drm/i915: Move fbc members out of line
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         int     min, max;
50 } intel_range_t;
51
52 typedef struct {
53         int     dot_limit;
54         int     p2_slow, p2_fast;
55 } intel_p2_t;
56
57 #define INTEL_P2_NUM                  2
58 typedef struct intel_limit intel_limit_t;
59 struct intel_limit {
60         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
61         intel_p2_t          p2;
62 };
63
64 /* FDI */
65 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
66
67 int
68 intel_pch_rawclk(struct drm_device *dev)
69 {
70         struct drm_i915_private *dev_priv = dev->dev_private;
71
72         WARN_ON(!HAS_PCH_SPLIT(dev));
73
74         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
75 }
76
77 static inline u32 /* units of 100MHz */
78 intel_fdi_link_freq(struct drm_device *dev)
79 {
80         if (IS_GEN5(dev)) {
81                 struct drm_i915_private *dev_priv = dev->dev_private;
82                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
83         } else
84                 return 27;
85 }
86
87 static const intel_limit_t intel_limits_i8xx_dvo = {
88         .dot = { .min = 25000, .max = 350000 },
89         .vco = { .min = 930000, .max = 1400000 },
90         .n = { .min = 3, .max = 16 },
91         .m = { .min = 96, .max = 140 },
92         .m1 = { .min = 18, .max = 26 },
93         .m2 = { .min = 6, .max = 16 },
94         .p = { .min = 4, .max = 128 },
95         .p1 = { .min = 2, .max = 33 },
96         .p2 = { .dot_limit = 165000,
97                 .p2_slow = 4, .p2_fast = 2 },
98 };
99
100 static const intel_limit_t intel_limits_i8xx_lvds = {
101         .dot = { .min = 25000, .max = 350000 },
102         .vco = { .min = 930000, .max = 1400000 },
103         .n = { .min = 3, .max = 16 },
104         .m = { .min = 96, .max = 140 },
105         .m1 = { .min = 18, .max = 26 },
106         .m2 = { .min = 6, .max = 16 },
107         .p = { .min = 4, .max = 128 },
108         .p1 = { .min = 1, .max = 6 },
109         .p2 = { .dot_limit = 165000,
110                 .p2_slow = 14, .p2_fast = 7 },
111 };
112
113 static const intel_limit_t intel_limits_i9xx_sdvo = {
114         .dot = { .min = 20000, .max = 400000 },
115         .vco = { .min = 1400000, .max = 2800000 },
116         .n = { .min = 1, .max = 6 },
117         .m = { .min = 70, .max = 120 },
118         .m1 = { .min = 8, .max = 18 },
119         .m2 = { .min = 3, .max = 7 },
120         .p = { .min = 5, .max = 80 },
121         .p1 = { .min = 1, .max = 8 },
122         .p2 = { .dot_limit = 200000,
123                 .p2_slow = 10, .p2_fast = 5 },
124 };
125
126 static const intel_limit_t intel_limits_i9xx_lvds = {
127         .dot = { .min = 20000, .max = 400000 },
128         .vco = { .min = 1400000, .max = 2800000 },
129         .n = { .min = 1, .max = 6 },
130         .m = { .min = 70, .max = 120 },
131         .m1 = { .min = 8, .max = 18 },
132         .m2 = { .min = 3, .max = 7 },
133         .p = { .min = 7, .max = 98 },
134         .p1 = { .min = 1, .max = 8 },
135         .p2 = { .dot_limit = 112000,
136                 .p2_slow = 14, .p2_fast = 7 },
137 };
138
139
140 static const intel_limit_t intel_limits_g4x_sdvo = {
141         .dot = { .min = 25000, .max = 270000 },
142         .vco = { .min = 1750000, .max = 3500000},
143         .n = { .min = 1, .max = 4 },
144         .m = { .min = 104, .max = 138 },
145         .m1 = { .min = 17, .max = 23 },
146         .m2 = { .min = 5, .max = 11 },
147         .p = { .min = 10, .max = 30 },
148         .p1 = { .min = 1, .max = 3},
149         .p2 = { .dot_limit = 270000,
150                 .p2_slow = 10,
151                 .p2_fast = 10
152         },
153 };
154
155 static const intel_limit_t intel_limits_g4x_hdmi = {
156         .dot = { .min = 22000, .max = 400000 },
157         .vco = { .min = 1750000, .max = 3500000},
158         .n = { .min = 1, .max = 4 },
159         .m = { .min = 104, .max = 138 },
160         .m1 = { .min = 16, .max = 23 },
161         .m2 = { .min = 5, .max = 11 },
162         .p = { .min = 5, .max = 80 },
163         .p1 = { .min = 1, .max = 8},
164         .p2 = { .dot_limit = 165000,
165                 .p2_slow = 10, .p2_fast = 5 },
166 };
167
168 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
169         .dot = { .min = 20000, .max = 115000 },
170         .vco = { .min = 1750000, .max = 3500000 },
171         .n = { .min = 1, .max = 3 },
172         .m = { .min = 104, .max = 138 },
173         .m1 = { .min = 17, .max = 23 },
174         .m2 = { .min = 5, .max = 11 },
175         .p = { .min = 28, .max = 112 },
176         .p1 = { .min = 2, .max = 8 },
177         .p2 = { .dot_limit = 0,
178                 .p2_slow = 14, .p2_fast = 14
179         },
180 };
181
182 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
183         .dot = { .min = 80000, .max = 224000 },
184         .vco = { .min = 1750000, .max = 3500000 },
185         .n = { .min = 1, .max = 3 },
186         .m = { .min = 104, .max = 138 },
187         .m1 = { .min = 17, .max = 23 },
188         .m2 = { .min = 5, .max = 11 },
189         .p = { .min = 14, .max = 42 },
190         .p1 = { .min = 2, .max = 6 },
191         .p2 = { .dot_limit = 0,
192                 .p2_slow = 7, .p2_fast = 7
193         },
194 };
195
196 static const intel_limit_t intel_limits_pineview_sdvo = {
197         .dot = { .min = 20000, .max = 400000},
198         .vco = { .min = 1700000, .max = 3500000 },
199         /* Pineview's Ncounter is a ring counter */
200         .n = { .min = 3, .max = 6 },
201         .m = { .min = 2, .max = 256 },
202         /* Pineview only has one combined m divider, which we treat as m2. */
203         .m1 = { .min = 0, .max = 0 },
204         .m2 = { .min = 0, .max = 254 },
205         .p = { .min = 5, .max = 80 },
206         .p1 = { .min = 1, .max = 8 },
207         .p2 = { .dot_limit = 200000,
208                 .p2_slow = 10, .p2_fast = 5 },
209 };
210
211 static const intel_limit_t intel_limits_pineview_lvds = {
212         .dot = { .min = 20000, .max = 400000 },
213         .vco = { .min = 1700000, .max = 3500000 },
214         .n = { .min = 3, .max = 6 },
215         .m = { .min = 2, .max = 256 },
216         .m1 = { .min = 0, .max = 0 },
217         .m2 = { .min = 0, .max = 254 },
218         .p = { .min = 7, .max = 112 },
219         .p1 = { .min = 1, .max = 8 },
220         .p2 = { .dot_limit = 112000,
221                 .p2_slow = 14, .p2_fast = 14 },
222 };
223
224 /* Ironlake / Sandybridge
225  *
226  * We calculate clock using (register_value + 2) for N/M1/M2, so here
227  * the range value for them is (actual_value - 2).
228  */
229 static const intel_limit_t intel_limits_ironlake_dac = {
230         .dot = { .min = 25000, .max = 350000 },
231         .vco = { .min = 1760000, .max = 3510000 },
232         .n = { .min = 1, .max = 5 },
233         .m = { .min = 79, .max = 127 },
234         .m1 = { .min = 12, .max = 22 },
235         .m2 = { .min = 5, .max = 9 },
236         .p = { .min = 5, .max = 80 },
237         .p1 = { .min = 1, .max = 8 },
238         .p2 = { .dot_limit = 225000,
239                 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_ironlake_single_lvds = {
243         .dot = { .min = 25000, .max = 350000 },
244         .vco = { .min = 1760000, .max = 3510000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 79, .max = 118 },
247         .m1 = { .min = 12, .max = 22 },
248         .m2 = { .min = 5, .max = 9 },
249         .p = { .min = 28, .max = 112 },
250         .p1 = { .min = 2, .max = 8 },
251         .p2 = { .dot_limit = 225000,
252                 .p2_slow = 14, .p2_fast = 14 },
253 };
254
255 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
256         .dot = { .min = 25000, .max = 350000 },
257         .vco = { .min = 1760000, .max = 3510000 },
258         .n = { .min = 1, .max = 3 },
259         .m = { .min = 79, .max = 127 },
260         .m1 = { .min = 12, .max = 22 },
261         .m2 = { .min = 5, .max = 9 },
262         .p = { .min = 14, .max = 56 },
263         .p1 = { .min = 2, .max = 8 },
264         .p2 = { .dot_limit = 225000,
265                 .p2_slow = 7, .p2_fast = 7 },
266 };
267
268 /* LVDS 100mhz refclk limits. */
269 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
270         .dot = { .min = 25000, .max = 350000 },
271         .vco = { .min = 1760000, .max = 3510000 },
272         .n = { .min = 1, .max = 2 },
273         .m = { .min = 79, .max = 126 },
274         .m1 = { .min = 12, .max = 22 },
275         .m2 = { .min = 5, .max = 9 },
276         .p = { .min = 28, .max = 112 },
277         .p1 = { .min = 2, .max = 8 },
278         .p2 = { .dot_limit = 225000,
279                 .p2_slow = 14, .p2_fast = 14 },
280 };
281
282 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
283         .dot = { .min = 25000, .max = 350000 },
284         .vco = { .min = 1760000, .max = 3510000 },
285         .n = { .min = 1, .max = 3 },
286         .m = { .min = 79, .max = 126 },
287         .m1 = { .min = 12, .max = 22 },
288         .m2 = { .min = 5, .max = 9 },
289         .p = { .min = 14, .max = 42 },
290         .p1 = { .min = 2, .max = 6 },
291         .p2 = { .dot_limit = 225000,
292                 .p2_slow = 7, .p2_fast = 7 },
293 };
294
295 static const intel_limit_t intel_limits_vlv_dac = {
296         .dot = { .min = 25000, .max = 270000 },
297         .vco = { .min = 4000000, .max = 6000000 },
298         .n = { .min = 1, .max = 7 },
299         .m = { .min = 22, .max = 450 }, /* guess */
300         .m1 = { .min = 2, .max = 3 },
301         .m2 = { .min = 11, .max = 156 },
302         .p = { .min = 10, .max = 30 },
303         .p1 = { .min = 1, .max = 3 },
304         .p2 = { .dot_limit = 270000,
305                 .p2_slow = 2, .p2_fast = 20 },
306 };
307
308 static const intel_limit_t intel_limits_vlv_hdmi = {
309         .dot = { .min = 25000, .max = 270000 },
310         .vco = { .min = 4000000, .max = 6000000 },
311         .n = { .min = 1, .max = 7 },
312         .m = { .min = 60, .max = 300 }, /* guess */
313         .m1 = { .min = 2, .max = 3 },
314         .m2 = { .min = 11, .max = 156 },
315         .p = { .min = 10, .max = 30 },
316         .p1 = { .min = 2, .max = 3 },
317         .p2 = { .dot_limit = 270000,
318                 .p2_slow = 2, .p2_fast = 20 },
319 };
320
321 static const intel_limit_t intel_limits_vlv_dp = {
322         .dot = { .min = 25000, .max = 270000 },
323         .vco = { .min = 4000000, .max = 6000000 },
324         .n = { .min = 1, .max = 7 },
325         .m = { .min = 22, .max = 450 },
326         .m1 = { .min = 2, .max = 3 },
327         .m2 = { .min = 11, .max = 156 },
328         .p = { .min = 10, .max = 30 },
329         .p1 = { .min = 1, .max = 3 },
330         .p2 = { .dot_limit = 270000,
331                 .p2_slow = 2, .p2_fast = 20 },
332 };
333
334 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
335                                                 int refclk)
336 {
337         struct drm_device *dev = crtc->dev;
338         const intel_limit_t *limit;
339
340         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
341                 if (intel_is_dual_link_lvds(dev)) {
342                         if (refclk == 100000)
343                                 limit = &intel_limits_ironlake_dual_lvds_100m;
344                         else
345                                 limit = &intel_limits_ironlake_dual_lvds;
346                 } else {
347                         if (refclk == 100000)
348                                 limit = &intel_limits_ironlake_single_lvds_100m;
349                         else
350                                 limit = &intel_limits_ironlake_single_lvds;
351                 }
352         } else
353                 limit = &intel_limits_ironlake_dac;
354
355         return limit;
356 }
357
358 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
359 {
360         struct drm_device *dev = crtc->dev;
361         const intel_limit_t *limit;
362
363         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
364                 if (intel_is_dual_link_lvds(dev))
365                         limit = &intel_limits_g4x_dual_channel_lvds;
366                 else
367                         limit = &intel_limits_g4x_single_channel_lvds;
368         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
369                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
370                 limit = &intel_limits_g4x_hdmi;
371         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
372                 limit = &intel_limits_g4x_sdvo;
373         } else /* The option is for other outputs */
374                 limit = &intel_limits_i9xx_sdvo;
375
376         return limit;
377 }
378
379 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
380 {
381         struct drm_device *dev = crtc->dev;
382         const intel_limit_t *limit;
383
384         if (HAS_PCH_SPLIT(dev))
385                 limit = intel_ironlake_limit(crtc, refclk);
386         else if (IS_G4X(dev)) {
387                 limit = intel_g4x_limit(crtc);
388         } else if (IS_PINEVIEW(dev)) {
389                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
390                         limit = &intel_limits_pineview_lvds;
391                 else
392                         limit = &intel_limits_pineview_sdvo;
393         } else if (IS_VALLEYVIEW(dev)) {
394                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
395                         limit = &intel_limits_vlv_dac;
396                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
397                         limit = &intel_limits_vlv_hdmi;
398                 else
399                         limit = &intel_limits_vlv_dp;
400         } else if (!IS_GEN2(dev)) {
401                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
402                         limit = &intel_limits_i9xx_lvds;
403                 else
404                         limit = &intel_limits_i9xx_sdvo;
405         } else {
406                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
407                         limit = &intel_limits_i8xx_lvds;
408                 else
409                         limit = &intel_limits_i8xx_dvo;
410         }
411         return limit;
412 }
413
414 /* m1 is reserved as 0 in Pineview, n is a ring counter */
415 static void pineview_clock(int refclk, intel_clock_t *clock)
416 {
417         clock->m = clock->m2 + 2;
418         clock->p = clock->p1 * clock->p2;
419         clock->vco = refclk * clock->m / clock->n;
420         clock->dot = clock->vco / clock->p;
421 }
422
423 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
424 {
425         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
426 }
427
428 static void i9xx_clock(int refclk, intel_clock_t *clock)
429 {
430         clock->m = i9xx_dpll_compute_m(clock);
431         clock->p = clock->p1 * clock->p2;
432         clock->vco = refclk * clock->m / (clock->n + 2);
433         clock->dot = clock->vco / clock->p;
434 }
435
436 /**
437  * Returns whether any output on the specified pipe is of the specified type
438  */
439 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
440 {
441         struct drm_device *dev = crtc->dev;
442         struct intel_encoder *encoder;
443
444         for_each_encoder_on_crtc(dev, crtc, encoder)
445                 if (encoder->type == type)
446                         return true;
447
448         return false;
449 }
450
451 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
452 /**
453  * Returns whether the given set of divisors are valid for a given refclk with
454  * the given connectors.
455  */
456
457 static bool intel_PLL_is_valid(struct drm_device *dev,
458                                const intel_limit_t *limit,
459                                const intel_clock_t *clock)
460 {
461         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
462                 INTELPllInvalid("p1 out of range\n");
463         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
464                 INTELPllInvalid("p out of range\n");
465         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
466                 INTELPllInvalid("m2 out of range\n");
467         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
468                 INTELPllInvalid("m1 out of range\n");
469         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
470                 INTELPllInvalid("m1 <= m2\n");
471         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
472                 INTELPllInvalid("m out of range\n");
473         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
474                 INTELPllInvalid("n out of range\n");
475         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
476                 INTELPllInvalid("vco out of range\n");
477         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
478          * connector, etc., rather than just a single range.
479          */
480         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
481                 INTELPllInvalid("dot out of range\n");
482
483         return true;
484 }
485
486 static bool
487 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
488                     int target, int refclk, intel_clock_t *match_clock,
489                     intel_clock_t *best_clock)
490 {
491         struct drm_device *dev = crtc->dev;
492         intel_clock_t clock;
493         int err = target;
494
495         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
496                 /*
497                  * For LVDS just rely on its current settings for dual-channel.
498                  * We haven't figured out how to reliably set up different
499                  * single/dual channel state, if we even can.
500                  */
501                 if (intel_is_dual_link_lvds(dev))
502                         clock.p2 = limit->p2.p2_fast;
503                 else
504                         clock.p2 = limit->p2.p2_slow;
505         } else {
506                 if (target < limit->p2.dot_limit)
507                         clock.p2 = limit->p2.p2_slow;
508                 else
509                         clock.p2 = limit->p2.p2_fast;
510         }
511
512         memset(best_clock, 0, sizeof(*best_clock));
513
514         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
515              clock.m1++) {
516                 for (clock.m2 = limit->m2.min;
517                      clock.m2 <= limit->m2.max; clock.m2++) {
518                         if (clock.m2 >= clock.m1)
519                                 break;
520                         for (clock.n = limit->n.min;
521                              clock.n <= limit->n.max; clock.n++) {
522                                 for (clock.p1 = limit->p1.min;
523                                         clock.p1 <= limit->p1.max; clock.p1++) {
524                                         int this_err;
525
526                                         i9xx_clock(refclk, &clock);
527                                         if (!intel_PLL_is_valid(dev, limit,
528                                                                 &clock))
529                                                 continue;
530                                         if (match_clock &&
531                                             clock.p != match_clock->p)
532                                                 continue;
533
534                                         this_err = abs(clock.dot - target);
535                                         if (this_err < err) {
536                                                 *best_clock = clock;
537                                                 err = this_err;
538                                         }
539                                 }
540                         }
541                 }
542         }
543
544         return (err != target);
545 }
546
547 static bool
548 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
549                    int target, int refclk, intel_clock_t *match_clock,
550                    intel_clock_t *best_clock)
551 {
552         struct drm_device *dev = crtc->dev;
553         intel_clock_t clock;
554         int err = target;
555
556         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
557                 /*
558                  * For LVDS just rely on its current settings for dual-channel.
559                  * We haven't figured out how to reliably set up different
560                  * single/dual channel state, if we even can.
561                  */
562                 if (intel_is_dual_link_lvds(dev))
563                         clock.p2 = limit->p2.p2_fast;
564                 else
565                         clock.p2 = limit->p2.p2_slow;
566         } else {
567                 if (target < limit->p2.dot_limit)
568                         clock.p2 = limit->p2.p2_slow;
569                 else
570                         clock.p2 = limit->p2.p2_fast;
571         }
572
573         memset(best_clock, 0, sizeof(*best_clock));
574
575         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
576              clock.m1++) {
577                 for (clock.m2 = limit->m2.min;
578                      clock.m2 <= limit->m2.max; clock.m2++) {
579                         for (clock.n = limit->n.min;
580                              clock.n <= limit->n.max; clock.n++) {
581                                 for (clock.p1 = limit->p1.min;
582                                         clock.p1 <= limit->p1.max; clock.p1++) {
583                                         int this_err;
584
585                                         pineview_clock(refclk, &clock);
586                                         if (!intel_PLL_is_valid(dev, limit,
587                                                                 &clock))
588                                                 continue;
589                                         if (match_clock &&
590                                             clock.p != match_clock->p)
591                                                 continue;
592
593                                         this_err = abs(clock.dot - target);
594                                         if (this_err < err) {
595                                                 *best_clock = clock;
596                                                 err = this_err;
597                                         }
598                                 }
599                         }
600                 }
601         }
602
603         return (err != target);
604 }
605
606 static bool
607 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
608                    int target, int refclk, intel_clock_t *match_clock,
609                    intel_clock_t *best_clock)
610 {
611         struct drm_device *dev = crtc->dev;
612         intel_clock_t clock;
613         int max_n;
614         bool found;
615         /* approximately equals target * 0.00585 */
616         int err_most = (target >> 8) + (target >> 9);
617         found = false;
618
619         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
620                 if (intel_is_dual_link_lvds(dev))
621                         clock.p2 = limit->p2.p2_fast;
622                 else
623                         clock.p2 = limit->p2.p2_slow;
624         } else {
625                 if (target < limit->p2.dot_limit)
626                         clock.p2 = limit->p2.p2_slow;
627                 else
628                         clock.p2 = limit->p2.p2_fast;
629         }
630
631         memset(best_clock, 0, sizeof(*best_clock));
632         max_n = limit->n.max;
633         /* based on hardware requirement, prefer smaller n to precision */
634         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
635                 /* based on hardware requirement, prefere larger m1,m2 */
636                 for (clock.m1 = limit->m1.max;
637                      clock.m1 >= limit->m1.min; clock.m1--) {
638                         for (clock.m2 = limit->m2.max;
639                              clock.m2 >= limit->m2.min; clock.m2--) {
640                                 for (clock.p1 = limit->p1.max;
641                                      clock.p1 >= limit->p1.min; clock.p1--) {
642                                         int this_err;
643
644                                         i9xx_clock(refclk, &clock);
645                                         if (!intel_PLL_is_valid(dev, limit,
646                                                                 &clock))
647                                                 continue;
648
649                                         this_err = abs(clock.dot - target);
650                                         if (this_err < err_most) {
651                                                 *best_clock = clock;
652                                                 err_most = this_err;
653                                                 max_n = clock.n;
654                                                 found = true;
655                                         }
656                                 }
657                         }
658                 }
659         }
660         return found;
661 }
662
663 static bool
664 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
665                    int target, int refclk, intel_clock_t *match_clock,
666                    intel_clock_t *best_clock)
667 {
668         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
669         u32 m, n, fastclk;
670         u32 updrate, minupdate, fracbits, p;
671         unsigned long bestppm, ppm, absppm;
672         int dotclk, flag;
673
674         flag = 0;
675         dotclk = target * 1000;
676         bestppm = 1000000;
677         ppm = absppm = 0;
678         fastclk = dotclk / (2*100);
679         updrate = 0;
680         minupdate = 19200;
681         fracbits = 1;
682         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
683         bestm1 = bestm2 = bestp1 = bestp2 = 0;
684
685         /* based on hardware requirement, prefer smaller n to precision */
686         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
687                 updrate = refclk / n;
688                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
689                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
690                                 if (p2 > 10)
691                                         p2 = p2 - 1;
692                                 p = p1 * p2;
693                                 /* based on hardware requirement, prefer bigger m1,m2 values */
694                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
695                                         m2 = (((2*(fastclk * p * n / m1 )) +
696                                                refclk) / (2*refclk));
697                                         m = m1 * m2;
698                                         vco = updrate * m;
699                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
700                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
701                                                 absppm = (ppm > 0) ? ppm : (-ppm);
702                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
703                                                         bestppm = 0;
704                                                         flag = 1;
705                                                 }
706                                                 if (absppm < bestppm - 10) {
707                                                         bestppm = absppm;
708                                                         flag = 1;
709                                                 }
710                                                 if (flag) {
711                                                         bestn = n;
712                                                         bestm1 = m1;
713                                                         bestm2 = m2;
714                                                         bestp1 = p1;
715                                                         bestp2 = p2;
716                                                         flag = 0;
717                                                 }
718                                         }
719                                 }
720                         }
721                 }
722         }
723         best_clock->n = bestn;
724         best_clock->m1 = bestm1;
725         best_clock->m2 = bestm2;
726         best_clock->p1 = bestp1;
727         best_clock->p2 = bestp2;
728
729         return true;
730 }
731
732 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
733                                              enum pipe pipe)
734 {
735         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
737
738         return intel_crtc->config.cpu_transcoder;
739 }
740
741 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
742 {
743         struct drm_i915_private *dev_priv = dev->dev_private;
744         u32 frame, frame_reg = PIPEFRAME(pipe);
745
746         frame = I915_READ(frame_reg);
747
748         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
749                 DRM_DEBUG_KMS("vblank wait timed out\n");
750 }
751
752 /**
753  * intel_wait_for_vblank - wait for vblank on a given pipe
754  * @dev: drm device
755  * @pipe: pipe to wait for
756  *
757  * Wait for vblank to occur on a given pipe.  Needed for various bits of
758  * mode setting code.
759  */
760 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
761 {
762         struct drm_i915_private *dev_priv = dev->dev_private;
763         int pipestat_reg = PIPESTAT(pipe);
764
765         if (INTEL_INFO(dev)->gen >= 5) {
766                 ironlake_wait_for_vblank(dev, pipe);
767                 return;
768         }
769
770         /* Clear existing vblank status. Note this will clear any other
771          * sticky status fields as well.
772          *
773          * This races with i915_driver_irq_handler() with the result
774          * that either function could miss a vblank event.  Here it is not
775          * fatal, as we will either wait upon the next vblank interrupt or
776          * timeout.  Generally speaking intel_wait_for_vblank() is only
777          * called during modeset at which time the GPU should be idle and
778          * should *not* be performing page flips and thus not waiting on
779          * vblanks...
780          * Currently, the result of us stealing a vblank from the irq
781          * handler is that a single frame will be skipped during swapbuffers.
782          */
783         I915_WRITE(pipestat_reg,
784                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
785
786         /* Wait for vblank interrupt bit to set */
787         if (wait_for(I915_READ(pipestat_reg) &
788                      PIPE_VBLANK_INTERRUPT_STATUS,
789                      50))
790                 DRM_DEBUG_KMS("vblank wait timed out\n");
791 }
792
793 /*
794  * intel_wait_for_pipe_off - wait for pipe to turn off
795  * @dev: drm device
796  * @pipe: pipe to wait for
797  *
798  * After disabling a pipe, we can't wait for vblank in the usual way,
799  * spinning on the vblank interrupt status bit, since we won't actually
800  * see an interrupt when the pipe is disabled.
801  *
802  * On Gen4 and above:
803  *   wait for the pipe register state bit to turn off
804  *
805  * Otherwise:
806  *   wait for the display line value to settle (it usually
807  *   ends up stopping at the start of the next frame).
808  *
809  */
810 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
811 {
812         struct drm_i915_private *dev_priv = dev->dev_private;
813         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
814                                                                       pipe);
815
816         if (INTEL_INFO(dev)->gen >= 4) {
817                 int reg = PIPECONF(cpu_transcoder);
818
819                 /* Wait for the Pipe State to go off */
820                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
821                              100))
822                         WARN(1, "pipe_off wait timed out\n");
823         } else {
824                 u32 last_line, line_mask;
825                 int reg = PIPEDSL(pipe);
826                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
827
828                 if (IS_GEN2(dev))
829                         line_mask = DSL_LINEMASK_GEN2;
830                 else
831                         line_mask = DSL_LINEMASK_GEN3;
832
833                 /* Wait for the display line to settle */
834                 do {
835                         last_line = I915_READ(reg) & line_mask;
836                         mdelay(5);
837                 } while (((I915_READ(reg) & line_mask) != last_line) &&
838                          time_after(timeout, jiffies));
839                 if (time_after(jiffies, timeout))
840                         WARN(1, "pipe_off wait timed out\n");
841         }
842 }
843
844 /*
845  * ibx_digital_port_connected - is the specified port connected?
846  * @dev_priv: i915 private structure
847  * @port: the port to test
848  *
849  * Returns true if @port is connected, false otherwise.
850  */
851 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
852                                 struct intel_digital_port *port)
853 {
854         u32 bit;
855
856         if (HAS_PCH_IBX(dev_priv->dev)) {
857                 switch(port->port) {
858                 case PORT_B:
859                         bit = SDE_PORTB_HOTPLUG;
860                         break;
861                 case PORT_C:
862                         bit = SDE_PORTC_HOTPLUG;
863                         break;
864                 case PORT_D:
865                         bit = SDE_PORTD_HOTPLUG;
866                         break;
867                 default:
868                         return true;
869                 }
870         } else {
871                 switch(port->port) {
872                 case PORT_B:
873                         bit = SDE_PORTB_HOTPLUG_CPT;
874                         break;
875                 case PORT_C:
876                         bit = SDE_PORTC_HOTPLUG_CPT;
877                         break;
878                 case PORT_D:
879                         bit = SDE_PORTD_HOTPLUG_CPT;
880                         break;
881                 default:
882                         return true;
883                 }
884         }
885
886         return I915_READ(SDEISR) & bit;
887 }
888
889 static const char *state_string(bool enabled)
890 {
891         return enabled ? "on" : "off";
892 }
893
894 /* Only for pre-ILK configs */
895 void assert_pll(struct drm_i915_private *dev_priv,
896                 enum pipe pipe, bool state)
897 {
898         int reg;
899         u32 val;
900         bool cur_state;
901
902         reg = DPLL(pipe);
903         val = I915_READ(reg);
904         cur_state = !!(val & DPLL_VCO_ENABLE);
905         WARN(cur_state != state,
906              "PLL state assertion failure (expected %s, current %s)\n",
907              state_string(state), state_string(cur_state));
908 }
909
910 struct intel_shared_dpll *
911 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
912 {
913         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
914
915         if (crtc->config.shared_dpll < 0)
916                 return NULL;
917
918         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
919 }
920
921 /* For ILK+ */
922 void assert_shared_dpll(struct drm_i915_private *dev_priv,
923                         struct intel_shared_dpll *pll,
924                         bool state)
925 {
926         bool cur_state;
927         struct intel_dpll_hw_state hw_state;
928
929         if (HAS_PCH_LPT(dev_priv->dev)) {
930                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
931                 return;
932         }
933
934         if (WARN (!pll,
935                   "asserting DPLL %s with no DPLL\n", state_string(state)))
936                 return;
937
938         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
939         WARN(cur_state != state,
940              "%s assertion failure (expected %s, current %s)\n",
941              pll->name, state_string(state), state_string(cur_state));
942 }
943
944 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
945                           enum pipe pipe, bool state)
946 {
947         int reg;
948         u32 val;
949         bool cur_state;
950         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
951                                                                       pipe);
952
953         if (HAS_DDI(dev_priv->dev)) {
954                 /* DDI does not have a specific FDI_TX register */
955                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
956                 val = I915_READ(reg);
957                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
958         } else {
959                 reg = FDI_TX_CTL(pipe);
960                 val = I915_READ(reg);
961                 cur_state = !!(val & FDI_TX_ENABLE);
962         }
963         WARN(cur_state != state,
964              "FDI TX state assertion failure (expected %s, current %s)\n",
965              state_string(state), state_string(cur_state));
966 }
967 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
968 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
969
970 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
971                           enum pipe pipe, bool state)
972 {
973         int reg;
974         u32 val;
975         bool cur_state;
976
977         reg = FDI_RX_CTL(pipe);
978         val = I915_READ(reg);
979         cur_state = !!(val & FDI_RX_ENABLE);
980         WARN(cur_state != state,
981              "FDI RX state assertion failure (expected %s, current %s)\n",
982              state_string(state), state_string(cur_state));
983 }
984 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
985 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
986
987 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
988                                       enum pipe pipe)
989 {
990         int reg;
991         u32 val;
992
993         /* ILK FDI PLL is always enabled */
994         if (dev_priv->info->gen == 5)
995                 return;
996
997         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
998         if (HAS_DDI(dev_priv->dev))
999                 return;
1000
1001         reg = FDI_TX_CTL(pipe);
1002         val = I915_READ(reg);
1003         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1004 }
1005
1006 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1007                        enum pipe pipe, bool state)
1008 {
1009         int reg;
1010         u32 val;
1011         bool cur_state;
1012
1013         reg = FDI_RX_CTL(pipe);
1014         val = I915_READ(reg);
1015         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1016         WARN(cur_state != state,
1017              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1018              state_string(state), state_string(cur_state));
1019 }
1020
1021 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1022                                   enum pipe pipe)
1023 {
1024         int pp_reg, lvds_reg;
1025         u32 val;
1026         enum pipe panel_pipe = PIPE_A;
1027         bool locked = true;
1028
1029         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1030                 pp_reg = PCH_PP_CONTROL;
1031                 lvds_reg = PCH_LVDS;
1032         } else {
1033                 pp_reg = PP_CONTROL;
1034                 lvds_reg = LVDS;
1035         }
1036
1037         val = I915_READ(pp_reg);
1038         if (!(val & PANEL_POWER_ON) ||
1039             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1040                 locked = false;
1041
1042         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1043                 panel_pipe = PIPE_B;
1044
1045         WARN(panel_pipe == pipe && locked,
1046              "panel assertion failure, pipe %c regs locked\n",
1047              pipe_name(pipe));
1048 }
1049
1050 void assert_pipe(struct drm_i915_private *dev_priv,
1051                  enum pipe pipe, bool state)
1052 {
1053         int reg;
1054         u32 val;
1055         bool cur_state;
1056         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1057                                                                       pipe);
1058
1059         /* if we need the pipe A quirk it must be always on */
1060         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1061                 state = true;
1062
1063         if (!intel_display_power_enabled(dev_priv->dev,
1064                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1065                 cur_state = false;
1066         } else {
1067                 reg = PIPECONF(cpu_transcoder);
1068                 val = I915_READ(reg);
1069                 cur_state = !!(val & PIPECONF_ENABLE);
1070         }
1071
1072         WARN(cur_state != state,
1073              "pipe %c assertion failure (expected %s, current %s)\n",
1074              pipe_name(pipe), state_string(state), state_string(cur_state));
1075 }
1076
1077 static void assert_plane(struct drm_i915_private *dev_priv,
1078                          enum plane plane, bool state)
1079 {
1080         int reg;
1081         u32 val;
1082         bool cur_state;
1083
1084         reg = DSPCNTR(plane);
1085         val = I915_READ(reg);
1086         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1087         WARN(cur_state != state,
1088              "plane %c assertion failure (expected %s, current %s)\n",
1089              plane_name(plane), state_string(state), state_string(cur_state));
1090 }
1091
1092 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1093 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1094
1095 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1096                                    enum pipe pipe)
1097 {
1098         struct drm_device *dev = dev_priv->dev;
1099         int reg, i;
1100         u32 val;
1101         int cur_pipe;
1102
1103         /* Primary planes are fixed to pipes on gen4+ */
1104         if (INTEL_INFO(dev)->gen >= 4) {
1105                 reg = DSPCNTR(pipe);
1106                 val = I915_READ(reg);
1107                 WARN((val & DISPLAY_PLANE_ENABLE),
1108                      "plane %c assertion failure, should be disabled but not\n",
1109                      plane_name(pipe));
1110                 return;
1111         }
1112
1113         /* Need to check both planes against the pipe */
1114         for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
1115                 reg = DSPCNTR(i);
1116                 val = I915_READ(reg);
1117                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1118                         DISPPLANE_SEL_PIPE_SHIFT;
1119                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1120                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1121                      plane_name(i), pipe_name(pipe));
1122         }
1123 }
1124
1125 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1126                                     enum pipe pipe)
1127 {
1128         struct drm_device *dev = dev_priv->dev;
1129         int reg, i;
1130         u32 val;
1131
1132         if (IS_VALLEYVIEW(dev)) {
1133                 for (i = 0; i < dev_priv->num_plane; i++) {
1134                         reg = SPCNTR(pipe, i);
1135                         val = I915_READ(reg);
1136                         WARN((val & SP_ENABLE),
1137                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1138                              sprite_name(pipe, i), pipe_name(pipe));
1139                 }
1140         } else if (INTEL_INFO(dev)->gen >= 7) {
1141                 reg = SPRCTL(pipe);
1142                 val = I915_READ(reg);
1143                 WARN((val & SPRITE_ENABLE),
1144                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1145                      plane_name(pipe), pipe_name(pipe));
1146         } else if (INTEL_INFO(dev)->gen >= 5) {
1147                 reg = DVSCNTR(pipe);
1148                 val = I915_READ(reg);
1149                 WARN((val & DVS_ENABLE),
1150                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1151                      plane_name(pipe), pipe_name(pipe));
1152         }
1153 }
1154
1155 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1156 {
1157         u32 val;
1158         bool enabled;
1159
1160         if (HAS_PCH_LPT(dev_priv->dev)) {
1161                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1162                 return;
1163         }
1164
1165         val = I915_READ(PCH_DREF_CONTROL);
1166         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1167                             DREF_SUPERSPREAD_SOURCE_MASK));
1168         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1169 }
1170
1171 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1172                                            enum pipe pipe)
1173 {
1174         int reg;
1175         u32 val;
1176         bool enabled;
1177
1178         reg = PCH_TRANSCONF(pipe);
1179         val = I915_READ(reg);
1180         enabled = !!(val & TRANS_ENABLE);
1181         WARN(enabled,
1182              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1183              pipe_name(pipe));
1184 }
1185
1186 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1187                             enum pipe pipe, u32 port_sel, u32 val)
1188 {
1189         if ((val & DP_PORT_EN) == 0)
1190                 return false;
1191
1192         if (HAS_PCH_CPT(dev_priv->dev)) {
1193                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1194                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1195                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1196                         return false;
1197         } else {
1198                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1199                         return false;
1200         }
1201         return true;
1202 }
1203
1204 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1205                               enum pipe pipe, u32 val)
1206 {
1207         if ((val & SDVO_ENABLE) == 0)
1208                 return false;
1209
1210         if (HAS_PCH_CPT(dev_priv->dev)) {
1211                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1212                         return false;
1213         } else {
1214                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1215                         return false;
1216         }
1217         return true;
1218 }
1219
1220 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1221                               enum pipe pipe, u32 val)
1222 {
1223         if ((val & LVDS_PORT_EN) == 0)
1224                 return false;
1225
1226         if (HAS_PCH_CPT(dev_priv->dev)) {
1227                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1228                         return false;
1229         } else {
1230                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1231                         return false;
1232         }
1233         return true;
1234 }
1235
1236 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1237                               enum pipe pipe, u32 val)
1238 {
1239         if ((val & ADPA_DAC_ENABLE) == 0)
1240                 return false;
1241         if (HAS_PCH_CPT(dev_priv->dev)) {
1242                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1243                         return false;
1244         } else {
1245                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1246                         return false;
1247         }
1248         return true;
1249 }
1250
1251 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1252                                    enum pipe pipe, int reg, u32 port_sel)
1253 {
1254         u32 val = I915_READ(reg);
1255         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1256              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1257              reg, pipe_name(pipe));
1258
1259         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1260              && (val & DP_PIPEB_SELECT),
1261              "IBX PCH dp port still using transcoder B\n");
1262 }
1263
1264 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1265                                      enum pipe pipe, int reg)
1266 {
1267         u32 val = I915_READ(reg);
1268         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1269              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1270              reg, pipe_name(pipe));
1271
1272         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1273              && (val & SDVO_PIPE_B_SELECT),
1274              "IBX PCH hdmi port still using transcoder B\n");
1275 }
1276
1277 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1278                                       enum pipe pipe)
1279 {
1280         int reg;
1281         u32 val;
1282
1283         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1284         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1285         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1286
1287         reg = PCH_ADPA;
1288         val = I915_READ(reg);
1289         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1290              "PCH VGA enabled on transcoder %c, should be disabled\n",
1291              pipe_name(pipe));
1292
1293         reg = PCH_LVDS;
1294         val = I915_READ(reg);
1295         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1296              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1297              pipe_name(pipe));
1298
1299         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1300         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1301         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1302 }
1303
1304 static void vlv_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1305 {
1306         int reg;
1307         u32 val;
1308
1309         assert_pipe_disabled(dev_priv, pipe);
1310
1311         /* No really, not for ILK+ */
1312         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1313
1314         /* PLL is protected by panel, make sure we can write it */
1315         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1316                 assert_panel_unlocked(dev_priv, pipe);
1317
1318         reg = DPLL(pipe);
1319         val = I915_READ(reg);
1320         val |= DPLL_VCO_ENABLE;
1321
1322         /* We do this three times for luck */
1323         I915_WRITE(reg, val);
1324         POSTING_READ(reg);
1325         udelay(150); /* wait for warmup */
1326         I915_WRITE(reg, val);
1327         POSTING_READ(reg);
1328         udelay(150); /* wait for warmup */
1329         I915_WRITE(reg, val);
1330         POSTING_READ(reg);
1331         udelay(150); /* wait for warmup */
1332 }
1333
1334 static void i9xx_enable_pll(struct intel_crtc *crtc)
1335 {
1336         struct drm_device *dev = crtc->base.dev;
1337         struct drm_i915_private *dev_priv = dev->dev_private;
1338         int reg = DPLL(crtc->pipe);
1339         u32 dpll = crtc->config.dpll_hw_state.dpll;
1340
1341         assert_pipe_disabled(dev_priv, crtc->pipe);
1342
1343         /* No really, not for ILK+ */
1344         BUG_ON(dev_priv->info->gen >= 5);
1345
1346         /* PLL is protected by panel, make sure we can write it */
1347         if (IS_MOBILE(dev) && !IS_I830(dev))
1348                 assert_panel_unlocked(dev_priv, crtc->pipe);
1349
1350         I915_WRITE(reg, dpll);
1351
1352         /* Wait for the clocks to stabilize. */
1353         POSTING_READ(reg);
1354         udelay(150);
1355
1356         if (INTEL_INFO(dev)->gen >= 4) {
1357                 I915_WRITE(DPLL_MD(crtc->pipe),
1358                            crtc->config.dpll_hw_state.dpll_md);
1359         } else {
1360                 /* The pixel multiplier can only be updated once the
1361                  * DPLL is enabled and the clocks are stable.
