15222         } else if (IS_CHERRYVIEW(dev_priv)) {
15223                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15224                 dev_priv->display.get_initial_plane_config =
15225                         i9xx_get_initial_plane_config;
15226                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15227                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15228                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15229         } else if (IS_VALLEYVIEW(dev_priv)) {
15230                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15231                 dev_priv->display.get_initial_plane_config =
15232                         i9xx_get_initial_plane_config;
15233                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15234                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15235                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15236         } else if (IS_G4X(dev_priv)) {
15237                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15238                 dev_priv->display.get_initial_plane_config =
15239                         i9xx_get_initial_plane_config;
15240                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15241                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15242                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15243         } else if (IS_PINEVIEW(dev_priv)) {
15244                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15245                 dev_priv->display.get_initial_plane_config =
15246                         i9xx_get_initial_plane_config;
15247                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15248                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15249                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15250         } else if (!IS_GEN2(dev_priv)) {
15251                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15252                 dev_priv->display.get_initial_plane_config =
15253                         i9xx_get_initial_plane_config;
15254                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15255                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15256                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15257         } else {
15258                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15259                 dev_priv->display.get_initial_plane_config =
15260                         i9xx_get_initial_plane_config;
15261                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15262                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15263                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15264         }
15265
15266         /* Returns the core display clock speed */
15267         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15268                 dev_priv->display.get_display_clock_speed =
15269                         skylake_get_display_clock_speed;
15270         else if (IS_BROXTON(dev_priv))
15271                 dev_priv->display.get_display_clock_speed =
15272                         broxton_get_display_clock_speed;
15273         else if (IS_BROADWELL(dev_priv))
15274                 dev_priv->display.get_display_clock_speed =
15275                         broadwell_get_display_clock_speed;
15276         else if (IS_HASWELL(dev_priv))
15277                 dev_priv->display.get_display_clock_speed =
15278                         haswell_get_display_clock_speed;
15279         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15280                 dev_priv->display.get_display_clock_speed =
15281                         valleyview_get_display_clock_speed;
15282         else if (IS_GEN5(dev_priv))
15283                 dev_priv->display.get_display_clock_speed =
15284                         ilk_get_display_clock_speed;
15285         else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15286                  IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
15287                 dev_priv->display.get_display_clock_speed =
15288                         i945_get_display_clock_speed;
15289         else if (IS_GM45(dev_priv))
15290                 dev_priv->display.get_display_clock_speed =
15291                         gm45_get_display_clock_speed;
15292         else if (IS_CRESTLINE(dev_priv))
15293                 dev_priv->display.get_display_clock_speed =
15294                         i965gm_get_display_clock_speed;
15295         else if (IS_PINEVIEW(dev_priv))
15296                 dev_priv->display.get_display_clock_speed =
15297                         pnv_get_display_clock_speed;
15298         else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
15299                 dev_priv->display.get_display_clock_speed =
15300                         g33_get_display_clock_speed;
15301         else if (IS_I915G(dev_priv))
15302                 dev_priv->display.get_display_clock_speed =
15303                         i915_get_display_clock_speed;
15304         else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
15305                 dev_priv->display.get_display_clock_speed =
15306                         i9xx_misc_get_display_clock_speed;
15307         else if (IS_I915GM(dev_priv))
15308                 dev_priv->display.get_display_clock_speed =
15309                         i915gm_get_display_clock_speed;
15310         else if (IS_I865G(dev_priv))
15311                 dev_priv->display.get_display_clock_speed =
15312                         i865_get_display_clock_speed;
15313         else if (IS_I85X(dev_priv))
15314                 dev_priv->display.get_display_clock_speed =
15315                         i85x_get_display_clock_speed;
15316         else { /* 830 */
15317                 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
15318                 dev_priv->display.get_display_clock_speed =
15319                         i830_get_display_clock_speed;
15320         }
15321
15322         if (IS_GEN5(dev_priv)) {
15323                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15324         } else if (IS_GEN6(dev_priv)) {
15325                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15326         } else if (IS_IVYBRIDGE(dev_priv)) {
15327                 /* FIXME: detect B0+ stepping and use auto training */
15328                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15329         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15330                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15331         }
15332
15333         if (IS_BROADWELL(dev_priv)) {
15334                 dev_priv->display.modeset_commit_cdclk =
15335                         broadwell_modeset_commit_cdclk;
15336                 dev_priv->display.modeset_calc_cdclk =
15337                         broadwell_modeset_calc_cdclk;
15338         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15339                 dev_priv->display.modeset_commit_cdclk =
15340                         valleyview_modeset_commit_cdclk;
15341                 dev_priv->display.modeset_calc_cdclk =
15342                         valleyview_modeset_calc_cdclk;
15343         } else if (IS_BROXTON(dev_priv)) {
15344                 dev_priv->display.modeset_commit_cdclk =
15345                         bxt_modeset_commit_cdclk;
15346                 dev_priv->display.modeset_calc_cdclk =
15347                         bxt_modeset_calc_cdclk;
15348         } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
15349                 dev_priv->display.modeset_commit_cdclk =
15350                         skl_modeset_commit_cdclk;
15351                 dev_priv->display.modeset_calc_cdclk =
15352                         skl_modeset_calc_cdclk;
15353         }
15354
15355         switch (INTEL_INFO(dev_priv)->gen) {
15356         case 2:
15357                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15358                 break;
15359
15360         case 3:
15361                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15362                 break;
15363
15364         case 4:
15365         case 5:
15366                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15367                 break;
15368
15369         case 6:
15370                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15371                 break;
15372         case 7:
15373         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15374                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15375                 break;
15376         case 9:
15377                 /* Drop through - unsupported since execlist only. */
15378         default:
15379                 /* Default just returns -ENODEV to indicate unsupported */
15380                 dev_priv->display.queue_flip = intel_default_queue_flip;
15381         }
15382 }
15383
15384 /*
15385  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15386  * resume, or other times.  This quirk makes sure that's the case for
15387  * affected systems.
