drm/i915: Enable FBC at Haswell.
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         int     min, max;
50 } intel_range_t;
51
52 typedef struct {
53         int     dot_limit;
54         int     p2_slow, p2_fast;
55 } intel_p2_t;
56
57 #define INTEL_P2_NUM                  2
58 typedef struct intel_limit intel_limit_t;
59 struct intel_limit {
60         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
61         intel_p2_t          p2;
62         /**
63          * find_pll() - Find the best values for the PLL
64          * @limit: limits for the PLL
65          * @crtc: current CRTC
66          * @target: target frequency in kHz
67          * @refclk: reference clock frequency in kHz
68          * @match_clock: if provided, @best_clock P divider must
69          *               match the P divider from @match_clock
70          *               used for LVDS downclocking
71          * @best_clock: best PLL values found
72          *
73          * Returns true on success, false on failure.
74          */
75         bool (*find_pll)(const intel_limit_t *limit,
76                          struct drm_crtc *crtc,
77                          int target, int refclk,
78                          intel_clock_t *match_clock,
79                          intel_clock_t *best_clock);
80 };
81
82 /* FDI */
83 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
84
85 int
86 intel_pch_rawclk(struct drm_device *dev)
87 {
88         struct drm_i915_private *dev_priv = dev->dev_private;
89
90         WARN_ON(!HAS_PCH_SPLIT(dev));
91
92         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
93 }
94
95 static bool
96 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
97                     int target, int refclk, intel_clock_t *match_clock,
98                     intel_clock_t *best_clock);
99 static bool
100 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
101                         int target, int refclk, intel_clock_t *match_clock,
102                         intel_clock_t *best_clock);
103
104 static bool
105 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
106                         int target, int refclk, intel_clock_t *match_clock,
107                         intel_clock_t *best_clock);
108
109 static inline u32 /* units of 100MHz */
110 intel_fdi_link_freq(struct drm_device *dev)
111 {
112         if (IS_GEN5(dev)) {
113                 struct drm_i915_private *dev_priv = dev->dev_private;
114                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
115         } else
116                 return 27;
117 }
118
119 static const intel_limit_t intel_limits_i8xx_dvo = {
120         .dot = { .min = 25000, .max = 350000 },
121         .vco = { .min = 930000, .max = 1400000 },
122         .n = { .min = 3, .max = 16 },
123         .m = { .min = 96, .max = 140 },
124         .m1 = { .min = 18, .max = 26 },
125         .m2 = { .min = 6, .max = 16 },
126         .p = { .min = 4, .max = 128 },
127         .p1 = { .min = 2, .max = 33 },
128         .p2 = { .dot_limit = 165000,
129                 .p2_slow = 4, .p2_fast = 2 },
130         .find_pll = intel_find_best_PLL,
131 };
132
133 static const intel_limit_t intel_limits_i8xx_lvds = {
134         .dot = { .min = 25000, .max = 350000 },
135         .vco = { .min = 930000, .max = 1400000 },
136         .n = { .min = 3, .max = 16 },
137         .m = { .min = 96, .max = 140 },
138         .m1 = { .min = 18, .max = 26 },
139         .m2 = { .min = 6, .max = 16 },
140         .p = { .min = 4, .max = 128 },
141         .p1 = { .min = 1, .max = 6 },
142         .p2 = { .dot_limit = 165000,
143                 .p2_slow = 14, .p2_fast = 7 },
144         .find_pll = intel_find_best_PLL,
145 };
146
147 static const intel_limit_t intel_limits_i9xx_sdvo = {
148         .dot = { .min = 20000, .max = 400000 },
149         .vco = { .min = 1400000, .max = 2800000 },
150         .n = { .min = 1, .max = 6 },
151         .m = { .min = 70, .max = 120 },
152         .m1 = { .min = 8, .max = 18 },
153         .m2 = { .min = 3, .max = 7 },
154         .p = { .min = 5, .max = 80 },
155         .p1 = { .min = 1, .max = 8 },
156         .p2 = { .dot_limit = 200000,
157                 .p2_slow = 10, .p2_fast = 5 },
158         .find_pll = intel_find_best_PLL,
159 };
160
161 static const intel_limit_t intel_limits_i9xx_lvds = {
162         .dot = { .min = 20000, .max = 400000 },
163         .vco = { .min = 1400000, .max = 2800000 },
164         .n = { .min = 1, .max = 6 },
165         .m = { .min = 70, .max = 120 },
166         .m1 = { .min = 8, .max = 18 },
167         .m2 = { .min = 3, .max = 7 },
168         .p = { .min = 7, .max = 98 },
169         .p1 = { .min = 1, .max = 8 },
170         .p2 = { .dot_limit = 112000,
171                 .p2_slow = 14, .p2_fast = 7 },
172         .find_pll = intel_find_best_PLL,
173 };
174
175
176 static const intel_limit_t intel_limits_g4x_sdvo = {
177         .dot = { .min = 25000, .max = 270000 },
178         .vco = { .min = 1750000, .max = 3500000},
179         .n = { .min = 1, .max = 4 },
180         .m = { .min = 104, .max = 138 },
181         .m1 = { .min = 17, .max = 23 },
182         .m2 = { .min = 5, .max = 11 },
183         .p = { .min = 10, .max = 30 },
184         .p1 = { .min = 1, .max = 3},
185         .p2 = { .dot_limit = 270000,
186                 .p2_slow = 10,
187                 .p2_fast = 10
188         },
189         .find_pll = intel_g4x_find_best_PLL,
190 };
191
192 static const intel_limit_t intel_limits_g4x_hdmi = {
193         .dot = { .min = 22000, .max = 400000 },
194         .vco = { .min = 1750000, .max = 3500000},
195         .n = { .min = 1, .max = 4 },
196         .m = { .min = 104, .max = 138 },
197         .m1 = { .min = 16, .max = 23 },
198         .m2 = { .min = 5, .max = 11 },
199         .p = { .min = 5, .max = 80 },
200         .p1 = { .min = 1, .max = 8},
201         .p2 = { .dot_limit = 165000,
202                 .p2_slow = 10, .p2_fast = 5 },
203         .find_pll = intel_g4x_find_best_PLL,
204 };
205
206 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
207         .dot = { .min = 20000, .max = 115000 },
208         .vco = { .min = 1750000, .max = 3500000 },
209         .n = { .min = 1, .max = 3 },
210         .m = { .min = 104, .max = 138 },
211         .m1 = { .min = 17, .max = 23 },
212         .m2 = { .min = 5, .max = 11 },
213         .p = { .min = 28, .max = 112 },
214         .p1 = { .min = 2, .max = 8 },
215         .p2 = { .dot_limit = 0,
216                 .p2_slow = 14, .p2_fast = 14