1362                  *
1363                  * So write it again.
1364                  */
1365                 I915_WRITE(reg, dpll);
1366         }
1367
1368         /* We do this three times for luck */
1369         I915_WRITE(reg, dpll);
1370         POSTING_READ(reg);
1371         udelay(150); /* wait for warmup */
1372         I915_WRITE(reg, dpll);
1373         POSTING_READ(reg);
1374         udelay(150); /* wait for warmup */
1375         I915_WRITE(reg, dpll);
1376         POSTING_READ(reg);
1377         udelay(150); /* wait for warmup */
1378 }
1379
1380 /**
1381  * intel_disable_pll - disable a PLL
1382  * @dev_priv: i915 private structure
1383  * @pipe: pipe PLL to disable
1384  *
1385  * Disable the PLL for @pipe, making sure the pipe is off first.
1386  *
1387  * Note!  This is for pre-ILK only.
1388  */
1389 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1390 {
1391         int reg;
1392         u32 val;
1393
1394         /* Don't disable pipe A or pipe A PLLs if needed */
1395         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1396                 return;
1397
1398         /* Make sure the pipe isn't still relying on us */
1399         assert_pipe_disabled(dev_priv, pipe);
1400
1401         reg = DPLL(pipe);
1402         val = I915_READ(reg);
1403         val &= ~DPLL_VCO_ENABLE;
1404         I915_WRITE(reg, val);
1405         POSTING_READ(reg);
1406 }
1407
1408 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1409 {
1410         u32 port_mask;
1411
1412         if (!port)
1413                 port_mask = DPLL_PORTB_READY_MASK;
1414         else
1415                 port_mask = DPLL_PORTC_READY_MASK;
1416
1417         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1418                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1419                      'B' + port, I915_READ(DPLL(0)));
1420 }
1421
1422 /**
1423  * ironlake_enable_shared_dpll - enable PCH PLL
1424  * @dev_priv: i915 private structure
1425  * @pipe: pipe PLL to enable
1426  *
1427  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1428  * drives the transcoder clock.
1429  */
1430 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1431 {
1432         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1433         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1434
1435         /* PCH PLLs only available on ILK, SNB and IVB */
1436         BUG_ON(dev_priv->info->gen < 5);
1437         if (WARN_ON(pll == NULL))
1438                 return;
1439
1440         if (WARN_ON(pll->refcount == 0))
1441                 return;
1442
1443         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1444                       pll->name, pll->active, pll->on,
1445                       crtc->base.base.id);
1446
1447         if (pll->active++) {
1448                 WARN_ON(!pll->on);
1449                 assert_shared_dpll_enabled(dev_priv, pll);
1450                 return;
1451         }
1452         WARN_ON(pll->on);
1453
1454         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1455         pll->enable(dev_priv, pll);
1456         pll->on = true;
1457 }
1458
1459 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1460 {
1461         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1462         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1463
1464         /* PCH only available on ILK+ */
1465         BUG_ON(dev_priv->info->gen < 5);
1466         if (WARN_ON(pll == NULL))
1467                return;
1468
1469         if (WARN_ON(pll->refcount == 0))
1470                 return;
1471
1472         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1473                       pll->name, pll->active, pll->on,
1474                       crtc->base.base.id);
1475
1476         if (WARN_ON(pll->active == 0)) {
1477                 assert_shared_dpll_disabled(dev_priv, pll);
1478                 return;
1479         }
1480
1481         assert_shared_dpll_enabled(dev_priv, pll);
1482         WARN_ON(!pll->on);
1483         if (--pll->active)
1484                 return;
1485
1486         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1487         pll->disable(dev_priv, pll);
1488         pll->on = false;
1489 }
1490
1491 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1492                                            enum pipe pipe)
1493 {
1494         struct drm_device *dev = dev_priv->dev;
1495         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1496         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1497         uint32_t reg, val, pipeconf_val;
1498
1499         /* PCH only available on ILK+ */
1500         BUG_ON(dev_priv->info->gen < 5);
1501
1502         /* Make sure PCH DPLL is enabled */
1503         assert_shared_dpll_enabled(dev_priv,
1504                                    intel_crtc_to_shared_dpll(intel_crtc));
1505
1506         /* FDI must be feeding us bits for PCH ports */
1507         assert_fdi_tx_enabled(dev_priv, pipe);
1508         assert_fdi_rx_enabled(dev_priv, pipe);
1509
1510         if (HAS_PCH_CPT(dev)) {
1511                 /* Workaround: Set the timing override bit before enabling the
1512                  * pch transcoder. */
1513                 reg = TRANS_CHICKEN2(pipe);
1514                 val = I915_READ(reg);
1515                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1516                 I915_WRITE(reg, val);
1517         }
1518
1519         reg = PCH_TRANSCONF(pipe);
1520         val = I915_READ(reg);
1521         pipeconf_val = I915_READ(PIPECONF(pipe));
1522
1523         if (HAS_PCH_IBX(dev_priv->dev)) {
1524                 /*
1525                  * make the BPC in transcoder be consistent with
1526                  * that in pipeconf reg.
1527                  */
1528                 val &= ~PIPECONF_BPC_MASK;
1529                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1530         }
1531
1532         val &= ~TRANS_INTERLACE_MASK;
1533         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1534                 if (HAS_PCH_IBX(dev_priv->dev) &&
1535                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1536                         val |= TRANS_LEGACY_INTERLACED_ILK;
1537                 else
1538                         val |= TRANS_INTERLACED;
1539         else
1540                 val |= TRANS_PROGRESSIVE;
1541
1542         I915_WRITE(reg, val | TRANS_ENABLE);
1543         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1544                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1545 }
1546
1547 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1548                                       enum transcoder cpu_transcoder)
1549 {
1550         u32 val, pipeconf_val;
1551
1552         /* PCH only available on ILK+ */
1553         BUG_ON(dev_priv->info->gen < 5);
1554
1555         /* FDI must be feeding us bits for PCH ports */
1556         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1557         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1558
1559         /* Workaround: set timing override bit. */
1560         val = I915_READ(_TRANSA_CHICKEN2);
1561         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1562         I915_WRITE(_TRANSA_CHICKEN2, val);
1563
1564         val = TRANS_ENABLE;
1565         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1566
1567         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1568             PIPECONF_INTERLACED_ILK)
1569                 val |= TRANS_INTERLACED;
1570         else
1571                 val |= TRANS_PROGRESSIVE;
1572
1573         I915_WRITE(LPT_TRANSCONF, val);
1574         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1575                 DRM_ERROR("Failed to enable PCH transcoder\n");
1576 }
1577
1578 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1579                                             enum pipe pipe)
1580 {
1581         struct drm_device *dev = dev_priv->dev;
1582         uint32_t reg, val;
1583
1584         /* FDI relies on the transcoder */
1585         assert_fdi_tx_disabled(dev_priv, pipe);
1586         assert_fdi_rx_disabled(dev_priv, pipe);
1587
1588         /* Ports must be off as well */
1589         assert_pch_ports_disabled(dev_priv, pipe);
1590
1591         reg = PCH_TRANSCONF(pipe);
1592         val = I915_READ(reg);
1593         val &= ~TRANS_ENABLE;
1594         I915_WRITE(reg, val);
1595         /* wait for PCH transcoder off, transcoder state */
1596         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1597                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1598
1599         if (!HAS_PCH_IBX(dev)) {
1600                 /* Workaround: Clear the timing override chicken bit again. */
1601                 reg = TRANS_CHICKEN2(pipe);
1602                 val = I915_READ(reg);
1603                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1604                 I915_WRITE(reg, val);
1605         }
1606 }
1607
1608 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1609 {
1610         u32 val;
1611
1612         val = I915_READ(LPT_TRANSCONF);
1613         val &= ~TRANS_ENABLE;
1614         I915_WRITE(LPT_TRANSCONF, val);
1615         /* wait for PCH transcoder off, transcoder state */
1616         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1617                 DRM_ERROR("Failed to disable PCH transcoder\n");
1618
1619         /* Workaround: clear timing override bit. */
1620         val = I915_READ(_TRANSA_CHICKEN2);
1621         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1622         I915_WRITE(_TRANSA_CHICKEN2, val);
1623 }
1624
1625 /**
1626  * intel_enable_pipe - enable a pipe, asserting requirements
1627  * @dev_priv: i915 private structure
1628  * @pipe: pipe to enable
1629  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1630  *
1631  * Enable @pipe, making sure that various hardware specific requirements
1632  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1633  *
1634  * @pipe should be %PIPE_A or %PIPE_B.
1635  *
1636  * Will wait until the pipe is actually running (i.e. first vblank) before
1637  * returning.
1638  */
1639 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1640                               bool pch_port)
1641 {
1642         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1643                                                                       pipe);
1644         enum pipe pch_transcoder;
1645         int reg;
1646         u32 val;
1647
1648         assert_planes_disabled(dev_priv, pipe);
1649         assert_sprites_disabled(dev_priv, pipe);
1650
1651         if (HAS_PCH_LPT(dev_priv->dev))
1652                 pch_transcoder = TRANSCODER_A;
1653         else
1654                 pch_transcoder = pipe;
1655
1656         /*
1657          * A pipe without a PLL won't actually be able to drive bits from
1658          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1659          * need the check.
1660          */
1661         if (!HAS_PCH_SPLIT(dev_priv->dev))
1662                 assert_pll_enabled(dev_priv, pipe);
1663         else {
1664                 if (pch_port) {
1665                         /* if driving the PCH, we need FDI enabled */
1666                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1667                         assert_fdi_tx_pll_enabled(dev_priv,
1668                                                   (enum pipe) cpu_transcoder);
1669                 }
1670                 /* FIXME: assert CPU port conditions for SNB+ */
1671         }
1672
1673         reg = PIPECONF(cpu_transcoder);
1674         val = I915_READ(reg);
1675         if (val & PIPECONF_ENABLE)
1676                 return;
1677
1678         I915_WRITE(reg, val | PIPECONF_ENABLE);
1679         intel_wait_for_vblank(dev_priv->dev, pipe);
1680 }
1681
1682 /**
1683  * intel_disable_pipe - disable a pipe, asserting requirements
1684  * @dev_priv: i915 private structure
1685  * @pipe: pipe to disable
1686  *
1687  * Disable @pipe, making sure that various hardware specific requirements
1688  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1689  *
1690  * @pipe should be %PIPE_A or %PIPE_B.
1691  *
1692  * Will wait until the pipe has shut down before returning.
1693  */
1694 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1695                                enum pipe pipe)
1696 {
1697         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1698                                                                       pipe);
1699         int reg;
1700         u32 val;
1701
1702         /*
1703          * Make sure planes won't keep trying to pump pixels to us,
1704          * or we might hang the display.
1705          */
1706         assert_planes_disabled(dev_priv, pipe);
1707         assert_sprites_disabled(dev_priv, pipe);
1708
1709         /* Don't disable pipe A or pipe A PLLs if needed */
1710         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1711                 return;
1712
1713         reg = PIPECONF(cpu_transcoder);
1714         val = I915_READ(reg);
1715         if ((val & PIPECONF_ENABLE) == 0)
1716                 return;
1717
1718         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1719         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1720 }
1721
1722 /*
1723  * Plane regs are double buffered, going from enabled->disabled needs a
1724  * trigger in order to latch.  The display address reg provides this.
1725  */
1726 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1727                                       enum plane plane)
1728 {
1729         if (dev_priv->info->gen >= 4)
1730                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1731         else
1732                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1733 }
1734
1735 /**
1736  * intel_enable_plane - enable a display plane on a given pipe
1737  * @dev_priv: i915 private structure
1738  * @plane: plane to enable
1739  * @pipe: pipe being fed
1740  *
1741  * Enable @plane on @pipe, making sure that @pipe is running first.
1742  */
1743 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1744                                enum plane plane, enum pipe pipe)
1745 {
1746         int reg;
1747         u32 val;
1748
1749         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1750         assert_pipe_enabled(dev_priv, pipe);
1751
1752         reg = DSPCNTR(plane);
1753         val = I915_READ(reg);
1754         if (val & DISPLAY_PLANE_ENABLE)
1755                 return;
1756
1757         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1758         intel_flush_display_plane(dev_priv, plane);
1759         intel_wait_for_vblank(dev_priv->dev, pipe);
1760 }
1761
1762 /**
1763  * intel_disable_plane - disable a display plane
1764  * @dev_priv: i915 private structure
1765  * @plane: plane to disable
1766  * @pipe: pipe consuming the data
1767  *
1768  * Disable @plane; should be an independent operation.
1769  */
1770 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1771                                 enum plane plane, enum pipe pipe)
1772 {
1773         int reg;
1774         u32 val;
1775
1776         reg = DSPCNTR(plane);
1777         val = I915_READ(reg);
1778         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1779                 return;
1780
1781         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1782         intel_flush_display_plane(dev_priv, plane);
1783         intel_wait_for_vblank(dev_priv->dev, pipe);
1784 }
1785
1786 static bool need_vtd_wa(struct drm_device *dev)
1787 {
1788 #ifdef CONFIG_INTEL_IOMMU
1789         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1790                 return true;
1791 #endif
1792         return false;
1793 }
1794
1795 int
1796 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1797                            struct drm_i915_gem_object *obj,
1798                            struct intel_ring_buffer *pipelined)
1799 {
1800         struct drm_i915_private *dev_priv = dev->dev_private;
1801         u32 alignment;
1802         int ret;
1803
1804         switch (obj->tiling_mode) {
1805         case I915_TILING_NONE:
1806                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1807                         alignment = 128 * 1024;
1808                 else if (INTEL_INFO(dev)->gen >= 4)
1809                         alignment = 4 * 1024;
1810                 else
1811                         alignment = 64 * 1024;
1812                 break;
1813         case I915_TILING_X:
1814                 /* pin() will align the object as required by fence */
1815                 alignment = 0;
1816                 break;
1817         case I915_TILING_Y:
1818                 /* Despite that we check this in framebuffer_init userspace can
1819                  * screw us over and change the tiling after the fact. Only
1820                  * pinned buffers can't change their tiling. */
1821                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1822                 return -EINVAL;
1823         default:
1824                 BUG();
1825         }
1826
1827         /* Note that the w/a also requires 64 PTE of padding following the
1828          * bo. We currently fill all unused PTE with the shadow page and so
1829          * we should always have valid PTE following the scanout preventing
1830          * the VT-d warning.
1831          */
1832         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1833                 alignment = 256 * 1024;
1834
1835         dev_priv->mm.interruptible = false;
1836         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1837         if (ret)
1838                 goto err_interruptible;
1839
1840         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1841          * fence, whereas 965+ only requires a fence if using
1842          * framebuffer compression.  For simplicity, we always install
1843          * a fence as the cost is not that onerous.
1844          */
1845         ret = i915_gem_object_get_fence(obj);
1846         if (ret)
1847                 goto err_unpin;
1848
1849         i915_gem_object_pin_fence(obj);
1850
1851         dev_priv->mm.interruptible = true;
1852         return 0;
1853
1854 err_unpin:
1855         i915_gem_object_unpin(obj);
1856 err_interruptible:
1857         dev_priv->mm.interruptible = true;
1858         return ret;
1859 }
1860
1861 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1862 {
1863         i915_gem_object_unpin_fence(obj);
1864         i915_gem_object_unpin(obj);
1865 }
1866
1867 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1868  * is assumed to be a power-of-two. */
1869 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1870                                              unsigned int tiling_mode,
1871                                              unsigned int cpp,
1872                                              unsigned int pitch)
1873 {
1874         if (tiling_mode != I915_TILING_NONE) {
1875                 unsigned int tile_rows, tiles;
1876
1877                 tile_rows = *y / 8;
1878                 *y %= 8;
1879
1880                 tiles = *x / (512/cpp);
1881                 *x %= 512/cpp;
1882
1883                 return tile_rows * pitch * 8 + tiles * 4096;
1884         } else {
1885                 unsigned int offset;
1886
1887                 offset = *y * pitch + *x * cpp;
1888                 *y = 0;
1889                 *x = (offset & 4095) / cpp;
1890                 return offset & -4096;
1891         }
1892 }
1893
1894 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1895                              int x, int y)
1896 {
1897         struct drm_device *dev = crtc->dev;
1898         struct drm_i915_private *dev_priv = dev->dev_private;
1899         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1900         struct intel_framebuffer *intel_fb;
1901         struct drm_i915_gem_object *obj;
1902         int plane = intel_crtc->plane;
1903         unsigned long linear_offset;
1904         u32 dspcntr;
1905         u32 reg;
1906
1907         switch (plane) {
1908         case 0:
1909         case 1:
1910                 break;
1911         default:
1912                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1913                 return -EINVAL;
1914         }
1915
1916         intel_fb = to_intel_framebuffer(fb);
1917         obj = intel_fb->obj;
1918
1919         reg = DSPCNTR(plane);
1920         dspcntr = I915_READ(reg);
1921         /* Mask out pixel format bits in case we change it */
1922         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1923         switch (fb->pixel_format) {
1924         case DRM_FORMAT_C8:
1925                 dspcntr |= DISPPLANE_8BPP;
1926                 break;
1927         case DRM_FORMAT_XRGB1555:
1928         case DRM_FORMAT_ARGB1555:
1929                 dspcntr |= DISPPLANE_BGRX555;
1930                 break;
1931         case DRM_FORMAT_RGB565:
1932                 dspcntr |= DISPPLANE_BGRX565;
1933                 break;
1934         case DRM_FORMAT_XRGB8888:
1935         case DRM_FORMAT_ARGB8888:
1936                 dspcntr |= DISPPLANE_BGRX888;
1937                 break;
1938         case DRM_FORMAT_XBGR8888:
1939         case DRM_FORMAT_ABGR8888:
1940                 dspcntr |= DISPPLANE_RGBX888;
1941                 break;
1942         case DRM_FORMAT_XRGB2101010:
1943         case DRM_FORMAT_ARGB2101010:
1944                 dspcntr |= DISPPLANE_BGRX101010;
1945                 break;
1946         case DRM_FORMAT_XBGR2101010:
1947         case DRM_FORMAT_ABGR2101010:
1948                 dspcntr |= DISPPLANE_RGBX101010;
1949                 break;
1950         default:
1951                 BUG();
1952         }
1953
1954         if (INTEL_INFO(dev)->gen >= 4) {
1955                 if (obj->tiling_mode != I915_TILING_NONE)
1956                         dspcntr |= DISPPLANE_TILED;
1957                 else
1958                         dspcntr &= ~DISPPLANE_TILED;
1959         }
1960
1961         if (IS_G4X(dev))
1962                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1963
1964         I915_WRITE(reg, dspcntr);
1965
1966         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1967
1968         if (INTEL_INFO(dev)->gen >= 4) {
1969                 intel_crtc->dspaddr_offset =
1970                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
1971                                                        fb->bits_per_pixel / 8,
1972                                                        fb->pitches[0]);
1973                 linear_offset -= intel_crtc->dspaddr_offset;
1974         } else {
1975                 intel_crtc->dspaddr_offset = linear_offset;
1976         }
1977
1978         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
1979                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
1980         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1981         if (INTEL_INFO(dev)->gen >= 4) {
1982                 I915_MODIFY_DISPBASE(DSPSURF(plane),
1983                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
1984                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1985                 I915_WRITE(DSPLINOFF(plane), linear_offset);
1986         } else
1987                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
1988         POSTING_READ(reg);
1989
1990         return 0;
1991 }
1992
1993 static int ironlake_update_plane(struct drm_crtc *crtc,
1994                                  struct drm_framebuffer *fb, int x, int y)
1995 {
1996         struct drm_device *dev = crtc->dev;
1997         struct drm_i915_private *dev_priv = dev->dev_private;
1998         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1999         struct intel_framebuffer *intel_fb;
2000         struct drm_i915_gem_object *obj;
2001         int plane = intel_crtc->plane;
2002         unsigned long linear_offset;
2003         u32 dspcntr;
2004         u32 reg;
2005
2006         switch (plane) {
2007         case 0:
2008         case 1:
2009         case 2:
2010                 break;
2011         default:
2012                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2013                 return -EINVAL;
2014         }
2015
2016         intel_fb = to_intel_framebuffer(fb);
2017         obj = intel_fb->obj;
2018
2019         reg = DSPCNTR(plane);
2020         dspcntr = I915_READ(reg);
2021         /* Mask out pixel format bits in case we change it */
2022         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2023         switch (fb->pixel_format) {
2024         case DRM_FORMAT_C8:
2025                 dspcntr |= DISPPLANE_8BPP;
2026                 break;
2027         case DRM_FORMAT_RGB565:
2028                 dspcntr |= DISPPLANE_BGRX565;
2029                 break;
2030         case DRM_FORMAT_XRGB8888:
2031         case DRM_FORMAT_ARGB8888:
2032                 dspcntr |= DISPPLANE_BGRX888;
2033                 break;
2034         case DRM_FORMAT_XBGR8888:
2035         case DRM_FORMAT_ABGR8888:
2036                 dspcntr |= DISPPLANE_RGBX888;
2037                 break;
2038         case DRM_FORMAT_XRGB2101010:
2039         case DRM_FORMAT_ARGB2101010:
2040                 dspcntr |= DISPPLANE_BGRX101010;
2041                 break;
2042         case DRM_FORMAT_XBGR2101010:
2043         case DRM_FORMAT_ABGR2101010:
2044                 dspcntr |= DISPPLANE_RGBX101010;
2045                 break;
2046         default:
2047                 BUG();
2048         }
2049
2050         if (obj->tiling_mode != I915_TILING_NONE)
2051                 dspcntr |= DISPPLANE_TILED;
2052         else
2053                 dspcntr &= ~DISPPLANE_TILED;
2054
2055         /* must disable */
2056         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2057
2058         I915_WRITE(reg, dspcntr);
2059
2060         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2061         intel_crtc->dspaddr_offset =
2062                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2063                                                fb->bits_per_pixel / 8,
2064                                                fb->pitches[0]);
2065         linear_offset -= intel_crtc->dspaddr_offset;
2066
2067         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2068                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2069         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2070         I915_MODIFY_DISPBASE(DSPSURF(plane),
2071                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2072         if (IS_HASWELL(dev)) {
2073                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2074         } else {
2075                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2076                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2077         }
2078         POSTING_READ(reg);
2079
2080         return 0;
2081 }
2082
2083 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2084 static int
2085 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2086                            int x, int y, enum mode_set_atomic state)
2087 {
2088         struct drm_device *dev = crtc->dev;
2089         struct drm_i915_private *dev_priv = dev->dev_private;
2090
2091         if (dev_priv->display.disable_fbc)
2092                 dev_priv->display.disable_fbc(dev);
2093         intel_increase_pllclock(crtc);
2094
2095         return dev_priv->display.update_plane(crtc, fb, x, y);
2096 }
2097
2098 void intel_display_handle_reset(struct drm_device *dev)
2099 {
2100         struct drm_i915_private *dev_priv = dev->dev_private;
2101         struct drm_crtc *crtc;
2102
2103         /*
2104          * Flips in the rings have been nuked by the reset,
2105          * so complete all pending flips so that user space
2106          * will get its events and not get stuck.
2107          *
2108          * Also update the base address of all primary
2109          * planes to the the last fb to make sure we're
2110          * showing the correct fb after a reset.
2111          *
2112          * Need to make two loops over the crtcs so that we
2113          * don't try to grab a crtc mutex before the
2114          * pending_flip_queue really got woken up.
2115          */
2116
2117         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2118                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2119                 enum plane plane = intel_crtc->plane;
2120
2121                 intel_prepare_page_flip(dev, plane);
2122                 intel_finish_page_flip_plane(dev, plane);
2123         }
2124
2125         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2126                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2127
2128                 mutex_lock(&crtc->mutex);
2129                 if (intel_crtc->active)
2130                         dev_priv->display.update_plane(crtc, crtc->fb,
2131                                                        crtc->x, crtc->y);
2132                 mutex_unlock(&crtc->mutex);
2133         }
2134 }
2135
2136 static int
2137 intel_finish_fb(struct drm_framebuffer *old_fb)
2138 {
2139         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2140         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2141         bool was_interruptible = dev_priv->mm.interruptible;
2142         int ret;
2143
2144         /* Big Hammer, we also need to ensure that any pending
2145          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2146          * current scanout is retired before unpinning the old
2147          * framebuffer.
2148          *
2149          * This should only fail upon a hung GPU, in which case we
2150          * can safely continue.
2151          */
2152         dev_priv->mm.interruptible = false;
2153         ret = i915_gem_object_finish_gpu(obj);
2154         dev_priv->mm.interruptible = was_interruptible;
2155
2156         return ret;
2157 }
2158
2159 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2160 {
2161         struct drm_device *dev = crtc->dev;
2162         struct drm_i915_master_private *master_priv;
2163         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2164
2165         if (!dev->primary->master)
2166                 return;
2167
2168         master_priv = dev->primary->master->driver_priv;
2169         if (!master_priv->sarea_priv)
2170                 return;
2171
2172         switch (intel_crtc->pipe) {
2173         case 0:
2174                 master_priv->sarea_priv->pipeA_x = x;
2175                 master_priv->sarea_priv->pipeA_y = y;
2176                 break;
2177         case 1:
2178                 master_priv->sarea_priv->pipeB_x = x;
2179                 master_priv->sarea_priv->pipeB_y = y;
2180                 break;
2181         default:
2182                 break;
2183         }
2184 }
2185
2186 static int
2187 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2188                     struct drm_framebuffer *fb)
2189 {
2190         struct drm_device *dev = crtc->dev;
2191         struct drm_i915_private *dev_priv = dev->dev_private;
2192         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2193         struct drm_framebuffer *old_fb;
2194         int ret;
2195
2196         /* no fb bound */
2197         if (!fb) {
2198                 DRM_ERROR("No FB bound\n");
2199                 return 0;
2200         }
2201
2202         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2203                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2204                           plane_name(intel_crtc->plane),
2205                           INTEL_INFO(dev)->num_pipes);
2206                 return -EINVAL;
2207         }
2208
2209         mutex_lock(&dev->struct_mutex);
2210         ret = intel_pin_and_fence_fb_obj(dev,
2211                                          to_intel_framebuffer(fb)->obj,
2212                                          NULL);
2213         if (ret != 0) {
2214                 mutex_unlock(&dev->struct_mutex);
2215                 DRM_ERROR("pin & fence failed\n");
2216                 return ret;
2217         }
2218
2219         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2220         if (ret) {
2221                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2222                 mutex_unlock(&dev->struct_mutex);
2223                 DRM_ERROR("failed to update base address\n");
2224                 return ret;
2225         }
2226
2227         old_fb = crtc->fb;
2228         crtc->fb = fb;
2229         crtc->x = x;
2230         crtc->y = y;
2231
2232         if (old_fb) {
2233                 if (intel_crtc->active && old_fb != fb)
2234                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2235                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2236         }
2237
2238         intel_update_fbc(dev);
2239         mutex_unlock(&dev->struct_mutex);
2240
2241         intel_crtc_update_sarea_pos(crtc, x, y);
2242
2243         return 0;
2244 }
2245
2246 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2247 {
2248         struct drm_device *dev = crtc->dev;
2249         struct drm_i915_private *dev_priv = dev->dev_private;
2250         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2251         int pipe = intel_crtc->pipe;
2252         u32 reg, temp;
2253
2254         /* enable normal train */
2255         reg = FDI_TX_CTL(pipe);
2256         temp = I915_READ(reg);
2257         if (IS_IVYBRIDGE(dev)) {
2258                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2259                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2260         } else {
2261                 temp &= ~FDI_LINK_TRAIN_NONE;
2262                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2263         }
2264         I915_WRITE(reg, temp);
2265
2266         reg = FDI_RX_CTL(pipe);
2267         temp = I915_READ(reg);
2268         if (HAS_PCH_CPT(dev)) {
2269                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2270                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2271         } else {
2272                 temp &= ~FDI_LINK_TRAIN_NONE;
2273                 temp |= FDI_LINK_TRAIN_NONE;
2274         }
2275         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2276
2277         /* wait one idle pattern time */
2278         POSTING_READ(reg);
2279         udelay(1000);
2280
2281         /* IVB wants error correction enabled */
2282         if (IS_IVYBRIDGE(dev))
2283                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2284                            FDI_FE_ERRC_ENABLE);
2285 }
2286
2287 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2288 {
2289         return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2290 }
2291
2292 static void ivb_modeset_global_resources(struct drm_device *dev)
2293 {
2294         struct drm_i915_private *dev_priv = dev->dev_private;
2295         struct intel_crtc *pipe_B_crtc =
2296                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2297         struct intel_crtc *pipe_C_crtc =
2298                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2299         uint32_t temp;
2300
2301         /*
2302          * When everything is off disable fdi C so that we could enable fdi B
2303          * with all lanes. Note that we don't care about enabled pipes without
2304          * an enabled pch encoder.