15388  */
15389 static void quirk_pipea_force(struct drm_device *dev)
15390 {
15391         struct drm_i915_private *dev_priv = dev->dev_private;
15392
15393         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15394         DRM_INFO("applying pipe a force quirk\n");
15395 }
15396
15397 static void quirk_pipeb_force(struct drm_device *dev)
15398 {
15399         struct drm_i915_private *dev_priv = dev->dev_private;
15400
15401         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15402         DRM_INFO("applying pipe b force quirk\n");
15403 }
15404
15405 /*
15406  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15407  */
15408 static void quirk_ssc_force_disable(struct drm_device *dev)
15409 {
15410         struct drm_i915_private *dev_priv = dev->dev_private;
15411         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15412         DRM_INFO("applying lvds SSC disable quirk\n");
15413 }
15414
15415 /*
15416  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15417  * brightness value
15418  */
15419 static void quirk_invert_brightness(struct drm_device *dev)
15420 {
15421         struct drm_i915_private *dev_priv = dev->dev_private;
15422         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15423         DRM_INFO("applying inverted panel brightness quirk\n");
15424 }
15425
15426 /* Some VBT's incorrectly indicate no backlight is present */
15427 static void quirk_backlight_present(struct drm_device *dev)
15428 {
15429         struct drm_i915_private *dev_priv = dev->dev_private;
15430         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15431         DRM_INFO("applying backlight present quirk\n");
15432 }
15433
15434 struct intel_quirk {
15435         int device;
15436         int subsystem_vendor;
15437         int subsystem_device;
15438         void (*hook)(struct drm_device *dev);
15439 };
15440
15441 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15442 struct intel_dmi_quirk {
15443         void (*hook)(struct drm_device *dev);
15444         const struct dmi_system_id (*dmi_id_list)[];
15445 };
15446
15447 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15448 {
15449         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15450         return 1;
15451 }
15452
15453 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15454         {
15455                 .dmi_id_list = &(const struct dmi_system_id[]) {
15456                         {
15457                                 .callback = intel_dmi_reverse_brightness,
15458                                 .ident = "NCR Corporation",
15459                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15460                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
15461                                 },
15462                         },
15463                         { }  /* terminating entry */
15464                 },
15465                 .hook = quirk_invert_brightness,
15466         },
15467 };
15468
15469 static struct intel_quirk intel_quirks[] = {
15470         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15471         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15472
15473         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15474         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15475
15476         /* 830 needs to leave pipe A & dpll A up */
15477         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15478
15479         /* 830 needs to leave pipe B & dpll B up */
15480         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15481
15482         /* Lenovo U160 cannot use SSC on LVDS */
15483         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15484
15485         /* Sony Vaio Y cannot use SSC on LVDS */
15486         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15487
15488         /* Acer Aspire 5734Z must invert backlight brightness */
15489         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15490
15491         /* Acer/eMachines G725 */
15492         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15493
15494         /* Acer/eMachines e725 */
15495         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15496
15497         /* Acer/Packard Bell NCL20 */
15498         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15499
15500         /* Acer Aspire 4736Z */
15501         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15502
15503         /* Acer Aspire 5336 */
15504         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15505
15506         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15507         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15508
15509         /* Acer C720 Chromebook (Core i3 4005U) */
15510         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15511
15512         /* Apple Macbook 2,1 (Core 2 T7400) */
15513         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15514
15515         /* Apple Macbook 4,1 */
15516         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15517
15518         /* Toshiba CB35 Chromebook (Celeron 2955U) */
15519         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15520
15521         /* HP Chromebook 14 (Celeron 2955U) */
15522         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15523
15524         /* Dell Chromebook 11 */
15525         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15526
15527         /* Dell Chromebook 11 (2015 version) */
15528         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15529 };
15530
15531 static void intel_init_quirks(struct drm_device *dev)
15532 {
15533         struct pci_dev *d = dev->pdev;
15534         int i;
15535
15536         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15537                 struct intel_quirk *q = &intel_quirks[i];
15538
15539                 if (d->device == q->device &&
15540                     (d->subsystem_vendor == q->subsystem_vendor ||
15541                      q->subsystem_vendor == PCI_ANY_ID) &&
15542                     (d->subsystem_device == q->subsystem_device ||
15543                      q->subsystem_device == PCI_ANY_ID))
15544                         q->hook(dev);
15545         }
15546         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15547                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15548                         intel_dmi_quirks[i].hook(dev);
15549         }
15550 }
15551
15552 /* Disable the VGA plane that we never use */
15553 static void i915_disable_vga(struct drm_device *dev)
15554 {
15555         struct drm_i915_private *dev_priv = dev->dev_private;
15556         u8 sr1;
15557         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15558
15559         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15560         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15561         outb(SR01, VGA_SR_INDEX);
15562         sr1 = inb(VGA_SR_DATA);
15563         outb(sr1 | 1<<5, VGA_SR_DATA);
15564         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15565         udelay(300);
15566
15567         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15568         POSTING_READ(vga_reg);
15569 }
15570
15571 void intel_modeset_init_hw(struct drm_device *dev)
15572 {
15573         struct drm_i915_private *dev_priv = dev->dev_private;
15574
15575         intel_update_cdclk(dev);
15576
15577         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15578
15579         intel_init_clock_gating(dev);
15580         intel_enable_gt_powersave(dev_priv);
15581 }
15582
15583 /*
15584  * Calculate what we think the watermarks should be for the state we've read
15585  * out of the hardware and then immediately program those watermarks so that
15586  * we ensure the hardware settings match our internal state.