217         },
218         .find_pll = intel_g4x_find_best_PLL,
219 };
220
221 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
222         .dot = { .min = 80000, .max = 224000 },
223         .vco = { .min = 1750000, .max = 3500000 },
224         .n = { .min = 1, .max = 3 },
225         .m = { .min = 104, .max = 138 },
226         .m1 = { .min = 17, .max = 23 },
227         .m2 = { .min = 5, .max = 11 },
228         .p = { .min = 14, .max = 42 },
229         .p1 = { .min = 2, .max = 6 },
230         .p2 = { .dot_limit = 0,
231                 .p2_slow = 7, .p2_fast = 7
232         },
233         .find_pll = intel_g4x_find_best_PLL,
234 };
235
236 static const intel_limit_t intel_limits_pineview_sdvo = {
237         .dot = { .min = 20000, .max = 400000},
238         .vco = { .min = 1700000, .max = 3500000 },
239         /* Pineview's Ncounter is a ring counter */
240         .n = { .min = 3, .max = 6 },
241         .m = { .min = 2, .max = 256 },
242         /* Pineview only has one combined m divider, which we treat as m2. */
243         .m1 = { .min = 0, .max = 0 },
244         .m2 = { .min = 0, .max = 254 },
245         .p = { .min = 5, .max = 80 },
246         .p1 = { .min = 1, .max = 8 },
247         .p2 = { .dot_limit = 200000,
248                 .p2_slow = 10, .p2_fast = 5 },
249         .find_pll = intel_find_best_PLL,
250 };
251
252 static const intel_limit_t intel_limits_pineview_lvds = {
253         .dot = { .min = 20000, .max = 400000 },
254         .vco = { .min = 1700000, .max = 3500000 },
255         .n = { .min = 3, .max = 6 },
256         .m = { .min = 2, .max = 256 },
257         .m1 = { .min = 0, .max = 0 },
258         .m2 = { .min = 0, .max = 254 },
259         .p = { .min = 7, .max = 112 },
260         .p1 = { .min = 1, .max = 8 },
261         .p2 = { .dot_limit = 112000,
262                 .p2_slow = 14, .p2_fast = 14 },
263         .find_pll = intel_find_best_PLL,
264 };
265
266 /* Ironlake / Sandybridge
267  *
268  * We calculate clock using (register_value + 2) for N/M1/M2, so here
269  * the range value for them is (actual_value - 2).
270  */
271 static const intel_limit_t intel_limits_ironlake_dac = {
272         .dot = { .min = 25000, .max = 350000 },
273         .vco = { .min = 1760000, .max = 3510000 },
274         .n = { .min = 1, .max = 5 },
275         .m = { .min = 79, .max = 127 },
276         .m1 = { .min = 12, .max = 22 },
277         .m2 = { .min = 5, .max = 9 },
278         .p = { .min = 5, .max = 80 },
279         .p1 = { .min = 1, .max = 8 },
280         .p2 = { .dot_limit = 225000,
281                 .p2_slow = 10, .p2_fast = 5 },
282         .find_pll = intel_g4x_find_best_PLL,
283 };
284
285 static const intel_limit_t intel_limits_ironlake_single_lvds = {
286         .dot = { .min = 25000, .max = 350000 },
287         .vco = { .min = 1760000, .max = 3510000 },
288         .n = { .min = 1, .max = 3 },
289         .m = { .min = 79, .max = 118 },
290         .m1 = { .min = 12, .max = 22 },
291         .m2 = { .min = 5, .max = 9 },
292         .p = { .min = 28, .max = 112 },
293         .p1 = { .min = 2, .max = 8 },
294         .p2 = { .dot_limit = 225000,
295                 .p2_slow = 14, .p2_fast = 14 },
296         .find_pll = intel_g4x_find_best_PLL,
297 };
298
299 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
300         .dot = { .min = 25000, .max = 350000 },
301         .vco = { .min = 1760000, .max = 3510000 },
302         .n = { .min = 1, .max = 3 },
303         .m = { .min = 79, .max = 127 },
304         .m1 = { .min = 12, .max = 22 },
305         .m2 = { .min = 5, .max = 9 },
306         .p = { .min = 14, .max = 56 },
307         .p1 = { .min = 2, .max = 8 },
308         .p2 = { .dot_limit = 225000,
309                 .p2_slow = 7, .p2_fast = 7 },
310         .find_pll = intel_g4x_find_best_PLL,
311 };
312
313 /* LVDS 100mhz refclk limits. */
314 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
315         .dot = { .min = 25000, .max = 350000 },
316         .vco = { .min = 1760000, .max = 3510000 },
317         .n = { .min = 1, .max = 2 },
318         .m = { .min = 79, .max = 126 },
319         .m1 = { .min = 12, .max = 22 },
320         .m2 = { .min = 5, .max = 9 },
321         .p = { .min = 28, .max = 112 },
322         .p1 = { .min = 2, .max = 8 },
323         .p2 = { .dot_limit = 225000,
324                 .p2_slow = 14, .p2_fast = 14 },
325         .find_pll = intel_g4x_find_best_PLL,
326 };
327
328 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
329         .dot = { .min = 25000, .max = 350000 },
330         .vco = { .min = 1760000, .max = 3510000 },
331         .n = { .min = 1, .max = 3 },
332         .m = { .min = 79, .max = 126 },
333         .m1 = { .min = 12, .max = 22 },
334         .m2 = { .min = 5, .max = 9 },
335         .p = { .min = 14, .max = 42 },
336         .p1 = { .min = 2, .max = 6 },
337         .p2 = { .dot_limit = 225000,
338                 .p2_slow = 7, .p2_fast = 7 },
339         .find_pll = intel_g4x_find_best_PLL,
340 };
341
342 static const intel_limit_t intel_limits_vlv_dac = {
343         .dot = { .min = 25000, .max = 270000 },
344         .vco = { .min = 4000000, .max = 6000000 },
345         .n = { .min = 1, .max = 7 },
346         .m = { .min = 22, .max = 450 }, /* guess */
347         .m1 = { .min = 2, .max = 3 },
348         .m2 = { .min = 11, .max = 156 },
349         .p = { .min = 10, .max = 30 },
350         .p1 = { .min = 1, .max = 3 },
351         .p2 = { .dot_limit = 270000,
352                 .p2_slow = 2, .p2_fast = 20 },
353         .find_pll = intel_vlv_find_best_pll,
354 };
355
356 static const intel_limit_t intel_limits_vlv_hdmi = {
357         .dot = { .min = 25000, .max = 270000 },
358         .vco = { .min = 4000000, .max = 6000000 },
359         .n = { .min = 1, .max = 7 },
360         .m = { .min = 60, .max = 300 }, /* guess */
361         .m1 = { .min = 2, .max = 3 },
362         .m2 = { .min = 11, .max = 156 },
363         .p = { .min = 10, .max = 30 },
364         .p1 = { .min = 2, .max = 3 },
365         .p2 = { .dot_limit = 270000,
366                 .p2_slow = 2, .p2_fast = 20 },
367         .find_pll = intel_vlv_find_best_pll,
368 };
369
370 static const intel_limit_t intel_limits_vlv_dp = {
371         .dot = { .min = 25000, .max = 270000 },
372         .vco = { .min = 4000000, .max = 6000000 },
373         .n = { .min = 1, .max = 7 },
374         .m = { .min = 22, .max = 450 },
375         .m1 = { .min = 2, .max = 3 },
376         .m2 = { .min = 11, .max = 156 },