2305          */
2306         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2307             !pipe_has_enabled_pch(pipe_C_crtc)) {
2308                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2309                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2310
2311                 temp = I915_READ(SOUTH_CHICKEN1);
2312                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2313                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2314                 I915_WRITE(SOUTH_CHICKEN1, temp);
2315         }
2316 }
2317
2318 /* The FDI link training functions for ILK/Ibexpeak. */
2319 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2320 {
2321         struct drm_device *dev = crtc->dev;
2322         struct drm_i915_private *dev_priv = dev->dev_private;
2323         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2324         int pipe = intel_crtc->pipe;
2325         int plane = intel_crtc->plane;
2326         u32 reg, temp, tries;
2327
2328         /* FDI needs bits from pipe & plane first */
2329         assert_pipe_enabled(dev_priv, pipe);
2330         assert_plane_enabled(dev_priv, plane);
2331
2332         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2333            for train result */
2334         reg = FDI_RX_IMR(pipe);
2335         temp = I915_READ(reg);
2336         temp &= ~FDI_RX_SYMBOL_LOCK;
2337         temp &= ~FDI_RX_BIT_LOCK;
2338         I915_WRITE(reg, temp);
2339         I915_READ(reg);
2340         udelay(150);
2341
2342         /* enable CPU FDI TX and PCH FDI RX */
2343         reg = FDI_TX_CTL(pipe);
2344         temp = I915_READ(reg);
2345         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2346         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2347         temp &= ~FDI_LINK_TRAIN_NONE;
2348         temp |= FDI_LINK_TRAIN_PATTERN_1;
2349         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2350
2351         reg = FDI_RX_CTL(pipe);
2352         temp = I915_READ(reg);
2353         temp &= ~FDI_LINK_TRAIN_NONE;
2354         temp |= FDI_LINK_TRAIN_PATTERN_1;
2355         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2356
2357         POSTING_READ(reg);
2358         udelay(150);
2359
2360         /* Ironlake workaround, enable clock pointer after FDI enable*/
2361         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2362         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2363                    FDI_RX_PHASE_SYNC_POINTER_EN);
2364
2365         reg = FDI_RX_IIR(pipe);
2366         for (tries = 0; tries < 5; tries++) {
2367                 temp = I915_READ(reg);
2368                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2369
2370                 if ((temp & FDI_RX_BIT_LOCK)) {
2371                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2372                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2373                         break;
2374                 }
2375         }
2376         if (tries == 5)
2377                 DRM_ERROR("FDI train 1 fail!\n");
2378
2379         /* Train 2 */
2380         reg = FDI_TX_CTL(pipe);
2381         temp = I915_READ(reg);
2382         temp &= ~FDI_LINK_TRAIN_NONE;
2383         temp |= FDI_LINK_TRAIN_PATTERN_2;
2384         I915_WRITE(reg, temp);
2385
2386         reg = FDI_RX_CTL(pipe);
2387         temp = I915_READ(reg);
2388         temp &= ~FDI_LINK_TRAIN_NONE;
2389         temp |= FDI_LINK_TRAIN_PATTERN_2;
2390         I915_WRITE(reg, temp);
2391
2392         POSTING_READ(reg);
2393         udelay(150);
2394
2395         reg = FDI_RX_IIR(pipe);
2396         for (tries = 0; tries < 5; tries++) {
2397                 temp = I915_READ(reg);
2398                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2399
2400                 if (temp & FDI_RX_SYMBOL_LOCK) {
2401                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2402                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2403                         break;
2404                 }
2405         }
2406         if (tries == 5)
2407                 DRM_ERROR("FDI train 2 fail!\n");
2408
2409         DRM_DEBUG_KMS("FDI train done\n");
2410
2411 }
2412
2413 static const int snb_b_fdi_train_param[] = {
2414         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2415         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2416         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2417         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2418 };
2419
2420 /* The FDI link training functions for SNB/Cougarpoint. */
2421 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2422 {
2423         struct drm_device *dev = crtc->dev;
2424         struct drm_i915_private *dev_priv = dev->dev_private;
2425         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2426         int pipe = intel_crtc->pipe;
2427         u32 reg, temp, i, retry;
2428
2429         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2430            for train result */
2431         reg = FDI_RX_IMR(pipe);
2432         temp = I915_READ(reg);
2433         temp &= ~FDI_RX_SYMBOL_LOCK;
2434         temp &= ~FDI_RX_BIT_LOCK;
2435         I915_WRITE(reg, temp);
2436
2437         POSTING_READ(reg);
2438         udelay(150);
2439
2440         /* enable CPU FDI TX and PCH FDI RX */
2441         reg = FDI_TX_CTL(pipe);
2442         temp = I915_READ(reg);
2443         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2444         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2445         temp &= ~FDI_LINK_TRAIN_NONE;
2446         temp |= FDI_LINK_TRAIN_PATTERN_1;
2447         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2448         /* SNB-B */
2449         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2450         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2451
2452         I915_WRITE(FDI_RX_MISC(pipe),
2453                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2454
2455         reg = FDI_RX_CTL(pipe);
2456         temp = I915_READ(reg);
2457         if (HAS_PCH_CPT(dev)) {
2458                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2459                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2460         } else {
2461                 temp &= ~FDI_LINK_TRAIN_NONE;
2462                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2463         }
2464         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2465
2466         POSTING_READ(reg);
2467         udelay(150);
2468
2469         for (i = 0; i < 4; i++) {
2470                 reg = FDI_TX_CTL(pipe);
2471                 temp = I915_READ(reg);
2472                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2473                 temp |= snb_b_fdi_train_param[i];
2474                 I915_WRITE(reg, temp);
2475
2476                 POSTING_READ(reg);
2477                 udelay(500);
2478
2479                 for (retry = 0; retry < 5; retry++) {
2480                         reg = FDI_RX_IIR(pipe);
2481                         temp = I915_READ(reg);
2482                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2483                         if (temp & FDI_RX_BIT_LOCK) {
2484                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2485                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2486                                 break;
2487                         }
2488                         udelay(50);
2489                 }
2490                 if (retry < 5)
2491                         break;
2492         }
2493         if (i == 4)
2494                 DRM_ERROR("FDI train 1 fail!\n");
2495
2496         /* Train 2 */
2497         reg = FDI_TX_CTL(pipe);
2498         temp = I915_READ(reg);
2499         temp &= ~FDI_LINK_TRAIN_NONE;
2500         temp |= FDI_LINK_TRAIN_PATTERN_2;
2501         if (IS_GEN6(dev)) {
2502                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2503                 /* SNB-B */
2504                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2505         }
2506         I915_WRITE(reg, temp);
2507
2508         reg = FDI_RX_CTL(pipe);
2509         temp = I915_READ(reg);
2510         if (HAS_PCH_CPT(dev)) {
2511                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2512                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2513         } else {
2514                 temp &= ~FDI_LINK_TRAIN_NONE;
2515                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2516         }
2517         I915_WRITE(reg, temp);
2518
2519         POSTING_READ(reg);
2520         udelay(150);
2521
2522         for (i = 0; i < 4; i++) {
2523                 reg = FDI_TX_CTL(pipe);
2524                 temp = I915_READ(reg);
2525                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2526                 temp |= snb_b_fdi_train_param[i];
2527                 I915_WRITE(reg, temp);
2528
2529                 POSTING_READ(reg);
2530                 udelay(500);
2531
2532                 for (retry = 0; retry < 5; retry++) {
2533                         reg = FDI_RX_IIR(pipe);
2534                         temp = I915_READ(reg);
2535                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2536                         if (temp & FDI_RX_SYMBOL_LOCK) {
2537                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2538                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2539                                 break;
2540                         }
2541                         udelay(50);
2542                 }
2543                 if (retry < 5)
2544                         break;
2545         }
2546         if (i == 4)
2547                 DRM_ERROR("FDI train 2 fail!\n");
2548
2549         DRM_DEBUG_KMS("FDI train done.\n");
2550 }
2551
2552 /* Manual link training for Ivy Bridge A0 parts */
2553 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2554 {
2555         struct drm_device *dev = crtc->dev;
2556         struct drm_i915_private *dev_priv = dev->dev_private;
2557         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2558         int pipe = intel_crtc->pipe;
2559         u32 reg, temp, i;
2560
2561         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2562            for train result */
2563         reg = FDI_RX_IMR(pipe);
2564         temp = I915_READ(reg);
2565         temp &= ~FDI_RX_SYMBOL_LOCK;
2566         temp &= ~FDI_RX_BIT_LOCK;
2567         I915_WRITE(reg, temp);
2568
2569         POSTING_READ(reg);
2570         udelay(150);
2571
2572         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2573                       I915_READ(FDI_RX_IIR(pipe)));
2574
2575         /* enable CPU FDI TX and PCH FDI RX */
2576         reg = FDI_TX_CTL(pipe);
2577         temp = I915_READ(reg);
2578         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2579         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2580         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2581         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2582         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2583         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2584         temp |= FDI_COMPOSITE_SYNC;
2585         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2586
2587         I915_WRITE(FDI_RX_MISC(pipe),
2588                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2589
2590         reg = FDI_RX_CTL(pipe);
2591         temp = I915_READ(reg);
2592         temp &= ~FDI_LINK_TRAIN_AUTO;
2593         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2594         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2595         temp |= FDI_COMPOSITE_SYNC;
2596         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2597
2598         POSTING_READ(reg);
2599         udelay(150);
2600
2601         for (i = 0; i < 4; i++) {
2602                 reg = FDI_TX_CTL(pipe);
2603                 temp = I915_READ(reg);
2604                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2605                 temp |= snb_b_fdi_train_param[i];
2606                 I915_WRITE(reg, temp);
2607
2608                 POSTING_READ(reg);
2609                 udelay(500);
2610
2611                 reg = FDI_RX_IIR(pipe);
2612                 temp = I915_READ(reg);
2613                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2614
2615                 if (temp & FDI_RX_BIT_LOCK ||
2616                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2617                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2618                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2619                         break;
2620                 }
2621         }
2622         if (i == 4)
2623                 DRM_ERROR("FDI train 1 fail!\n");
2624
2625         /* Train 2 */
2626         reg = FDI_TX_CTL(pipe);
2627         temp = I915_READ(reg);
2628         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2629         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2630         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2631         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2632         I915_WRITE(reg, temp);
2633
2634         reg = FDI_RX_CTL(pipe);
2635         temp = I915_READ(reg);
2636         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2637         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2638         I915_WRITE(reg, temp);
2639
2640         POSTING_READ(reg);
2641         udelay(150);
2642
2643         for (i = 0; i < 4; i++) {
2644                 reg = FDI_TX_CTL(pipe);
2645                 temp = I915_READ(reg);
2646                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2647                 temp |= snb_b_fdi_train_param[i];
2648                 I915_WRITE(reg, temp);
2649
2650                 POSTING_READ(reg);
2651                 udelay(500);
2652
2653                 reg = FDI_RX_IIR(pipe);
2654                 temp = I915_READ(reg);
2655                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2656
2657                 if (temp & FDI_RX_SYMBOL_LOCK) {
2658                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2659                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2660                         break;
2661                 }
2662         }
2663         if (i == 4)
2664                 DRM_ERROR("FDI train 2 fail!\n");
2665
2666         DRM_DEBUG_KMS("FDI train done.\n");
2667 }
2668
2669 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2670 {
2671         struct drm_device *dev = intel_crtc->base.dev;
2672         struct drm_i915_private *dev_priv = dev->dev_private;
2673         int pipe = intel_crtc->pipe;
2674         u32 reg, temp;
2675
2676
2677         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2678         reg = FDI_RX_CTL(pipe);
2679         temp = I915_READ(reg);
2680         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2681         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2682         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2683         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2684
2685         POSTING_READ(reg);
2686         udelay(200);
2687
2688         /* Switch from Rawclk to PCDclk */
2689         temp = I915_READ(reg);
2690         I915_WRITE(reg, temp | FDI_PCDCLK);
2691
2692         POSTING_READ(reg);
2693         udelay(200);
2694
2695         /* Enable CPU FDI TX PLL, always on for Ironlake */
2696         reg = FDI_TX_CTL(pipe);
2697         temp = I915_READ(reg);
2698         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2699                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2700
2701                 POSTING_READ(reg);
2702                 udelay(100);
2703         }
2704 }
2705
2706 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2707 {
2708         struct drm_device *dev = intel_crtc->base.dev;
2709         struct drm_i915_private *dev_priv = dev->dev_private;
2710         int pipe = intel_crtc->pipe;
2711         u32 reg, temp;
2712
2713         /* Switch from PCDclk to Rawclk */
2714         reg = FDI_RX_CTL(pipe);
2715         temp = I915_READ(reg);
2716         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2717
2718         /* Disable CPU FDI TX PLL */
2719         reg = FDI_TX_CTL(pipe);
2720         temp = I915_READ(reg);
2721         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2722
2723         POSTING_READ(reg);
2724         udelay(100);
2725
2726         reg = FDI_RX_CTL(pipe);
2727         temp = I915_READ(reg);
2728         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2729
2730         /* Wait for the clocks to turn off. */
2731         POSTING_READ(reg);
2732         udelay(100);
2733 }
2734
2735 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2736 {
2737         struct drm_device *dev = crtc->dev;
2738         struct drm_i915_private *dev_priv = dev->dev_private;
2739         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2740         int pipe = intel_crtc->pipe;
2741         u32 reg, temp;
2742
2743         /* disable CPU FDI tx and PCH FDI rx */
2744         reg = FDI_TX_CTL(pipe);
2745         temp = I915_READ(reg);
2746         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2747         POSTING_READ(reg);
2748
2749         reg = FDI_RX_CTL(pipe);
2750         temp = I915_READ(reg);
2751         temp &= ~(0x7 << 16);
2752         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2753         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2754
2755         POSTING_READ(reg);
2756         udelay(100);
2757
2758         /* Ironlake workaround, disable clock pointer after downing FDI */
2759         if (HAS_PCH_IBX(dev)) {
2760                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2761         }
2762
2763         /* still set train pattern 1 */
2764         reg = FDI_TX_CTL(pipe);
2765         temp = I915_READ(reg);
2766         temp &= ~FDI_LINK_TRAIN_NONE;
2767         temp |= FDI_LINK_TRAIN_PATTERN_1;
2768         I915_WRITE(reg, temp);
2769
2770         reg = FDI_RX_CTL(pipe);
2771         temp = I915_READ(reg);
2772         if (HAS_PCH_CPT(dev)) {
2773                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2774                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2775         } else {
2776                 temp &= ~FDI_LINK_TRAIN_NONE;
2777                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2778         }
2779         /* BPC in FDI rx is consistent with that in PIPECONF */
2780         temp &= ~(0x07 << 16);
2781         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2782         I915_WRITE(reg, temp);
2783
2784         POSTING_READ(reg);
2785         udelay(100);
2786 }
2787
2788 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2789 {
2790         struct drm_device *dev = crtc->dev;
2791         struct drm_i915_private *dev_priv = dev->dev_private;
2792         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2793         unsigned long flags;
2794         bool pending;
2795
2796         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2797             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2798                 return false;
2799
2800         spin_lock_irqsave(&dev->event_lock, flags);
2801         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2802         spin_unlock_irqrestore(&dev->event_lock, flags);
2803
2804         return pending;
2805 }
2806
2807 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2808 {
2809         struct drm_device *dev = crtc->dev;
2810         struct drm_i915_private *dev_priv = dev->dev_private;
2811
2812         if (crtc->fb == NULL)
2813                 return;
2814
2815         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2816
2817         wait_event(dev_priv->pending_flip_queue,
2818                    !intel_crtc_has_pending_flip(crtc));
2819
2820         mutex_lock(&dev->struct_mutex);
2821         intel_finish_fb(crtc->fb);
2822         mutex_unlock(&dev->struct_mutex);
2823 }
2824
2825 /* Program iCLKIP clock to the desired frequency */
2826 static void lpt_program_iclkip(struct drm_crtc *crtc)
2827 {
2828         struct drm_device *dev = crtc->dev;
2829         struct drm_i915_private *dev_priv = dev->dev_private;
2830         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2831         u32 temp;
2832
2833         mutex_lock(&dev_priv->dpio_lock);
2834
2835         /* It is necessary to ungate the pixclk gate prior to programming
2836          * the divisors, and gate it back when it is done.
2837          */
2838         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2839
2840         /* Disable SSCCTL */
2841         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2842                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2843                                 SBI_SSCCTL_DISABLE,
2844                         SBI_ICLK);
2845
2846         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2847         if (crtc->mode.clock == 20000) {
2848                 auxdiv = 1;
2849                 divsel = 0x41;
2850                 phaseinc = 0x20;
2851         } else {
2852                 /* The iCLK virtual clock root frequency is in MHz,
2853                  * but the crtc->mode.clock in in KHz. To get the divisors,
2854                  * it is necessary to divide one by another, so we
2855                  * convert the virtual clock precision to KHz here for higher
2856                  * precision.
2857                  */
2858                 u32 iclk_virtual_root_freq = 172800 * 1000;
2859                 u32 iclk_pi_range = 64;
2860                 u32 desired_divisor, msb_divisor_value, pi_value;
2861
2862                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2863                 msb_divisor_value = desired_divisor / iclk_pi_range;
2864                 pi_value = desired_divisor % iclk_pi_range;
2865
2866                 auxdiv = 0;
2867                 divsel = msb_divisor_value - 2;
2868                 phaseinc = pi_value;
2869         }
2870
2871         /* This should not happen with any sane values */
2872         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2873                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2874         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2875                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2876
2877         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2878                         crtc->mode.clock,
2879                         auxdiv,
2880                         divsel,
2881                         phasedir,
2882                         phaseinc);
2883
2884         /* Program SSCDIVINTPHASE6 */
2885         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2886         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2887         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2888         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2889         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2890         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2891         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2892         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2893
2894         /* Program SSCAUXDIV */
2895         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2896         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2897         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2898         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2899
2900         /* Enable modulator and associated divider */
2901         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2902         temp &= ~SBI_SSCCTL_DISABLE;
2903         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2904
2905         /* Wait for initialization time */
2906         udelay(24);
2907
2908         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2909
2910         mutex_unlock(&dev_priv->dpio_lock);
2911 }
2912
2913 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2914                                                 enum pipe pch_transcoder)
2915 {
2916         struct drm_device *dev = crtc->base.dev;
2917         struct drm_i915_private *dev_priv = dev->dev_private;
2918         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2919
2920         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2921                    I915_READ(HTOTAL(cpu_transcoder)));
2922         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2923                    I915_READ(HBLANK(cpu_transcoder)));
2924         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2925                    I915_READ(HSYNC(cpu_transcoder)));
2926
2927         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2928                    I915_READ(VTOTAL(cpu_transcoder)));
2929         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2930                    I915_READ(VBLANK(cpu_transcoder)));
2931         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2932                    I915_READ(VSYNC(cpu_transcoder)));
2933         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2934                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
2935 }
2936
2937 /*
2938  * Enable PCH resources required for PCH ports:
2939  *   - PCH PLLs
2940  *   - FDI training & RX/TX
2941  *   - update transcoder timings
2942  *   - DP transcoding bits
2943  *   - transcoder
2944  */
2945 static void ironlake_pch_enable(struct drm_crtc *crtc)
2946 {
2947         struct drm_device *dev = crtc->dev;
2948         struct drm_i915_private *dev_priv = dev->dev_private;
2949         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2950         int pipe = intel_crtc->pipe;
2951         u32 reg, temp;
2952
2953         assert_pch_transcoder_disabled(dev_priv, pipe);
2954
2955         /* Write the TU size bits before fdi link training, so that error
2956          * detection works. */
2957         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2958                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2959
2960         /* For PCH output, training FDI link */
2961         dev_priv->display.fdi_link_train(crtc);
2962
2963         /* XXX: pch pll's can be enabled any time before we enable the PCH
2964          * transcoder, and we actually should do this to not upset any PCH
2965          * transcoder that already use the clock when we share it.
2966          *
2967          * Note that enable_shared_dpll tries to do the right thing, but
2968          * get_shared_dpll unconditionally resets the pll - we need that to have
2969          * the right LVDS enable sequence. */
2970         ironlake_enable_shared_dpll(intel_crtc);
2971
2972         if (HAS_PCH_CPT(dev)) {
2973                 u32 sel;
2974
2975                 temp = I915_READ(PCH_DPLL_SEL);
2976                 temp |= TRANS_DPLL_ENABLE(pipe);
2977                 sel = TRANS_DPLLB_SEL(pipe);
2978                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
2979                         temp |= sel;
2980                 else
2981                         temp &= ~sel;
2982                 I915_WRITE(PCH_DPLL_SEL, temp);
2983         }
2984
2985         /* set transcoder timing, panel must allow it */
2986         assert_panel_unlocked(dev_priv, pipe);
2987         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
2988
2989         intel_fdi_normal_train(crtc);
2990
2991         /* For PCH DP, enable TRANS_DP_CTL */
2992         if (HAS_PCH_CPT(dev) &&
2993             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2994              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2995                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
2996                 reg = TRANS_DP_CTL(pipe);
2997                 temp = I915_READ(reg);
2998                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2999                           TRANS_DP_SYNC_MASK |
3000                           TRANS_DP_BPC_MASK);
3001                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3002                          TRANS_DP_ENH_FRAMING);
3003                 temp |= bpc << 9; /* same format but at 11:9 */
3004
3005                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3006                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3007                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3008                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3009
3010                 switch (intel_trans_dp_port_sel(crtc)) {
3011                 case PCH_DP_B:
3012                         temp |= TRANS_DP_PORT_SEL_B;
3013                         break;
3014                 case PCH_DP_C:
3015                         temp |= TRANS_DP_PORT_SEL_C;
3016                         break;
3017                 case PCH_DP_D:
3018                         temp |= TRANS_DP_PORT_SEL_D;
3019                         break;
3020                 default:
3021                         BUG();
3022                 }
3023
3024                 I915_WRITE(reg, temp);
3025         }
3026
3027         ironlake_enable_pch_transcoder(dev_priv, pipe);
3028 }
3029
3030 static void lpt_pch_enable(struct drm_crtc *crtc)
3031 {
3032         struct drm_device *dev = crtc->dev;
3033         struct drm_i915_private *dev_priv = dev->dev_private;
3034         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3035         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3036
3037         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3038
3039         lpt_program_iclkip(crtc);
3040
3041         /* Set transcoder timing. */
3042         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3043
3044         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3045 }
3046
3047 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3048 {
3049         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3050
3051         if (pll == NULL)
3052                 return;
3053
3054         if (pll->refcount == 0) {
3055                 WARN(1, "bad %s refcount\n", pll->name);
3056                 return;
3057         }
3058
3059         if (--pll->refcount == 0) {
3060                 WARN_ON(pll->on);
3061                 WARN_ON(pll->active);
3062         }
3063
3064         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3065 }
3066
3067 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3068 {
3069         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3070         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3071         enum intel_dpll_id i;
3072
3073         if (pll) {
3074                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3075                               crtc->base.base.id, pll->name);
3076                 intel_put_shared_dpll(crtc);
3077         }
3078
3079         if (HAS_PCH_IBX(dev_priv->dev)) {
3080                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3081                 i = crtc->pipe;
3082                 pll = &dev_priv->shared_dplls[i];
3083
3084                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3085                               crtc->base.base.id, pll->name);
3086
3087                 goto found;
3088         }
3089
3090         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3091                 pll = &dev_priv->shared_dplls[i];
3092
3093                 /* Only want to check enabled timings first */
3094                 if (pll->refcount == 0)
3095                         continue;
3096
3097                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3098                            sizeof(pll->hw_state)) == 0) {
3099                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3100                                       crtc->base.base.id,
3101                                       pll->name, pll->refcount, pll->active);
3102
3103                         goto found;
3104                 }
3105         }
3106
3107         /* Ok no matching timings, maybe there's a free one? */
3108         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3109                 pll = &dev_priv->shared_dplls[i];
3110                 if (pll->refcount == 0) {
3111                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3112                                       crtc->base.base.id, pll->name);
3113                         goto found;
3114                 }
3115         }
3116
3117         return NULL;
3118
3119 found:
3120         crtc->config.shared_dpll = i;
3121         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3122                          pipe_name(crtc->pipe));
3123
3124         if (pll->active == 0) {
3125                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3126                        sizeof(pll->hw_state));
3127
3128                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3129                 WARN_ON(pll->on);
3130                 assert_shared_dpll_disabled(dev_priv, pll);
3131
3132                 pll->mode_set(dev_priv, pll);
3133         }
3134         pll->refcount++;
3135
3136         return pll;
3137 }
3138
3139 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3140 {
3141         struct drm_i915_private *dev_priv = dev->dev_private;
3142         int dslreg = PIPEDSL(pipe);
3143         u32 temp;
3144
3145         temp = I915_READ(dslreg);
3146         udelay(500);
3147         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3148                 if (wait_for(I915_READ(dslreg) != temp, 5))
3149                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3150         }
3151 }
3152
3153 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3154 {
3155         struct drm_device *dev = crtc->base.dev;
3156         struct drm_i915_private *dev_priv = dev->dev_private;
3157         int pipe = crtc->pipe;
3158
3159         if (crtc->config.pch_pfit.size) {
3160                 /* Force use of hard-coded filter coefficients
3161                  * as some pre-programmed values are broken,
3162                  * e.g. x201.
3163                  */
3164                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3165                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3166                                                  PF_PIPE_SEL_IVB(pipe));
3167                 else
3168                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3169                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3170                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3171         }
3172 }
3173
3174 static void intel_enable_planes(struct drm_crtc *crtc)
3175 {
3176         struct drm_device *dev = crtc->dev;
3177         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3178         struct intel_plane *intel_plane;
3179
3180         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3181                 if (intel_plane->pipe == pipe)
3182                         intel_plane_restore(&intel_plane->base);
3183 }
3184
3185 static void intel_disable_planes(struct drm_crtc *crtc)
3186 {
3187         struct drm_device *dev = crtc->dev;
3188         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3189         struct intel_plane *intel_plane;
3190
3191         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3192                 if (intel_plane->pipe == pipe)
3193                         intel_plane_disable(&intel_plane->base);
3194 }
3195
3196 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3197 {
3198         struct drm_device *dev = crtc->dev;
3199         struct drm_i915_private *dev_priv = dev->dev_private;
3200         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3201         struct intel_encoder *encoder;
3202         int pipe = intel_crtc->pipe;
3203         int plane = intel_crtc->plane;
3204
3205         WARN_ON(!crtc->enabled);
3206
3207         if (intel_crtc->active)
3208                 return;
3209
3210         intel_crtc->active = true;
3211
3212         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3213         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3214
3215         intel_update_watermarks(dev);
3216
3217         for_each_encoder_on_crtc(dev, crtc, encoder)
3218                 if (encoder->pre_enable)
3219                         encoder->pre_enable(encoder);
3220
3221         if (intel_crtc->config.has_pch_encoder) {
3222                 /* Note: FDI PLL enabling _must_ be done before we enable the
3223                  * cpu pipes, hence this is separate from all the other fdi/pch
3224                  * enabling. */
3225                 ironlake_fdi_pll_enable(intel_crtc);
3226         } else {
3227                 assert_fdi_tx_disabled(dev_priv, pipe);
3228                 assert_fdi_rx_disabled(dev_priv, pipe);
3229         }
3230
3231         ironlake_pfit_enable(intel_crtc);
3232
3233         /*
3234          * On ILK+ LUT must be loaded before the pipe is running but with
3235          * clocks enabled
3236          */
3237         intel_crtc_load_lut(crtc);
3238
3239         intel_enable_pipe(dev_priv, pipe,
3240                           intel_crtc->config.has_pch_encoder);
3241         intel_enable_plane(dev_priv, plane, pipe);
3242         intel_enable_planes(crtc);
3243         intel_crtc_update_cursor(crtc, true);
3244
3245         if (intel_crtc->config.has_pch_encoder)
3246                 ironlake_pch_enable(crtc);
3247
3248         mutex_lock(&dev->struct_mutex);
3249         intel_update_fbc(dev);
3250         mutex_unlock(&dev->struct_mutex);
3251
3252         for_each_encoder_on_crtc(dev, crtc, encoder)
3253                 encoder->enable(encoder);
3254
3255         if (HAS_PCH_CPT(dev))
3256                 cpt_verify_modeset(dev, intel_crtc->pipe);
3257
3258         /*
3259          * There seems to be a race in PCH platform hw (at least on some
3260          * outputs) where an enabled pipe still completes any pageflip right
3261          * away (as if the pipe is off) instead of waiting for vblank. As soon
3262          * as the first vblank happend, everything works as expected. Hence just
3263          * wait for one vblank before returning to avoid strange things
3264          * happening.
3265          */
3266         intel_wait_for_vblank(dev, intel_crtc->pipe);
3267 }
3268
3269 /* IPS only exists on ULT machines and is tied to pipe A. */
3270 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3271 {
3272         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3273 }
3274
3275 static void hsw_enable_ips(struct intel_crtc *crtc)
3276 {
3277         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3278
3279         if (!crtc->config.ips_enabled)
3280                 return;
3281
3282         /* We can only enable IPS after we enable a plane and wait for a vblank.
3283          * We guarantee that the plane is enabled by calling intel_enable_ips
3284          * only after intel_enable_plane. And intel_enable_plane already waits
3285          * for a vblank, so all we need to do here is to enable the IPS bit. */
3286         assert_plane_enabled(dev_priv, crtc->plane);
3287         I915_WRITE(IPS_CTL, IPS_ENABLE);
3288 }
3289
3290 static void hsw_disable_ips(struct intel_crtc *crtc)
3291 {
3292         struct drm_device *dev = crtc->base.dev;
3293         struct drm_i915_private *dev_priv = dev->dev_private;
3294
3295         if (!crtc->config.ips_enabled)
3296                 return;
3297
3298         assert_plane_enabled(dev_priv, crtc->plane);
3299         I915_WRITE(IPS_CTL, 0);
3300
3301         /* We need to wait for a vblank before we can disable the plane. */
3302         intel_wait_for_vblank(dev, crtc->pipe);
3303 }
3304
3305 static void haswell_crtc_enable(struct drm_crtc *crtc)
3306 {
3307         struct drm_device *dev = crtc->dev;
3308         struct drm_i915_private *dev_priv = dev->dev_private;
3309         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3310         struct intel_encoder *encoder;
3311         int pipe = intel_crtc->pipe;
3312         int plane = intel_crtc->plane;
3313
3314         WARN_ON(!crtc->enabled);
3315
3316         if (intel_crtc->active)
3317                 return;
3318
3319         intel_crtc->active = true;
3320
3321         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3322         if (intel_crtc->config.has_pch_encoder)
3323                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3324
3325         intel_update_watermarks(dev);
3326
3327         if (intel_crtc->config.has_pch_encoder)
3328                 dev_priv->display.fdi_link_train(crtc);
3329
3330         for_each_encoder_on_crtc(dev, crtc, encoder)
3331                 if (encoder->pre_enable)
3332                         encoder->pre_enable(encoder);
3333
3334         intel_ddi_enable_pipe_clock(intel_crtc);
3335
3336         ironlake_pfit_enable(intel_crtc);
3337
3338         /*
3339          * On ILK+ LUT must be loaded before the pipe is running but with
3340          * clocks enabled
3341          */
3342         intel_crtc_load_lut(crtc);
3343
3344         intel_ddi_set_pipe_settings(crtc);
3345         intel_ddi_enable_transcoder_func(crtc);
3346
3347         intel_enable_pipe(dev_priv, pipe,
3348                           intel_crtc->config.has_pch_encoder);
3349         intel_enable_plane(dev_priv, plane, pipe);
3350         intel_enable_planes(crtc);
3351         intel_crtc_update_cursor(crtc, true);
3352
3353         hsw_enable_ips(intel_crtc);
3354
3355         if (intel_crtc->config.has_pch_encoder)
3356                 lpt_pch_enable(crtc);
3357
3358         mutex_lock(&dev->struct_mutex);
3359         intel_update_fbc(dev);
3360         mutex_unlock(&dev->struct_mutex);
3361
3362         for_each_encoder_on_crtc(dev, crtc, encoder)
3363                 encoder->enable(encoder);
3364
3365         /*
3366          * There seems to be a race in PCH platform hw (at least on some
3367          * outputs) where an enabled pipe still completes any pageflip right
3368          * away (as if the pipe is off) instead of waiting for vblank. As soon
3369          * as the first vblank happend, everything works as expected. Hence just
3370          * wait for one vblank before returning to avoid strange things
3371          * happening.
3372          */
3373         intel_wait_for_vblank(dev, intel_crtc->pipe);
3374 }
3375
3376 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3377 {
3378         struct drm_device *dev = crtc->base.dev;
3379         struct drm_i915_private *dev_priv = dev->dev_private;
3380         int pipe = crtc->pipe;
3381
3382         /* To avoid upsetting the power well on haswell only disable the pfit if
3383          * it's in use. The hw state code will make sure we get this right. */
3384         if (crtc->config.pch_pfit.size) {
3385                 I915_WRITE(PF_CTL(pipe), 0);
3386                 I915_WRITE(PF_WIN_POS(pipe), 0);
3387                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3388         }
3389 }
3390
3391 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3392 {
3393         struct drm_device *dev = crtc->dev;
3394         struct drm_i915_private *dev_priv = dev->dev_private;
3395         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3396         struct intel_encoder *encoder;
3397         int pipe = intel_crtc->pipe;
3398         int plane = intel_crtc->plane;
3399         u32 reg, temp;
3400
3401
3402         if (!intel_crtc->active)
3403                 return;
3404
3405         for_each_encoder_on_crtc(dev, crtc, encoder)
3406                 encoder->disable(encoder);
3407
3408         intel_crtc_wait_for_pending_flips(crtc);
3409         drm_vblank_off(dev, pipe);
3410
3411         if (dev_priv->fbc.plane == plane)
3412                 intel_disable_fbc(dev);
3413
3414         intel_crtc_update_cursor(crtc, false);
3415         intel_disable_planes(crtc);
3416         intel_disable_plane(dev_priv, plane, pipe);
3417
3418         if (intel_crtc->config.has_pch_encoder)
3419                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3420
3421         intel_disable_pipe(dev_priv, pipe);
3422
3423         ironlake_pfit_disable(intel_crtc);
3424
3425         for_each_encoder_on_crtc(dev, crtc, encoder)
3426                 if (encoder->post_disable)
3427                         encoder->post_disable(encoder);
3428
3429         if (intel_crtc->config.has_pch_encoder) {
3430                 ironlake_fdi_disable(crtc);
3431
3432                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3433                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3434
3435                 if (HAS_PCH_CPT(dev)) {
3436                         /* disable TRANS_DP_CTL */
3437                         reg = TRANS_DP_CTL(pipe);
3438                         temp = I915_READ(reg);
3439                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3440                                   TRANS_DP_PORT_SEL_MASK);
3441                         temp |= TRANS_DP_PORT_SEL_NONE;
3442                         I915_WRITE(reg, temp);
3443
3444                         /* disable DPLL_SEL */
3445                         temp = I915_READ(PCH_DPLL_SEL);
3446                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3447                         I915_WRITE(PCH_DPLL_SEL, temp);
3448                 }
3449
3450                 /* disable PCH DPLL */
3451                 intel_disable_shared_dpll(intel_crtc);
3452
3453                 ironlake_fdi_pll_disable(intel_crtc);
3454         }
3455
3456         intel_crtc->active = false;
3457         intel_update_watermarks(dev);
3458
3459         mutex_lock(&dev->struct_mutex);
3460         intel_update_fbc(dev);
3461         mutex_unlock(&dev->struct_mutex);
3462 }
3463
3464 static void haswell_crtc_disable(struct drm_crtc *crtc)
3465 {
3466         struct drm_device *dev = crtc->dev;
3467         struct drm_i915_private *dev_priv = dev->dev_private;
3468         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3469         struct intel_encoder *encoder;
3470         int pipe = intel_crtc->pipe;
3471         int plane = intel_crtc->plane;
3472         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3473
3474         if (!intel_crtc->active)
3475                 return;
3476
3477         for_each_encoder_on_crtc(dev, crtc, encoder)
3478                 encoder->disable(encoder);
3479
3480         intel_crtc_wait_for_pending_flips(crtc);
3481         drm_vblank_off(dev, pipe);
3482
3483         /* FBC must be disabled before disabling the plane on HSW. */
3484         if (dev_priv->fbc.plane == plane)
3485                 intel_disable_fbc(dev);
3486
3487         hsw_disable_ips(intel_crtc);
3488
3489         intel_crtc_update_cursor(crtc, false);
3490         intel_disable_planes(crtc);
3491         intel_disable_plane(dev_priv, plane, pipe);
3492
3493         if (intel_crtc->config.has_pch_encoder)
3494                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3495         intel_disable_pipe(dev_priv, pipe);
3496
3497         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3498
3499         ironlake_pfit_disable(intel_crtc);
3500
3501         intel_ddi_disable_pipe_clock(intel_crtc);
3502
3503         for_each_encoder_on_crtc(dev, crtc, encoder)
3504                 if (encoder->post_disable)
3505                         encoder->post_disable(encoder);
3506
3507         if (intel_crtc->config.has_pch_encoder) {
3508                 lpt_disable_pch_transcoder(dev_priv);
3509                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3510                 intel_ddi_fdi_disable(crtc);
3511         }
3512
3513         intel_crtc->active = false;
3514         intel_update_watermarks(dev);
3515
3516         mutex_lock(&dev->struct_mutex);
3517         intel_update_fbc(dev);
3518         mutex_unlock(&dev->struct_mutex);
3519 }
3520
3521 static void ironlake_crtc_off(struct drm_crtc *crtc)
3522 {
3523         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3524         intel_put_shared_dpll(intel_crtc);
3525 }
3526
3527 static void haswell_crtc_off(struct drm_crtc *crtc)
3528 {
3529         intel_ddi_put_crtc_pll(crtc);
3530 }
3531
3532 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3533 {
3534         if (!enable && intel_crtc->overlay) {
3535                 struct drm_device *dev = intel_crtc->base.dev;
3536                 struct drm_i915_private *dev_priv = dev->dev_private;
3537
3538                 mutex_lock(&dev->struct_mutex);
3539                 dev_priv->mm.interruptible = false;
3540                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3541                 dev_priv->mm.interruptible = true;
3542                 mutex_unlock(&dev->struct_mutex);
3543         }
3544
3545         /* Let userspace switch the overlay on again. In most cases userspace
3546          * has to recompute where to put it anyway.
3547          */
3548 }
3549
3550 /**
3551  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3552  * cursor plane briefly if not already running after enabling the display
3553  * plane.
3554  * This workaround avoids occasional blank screens when self refresh is
3555  * enabled.
3556  */
3557 static void
3558 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3559 {
3560         u32 cntl = I915_READ(CURCNTR(pipe));
3561
3562         if ((cntl & CURSOR_MODE) == 0) {
3563                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3564
3565                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3566                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3567                 intel_wait_for_vblank(dev_priv->dev, pipe);
3568                 I915_WRITE(CURCNTR(pipe), cntl);
3569                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3570                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3571         }
3572 }
3573
3574 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3575 {
3576         struct drm_device *dev = crtc->base.dev;
3577         struct drm_i915_private *dev_priv = dev->dev_private;
3578         struct intel_crtc_config *pipe_config = &crtc->config;
3579
3580         if (!crtc->config.gmch_pfit.control)
3581                 return;
3582
3583         /*
3584          * The panel fitter should only be adjusted whilst the pipe is disabled,
3585          * according to register description and PRM.
3586          */
3587         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3588         assert_pipe_disabled(dev_priv, crtc->pipe);
3589
3590         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3591         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3592
3593         /* Border color in case we don't scale up to the full screen. Black by
3594          * default, change to something else for debugging. */
3595         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3596 }
3597
3598 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3599 {
3600         struct drm_device *dev = crtc->dev;
3601         struct drm_i915_private *dev_priv = dev->dev_private;
3602         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3603         struct intel_encoder *encoder;
3604         int pipe = intel_crtc->pipe;
3605         int plane = intel_crtc->plane;
3606
3607         WARN_ON(!crtc->enabled);
3608
3609         if (intel_crtc->active)
3610                 return;
3611
3612         intel_crtc->active = true;
3613         intel_update_watermarks(dev);
3614
3615         mutex_lock(&dev_priv->dpio_lock);
3616
3617         for_each_encoder_on_crtc(dev, crtc, encoder)
3618                 if (encoder->pre_pll_enable)
3619                         encoder->pre_pll_enable(encoder);
3620
3621         vlv_enable_pll(dev_priv, pipe);
3622
3623         for_each_encoder_on_crtc(dev, crtc, encoder)
3624                 if (encoder->pre_enable)
3625                         encoder->pre_enable(encoder);
3626
3627         /* VLV wants encoder enabling _before_ the pipe is up. */
3628         for_each_encoder_on_crtc(dev, crtc, encoder)
3629                 encoder->enable(encoder);
3630
3631         i9xx_pfit_enable(intel_crtc);
3632
3633         intel_crtc_load_lut(crtc);
3634
3635         intel_enable_pipe(dev_priv, pipe, false);
3636         intel_enable_plane(dev_priv, plane, pipe);
3637         intel_enable_planes(crtc);
3638         intel_crtc_update_cursor(crtc, true);
3639
3640         intel_update_fbc(dev);
3641
3642         mutex_unlock(&dev_priv->dpio_lock);
3643 }
3644
3645 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3646 {
3647         struct drm_device *dev = crtc->dev;
3648         struct drm_i915_private *dev_priv = dev->dev_private;
3649         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3650         struct intel_encoder *encoder;
3651         int pipe = intel_crtc->pipe;
3652         int plane = intel_crtc->plane;
3653
3654         WARN_ON(!crtc->enabled);
3655
3656         if (intel_crtc->active)
3657                 return;
3658
3659         intel_crtc->active = true;
3660         intel_update_watermarks(dev);
3661
3662         for_each_encoder_on_crtc(dev, crtc, encoder)
3663                 if (encoder->pre_enable)
3664                         encoder->pre_enable(encoder);
3665
3666         i9xx_enable_pll(intel_crtc);
3667
3668         i9xx_pfit_enable(intel_crtc);
3669
3670         intel_crtc_load_lut(crtc);
3671
3672         intel_enable_pipe(dev_priv, pipe, false);
3673         intel_enable_plane(dev_priv, plane, pipe);
3674         intel_enable_planes(crtc);
3675         /* The fixup needs to happen before cursor is enabled */
3676         if (IS_G4X(dev))
3677                 g4x_fixup_plane(dev_priv, pipe);
3678         intel_crtc_update_cursor(crtc, true);
3679
3680         /* Give the overlay scaler a chance to enable if it's on this pipe */
3681         intel_crtc_dpms_overlay(intel_crtc, true);
3682
3683         intel_update_fbc(dev);
3684
3685         for_each_encoder_on_crtc(dev, crtc, encoder)
3686                 encoder->enable(encoder);
3687 }
3688
3689 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3690 {
3691         struct drm_device *dev = crtc->base.dev;
3692         struct drm_i915_private *dev_priv = dev->dev_private;
3693
3694         if (!crtc->config.gmch_pfit.control)
3695                 return;
3696
3697         assert_pipe_disabled(dev_priv, crtc->pipe);
3698
3699         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3700                          I915_READ(PFIT_CONTROL));
3701         I915_WRITE(PFIT_CONTROL, 0);
3702 }
3703
3704 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3705 {
3706         struct drm_device *dev = crtc->dev;
3707         struct drm_i915_private *dev_priv = dev->dev_private;
3708         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3709         struct intel_encoder *encoder;
3710         int pipe = intel_crtc->pipe;
3711         int plane = intel_crtc->plane;
3712
3713         if (!intel_crtc->active)
3714                 return;
3715
3716         for_each_encoder_on_crtc(dev, crtc, encoder)
3717                 encoder->disable(encoder);
3718
3719         /* Give the overlay scaler a chance to disable if it's on this pipe */
3720         intel_crtc_wait_for_pending_flips(crtc);
3721         drm_vblank_off(dev, pipe);
3722
3723         if (dev_priv->fbc.plane == plane)
3724                 intel_disable_fbc(dev);
3725
3726         intel_crtc_dpms_overlay(intel_crtc, false);
3727         intel_crtc_update_cursor(crtc, false);
3728         intel_disable_planes(crtc);
3729         intel_disable_plane(dev_priv, plane, pipe);
3730
3731         intel_disable_pipe(dev_priv, pipe);
3732
3733         i9xx_pfit_disable(intel_crtc);
3734
3735         for_each_encoder_on_crtc(dev, crtc, encoder)
3736                 if (encoder->post_disable)
3737                         encoder->post_disable(encoder);
3738
3739         intel_disable_pll(dev_priv, pipe);
3740
3741         intel_crtc->active = false;
3742         intel_update_fbc(dev);
3743         intel_update_watermarks(dev);
3744 }
3745
3746 static void i9xx_crtc_off(struct drm_crtc *crtc)
3747 {
3748 }
3749
3750 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3751                                     bool enabled)
3752 {
3753         struct drm_device *dev = crtc->dev;
3754         struct drm_i915_master_private *master_priv;
3755         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3756         int pipe = intel_crtc->pipe;
3757
3758         if (!dev->primary->master)
3759                 return;
3760
3761         master_priv = dev->primary->master->driver_priv;
3762         if (!master_priv->sarea_priv)
3763                 return;
3764
3765         switch (pipe) {
3766         case 0:
3767                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3768                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3769                 break;
3770         case 1:
3771                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3772                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3773                 break;
3774         default:
3775                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3776                 break;
3777         }
3778 }
3779
3780 /**
3781  * Sets the power management mode of the pipe and plane.