15587  *
15588  * We can calculate what we think WM's should be by creating a duplicate of the
15589  * current state (which was constructed during hardware readout) and running it
15590  * through the atomic check code to calculate new watermark values in the
15591  * state object.
15592  */
15593 static void sanitize_watermarks(struct drm_device *dev)
15594 {
15595         struct drm_i915_private *dev_priv = to_i915(dev);
15596         struct drm_atomic_state *state;
15597         struct drm_crtc *crtc;
15598         struct drm_crtc_state *cstate;
15599         struct drm_modeset_acquire_ctx ctx;
15600         int ret;
15601         int i;
15602
15603         /* Only supported on platforms that use atomic watermark design */
15604         if (!dev_priv->display.optimize_watermarks)
15605                 return;
15606
15607         /*
15608          * We need to hold connection_mutex before calling duplicate_state so
15609          * that the connector loop is protected.
15610          */
15611         drm_modeset_acquire_init(&ctx, 0);
15612 retry:
15613         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15614         if (ret == -EDEADLK) {
15615                 drm_modeset_backoff(&ctx);
15616                 goto retry;
15617         } else if (WARN_ON(ret)) {
15618                 goto fail;
15619         }
15620
15621         state = drm_atomic_helper_duplicate_state(dev, &ctx);
15622         if (WARN_ON(IS_ERR(state)))
15623                 goto fail;
15624
15625         /*
15626          * Hardware readout is the only time we don't want to calculate
15627          * intermediate watermarks (since we don't trust the current
15628          * watermarks).
15629          */
15630         to_intel_atomic_state(state)->skip_intermediate_wm = true;
15631
15632         ret = intel_atomic_check(dev, state);
15633         if (ret) {
15634                 /*
15635                  * If we fail here, it means that the hardware appears to be
15636                  * programmed in a way that shouldn't be possible, given our
15637                  * understanding of watermark requirements.  This might mean a
15638                  * mistake in the hardware readout code or a mistake in the
15639                  * watermark calculations for a given platform.  Raise a WARN
15640                  * so that this is noticeable.
15641                  *
15642                  * If this actually happens, we'll have to just leave the
15643                  * BIOS-programmed watermarks untouched and hope for the best.
15644                  */
15645                 WARN(true, "Could not determine valid watermarks for inherited state\n");
15646                 goto fail;
15647         }
15648
15649         /* Write calculated watermark values back */
15650         for_each_crtc_in_state(state, crtc, cstate, i) {
15651                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15652
15653                 cs->wm.need_postvbl_update = true;
15654                 dev_priv->display.optimize_watermarks(cs);
15655         }
15656
15657         drm_atomic_state_free(state);
15658 fail:
15659         drm_modeset_drop_locks(&ctx);
15660         drm_modeset_acquire_fini(&ctx);
15661 }
15662
15663 void intel_modeset_init(struct drm_device *dev)
15664 {
15665         struct drm_i915_private *dev_priv = to_i915(dev);
15666         struct i915_ggtt *ggtt = &dev_priv->ggtt;
15667         int sprite, ret;
15668         enum pipe pipe;
15669         struct intel_crtc *crtc;
15670
15671         drm_mode_config_init(dev);
15672
15673         dev->mode_config.min_width = 0;
15674         dev->mode_config.min_height = 0;
15675
15676         dev->mode_config.preferred_depth = 24;
15677         dev->mode_config.prefer_shadow = 1;
15678
15679         dev->mode_config.allow_fb_modifiers = true;
15680
15681         dev->mode_config.funcs = &intel_mode_funcs;
15682
15683         intel_init_quirks(dev);
15684
15685         intel_init_pm(dev);
15686
15687         if (INTEL_INFO(dev)->num_pipes == 0)
15688                 return;
15689
15690         /*
15691          * There may be no VBT; and if the BIOS enabled SSC we can
15692          * just keep using it to avoid unnecessary flicker.  Whereas if the
15693          * BIOS isn't using it, don't assume it will work even if the VBT
15694          * indicates as much.
15695          */
15696         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15697                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15698                                             DREF_SSC1_ENABLE);
15699
15700                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15701                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15702                                      bios_lvds_use_ssc ? "en" : "dis",
15703                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15704                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15705                 }
15706         }
15707
15708         if (IS_GEN2(dev)) {
15709                 dev->mode_config.max_width = 2048;
15710                 dev->mode_config.max_height = 2048;
15711         } else if (IS_GEN3(dev)) {
15712                 dev->mode_config.max_width = 4096;
15713                 dev->mode_config.max_height = 4096;
15714         } else {
15715                 dev->mode_config.max_width = 8192;
15716                 dev->mode_config.max_height = 8192;
15717         }
15718
15719         if (IS_845G(dev) || IS_I865G(dev)) {
15720                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15721                 dev->mode_config.cursor_height = 1023;
15722         } else if (IS_GEN2(dev)) {
15723                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15724                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15725         } else {
15726                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15727                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15728         }
15729
15730         dev->mode_config.fb_base = ggtt->mappable_base;
15731
15732         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15733                       INTEL_INFO(dev)->num_pipes,
15734                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15735
15736         for_each_pipe(dev_priv, pipe) {
15737                 intel_crtc_init(dev, pipe);
15738                 for_each_sprite(dev_priv, pipe, sprite) {
15739                         ret = intel_plane_init(dev, pipe, sprite);
15740                         if (ret)
15741                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15742                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15743                 }
15744         }
15745
15746         intel_update_czclk(dev_priv);
15747         intel_update_cdclk(dev);
15748
15749         intel_shared_dpll_init(dev);
15750
15751         if (dev_priv->max_cdclk_freq == 0)
15752                 intel_update_max_cdclk(dev);
15753
15754         /* Just disable it once at startup */
15755         i915_disable_vga(dev);
15756         intel_setup_outputs(dev);
15757
15758         drm_modeset_lock_all(dev);
15759         intel_modeset_setup_hw_state(dev);
15760         drm_modeset_unlock_all(dev);
15761
15762         for_each_intel_crtc(dev, crtc) {
15763                 struct intel_initial_plane_config plane_config = {};
15764
15765                 if (!crtc->active)
15766                         continue;
15767
15768                 /*
15769                  * Note that reserving the BIOS fb up front prevents us
15770                  * from stuffing other stolen allocations like the ring
15771                  * on top.  This prevents some ugliness at boot time, and
15772                  * can even allow for smooth boot transitions if the BIOS
15773                  * fb is large enough for the active pipe configuration.