377         .p = { .min = 10, .max = 30 },
378         .p1 = { .min = 1, .max = 3 },
379         .p2 = { .dot_limit = 270000,
380                 .p2_slow = 2, .p2_fast = 20 },
381         .find_pll = intel_vlv_find_best_pll,
382 };
383
384 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
385 {
386         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
387
388         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
389                 DRM_ERROR("DPIO idle wait timed out\n");
390                 return 0;
391         }
392
393         I915_WRITE(DPIO_REG, reg);
394         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
395                    DPIO_BYTE);
396         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
397                 DRM_ERROR("DPIO read wait timed out\n");
398                 return 0;
399         }
400
401         return I915_READ(DPIO_DATA);
402 }
403
404 void intel_dpio_write(struct drm_i915_private *dev_priv, int reg, u32 val)
405 {
406         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
407
408         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
409                 DRM_ERROR("DPIO idle wait timed out\n");
410                 return;
411         }
412
413         I915_WRITE(DPIO_DATA, val);
414         I915_WRITE(DPIO_REG, reg);
415         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
416                    DPIO_BYTE);
417         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
418                 DRM_ERROR("DPIO write wait timed out\n");
419 }
420
421 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
422                                                 int refclk)
423 {
424         struct drm_device *dev = crtc->dev;
425         const intel_limit_t *limit;
426
427         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
428                 if (intel_is_dual_link_lvds(dev)) {
429                         if (refclk == 100000)
430                                 limit = &intel_limits_ironlake_dual_lvds_100m;
431                         else
432                                 limit = &intel_limits_ironlake_dual_lvds;
433                 } else {
434                         if (refclk == 100000)
435                                 limit = &intel_limits_ironlake_single_lvds_100m;
436                         else
437                                 limit = &intel_limits_ironlake_single_lvds;
438                 }
439         } else
440                 limit = &intel_limits_ironlake_dac;
441
442         return limit;
443 }
444
445 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
446 {
447         struct drm_device *dev = crtc->dev;
448         const intel_limit_t *limit;
449
450         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
451                 if (intel_is_dual_link_lvds(dev))
452                         limit = &intel_limits_g4x_dual_channel_lvds;
453                 else
454                         limit = &intel_limits_g4x_single_channel_lvds;
455         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
456                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
457                 limit = &intel_limits_g4x_hdmi;
458         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
459                 limit = &intel_limits_g4x_sdvo;
460         } else /* The option is for other outputs */
461                 limit = &intel_limits_i9xx_sdvo;
462
463         return limit;
464 }
465
466 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
467 {
468         struct drm_device *dev = crtc->dev;
469         const intel_limit_t *limit;
470
471         if (HAS_PCH_SPLIT(dev))
472                 limit = intel_ironlake_limit(crtc, refclk);
473         else if (IS_G4X(dev)) {
474                 limit = intel_g4x_limit(crtc);
475         } else if (IS_PINEVIEW(dev)) {
476                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
477                         limit = &intel_limits_pineview_lvds;
478                 else
479                         limit = &intel_limits_pineview_sdvo;
480         } else if (IS_VALLEYVIEW(dev)) {
481                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
482                         limit = &intel_limits_vlv_dac;
483                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
484                         limit = &intel_limits_vlv_hdmi;
485                 else
486                         limit = &intel_limits_vlv_dp;
487         } else if (!IS_GEN2(dev)) {
488                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
489                         limit = &intel_limits_i9xx_lvds;
490                 else
491                         limit = &intel_limits_i9xx_sdvo;
492         } else {
493                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
494                         limit = &intel_limits_i8xx_lvds;
495                 else
496                         limit = &intel_limits_i8xx_dvo;
497         }
498         return limit;
499 }
500
501 /* m1 is reserved as 0 in Pineview, n is a ring counter */
502 static void pineview_clock(int refclk, intel_clock_t *clock)
503 {
504         clock->m = clock->m2 + 2;
505         clock->p = clock->p1 * clock->p2;
506         clock->vco = refclk * clock->m / clock->n;
507         clock->dot = clock->vco / clock->p;
508 }
509
510 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
511 {
512         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
513 }
514
515 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
516 {
517         if (IS_PINEVIEW(dev)) {
518                 pineview_clock(refclk, clock);
519                 return;
520         }
521         clock->m = i9xx_dpll_compute_m(clock);
522         clock->p = clock->p1 * clock->p2;
523         clock->vco = refclk * clock->m / (clock->n + 2);
524         clock->dot = clock->vco / clock->p;
525 }
526
527 /**
528  * Returns whether any output on the specified pipe is of the specified type
529  */
530 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
531 {
532         struct drm_device *dev = crtc->dev;
533         struct intel_encoder *encoder;
534
535         for_each_encoder_on_crtc(dev, crtc, encoder)
536                 if (encoder->type == type)
537                         return true;
538
539         return false;
540 }
541
542 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
543 /**
544  * Returns whether the given set of divisors are valid for a given refclk with
545  * the given connectors.