3782  */
3783 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3784 {
3785         struct drm_device *dev = crtc->dev;
3786         struct drm_i915_private *dev_priv = dev->dev_private;
3787         struct intel_encoder *intel_encoder;
3788         bool enable = false;
3789
3790         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3791                 enable |= intel_encoder->connectors_active;
3792
3793         if (enable)
3794                 dev_priv->display.crtc_enable(crtc);
3795         else
3796                 dev_priv->display.crtc_disable(crtc);
3797
3798         intel_crtc_update_sarea(crtc, enable);
3799 }
3800
3801 static void intel_crtc_disable(struct drm_crtc *crtc)
3802 {
3803         struct drm_device *dev = crtc->dev;
3804         struct drm_connector *connector;
3805         struct drm_i915_private *dev_priv = dev->dev_private;
3806         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3807
3808         /* crtc should still be enabled when we disable it. */
3809         WARN_ON(!crtc->enabled);
3810
3811         dev_priv->display.crtc_disable(crtc);
3812         intel_crtc->eld_vld = false;
3813         intel_crtc_update_sarea(crtc, false);
3814         dev_priv->display.off(crtc);
3815
3816         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3817         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3818
3819         if (crtc->fb) {
3820                 mutex_lock(&dev->struct_mutex);
3821                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3822                 mutex_unlock(&dev->struct_mutex);
3823                 crtc->fb = NULL;
3824         }
3825
3826         /* Update computed state. */
3827         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3828                 if (!connector->encoder || !connector->encoder->crtc)
3829                         continue;
3830
3831                 if (connector->encoder->crtc != crtc)
3832                         continue;
3833
3834                 connector->dpms = DRM_MODE_DPMS_OFF;
3835                 to_intel_encoder(connector->encoder)->connectors_active = false;
3836         }
3837 }
3838
3839 void intel_modeset_disable(struct drm_device *dev)
3840 {
3841         struct drm_crtc *crtc;
3842
3843         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3844                 if (crtc->enabled)
3845                         intel_crtc_disable(crtc);
3846         }
3847 }
3848
3849 void intel_encoder_destroy(struct drm_encoder *encoder)
3850 {
3851         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3852
3853         drm_encoder_cleanup(encoder);
3854         kfree(intel_encoder);
3855 }
3856
3857 /* Simple dpms helper for encodres with just one connector, no cloning and only
3858  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3859  * state of the entire output pipe. */
3860 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3861 {
3862         if (mode == DRM_MODE_DPMS_ON) {
3863                 encoder->connectors_active = true;
3864
3865                 intel_crtc_update_dpms(encoder->base.crtc);
3866         } else {
3867                 encoder->connectors_active = false;
3868
3869                 intel_crtc_update_dpms(encoder->base.crtc);
3870         }
3871 }
3872
3873 /* Cross check the actual hw state with our own modeset state tracking (and it's
3874  * internal consistency). */
3875 static void intel_connector_check_state(struct intel_connector *connector)
3876 {
3877         if (connector->get_hw_state(connector)) {
3878                 struct intel_encoder *encoder = connector->encoder;
3879                 struct drm_crtc *crtc;
3880                 bool encoder_enabled;
3881                 enum pipe pipe;
3882
3883                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3884                               connector->base.base.id,
3885                               drm_get_connector_name(&connector->base));
3886
3887                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3888                      "wrong connector dpms state\n");
3889                 WARN(connector->base.encoder != &encoder->base,
3890                      "active connector not linked to encoder\n");
3891                 WARN(!encoder->connectors_active,
3892                      "encoder->connectors_active not set\n");
3893
3894                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3895                 WARN(!encoder_enabled, "encoder not enabled\n");
3896                 if (WARN_ON(!encoder->base.crtc))
3897                         return;
3898
3899                 crtc = encoder->base.crtc;
3900
3901                 WARN(!crtc->enabled, "crtc not enabled\n");
3902                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3903                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3904                      "encoder active on the wrong pipe\n");
3905         }
3906 }
3907
3908 /* Even simpler default implementation, if there's really no special case to
3909  * consider. */
3910 void intel_connector_dpms(struct drm_connector *connector, int mode)
3911 {
3912         struct intel_encoder *encoder = intel_attached_encoder(connector);
3913
3914         /* All the simple cases only support two dpms states. */
3915         if (mode != DRM_MODE_DPMS_ON)
3916                 mode = DRM_MODE_DPMS_OFF;
3917
3918         if (mode == connector->dpms)
3919                 return;
3920
3921         connector->dpms = mode;
3922
3923         /* Only need to change hw state when actually enabled */
3924         if (encoder->base.crtc)
3925                 intel_encoder_dpms(encoder, mode);
3926         else
3927                 WARN_ON(encoder->connectors_active != false);
3928
3929         intel_modeset_check_state(connector->dev);
3930 }
3931
3932 /* Simple connector->get_hw_state implementation for encoders that support only
3933  * one connector and no cloning and hence the encoder state determines the state
3934  * of the connector. */
3935 bool intel_connector_get_hw_state(struct intel_connector *connector)
3936 {
3937         enum pipe pipe = 0;
3938         struct intel_encoder *encoder = connector->encoder;
3939
3940         return encoder->get_hw_state(encoder, &pipe);
3941 }
3942
3943 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3944                                      struct intel_crtc_config *pipe_config)
3945 {
3946         struct drm_i915_private *dev_priv = dev->dev_private;
3947         struct intel_crtc *pipe_B_crtc =
3948                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3949
3950         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3951                       pipe_name(pipe), pipe_config->fdi_lanes);
3952         if (pipe_config->fdi_lanes > 4) {
3953                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
3954                               pipe_name(pipe), pipe_config->fdi_lanes);
3955                 return false;
3956         }
3957
3958         if (IS_HASWELL(dev)) {
3959                 if (pipe_config->fdi_lanes > 2) {
3960                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
3961                                       pipe_config->fdi_lanes);
3962                         return false;
3963                 } else {
3964                         return true;
3965                 }
3966         }
3967
3968         if (INTEL_INFO(dev)->num_pipes == 2)
3969                 return true;
3970
3971         /* Ivybridge 3 pipe is really complicated */
3972         switch (pipe) {
3973         case PIPE_A:
3974                 return true;
3975         case PIPE_B:
3976                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
3977                     pipe_config->fdi_lanes > 2) {
3978                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
3979                                       pipe_name(pipe), pipe_config->fdi_lanes);
3980                         return false;
3981                 }
3982                 return true;
3983         case PIPE_C:
3984                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
3985                     pipe_B_crtc->config.fdi_lanes <= 2) {
3986                         if (pipe_config->fdi_lanes > 2) {
3987                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
3988                                               pipe_name(pipe), pipe_config->fdi_lanes);
3989                                 return false;
3990                         }
3991                 } else {
3992                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
3993                         return false;
3994                 }
3995                 return true;
3996         default:
3997                 BUG();
3998         }
3999 }
4000
4001 #define RETRY 1
4002 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4003                                        struct intel_crtc_config *pipe_config)
4004 {
4005         struct drm_device *dev = intel_crtc->base.dev;
4006         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4007         int lane, link_bw, fdi_dotclock;
4008         bool setup_ok, needs_recompute = false;
4009
4010 retry:
4011         /* FDI is a binary signal running at ~2.7GHz, encoding
4012          * each output octet as 10 bits. The actual frequency
4013          * is stored as a divider into a 100MHz clock, and the
4014          * mode pixel clock is stored in units of 1KHz.
4015          * Hence the bw of each lane in terms of the mode signal
4016          * is:
4017          */
4018         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4019
4020         fdi_dotclock = adjusted_mode->clock;
4021         fdi_dotclock /= pipe_config->pixel_multiplier;
4022
4023         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4024                                            pipe_config->pipe_bpp);
4025
4026         pipe_config->fdi_lanes = lane;
4027
4028         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4029                                link_bw, &pipe_config->fdi_m_n);
4030
4031         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4032                                             intel_crtc->pipe, pipe_config);
4033         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4034                 pipe_config->pipe_bpp -= 2*3;
4035                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4036                               pipe_config->pipe_bpp);
4037                 needs_recompute = true;
4038                 pipe_config->bw_constrained = true;
4039
4040                 goto retry;
4041         }
4042
4043         if (needs_recompute)
4044                 return RETRY;
4045
4046         return setup_ok ? 0 : -EINVAL;
4047 }
4048
4049 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4050                                    struct intel_crtc_config *pipe_config)
4051 {
4052         pipe_config->ips_enabled = i915_enable_ips &&
4053                                    hsw_crtc_supports_ips(crtc) &&
4054                                    pipe_config->pipe_bpp == 24;
4055 }
4056
4057 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4058                                      struct intel_crtc_config *pipe_config)
4059 {
4060         struct drm_device *dev = crtc->base.dev;
4061         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4062
4063         if (HAS_PCH_SPLIT(dev)) {
4064                 /* FDI link clock is fixed at 2.7G */
4065                 if (pipe_config->requested_mode.clock * 3
4066                     > IRONLAKE_FDI_FREQ * 4)
4067                         return -EINVAL;
4068         }
4069
4070         /* All interlaced capable intel hw wants timings in frames. Note though
4071          * that intel_lvds_mode_fixup does some funny tricks with the crtc
4072          * timings, so we need to be careful not to clobber these.*/
4073         if (!pipe_config->timings_set)
4074                 drm_mode_set_crtcinfo(adjusted_mode, 0);
4075
4076         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4077          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4078          */
4079         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4080                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4081                 return -EINVAL;
4082
4083         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4084                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4085         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4086                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4087                  * for lvds. */
4088                 pipe_config->pipe_bpp = 8*3;
4089         }
4090
4091         if (HAS_IPS(dev))
4092                 hsw_compute_ips_config(crtc, pipe_config);
4093
4094         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4095          * clock survives for now. */
4096         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4097                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4098
4099         if (pipe_config->has_pch_encoder)
4100                 return ironlake_fdi_compute_config(crtc, pipe_config);
4101
4102         return 0;
4103 }
4104
4105 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4106 {
4107         return 400000; /* FIXME */
4108 }
4109
4110 static int i945_get_display_clock_speed(struct drm_device *dev)
4111 {
4112         return 400000;
4113 }
4114
4115 static int i915_get_display_clock_speed(struct drm_device *dev)
4116 {
4117         return 333000;
4118 }
4119
4120 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4121 {
4122         return 200000;
4123 }
4124
4125 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4126 {
4127         u16 gcfgc = 0;
4128
4129         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4130
4131         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4132                 return 133000;
4133         else {
4134                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4135                 case GC_DISPLAY_CLOCK_333_MHZ:
4136                         return 333000;
4137                 default:
4138                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4139                         return 190000;
4140                 }
4141         }
4142 }
4143
4144 static int i865_get_display_clock_speed(struct drm_device *dev)
4145 {
4146         return 266000;
4147 }
4148
4149 static int i855_get_display_clock_speed(struct drm_device *dev)
4150 {
4151         u16 hpllcc = 0;
4152         /* Assume that the hardware is in the high speed state.  This
4153          * should be the default.
4154          */
4155         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4156         case GC_CLOCK_133_200:
4157         case GC_CLOCK_100_200:
4158                 return 200000;
4159         case GC_CLOCK_166_250:
4160                 return 250000;
4161         case GC_CLOCK_100_133:
4162                 return 133000;
4163         }
4164
4165         /* Shouldn't happen */
4166         return 0;
4167 }
4168
4169 static int i830_get_display_clock_speed(struct drm_device *dev)
4170 {
4171         return 133000;
4172 }
4173
4174 static void
4175 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4176 {
4177         while (*num > DATA_LINK_M_N_MASK ||
4178                *den > DATA_LINK_M_N_MASK) {
4179                 *num >>= 1;
4180                 *den >>= 1;
4181         }
4182 }
4183
4184 static void compute_m_n(unsigned int m, unsigned int n,
4185                         uint32_t *ret_m, uint32_t *ret_n)
4186 {
4187         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4188         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4189         intel_reduce_m_n_ratio(ret_m, ret_n);
4190 }
4191
4192 void
4193 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4194                        int pixel_clock, int link_clock,
4195                        struct intel_link_m_n *m_n)
4196 {
4197         m_n->tu = 64;
4198
4199         compute_m_n(bits_per_pixel * pixel_clock,
4200                     link_clock * nlanes * 8,
4201                     &m_n->gmch_m, &m_n->gmch_n);
4202
4203         compute_m_n(pixel_clock, link_clock,
4204                     &m_n->link_m, &m_n->link_n);
4205 }
4206
4207 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4208 {
4209         if (i915_panel_use_ssc >= 0)
4210                 return i915_panel_use_ssc != 0;
4211         return dev_priv->vbt.lvds_use_ssc
4212                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4213 }
4214
4215 static int vlv_get_refclk(struct drm_crtc *crtc)
4216 {
4217         struct drm_device *dev = crtc->dev;
4218         struct drm_i915_private *dev_priv = dev->dev_private;
4219         int refclk = 27000; /* for DP & HDMI */
4220
4221         return 100000; /* only one validated so far */
4222
4223         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4224                 refclk = 96000;
4225         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4226                 if (intel_panel_use_ssc(dev_priv))
4227                         refclk = 100000;
4228                 else
4229                         refclk = 96000;
4230         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4231                 refclk = 100000;
4232         }
4233
4234         return refclk;
4235 }
4236
4237 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4238 {
4239         struct drm_device *dev = crtc->dev;
4240         struct drm_i915_private *dev_priv = dev->dev_private;
4241         int refclk;
4242
4243         if (IS_VALLEYVIEW(dev)) {
4244                 refclk = vlv_get_refclk(crtc);
4245         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4246             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4247                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4248                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4249                               refclk / 1000);
4250         } else if (!IS_GEN2(dev)) {
4251                 refclk = 96000;
4252         } else {
4253                 refclk = 48000;
4254         }
4255
4256         return refclk;
4257 }
4258
4259 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4260 {
4261         return (1 << dpll->n) << 16 | dpll->m2;
4262 }
4263
4264 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4265 {
4266         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4267 }
4268
4269 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4270                                      intel_clock_t *reduced_clock)
4271 {
4272         struct drm_device *dev = crtc->base.dev;
4273         struct drm_i915_private *dev_priv = dev->dev_private;
4274         int pipe = crtc->pipe;
4275         u32 fp, fp2 = 0;
4276
4277         if (IS_PINEVIEW(dev)) {
4278                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4279                 if (reduced_clock)
4280                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4281         } else {
4282                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4283                 if (reduced_clock)
4284                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4285         }
4286
4287         I915_WRITE(FP0(pipe), fp);
4288         crtc->config.dpll_hw_state.fp0 = fp;
4289
4290         crtc->lowfreq_avail = false;
4291         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4292             reduced_clock && i915_powersave) {
4293                 I915_WRITE(FP1(pipe), fp2);
4294                 crtc->config.dpll_hw_state.fp1 = fp2;
4295                 crtc->lowfreq_avail = true;
4296         } else {
4297                 I915_WRITE(FP1(pipe), fp);
4298                 crtc->config.dpll_hw_state.fp1 = fp;
4299         }
4300 }
4301
4302 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4303 {
4304         u32 reg_val;
4305
4306         /*
4307          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4308          * and set it to a reasonable value instead.
4309          */
4310         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4311         reg_val &= 0xffffff00;
4312         reg_val |= 0x00000030;
4313         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4314
4315         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4316         reg_val &= 0x8cffffff;
4317         reg_val = 0x8c000000;
4318         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4319
4320         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4321         reg_val &= 0xffffff00;
4322         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4323
4324         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4325         reg_val &= 0x00ffffff;
4326         reg_val |= 0xb0000000;
4327         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4328 }
4329
4330 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4331                                          struct intel_link_m_n *m_n)
4332 {
4333         struct drm_device *dev = crtc->base.dev;
4334         struct drm_i915_private *dev_priv = dev->dev_private;
4335         int pipe = crtc->pipe;
4336
4337         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4338         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4339         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4340         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4341 }
4342
4343 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4344                                          struct intel_link_m_n *m_n)
4345 {
4346         struct drm_device *dev = crtc->base.dev;
4347         struct drm_i915_private *dev_priv = dev->dev_private;
4348         int pipe = crtc->pipe;
4349         enum transcoder transcoder = crtc->config.cpu_transcoder;
4350
4351         if (INTEL_INFO(dev)->gen >= 5) {
4352                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4353                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4354                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4355                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4356         } else {
4357                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4358                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4359                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4360                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4361         }
4362 }
4363
4364 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4365 {
4366         if (crtc->config.has_pch_encoder)
4367                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4368         else
4369                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4370 }
4371
4372 static void vlv_update_pll(struct intel_crtc *crtc)
4373 {
4374         struct drm_device *dev = crtc->base.dev;
4375         struct drm_i915_private *dev_priv = dev->dev_private;
4376         struct intel_encoder *encoder;
4377         int pipe = crtc->pipe;
4378         u32 dpll, mdiv;
4379         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4380         bool is_hdmi;
4381         u32 coreclk, reg_val, dpll_md;
4382
4383         mutex_lock(&dev_priv->dpio_lock);
4384
4385         is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4386
4387         bestn = crtc->config.dpll.n;
4388         bestm1 = crtc->config.dpll.m1;
4389         bestm2 = crtc->config.dpll.m2;
4390         bestp1 = crtc->config.dpll.p1;
4391         bestp2 = crtc->config.dpll.p2;
4392
4393         /* See eDP HDMI DPIO driver vbios notes doc */
4394
4395         /* PLL B needs special handling */
4396         if (pipe)
4397                 vlv_pllb_recal_opamp(dev_priv);
4398
4399         /* Set up Tx target for periodic Rcomp update */
4400         vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4401
4402         /* Disable target IRef on PLL */
4403         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4404         reg_val &= 0x00ffffff;
4405         vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4406
4407         /* Disable fast lock */
4408         vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4409
4410         /* Set idtafcrecal before PLL is enabled */
4411         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4412         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4413         mdiv |= ((bestn << DPIO_N_SHIFT));
4414         mdiv |= (1 << DPIO_K_SHIFT);
4415
4416         /*
4417          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4418          * but we don't support that).
4419          * Note: don't use the DAC post divider as it seems unstable.
4420          */
4421         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4422         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4423
4424         mdiv |= DPIO_ENABLE_CALIBRATION;
4425         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4426
4427         /* Set HBR and RBR LPF coefficients */
4428         if (crtc->config.port_clock == 162000 ||
4429             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4430             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4431                 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4432                                  0x005f0021);
4433         else
4434                 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4435                                  0x00d0000f);
4436
4437         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4438             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4439                 /* Use SSC source */
4440                 if (!pipe)
4441                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4442                                          0x0df40000);
4443                 else
4444                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4445                                          0x0df70000);
4446         } else { /* HDMI or VGA */
4447                 /* Use bend source */
4448                 if (!pipe)
4449                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4450                                          0x0df70000);
4451                 else
4452                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4453                                          0x0df40000);
4454         }
4455
4456         coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4457         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4458         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4459             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4460                 coreclk |= 0x01000000;
4461         vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4462
4463         vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4464
4465         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4466                 if (encoder->pre_pll_enable)
4467                         encoder->pre_pll_enable(encoder);
4468
4469         /* Enable DPIO clock input */
4470         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4471                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4472         if (pipe)
4473                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4474
4475         dpll |= DPLL_VCO_ENABLE;
4476         crtc->config.dpll_hw_state.dpll = dpll;
4477
4478         I915_WRITE(DPLL(pipe), dpll);
4479         POSTING_READ(DPLL(pipe));
4480         udelay(150);
4481
4482         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4483                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4484
4485         dpll_md = (crtc->config.pixel_multiplier - 1)
4486                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4487         crtc->config.dpll_hw_state.dpll_md = dpll_md;
4488
4489         I915_WRITE(DPLL_MD(pipe), dpll_md);
4490         POSTING_READ(DPLL_MD(pipe));
4491
4492         if (crtc->config.has_dp_encoder)
4493                 intel_dp_set_m_n(crtc);
4494
4495         mutex_unlock(&dev_priv->dpio_lock);
4496 }
4497
4498 static void i9xx_update_pll(struct intel_crtc *crtc,
4499                             intel_clock_t *reduced_clock,
4500                             int num_connectors)
4501 {
4502         struct drm_device *dev = crtc->base.dev;
4503         struct drm_i915_private *dev_priv = dev->dev_private;
4504         u32 dpll;
4505         bool is_sdvo;
4506         struct dpll *clock = &crtc->config.dpll;
4507
4508         i9xx_update_pll_dividers(crtc, reduced_clock);
4509
4510         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4511                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4512
4513         dpll = DPLL_VGA_MODE_DIS;
4514
4515         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4516                 dpll |= DPLLB_MODE_LVDS;
4517         else
4518                 dpll |= DPLLB_MODE_DAC_SERIAL;
4519
4520         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4521                 dpll |= (crtc->config.pixel_multiplier - 1)
4522                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4523         }
4524
4525         if (is_sdvo)
4526                 dpll |= DPLL_DVO_HIGH_SPEED;
4527
4528         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4529                 dpll |= DPLL_DVO_HIGH_SPEED;
4530
4531         /* compute bitmask from p1 value */
4532         if (IS_PINEVIEW(dev))
4533                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4534         else {
4535                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4536                 if (IS_G4X(dev) && reduced_clock)
4537                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4538         }
4539         switch (clock->p2) {
4540         case 5:
4541                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4542                 break;
4543         case 7:
4544                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4545                 break;
4546         case 10:
4547                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4548                 break;
4549         case 14:
4550                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4551                 break;
4552         }
4553         if (INTEL_INFO(dev)->gen >= 4)
4554                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4555
4556         if (crtc->config.sdvo_tv_clock)
4557                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4558         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4559                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4560                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4561         else
4562                 dpll |= PLL_REF_INPUT_DREFCLK;
4563
4564         dpll |= DPLL_VCO_ENABLE;
4565         crtc->config.dpll_hw_state.dpll = dpll;
4566
4567         if (INTEL_INFO(dev)->gen >= 4) {
4568                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4569                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4570                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4571         }
4572
4573         if (crtc->config.has_dp_encoder)
4574                 intel_dp_set_m_n(crtc);
4575 }
4576
4577 static void i8xx_update_pll(struct intel_crtc *crtc,
4578                             intel_clock_t *reduced_clock,
4579                             int num_connectors)
4580 {
4581         struct drm_device *dev = crtc->base.dev;
4582         struct drm_i915_private *dev_priv = dev->dev_private;
4583         u32 dpll;
4584         struct dpll *clock = &crtc->config.dpll;
4585
4586         i9xx_update_pll_dividers(crtc, reduced_clock);
4587
4588         dpll = DPLL_VGA_MODE_DIS;
4589
4590         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4591                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4592         } else {
4593                 if (clock->p1 == 2)
4594                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4595                 else
4596                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4597                 if (clock->p2 == 4)
4598                         dpll |= PLL_P2_DIVIDE_BY_4;
4599         }
4600
4601         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4602                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4603                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4604         else
4605                 dpll |= PLL_REF_INPUT_DREFCLK;
4606
4607         dpll |= DPLL_VCO_ENABLE;
4608         crtc->config.dpll_hw_state.dpll = dpll;
4609 }
4610
4611 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4612 {
4613         struct drm_device *dev = intel_crtc->base.dev;
4614         struct drm_i915_private *dev_priv = dev->dev_private;
4615         enum pipe pipe = intel_crtc->pipe;
4616         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4617         struct drm_display_mode *adjusted_mode =
4618                 &intel_crtc->config.adjusted_mode;
4619         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4620         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4621
4622         /* We need to be careful not to changed the adjusted mode, for otherwise
4623          * the hw state checker will get angry at the mismatch. */
4624         crtc_vtotal = adjusted_mode->crtc_vtotal;
4625         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4626
4627         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4628                 /* the chip adds 2 halflines automatically */
4629                 crtc_vtotal -= 1;
4630                 crtc_vblank_end -= 1;
4631                 vsyncshift = adjusted_mode->crtc_hsync_start
4632                              - adjusted_mode->crtc_htotal / 2;
4633         } else {
4634                 vsyncshift = 0;
4635         }
4636
4637         if (INTEL_INFO(dev)->gen > 3)
4638                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4639
4640         I915_WRITE(HTOTAL(cpu_transcoder),
4641                    (adjusted_mode->crtc_hdisplay - 1) |
4642                    ((adjusted_mode->crtc_htotal - 1) << 16));
4643         I915_WRITE(HBLANK(cpu_transcoder),
4644                    (adjusted_mode->crtc_hblank_start - 1) |
4645                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4646         I915_WRITE(HSYNC(cpu_transcoder),
4647                    (adjusted_mode->crtc_hsync_start - 1) |
4648                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4649
4650         I915_WRITE(VTOTAL(cpu_transcoder),
4651                    (adjusted_mode->crtc_vdisplay - 1) |
4652                    ((crtc_vtotal - 1) << 16));
4653         I915_WRITE(VBLANK(cpu_transcoder),
4654                    (adjusted_mode->crtc_vblank_start - 1) |
4655                    ((crtc_vblank_end - 1) << 16));
4656         I915_WRITE(VSYNC(cpu_transcoder),
4657                    (adjusted_mode->crtc_vsync_start - 1) |
4658                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4659
4660         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4661          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4662          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4663          * bits. */
4664         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4665             (pipe == PIPE_B || pipe == PIPE_C))
4666                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4667
4668         /* pipesrc controls the size that is scaled from, which should
4669          * always be the user's requested size.
4670          */
4671         I915_WRITE(PIPESRC(pipe),
4672                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4673 }
4674
4675 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4676                                    struct intel_crtc_config *pipe_config)
4677 {
4678         struct drm_device *dev = crtc->base.dev;
4679         struct drm_i915_private *dev_priv = dev->dev_private;
4680         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4681         uint32_t tmp;
4682
4683         tmp = I915_READ(HTOTAL(cpu_transcoder));
4684         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4685         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4686         tmp = I915_READ(HBLANK(cpu_transcoder));
4687         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4688         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4689         tmp = I915_READ(HSYNC(cpu_transcoder));
4690         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4691         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4692
4693         tmp = I915_READ(VTOTAL(cpu_transcoder));
4694         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4695         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4696         tmp = I915_READ(VBLANK(cpu_transcoder));
4697         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4698         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4699         tmp = I915_READ(VSYNC(cpu_transcoder));
4700         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4701         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4702
4703         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4704                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4705                 pipe_config->adjusted_mode.crtc_vtotal += 1;
4706                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4707         }
4708
4709         tmp = I915_READ(PIPESRC(crtc->pipe));
4710         pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4711         pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4712 }
4713
4714 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4715 {
4716         struct drm_device *dev = intel_crtc->base.dev;
4717         struct drm_i915_private *dev_priv = dev->dev_private;
4718         uint32_t pipeconf;
4719
4720         pipeconf = 0;
4721
4722         if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4723                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4724                  * core speed.
4725                  *
4726                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4727                  * pipe == 0 check?
4728                  */
4729                 if (intel_crtc->config.requested_mode.clock >
4730                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4731                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4732         }
4733
4734         /* only g4x and later have fancy bpc/dither controls */
4735         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4736                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4737                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4738                         pipeconf |= PIPECONF_DITHER_EN |
4739                                     PIPECONF_DITHER_TYPE_SP;
4740
4741                 switch (intel_crtc->config.pipe_bpp) {
4742                 case 18:
4743                         pipeconf |= PIPECONF_6BPC;
4744                         break;
4745                 case 24:
4746                         pipeconf |= PIPECONF_8BPC;
4747                         break;
4748                 case 30:
4749                         pipeconf |= PIPECONF_10BPC;
4750                         break;
4751                 default:
4752                         /* Case prevented by intel_choose_pipe_bpp_dither. */
4753                         BUG();
4754                 }
4755         }
4756
4757         if (HAS_PIPE_CXSR(dev)) {
4758                 if (intel_crtc->lowfreq_avail) {
4759                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4760                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4761                 } else {
4762                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4763                 }
4764         }
4765
4766         if (!IS_GEN2(dev) &&
4767             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4768                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4769         else
4770                 pipeconf |= PIPECONF_PROGRESSIVE;
4771
4772         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4773                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4774
4775         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4776         POSTING_READ(PIPECONF(intel_crtc->pipe));
4777 }
4778
4779 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4780                               int x, int y,
4781                               struct drm_framebuffer *fb)
4782 {
4783         struct drm_device *dev = crtc->dev;
4784         struct drm_i915_private *dev_priv = dev->dev_private;
4785         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4786         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4787         int pipe = intel_crtc->pipe;
4788         int plane = intel_crtc->plane;
4789         int refclk, num_connectors = 0;
4790         intel_clock_t clock, reduced_clock;
4791         u32 dspcntr;
4792         bool ok, has_reduced_clock = false;
4793         bool is_lvds = false;
4794         struct intel_encoder *encoder;
4795         const intel_limit_t *limit;
4796         int ret;
4797
4798         for_each_encoder_on_crtc(dev, crtc, encoder) {
4799                 switch (encoder->type) {
4800                 case INTEL_OUTPUT_LVDS:
4801                         is_lvds = true;
4802                         break;
4803                 }
4804
4805                 num_connectors++;
4806         }
4807
4808         refclk = i9xx_get_refclk(crtc, num_connectors);
4809
4810         /*
4811          * Returns a set of divisors for the desired target clock with the given
4812          * refclk, or FALSE.  The returned values represent the clock equation:
4813          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4814          */
4815         limit = intel_limit(crtc, refclk);
4816         ok = dev_priv->display.find_dpll(limit, crtc,
4817                                          intel_crtc->config.port_clock,
4818                                          refclk, NULL, &clock);
4819         if (!ok && !intel_crtc->config.clock_set) {
4820                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4821                 return -EINVAL;
4822         }
4823
4824         /* Ensure that the cursor is valid for the new mode before changing... */
4825         intel_crtc_update_cursor(crtc, true);
4826
4827         if (is_lvds && dev_priv->lvds_downclock_avail) {
4828                 /*
4829                  * Ensure we match the reduced clock's P to the target clock.
4830                  * If the clocks don't match, we can't switch the display clock
4831                  * by using the FP0/FP1. In such case we will disable the LVDS
4832                  * downclock feature.
4833                 */
4834                 has_reduced_clock =
4835                         dev_priv->display.find_dpll(limit, crtc,
4836                                                     dev_priv->lvds_downclock,
4837                                                     refclk, &clock,
4838                                                     &reduced_clock);
4839         }
4840         /* Compat-code for transition, will disappear. */
4841         if (!intel_crtc->config.clock_set) {
4842                 intel_crtc->config.dpll.n = clock.n;
4843                 intel_crtc->config.dpll.m1 = clock.m1;
4844                 intel_crtc->config.dpll.m2 = clock.m2;
4845                 intel_crtc->config.dpll.p1 = clock.p1;
4846                 intel_crtc->config.dpll.p2 = clock.p2;
4847         }
4848
4849         if (IS_GEN2(dev))
4850                 i8xx_update_pll(intel_crtc,
4851                                 has_reduced_clock ? &reduced_clock : NULL,
4852                                 num_connectors);
4853         else if (IS_VALLEYVIEW(dev))
4854                 vlv_update_pll(intel_crtc);
4855         else
4856                 i9xx_update_pll(intel_crtc,
4857                                 has_reduced_clock ? &reduced_clock : NULL,
4858                                 num_connectors);
4859
4860         /* Set up the display plane register */
4861         dspcntr = DISPPLANE_GAMMA_ENABLE;
4862
4863         if (!IS_VALLEYVIEW(dev)) {
4864                 if (pipe == 0)
4865                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4866                 else
4867                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4868         }
4869
4870         intel_set_pipe_timings(intel_crtc);
4871
4872         /* pipesrc and dspsize control the size that is scaled from,
4873          * which should always be the user's requested size.
4874          */
4875         I915_WRITE(DSPSIZE(plane),
4876                    ((mode->vdisplay - 1) << 16) |
4877                    (mode->hdisplay - 1));
4878         I915_WRITE(DSPPOS(plane), 0);
4879
4880         i9xx_set_pipeconf(intel_crtc);
4881
4882         I915_WRITE(DSPCNTR(plane), dspcntr);
4883         POSTING_READ(DSPCNTR(plane));
4884
4885         ret = intel_pipe_set_base(crtc, x, y, fb);
4886
4887         intel_update_watermarks(dev);
4888
4889         return ret;
4890 }
4891
4892 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4893                                  struct intel_crtc_config *pipe_config)
4894 {
4895         struct drm_device *dev = crtc->base.dev;
4896         struct drm_i915_private *dev_priv = dev->dev_private;
4897         uint32_t tmp;
4898
4899         tmp = I915_READ(PFIT_CONTROL);
4900
4901         if (INTEL_INFO(dev)->gen < 4) {
4902                 if (crtc->pipe != PIPE_B)
4903                         return;
4904
4905                 /* gen2/3 store dither state in pfit control, needs to match */
4906                 pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
4907         } else {
4908                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
4909                         return;
4910         }
4911
4912         if (!(tmp & PFIT_ENABLE))
4913                 return;
4914
4915         pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
4916         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
4917         if (INTEL_INFO(dev)->gen < 5)
4918                 pipe_config->gmch_pfit.lvds_border_bits =
4919                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
4920 }
4921
4922 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4923                                  struct intel_crtc_config *pipe_config)
4924 {
4925         struct drm_device *dev = crtc->base.dev;
4926         struct drm_i915_private *dev_priv = dev->dev_private;
4927         uint32_t tmp;
4928
4929         pipe_config->cpu_transcoder = crtc->pipe;
4930         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
4931
4932         tmp = I915_READ(PIPECONF(crtc->pipe));
4933         if (!(tmp & PIPECONF_ENABLE))
4934                 return false;
4935
4936         intel_get_pipe_timings(crtc, pipe_config);
4937
4938         i9xx_get_pfit_config(crtc, pipe_config);
4939
4940         if (INTEL_INFO(dev)->gen >= 4) {
4941                 tmp = I915_READ(DPLL_MD(crtc->pipe));
4942                 pipe_config->pixel_multiplier =
4943                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
4944                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
4945                 pipe_config->dpll_hw_state.dpll_md = tmp;
4946         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4947                 tmp = I915_READ(DPLL(crtc->pipe));
4948                 pipe_config->pixel_multiplier =
4949                         ((tmp & SDVO_MULTIPLIER_MASK)
4950                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
4951         } else {
4952                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
4953                  * port and will be fixed up in the encoder->get_config
4954                  * function. */
4955                 pipe_config->pixel_multiplier = 1;
4956         }
4957         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
4958         if (!IS_VALLEYVIEW(dev)) {
4959                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
4960                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
4961         } else {
4962                 /* Mask out read-only status bits. */
4963                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
4964                                                      DPLL_PORTC_READY_MASK |
4965                                                      DPLL_PORTB_READY_MASK);
4966         }
4967
4968         return true;
4969 }
4970
4971 static void ironlake_init_pch_refclk(struct drm_device *dev)
4972 {
4973         struct drm_i915_private *dev_priv = dev->dev_private;
4974         struct drm_mode_config *mode_config = &dev->mode_config;
4975         struct intel_encoder *encoder;
4976         u32 val, final;
4977         bool has_lvds = false;
4978         bool has_cpu_edp = false;
4979         bool has_panel = false;
4980         bool has_ck505 = false;
4981         bool can_ssc = false;
4982
4983         /* We need to take the global config into account */
4984         list_for_each_entry(encoder, &mode_config->encoder_list,
4985                             base.head) {
4986                 switch (encoder->type) {
4987                 case INTEL_OUTPUT_LVDS:
4988                         has_panel = true;
4989                         has_lvds = true;
4990                         break;
4991                 case INTEL_OUTPUT_EDP:
4992                         has_panel = true;
4993                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
4994                                 has_cpu_edp = true;
4995                         break;
4996                 }
4997         }
4998
4999         if (HAS_PCH_IBX(dev)) {
5000                 has_ck505 = dev_priv->vbt.display_clock_mode;
5001                 can_ssc = has_ck505;
5002         } else {
5003                 has_ck505 = false;
5004                 can_ssc = true;
5005         }
5006
5007         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5008                       has_panel, has_lvds, has_ck505);
5009
5010         /* Ironlake: try to setup display ref clock before DPLL
5011          * enabling. This is only under driver's control after
5012          * PCH B stepping, previous chipset stepping should be
5013          * ignoring this setting.
5014          */
5015         val = I915_READ(PCH_DREF_CONTROL);
5016
5017         /* As we must carefully and slowly disable/enable each source in turn,
5018          * compute the final state we want first and check if we need to
5019          * make any changes at all.