15774                  */
15775                 dev_priv->display.get_initial_plane_config(crtc,
15776                                                            &plane_config);
15777
15778                 /*
15779                  * If the fb is shared between multiple heads, we'll
15780                  * just get the first one.
15781                  */
15782                 intel_find_initial_plane_obj(crtc, &plane_config);
15783         }
15784
15785         /*
15786          * Make sure hardware watermarks really match the state we read out.
15787          * Note that we need to do this after reconstructing the BIOS fb's
15788          * since the watermark calculation done here will use pstate->fb.
15789          */
15790         sanitize_watermarks(dev);
15791 }
15792
15793 static void intel_enable_pipe_a(struct drm_device *dev)
15794 {
15795         struct intel_connector *connector;
15796         struct drm_connector *crt = NULL;
15797         struct intel_load_detect_pipe load_detect_temp;
15798         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15799
15800         /* We can't just switch on the pipe A, we need to set things up with a
15801          * proper mode and output configuration. As a gross hack, enable pipe A
15802          * by enabling the load detect pipe once. */
15803         for_each_intel_connector(dev, connector) {
15804                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15805                         crt = &connector->base;
15806                         break;
15807                 }
15808         }
15809
15810         if (!crt)
15811                 return;
15812
15813         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15814                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15815 }
15816
15817 static bool
15818 intel_check_plane_mapping(struct intel_crtc *crtc)
15819 {
15820         struct drm_device *dev = crtc->base.dev;
15821         struct drm_i915_private *dev_priv = dev->dev_private;
15822         u32 val;
15823
15824         if (INTEL_INFO(dev)->num_pipes == 1)
15825                 return true;
15826
15827         val = I915_READ(DSPCNTR(!crtc->plane));
15828
15829         if ((val & DISPLAY_PLANE_ENABLE) &&
15830             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15831                 return false;
15832
15833         return true;
15834 }
15835
15836 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15837 {
15838         struct drm_device *dev = crtc->base.dev;
15839         struct intel_encoder *encoder;
15840
15841         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15842                 return true;
15843
15844         return false;
15845 }
15846
15847 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15848 {
15849         struct drm_device *dev = encoder->base.dev;
15850         struct intel_connector *connector;
15851
15852         for_each_connector_on_encoder(dev, &encoder->base, connector)
15853                 return true;
15854
15855         return false;
15856 }
15857
15858 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15859 {
15860         struct drm_device *dev = crtc->base.dev;
15861         struct drm_i915_private *dev_priv = dev->dev_private;
15862         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15863
15864         /* Clear any frame start delays used for debugging left by the BIOS */
15865         if (!transcoder_is_dsi(cpu_transcoder)) {
15866                 i915_reg_t reg = PIPECONF(cpu_transcoder);
15867
15868                 I915_WRITE(reg,
15869                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15870         }
15871
15872         /* restore vblank interrupts to correct state */
15873         drm_crtc_vblank_reset(&crtc->base);
15874         if (crtc->active) {
15875                 struct intel_plane *plane;
15876
15877                 drm_crtc_vblank_on(&crtc->base);
15878
15879                 /* Disable everything but the primary plane */
15880                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15881                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15882                                 continue;
15883
15884                         plane->disable_plane(&plane->base, &crtc->base);
15885                 }
15886         }
15887
15888         /* We need to sanitize the plane -> pipe mapping first because this will
15889          * disable the crtc (and hence change the state) if it is wrong. Note
15890          * that gen4+ has a fixed plane -> pipe mapping.  */
15891         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15892                 bool plane;
15893
15894                 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
15895                               crtc->base.base.id, crtc->base.name);
15896
15897                 /* Pipe has the wrong plane attached and the plane is active.
15898                  * Temporarily change the plane mapping and disable everything
15899                  * ...  */
15900                 plane = crtc->plane;
15901                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15902                 crtc->plane = !plane;
15903                 intel_crtc_disable_noatomic(&crtc->base);
15904                 crtc->plane = plane;
15905         }
15906
15907         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15908             crtc->pipe == PIPE_A && !crtc->active) {
15909                 /* BIOS forgot to enable pipe A, this mostly happens after
15910                  * resume. Force-enable the pipe to fix this, the update_dpms
15911                  * call below we restore the pipe to the right state, but leave
15912                  * the required bits on. */
15913                 intel_enable_pipe_a(dev);
15914         }
15915
15916         /* Adjust the state of the output pipe according to whether we
15917          * have active connectors/encoders. */
15918         if (crtc->active && !intel_crtc_has_encoders(crtc))
15919                 intel_crtc_disable_noatomic(&crtc->base);
15920
15921         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15922                 /*
15923                  * We start out with underrun reporting disabled to avoid races.