546  */
547
548 static bool intel_PLL_is_valid(struct drm_device *dev,
549                                const intel_limit_t *limit,
550                                const intel_clock_t *clock)
551 {
552         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
553                 INTELPllInvalid("p1 out of range\n");
554         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
555                 INTELPllInvalid("p out of range\n");
556         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
557                 INTELPllInvalid("m2 out of range\n");
558         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
559                 INTELPllInvalid("m1 out of range\n");
560         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
561                 INTELPllInvalid("m1 <= m2\n");
562         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
563                 INTELPllInvalid("m out of range\n");
564         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
565                 INTELPllInvalid("n out of range\n");
566         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
567                 INTELPllInvalid("vco out of range\n");
568         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
569          * connector, etc., rather than just a single range.
570          */
571         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
572                 INTELPllInvalid("dot out of range\n");
573
574         return true;
575 }
576
577 static bool
578 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
579                     int target, int refclk, intel_clock_t *match_clock,
580                     intel_clock_t *best_clock)
581
582 {
583         struct drm_device *dev = crtc->dev;
584         intel_clock_t clock;
585         int err = target;
586
587         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
588                 /*
589                  * For LVDS just rely on its current settings for dual-channel.
590                  * We haven't figured out how to reliably set up different
591                  * single/dual channel state, if we even can.
592                  */
593                 if (intel_is_dual_link_lvds(dev))
594                         clock.p2 = limit->p2.p2_fast;
595                 else
596                         clock.p2 = limit->p2.p2_slow;
597         } else {
598                 if (target < limit->p2.dot_limit)
599                         clock.p2 = limit->p2.p2_slow;
600                 else
601                         clock.p2 = limit->p2.p2_fast;
602         }
603
604         memset(best_clock, 0, sizeof(*best_clock));
605
606         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
607              clock.m1++) {
608                 for (clock.m2 = limit->m2.min;
609                      clock.m2 <= limit->m2.max; clock.m2++) {
610                         /* m1 is always 0 in Pineview */
611                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
612                                 break;
613                         for (clock.n = limit->n.min;
614                              clock.n <= limit->n.max; clock.n++) {
615                                 for (clock.p1 = limit->p1.min;
616                                         clock.p1 <= limit->p1.max; clock.p1++) {
617                                         int this_err;
618
619                                         intel_clock(dev, refclk, &clock);
620                                         if (!intel_PLL_is_valid(dev, limit,
621                                                                 &clock))
622                                                 continue;
623                                         if (match_clock &&
624                                             clock.p != match_clock->p)
625                                                 continue;
626
627                                         this_err = abs(clock.dot - target);
628                                         if (this_err < err) {
629                                                 *best_clock = clock;
630                                                 err = this_err;
631                                         }
632                                 }
633                         }
634                 }
635         }
636
637         return (err != target);
638 }
639
640 static bool
641 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
642                         int target, int refclk, intel_clock_t *match_clock,
643                         intel_clock_t *best_clock)
644 {
645         struct drm_device *dev = crtc->dev;
646         intel_clock_t clock;
647         int max_n;
648         bool found;
649         /* approximately equals target * 0.00585 */
650         int err_most = (target >> 8) + (target >> 9);
651         found = false;
652
653         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
654                 int lvds_reg;
655
656                 if (HAS_PCH_SPLIT(dev))
657                         lvds_reg = PCH_LVDS;
658                 else
659                         lvds_reg = LVDS;
660                 if (intel_is_dual_link_lvds(dev))
661                         clock.p2 = limit->p2.p2_fast;
662                 else
663                         clock.p2 = limit->p2.p2_slow;
664         } else {
665                 if (target < limit->p2.dot_limit)
666                         clock.p2 = limit->p2.p2_slow;
667                 else
668                         clock.p2 = limit->p2.p2_fast;
669         }
670
671         memset(best_clock, 0, sizeof(*best_clock));
672         max_n = limit->n.max;
673         /* based on hardware requirement, prefer smaller n to precision */
674         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
675                 /* based on hardware requirement, prefere larger m1,m2 */
676                 for (clock.m1 = limit->m1.max;
677                      clock.m1 >= limit->m1.min; clock.m1--) {
678                         for (clock.m2 = limit->m2.max;
679                              clock.m2 >= limit->m2.min; clock.m2--) {
680                                 for (clock.p1 = limit->p1.max;
681                                      clock.p1 >= limit->p1.min; clock.p1--) {
682                                         int this_err;
683
684                                         intel_clock(dev, refclk, &clock);
685                                         if (!intel_PLL_is_valid(dev, limit,
686                                                                 &clock))
687                                                 continue;
688
689                                         this_err = abs(clock.dot - target);
690                                         if (this_err < err_most) {
691                                                 *best_clock = clock;
692                                                 err_most = this_err;
693                                                 max_n = clock.n;
694                                                 found = true;
695                                         }
696                                 }
697                         }
698                 }
699         }
700         return found;
701 }
702
703 static bool
704 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
705                         int target, int refclk, intel_clock_t *match_clock,
706                         intel_clock_t *best_clock)
707 {
708         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
709         u32 m, n, fastclk;
710         u32 updrate, minupdate, fracbits, p;
711         unsigned long bestppm, ppm, absppm;
712         int dotclk, flag;
713
714         flag = 0;