5020          */
5021         final = val;
5022         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5023         if (has_ck505)
5024                 final |= DREF_NONSPREAD_CK505_ENABLE;
5025         else
5026                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5027
5028         final &= ~DREF_SSC_SOURCE_MASK;
5029         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5030         final &= ~DREF_SSC1_ENABLE;
5031
5032         if (has_panel) {
5033                 final |= DREF_SSC_SOURCE_ENABLE;
5034
5035                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5036                         final |= DREF_SSC1_ENABLE;
5037
5038                 if (has_cpu_edp) {
5039                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5040                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5041                         else
5042                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5043                 } else
5044                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5045         } else {
5046                 final |= DREF_SSC_SOURCE_DISABLE;
5047                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5048         }
5049
5050         if (final == val)
5051                 return;
5052
5053         /* Always enable nonspread source */
5054         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5055
5056         if (has_ck505)
5057                 val |= DREF_NONSPREAD_CK505_ENABLE;
5058         else
5059                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5060
5061         if (has_panel) {
5062                 val &= ~DREF_SSC_SOURCE_MASK;
5063                 val |= DREF_SSC_SOURCE_ENABLE;
5064
5065                 /* SSC must be turned on before enabling the CPU output  */
5066                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5067                         DRM_DEBUG_KMS("Using SSC on panel\n");
5068                         val |= DREF_SSC1_ENABLE;
5069                 } else
5070                         val &= ~DREF_SSC1_ENABLE;
5071
5072                 /* Get SSC going before enabling the outputs */
5073                 I915_WRITE(PCH_DREF_CONTROL, val);
5074                 POSTING_READ(PCH_DREF_CONTROL);
5075                 udelay(200);
5076
5077                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5078
5079                 /* Enable CPU source on CPU attached eDP */
5080                 if (has_cpu_edp) {
5081                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5082                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5083                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5084                         }
5085                         else
5086                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5087                 } else
5088                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5089
5090                 I915_WRITE(PCH_DREF_CONTROL, val);
5091                 POSTING_READ(PCH_DREF_CONTROL);
5092                 udelay(200);
5093         } else {
5094                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5095
5096                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5097
5098                 /* Turn off CPU output */
5099                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5100
5101                 I915_WRITE(PCH_DREF_CONTROL, val);
5102                 POSTING_READ(PCH_DREF_CONTROL);
5103                 udelay(200);
5104
5105                 /* Turn off the SSC source */
5106                 val &= ~DREF_SSC_SOURCE_MASK;
5107                 val |= DREF_SSC_SOURCE_DISABLE;
5108
5109                 /* Turn off SSC1 */
5110                 val &= ~DREF_SSC1_ENABLE;
5111
5112                 I915_WRITE(PCH_DREF_CONTROL, val);
5113                 POSTING_READ(PCH_DREF_CONTROL);
5114                 udelay(200);
5115         }
5116
5117         BUG_ON(val != final);
5118 }
5119
5120 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
5121 static void lpt_init_pch_refclk(struct drm_device *dev)
5122 {
5123         struct drm_i915_private *dev_priv = dev->dev_private;
5124         struct drm_mode_config *mode_config = &dev->mode_config;
5125         struct intel_encoder *encoder;
5126         bool has_vga = false;
5127         bool is_sdv = false;
5128         u32 tmp;
5129
5130         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5131                 switch (encoder->type) {
5132                 case INTEL_OUTPUT_ANALOG:
5133                         has_vga = true;
5134                         break;
5135                 }
5136         }
5137
5138         if (!has_vga)
5139                 return;
5140
5141         mutex_lock(&dev_priv->dpio_lock);
5142
5143         /* XXX: Rip out SDV support once Haswell ships for real. */
5144         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
5145                 is_sdv = true;
5146
5147         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5148         tmp &= ~SBI_SSCCTL_DISABLE;
5149         tmp |= SBI_SSCCTL_PATHALT;
5150         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5151
5152         udelay(24);
5153
5154         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5155         tmp &= ~SBI_SSCCTL_PATHALT;
5156         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5157
5158         if (!is_sdv) {
5159                 tmp = I915_READ(SOUTH_CHICKEN2);
5160                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5161                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5162
5163                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5164                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5165                         DRM_ERROR("FDI mPHY reset assert timeout\n");
5166
5167                 tmp = I915_READ(SOUTH_CHICKEN2);
5168                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5169                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5170
5171                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5172                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
5173                                        100))
5174                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5175         }
5176
5177         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5178         tmp &= ~(0xFF << 24);
5179         tmp |= (0x12 << 24);
5180         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5181
5182         if (is_sdv) {
5183                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
5184                 tmp |= 0x7FFF;
5185                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
5186         }
5187
5188         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5189         tmp |= (1 << 11);
5190         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5191
5192         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5193         tmp |= (1 << 11);
5194         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5195
5196         if (is_sdv) {
5197                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
5198                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5199                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5200
5201                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5202                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5203                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5204
5205                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5206                 tmp |= (0x3F << 8);
5207                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5208
5209                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5210                 tmp |= (0x3F << 8);
5211                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5212         }
5213
5214         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5215         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5216         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5217
5218         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5219         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5220         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5221
5222         if (!is_sdv) {
5223                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5224                 tmp &= ~(7 << 13);
5225                 tmp |= (5 << 13);
5226                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5227
5228                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5229                 tmp &= ~(7 << 13);
5230                 tmp |= (5 << 13);
5231                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5232         }
5233
5234         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5235         tmp &= ~0xFF;
5236         tmp |= 0x1C;
5237         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5238
5239         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5240         tmp &= ~0xFF;
5241         tmp |= 0x1C;
5242         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5243
5244         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5245         tmp &= ~(0xFF << 16);
5246         tmp |= (0x1C << 16);
5247         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5248
5249         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5250         tmp &= ~(0xFF << 16);
5251         tmp |= (0x1C << 16);
5252         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5253
5254         if (!is_sdv) {
5255                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5256                 tmp |= (1 << 27);
5257                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5258
5259                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5260                 tmp |= (1 << 27);
5261                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5262
5263                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5264                 tmp &= ~(0xF << 28);
5265                 tmp |= (4 << 28);
5266                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5267
5268                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5269                 tmp &= ~(0xF << 28);
5270                 tmp |= (4 << 28);
5271                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5272         }
5273
5274         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5275         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5276         tmp |= SBI_DBUFF0_ENABLE;
5277         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5278
5279         mutex_unlock(&dev_priv->dpio_lock);
5280 }
5281
5282 /*
5283  * Initialize reference clocks when the driver loads
5284  */
5285 void intel_init_pch_refclk(struct drm_device *dev)
5286 {
5287         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5288                 ironlake_init_pch_refclk(dev);
5289         else if (HAS_PCH_LPT(dev))
5290                 lpt_init_pch_refclk(dev);
5291 }
5292
5293 static int ironlake_get_refclk(struct drm_crtc *crtc)
5294 {
5295         struct drm_device *dev = crtc->dev;
5296         struct drm_i915_private *dev_priv = dev->dev_private;
5297         struct intel_encoder *encoder;
5298         int num_connectors = 0;
5299         bool is_lvds = false;
5300
5301         for_each_encoder_on_crtc(dev, crtc, encoder) {
5302                 switch (encoder->type) {
5303                 case INTEL_OUTPUT_LVDS:
5304                         is_lvds = true;
5305                         break;
5306                 }
5307                 num_connectors++;
5308         }
5309
5310         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5311                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5312                               dev_priv->vbt.lvds_ssc_freq);
5313                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5314         }
5315
5316         return 120000;
5317 }
5318
5319 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5320 {
5321         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5322         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5323         int pipe = intel_crtc->pipe;
5324         uint32_t val;
5325
5326         val = 0;
5327
5328         switch (intel_crtc->config.pipe_bpp) {
5329         case 18:
5330                 val |= PIPECONF_6BPC;
5331                 break;
5332         case 24:
5333                 val |= PIPECONF_8BPC;
5334                 break;
5335         case 30:
5336                 val |= PIPECONF_10BPC;
5337                 break;
5338         case 36:
5339                 val |= PIPECONF_12BPC;
5340                 break;
5341         default:
5342                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5343                 BUG();
5344         }
5345
5346         if (intel_crtc->config.dither)
5347                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5348
5349         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5350                 val |= PIPECONF_INTERLACED_ILK;
5351         else
5352                 val |= PIPECONF_PROGRESSIVE;
5353
5354         if (intel_crtc->config.limited_color_range)
5355                 val |= PIPECONF_COLOR_RANGE_SELECT;
5356
5357         I915_WRITE(PIPECONF(pipe), val);
5358         POSTING_READ(PIPECONF(pipe));
5359 }
5360
5361 /*
5362  * Set up the pipe CSC unit.
5363  *
5364  * Currently only full range RGB to limited range RGB conversion
5365  * is supported, but eventually this should handle various
5366  * RGB<->YCbCr scenarios as well.
5367  */
5368 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5369 {
5370         struct drm_device *dev = crtc->dev;
5371         struct drm_i915_private *dev_priv = dev->dev_private;
5372         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5373         int pipe = intel_crtc->pipe;
5374         uint16_t coeff = 0x7800; /* 1.0 */
5375
5376         /*
5377          * TODO: Check what kind of values actually come out of the pipe
5378          * with these coeff/postoff values and adjust to get the best
5379          * accuracy. Perhaps we even need to take the bpc value into
5380          * consideration.
5381          */
5382
5383         if (intel_crtc->config.limited_color_range)
5384                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5385
5386         /*
5387          * GY/GU and RY/RU should be the other way around according
5388          * to BSpec, but reality doesn't agree. Just set them up in
5389          * a way that results in the correct picture.
5390          */
5391         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5392         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5393
5394         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5395         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5396
5397         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5398         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5399
5400         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5401         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5402         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5403
5404         if (INTEL_INFO(dev)->gen > 6) {
5405                 uint16_t postoff = 0;
5406
5407                 if (intel_crtc->config.limited_color_range)
5408                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5409
5410                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5411                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5412                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5413
5414                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5415         } else {
5416                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5417
5418                 if (intel_crtc->config.limited_color_range)
5419                         mode |= CSC_BLACK_SCREEN_OFFSET;
5420
5421                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5422         }
5423 }
5424
5425 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5426 {
5427         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5428         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5429         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5430         uint32_t val;
5431
5432         val = 0;
5433
5434         if (intel_crtc->config.dither)
5435                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5436
5437         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5438                 val |= PIPECONF_INTERLACED_ILK;
5439         else
5440                 val |= PIPECONF_PROGRESSIVE;
5441
5442         I915_WRITE(PIPECONF(cpu_transcoder), val);
5443         POSTING_READ(PIPECONF(cpu_transcoder));
5444
5445         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5446         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5447 }
5448
5449 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5450                                     intel_clock_t *clock,
5451                                     bool *has_reduced_clock,
5452                                     intel_clock_t *reduced_clock)
5453 {
5454         struct drm_device *dev = crtc->dev;
5455         struct drm_i915_private *dev_priv = dev->dev_private;
5456         struct intel_encoder *intel_encoder;
5457         int refclk;
5458         const intel_limit_t *limit;
5459         bool ret, is_lvds = false;
5460
5461         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5462                 switch (intel_encoder->type) {
5463                 case INTEL_OUTPUT_LVDS:
5464                         is_lvds = true;
5465                         break;
5466                 }
5467         }
5468
5469         refclk = ironlake_get_refclk(crtc);
5470
5471         /*
5472          * Returns a set of divisors for the desired target clock with the given
5473          * refclk, or FALSE.  The returned values represent the clock equation:
5474          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5475          */
5476         limit = intel_limit(crtc, refclk);
5477         ret = dev_priv->display.find_dpll(limit, crtc,
5478                                           to_intel_crtc(crtc)->config.port_clock,
5479                                           refclk, NULL, clock);
5480         if (!ret)
5481                 return false;
5482
5483         if (is_lvds && dev_priv->lvds_downclock_avail) {
5484                 /*
5485                  * Ensure we match the reduced clock's P to the target clock.
5486                  * If the clocks don't match, we can't switch the display clock
5487                  * by using the FP0/FP1. In such case we will disable the LVDS
5488                  * downclock feature.
5489                 */
5490                 *has_reduced_clock =
5491                         dev_priv->display.find_dpll(limit, crtc,
5492                                                     dev_priv->lvds_downclock,
5493                                                     refclk, clock,
5494                                                     reduced_clock);
5495         }
5496
5497         return true;
5498 }
5499
5500 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5501 {
5502         struct drm_i915_private *dev_priv = dev->dev_private;
5503         uint32_t temp;
5504
5505         temp = I915_READ(SOUTH_CHICKEN1);
5506         if (temp & FDI_BC_BIFURCATION_SELECT)
5507                 return;
5508
5509         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5510         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5511
5512         temp |= FDI_BC_BIFURCATION_SELECT;
5513         DRM_DEBUG_KMS("enabling fdi C rx\n");
5514         I915_WRITE(SOUTH_CHICKEN1, temp);
5515         POSTING_READ(SOUTH_CHICKEN1);
5516 }
5517
5518 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5519 {
5520         struct drm_device *dev = intel_crtc->base.dev;
5521         struct drm_i915_private *dev_priv = dev->dev_private;
5522
5523         switch (intel_crtc->pipe) {
5524         case PIPE_A:
5525                 break;
5526         case PIPE_B:
5527                 if (intel_crtc->config.fdi_lanes > 2)
5528                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5529                 else
5530                         cpt_enable_fdi_bc_bifurcation(dev);
5531
5532                 break;
5533         case PIPE_C:
5534                 cpt_enable_fdi_bc_bifurcation(dev);
5535
5536                 break;
5537         default:
5538                 BUG();
5539         }
5540 }
5541
5542 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5543 {
5544         /*
5545          * Account for spread spectrum to avoid
5546          * oversubscribing the link. Max center spread
5547          * is 2.5%; use 5% for safety's sake.
5548          */
5549         u32 bps = target_clock * bpp * 21 / 20;
5550         return bps / (link_bw * 8) + 1;
5551 }
5552
5553 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5554 {
5555         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5556 }
5557
5558 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5559                                       u32 *fp,
5560                                       intel_clock_t *reduced_clock, u32 *fp2)
5561 {
5562         struct drm_crtc *crtc = &intel_crtc->base;
5563         struct drm_device *dev = crtc->dev;
5564         struct drm_i915_private *dev_priv = dev->dev_private;
5565         struct intel_encoder *intel_encoder;
5566         uint32_t dpll;
5567         int factor, num_connectors = 0;
5568         bool is_lvds = false, is_sdvo = false;
5569
5570         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5571                 switch (intel_encoder->type) {
5572                 case INTEL_OUTPUT_LVDS:
5573                         is_lvds = true;
5574                         break;
5575                 case INTEL_OUTPUT_SDVO:
5576                 case INTEL_OUTPUT_HDMI:
5577                         is_sdvo = true;
5578                         break;
5579                 }
5580
5581                 num_connectors++;
5582         }
5583
5584         /* Enable autotuning of the PLL clock (if permissible) */
5585         factor = 21;
5586         if (is_lvds) {
5587                 if ((intel_panel_use_ssc(dev_priv) &&
5588                      dev_priv->vbt.lvds_ssc_freq == 100) ||
5589                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5590                         factor = 25;
5591         } else if (intel_crtc->config.sdvo_tv_clock)
5592                 factor = 20;
5593
5594         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5595                 *fp |= FP_CB_TUNE;
5596
5597         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5598                 *fp2 |= FP_CB_TUNE;
5599
5600         dpll = 0;
5601
5602         if (is_lvds)
5603                 dpll |= DPLLB_MODE_LVDS;
5604         else
5605                 dpll |= DPLLB_MODE_DAC_SERIAL;
5606
5607         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5608                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5609
5610         if (is_sdvo)
5611                 dpll |= DPLL_DVO_HIGH_SPEED;
5612         if (intel_crtc->config.has_dp_encoder)
5613                 dpll |= DPLL_DVO_HIGH_SPEED;
5614
5615         /* compute bitmask from p1 value */
5616         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5617         /* also FPA1 */
5618         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5619
5620         switch (intel_crtc->config.dpll.p2) {
5621         case 5:
5622                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5623                 break;
5624         case 7:
5625                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5626                 break;
5627         case 10:
5628                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5629                 break;
5630         case 14:
5631                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5632                 break;
5633         }
5634
5635         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5636                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5637         else
5638                 dpll |= PLL_REF_INPUT_DREFCLK;
5639
5640         return dpll | DPLL_VCO_ENABLE;
5641 }
5642
5643 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5644                                   int x, int y,
5645                                   struct drm_framebuffer *fb)
5646 {
5647         struct drm_device *dev = crtc->dev;
5648         struct drm_i915_private *dev_priv = dev->dev_private;
5649         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5650         int pipe = intel_crtc->pipe;
5651         int plane = intel_crtc->plane;
5652         int num_connectors = 0;
5653         intel_clock_t clock, reduced_clock;
5654         u32 dpll = 0, fp = 0, fp2 = 0;
5655         bool ok, has_reduced_clock = false;
5656         bool is_lvds = false;
5657         struct intel_encoder *encoder;
5658         struct intel_shared_dpll *pll;
5659         int ret;
5660
5661         for_each_encoder_on_crtc(dev, crtc, encoder) {
5662                 switch (encoder->type) {
5663                 case INTEL_OUTPUT_LVDS:
5664                         is_lvds = true;
5665                         break;
5666                 }
5667
5668                 num_connectors++;
5669         }
5670
5671         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5672              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5673
5674         ok = ironlake_compute_clocks(crtc, &clock,
5675                                      &has_reduced_clock, &reduced_clock);
5676         if (!ok && !intel_crtc->config.clock_set) {
5677                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5678                 return -EINVAL;
5679         }
5680         /* Compat-code for transition, will disappear. */
5681         if (!intel_crtc->config.clock_set) {
5682                 intel_crtc->config.dpll.n = clock.n;
5683                 intel_crtc->config.dpll.m1 = clock.m1;
5684                 intel_crtc->config.dpll.m2 = clock.m2;
5685                 intel_crtc->config.dpll.p1 = clock.p1;
5686                 intel_crtc->config.dpll.p2 = clock.p2;
5687         }
5688
5689         /* Ensure that the cursor is valid for the new mode before changing... */
5690         intel_crtc_update_cursor(crtc, true);
5691
5692         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5693         if (intel_crtc->config.has_pch_encoder) {
5694                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5695                 if (has_reduced_clock)
5696                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5697
5698                 dpll = ironlake_compute_dpll(intel_crtc,
5699                                              &fp, &reduced_clock,
5700                                              has_reduced_clock ? &fp2 : NULL);
5701
5702                 intel_crtc->config.dpll_hw_state.dpll = dpll;
5703                 intel_crtc->config.dpll_hw_state.fp0 = fp;
5704                 if (has_reduced_clock)
5705                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
5706                 else
5707                         intel_crtc->config.dpll_hw_state.fp1 = fp;
5708
5709                 pll = intel_get_shared_dpll(intel_crtc);
5710                 if (pll == NULL) {
5711                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5712                                          pipe_name(pipe));
5713                         return -EINVAL;
5714                 }
5715         } else
5716                 intel_put_shared_dpll(intel_crtc);
5717
5718         if (intel_crtc->config.has_dp_encoder)
5719                 intel_dp_set_m_n(intel_crtc);
5720
5721         if (is_lvds && has_reduced_clock && i915_powersave)
5722                 intel_crtc->lowfreq_avail = true;
5723         else
5724                 intel_crtc->lowfreq_avail = false;
5725
5726         if (intel_crtc->config.has_pch_encoder) {
5727                 pll = intel_crtc_to_shared_dpll(intel_crtc);
5728
5729         }
5730
5731         intel_set_pipe_timings(intel_crtc);
5732
5733         if (intel_crtc->config.has_pch_encoder) {
5734                 intel_cpu_transcoder_set_m_n(intel_crtc,
5735                                              &intel_crtc->config.fdi_m_n);
5736         }
5737
5738         if (IS_IVYBRIDGE(dev))
5739                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5740
5741         ironlake_set_pipeconf(crtc);
5742
5743         /* Set up the display plane register */
5744         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5745         POSTING_READ(DSPCNTR(plane));
5746
5747         ret = intel_pipe_set_base(crtc, x, y, fb);
5748
5749         intel_update_watermarks(dev);
5750
5751         return ret;
5752 }
5753
5754 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5755                                         struct intel_crtc_config *pipe_config)
5756 {
5757         struct drm_device *dev = crtc->base.dev;
5758         struct drm_i915_private *dev_priv = dev->dev_private;
5759         enum transcoder transcoder = pipe_config->cpu_transcoder;
5760
5761         pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5762         pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5763         pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5764                                         & ~TU_SIZE_MASK;
5765         pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5766         pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5767                                    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5768 }
5769
5770 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5771                                      struct intel_crtc_config *pipe_config)
5772 {
5773         struct drm_device *dev = crtc->base.dev;
5774         struct drm_i915_private *dev_priv = dev->dev_private;
5775         uint32_t tmp;
5776
5777         tmp = I915_READ(PF_CTL(crtc->pipe));
5778
5779         if (tmp & PF_ENABLE) {
5780                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5781                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5782
5783                 /* We currently do not free assignements of panel fitters on
5784                  * ivb/hsw (since we don't use the higher upscaling modes which
5785                  * differentiates them) so just WARN about this case for now. */
5786                 if (IS_GEN7(dev)) {
5787                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5788                                 PF_PIPE_SEL_IVB(crtc->pipe));
5789                 }
5790         }
5791 }
5792
5793 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5794                                      struct intel_crtc_config *pipe_config)
5795 {
5796         struct drm_device *dev = crtc->base.dev;
5797         struct drm_i915_private *dev_priv = dev->dev_private;
5798         uint32_t tmp;
5799
5800         pipe_config->cpu_transcoder = crtc->pipe;
5801         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5802
5803         tmp = I915_READ(PIPECONF(crtc->pipe));
5804         if (!(tmp & PIPECONF_ENABLE))
5805                 return false;
5806
5807         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5808                 struct intel_shared_dpll *pll;
5809
5810                 pipe_config->has_pch_encoder = true;
5811
5812                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5813                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5814                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
5815
5816                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5817
5818                 /* XXX: Can't properly read out the pch dpll pixel multiplier
5819                  * since we don't have state tracking for pch clocks yet. */
5820                 pipe_config->pixel_multiplier = 1;
5821
5822                 if (HAS_PCH_IBX(dev_priv->dev)) {
5823                         pipe_config->shared_dpll = crtc->pipe;
5824                 } else {
5825                         tmp = I915_READ(PCH_DPLL_SEL);
5826                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
5827                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
5828                         else
5829                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
5830                 }
5831
5832                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
5833
5834                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
5835                                            &pipe_config->dpll_hw_state));
5836         } else {
5837                 pipe_config->pixel_multiplier = 1;
5838         }
5839
5840         intel_get_pipe_timings(crtc, pipe_config);
5841
5842         ironlake_get_pfit_config(crtc, pipe_config);
5843
5844         return true;
5845 }
5846
5847 static void haswell_modeset_global_resources(struct drm_device *dev)
5848 {
5849         bool enable = false;
5850         struct intel_crtc *crtc;
5851
5852         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5853                 if (!crtc->base.enabled)
5854                         continue;
5855
5856                 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
5857                     crtc->config.cpu_transcoder != TRANSCODER_EDP)
5858                         enable = true;
5859         }
5860
5861         intel_set_power_well(dev, enable);
5862 }
5863
5864 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5865                                  int x, int y,
5866                                  struct drm_framebuffer *fb)
5867 {
5868         struct drm_device *dev = crtc->dev;
5869         struct drm_i915_private *dev_priv = dev->dev_private;
5870         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5871         int plane = intel_crtc->plane;
5872         int ret;
5873
5874         if (!intel_ddi_pll_mode_set(crtc))
5875                 return -EINVAL;
5876
5877         /* Ensure that the cursor is valid for the new mode before changing... */
5878         intel_crtc_update_cursor(crtc, true);
5879
5880         if (intel_crtc->config.has_dp_encoder)
5881                 intel_dp_set_m_n(intel_crtc);
5882
5883         intel_crtc->lowfreq_avail = false;
5884
5885         intel_set_pipe_timings(intel_crtc);
5886
5887         if (intel_crtc->config.has_pch_encoder) {
5888                 intel_cpu_transcoder_set_m_n(intel_crtc,
5889                                              &intel_crtc->config.fdi_m_n);
5890         }
5891
5892         haswell_set_pipeconf(crtc);
5893
5894         intel_set_pipe_csc(crtc);
5895
5896         /* Set up the display plane register */
5897         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5898         POSTING_READ(DSPCNTR(plane));
5899
5900         ret = intel_pipe_set_base(crtc, x, y, fb);
5901
5902         intel_update_watermarks(dev);
5903
5904         return ret;
5905 }
5906
5907 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5908                                     struct intel_crtc_config *pipe_config)
5909 {
5910         struct drm_device *dev = crtc->base.dev;
5911         struct drm_i915_private *dev_priv = dev->dev_private;
5912         enum intel_display_power_domain pfit_domain;
5913         uint32_t tmp;
5914
5915         pipe_config->cpu_transcoder = crtc->pipe;
5916         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5917
5918         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
5919         if (tmp & TRANS_DDI_FUNC_ENABLE) {
5920                 enum pipe trans_edp_pipe;
5921                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
5922                 default:
5923                         WARN(1, "unknown pipe linked to edp transcoder\n");
5924                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
5925                 case TRANS_DDI_EDP_INPUT_A_ON:
5926                         trans_edp_pipe = PIPE_A;
5927                         break;
5928                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
5929                         trans_edp_pipe = PIPE_B;
5930                         break;
5931                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
5932                         trans_edp_pipe = PIPE_C;
5933                         break;
5934                 }
5935
5936                 if (trans_edp_pipe == crtc->pipe)
5937                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
5938         }
5939
5940         if (!intel_display_power_enabled(dev,
5941                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
5942                 return false;
5943
5944         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
5945         if (!(tmp & PIPECONF_ENABLE))
5946                 return false;
5947
5948         /*
5949          * Haswell has only FDI/PCH transcoder A. It is which is connected to
5950          * DDI E. So just check whether this pipe is wired to DDI E and whether
5951          * the PCH transcoder is on.
5952          */
5953         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
5954         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
5955             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
5956                 pipe_config->has_pch_encoder = true;
5957
5958                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
5959                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5960                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
5961
5962                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5963         }
5964
5965         intel_get_pipe_timings(crtc, pipe_config);
5966
5967         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
5968         if (intel_display_power_enabled(dev, pfit_domain))
5969                 ironlake_get_pfit_config(crtc, pipe_config);
5970
5971         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
5972                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
5973
5974         pipe_config->pixel_multiplier = 1;
5975
5976         return true;
5977 }
5978
5979 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5980                                int x, int y,
5981                                struct drm_framebuffer *fb)
5982 {
5983         struct drm_device *dev = crtc->dev;
5984         struct drm_i915_private *dev_priv = dev->dev_private;
5985         struct drm_encoder_helper_funcs *encoder_funcs;
5986         struct intel_encoder *encoder;
5987         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5988         struct drm_display_mode *adjusted_mode =
5989                 &intel_crtc->config.adjusted_mode;
5990         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5991         int pipe = intel_crtc->pipe;
5992         int ret;
5993
5994         drm_vblank_pre_modeset(dev, pipe);
5995
5996         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
5997
5998         drm_vblank_post_modeset(dev, pipe);
5999
6000         if (ret != 0)
6001                 return ret;
6002
6003         for_each_encoder_on_crtc(dev, crtc, encoder) {
6004                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6005                         encoder->base.base.id,
6006                         drm_get_encoder_name(&encoder->base),
6007                         mode->base.id, mode->name);
6008                 if (encoder->mode_set) {
6009                         encoder->mode_set(encoder);
6010                 } else {
6011                         encoder_funcs = encoder->base.helper_private;
6012                         encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
6013                 }
6014         }
6015
6016         return 0;
6017 }
6018
6019 static bool intel_eld_uptodate(struct drm_connector *connector,
6020                                int reg_eldv, uint32_t bits_eldv,
6021                                int reg_elda, uint32_t bits_elda,
6022                                int reg_edid)
6023 {
6024         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6025         uint8_t *eld = connector->eld;
6026         uint32_t i;
6027
6028         i = I915_READ(reg_eldv);
6029         i &= bits_eldv;
6030
6031         if (!eld[0])
6032                 return !i;
6033
6034         if (!i)
6035                 return false;
6036
6037         i = I915_READ(reg_elda);
6038         i &= ~bits_elda;
6039         I915_WRITE(reg_elda, i);
6040
6041         for (i = 0; i < eld[2]; i++)
6042                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6043                         return false;
6044
6045         return true;
6046 }
6047
6048 static void g4x_write_eld(struct drm_connector *connector,
6049                           struct drm_crtc *crtc)
6050 {
6051         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6052         uint8_t *eld = connector->eld;
6053         uint32_t eldv;
6054         uint32_t len;
6055         uint32_t i;
6056
6057         i = I915_READ(G4X_AUD_VID_DID);
6058
6059         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6060                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6061         else
6062                 eldv = G4X_ELDV_DEVCTG;
6063
6064         if (intel_eld_uptodate(connector,
6065                                G4X_AUD_CNTL_ST, eldv,
6066                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6067                                G4X_HDMIW_HDMIEDID))
6068                 return;
6069
6070         i = I915_READ(G4X_AUD_CNTL_ST);
6071         i &= ~(eldv | G4X_ELD_ADDR);
6072         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6073         I915_WRITE(G4X_AUD_CNTL_ST, i);
6074
6075         if (!eld[0])
6076                 return;
6077
6078         len = min_t(uint8_t, eld[2], len);
6079         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6080         for (i = 0; i < len; i++)
6081                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6082
6083         i = I915_READ(G4X_AUD_CNTL_ST);
6084         i |= eldv;
6085         I915_WRITE(G4X_AUD_CNTL_ST, i);
6086 }
6087
6088 static void haswell_write_eld(struct drm_connector *connector,
6089                                      struct drm_crtc *crtc)
6090 {
6091         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6092         uint8_t *eld = connector->eld;
6093         struct drm_device *dev = crtc->dev;
6094         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6095         uint32_t eldv;
6096         uint32_t i;
6097         int len;
6098         int pipe = to_intel_crtc(crtc)->pipe;
6099         int tmp;
6100
6101         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6102         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6103         int aud_config = HSW_AUD_CFG(pipe);
6104         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6105
6106
6107         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6108
6109         /* Audio output enable */
6110         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6111         tmp = I915_READ(aud_cntrl_st2);
6112         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6113         I915_WRITE(aud_cntrl_st2, tmp);
6114
6115         /* Wait for 1 vertical blank */
6116         intel_wait_for_vblank(dev, pipe);
6117
6118         /* Set ELD valid state */
6119         tmp = I915_READ(aud_cntrl_st2);
6120         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6121         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6122         I915_WRITE(aud_cntrl_st2, tmp);
6123         tmp = I915_READ(aud_cntrl_st2);
6124         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6125
6126         /* Enable HDMI mode */
6127         tmp = I915_READ(aud_config);
6128         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6129         /* clear N_programing_enable and N_value_index */
6130         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6131         I915_WRITE(aud_config, tmp);
6132
6133         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6134
6135         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6136         intel_crtc->eld_vld = true;
6137
6138         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6139                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6140                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6141                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6142         } else
6143                 I915_WRITE(aud_config, 0);
6144
6145         if (intel_eld_uptodate(connector,
6146                                aud_cntrl_st2, eldv,
6147                                aud_cntl_st, IBX_ELD_ADDRESS,
6148                                hdmiw_hdmiedid))
6149                 return;
6150
6151         i = I915_READ(aud_cntrl_st2);
6152         i &= ~eldv;
6153         I915_WRITE(aud_cntrl_st2, i);
6154
6155         if (!eld[0])
6156                 return;
6157
6158         i = I915_READ(aud_cntl_st);
6159         i &= ~IBX_ELD_ADDRESS;
6160         I915_WRITE(aud_cntl_st, i);
6161         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6162         DRM_DEBUG_DRIVER("port num:%d\n", i);
6163
6164         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6165         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6166         for (i = 0; i < len; i++)
6167                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6168
6169         i = I915_READ(aud_cntrl_st2);
6170         i |= eldv;
6171         I915_WRITE(aud_cntrl_st2, i);
6172
6173 }
6174
6175 static void ironlake_write_eld(struct drm_connector *connector,
6176                                      struct drm_crtc *crtc)
6177 {
6178         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6179         uint8_t *eld = connector->eld;
6180         uint32_t eldv;
6181         uint32_t i;
6182         int len;
6183         int hdmiw_hdmiedid;
6184         int aud_config;
6185         int aud_cntl_st;
6186         int aud_cntrl_st2;
6187         int pipe = to_intel_crtc(crtc)->pipe;
6188
6189         if (HAS_PCH_IBX(connector->dev)) {
6190                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6191                 aud_config = IBX_AUD_CFG(pipe);
6192                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6193                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6194         } else {
6195                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6196                 aud_config = CPT_AUD_CFG(pipe);
6197                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6198                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6199         }
6200
6201         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6202
6203         i = I915_READ(aud_cntl_st);
6204         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6205         if (!i) {
6206                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6207                 /* operate blindly on all ports */
6208                 eldv = IBX_ELD_VALIDB;
6209                 eldv |= IBX_ELD_VALIDB << 4;
6210                 eldv |= IBX_ELD_VALIDB << 8;
6211         } else {
6212                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6213                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6214         }
6215
6216         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6217                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6218                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6219                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6220         } else
6221                 I915_WRITE(aud_config, 0);
6222
6223         if (intel_eld_uptodate(connector,
6224                                aud_cntrl_st2, eldv,
6225                                aud_cntl_st, IBX_ELD_ADDRESS,
6226                                hdmiw_hdmiedid))
6227                 return;
6228
6229         i = I915_READ(aud_cntrl_st2);
6230         i &= ~eldv;
6231         I915_WRITE(aud_cntrl_st2, i);
6232
6233         if (!eld[0])
6234                 return;
6235
6236         i = I915_READ(aud_cntl_st);
6237         i &= ~IBX_ELD_ADDRESS;
6238         I915_WRITE(aud_cntl_st, i);
6239
6240         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6241         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6242         for (i = 0; i < len; i++)
6243                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6244
6245         i = I915_READ(aud_cntrl_st2);
6246         i |= eldv;
6247         I915_WRITE(aud_cntrl_st2, i);
6248 }
6249
6250 void intel_write_eld(struct drm_encoder *encoder,
6251                      struct drm_display_mode *mode)
6252 {
6253         struct drm_crtc *crtc = encoder->crtc;
6254         struct drm_connector *connector;
6255         struct drm_device *dev = encoder->dev;
6256         struct drm_i915_private *dev_priv = dev->dev_private;
6257
6258         connector = drm_select_eld(encoder, mode);
6259         if (!connector)
6260                 return;
6261
6262         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6263                          connector->base.id,
6264                          drm_get_connector_name(connector),
6265                          connector->encoder->base.id,
6266                          drm_get_encoder_name(connector->encoder));
6267
6268         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6269
6270         if (dev_priv->display.write_eld)
6271                 dev_priv->display.write_eld(connector, crtc);
6272 }
6273
6274 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6275 void intel_crtc_load_lut(struct drm_crtc *crtc)
6276 {
6277         struct drm_device *dev = crtc->dev;
6278         struct drm_i915_private *dev_priv = dev->dev_private;
6279         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6280         enum pipe pipe = intel_crtc->pipe;
6281         int palreg = PALETTE(pipe);
6282         int i;
6283         bool reenable_ips = false;
6284
6285         /* The clocks have to be on to load the palette. */
6286         if (!crtc->enabled || !intel_crtc->active)
6287                 return;
6288
6289         if (!HAS_PCH_SPLIT(dev_priv->dev))
6290                 assert_pll_enabled(dev_priv, pipe);
6291
6292         /* use legacy palette for Ironlake */
6293         if (HAS_PCH_SPLIT(dev))
6294                 palreg = LGC_PALETTE(pipe);
6295
6296         /* Workaround : Do not read or write the pipe palette/gamma data while
6297          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6298          */
6299         if (intel_crtc->config.ips_enabled &&
6300             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6301              GAMMA_MODE_MODE_SPLIT)) {
6302                 hsw_disable_ips(intel_crtc);
6303                 reenable_ips = true;
6304         }
6305
6306         for (i = 0; i < 256; i++) {
6307                 I915_WRITE(palreg + 4 * i,
6308                            (intel_crtc->lut_r[i] << 16) |
6309                            (intel_crtc->lut_g[i] << 8) |
6310                            intel_crtc->lut_b[i]);
6311         }
6312
6313         if (reenable_ips)
6314                 hsw_enable_ips(intel_crtc);
6315 }
6316
6317 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6318 {
6319         struct drm_device *dev = crtc->dev;
6320         struct drm_i915_private *dev_priv = dev->dev_private;
6321         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6322         bool visible = base != 0;
6323         u32 cntl;
6324
6325         if (intel_crtc->cursor_visible == visible)
6326                 return;
6327
6328         cntl = I915_READ(_CURACNTR);
6329         if (visible) {
6330                 /* On these chipsets we can only modify the base whilst
6331                  * the cursor is disabled.