15924                  * For correct bookkeeping mark this on active crtcs.
15925                  *
15926                  * Also on gmch platforms we dont have any hardware bits to
15927                  * disable the underrun reporting. Which means we need to start
15928                  * out with underrun reporting disabled also on inactive pipes,
15929                  * since otherwise we'll complain about the garbage we read when
15930                  * e.g. coming up after runtime pm.
15931                  *
15932                  * No protection against concurrent access is required - at
15933                  * worst a fifo underrun happens which also sets this to false.
15934                  */
15935                 crtc->cpu_fifo_underrun_disabled = true;
15936                 crtc->pch_fifo_underrun_disabled = true;
15937         }
15938 }
15939
15940 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15941 {
15942         struct intel_connector *connector;
15943         struct drm_device *dev = encoder->base.dev;
15944
15945         /* We need to check both for a crtc link (meaning that the
15946          * encoder is active and trying to read from a pipe) and the
15947          * pipe itself being active. */
15948         bool has_active_crtc = encoder->base.crtc &&
15949                 to_intel_crtc(encoder->base.crtc)->active;
15950
15951         if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15952                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15953                               encoder->base.base.id,
15954                               encoder->base.name);
15955
15956                 /* Connector is active, but has no active pipe. This is
15957                  * fallout from our resume register restoring. Disable
15958                  * the encoder manually again. */
15959                 if (encoder->base.crtc) {
15960                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15961                                       encoder->base.base.id,
15962                                       encoder->base.name);
15963                         encoder->disable(encoder);
15964                         if (encoder->post_disable)
15965                                 encoder->post_disable(encoder);
15966                 }
15967                 encoder->base.crtc = NULL;
15968
15969                 /* Inconsistent output/port/pipe state happens presumably due to
15970                  * a bug in one of the get_hw_state functions. Or someplace else
15971                  * in our code, like the register restore mess on resume. Clamp
15972                  * things to off as a safer default. */
15973                 for_each_intel_connector(dev, connector) {
15974                         if (connector->encoder != encoder)
15975                                 continue;
15976                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15977                         connector->base.encoder = NULL;
15978                 }
15979         }
15980         /* Enabled encoders without active connectors will be fixed in
15981          * the crtc fixup. */
15982 }
15983
15984 void i915_redisable_vga_power_on(struct drm_device *dev)
15985 {
15986         struct drm_i915_private *dev_priv = dev->dev_private;
15987         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15988
15989         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15990                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15991                 i915_disable_vga(dev);
15992         }
15993 }
15994
15995 void i915_redisable_vga(struct drm_device *dev)
15996 {
15997         struct drm_i915_private *dev_priv = dev->dev_private;
15998
15999         /* This function can be called both from intel_modeset_setup_hw_state or
16000          * at a very early point in our resume sequence, where the power well
16001          * structures are not yet restored. Since this function is at a very
16002          * paranoid "someone might have enabled VGA while we were not looking"
16003          * level, just check if the power well is enabled instead of trying to
16004          * follow the "don't touch the power well if we don't need it" policy
16005          * the rest of the driver uses. */
16006         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
16007                 return;
16008
16009         i915_redisable_vga_power_on(dev);
16010
16011         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
16012 }
16013
16014 static bool primary_get_hw_state(struct intel_plane *plane)
16015 {
16016         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16017
16018         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
16019 }
16020
16021 /* FIXME read out full plane state for all planes */
16022 static void readout_plane_state(struct intel_crtc *crtc)
16023 {
16024         struct drm_plane *primary = crtc->base.primary;
16025         struct intel_plane_state *plane_state =
16026                 to_intel_plane_state(primary->state);
16027
16028         plane_state->visible = crtc->active &&
16029                 primary_get_hw_state(to_intel_plane(primary));
16030
16031         if (plane_state->visible)
16032                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
16033 }
16034
16035 static void intel_modeset_readout_hw_state(struct drm_device *dev)
16036 {
16037         struct drm_i915_private *dev_priv = dev->dev_private;
16038         enum pipe pipe;
16039         struct intel_crtc *crtc;
16040         struct intel_encoder *encoder;
16041         struct intel_connector *connector;
16042         int i;
16043
16044         dev_priv->active_crtcs = 0;
16045
16046         for_each_intel_crtc(dev, crtc) {
16047                 struct intel_crtc_state *crtc_state = crtc->config;
16048                 int pixclk = 0;
16049
16050                 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16051                 memset(crtc_state, 0, sizeof(*crtc_state));
16052                 crtc_state->base.crtc = &crtc->base;
16053
16054                 crtc_state->base.active = crtc_state->base.enable =
16055                         dev_priv->display.get_pipe_config(crtc, crtc_state);
16056
16057                 crtc->base.enabled = crtc_state->base.enable;
16058                 crtc->active = crtc_state->base.active;
16059
16060                 if (crtc_state->base.active) {
16061                         dev_priv->active_crtcs |= 1 << crtc->pipe;
16062
16063                         if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
16064                                 pixclk = ilk_pipe_pixel_rate(crtc_state);
16065                         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16066                                 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
16067                         else
16068                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
16069
16070                         /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16071                         if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
16072                                 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
16073                 }
16074
16075                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
16076
16077                 readout_plane_state(crtc);
16078
16079                 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16080                               crtc->base.base.id, crtc->base.name,
16081                               crtc->active ? "enabled" : "disabled");
16082         }
16083
16084         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16085                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16086
16087                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16088                                                   &pll->config.hw_state);
16089                 pll->config.crtc_mask = 0;
16090                 for_each_intel_crtc(dev, crtc) {
16091                         if (crtc->active && crtc->config->shared_dpll == pll)
16092                                 pll->config.crtc_mask |= 1 << crtc->pipe;
16093                 }
16094                 pll->active_mask = pll->config.crtc_mask;
16095
16096                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16097                               pll->name, pll->config.crtc_mask, pll->on);
16098         }
16099
16100         for_each_intel_encoder(dev, encoder) {
16101                 pipe = 0;
16102
16103                 if (encoder->get_hw_state(encoder, &pipe)) {
16104                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16105                         encoder->base.crtc = &crtc->base;
16106                         encoder->get_config(encoder, crtc->config);
16107                 } else {
16108                         encoder->base.crtc = NULL;
16109                 }
16110
16111                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16112                               encoder->base.base.id,
16113                               encoder->base.name,
16114                               encoder->base.crtc ? "enabled" : "disabled",
16115                               pipe_name(pipe));
16116         }
16117
16118         for_each_intel_connector(dev, connector) {
16119                 if (connector->get_hw_state(connector)) {
16120                         connector->base.dpms = DRM_MODE_DPMS_ON;
16121
16122                         encoder = connector->encoder;
16123                         connector->base.encoder = &encoder->base;
16124
16125                         if (encoder->base.crtc &&
16126                             encoder->base.crtc->state->active) {
16127                                 /*
16128                                  * This has to be done during hardware readout
16129                                  * because anything calling .crtc_disable may
16130                                  * rely on the connector_mask being accurate.