715         dotclk = target * 1000;
716         bestppm = 1000000;
717         ppm = absppm = 0;
718         fastclk = dotclk / (2*100);
719         updrate = 0;
720         minupdate = 19200;
721         fracbits = 1;
722         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
723         bestm1 = bestm2 = bestp1 = bestp2 = 0;
724
725         /* based on hardware requirement, prefer smaller n to precision */
726         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
727                 updrate = refclk / n;
728                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
729                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
730                                 if (p2 > 10)
731                                         p2 = p2 - 1;
732                                 p = p1 * p2;
733                                 /* based on hardware requirement, prefer bigger m1,m2 values */
734                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
735                                         m2 = (((2*(fastclk * p * n / m1 )) +
736                                                refclk) / (2*refclk));
737                                         m = m1 * m2;
738                                         vco = updrate * m;
739                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
740                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
741                                                 absppm = (ppm > 0) ? ppm : (-ppm);
742                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
743                                                         bestppm = 0;
744                                                         flag = 1;
745                                                 }
746                                                 if (absppm < bestppm - 10) {
747                                                         bestppm = absppm;
748                                                         flag = 1;
749                                                 }
750                                                 if (flag) {
751                                                         bestn = n;
752                                                         bestm1 = m1;
753                                                         bestm2 = m2;
754                                                         bestp1 = p1;
755                                                         bestp2 = p2;
756                                                         flag = 0;
757                                                 }
758                                         }
759                                 }
760                         }
761                 }
762         }
763         best_clock->n = bestn;
764         best_clock->m1 = bestm1;
765         best_clock->m2 = bestm2;
766         best_clock->p1 = bestp1;
767         best_clock->p2 = bestp2;
768
769         return true;
770 }
771
772 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
773                                              enum pipe pipe)
774 {
775         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
776         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
777
778         return intel_crtc->config.cpu_transcoder;
779 }
780
781 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
782 {
783         struct drm_i915_private *dev_priv = dev->dev_private;
784         u32 frame, frame_reg = PIPEFRAME(pipe);
785
786         frame = I915_READ(frame_reg);
787
788         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
789                 DRM_DEBUG_KMS("vblank wait timed out\n");
790 }
791
792 /**
793  * intel_wait_for_vblank - wait for vblank on a given pipe
794  * @dev: drm device
795  * @pipe: pipe to wait for
796  *
797  * Wait for vblank to occur on a given pipe.  Needed for various bits of
798  * mode setting code.
799  */
800 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
801 {
802         struct drm_i915_private *dev_priv = dev->dev_private;
803         int pipestat_reg = PIPESTAT(pipe);
804
805         if (INTEL_INFO(dev)->gen >= 5) {
806                 ironlake_wait_for_vblank(dev, pipe);
807                 return;
808         }
809
810         /* Clear existing vblank status. Note this will clear any other
811          * sticky status fields as well.
812          *
813          * This races with i915_driver_irq_handler() with the result
814          * that either function could miss a vblank event.  Here it is not
815          * fatal, as we will either wait upon the next vblank interrupt or
816          * timeout.  Generally speaking intel_wait_for_vblank() is only
817          * called during modeset at which time the GPU should be idle and
818          * should *not* be performing page flips and thus not waiting on
819          * vblanks...
820          * Currently, the result of us stealing a vblank from the irq
821          * handler is that a single frame will be skipped during swapbuffers.
822          */
823         I915_WRITE(pipestat_reg,
824                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
825
826         /* Wait for vblank interrupt bit to set */
827         if (wait_for(I915_READ(pipestat_reg) &
828                      PIPE_VBLANK_INTERRUPT_STATUS,
829                      50))
830                 DRM_DEBUG_KMS("vblank wait timed out\n");
831 }
832
833 /*
834  * intel_wait_for_pipe_off - wait for pipe to turn off
835  * @dev: drm device
836  * @pipe: pipe to wait for
837  *
838  * After disabling a pipe, we can't wait for vblank in the usual way,
839  * spinning on the vblank interrupt status bit, since we won't actually
840  * see an interrupt when the pipe is disabled.
841  *
842  * On Gen4 and above:
843  *   wait for the pipe register state bit to turn off
844  *
845  * Otherwise:
846  *   wait for the display line value to settle (it usually
847  *   ends up stopping at the start of the next frame).
848  *
849  */
850 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
851 {
852         struct drm_i915_private *dev_priv = dev->dev_private;
853         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
854                                                                       pipe);
855
856         if (INTEL_INFO(dev)->gen >= 4) {
857                 int reg = PIPECONF(cpu_transcoder);
858
859                 /* Wait for the Pipe State to go off */
860                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
861                              100))
862                         WARN(1, "pipe_off wait timed out\n");
863         } else {
864                 u32 last_line, line_mask;
865                 int reg = PIPEDSL(pipe);
866                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
867
868                 if (IS_GEN2(dev))
869                         line_mask = DSL_LINEMASK_GEN2;
870                 else
871                         line_mask = DSL_LINEMASK_GEN3;
872
873                 /* Wait for the display line to settle */
874                 do {
875                         last_line = I915_READ(reg) & line_mask;
876                         mdelay(5);
877                 } while (((I915_READ(reg) & line_mask) != last_line) &&
878                          time_after(timeout, jiffies));
879                 if (time_after(jiffies, timeout))
880                         WARN(1, "pipe_off wait timed out\n");
881         }
882 }
883
884 /*
885  * ibx_digital_port_connected - is the specified port connected?
886  * @dev_priv: i915 private structure
887  * @port: the port to test
888  *
889  * Returns true if @port is connected, false otherwise.