6332                  */
6333                 I915_WRITE(_CURABASE, base);
6334
6335                 cntl &= ~(CURSOR_FORMAT_MASK);
6336                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6337                 cntl |= CURSOR_ENABLE |
6338                         CURSOR_GAMMA_ENABLE |
6339                         CURSOR_FORMAT_ARGB;
6340         } else
6341                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6342         I915_WRITE(_CURACNTR, cntl);
6343
6344         intel_crtc->cursor_visible = visible;
6345 }
6346
6347 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6348 {
6349         struct drm_device *dev = crtc->dev;
6350         struct drm_i915_private *dev_priv = dev->dev_private;
6351         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6352         int pipe = intel_crtc->pipe;
6353         bool visible = base != 0;
6354
6355         if (intel_crtc->cursor_visible != visible) {
6356                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6357                 if (base) {
6358                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6359                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6360                         cntl |= pipe << 28; /* Connect to correct pipe */
6361                 } else {
6362                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6363                         cntl |= CURSOR_MODE_DISABLE;
6364                 }
6365                 I915_WRITE(CURCNTR(pipe), cntl);
6366
6367                 intel_crtc->cursor_visible = visible;
6368         }
6369         /* and commit changes on next vblank */
6370         I915_WRITE(CURBASE(pipe), base);
6371 }
6372
6373 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6374 {
6375         struct drm_device *dev = crtc->dev;
6376         struct drm_i915_private *dev_priv = dev->dev_private;
6377         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6378         int pipe = intel_crtc->pipe;
6379         bool visible = base != 0;
6380
6381         if (intel_crtc->cursor_visible != visible) {
6382                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6383                 if (base) {
6384                         cntl &= ~CURSOR_MODE;
6385                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6386                 } else {
6387                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6388                         cntl |= CURSOR_MODE_DISABLE;
6389                 }
6390                 if (IS_HASWELL(dev))
6391                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6392                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6393
6394                 intel_crtc->cursor_visible = visible;
6395         }
6396         /* and commit changes on next vblank */
6397         I915_WRITE(CURBASE_IVB(pipe), base);
6398 }
6399
6400 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6401 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6402                                      bool on)
6403 {
6404         struct drm_device *dev = crtc->dev;
6405         struct drm_i915_private *dev_priv = dev->dev_private;
6406         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6407         int pipe = intel_crtc->pipe;
6408         int x = intel_crtc->cursor_x;
6409         int y = intel_crtc->cursor_y;
6410         u32 base, pos;
6411         bool visible;
6412
6413         pos = 0;
6414
6415         if (on && crtc->enabled && crtc->fb) {
6416                 base = intel_crtc->cursor_addr;
6417                 if (x > (int) crtc->fb->width)
6418                         base = 0;
6419
6420                 if (y > (int) crtc->fb->height)
6421                         base = 0;
6422         } else
6423                 base = 0;
6424
6425         if (x < 0) {
6426                 if (x + intel_crtc->cursor_width < 0)
6427                         base = 0;
6428
6429                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6430                 x = -x;
6431         }
6432         pos |= x << CURSOR_X_SHIFT;
6433
6434         if (y < 0) {
6435                 if (y + intel_crtc->cursor_height < 0)
6436                         base = 0;
6437
6438                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6439                 y = -y;
6440         }
6441         pos |= y << CURSOR_Y_SHIFT;
6442
6443         visible = base != 0;
6444         if (!visible && !intel_crtc->cursor_visible)
6445                 return;
6446
6447         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6448                 I915_WRITE(CURPOS_IVB(pipe), pos);
6449                 ivb_update_cursor(crtc, base);
6450         } else {
6451                 I915_WRITE(CURPOS(pipe), pos);
6452                 if (IS_845G(dev) || IS_I865G(dev))
6453                         i845_update_cursor(crtc, base);
6454                 else
6455                         i9xx_update_cursor(crtc, base);
6456         }
6457 }
6458
6459 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6460                                  struct drm_file *file,
6461                                  uint32_t handle,
6462                                  uint32_t width, uint32_t height)
6463 {
6464         struct drm_device *dev = crtc->dev;
6465         struct drm_i915_private *dev_priv = dev->dev_private;
6466         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6467         struct drm_i915_gem_object *obj;
6468         uint32_t addr;
6469         int ret;
6470
6471         /* if we want to turn off the cursor ignore width and height */
6472         if (!handle) {
6473                 DRM_DEBUG_KMS("cursor off\n");
6474                 addr = 0;
6475                 obj = NULL;
6476                 mutex_lock(&dev->struct_mutex);
6477                 goto finish;
6478         }
6479
6480         /* Currently we only support 64x64 cursors */
6481         if (width != 64 || height != 64) {
6482                 DRM_ERROR("we currently only support 64x64 cursors\n");
6483                 return -EINVAL;
6484         }
6485
6486         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6487         if (&obj->base == NULL)
6488                 return -ENOENT;
6489
6490         if (obj->base.size < width * height * 4) {
6491                 DRM_ERROR("buffer is to small\n");
6492                 ret = -ENOMEM;
6493                 goto fail;
6494         }
6495
6496         /* we only need to pin inside GTT if cursor is non-phy */
6497         mutex_lock(&dev->struct_mutex);
6498         if (!dev_priv->info->cursor_needs_physical) {
6499                 unsigned alignment;
6500
6501                 if (obj->tiling_mode) {
6502                         DRM_ERROR("cursor cannot be tiled\n");
6503                         ret = -EINVAL;
6504                         goto fail_locked;
6505                 }
6506
6507                 /* Note that the w/a also requires 2 PTE of padding following
6508                  * the bo. We currently fill all unused PTE with the shadow
6509                  * page and so we should always have valid PTE following the
6510                  * cursor preventing the VT-d warning.
6511                  */
6512                 alignment = 0;
6513                 if (need_vtd_wa(dev))
6514                         alignment = 64*1024;
6515
6516                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6517                 if (ret) {
6518                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6519                         goto fail_locked;
6520                 }
6521
6522                 ret = i915_gem_object_put_fence(obj);
6523                 if (ret) {
6524                         DRM_ERROR("failed to release fence for cursor");
6525                         goto fail_unpin;
6526                 }
6527
6528                 addr = obj->gtt_offset;
6529         } else {
6530                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6531                 ret = i915_gem_attach_phys_object(dev, obj,
6532                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6533                                                   align);
6534                 if (ret) {
6535                         DRM_ERROR("failed to attach phys object\n");
6536                         goto fail_locked;
6537                 }
6538                 addr = obj->phys_obj->handle->busaddr;
6539         }
6540
6541         if (IS_GEN2(dev))
6542                 I915_WRITE(CURSIZE, (height << 12) | width);
6543
6544  finish:
6545         if (intel_crtc->cursor_bo) {
6546                 if (dev_priv->info->cursor_needs_physical) {
6547                         if (intel_crtc->cursor_bo != obj)
6548                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6549                 } else
6550                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6551                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6552         }
6553
6554         mutex_unlock(&dev->struct_mutex);
6555
6556         intel_crtc->cursor_addr = addr;
6557         intel_crtc->cursor_bo = obj;
6558         intel_crtc->cursor_width = width;
6559         intel_crtc->cursor_height = height;
6560
6561         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6562
6563         return 0;
6564 fail_unpin:
6565         i915_gem_object_unpin(obj);
6566 fail_locked:
6567         mutex_unlock(&dev->struct_mutex);
6568 fail:
6569         drm_gem_object_unreference_unlocked(&obj->base);
6570         return ret;
6571 }
6572
6573 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6574 {
6575         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6576
6577         intel_crtc->cursor_x = x;
6578         intel_crtc->cursor_y = y;
6579
6580         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6581
6582         return 0;
6583 }
6584
6585 /** Sets the color ramps on behalf of RandR */
6586 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6587                                  u16 blue, int regno)
6588 {
6589         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6590
6591         intel_crtc->lut_r[regno] = red >> 8;
6592         intel_crtc->lut_g[regno] = green >> 8;
6593         intel_crtc->lut_b[regno] = blue >> 8;
6594 }
6595
6596 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6597                              u16 *blue, int regno)
6598 {
6599         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6600
6601         *red = intel_crtc->lut_r[regno] << 8;
6602         *green = intel_crtc->lut_g[regno] << 8;
6603         *blue = intel_crtc->lut_b[regno] << 8;
6604 }
6605
6606 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6607                                  u16 *blue, uint32_t start, uint32_t size)
6608 {
6609         int end = (start + size > 256) ? 256 : start + size, i;
6610         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6611
6612         for (i = start; i < end; i++) {
6613                 intel_crtc->lut_r[i] = red[i] >> 8;
6614                 intel_crtc->lut_g[i] = green[i] >> 8;
6615                 intel_crtc->lut_b[i] = blue[i] >> 8;
6616         }
6617
6618         intel_crtc_load_lut(crtc);
6619 }
6620
6621 /* VESA 640x480x72Hz mode to set on the pipe */
6622 static struct drm_display_mode load_detect_mode = {
6623         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6624                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6625 };
6626
6627 static struct drm_framebuffer *
6628 intel_framebuffer_create(struct drm_device *dev,
6629                          struct drm_mode_fb_cmd2 *mode_cmd,
6630                          struct drm_i915_gem_object *obj)
6631 {
6632         struct intel_framebuffer *intel_fb;
6633         int ret;
6634
6635         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6636         if (!intel_fb) {
6637                 drm_gem_object_unreference_unlocked(&obj->base);
6638                 return ERR_PTR(-ENOMEM);
6639         }
6640
6641         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6642         if (ret) {
6643                 drm_gem_object_unreference_unlocked(&obj->base);
6644                 kfree(intel_fb);
6645                 return ERR_PTR(ret);
6646         }
6647
6648         return &intel_fb->base;
6649 }
6650
6651 static u32
6652 intel_framebuffer_pitch_for_width(int width, int bpp)
6653 {
6654         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6655         return ALIGN(pitch, 64);
6656 }
6657
6658 static u32
6659 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6660 {
6661         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6662         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6663 }
6664
6665 static struct drm_framebuffer *
6666 intel_framebuffer_create_for_mode(struct drm_device *dev,
6667                                   struct drm_display_mode *mode,
6668                                   int depth, int bpp)
6669 {
6670         struct drm_i915_gem_object *obj;
6671         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6672
6673         obj = i915_gem_alloc_object(dev,
6674                                     intel_framebuffer_size_for_mode(mode, bpp));
6675         if (obj == NULL)
6676                 return ERR_PTR(-ENOMEM);
6677
6678         mode_cmd.width = mode->hdisplay;
6679         mode_cmd.height = mode->vdisplay;
6680         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6681                                                                 bpp);
6682         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6683
6684         return intel_framebuffer_create(dev, &mode_cmd, obj);
6685 }
6686
6687 static struct drm_framebuffer *
6688 mode_fits_in_fbdev(struct drm_device *dev,
6689                    struct drm_display_mode *mode)
6690 {
6691         struct drm_i915_private *dev_priv = dev->dev_private;
6692         struct drm_i915_gem_object *obj;
6693         struct drm_framebuffer *fb;
6694
6695         if (dev_priv->fbdev == NULL)
6696                 return NULL;
6697
6698         obj = dev_priv->fbdev->ifb.obj;
6699         if (obj == NULL)
6700                 return NULL;
6701
6702         fb = &dev_priv->fbdev->ifb.base;
6703         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6704                                                                fb->bits_per_pixel))
6705                 return NULL;
6706
6707         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6708                 return NULL;
6709
6710         return fb;
6711 }
6712
6713 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6714                                 struct drm_display_mode *mode,
6715                                 struct intel_load_detect_pipe *old)
6716 {
6717         struct intel_crtc *intel_crtc;
6718         struct intel_encoder *intel_encoder =
6719                 intel_attached_encoder(connector);
6720         struct drm_crtc *possible_crtc;
6721         struct drm_encoder *encoder = &intel_encoder->base;
6722         struct drm_crtc *crtc = NULL;
6723         struct drm_device *dev = encoder->dev;
6724         struct drm_framebuffer *fb;
6725         int i = -1;
6726
6727         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6728                       connector->base.id, drm_get_connector_name(connector),
6729                       encoder->base.id, drm_get_encoder_name(encoder));
6730
6731         /*
6732          * Algorithm gets a little messy:
6733          *
6734          *   - if the connector already has an assigned crtc, use it (but make
6735          *     sure it's on first)
6736          *
6737          *   - try to find the first unused crtc that can drive this connector,
6738          *     and use that if we find one
6739          */
6740
6741         /* See if we already have a CRTC for this connector */
6742         if (encoder->crtc) {
6743                 crtc = encoder->crtc;
6744
6745                 mutex_lock(&crtc->mutex);
6746
6747                 old->dpms_mode = connector->dpms;
6748                 old->load_detect_temp = false;
6749
6750                 /* Make sure the crtc and connector are running */
6751                 if (connector->dpms != DRM_MODE_DPMS_ON)
6752                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6753
6754                 return true;
6755         }
6756
6757         /* Find an unused one (if possible) */
6758         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6759                 i++;
6760                 if (!(encoder->possible_crtcs & (1 << i)))
6761                         continue;
6762                 if (!possible_crtc->enabled) {
6763                         crtc = possible_crtc;
6764                         break;
6765                 }
6766         }
6767
6768         /*
6769          * If we didn't find an unused CRTC, don't use any.
6770          */
6771         if (!crtc) {
6772                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6773                 return false;
6774         }
6775
6776         mutex_lock(&crtc->mutex);
6777         intel_encoder->new_crtc = to_intel_crtc(crtc);
6778         to_intel_connector(connector)->new_encoder = intel_encoder;
6779
6780         intel_crtc = to_intel_crtc(crtc);
6781         old->dpms_mode = connector->dpms;
6782         old->load_detect_temp = true;
6783         old->release_fb = NULL;
6784
6785         if (!mode)
6786                 mode = &load_detect_mode;
6787
6788         /* We need a framebuffer large enough to accommodate all accesses
6789          * that the plane may generate whilst we perform load detection.
6790          * We can not rely on the fbcon either being present (we get called
6791          * during its initialisation to detect all boot displays, or it may
6792          * not even exist) or that it is large enough to satisfy the
6793          * requested mode.
6794          */
6795         fb = mode_fits_in_fbdev(dev, mode);
6796         if (fb == NULL) {
6797                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6798                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6799                 old->release_fb = fb;
6800         } else
6801                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6802         if (IS_ERR(fb)) {
6803                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6804                 mutex_unlock(&crtc->mutex);
6805                 return false;
6806         }
6807
6808         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6809                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6810                 if (old->release_fb)
6811                         old->release_fb->funcs->destroy(old->release_fb);
6812                 mutex_unlock(&crtc->mutex);
6813                 return false;
6814         }
6815
6816         /* let the connector get through one full cycle before testing */
6817         intel_wait_for_vblank(dev, intel_crtc->pipe);
6818         return true;
6819 }
6820
6821 void intel_release_load_detect_pipe(struct drm_connector *connector,
6822                                     struct intel_load_detect_pipe *old)
6823 {
6824         struct intel_encoder *intel_encoder =
6825                 intel_attached_encoder(connector);
6826         struct drm_encoder *encoder = &intel_encoder->base;
6827         struct drm_crtc *crtc = encoder->crtc;
6828
6829         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6830                       connector->base.id, drm_get_connector_name(connector),
6831                       encoder->base.id, drm_get_encoder_name(encoder));
6832
6833         if (old->load_detect_temp) {
6834                 to_intel_connector(connector)->new_encoder = NULL;
6835                 intel_encoder->new_crtc = NULL;
6836                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6837
6838                 if (old->release_fb) {
6839                         drm_framebuffer_unregister_private(old->release_fb);
6840                         drm_framebuffer_unreference(old->release_fb);
6841                 }
6842
6843                 mutex_unlock(&crtc->mutex);
6844                 return;
6845         }
6846
6847         /* Switch crtc and encoder back off if necessary */
6848         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6849                 connector->funcs->dpms(connector, old->dpms_mode);
6850
6851         mutex_unlock(&crtc->mutex);
6852 }
6853
6854 /* Returns the clock of the currently programmed mode of the given pipe. */
6855 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6856 {
6857         struct drm_i915_private *dev_priv = dev->dev_private;
6858         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6859         int pipe = intel_crtc->pipe;
6860         u32 dpll = I915_READ(DPLL(pipe));
6861         u32 fp;
6862         intel_clock_t clock;
6863
6864         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6865                 fp = I915_READ(FP0(pipe));
6866         else
6867                 fp = I915_READ(FP1(pipe));
6868
6869         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6870         if (IS_PINEVIEW(dev)) {
6871                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6872                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6873         } else {
6874                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6875                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6876         }
6877
6878         if (!IS_GEN2(dev)) {
6879                 if (IS_PINEVIEW(dev))
6880                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6881                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6882                 else
6883                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6884                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6885
6886                 switch (dpll & DPLL_MODE_MASK) {
6887                 case DPLLB_MODE_DAC_SERIAL:
6888                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6889                                 5 : 10;
6890                         break;
6891                 case DPLLB_MODE_LVDS:
6892                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6893                                 7 : 14;
6894                         break;
6895                 default:
6896                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6897                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6898                         return 0;
6899                 }
6900
6901                 if (IS_PINEVIEW(dev))
6902                         pineview_clock(96000, &clock);
6903                 else
6904                         i9xx_clock(96000, &clock);
6905         } else {
6906                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6907
6908                 if (is_lvds) {
6909                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6910                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6911                         clock.p2 = 14;
6912
6913                         if ((dpll & PLL_REF_INPUT_MASK) ==
6914                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6915                                 /* XXX: might not be 66MHz */
6916                                 i9xx_clock(66000, &clock);
6917                         } else
6918                                 i9xx_clock(48000, &clock);
6919                 } else {
6920                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6921                                 clock.p1 = 2;
6922                         else {
6923                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6924                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6925                         }
6926                         if (dpll & PLL_P2_DIVIDE_BY_4)
6927                                 clock.p2 = 4;
6928                         else
6929                                 clock.p2 = 2;
6930
6931                         i9xx_clock(48000, &clock);
6932                 }
6933         }
6934
6935         /* XXX: It would be nice to validate the clocks, but we can't reuse
6936          * i830PllIsValid() because it relies on the xf86_config connector
6937          * configuration being accurate, which it isn't necessarily.
6938          */
6939
6940         return clock.dot;
6941 }
6942
6943 /** Returns the currently programmed mode of the given pipe. */
6944 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6945                                              struct drm_crtc *crtc)
6946 {
6947         struct drm_i915_private *dev_priv = dev->dev_private;
6948         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6949         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6950         struct drm_display_mode *mode;
6951         int htot = I915_READ(HTOTAL(cpu_transcoder));
6952         int hsync = I915_READ(HSYNC(cpu_transcoder));
6953         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6954         int vsync = I915_READ(VSYNC(cpu_transcoder));
6955
6956         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6957         if (!mode)
6958                 return NULL;
6959
6960         mode->clock = intel_crtc_clock_get(dev, crtc);
6961         mode->hdisplay = (htot & 0xffff) + 1;
6962         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6963         mode->hsync_start = (hsync & 0xffff) + 1;
6964         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6965         mode->vdisplay = (vtot & 0xffff) + 1;
6966         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6967         mode->vsync_start = (vsync & 0xffff) + 1;
6968         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6969
6970         drm_mode_set_name(mode);
6971
6972         return mode;
6973 }
6974
6975 static void intel_increase_pllclock(struct drm_crtc *crtc)
6976 {
6977         struct drm_device *dev = crtc->dev;
6978         drm_i915_private_t *dev_priv = dev->dev_private;
6979         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6980         int pipe = intel_crtc->pipe;
6981         int dpll_reg = DPLL(pipe);
6982         int dpll;
6983
6984         if (HAS_PCH_SPLIT(dev))
6985                 return;
6986
6987         if (!dev_priv->lvds_downclock_avail)
6988                 return;
6989
6990         dpll = I915_READ(dpll_reg);
6991         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6992                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6993
6994                 assert_panel_unlocked(dev_priv, pipe);
6995
6996                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6997                 I915_WRITE(dpll_reg, dpll);
6998                 intel_wait_for_vblank(dev, pipe);
6999
7000                 dpll = I915_READ(dpll_reg);
7001                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7002                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7003         }
7004 }
7005
7006 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7007 {
7008         struct drm_device *dev = crtc->dev;
7009         drm_i915_private_t *dev_priv = dev->dev_private;
7010         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7011
7012         if (HAS_PCH_SPLIT(dev))
7013                 return;
7014
7015         if (!dev_priv->lvds_downclock_avail)
7016                 return;
7017
7018         /*
7019          * Since this is called by a timer, we should never get here in
7020          * the manual case.
7021          */
7022         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7023                 int pipe = intel_crtc->pipe;
7024                 int dpll_reg = DPLL(pipe);
7025                 int dpll;
7026
7027                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7028
7029                 assert_panel_unlocked(dev_priv, pipe);
7030
7031                 dpll = I915_READ(dpll_reg);
7032                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7033                 I915_WRITE(dpll_reg, dpll);
7034                 intel_wait_for_vblank(dev, pipe);
7035                 dpll = I915_READ(dpll_reg);
7036                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7037                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7038         }
7039
7040 }
7041
7042 void intel_mark_busy(struct drm_device *dev)
7043 {
7044         i915_update_gfx_val(dev->dev_private);
7045 }
7046
7047 void intel_mark_idle(struct drm_device *dev)
7048 {
7049         struct drm_crtc *crtc;
7050
7051         if (!i915_powersave)
7052                 return;
7053
7054         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7055                 if (!crtc->fb)
7056                         continue;
7057
7058                 intel_decrease_pllclock(crtc);
7059         }
7060 }
7061
7062 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7063                         struct intel_ring_buffer *ring)
7064 {
7065         struct drm_device *dev = obj->base.dev;
7066         struct drm_crtc *crtc;
7067
7068         if (!i915_powersave)
7069                 return;
7070
7071         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7072                 if (!crtc->fb)
7073                         continue;
7074
7075                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7076                         continue;
7077
7078                 intel_increase_pllclock(crtc);
7079                 if (ring && intel_fbc_enabled(dev))
7080                         ring->fbc_dirty = true;
7081         }
7082 }
7083
7084 static void intel_crtc_destroy(struct drm_crtc *crtc)
7085 {
7086         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7087         struct drm_device *dev = crtc->dev;
7088         struct intel_unpin_work *work;
7089         unsigned long flags;
7090
7091         spin_lock_irqsave(&dev->event_lock, flags);
7092         work = intel_crtc->unpin_work;
7093         intel_crtc->unpin_work = NULL;
7094         spin_unlock_irqrestore(&dev->event_lock, flags);
7095
7096         if (work) {
7097                 cancel_work_sync(&work->work);
7098                 kfree(work);
7099         }
7100
7101         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7102
7103         drm_crtc_cleanup(crtc);
7104
7105         kfree(intel_crtc);
7106 }
7107
7108 static void intel_unpin_work_fn(struct work_struct *__work)
7109 {
7110         struct intel_unpin_work *work =
7111                 container_of(__work, struct intel_unpin_work, work);
7112         struct drm_device *dev = work->crtc->dev;
7113
7114         mutex_lock(&dev->struct_mutex);
7115         intel_unpin_fb_obj(work->old_fb_obj);
7116         drm_gem_object_unreference(&work->pending_flip_obj->base);
7117         drm_gem_object_unreference(&work->old_fb_obj->base);
7118
7119         intel_update_fbc(dev);
7120         mutex_unlock(&dev->struct_mutex);
7121
7122         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7123         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7124
7125         kfree(work);
7126 }
7127
7128 static void do_intel_finish_page_flip(struct drm_device *dev,
7129                                       struct drm_crtc *crtc)
7130 {
7131         drm_i915_private_t *dev_priv = dev->dev_private;
7132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7133         struct intel_unpin_work *work;
7134         unsigned long flags;
7135
7136         /* Ignore early vblank irqs */
7137         if (intel_crtc == NULL)
7138                 return;
7139
7140         spin_lock_irqsave(&dev->event_lock, flags);
7141         work = intel_crtc->unpin_work;
7142
7143         /* Ensure we don't miss a work->pending update ... */
7144         smp_rmb();
7145
7146         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7147                 spin_unlock_irqrestore(&dev->event_lock, flags);
7148                 return;
7149         }
7150
7151         /* and that the unpin work is consistent wrt ->pending. */
7152         smp_rmb();
7153
7154         intel_crtc->unpin_work = NULL;
7155
7156         if (work->event)
7157                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7158
7159         drm_vblank_put(dev, intel_crtc->pipe);
7160
7161         spin_unlock_irqrestore(&dev->event_lock, flags);
7162
7163         wake_up_all(&dev_priv->pending_flip_queue);
7164
7165         queue_work(dev_priv->wq, &work->work);
7166
7167         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7168 }
7169
7170 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7171 {
7172         drm_i915_private_t *dev_priv = dev->dev_private;
7173         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7174
7175         do_intel_finish_page_flip(dev, crtc);
7176 }
7177
7178 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7179 {
7180         drm_i915_private_t *dev_priv = dev->dev_private;
7181         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7182
7183         do_intel_finish_page_flip(dev, crtc);
7184 }
7185
7186 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7187 {
7188         drm_i915_private_t *dev_priv = dev->dev_private;
7189         struct intel_crtc *intel_crtc =
7190                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7191         unsigned long flags;
7192
7193         /* NB: An MMIO update of the plane base pointer will also
7194          * generate a page-flip completion irq, i.e. every modeset
7195          * is also accompanied by a spurious intel_prepare_page_flip().
7196          */
7197         spin_lock_irqsave(&dev->event_lock, flags);
7198         if (intel_crtc->unpin_work)
7199                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7200         spin_unlock_irqrestore(&dev->event_lock, flags);
7201 }
7202
7203 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7204 {
7205         /* Ensure that the work item is consistent when activating it ... */
7206         smp_wmb();
7207         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7208         /* and that it is marked active as soon as the irq could fire. */
7209         smp_wmb();
7210 }
7211
7212 static int intel_gen2_queue_flip(struct drm_device *dev,
7213                                  struct drm_crtc *crtc,
7214                                  struct drm_framebuffer *fb,
7215                                  struct drm_i915_gem_object *obj)
7216 {
7217         struct drm_i915_private *dev_priv = dev->dev_private;
7218         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7219         u32 flip_mask;
7220         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7221         int ret;
7222
7223         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7224         if (ret)
7225                 goto err;
7226
7227         ret = intel_ring_begin(ring, 6);
7228         if (ret)
7229                 goto err_unpin;
7230
7231         /* Can't queue multiple flips, so wait for the previous
7232          * one to finish before executing the next.
7233          */
7234         if (intel_crtc->plane)
7235                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7236         else
7237                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7238         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7239         intel_ring_emit(ring, MI_NOOP);
7240         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7241                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7242         intel_ring_emit(ring, fb->pitches[0]);
7243         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7244         intel_ring_emit(ring, 0); /* aux display base address, unused */
7245
7246         intel_mark_page_flip_active(intel_crtc);
7247         intel_ring_advance(ring);
7248         return 0;
7249
7250 err_unpin:
7251         intel_unpin_fb_obj(obj);
7252 err:
7253         return ret;
7254 }
7255
7256 static int intel_gen3_queue_flip(struct drm_device *dev,
7257                                  struct drm_crtc *crtc,
7258                                  struct drm_framebuffer *fb,
7259                                  struct drm_i915_gem_object *obj)
7260 {
7261         struct drm_i915_private *dev_priv = dev->dev_private;
7262         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7263         u32 flip_mask;
7264         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7265         int ret;
7266
7267         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7268         if (ret)
7269                 goto err;
7270
7271         ret = intel_ring_begin(ring, 6);
7272         if (ret)
7273                 goto err_unpin;
7274
7275         if (intel_crtc->plane)
7276                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7277         else
7278                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7279         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7280         intel_ring_emit(ring, MI_NOOP);
7281         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7282                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7283         intel_ring_emit(ring, fb->pitches[0]);
7284         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7285         intel_ring_emit(ring, MI_NOOP);
7286
7287         intel_mark_page_flip_active(intel_crtc);
7288         intel_ring_advance(ring);
7289         return 0;
7290
7291 err_unpin:
7292         intel_unpin_fb_obj(obj);
7293 err:
7294         return ret;
7295 }
7296
7297 static int intel_gen4_queue_flip(struct drm_device *dev,
7298                                  struct drm_crtc *crtc,
7299                                  struct drm_framebuffer *fb,
7300                                  struct drm_i915_gem_object *obj)
7301 {
7302         struct drm_i915_private *dev_priv = dev->dev_private;
7303         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7304         uint32_t pf, pipesrc;
7305         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7306         int ret;
7307
7308         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7309         if (ret)
7310                 goto err;
7311
7312         ret = intel_ring_begin(ring, 4);
7313         if (ret)
7314                 goto err_unpin;
7315
7316         /* i965+ uses the linear or tiled offsets from the
7317          * Display Registers (which do not change across a page-flip)
7318          * so we need only reprogram the base address.
7319          */
7320         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7321                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7322         intel_ring_emit(ring, fb->pitches[0]);
7323         intel_ring_emit(ring,
7324                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7325                         obj->tiling_mode);
7326
7327         /* XXX Enabling the panel-fitter across page-flip is so far
7328          * untested on non-native modes, so ignore it for now.
7329          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7330          */
7331         pf = 0;
7332         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7333         intel_ring_emit(ring, pf | pipesrc);
7334
7335         intel_mark_page_flip_active(intel_crtc);
7336         intel_ring_advance(ring);
7337         return 0;
7338
7339 err_unpin:
7340         intel_unpin_fb_obj(obj);
7341 err:
7342         return ret;
7343 }
7344
7345 static int intel_gen6_queue_flip(struct drm_device *dev,
7346                                  struct drm_crtc *crtc,
7347                                  struct drm_framebuffer *fb,
7348                                  struct drm_i915_gem_object *obj)
7349 {
7350         struct drm_i915_private *dev_priv = dev->dev_private;
7351         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7352         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7353         uint32_t pf, pipesrc;
7354         int ret;
7355
7356         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7357         if (ret)
7358                 goto err;
7359
7360         ret = intel_ring_begin(ring, 4);
7361         if (ret)
7362                 goto err_unpin;
7363
7364         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7365                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7366         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7367         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7368
7369         /* Contrary to the suggestions in the documentation,
7370          * "Enable Panel Fitter" does not seem to be required when page
7371          * flipping with a non-native mode, and worse causes a normal
7372          * modeset to fail.
7373          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7374          */
7375         pf = 0;
7376         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7377         intel_ring_emit(ring, pf | pipesrc);
7378
7379         intel_mark_page_flip_active(intel_crtc);
7380         intel_ring_advance(ring);
7381         return 0;
7382
7383 err_unpin:
7384         intel_unpin_fb_obj(obj);
7385 err:
7386         return ret;
7387 }
7388
7389 /*
7390  * On gen7 we currently use the blit ring because (in early silicon at least)
7391  * the render ring doesn't give us interrpts for page flip completion, which
7392  * means clients will hang after the first flip is queued.  Fortunately the
7393  * blit ring generates interrupts properly, so use it instead.
7394  */
7395 static int intel_gen7_queue_flip(struct drm_device *dev,
7396                                  struct drm_crtc *crtc,
7397                                  struct drm_framebuffer *fb,
7398                                  struct drm_i915_gem_object *obj)
7399 {
7400         struct drm_i915_private *dev_priv = dev->dev_private;
7401         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7402         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7403         uint32_t plane_bit = 0;
7404         int ret;
7405
7406         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7407         if (ret)
7408                 goto err;
7409
7410         switch(intel_crtc->plane) {
7411         case PLANE_A:
7412                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7413                 break;
7414         case PLANE_B:
7415                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7416                 break;
7417         case PLANE_C:
7418                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7419                 break;
7420         default:
7421                 WARN_ONCE(1, "unknown plane in flip command\n");
7422                 ret = -ENODEV;
7423                 goto err_unpin;
7424         }
7425
7426         ret = intel_ring_begin(ring, 4);
7427         if (ret)
7428                 goto err_unpin;
7429
7430         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7431         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7432         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7433         intel_ring_emit(ring, (MI_NOOP));
7434
7435         intel_mark_page_flip_active(intel_crtc);
7436         intel_ring_advance(ring);
7437         return 0;
7438
7439 err_unpin:
7440         intel_unpin_fb_obj(obj);
7441 err:
7442         return ret;
7443 }
7444
7445 static int intel_default_queue_flip(struct drm_device *dev,
7446                                     struct drm_crtc *crtc,
7447                                     struct drm_framebuffer *fb,
7448                                     struct drm_i915_gem_object *obj)
7449 {
7450         return -ENODEV;
7451 }
7452
7453 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7454                                 struct drm_framebuffer *fb,
7455                                 struct drm_pending_vblank_event *event)
7456 {
7457         struct drm_device *dev = crtc->dev;
7458         struct drm_i915_private *dev_priv = dev->dev_private;
7459         struct drm_framebuffer *old_fb = crtc->fb;
7460         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7461         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7462         struct intel_unpin_work *work;
7463         unsigned long flags;
7464         int ret;
7465
7466         /* Can't change pixel format via MI display flips. */
7467         if (fb->pixel_format != crtc->fb->pixel_format)
7468                 return -EINVAL;
7469
7470         /*
7471          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7472          * Note that pitch changes could also affect these register.
7473          */
7474         if (INTEL_INFO(dev)->gen > 3 &&
7475             (fb->offsets[0] != crtc->fb->offsets[0] ||
7476              fb->pitches[0] != crtc->fb->pitches[0]))
7477                 return -EINVAL;
7478
7479         work = kzalloc(sizeof *work, GFP_KERNEL);
7480         if (work == NULL)
7481                 return -ENOMEM;
7482
7483         work->event = event;
7484         work->crtc = crtc;
7485         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7486         INIT_WORK(&work->work, intel_unpin_work_fn);
7487
7488         ret = drm_vblank_get(dev, intel_crtc->pipe);
7489         if (ret)
7490                 goto free_work;
7491
7492         /* We borrow the event spin lock for protecting unpin_work */
7493         spin_lock_irqsave(&dev->event_lock, flags);
7494         if (intel_crtc->unpin_work) {
7495                 spin_unlock_irqrestore(&dev->event_lock, flags);
7496                 kfree(work);
7497                 drm_vblank_put(dev, intel_crtc->pipe);
7498
7499                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7500                 return -EBUSY;
7501         }
7502         intel_crtc->unpin_work = work;
7503         spin_unlock_irqrestore(&dev->event_lock, flags);
7504
7505         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7506                 flush_workqueue(dev_priv->wq);
7507
7508         ret = i915_mutex_lock_interruptible(dev);
7509         if (ret)
7510                 goto cleanup;
7511
7512         /* Reference the objects for the scheduled work. */
7513         drm_gem_object_reference(&work->old_fb_obj->base);
7514         drm_gem_object_reference(&obj->base);
7515
7516         crtc->fb = fb;
7517
7518         work->pending_flip_obj = obj;
7519
7520         work->enable_stall_check = true;
7521
7522         atomic_inc(&intel_crtc->unpin_work_count);
7523         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7524
7525         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7526         if (ret)
7527                 goto cleanup_pending;
7528
7529         intel_disable_fbc(dev);
7530         intel_mark_fb_busy(obj, NULL);
7531         mutex_unlock(&dev->struct_mutex);
7532
7533         trace_i915_flip_request(intel_crtc->plane, obj);
7534
7535         return 0;
7536
7537 cleanup_pending:
7538         atomic_dec(&intel_crtc->unpin_work_count);
7539         crtc->fb = old_fb;
7540         drm_gem_object_unreference(&work->old_fb_obj->base);
7541         drm_gem_object_unreference(&obj->base);
7542         mutex_unlock(&dev->struct_mutex);
7543
7544 cleanup:
7545         spin_lock_irqsave(&dev->event_lock, flags);
7546         intel_crtc->unpin_work = NULL;
7547         spin_unlock_irqrestore(&dev->event_lock, flags);
7548
7549         drm_vblank_put(dev, intel_crtc->pipe);
7550 free_work:
7551         kfree(work);
7552
7553         return ret;
7554 }
7555
7556 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7557         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7558         .load_lut = intel_crtc_load_lut,
7559 };
7560
7561 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7562                                   struct drm_crtc *crtc)
7563 {
7564         struct drm_device *dev;
7565         struct drm_crtc *tmp;
7566         int crtc_mask = 1;
7567
7568         WARN(!crtc, "checking null crtc?\n");
7569
7570         dev = crtc->dev;
7571
7572         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7573                 if (tmp == crtc)
7574                         break;
7575                 crtc_mask <<= 1;
7576         }
7577
7578         if (encoder->possible_crtcs & crtc_mask)
7579                 return true;
7580         return false;
7581 }
7582
7583 /**
7584  * intel_modeset_update_staged_output_state
7585  *
7586  * Updates the staged output configuration state, e.g. after we've read out the
7587  * current hw state.
7588  */
7589 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7590 {
7591         struct intel_encoder *encoder;
7592         struct intel_connector *connector;
7593
7594         list_for_each_entry(connector, &dev->mode_config.connector_list,
7595                             base.head) {
7596                 connector->new_encoder =
7597                         to_intel_encoder(connector->base.encoder);
7598         }
7599
7600         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7601                             base.head) {
7602                 encoder->new_crtc =
7603                         to_intel_crtc(encoder->base.crtc);
7604         }
7605 }
7606
7607 /**
7608  * intel_modeset_commit_output_state
7609  *
7610  * This function copies the stage display pipe configuration to the real one.