16131                                  */
16132                                 encoder->base.crtc->state->connector_mask |=
16133                                         1 << drm_connector_index(&connector->base);
16134                                 encoder->base.crtc->state->encoder_mask |=
16135                                         1 << drm_encoder_index(&encoder->base);
16136                         }
16137
16138                 } else {
16139                         connector->base.dpms = DRM_MODE_DPMS_OFF;
16140                         connector->base.encoder = NULL;
16141                 }
16142                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16143                               connector->base.base.id,
16144                               connector->base.name,
16145                               connector->base.encoder ? "enabled" : "disabled");
16146         }
16147
16148         for_each_intel_crtc(dev, crtc) {
16149                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
16150
16151                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16152                 if (crtc->base.state->active) {
16153                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16154                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16155                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16156
16157                         /*
16158                          * The initial mode needs to be set in order to keep
16159                          * the atomic core happy. It wants a valid mode if the
16160                          * crtc's enabled, so we do the above call.
16161                          *
16162                          * At this point some state updated by the connectors
16163                          * in their ->detect() callback has not run yet, so
16164                          * no recalculation can be done yet.
16165                          *
16166                          * Even if we could do a recalculation and modeset
16167                          * right now it would cause a double modeset if
16168                          * fbdev or userspace chooses a different initial mode.
16169                          *
16170                          * If that happens, someone indicated they wanted a
16171                          * mode change, which means it's safe to do a full
16172                          * recalculation.
16173                          */
16174                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16175
16176                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16177                         update_scanline_offset(crtc);
16178                 }
16179
16180                 intel_pipe_config_sanity_check(dev_priv, crtc->config);
16181         }
16182 }
16183
16184 /* Scan out the current hw modeset state,
16185  * and sanitizes it to the current state
16186  */
16187 static void
16188 intel_modeset_setup_hw_state(struct drm_device *dev)
16189 {
16190         struct drm_i915_private *dev_priv = dev->dev_private;
16191         enum pipe pipe;
16192         struct intel_crtc *crtc;
16193         struct intel_encoder *encoder;
16194         int i;
16195
16196         intel_modeset_readout_hw_state(dev);
16197
16198         /* HW state is read out, now we need to sanitize this mess. */
16199         for_each_intel_encoder(dev, encoder) {
16200                 intel_sanitize_encoder(encoder);
16201         }
16202
16203         for_each_pipe(dev_priv, pipe) {
16204                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16205                 intel_sanitize_crtc(crtc);
16206                 intel_dump_pipe_config(crtc, crtc->config,
16207                                        "[setup_hw_state]");
16208         }
16209
16210         intel_modeset_update_connector_atomic_state(dev);
16211
16212         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16213                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16214
16215                 if (!pll->on || pll->active_mask)
16216                         continue;
16217
16218                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16219
16220                 pll->funcs.disable(dev_priv, pll);
16221                 pll->on = false;
16222         }
16223
16224         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
16225                 vlv_wm_get_hw_state(dev);
16226         else if (IS_GEN9(dev))
16227                 skl_wm_get_hw_state(dev);
16228         else if (HAS_PCH_SPLIT(dev))
16229                 ilk_wm_get_hw_state(dev);
16230
16231         for_each_intel_crtc(dev, crtc) {
16232                 unsigned long put_domains;
16233
16234                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
16235                 if (WARN_ON(put_domains))
16236                         modeset_put_power_domains(dev_priv, put_domains);
16237         }
16238         intel_display_set_init_power(dev_priv, false);
16239
16240         intel_fbc_init_pipe_state(dev_priv);
16241 }
16242
16243 void intel_display_resume(struct drm_device *dev)
16244 {
16245         struct drm_i915_private *dev_priv = to_i915(dev);
16246         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16247         struct drm_modeset_acquire_ctx ctx;
16248         int ret;
16249         bool setup = false;
16250
16251         dev_priv->modeset_restore_state = NULL;
16252
16253         /*
16254          * This is a cludge because with real atomic modeset mode_config.mutex
16255          * won't be taken. Unfortunately some probed state like
16256          * audio_codec_enable is still protected by mode_config.mutex, so lock
16257          * it here for now.