890  */
891 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
892                                 struct intel_digital_port *port)
893 {
894         u32 bit;
895
896         if (HAS_PCH_IBX(dev_priv->dev)) {
897                 switch(port->port) {
898                 case PORT_B:
899                         bit = SDE_PORTB_HOTPLUG;
900                         break;
901                 case PORT_C:
902                         bit = SDE_PORTC_HOTPLUG;
903                         break;
904                 case PORT_D:
905                         bit = SDE_PORTD_HOTPLUG;
906                         break;
907                 default:
908                         return true;
909                 }
910         } else {
911                 switch(port->port) {
912                 case PORT_B:
913                         bit = SDE_PORTB_HOTPLUG_CPT;
914                         break;
915                 case PORT_C:
916                         bit = SDE_PORTC_HOTPLUG_CPT;
917                         break;
918                 case PORT_D:
919                         bit = SDE_PORTD_HOTPLUG_CPT;
920                         break;
921                 default:
922                         return true;
923                 }
924         }
925
926         return I915_READ(SDEISR) & bit;
927 }
928
929 static const char *state_string(bool enabled)
930 {
931         return enabled ? "on" : "off";
932 }
933
934 /* Only for pre-ILK configs */
935 static void assert_pll(struct drm_i915_private *dev_priv,
936                        enum pipe pipe, bool state)
937 {
938         int reg;
939         u32 val;
940         bool cur_state;
941
942         reg = DPLL(pipe);
943         val = I915_READ(reg);
944         cur_state = !!(val & DPLL_VCO_ENABLE);
945         WARN(cur_state != state,
946              "PLL state assertion failure (expected %s, current %s)\n",
947              state_string(state), state_string(cur_state));
948 }
949 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
950 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
951
952 /* For ILK+ */
953 static void assert_pch_pll(struct drm_i915_private *dev_priv,
954                            struct intel_pch_pll *pll,
955                            struct intel_crtc *crtc,
956                            bool state)
957 {
958         u32 val;
959         bool cur_state;
960
961         if (HAS_PCH_LPT(dev_priv->dev)) {
962                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
963                 return;
964         }
965
966         if (WARN (!pll,
967                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
968                 return;
969
970         val = I915_READ(pll->pll_reg);
971         cur_state = !!(val & DPLL_VCO_ENABLE);
972         WARN(cur_state != state,
973              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
974              pll->pll_reg, state_string(state), state_string(cur_state), val);
975
976         /* Make sure the selected PLL is correctly attached to the transcoder */
977         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
978                 u32 pch_dpll;
979
980                 pch_dpll = I915_READ(PCH_DPLL_SEL);
981                 cur_state = pll->pll_reg == _PCH_DPLL_B;
982                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
983                           "PLL[%d] not attached to this transcoder %c: %08x\n",
984                           cur_state, pipe_name(crtc->pipe), pch_dpll)) {
985                         cur_state = !!(val >> (4*crtc->pipe + 3));
986                         WARN(cur_state != state,
987                              "PLL[%d] not %s on this transcoder %c: %08x\n",
988                              pll->pll_reg == _PCH_DPLL_B,
989                              state_string(state),
990                              pipe_name(crtc->pipe),
991                              val);
992                 }
993         }
994 }
995 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
996 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
997
998 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
999                           enum pipe pipe, bool state)
1000 {
1001         int reg;
1002         u32 val;
1003         bool cur_state;
1004         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1005                                                                       pipe);
1006
1007         if (HAS_DDI(dev_priv->dev)) {
1008                 /* DDI does not have a specific FDI_TX register */
1009                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1010                 val = I915_READ(reg);
1011                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1012         } else {
1013                 reg = FDI_TX_CTL(pipe);
1014                 val = I915_READ(reg);
1015                 cur_state = !!(val & FDI_TX_ENABLE);
1016         }
1017         WARN(cur_state != state,
1018              "FDI TX state assertion failure (expected %s, current %s)\n",
1019              state_string(state), state_string(cur_state));
1020 }
1021 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1022 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1023
1024 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1025                           enum pipe pipe, bool state)
1026 {
1027         int reg;
1028         u32 val;
1029         bool cur_state;
1030
1031         reg = FDI_RX_CTL(pipe);
1032         val = I915_READ(reg);
1033         cur_state = !!(val & FDI_RX_ENABLE);
1034         WARN(cur_state != state,
1035              "FDI RX state assertion failure (expected %s, current %s)\n",
1036              state_string(state), state_string(cur_state));
1037 }
1038 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1039 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1040
1041 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1042                                       enum pipe pipe)
1043 {
1044         int reg;
1045         u32 val;
1046
1047         /* ILK FDI PLL is always enabled */
1048         if (dev_priv->info->gen == 5)
1049                 return;
1050
1051         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1052         if (HAS_DDI(dev_priv->dev))
1053                 return;
1054
1055         reg = FDI_TX_CTL(pipe);
1056         val = I915_READ(reg);
1057         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1058 }
1059
1060 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1061                                       enum pipe pipe)
1062 {
1063         int reg;
1064         u32 val;
1065
1066         reg = FDI_RX_CTL(pipe);
1067         val = I915_READ(reg);
1068         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1069 }
1070
1071 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1072                                   enum pipe pipe)
1073 {
1074         int pp_reg, lvds_reg;
1075         u32 val;
1076         enum pipe panel_pipe = PIPE_A;
1077         bool locked = true;
1078
1079         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1080                 pp_reg = PCH_PP_CONTROL;
1081                 lvds_reg = PCH_LVDS;
1082         } else {
1083                 pp_reg = PP_CONTROL;
1084                 lvds_reg = LVDS;
1085         }
1086
1087         val = I915_READ(pp_reg);
1088         if (!(val & PANEL_POWER_ON) ||
1089             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1090                 locked = false;
1091
1092         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1093                 panel_pipe = PIPE_B;
1094
1095         WARN(panel_pipe == pipe && locked,
1096              "panel assertion failure, pipe %c regs locked\n",
1097              pipe_name(pipe));
1098 }
1099
1100 void assert_pipe(struct drm_i915_private *dev_priv,
1101                  enum pipe pipe, bool state)
1102 {
1103         int reg;
1104         u32 val;
1105         bool cur_state;
1106         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1107                                                                       pipe);
1108
1109         /* if we need the pipe A quirk it must be always on */
1110         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1111                 state = true;
1112
1113         if (!intel_display_power_enabled(dev_priv->dev,
1114                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1115                 cur_state = false;
1116         } else {
1117                 reg = PIPECONF(cpu_transcoder);
1118                 val = I915_READ(reg);
1119                 cur_state = !!(val & PIPECONF_ENABLE);
1120         }