7611  */
7612 static void intel_modeset_commit_output_state(struct drm_device *dev)
7613 {
7614         struct intel_encoder *encoder;
7615         struct intel_connector *connector;
7616
7617         list_for_each_entry(connector, &dev->mode_config.connector_list,
7618                             base.head) {
7619                 connector->base.encoder = &connector->new_encoder->base;
7620         }
7621
7622         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7623                             base.head) {
7624                 encoder->base.crtc = &encoder->new_crtc->base;
7625         }
7626 }
7627
7628 static void
7629 connected_sink_compute_bpp(struct intel_connector * connector,
7630                            struct intel_crtc_config *pipe_config)
7631 {
7632         int bpp = pipe_config->pipe_bpp;
7633
7634         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
7635                 connector->base.base.id,
7636                 drm_get_connector_name(&connector->base));
7637
7638         /* Don't use an invalid EDID bpc value */
7639         if (connector->base.display_info.bpc &&
7640             connector->base.display_info.bpc * 3 < bpp) {
7641                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7642                               bpp, connector->base.display_info.bpc*3);
7643                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
7644         }
7645
7646         /* Clamp bpp to 8 on screens without EDID 1.4 */
7647         if (connector->base.display_info.bpc == 0 && bpp > 24) {
7648                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
7649                               bpp);
7650                 pipe_config->pipe_bpp = 24;
7651         }
7652 }
7653
7654 static int
7655 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
7656                           struct drm_framebuffer *fb,
7657                           struct intel_crtc_config *pipe_config)
7658 {
7659         struct drm_device *dev = crtc->base.dev;
7660         struct intel_connector *connector;
7661         int bpp;
7662
7663         switch (fb->pixel_format) {
7664         case DRM_FORMAT_C8:
7665                 bpp = 8*3; /* since we go through a colormap */
7666                 break;
7667         case DRM_FORMAT_XRGB1555:
7668         case DRM_FORMAT_ARGB1555:
7669                 /* checked in intel_framebuffer_init already */
7670                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7671                         return -EINVAL;
7672         case DRM_FORMAT_RGB565:
7673                 bpp = 6*3; /* min is 18bpp */
7674                 break;
7675         case DRM_FORMAT_XBGR8888:
7676         case DRM_FORMAT_ABGR8888:
7677                 /* checked in intel_framebuffer_init already */
7678                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7679                         return -EINVAL;
7680         case DRM_FORMAT_XRGB8888:
7681         case DRM_FORMAT_ARGB8888:
7682                 bpp = 8*3;
7683                 break;
7684         case DRM_FORMAT_XRGB2101010:
7685         case DRM_FORMAT_ARGB2101010:
7686         case DRM_FORMAT_XBGR2101010:
7687         case DRM_FORMAT_ABGR2101010:
7688                 /* checked in intel_framebuffer_init already */
7689                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7690                         return -EINVAL;
7691                 bpp = 10*3;
7692                 break;
7693         /* TODO: gen4+ supports 16 bpc floating point, too. */
7694         default:
7695                 DRM_DEBUG_KMS("unsupported depth\n");
7696                 return -EINVAL;
7697         }
7698
7699         pipe_config->pipe_bpp = bpp;
7700
7701         /* Clamp display bpp to EDID value */
7702         list_for_each_entry(connector, &dev->mode_config.connector_list,
7703                             base.head) {
7704                 if (!connector->new_encoder ||
7705                     connector->new_encoder->new_crtc != crtc)
7706                         continue;
7707
7708                 connected_sink_compute_bpp(connector, pipe_config);
7709         }
7710
7711         return bpp;
7712 }
7713
7714 static void intel_dump_pipe_config(struct intel_crtc *crtc,
7715                                    struct intel_crtc_config *pipe_config,
7716                                    const char *context)
7717 {
7718         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
7719                       context, pipe_name(crtc->pipe));
7720
7721         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
7722         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
7723                       pipe_config->pipe_bpp, pipe_config->dither);
7724         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
7725                       pipe_config->has_pch_encoder,
7726                       pipe_config->fdi_lanes,
7727                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
7728                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
7729                       pipe_config->fdi_m_n.tu);
7730         DRM_DEBUG_KMS("requested mode:\n");
7731         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
7732         DRM_DEBUG_KMS("adjusted mode:\n");
7733         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
7734         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
7735                       pipe_config->gmch_pfit.control,
7736                       pipe_config->gmch_pfit.pgm_ratios,
7737                       pipe_config->gmch_pfit.lvds_border_bits);
7738         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
7739                       pipe_config->pch_pfit.pos,
7740                       pipe_config->pch_pfit.size);
7741         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
7742 }
7743
7744 static bool check_encoder_cloning(struct drm_crtc *crtc)
7745 {
7746         int num_encoders = 0;
7747         bool uncloneable_encoders = false;
7748         struct intel_encoder *encoder;
7749
7750         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
7751                             base.head) {
7752                 if (&encoder->new_crtc->base != crtc)
7753                         continue;
7754
7755                 num_encoders++;
7756                 if (!encoder->cloneable)
7757                         uncloneable_encoders = true;
7758         }
7759
7760         return !(num_encoders > 1 && uncloneable_encoders);
7761 }
7762
7763 static struct intel_crtc_config *
7764 intel_modeset_pipe_config(struct drm_crtc *crtc,
7765                           struct drm_framebuffer *fb,
7766                           struct drm_display_mode *mode)
7767 {
7768         struct drm_device *dev = crtc->dev;
7769         struct drm_encoder_helper_funcs *encoder_funcs;
7770         struct intel_encoder *encoder;
7771         struct intel_crtc_config *pipe_config;
7772         int plane_bpp, ret = -EINVAL;
7773         bool retry = true;
7774
7775         if (!check_encoder_cloning(crtc)) {
7776                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
7777                 return ERR_PTR(-EINVAL);
7778         }
7779
7780         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7781         if (!pipe_config)
7782                 return ERR_PTR(-ENOMEM);
7783
7784         drm_mode_copy(&pipe_config->adjusted_mode, mode);
7785         drm_mode_copy(&pipe_config->requested_mode, mode);
7786         pipe_config->cpu_transcoder = to_intel_crtc(crtc)->pipe;
7787         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7788
7789         /* Compute a starting value for pipe_config->pipe_bpp taking the source
7790          * plane pixel format and any sink constraints into account. Returns the
7791          * source plane bpp so that dithering can be selected on mismatches
7792          * after encoders and crtc also have had their say. */
7793         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
7794                                               fb, pipe_config);
7795         if (plane_bpp < 0)
7796                 goto fail;
7797
7798 encoder_retry:
7799         /* Ensure the port clock defaults are reset when retrying. */
7800         pipe_config->port_clock = 0;
7801         pipe_config->pixel_multiplier = 1;
7802
7803         /* Pass our mode to the connectors and the CRTC to give them a chance to
7804          * adjust it according to limitations or connector properties, and also
7805          * a chance to reject the mode entirely.
7806          */
7807         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7808                             base.head) {
7809
7810                 if (&encoder->new_crtc->base != crtc)
7811                         continue;
7812
7813                 if (encoder->compute_config) {
7814                         if (!(encoder->compute_config(encoder, pipe_config))) {
7815                                 DRM_DEBUG_KMS("Encoder config failure\n");
7816                                 goto fail;
7817                         }
7818
7819                         continue;
7820                 }
7821
7822                 encoder_funcs = encoder->base.helper_private;
7823                 if (!(encoder_funcs->mode_fixup(&encoder->base,
7824                                                 &pipe_config->requested_mode,
7825                                                 &pipe_config->adjusted_mode))) {
7826                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7827                         goto fail;
7828                 }
7829         }
7830
7831         /* Set default port clock if not overwritten by the encoder. Needs to be
7832          * done afterwards in case the encoder adjusts the mode. */
7833         if (!pipe_config->port_clock)
7834                 pipe_config->port_clock = pipe_config->adjusted_mode.clock;
7835
7836         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
7837         if (ret < 0) {
7838                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7839                 goto fail;
7840         }
7841
7842         if (ret == RETRY) {
7843                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
7844                         ret = -EINVAL;
7845                         goto fail;
7846                 }
7847
7848                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
7849                 retry = false;
7850                 goto encoder_retry;
7851         }
7852
7853         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7854         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7855                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7856
7857         return pipe_config;
7858 fail:
7859         kfree(pipe_config);
7860         return ERR_PTR(ret);
7861 }
7862
7863 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7864  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7865 static void
7866 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7867                              unsigned *prepare_pipes, unsigned *disable_pipes)
7868 {
7869         struct intel_crtc *intel_crtc;
7870         struct drm_device *dev = crtc->dev;
7871         struct intel_encoder *encoder;
7872         struct intel_connector *connector;
7873         struct drm_crtc *tmp_crtc;
7874
7875         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7876
7877         /* Check which crtcs have changed outputs connected to them, these need
7878          * to be part of the prepare_pipes mask. We don't (yet) support global
7879          * modeset across multiple crtcs, so modeset_pipes will only have one
7880          * bit set at most. */
7881         list_for_each_entry(connector, &dev->mode_config.connector_list,
7882                             base.head) {
7883                 if (connector->base.encoder == &connector->new_encoder->base)
7884                         continue;
7885
7886                 if (connector->base.encoder) {
7887                         tmp_crtc = connector->base.encoder->crtc;
7888
7889                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7890                 }
7891
7892                 if (connector->new_encoder)
7893                         *prepare_pipes |=
7894                                 1 << connector->new_encoder->new_crtc->pipe;
7895         }
7896
7897         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7898                             base.head) {
7899                 if (encoder->base.crtc == &encoder->new_crtc->base)
7900                         continue;
7901
7902                 if (encoder->base.crtc) {
7903                         tmp_crtc = encoder->base.crtc;
7904
7905                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7906                 }
7907
7908                 if (encoder->new_crtc)
7909                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7910         }
7911
7912         /* Check for any pipes that will be fully disabled ... */
7913         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7914                             base.head) {
7915                 bool used = false;
7916
7917                 /* Don't try to disable disabled crtcs. */
7918                 if (!intel_crtc->base.enabled)
7919                         continue;
7920
7921                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7922                                     base.head) {
7923                         if (encoder->new_crtc == intel_crtc)
7924                                 used = true;
7925                 }
7926
7927                 if (!used)
7928                         *disable_pipes |= 1 << intel_crtc->pipe;
7929         }
7930
7931
7932         /* set_mode is also used to update properties on life display pipes. */
7933         intel_crtc = to_intel_crtc(crtc);
7934         if (crtc->enabled)
7935                 *prepare_pipes |= 1 << intel_crtc->pipe;
7936
7937         /*
7938          * For simplicity do a full modeset on any pipe where the output routing
7939          * changed. We could be more clever, but that would require us to be
7940          * more careful with calling the relevant encoder->mode_set functions.
7941          */
7942         if (*prepare_pipes)
7943                 *modeset_pipes = *prepare_pipes;
7944
7945         /* ... and mask these out. */
7946         *modeset_pipes &= ~(*disable_pipes);
7947         *prepare_pipes &= ~(*disable_pipes);
7948
7949         /*
7950          * HACK: We don't (yet) fully support global modesets. intel_set_config
7951          * obies this rule, but the modeset restore mode of
7952          * intel_modeset_setup_hw_state does not.
7953          */
7954         *modeset_pipes &= 1 << intel_crtc->pipe;
7955         *prepare_pipes &= 1 << intel_crtc->pipe;
7956
7957         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7958                       *modeset_pipes, *prepare_pipes, *disable_pipes);
7959 }
7960
7961 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7962 {
7963         struct drm_encoder *encoder;
7964         struct drm_device *dev = crtc->dev;
7965
7966         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7967                 if (encoder->crtc == crtc)
7968                         return true;
7969
7970         return false;
7971 }
7972
7973 static void
7974 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7975 {
7976         struct intel_encoder *intel_encoder;
7977         struct intel_crtc *intel_crtc;
7978         struct drm_connector *connector;
7979
7980         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7981                             base.head) {
7982                 if (!intel_encoder->base.crtc)
7983                         continue;
7984
7985                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7986
7987                 if (prepare_pipes & (1 << intel_crtc->pipe))
7988                         intel_encoder->connectors_active = false;
7989         }
7990
7991         intel_modeset_commit_output_state(dev);
7992
7993         /* Update computed state. */
7994         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7995                             base.head) {
7996                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7997         }
7998
7999         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8000                 if (!connector->encoder || !connector->encoder->crtc)
8001                         continue;
8002
8003                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8004
8005                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8006                         struct drm_property *dpms_property =
8007                                 dev->mode_config.dpms_property;
8008
8009                         connector->dpms = DRM_MODE_DPMS_ON;
8010                         drm_object_property_set_value(&connector->base,
8011                                                          dpms_property,
8012                                                          DRM_MODE_DPMS_ON);
8013
8014                         intel_encoder = to_intel_encoder(connector->encoder);
8015                         intel_encoder->connectors_active = true;
8016                 }
8017         }
8018
8019 }
8020
8021 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8022         list_for_each_entry((intel_crtc), \
8023                             &(dev)->mode_config.crtc_list, \
8024                             base.head) \
8025                 if (mask & (1 <<(intel_crtc)->pipe))
8026
8027 static bool
8028 intel_pipe_config_compare(struct drm_device *dev,
8029                           struct intel_crtc_config *current_config,
8030                           struct intel_crtc_config *pipe_config)
8031 {
8032 #define PIPE_CONF_CHECK_X(name) \
8033         if (current_config->name != pipe_config->name) { \
8034                 DRM_ERROR("mismatch in " #name " " \
8035                           "(expected 0x%08x, found 0x%08x)\n", \
8036                           current_config->name, \
8037                           pipe_config->name); \
8038                 return false; \
8039         }
8040
8041 #define PIPE_CONF_CHECK_I(name) \
8042         if (current_config->name != pipe_config->name) { \
8043                 DRM_ERROR("mismatch in " #name " " \
8044                           "(expected %i, found %i)\n", \
8045                           current_config->name, \
8046                           pipe_config->name); \
8047                 return false; \
8048         }
8049
8050 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
8051         if ((current_config->name ^ pipe_config->name) & (mask)) { \
8052                 DRM_ERROR("mismatch in " #name " " \
8053                           "(expected %i, found %i)\n", \
8054                           current_config->name & (mask), \
8055                           pipe_config->name & (mask)); \
8056                 return false; \
8057         }
8058
8059 #define PIPE_CONF_QUIRK(quirk)  \
8060         ((current_config->quirks | pipe_config->quirks) & (quirk))
8061
8062         PIPE_CONF_CHECK_I(cpu_transcoder);
8063
8064         PIPE_CONF_CHECK_I(has_pch_encoder);
8065         PIPE_CONF_CHECK_I(fdi_lanes);
8066         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8067         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8068         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8069         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8070         PIPE_CONF_CHECK_I(fdi_m_n.tu);
8071
8072         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8073         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8074         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8075         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8076         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8077         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8078
8079         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8080         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8081         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8082         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8083         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8084         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8085
8086         if (!HAS_PCH_SPLIT(dev))
8087                 PIPE_CONF_CHECK_I(pixel_multiplier);
8088
8089         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8090                               DRM_MODE_FLAG_INTERLACE);
8091
8092         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8093                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8094                                       DRM_MODE_FLAG_PHSYNC);
8095                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8096                                       DRM_MODE_FLAG_NHSYNC);
8097                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8098                                       DRM_MODE_FLAG_PVSYNC);
8099                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8100                                       DRM_MODE_FLAG_NVSYNC);
8101         }
8102
8103         PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8104         PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8105
8106         PIPE_CONF_CHECK_I(gmch_pfit.control);
8107         /* pfit ratios are autocomputed by the hw on gen4+ */
8108         if (INTEL_INFO(dev)->gen < 4)
8109                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8110         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8111         PIPE_CONF_CHECK_I(pch_pfit.pos);
8112         PIPE_CONF_CHECK_I(pch_pfit.size);
8113
8114         PIPE_CONF_CHECK_I(ips_enabled);
8115
8116         PIPE_CONF_CHECK_I(shared_dpll);
8117         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8118         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8119         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8120         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8121
8122 #undef PIPE_CONF_CHECK_X
8123 #undef PIPE_CONF_CHECK_I
8124 #undef PIPE_CONF_CHECK_FLAGS
8125 #undef PIPE_CONF_QUIRK
8126
8127         return true;
8128 }
8129
8130 static void
8131 check_connector_state(struct drm_device *dev)
8132 {
8133         struct intel_connector *connector;
8134
8135         list_for_each_entry(connector, &dev->mode_config.connector_list,
8136                             base.head) {
8137                 /* This also checks the encoder/connector hw state with the
8138                  * ->get_hw_state callbacks. */
8139                 intel_connector_check_state(connector);
8140
8141                 WARN(&connector->new_encoder->base != connector->base.encoder,
8142                      "connector's staged encoder doesn't match current encoder\n");
8143         }
8144 }
8145
8146 static void
8147 check_encoder_state(struct drm_device *dev)
8148 {
8149         struct intel_encoder *encoder;
8150         struct intel_connector *connector;
8151
8152         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8153                             base.head) {
8154                 bool enabled = false;
8155                 bool active = false;
8156                 enum pipe pipe, tracked_pipe;
8157
8158                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8159                               encoder->base.base.id,
8160                               drm_get_encoder_name(&encoder->base));
8161
8162                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8163                      "encoder's stage crtc doesn't match current crtc\n");
8164                 WARN(encoder->connectors_active && !encoder->base.crtc,
8165                      "encoder's active_connectors set, but no crtc\n");
8166
8167                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8168                                     base.head) {
8169                         if (connector->base.encoder != &encoder->base)
8170                                 continue;
8171                         enabled = true;
8172                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8173                                 active = true;
8174                 }
8175                 WARN(!!encoder->base.crtc != enabled,
8176                      "encoder's enabled state mismatch "
8177                      "(expected %i, found %i)\n",
8178                      !!encoder->base.crtc, enabled);
8179                 WARN(active && !encoder->base.crtc,
8180                      "active encoder with no crtc\n");
8181
8182                 WARN(encoder->connectors_active != active,
8183                      "encoder's computed active state doesn't match tracked active state "
8184                      "(expected %i, found %i)\n", active, encoder->connectors_active);
8185
8186                 active = encoder->get_hw_state(encoder, &pipe);
8187                 WARN(active != encoder->connectors_active,
8188                      "encoder's hw state doesn't match sw tracking "
8189                      "(expected %i, found %i)\n",
8190                      encoder->connectors_active, active);
8191
8192                 if (!encoder->base.crtc)
8193                         continue;
8194
8195                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8196                 WARN(active && pipe != tracked_pipe,
8197                      "active encoder's pipe doesn't match"
8198                      "(expected %i, found %i)\n",
8199                      tracked_pipe, pipe);
8200
8201         }
8202 }
8203
8204 static void
8205 check_crtc_state(struct drm_device *dev)
8206 {
8207         drm_i915_private_t *dev_priv = dev->dev_private;
8208         struct intel_crtc *crtc;
8209         struct intel_encoder *encoder;
8210         struct intel_crtc_config pipe_config;
8211
8212         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8213                             base.head) {
8214                 bool enabled = false;
8215                 bool active = false;
8216
8217                 memset(&pipe_config, 0, sizeof(pipe_config));
8218
8219                 DRM_DEBUG_KMS("[CRTC:%d]\n",
8220                               crtc->base.base.id);
8221
8222                 WARN(crtc->active && !crtc->base.enabled,
8223                      "active crtc, but not enabled in sw tracking\n");
8224
8225                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8226                                     base.head) {
8227                         if (encoder->base.crtc != &crtc->base)
8228                                 continue;
8229                         enabled = true;
8230                         if (encoder->connectors_active)
8231                                 active = true;
8232                 }
8233
8234                 WARN(active != crtc->active,
8235                      "crtc's computed active state doesn't match tracked active state "
8236                      "(expected %i, found %i)\n", active, crtc->active);
8237                 WARN(enabled != crtc->base.enabled,
8238                      "crtc's computed enabled state doesn't match tracked enabled state "
8239                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8240
8241                 active = dev_priv->display.get_pipe_config(crtc,
8242                                                            &pipe_config);
8243
8244                 /* hw state is inconsistent with the pipe A quirk */
8245                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8246                         active = crtc->active;
8247
8248                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8249                                     base.head) {
8250                         if (encoder->base.crtc != &crtc->base)
8251                                 continue;
8252                         if (encoder->get_config)
8253                                 encoder->get_config(encoder, &pipe_config);
8254                 }
8255
8256                 WARN(crtc->active != active,
8257                      "crtc active state doesn't match with hw state "
8258                      "(expected %i, found %i)\n", crtc->active, active);
8259
8260                 if (active &&
8261                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8262                         WARN(1, "pipe state doesn't match!\n");
8263                         intel_dump_pipe_config(crtc, &pipe_config,
8264                                                "[hw state]");
8265                         intel_dump_pipe_config(crtc, &crtc->config,
8266                                                "[sw state]");
8267                 }
8268         }
8269 }
8270
8271 static void
8272 check_shared_dpll_state(struct drm_device *dev)
8273 {
8274         drm_i915_private_t *dev_priv = dev->dev_private;
8275         struct intel_crtc *crtc;
8276         struct intel_dpll_hw_state dpll_hw_state;
8277         int i;
8278
8279         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8280                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8281                 int enabled_crtcs = 0, active_crtcs = 0;
8282                 bool active;
8283
8284                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8285
8286                 DRM_DEBUG_KMS("%s\n", pll->name);
8287
8288                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8289
8290                 WARN(pll->active > pll->refcount,
8291                      "more active pll users than references: %i vs %i\n",
8292                      pll->active, pll->refcount);
8293                 WARN(pll->active && !pll->on,
8294                      "pll in active use but not on in sw tracking\n");
8295                 WARN(pll->on != active,
8296                      "pll on state mismatch (expected %i, found %i)\n",
8297                      pll->on, active);
8298
8299                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8300                                     base.head) {
8301                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8302                                 enabled_crtcs++;
8303                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8304                                 active_crtcs++;
8305                 }
8306                 WARN(pll->active != active_crtcs,
8307                      "pll active crtcs mismatch (expected %i, found %i)\n",
8308                      pll->active, active_crtcs);
8309                 WARN(pll->refcount != enabled_crtcs,
8310                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
8311                      pll->refcount, enabled_crtcs);
8312
8313                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8314                                        sizeof(dpll_hw_state)),
8315                      "pll hw state mismatch\n");
8316         }
8317 }
8318
8319 void
8320 intel_modeset_check_state(struct drm_device *dev)
8321 {
8322         check_connector_state(dev);
8323         check_encoder_state(dev);
8324         check_crtc_state(dev);
8325         check_shared_dpll_state(dev);
8326 }
8327
8328 static int __intel_set_mode(struct drm_crtc *crtc,
8329                             struct drm_display_mode *mode,
8330                             int x, int y, struct drm_framebuffer *fb)
8331 {
8332         struct drm_device *dev = crtc->dev;
8333         drm_i915_private_t *dev_priv = dev->dev_private;
8334         struct drm_display_mode *saved_mode, *saved_hwmode;
8335         struct intel_crtc_config *pipe_config = NULL;
8336         struct intel_crtc *intel_crtc;
8337         unsigned disable_pipes, prepare_pipes, modeset_pipes;
8338         int ret = 0;
8339
8340         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8341         if (!saved_mode)
8342                 return -ENOMEM;
8343         saved_hwmode = saved_mode + 1;
8344
8345         intel_modeset_affected_pipes(crtc, &modeset_pipes,
8346                                      &prepare_pipes, &disable_pipes);
8347
8348         *saved_hwmode = crtc->hwmode;
8349         *saved_mode = crtc->mode;
8350
8351         /* Hack: Because we don't (yet) support global modeset on multiple
8352          * crtcs, we don't keep track of the new mode for more than one crtc.
8353          * Hence simply check whether any bit is set in modeset_pipes in all the
8354          * pieces of code that are not yet converted to deal with mutliple crtcs
8355          * changing their mode at the same time. */
8356         if (modeset_pipes) {
8357                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8358                 if (IS_ERR(pipe_config)) {
8359                         ret = PTR_ERR(pipe_config);
8360                         pipe_config = NULL;
8361
8362                         goto out;
8363                 }
8364                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8365                                        "[modeset]");
8366         }
8367
8368         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8369                 intel_crtc_disable(&intel_crtc->base);
8370
8371         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8372                 if (intel_crtc->base.enabled)
8373                         dev_priv->display.crtc_disable(&intel_crtc->base);
8374         }
8375
8376         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8377          * to set it here already despite that we pass it down the callchain.
8378          */
8379         if (modeset_pipes) {
8380                 crtc->mode = *mode;
8381                 /* mode_set/enable/disable functions rely on a correct pipe
8382                  * config. */
8383                 to_intel_crtc(crtc)->config = *pipe_config;
8384         }
8385
8386         /* Only after disabling all output pipelines that will be changed can we
8387          * update the the output configuration. */
8388         intel_modeset_update_state(dev, prepare_pipes);
8389
8390         if (dev_priv->display.modeset_global_resources)
8391                 dev_priv->display.modeset_global_resources(dev);
8392
8393         /* Set up the DPLL and any encoders state that needs to adjust or depend
8394          * on the DPLL.
8395          */
8396         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8397                 ret = intel_crtc_mode_set(&intel_crtc->base,
8398                                           x, y, fb);
8399                 if (ret)
8400                         goto done;
8401         }
8402
8403         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8404         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8405                 dev_priv->display.crtc_enable(&intel_crtc->base);
8406
8407         if (modeset_pipes) {
8408                 /* Store real post-adjustment hardware mode. */
8409                 crtc->hwmode = pipe_config->adjusted_mode;
8410
8411                 /* Calculate and store various constants which
8412                  * are later needed by vblank and swap-completion
8413                  * timestamping. They are derived from true hwmode.
8414                  */
8415                 drm_calc_timestamping_constants(crtc);
8416         }
8417
8418         /* FIXME: add subpixel order */
8419 done:
8420         if (ret && crtc->enabled) {
8421                 crtc->hwmode = *saved_hwmode;
8422                 crtc->mode = *saved_mode;
8423         }
8424
8425 out:
8426         kfree(pipe_config);
8427         kfree(saved_mode);
8428         return ret;
8429 }
8430
8431 int intel_set_mode(struct drm_crtc *crtc,
8432                      struct drm_display_mode *mode,
8433                      int x, int y, struct drm_framebuffer *fb)
8434 {
8435         int ret;
8436
8437         ret = __intel_set_mode(crtc, mode, x, y, fb);
8438
8439         if (ret == 0)
8440                 intel_modeset_check_state(crtc->dev);
8441
8442         return ret;
8443 }
8444
8445 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8446 {
8447         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8448 }
8449
8450 #undef for_each_intel_crtc_masked
8451
8452 static void intel_set_config_free(struct intel_set_config *config)
8453 {
8454         if (!config)
8455                 return;
8456
8457         kfree(config->save_connector_encoders);
8458         kfree(config->save_encoder_crtcs);
8459         kfree(config);
8460 }
8461
8462 static int intel_set_config_save_state(struct drm_device *dev,
8463                                        struct intel_set_config *config)
8464 {
8465         struct drm_encoder *encoder;
8466         struct drm_connector *connector;
8467         int count;
8468
8469         config->save_encoder_crtcs =
8470                 kcalloc(dev->mode_config.num_encoder,
8471                         sizeof(struct drm_crtc *), GFP_KERNEL);
8472         if (!config->save_encoder_crtcs)
8473                 return -ENOMEM;
8474
8475         config->save_connector_encoders =
8476                 kcalloc(dev->mode_config.num_connector,
8477                         sizeof(struct drm_encoder *), GFP_KERNEL);
8478         if (!config->save_connector_encoders)
8479                 return -ENOMEM;
8480
8481         /* Copy data. Note that driver private data is not affected.
8482          * Should anything bad happen only the expected state is
8483          * restored, not the drivers personal bookkeeping.
8484          */
8485         count = 0;
8486         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8487                 config->save_encoder_crtcs[count++] = encoder->crtc;
8488         }
8489
8490         count = 0;
8491         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8492                 config->save_connector_encoders[count++] = connector->encoder;
8493         }
8494
8495         return 0;
8496 }
8497
8498 static void intel_set_config_restore_state(struct drm_device *dev,
8499                                            struct intel_set_config *config)
8500 {
8501         struct intel_encoder *encoder;
8502         struct intel_connector *connector;
8503         int count;
8504
8505         count = 0;
8506         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8507                 encoder->new_crtc =
8508                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8509         }
8510
8511         count = 0;
8512         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8513                 connector->new_encoder =
8514                         to_intel_encoder(config->save_connector_encoders[count++]);
8515         }
8516 }
8517
8518 static bool
8519 is_crtc_connector_off(struct drm_crtc *crtc, struct drm_connector *connectors,
8520                       int num_connectors)
8521 {
8522         int i;
8523
8524         for (i = 0; i < num_connectors; i++)
8525                 if (connectors[i].encoder &&
8526                     connectors[i].encoder->crtc == crtc &&
8527                     connectors[i].dpms != DRM_MODE_DPMS_ON)
8528                         return true;
8529
8530         return false;
8531 }
8532
8533 static void
8534 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8535                                       struct intel_set_config *config)
8536 {
8537
8538         /* We should be able to check here if the fb has the same properties
8539          * and then just flip_or_move it */
8540         if (set->connectors != NULL &&
8541             is_crtc_connector_off(set->crtc, *set->connectors,
8542                                   set->num_connectors)) {
8543                         config->mode_changed = true;
8544         } else if (set->crtc->fb != set->fb) {
8545                 /* If we have no fb then treat it as a full mode set */
8546                 if (set->crtc->fb == NULL) {
8547                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8548                         config->mode_changed = true;
8549                 } else if (set->fb == NULL) {
8550                         config->mode_changed = true;
8551                 } else if (set->fb->pixel_format !=
8552                            set->crtc->fb->pixel_format) {
8553                         config->mode_changed = true;
8554                 } else {
8555                         config->fb_changed = true;
8556                 }
8557         }
8558
8559         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8560                 config->fb_changed = true;
8561
8562         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8563                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8564                 drm_mode_debug_printmodeline(&set->crtc->mode);
8565                 drm_mode_debug_printmodeline(set->mode);
8566                 config->mode_changed = true;
8567         }
8568 }
8569
8570 static int
8571 intel_modeset_stage_output_state(struct drm_device *dev,
8572                                  struct drm_mode_set *set,
8573                                  struct intel_set_config *config)
8574 {
8575         struct drm_crtc *new_crtc;
8576         struct intel_connector *connector;
8577         struct intel_encoder *encoder;
8578         int count, ro;
8579
8580         /* The upper layers ensure that we either disable a crtc or have a list
8581          * of connectors. For paranoia, double-check this. */
8582         WARN_ON(!set->fb && (set->num_connectors != 0));
8583         WARN_ON(set->fb && (set->num_connectors == 0));
8584
8585         count = 0;
8586         list_for_each_entry(connector, &dev->mode_config.connector_list,
8587                             base.head) {
8588                 /* Otherwise traverse passed in connector list and get encoders
8589                  * for them. */
8590                 for (ro = 0; ro < set->num_connectors; ro++) {
8591                         if (set->connectors[ro] == &connector->base) {
8592                                 connector->new_encoder = connector->encoder;
8593                                 break;
8594                         }
8595                 }
8596
8597                 /* If we disable the crtc, disable all its connectors. Also, if
8598                  * the connector is on the changing crtc but not on the new
8599                  * connector list, disable it. */
8600                 if ((!set->fb || ro == set->num_connectors) &&
8601                     connector->base.encoder &&
8602                     connector->base.encoder->crtc == set->crtc) {
8603                         connector->new_encoder = NULL;
8604
8605                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8606                                 connector->base.base.id,
8607                                 drm_get_connector_name(&connector->base));
8608                 }
8609
8610
8611                 if (&connector->new_encoder->base != connector->base.encoder) {
8612                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8613                         config->mode_changed = true;
8614                 }
8615         }
8616         /* connector->new_encoder is now updated for all connectors. */
8617
8618         /* Update crtc of enabled connectors. */
8619         count = 0;
8620         list_for_each_entry(connector, &dev->mode_config.connector_list,
8621                             base.head) {
8622                 if (!connector->new_encoder)
8623                         continue;
8624
8625                 new_crtc = connector->new_encoder->base.crtc;
8626
8627                 for (ro = 0; ro < set->num_connectors; ro++) {
8628                         if (set->connectors[ro] == &connector->base)
8629                                 new_crtc = set->crtc;
8630                 }
8631
8632                 /* Make sure the new CRTC will work with the encoder */
8633                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8634                                            new_crtc)) {
8635                         return -EINVAL;
8636                 }
8637                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8638
8639                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8640                         connector->base.base.id,
8641                         drm_get_connector_name(&connector->base),
8642                         new_crtc->base.id);
8643         }
8644
8645         /* Check for any encoders that needs to be disabled. */
8646         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8647                             base.head) {
8648                 list_for_each_entry(connector,
8649                                     &dev->mode_config.connector_list,
8650                                     base.head) {
8651                         if (connector->new_encoder == encoder) {
8652                                 WARN_ON(!connector->new_encoder->new_crtc);
8653
8654                                 goto next_encoder;
8655                         }
8656                 }
8657                 encoder->new_crtc = NULL;
8658 next_encoder:
8659                 /* Only now check for crtc changes so we don't miss encoders
8660                  * that will be disabled. */
8661                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8662                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8663                         config->mode_changed = true;
8664                 }
8665         }
8666         /* Now we've also updated encoder->new_crtc for all encoders. */
8667
8668         return 0;
8669 }
8670
8671 static int intel_crtc_set_config(struct drm_mode_set *set)
8672 {
8673         struct drm_device *dev;
8674         struct drm_mode_set save_set;
8675         struct intel_set_config *config;
8676         int ret;
8677
8678         BUG_ON(!set);
8679         BUG_ON(!set->crtc);
8680         BUG_ON(!set->crtc->helper_private);
8681
8682         /* Enforce sane interface api - has been abused by the fb helper. */
8683         BUG_ON(!set->mode && set->fb);
8684         BUG_ON(set->fb && set->num_connectors == 0);
8685
8686         if (set->fb) {
8687                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8688                                 set->crtc->base.id, set->fb->base.id,
8689                                 (int)set->num_connectors, set->x, set->y);
8690         } else {
8691                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8692         }
8693
8694         dev = set->crtc->dev;
8695
8696         ret = -ENOMEM;
8697         config = kzalloc(sizeof(*config), GFP_KERNEL);
8698         if (!config)
8699                 goto out_config;
8700
8701         ret = intel_set_config_save_state(dev, config);
8702         if (ret)
8703                 goto out_config;
8704
8705         save_set.crtc = set->crtc;
8706         save_set.mode = &set->crtc->mode;
8707         save_set.x = set->crtc->x;
8708         save_set.y = set->crtc->y;
8709         save_set.fb = set->crtc->fb;
8710
8711         /* Compute whether we need a full modeset, only an fb base update or no
8712          * change at all. In the future we might also check whether only the
8713          * mode changed, e.g. for LVDS where we only change the panel fitter in
8714          * such cases. */
8715         intel_set_config_compute_mode_changes(set, config);
8716
8717         ret = intel_modeset_stage_output_state(dev, set, config);
8718         if (ret)
8719                 goto fail;
8720
8721         if (config->mode_changed) {
8722                 ret = intel_set_mode(set->crtc, set->mode,
8723                                      set->x, set->y, set->fb);
8724         } else if (config->fb_changed) {
8725                 intel_crtc_wait_for_pending_flips(set->crtc);
8726
8727                 ret = intel_pipe_set_base(set->crtc,
8728                                           set->x, set->y, set->fb);
8729         }
8730
8731         if (ret) {
8732                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
8733                               set->crtc->base.id, ret);
8734 fail:
8735                 intel_set_config_restore_state(dev, config);
8736
8737                 /* Try to restore the config */
8738                 if (config->mode_changed &&
8739                     intel_set_mode(save_set.crtc, save_set.mode,
8740                                    save_set.x, save_set.y, save_set.fb))
8741                         DRM_ERROR("failed to restore config after modeset failure\n");
8742         }
8743
8744 out_config:
8745         intel_set_config_free(config);
8746         return ret;
8747 }
8748
8749 static const struct drm_crtc_funcs intel_crtc_funcs = {
8750         .cursor_set = intel_crtc_cursor_set,
8751         .cursor_move = intel_crtc_cursor_move,
8752         .gamma_set = intel_crtc_gamma_set,
8753         .set_config = intel_crtc_set_config,
8754         .destroy = intel_crtc_destroy,
8755         .page_flip = intel_crtc_page_flip,
8756 };
8757
8758 static void intel_cpu_pll_init(struct drm_device *dev)
8759 {
8760         if (HAS_DDI(dev))
8761                 intel_ddi_pll_init(dev);
8762 }
8763
8764 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
8765                                       struct intel_shared_dpll *pll,
8766                                       struct intel_dpll_hw_state *hw_state)
8767 {
8768         uint32_t val;
8769
8770         val = I915_READ(PCH_DPLL(pll->id));
8771         hw_state->dpll = val;
8772         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
8773         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
8774
8775         return val & DPLL_VCO_ENABLE;
8776 }
8777
8778 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
8779                                   struct intel_shared_dpll *pll)
8780 {
8781         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
8782         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
8783 }
8784
8785 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
8786                                 struct intel_shared_dpll *pll)
8787 {
8788         /* PCH refclock must be enabled first */
8789         assert_pch_refclk_enabled(dev_priv);
8790
8791         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
8792
8793         /* Wait for the clocks to stabilize. */
8794         POSTING_READ(PCH_DPLL(pll->id));
8795         udelay(150);
8796
8797         /* The pixel multiplier can only be updated once the
8798          * DPLL is enabled and the clocks are stable.
8799          *
8800          * So write it again.