16258          */
16259         mutex_lock(&dev->mode_config.mutex);
16260         drm_modeset_acquire_init(&ctx, 0);
16261
16262 retry:
16263         ret = drm_modeset_lock_all_ctx(dev, &ctx);
16264
16265         if (ret == 0 && !setup) {
16266                 setup = true;
16267
16268                 intel_modeset_setup_hw_state(dev);
16269                 i915_redisable_vga(dev);
16270         }
16271
16272         if (ret == 0 && state) {
16273                 struct drm_crtc_state *crtc_state;
16274                 struct drm_crtc *crtc;
16275                 int i;
16276
16277                 state->acquire_ctx = &ctx;
16278
16279                 /* ignore any reset values/BIOS leftovers in the WM registers */
16280                 to_intel_atomic_state(state)->skip_intermediate_wm = true;
16281
16282                 for_each_crtc_in_state(state, crtc, crtc_state, i) {
16283                         /*
16284                          * Force recalculation even if we restore
16285                          * current state. With fast modeset this may not result
16286                          * in a modeset when the state is compatible.
16287                          */
16288                         crtc_state->mode_changed = true;
16289                 }
16290
16291                 ret = drm_atomic_commit(state);
16292         }
16293
16294         if (ret == -EDEADLK) {
16295                 drm_modeset_backoff(&ctx);
16296                 goto retry;
16297         }
16298
16299         drm_modeset_drop_locks(&ctx);
16300         drm_modeset_acquire_fini(&ctx);
16301         mutex_unlock(&dev->mode_config.mutex);
16302
16303         if (ret) {
16304                 DRM_ERROR("Restoring old state failed with %i\n", ret);
16305                 drm_atomic_state_free(state);
16306         }
16307 }
16308
16309 void intel_modeset_gem_init(struct drm_device *dev)
16310 {
16311         struct drm_i915_private *dev_priv = to_i915(dev);
16312         struct drm_crtc *c;
16313         struct drm_i915_gem_object *obj;
16314         int ret;
16315
16316         intel_init_gt_powersave(dev_priv);
16317
16318         intel_modeset_init_hw(dev);
16319
16320         intel_setup_overlay(dev_priv);
16321
16322         /*
16323          * Make sure any fbs we allocated at startup are properly
16324          * pinned & fenced.  When we do the allocation it's too early
16325          * for this.
16326          */
16327         for_each_crtc(dev, c) {
16328                 obj = intel_fb_obj(c->primary->fb);
16329                 if (obj == NULL)
16330                         continue;
16331
16332                 mutex_lock(&dev->struct_mutex);
16333                 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
16334                                                  c->primary->state->rotation);
16335                 mutex_unlock(&dev->struct_mutex);
16336                 if (ret) {
16337                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
16338                                   to_intel_crtc(c)->pipe);
16339                         drm_framebuffer_unreference(c->primary->fb);
16340                         c->primary->fb = NULL;
16341                         c->primary->crtc = c->primary->state->crtc = NULL;
16342                         update_state_fb(c->primary);
16343                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16344                 }
16345         }
16346 }
16347
16348 int intel_connector_register(struct drm_connector *connector)
16349 {
16350         struct intel_connector *intel_connector = to_intel_connector(connector);
16351         int ret;
16352
16353         ret = intel_backlight_device_register(intel_connector);
16354         if (ret)
16355                 goto err;
16356
16357         return 0;
16358
16359 err:
16360         return ret;
16361 }
16362
16363 void intel_connector_unregister(struct drm_connector *connector)
16364 {
16365         struct intel_connector *intel_connector = to_intel_connector(connector);
16366
16367         intel_backlight_device_unregister(intel_connector);
16368         intel_panel_destroy_backlight(connector);
16369 }
16370
16371 void intel_modeset_cleanup(struct drm_device *dev)
16372 {
16373         struct drm_i915_private *dev_priv = dev->dev_private;
16374
16375         intel_disable_gt_powersave(dev_priv);
16376
16377         /*
16378          * Interrupts and polling as the first thing to avoid creating havoc.
16379          * Too much stuff here (turning of connectors, ...) would
16380          * experience fancy races otherwise.
16381          */
16382         intel_irq_uninstall(dev_priv);
16383
16384         /*
16385          * Due to the hpd irq storm handling the hotplug work can re-arm the
16386          * poll handlers. Hence disable polling after hpd handling is shut down.