1121
1122         WARN(cur_state != state,
1123              "pipe %c assertion failure (expected %s, current %s)\n",
1124              pipe_name(pipe), state_string(state), state_string(cur_state));
1125 }
1126
1127 static void assert_plane(struct drm_i915_private *dev_priv,
1128                          enum plane plane, bool state)
1129 {
1130         int reg;
1131         u32 val;
1132         bool cur_state;
1133
1134         reg = DSPCNTR(plane);
1135         val = I915_READ(reg);
1136         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1137         WARN(cur_state != state,
1138              "plane %c assertion failure (expected %s, current %s)\n",
1139              plane_name(plane), state_string(state), state_string(cur_state));
1140 }
1141
1142 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1143 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1144
1145 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1146                                    enum pipe pipe)
1147 {
1148         int reg, i;
1149         u32 val;
1150         int cur_pipe;
1151
1152         /* Planes are fixed to pipes on ILK+ */
1153         if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
1154                 reg = DSPCNTR(pipe);
1155                 val = I915_READ(reg);
1156                 WARN((val & DISPLAY_PLANE_ENABLE),
1157                      "plane %c assertion failure, should be disabled but not\n",
1158                      plane_name(pipe));
1159                 return;
1160         }
1161
1162         /* Need to check both planes against the pipe */
1163         for (i = 0; i < 2; i++) {
1164                 reg = DSPCNTR(i);
1165                 val = I915_READ(reg);
1166                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1167                         DISPPLANE_SEL_PIPE_SHIFT;
1168                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1169                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1170                      plane_name(i), pipe_name(pipe));
1171         }
1172 }
1173
1174 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1175                                     enum pipe pipe)
1176 {
1177         int reg, i;
1178         u32 val;
1179
1180         if (!IS_VALLEYVIEW(dev_priv->dev))
1181                 return;
1182
1183         /* Need to check both planes against the pipe */
1184         for (i = 0; i < dev_priv->num_plane; i++) {
1185                 reg = SPCNTR(pipe, i);
1186                 val = I915_READ(reg);
1187                 WARN((val & SP_ENABLE),
1188                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1189                      sprite_name(pipe, i), pipe_name(pipe));
1190         }
1191 }
1192
1193 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1194 {
1195         u32 val;
1196         bool enabled;
1197
1198         if (HAS_PCH_LPT(dev_priv->dev)) {
1199                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1200                 return;
1201         }
1202
1203         val = I915_READ(PCH_DREF_CONTROL);
1204         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1205                             DREF_SUPERSPREAD_SOURCE_MASK));
1206         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1207 }
1208
1209 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1210                                            enum pipe pipe)
1211 {
1212         int reg;
1213         u32 val;
1214         bool enabled;
1215
1216         reg = PCH_TRANSCONF(pipe);
1217         val = I915_READ(reg);
1218         enabled = !!(val & TRANS_ENABLE);
1219         WARN(enabled,
1220              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1221              pipe_name(pipe));
1222 }
1223
1224 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1225                             enum pipe pipe, u32 port_sel, u32 val)
1226 {
1227         if ((val & DP_PORT_EN) == 0)
1228                 return false;
1229
1230         if (HAS_PCH_CPT(dev_priv->dev)) {
1231                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1232                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1233                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1234                         return false;
1235         } else {
1236                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1237                         return false;
1238         }
1239         return true;
1240 }
1241
1242 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1243                               enum pipe pipe, u32 val)
1244 {
1245         if ((val & SDVO_ENABLE) == 0)
1246                 return false;
1247
1248         if (HAS_PCH_CPT(dev_priv->dev)) {
1249                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1250                         return false;
1251         } else {
1252                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1253                         return false;
1254         }
1255         return true;
1256 }
1257
1258 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1259                               enum pipe pipe, u32 val)
1260 {
1261         if ((val & LVDS_PORT_EN) == 0)
1262                 return false;
1263
1264         if (HAS_PCH_CPT(dev_priv->dev)) {
1265                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1266                         return false;
1267         } else {
1268                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1269                         return false;
1270         }
1271         return true;
1272 }
1273
1274 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1275                               enum pipe pipe, u32 val)
1276 {
1277         if ((val & ADPA_DAC_ENABLE) == 0)
1278                 return false;
1279         if (HAS_PCH_CPT(dev_priv->dev)) {
1280                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1281                         return false;
1282         } else {
1283                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1284                         return false;
1285         }
1286         return true;
1287 }
1288
1289 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1290                                    enum pipe pipe, int reg, u32 port_sel)
1291 {
1292         u32 val = I915_READ(reg);
1293         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1294              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1295              reg, pipe_name(pipe));
1296
1297         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1298              && (val & DP_PIPEB_SELECT),
1299              "IBX PCH dp port still using transcoder B\n");
1300 }
1301
1302 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1303                                      enum pipe pipe, int reg)
1304 {
1305         u32 val = I915_READ(reg);
1306         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1307              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1308              reg, pipe_name(pipe));
1309
1310         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1311              && (val & SDVO_PIPE_B_SELECT),
1312              "IBX PCH hdmi port still using transcoder B\n");
1313 }
1314
1315 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1316                                       enum pipe pipe)
1317 {
1318         int reg;
1319         u32 val;
1320
1321         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1322         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1323         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1324
1325         reg = PCH_ADPA;
1326         val = I915_READ(reg);
1327         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1328              "PCH VGA enabled on transcoder %c, should be disabled\n",
1329              pipe_name(pipe));
1330
1331         reg = PCH_LVDS;
1332         val = I915_READ(reg);
1333         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1334              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1335              pipe_name(pipe));
1336
1337         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1338         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1339         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1340 }
1341
1342 /**
1343  * intel_enable_pll - enable a PLL
1344  * @dev_priv: i915 private structure
1345  * @pipe: pipe PLL to enable
1346  *
1347  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1348  * make sure the PLL reg is writable first though, since the panel write
1349  * protect mechanism may be enabled.