8801          */
8802         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
8803         POSTING_READ(PCH_DPLL(pll->id));
8804         udelay(200);
8805 }
8806
8807 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
8808                                  struct intel_shared_dpll *pll)
8809 {
8810         struct drm_device *dev = dev_priv->dev;
8811         struct intel_crtc *crtc;
8812
8813         /* Make sure no transcoder isn't still depending on us. */
8814         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
8815                 if (intel_crtc_to_shared_dpll(crtc) == pll)
8816                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
8817         }
8818
8819         I915_WRITE(PCH_DPLL(pll->id), 0);
8820         POSTING_READ(PCH_DPLL(pll->id));
8821         udelay(200);
8822 }
8823
8824 static char *ibx_pch_dpll_names[] = {
8825         "PCH DPLL A",
8826         "PCH DPLL B",
8827 };
8828
8829 static void ibx_pch_dpll_init(struct drm_device *dev)
8830 {
8831         struct drm_i915_private *dev_priv = dev->dev_private;
8832         int i;
8833
8834         dev_priv->num_shared_dpll = 2;
8835
8836         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8837                 dev_priv->shared_dplls[i].id = i;
8838                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
8839                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
8840                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
8841                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
8842                 dev_priv->shared_dplls[i].get_hw_state =
8843                         ibx_pch_dpll_get_hw_state;
8844         }
8845 }
8846
8847 static void intel_shared_dpll_init(struct drm_device *dev)
8848 {
8849         struct drm_i915_private *dev_priv = dev->dev_private;
8850
8851         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8852                 ibx_pch_dpll_init(dev);
8853         else
8854                 dev_priv->num_shared_dpll = 0;
8855
8856         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
8857         DRM_DEBUG_KMS("%i shared PLLs initialized\n",
8858                       dev_priv->num_shared_dpll);
8859 }
8860
8861 static void intel_crtc_init(struct drm_device *dev, int pipe)
8862 {
8863         drm_i915_private_t *dev_priv = dev->dev_private;
8864         struct intel_crtc *intel_crtc;
8865         int i;
8866
8867         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8868         if (intel_crtc == NULL)
8869                 return;
8870
8871         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8872
8873         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8874         for (i = 0; i < 256; i++) {
8875                 intel_crtc->lut_r[i] = i;
8876                 intel_crtc->lut_g[i] = i;
8877                 intel_crtc->lut_b[i] = i;
8878         }
8879
8880         /* Swap pipes & planes for FBC on pre-965 */
8881         intel_crtc->pipe = pipe;
8882         intel_crtc->plane = pipe;
8883         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8884                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8885                 intel_crtc->plane = !pipe;
8886         }
8887
8888         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8889                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8890         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8891         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8892
8893         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8894 }
8895
8896 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8897                                 struct drm_file *file)
8898 {
8899         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8900         struct drm_mode_object *drmmode_obj;
8901         struct intel_crtc *crtc;
8902
8903         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8904                 return -ENODEV;
8905
8906         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8907                         DRM_MODE_OBJECT_CRTC);
8908
8909         if (!drmmode_obj) {
8910                 DRM_ERROR("no such CRTC id\n");
8911                 return -EINVAL;
8912         }
8913
8914         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8915         pipe_from_crtc_id->pipe = crtc->pipe;
8916
8917         return 0;
8918 }
8919
8920 static int intel_encoder_clones(struct intel_encoder *encoder)
8921 {
8922         struct drm_device *dev = encoder->base.dev;
8923         struct intel_encoder *source_encoder;
8924         int index_mask = 0;
8925         int entry = 0;
8926
8927         list_for_each_entry(source_encoder,
8928                             &dev->mode_config.encoder_list, base.head) {
8929
8930                 if (encoder == source_encoder)
8931                         index_mask |= (1 << entry);
8932
8933                 /* Intel hw has only one MUX where enocoders could be cloned. */
8934                 if (encoder->cloneable && source_encoder->cloneable)
8935                         index_mask |= (1 << entry);
8936
8937                 entry++;
8938         }
8939
8940         return index_mask;
8941 }
8942
8943 static bool has_edp_a(struct drm_device *dev)
8944 {
8945         struct drm_i915_private *dev_priv = dev->dev_private;
8946
8947         if (!IS_MOBILE(dev))
8948                 return false;
8949
8950         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8951                 return false;
8952
8953         if (IS_GEN5(dev) &&
8954             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8955                 return false;
8956
8957         return true;
8958 }
8959
8960 static void intel_setup_outputs(struct drm_device *dev)
8961 {
8962         struct drm_i915_private *dev_priv = dev->dev_private;
8963         struct intel_encoder *encoder;
8964         bool dpd_is_edp = false;
8965
8966         intel_lvds_init(dev);
8967
8968         if (!IS_ULT(dev))
8969                 intel_crt_init(dev);
8970
8971         if (HAS_DDI(dev)) {
8972                 int found;
8973
8974                 /* Haswell uses DDI functions to detect digital outputs */
8975                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8976                 /* DDI A only supports eDP */
8977                 if (found)
8978                         intel_ddi_init(dev, PORT_A);
8979
8980                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8981                  * register */
8982                 found = I915_READ(SFUSE_STRAP);
8983
8984                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8985                         intel_ddi_init(dev, PORT_B);
8986                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8987                         intel_ddi_init(dev, PORT_C);
8988                 if (found & SFUSE_STRAP_DDID_DETECTED)
8989                         intel_ddi_init(dev, PORT_D);
8990         } else if (HAS_PCH_SPLIT(dev)) {
8991                 int found;
8992                 dpd_is_edp = intel_dpd_is_edp(dev);
8993
8994                 if (has_edp_a(dev))
8995                         intel_dp_init(dev, DP_A, PORT_A);
8996
8997                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8998                         /* PCH SDVOB multiplex with HDMIB */
8999                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
9000                         if (!found)
9001                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9002                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9003                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
9004                 }
9005
9006                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9007                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9008
9009                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9010                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9011
9012                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9013                         intel_dp_init(dev, PCH_DP_C, PORT_C);
9014
9015                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9016                         intel_dp_init(dev, PCH_DP_D, PORT_D);
9017         } else if (IS_VALLEYVIEW(dev)) {
9018                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9019                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9020                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
9021
9022                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9023                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9024                                         PORT_B);
9025                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9026                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9027                 }
9028         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9029                 bool found = false;
9030
9031                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9032                         DRM_DEBUG_KMS("probing SDVOB\n");
9033                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9034                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9035                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9036                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9037                         }
9038
9039                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
9040                                 intel_dp_init(dev, DP_B, PORT_B);
9041                 }
9042
9043                 /* Before G4X SDVOC doesn't have its own detect register */
9044
9045                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9046                         DRM_DEBUG_KMS("probing SDVOC\n");
9047                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9048                 }
9049
9050                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9051
9052                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9053                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9054                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9055                         }
9056                         if (SUPPORTS_INTEGRATED_DP(dev))
9057                                 intel_dp_init(dev, DP_C, PORT_C);
9058                 }
9059
9060                 if (SUPPORTS_INTEGRATED_DP(dev) &&
9061                     (I915_READ(DP_D) & DP_DETECTED))
9062                         intel_dp_init(dev, DP_D, PORT_D);
9063         } else if (IS_GEN2(dev))
9064                 intel_dvo_init(dev);
9065
9066         if (SUPPORTS_TV(dev))
9067                 intel_tv_init(dev);
9068
9069         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9070                 encoder->base.possible_crtcs = encoder->crtc_mask;
9071                 encoder->base.possible_clones =
9072                         intel_encoder_clones(encoder);
9073         }
9074
9075         intel_init_pch_refclk(dev);
9076
9077         drm_helper_move_panel_connectors_to_head(dev);
9078 }
9079
9080 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9081 {
9082         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9083
9084         drm_framebuffer_cleanup(fb);
9085         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
9086
9087         kfree(intel_fb);
9088 }
9089
9090 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9091                                                 struct drm_file *file,
9092                                                 unsigned int *handle)
9093 {
9094         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9095         struct drm_i915_gem_object *obj = intel_fb->obj;
9096
9097         return drm_gem_handle_create(file, &obj->base, handle);
9098 }
9099
9100 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9101         .destroy = intel_user_framebuffer_destroy,
9102         .create_handle = intel_user_framebuffer_create_handle,
9103 };
9104
9105 int intel_framebuffer_init(struct drm_device *dev,
9106                            struct intel_framebuffer *intel_fb,
9107                            struct drm_mode_fb_cmd2 *mode_cmd,
9108                            struct drm_i915_gem_object *obj)
9109 {
9110         int pitch_limit;
9111         int ret;
9112
9113         if (obj->tiling_mode == I915_TILING_Y) {
9114                 DRM_DEBUG("hardware does not support tiling Y\n");
9115                 return -EINVAL;
9116         }
9117
9118         if (mode_cmd->pitches[0] & 63) {
9119                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9120                           mode_cmd->pitches[0]);
9121                 return -EINVAL;
9122         }
9123
9124         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9125                 pitch_limit = 32*1024;
9126         } else if (INTEL_INFO(dev)->gen >= 4) {
9127                 if (obj->tiling_mode)
9128                         pitch_limit = 16*1024;
9129                 else
9130                         pitch_limit = 32*1024;
9131         } else if (INTEL_INFO(dev)->gen >= 3) {
9132                 if (obj->tiling_mode)
9133                         pitch_limit = 8*1024;
9134                 else
9135                         pitch_limit = 16*1024;
9136         } else
9137                 /* XXX DSPC is limited to 4k tiled */
9138                 pitch_limit = 8*1024;
9139
9140         if (mode_cmd->pitches[0] > pitch_limit) {
9141                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9142                           obj->tiling_mode ? "tiled" : "linear",
9143                           mode_cmd->pitches[0], pitch_limit);
9144                 return -EINVAL;
9145         }
9146
9147         if (obj->tiling_mode != I915_TILING_NONE &&
9148             mode_cmd->pitches[0] != obj->stride) {
9149                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9150                           mode_cmd->pitches[0], obj->stride);
9151                 return -EINVAL;
9152         }
9153
9154         /* Reject formats not supported by any plane early. */
9155         switch (mode_cmd->pixel_format) {
9156         case DRM_FORMAT_C8:
9157         case DRM_FORMAT_RGB565:
9158         case DRM_FORMAT_XRGB8888:
9159         case DRM_FORMAT_ARGB8888:
9160                 break;
9161         case DRM_FORMAT_XRGB1555:
9162         case DRM_FORMAT_ARGB1555:
9163                 if (INTEL_INFO(dev)->gen > 3) {
9164                         DRM_DEBUG("unsupported pixel format: %s\n",
9165                                   drm_get_format_name(mode_cmd->pixel_format));
9166                         return -EINVAL;
9167                 }
9168                 break;
9169         case DRM_FORMAT_XBGR8888:
9170         case DRM_FORMAT_ABGR8888:
9171         case DRM_FORMAT_XRGB2101010:
9172         case DRM_FORMAT_ARGB2101010:
9173         case DRM_FORMAT_XBGR2101010:
9174         case DRM_FORMAT_ABGR2101010:
9175                 if (INTEL_INFO(dev)->gen < 4) {
9176                         DRM_DEBUG("unsupported pixel format: %s\n",
9177                                   drm_get_format_name(mode_cmd->pixel_format));
9178                         return -EINVAL;
9179                 }
9180                 break;
9181         case DRM_FORMAT_YUYV:
9182         case DRM_FORMAT_UYVY:
9183         case DRM_FORMAT_YVYU:
9184         case DRM_FORMAT_VYUY:
9185                 if (INTEL_INFO(dev)->gen < 5) {
9186                         DRM_DEBUG("unsupported pixel format: %s\n",
9187                                   drm_get_format_name(mode_cmd->pixel_format));
9188                         return -EINVAL;
9189                 }
9190                 break;
9191         default:
9192                 DRM_DEBUG("unsupported pixel format: %s\n",
9193                           drm_get_format_name(mode_cmd->pixel_format));
9194                 return -EINVAL;
9195         }
9196
9197         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9198         if (mode_cmd->offsets[0] != 0)
9199                 return -EINVAL;
9200
9201         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9202         intel_fb->obj = obj;
9203
9204         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9205         if (ret) {
9206                 DRM_ERROR("framebuffer init failed %d\n", ret);
9207                 return ret;
9208         }
9209
9210         return 0;
9211 }
9212
9213 static struct drm_framebuffer *
9214 intel_user_framebuffer_create(struct drm_device *dev,
9215                               struct drm_file *filp,
9216                               struct drm_mode_fb_cmd2 *mode_cmd)
9217 {
9218         struct drm_i915_gem_object *obj;
9219
9220         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9221                                                 mode_cmd->handles[0]));
9222         if (&obj->base == NULL)
9223                 return ERR_PTR(-ENOENT);
9224
9225         return intel_framebuffer_create(dev, mode_cmd, obj);
9226 }
9227
9228 static const struct drm_mode_config_funcs intel_mode_funcs = {
9229         .fb_create = intel_user_framebuffer_create,
9230         .output_poll_changed = intel_fb_output_poll_changed,
9231 };
9232
9233 /* Set up chip specific display functions */
9234 static void intel_init_display(struct drm_device *dev)
9235 {
9236         struct drm_i915_private *dev_priv = dev->dev_private;
9237
9238         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9239                 dev_priv->display.find_dpll = g4x_find_best_dpll;
9240         else if (IS_VALLEYVIEW(dev))
9241                 dev_priv->display.find_dpll = vlv_find_best_dpll;
9242         else if (IS_PINEVIEW(dev))
9243                 dev_priv->display.find_dpll = pnv_find_best_dpll;
9244         else
9245                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9246
9247         if (HAS_DDI(dev)) {
9248                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9249                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9250                 dev_priv->display.crtc_enable = haswell_crtc_enable;
9251                 dev_priv->display.crtc_disable = haswell_crtc_disable;
9252                 dev_priv->display.off = haswell_crtc_off;
9253                 dev_priv->display.update_plane = ironlake_update_plane;
9254         } else if (HAS_PCH_SPLIT(dev)) {
9255                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9256                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9257                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9258                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9259                 dev_priv->display.off = ironlake_crtc_off;
9260                 dev_priv->display.update_plane = ironlake_update_plane;
9261         } else if (IS_VALLEYVIEW(dev)) {
9262                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9263                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9264                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9265                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9266                 dev_priv->display.off = i9xx_crtc_off;
9267                 dev_priv->display.update_plane = i9xx_update_plane;
9268         } else {
9269                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9270                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9271                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9272                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9273                 dev_priv->display.off = i9xx_crtc_off;
9274                 dev_priv->display.update_plane = i9xx_update_plane;
9275         }
9276
9277         /* Returns the core display clock speed */
9278         if (IS_VALLEYVIEW(dev))
9279                 dev_priv->display.get_display_clock_speed =
9280                         valleyview_get_display_clock_speed;
9281         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9282                 dev_priv->display.get_display_clock_speed =
9283                         i945_get_display_clock_speed;
9284         else if (IS_I915G(dev))
9285                 dev_priv->display.get_display_clock_speed =
9286                         i915_get_display_clock_speed;
9287         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
9288                 dev_priv->display.get_display_clock_speed =
9289                         i9xx_misc_get_display_clock_speed;
9290         else if (IS_I915GM(dev))
9291                 dev_priv->display.get_display_clock_speed =
9292                         i915gm_get_display_clock_speed;
9293         else if (IS_I865G(dev))
9294                 dev_priv->display.get_display_clock_speed =
9295                         i865_get_display_clock_speed;
9296         else if (IS_I85X(dev))
9297                 dev_priv->display.get_display_clock_speed =
9298                         i855_get_display_clock_speed;
9299         else /* 852, 830 */
9300                 dev_priv->display.get_display_clock_speed =
9301                         i830_get_display_clock_speed;
9302
9303         if (HAS_PCH_SPLIT(dev)) {
9304                 if (IS_GEN5(dev)) {
9305                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9306                         dev_priv->display.write_eld = ironlake_write_eld;
9307                 } else if (IS_GEN6(dev)) {
9308                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9309                         dev_priv->display.write_eld = ironlake_write_eld;
9310                 } else if (IS_IVYBRIDGE(dev)) {
9311                         /* FIXME: detect B0+ stepping and use auto training */
9312                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9313                         dev_priv->display.write_eld = ironlake_write_eld;
9314                         dev_priv->display.modeset_global_resources =
9315                                 ivb_modeset_global_resources;
9316                 } else if (IS_HASWELL(dev)) {
9317                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9318                         dev_priv->display.write_eld = haswell_write_eld;
9319                         dev_priv->display.modeset_global_resources =
9320                                 haswell_modeset_global_resources;
9321                 }
9322         } else if (IS_G4X(dev)) {
9323                 dev_priv->display.write_eld = g4x_write_eld;
9324         }
9325
9326         /* Default just returns -ENODEV to indicate unsupported */
9327         dev_priv->display.queue_flip = intel_default_queue_flip;
9328
9329         switch (INTEL_INFO(dev)->gen) {
9330         case 2:
9331                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9332                 break;
9333
9334         case 3:
9335                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9336                 break;
9337
9338         case 4:
9339         case 5:
9340                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9341                 break;
9342
9343         case 6:
9344                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9345                 break;
9346         case 7:
9347                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9348                 break;
9349         }
9350 }
9351
9352 /*
9353  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9354  * resume, or other times.  This quirk makes sure that's the case for
9355  * affected systems.
9356  */
9357 static void quirk_pipea_force(struct drm_device *dev)
9358 {
9359         struct drm_i915_private *dev_priv = dev->dev_private;
9360
9361         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9362         DRM_INFO("applying pipe a force quirk\n");
9363 }
9364
9365 /*
9366  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9367  */
9368 static void quirk_ssc_force_disable(struct drm_device *dev)
9369 {
9370         struct drm_i915_private *dev_priv = dev->dev_private;
9371         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9372         DRM_INFO("applying lvds SSC disable quirk\n");
9373 }
9374
9375 /*
9376  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9377  * brightness value
9378  */
9379 static void quirk_invert_brightness(struct drm_device *dev)
9380 {
9381         struct drm_i915_private *dev_priv = dev->dev_private;
9382         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9383         DRM_INFO("applying inverted panel brightness quirk\n");
9384 }
9385
9386 struct intel_quirk {
9387         int device;
9388         int subsystem_vendor;
9389         int subsystem_device;
9390         void (*hook)(struct drm_device *dev);
9391 };
9392
9393 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9394 struct intel_dmi_quirk {
9395         void (*hook)(struct drm_device *dev);
9396         const struct dmi_system_id (*dmi_id_list)[];
9397 };
9398
9399 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9400 {
9401         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9402         return 1;
9403 }
9404
9405 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9406         {
9407                 .dmi_id_list = &(const struct dmi_system_id[]) {
9408                         {
9409                                 .callback = intel_dmi_reverse_brightness,
9410                                 .ident = "NCR Corporation",
9411                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9412                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
9413                                 },
9414                         },
9415                         { }  /* terminating entry */
9416                 },
9417                 .hook = quirk_invert_brightness,
9418         },
9419 };
9420
9421 static struct intel_quirk intel_quirks[] = {
9422         /* HP Mini needs pipe A force quirk (LP: #322104) */
9423         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9424
9425         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9426         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9427
9428         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9429         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9430
9431         /* 830/845 need to leave pipe A & dpll A up */
9432         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9433         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9434
9435         /* Lenovo U160 cannot use SSC on LVDS */
9436         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9437
9438         /* Sony Vaio Y cannot use SSC on LVDS */
9439         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9440
9441         /* Acer Aspire 5734Z must invert backlight brightness */
9442         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9443
9444         /* Acer/eMachines G725 */
9445         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9446
9447         /* Acer/eMachines e725 */
9448         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9449
9450         /* Acer/Packard Bell NCL20 */
9451         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9452
9453         /* Acer Aspire 4736Z */
9454         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9455 };
9456
9457 static void intel_init_quirks(struct drm_device *dev)
9458 {
9459         struct pci_dev *d = dev->pdev;
9460         int i;
9461
9462         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9463                 struct intel_quirk *q = &intel_quirks[i];
9464
9465                 if (d->device == q->device &&
9466                     (d->subsystem_vendor == q->subsystem_vendor ||
9467                      q->subsystem_vendor == PCI_ANY_ID) &&
9468                     (d->subsystem_device == q->subsystem_device ||
9469                      q->subsystem_device == PCI_ANY_ID))
9470                         q->hook(dev);
9471         }
9472         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9473                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9474                         intel_dmi_quirks[i].hook(dev);
9475         }
9476 }
9477
9478 /* Disable the VGA plane that we never use */
9479 static void i915_disable_vga(struct drm_device *dev)
9480 {
9481         struct drm_i915_private *dev_priv = dev->dev_private;
9482         u8 sr1;
9483         u32 vga_reg = i915_vgacntrl_reg(dev);
9484
9485         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9486         outb(SR01, VGA_SR_INDEX);
9487         sr1 = inb(VGA_SR_DATA);
9488         outb(sr1 | 1<<5, VGA_SR_DATA);
9489         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9490         udelay(300);
9491
9492         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9493         POSTING_READ(vga_reg);
9494 }
9495
9496 void intel_modeset_init_hw(struct drm_device *dev)
9497 {
9498         intel_init_power_well(dev);
9499
9500         intel_prepare_ddi(dev);
9501
9502         intel_init_clock_gating(dev);
9503
9504         mutex_lock(&dev->struct_mutex);
9505         intel_enable_gt_powersave(dev);
9506         mutex_unlock(&dev->struct_mutex);
9507 }
9508
9509 void intel_modeset_suspend_hw(struct drm_device *dev)
9510 {
9511         intel_suspend_hw(dev);
9512 }
9513
9514 void intel_modeset_init(struct drm_device *dev)
9515 {
9516         struct drm_i915_private *dev_priv = dev->dev_private;
9517         int i, j, ret;
9518
9519         drm_mode_config_init(dev);
9520
9521         dev->mode_config.min_width = 0;
9522         dev->mode_config.min_height = 0;
9523
9524         dev->mode_config.preferred_depth = 24;
9525         dev->mode_config.prefer_shadow = 1;
9526
9527         dev->mode_config.funcs = &intel_mode_funcs;
9528
9529         intel_init_quirks(dev);
9530
9531         intel_init_pm(dev);
9532
9533         if (INTEL_INFO(dev)->num_pipes == 0)
9534                 return;
9535
9536         intel_init_display(dev);
9537
9538         if (IS_GEN2(dev)) {
9539                 dev->mode_config.max_width = 2048;
9540                 dev->mode_config.max_height = 2048;
9541         } else if (IS_GEN3(dev)) {
9542                 dev->mode_config.max_width = 4096;
9543                 dev->mode_config.max_height = 4096;
9544         } else {
9545                 dev->mode_config.max_width = 8192;
9546                 dev->mode_config.max_height = 8192;
9547         }
9548         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9549
9550         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9551                       INTEL_INFO(dev)->num_pipes,
9552                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9553
9554         for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
9555                 intel_crtc_init(dev, i);
9556                 for (j = 0; j < dev_priv->num_plane; j++) {
9557                         ret = intel_plane_init(dev, i, j);
9558                         if (ret)
9559                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
9560                                               pipe_name(i), sprite_name(i, j), ret);
9561                 }
9562         }
9563
9564         intel_cpu_pll_init(dev);
9565         intel_shared_dpll_init(dev);
9566
9567         /* Just disable it once at startup */
9568         i915_disable_vga(dev);
9569         intel_setup_outputs(dev);
9570
9571         /* Just in case the BIOS is doing something questionable. */
9572         intel_disable_fbc(dev);
9573 }
9574
9575 static void
9576 intel_connector_break_all_links(struct intel_connector *connector)
9577 {
9578         connector->base.dpms = DRM_MODE_DPMS_OFF;
9579         connector->base.encoder = NULL;
9580         connector->encoder->connectors_active = false;
9581         connector->encoder->base.crtc = NULL;
9582 }
9583
9584 static void intel_enable_pipe_a(struct drm_device *dev)
9585 {
9586         struct intel_connector *connector;
9587         struct drm_connector *crt = NULL;
9588         struct intel_load_detect_pipe load_detect_temp;
9589
9590         /* We can't just switch on the pipe A, we need to set things up with a
9591          * proper mode and output configuration. As a gross hack, enable pipe A
9592          * by enabling the load detect pipe once. */
9593         list_for_each_entry(connector,
9594                             &dev->mode_config.connector_list,
9595                             base.head) {
9596                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9597                         crt = &connector->base;
9598                         break;
9599                 }
9600         }
9601
9602         if (!crt)
9603                 return;
9604
9605         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9606                 intel_release_load_detect_pipe(crt, &load_detect_temp);
9607
9608
9609 }
9610
9611 static bool
9612 intel_check_plane_mapping(struct intel_crtc *crtc)
9613 {
9614         struct drm_device *dev = crtc->base.dev;
9615         struct drm_i915_private *dev_priv = dev->dev_private;
9616         u32 reg, val;
9617
9618         if (INTEL_INFO(dev)->num_pipes == 1)
9619                 return true;
9620
9621         reg = DSPCNTR(!crtc->plane);
9622         val = I915_READ(reg);
9623
9624         if ((val & DISPLAY_PLANE_ENABLE) &&
9625             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9626                 return false;
9627
9628         return true;
9629 }
9630
9631 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9632 {
9633         struct drm_device *dev = crtc->base.dev;
9634         struct drm_i915_private *dev_priv = dev->dev_private;
9635         u32 reg;
9636
9637         /* Clear any frame start delays used for debugging left by the BIOS */
9638         reg = PIPECONF(crtc->config.cpu_transcoder);
9639         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9640
9641         /* We need to sanitize the plane -> pipe mapping first because this will
9642          * disable the crtc (and hence change the state) if it is wrong. Note
9643          * that gen4+ has a fixed plane -> pipe mapping.  */
9644         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9645                 struct intel_connector *connector;
9646                 bool plane;
9647
9648                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9649                               crtc->base.base.id);
9650
9651                 /* Pipe has the wrong plane attached and the plane is active.
9652                  * Temporarily change the plane mapping and disable everything
9653                  * ...  */
9654                 plane = crtc->plane;
9655                 crtc->plane = !plane;
9656                 dev_priv->display.crtc_disable(&crtc->base);
9657                 crtc->plane = plane;
9658
9659                 /* ... and break all links. */
9660                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9661                                     base.head) {
9662                         if (connector->encoder->base.crtc != &crtc->base)
9663                                 continue;
9664
9665                         intel_connector_break_all_links(connector);
9666                 }
9667
9668                 WARN_ON(crtc->active);
9669                 crtc->base.enabled = false;
9670         }
9671
9672         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9673             crtc->pipe == PIPE_A && !crtc->active) {
9674                 /* BIOS forgot to enable pipe A, this mostly happens after
9675                  * resume. Force-enable the pipe to fix this, the update_dpms
9676                  * call below we restore the pipe to the right state, but leave
9677                  * the required bits on. */
9678                 intel_enable_pipe_a(dev);
9679         }
9680
9681         /* Adjust the state of the output pipe according to whether we
9682          * have active connectors/encoders. */
9683         intel_crtc_update_dpms(&crtc->base);
9684
9685         if (crtc->active != crtc->base.enabled) {
9686                 struct intel_encoder *encoder;
9687
9688                 /* This can happen either due to bugs in the get_hw_state
9689                  * functions or because the pipe is force-enabled due to the
9690                  * pipe A quirk. */
9691                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9692                               crtc->base.base.id,
9693                               crtc->base.enabled ? "enabled" : "disabled",
9694                               crtc->active ? "enabled" : "disabled");
9695
9696                 crtc->base.enabled = crtc->active;
9697
9698                 /* Because we only establish the connector -> encoder ->
9699                  * crtc links if something is active, this means the
9700                  * crtc is now deactivated. Break the links. connector
9701                  * -> encoder links are only establish when things are
9702                  *  actually up, hence no need to break them. */
9703                 WARN_ON(crtc->active);
9704
9705                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9706                         WARN_ON(encoder->connectors_active);
9707                         encoder->base.crtc = NULL;
9708                 }
9709         }
9710 }
9711
9712 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9713 {
9714         struct intel_connector *connector;
9715         struct drm_device *dev = encoder->base.dev;
9716
9717         /* We need to check both for a crtc link (meaning that the
9718          * encoder is active and trying to read from a pipe) and the
9719          * pipe itself being active. */
9720         bool has_active_crtc = encoder->base.crtc &&
9721                 to_intel_crtc(encoder->base.crtc)->active;
9722
9723         if (encoder->connectors_active && !has_active_crtc) {
9724                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9725                               encoder->base.base.id,
9726                               drm_get_encoder_name(&encoder->base));
9727
9728                 /* Connector is active, but has no active pipe. This is
9729                  * fallout from our resume register restoring. Disable
9730                  * the encoder manually again. */
9731                 if (encoder->base.crtc) {
9732                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9733                                       encoder->base.base.id,
9734                                       drm_get_encoder_name(&encoder->base));
9735                         encoder->disable(encoder);
9736                 }
9737
9738                 /* Inconsistent output/port/pipe state happens presumably due to
9739                  * a bug in one of the get_hw_state functions. Or someplace else
9740                  * in our code, like the register restore mess on resume. Clamp
9741                  * things to off as a safer default. */
9742                 list_for_each_entry(connector,
9743                                     &dev->mode_config.connector_list,
9744                                     base.head) {
9745                         if (connector->encoder != encoder)
9746                                 continue;
9747
9748                         intel_connector_break_all_links(connector);
9749                 }
9750         }
9751         /* Enabled encoders without active connectors will be fixed in
9752          * the crtc fixup. */
9753 }
9754
9755 void i915_redisable_vga(struct drm_device *dev)
9756 {
9757         struct drm_i915_private *dev_priv = dev->dev_private;
9758         u32 vga_reg = i915_vgacntrl_reg(dev);
9759
9760         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9761                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9762                 i915_disable_vga(dev);
9763         }
9764 }
9765
9766 static void intel_modeset_readout_hw_state(struct drm_device *dev)
9767 {
9768         struct drm_i915_private *dev_priv = dev->dev_private;
9769         enum pipe pipe;
9770         struct intel_crtc *crtc;
9771         struct intel_encoder *encoder;
9772         struct intel_connector *connector;
9773         int i;
9774
9775         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9776                             base.head) {
9777                 memset(&crtc->config, 0, sizeof(crtc->config));
9778
9779                 crtc->active = dev_priv->display.get_pipe_config(crtc,
9780                                                                  &crtc->config);
9781
9782                 crtc->base.enabled = crtc->active;
9783
9784                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9785                               crtc->base.base.id,
9786                               crtc->active ? "enabled" : "disabled");
9787         }
9788
9789         /* FIXME: Smash this into the new shared dpll infrastructure. */
9790         if (HAS_DDI(dev))
9791                 intel_ddi_setup_hw_pll_state(dev);
9792
9793         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9794                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9795
9796                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
9797                 pll->active = 0;
9798                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9799                                     base.head) {
9800                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9801                                 pll->active++;
9802                 }
9803                 pll->refcount = pll->active;
9804
9805                 DRM_DEBUG_KMS("%s hw state readout: refcount %i\n",
9806                               pll->name, pll->refcount);
9807         }
9808
9809         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9810                             base.head) {
9811                 pipe = 0;
9812
9813                 if (encoder->get_hw_state(encoder, &pipe)) {
9814                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9815                         encoder->base.crtc = &crtc->base;
9816                         if (encoder->get_config)
9817                                 encoder->get_config(encoder, &crtc->config);
9818                 } else {
9819                         encoder->base.crtc = NULL;
9820                 }
9821
9822                 encoder->connectors_active = false;
9823                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9824                               encoder->base.base.id,
9825                               drm_get_encoder_name(&encoder->base),
9826                               encoder->base.crtc ? "enabled" : "disabled",
9827                               pipe);
9828         }
9829
9830         list_for_each_entry(connector, &dev->mode_config.connector_list,
9831                             base.head) {
9832                 if (connector->get_hw_state(connector)) {
9833                         connector->base.dpms = DRM_MODE_DPMS_ON;
9834                         connector->encoder->connectors_active = true;
9835                         connector->base.encoder = &connector->encoder->base;
9836                 } else {
9837                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9838                         connector->base.encoder = NULL;
9839                 }
9840                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9841                               connector->base.base.id,
9842                               drm_get_connector_name(&connector->base),
9843                               connector->base.encoder ? "enabled" : "disabled");
9844         }
9845 }
9846
9847 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9848  * and i915 state tracking structures. */
9849 void intel_modeset_setup_hw_state(struct drm_device *dev,
9850                                   bool force_restore)
9851 {
9852         struct drm_i915_private *dev_priv = dev->dev_private;
9853         enum pipe pipe;
9854         struct drm_plane *plane;
9855         struct intel_crtc *crtc;
9856         struct intel_encoder *encoder;
9857
9858         intel_modeset_readout_hw_state(dev);
9859
9860         /* HW state is read out, now we need to sanitize this mess. */
9861         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9862                             base.head) {
9863                 intel_sanitize_encoder(encoder);
9864         }
9865
9866         for_each_pipe(pipe) {
9867                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9868                 intel_sanitize_crtc(crtc);
9869                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
9870         }
9871
9872         if (force_restore) {
9873                 /*
9874                  * We need to use raw interfaces for restoring state to avoid
9875                  * checking (bogus) intermediate states.
9876                  */
9877                 for_each_pipe(pipe) {
9878                         struct drm_crtc *crtc =
9879                                 dev_priv->pipe_to_crtc_mapping[pipe];
9880
9881                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
9882                                          crtc->fb);
9883                 }
9884                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9885                         intel_plane_restore(plane);
9886
9887                 i915_redisable_vga(dev);
9888         } else {
9889                 intel_modeset_update_staged_output_state(dev);
9890         }
9891
9892         intel_modeset_check_state(dev);
9893
9894         drm_mode_config_reset(dev);
9895 }
9896
9897 void intel_modeset_gem_init(struct drm_device *dev)
9898 {
9899         intel_modeset_init_hw(dev);
9900
9901         intel_setup_overlay(dev);
9902
9903         intel_modeset_setup_hw_state(dev, false);
9904 }
9905
9906 void intel_modeset_cleanup(struct drm_device *dev)
9907 {
9908         struct drm_i915_private *dev_priv = dev->dev_private;
9909         struct drm_crtc *crtc;
9910         struct intel_crtc *intel_crtc;
9911
9912         /*
9913          * Interrupts and polling as the first thing to avoid creating havoc.
9914          * Too much stuff here (turning of rps, connectors, ...) would
9915          * experience fancy races otherwise.
9916          */
9917         drm_irq_uninstall(dev);
9918         cancel_work_sync(&dev_priv->hotplug_work);
9919         /*
9920          * Due to the hpd irq storm handling the hotplug work can re-arm the
9921          * poll handlers. Hence disable polling after hpd handling is shut down.
9922          */
9923         drm_kms_helper_poll_fini(dev);
9924
9925         mutex_lock(&dev->struct_mutex);
9926
9927         intel_unregister_dsm_handler();
9928
9929         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9930                 /* Skip inactive CRTCs */
9931                 if (!crtc->fb)
9932                         continue;
9933
9934                 intel_crtc = to_intel_crtc(crtc);
9935                 intel_increase_pllclock(crtc);
9936         }
9937
9938         intel_disable_fbc(dev);
9939
9940         intel_disable_gt_powersave(dev);
9941
9942         ironlake_teardown_rc6(dev);
9943
9944         mutex_unlock(&dev->struct_mutex);
9945
9946         /* flush any delayed tasks or pending work */
9947         flush_scheduled_work();
9948
9949         /* destroy backlight, if any, before the connectors */
9950         intel_panel_destroy_backlight(dev);
9951
9952         drm_mode_config_cleanup(dev);
9953
9954         intel_cleanup_overlay(dev);
9955 }
9956
9957 /*
9958  * Return which encoder is currently attached for connector.
9959  */
9960 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9961 {
9962         return &intel_attached_encoder(connector)->base;
9963 }
9964
9965 void intel_connector_attach_encoder(struct intel_connector *connector,
9966                                     struct intel_encoder *encoder)
9967 {
9968         connector->encoder = encoder;
9969         drm_mode_connector_attach_encoder(&connector->base,
9970                                           &encoder->base);
9971 }
9972
9973 /*
9974  * set vga decode state - true == enable VGA decode
9975  */
9976 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9977 {
9978         struct drm_i915_private *dev_priv = dev->dev_private;
9979         u16 gmch_ctrl;
9980
9981         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9982         if (state)
9983                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9984         else
9985                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9986         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9987         return 0;
9988 }
9989
9990 #ifdef CONFIG_DEBUG_FS
9991 #include <linux/seq_file.h>
9992
9993 struct intel_display_error_state {
9994
9995         u32 power_well_driver;
9996
9997         struct intel_cursor_error_state {
9998                 u32 control;
9999                 u32 position;
10000                 u32 base;
10001                 u32 size;
10002         } cursor[I915_MAX_PIPES];
10003
10004         struct intel_pipe_error_state {
10005                 enum transcoder cpu_transcoder;
10006                 u32 conf;
10007                 u32 source;
10008
10009                 u32 htotal;
10010                 u32 hblank;
10011                 u32 hsync;
10012                 u32 vtotal;
10013                 u32 vblank;
10014                 u32 vsync;
10015         } pipe[I915_MAX_PIPES];
10016
10017         struct intel_plane_error_state {
10018                 u32 control;
10019                 u32 stride;
10020                 u32 size;
10021                 u32 pos;
10022                 u32 addr;
10023                 u32 surface;
10024                 u32 tile_offset;
10025         } plane[I915_MAX_PIPES];
10026 };
10027
10028 struct intel_display_error_state *
10029 intel_display_capture_error_state(struct drm_device *dev)
10030 {
10031         drm_i915_private_t *dev_priv = dev->dev_private;
10032         struct intel_display_error_state *error;
10033         enum transcoder cpu_transcoder;
10034         int i;
10035
10036         error = kmalloc(sizeof(*error), GFP_ATOMIC);
10037         if (error == NULL)
10038                 return NULL;
10039
10040         if (HAS_POWER_WELL(dev))
10041                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10042
10043         for_each_pipe(i) {
10044                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
10045                 error->pipe[i].cpu_transcoder = cpu_transcoder;
10046
10047                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10048                         error->cursor[i].control = I915_READ(CURCNTR(i));
10049                         error->cursor[i].position = I915_READ(CURPOS(i));
10050                         error->cursor[i].base = I915_READ(CURBASE(i));
10051                 } else {
10052                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10053                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10054                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10055                 }
10056
10057                 error->plane[i].control = I915_READ(DSPCNTR(i));
10058                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10059                 if (INTEL_INFO(dev)->gen <= 3) {
10060                         error->plane[i].size = I915_READ(DSPSIZE(i));
10061                         error->plane[i].pos = I915_READ(DSPPOS(i));
10062                 }
10063                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10064                         error->plane[i].addr = I915_READ(DSPADDR(i));
10065                 if (INTEL_INFO(dev)->gen >= 4) {
10066                         error->plane[i].surface = I915_READ(DSPSURF(i));
10067                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10068                 }
10069
10070                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10071                 error->pipe[i].source = I915_READ(PIPESRC(i));
10072                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10073                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10074                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10075                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10076                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10077                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10078         }
10079
10080         /* In the code above we read the registers without checking if the power
10081          * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10082          * prevent the next I915_WRITE from detecting it and printing an error
10083          * message. */
10084         if (HAS_POWER_WELL(dev))
10085                 I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
10086
10087         return error;
10088 }
10089
10090 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10091
10092 void
10093 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10094                                 struct drm_device *dev,
10095                                 struct intel_display_error_state *error)
10096 {
10097         int i;
10098
10099         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10100         if (HAS_POWER_WELL(dev))
10101                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10102                            error->power_well_driver);
10103         for_each_pipe(i) {
10104                 err_printf(m, "Pipe [%d]:\n", i);
10105                 err_printf(m, "  CPU transcoder: %c\n",
10106                            transcoder_name(error->pipe[i].cpu_transcoder));
10107                 err_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
10108                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
10109                 err_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
10110                 err_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
10111                 err_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
10112                 err_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
10113                 err_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
10114                 err_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
10115
10116                 err_printf(m, "Plane [%d]:\n", i);
10117                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
10118                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
10119                 if (INTEL_INFO(dev)->gen <= 3) {
10120                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
10121                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
10122                 }
10123                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10124                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
10125                 if (INTEL_INFO(dev)->gen >= 4) {
10126                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
10127                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
10128                 }
10129
10130                 err_printf(m, "Cursor [%d]:\n", i);
10131                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
10132                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
10133                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
10134         }
10135 }
10136 #endif