16387          */
16388         drm_kms_helper_poll_fini(dev);
16389
16390         intel_unregister_dsm_handler();
16391
16392         intel_fbc_global_disable(dev_priv);
16393
16394         /* flush any delayed tasks or pending work */
16395         flush_scheduled_work();
16396
16397         drm_mode_config_cleanup(dev);
16398
16399         intel_cleanup_overlay(dev_priv);
16400
16401         intel_cleanup_gt_powersave(dev_priv);
16402
16403         intel_teardown_gmbus(dev);
16404 }
16405
16406 void intel_connector_attach_encoder(struct intel_connector *connector,
16407                                     struct intel_encoder *encoder)
16408 {
16409         connector->encoder = encoder;
16410         drm_mode_connector_attach_encoder(&connector->base,
16411                                           &encoder->base);
16412 }
16413
16414 /*
16415  * set vga decode state - true == enable VGA decode
16416  */
16417 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16418 {
16419         struct drm_i915_private *dev_priv = dev->dev_private;
16420         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16421         u16 gmch_ctrl;
16422
16423         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16424                 DRM_ERROR("failed to read control word\n");
16425                 return -EIO;
16426         }
16427
16428         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16429                 return 0;
16430
16431         if (state)
16432                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16433         else
16434                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16435
16436         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16437                 DRM_ERROR("failed to write control word\n");
16438                 return -EIO;
16439         }
16440
16441         return 0;
16442 }
16443
16444 struct intel_display_error_state {
16445
16446         u32 power_well_driver;
16447
16448         int num_transcoders;
16449
16450         struct intel_cursor_error_state {
16451                 u32 control;
16452                 u32 position;
16453                 u32 base;
16454                 u32 size;
16455         } cursor[I915_MAX_PIPES];
16456
16457         struct intel_pipe_error_state {
16458                 bool power_domain_on;
16459                 u32 source;
16460                 u32 stat;
16461         } pipe[I915_MAX_PIPES];
16462
16463         struct intel_plane_error_state {
16464                 u32 control;
16465                 u32 stride;
16466                 u32 size;
16467                 u32 pos;
16468                 u32 addr;
16469                 u32 surface;
16470                 u32 tile_offset;
16471         } plane[I915_MAX_PIPES];
16472
16473         struct intel_transcoder_error_state {
16474                 bool power_domain_on;
16475                 enum transcoder cpu_transcoder;
16476
16477                 u32 conf;
16478
16479                 u32 htotal;
16480                 u32 hblank;
16481                 u32 hsync;
16482                 u32 vtotal;
16483                 u32 vblank;
16484                 u32 vsync;
16485         } transcoder[4];
16486 };
16487
16488 struct intel_display_error_state *
16489 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
16490 {
16491         struct intel_display_error_state *error;
16492         int transcoders[] = {
16493                 TRANSCODER_A,
16494                 TRANSCODER_B,
16495                 TRANSCODER_C,
16496                 TRANSCODER_EDP,
16497         };
16498         int i;
16499
16500         if (INTEL_INFO(dev_priv)->num_pipes == 0)
16501                 return NULL;
16502
16503         error = kzalloc(sizeof(*error), GFP_ATOMIC);
16504         if (error == NULL)
16505                 return NULL;
16506
16507         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
16508                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16509
16510         for_each_pipe(dev_priv, i) {
16511                 error->pipe[i].power_domain_on =
16512                         __intel_display_power_is_enabled(dev_priv,
16513                                                          POWER_DOMAIN_PIPE(i));
16514                 if (!error->pipe[i].power_domain_on)
16515                         continue;
16516
16517                 error->cursor[i].control = I915_READ(CURCNTR(i));
16518                 error->cursor[i].position = I915_READ(CURPOS(i));
16519                 error->cursor[i].base = I915_READ(CURBASE(i));
16520
16521                 error->plane[i].control = I915_READ(DSPCNTR(i));
16522                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16523                 if (INTEL_GEN(dev_priv) <= 3) {
16524                         error->plane[i].size = I915_READ(DSPSIZE(i));
16525                         error->plane[i].pos = I915_READ(DSPPOS(i));
16526                 }
16527                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
16528                         error->plane[i].addr = I915_READ(DSPADDR(i));
16529                 if (INTEL_GEN(dev_priv) >= 4) {
16530                         error->plane[i].surface = I915_READ(DSPSURF(i));
16531                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16532                 }
16533
16534                 error->pipe[i].source = I915_READ(PIPESRC(i));
16535
16536                 if (HAS_GMCH_DISPLAY(dev_priv))
16537                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
16538         }
16539
16540         /* Note: this does not include DSI transcoders. */
16541         error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
16542         if (HAS_DDI(dev_priv))
16543                 error->num_transcoders++; /* Account for eDP. */
16544
16545         for (i = 0; i < error->num_transcoders; i++) {
16546                 enum transcoder cpu_transcoder = transcoders[i];
16547
16548                 error->transcoder[i].power_domain_on =
16549                         __intel_display_power_is_enabled(dev_priv,
16550                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16551                 if (!error->transcoder[i].power_domain_on)
16552                         continue;
16553
16554                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16555
16556                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16557                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16558                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16559                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16560                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16561                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16562                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16563         }
16564
16565         return error;
16566 }
16567
16568 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16569
16570 void
16571 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16572                                 struct drm_device *dev,
16573                                 struct intel_display_error_state *error)
16574 {
16575         struct drm_i915_private *dev_priv = dev->dev_private;
16576         int i;
16577
16578         if (!error)
16579                 return;
16580
16581         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16582         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16583                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16584                            error->power_well_driver);
16585         for_each_pipe(dev_priv, i) {
16586                 err_printf(m, "Pipe [%d]:\n", i);
16587                 err_printf(m, "  Power: %s\n",
16588                            onoff(error->pipe[i].power_domain_on));
16589                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16590                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16591
16592                 err_printf(m, "Plane [%d]:\n", i);
16593                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16594                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16595                 if (INTEL_INFO(dev)->gen <= 3) {
16596                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16597                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16598                 }
16599                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16600                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16601                 if (INTEL_INFO(dev)->gen >= 4) {
16602                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16603                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16604                 }
16605
16606                 err_printf(m, "Cursor [%d]:\n", i);
16607                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16608                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16609                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16610         }
16611
16612         for (i = 0; i < error->num_transcoders; i++) {
16613                 err_printf(m, "CPU transcoder: %s\n",
16614                            transcoder_name(error->transcoder[i].cpu_transcoder));
16615                 err_printf(m, "  Power: %s\n",
16616                            onoff(error->transcoder[i].power_domain_on));
16617                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16618                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16619                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16620                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16621                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16622                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16623                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16624         }
16625 }