1350  *
1351  * Note!  This is for pre-ILK only.
1352  *
1353  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1354  */
1355 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1356 {
1357         int reg;
1358         u32 val;
1359
1360         assert_pipe_disabled(dev_priv, pipe);
1361
1362         /* No really, not for ILK+ */
1363         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1364
1365         /* PLL is protected by panel, make sure we can write it */
1366         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1367                 assert_panel_unlocked(dev_priv, pipe);
1368
1369         reg = DPLL(pipe);
1370         val = I915_READ(reg);
1371         val |= DPLL_VCO_ENABLE;
1372
1373         /* We do this three times for luck */
1374         I915_WRITE(reg, val);
1375         POSTING_READ(reg);
1376         udelay(150); /* wait for warmup */
1377         I915_WRITE(reg, val);
1378         POSTING_READ(reg);
1379         udelay(150); /* wait for warmup */
1380         I915_WRITE(reg, val);
1381         POSTING_READ(reg);
1382         udelay(150); /* wait for warmup */
1383 }
1384
1385 /**
1386  * intel_disable_pll - disable a PLL
1387  * @dev_priv: i915 private structure
1388  * @pipe: pipe PLL to disable
1389  *
1390  * Disable the PLL for @pipe, making sure the pipe is off first.
1391  *
1392  * Note!  This is for pre-ILK only.
1393  */
1394 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1395 {
1396         int reg;
1397         u32 val;
1398
1399         /* Don't disable pipe A or pipe A PLLs if needed */
1400         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1401                 return;
1402
1403         /* Make sure the pipe isn't still relying on us */
1404         assert_pipe_disabled(dev_priv, pipe);
1405
1406         reg = DPLL(pipe);
1407         val = I915_READ(reg);
1408         val &= ~DPLL_VCO_ENABLE;
1409         I915_WRITE(reg, val);
1410         POSTING_READ(reg);
1411 }
1412
1413 /* SBI access */
1414 static void
1415 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1416                 enum intel_sbi_destination destination)
1417 {
1418         u32 tmp;
1419
1420         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1421
1422         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1423                                 100)) {
1424                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1425                 return;
1426         }
1427
1428         I915_WRITE(SBI_ADDR, (reg << 16));
1429         I915_WRITE(SBI_DATA, value);
1430
1431         if (destination == SBI_ICLK)
1432                 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1433         else
1434                 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1435         I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1436
1437         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1438                                 100)) {
1439                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1440                 return;
1441         }
1442 }
1443
1444 static u32
1445 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1446                enum intel_sbi_destination destination)
1447 {
1448         u32 value = 0;
1449         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1450
1451         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1452                                 100)) {
1453                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1454                 return 0;
1455         }
1456
1457         I915_WRITE(SBI_ADDR, (reg << 16));
1458
1459         if (destination == SBI_ICLK)
1460                 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1461         else
1462                 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1463         I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1464
1465         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1466                                 100)) {
1467                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1468                 return 0;
1469         }
1470
1471         return I915_READ(SBI_DATA);
1472 }
1473
1474 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1475 {
1476         u32 port_mask;
1477
1478         if (!port)
1479                 port_mask = DPLL_PORTB_READY_MASK;
1480         else
1481                 port_mask = DPLL_PORTC_READY_MASK;
1482
1483         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1484                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1485                      'B' + port, I915_READ(DPLL(0)));
1486 }
1487
1488 /**
1489  * ironlake_enable_pch_pll - enable PCH PLL
1490  * @dev_priv: i915 private structure
1491  * @pipe: pipe PLL to enable
1492  *
1493  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1494  * drives the transcoder clock.
1495  */
1496 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1497 {
1498         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1499         struct intel_pch_pll *pll;
1500         int reg;
1501         u32 val;
1502
1503         /* PCH PLLs only available on ILK, SNB and IVB */
1504         BUG_ON(dev_priv->info->gen < 5);
1505         pll = intel_crtc->pch_pll;
1506         if (pll == NULL)
1507                 return;
1508
1509         if (WARN_ON(pll->refcount == 0))
1510                 return;
1511
1512         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1513                       pll->pll_reg, pll->active, pll->on,
1514                       intel_crtc->base.base.id);
1515
1516         /* PCH refclock must be enabled first */
1517         assert_pch_refclk_enabled(dev_priv);
1518
1519         if (pll->active++ && pll->on) {
1520                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1521                 return;
1522         }
1523
1524         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1525
1526         reg = pll->pll_reg;
1527         val = I915_READ(reg);
1528         val |= DPLL_VCO_ENABLE;
1529         I915_WRITE(reg, val);
1530         POSTING_READ(reg);
1531         udelay(200);
1532
1533         pll->on = true;
1534 }
1535
1536 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1537 {
1538         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1539         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1540         int reg;
1541         u32 val;
1542
1543         /* PCH only available on ILK+ */
1544         BUG_ON(dev_priv->info->gen < 5);
1545         if (pll == NULL)
1546                return;
1547
1548         if (WARN_ON(pll->refcount == 0))
1549                 return;
1550
1551         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1552                       pll->pll_reg, pll->active, pll->on,
1553                       intel_crtc->base.base.id);
1554
1555         if (WARN_ON(pll->active == 0)) {
1556                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1557                 return;
1558         }
1559
1560         if (--pll->active) {
1561                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1562                 return;
1563         }
1564
1565         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1566
1567         /* Make sure transcoder isn't still depending on us */
1568         assert_pch_transcoder_disabled(dev_priv, intel_crtc->pipe);
1569
1570         reg = pll->pll_reg;
1571         val = I915_READ(reg);
1572         val &= ~DPLL_VCO_ENABLE;
1573         I915_WRITE(reg, val);
1574         POSTING_READ(reg);
1575         udelay(200);
1576
1577         pll->on = false;
1578 }
1579
1580 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1581                                            enum pipe pipe)
1582 {
1583         struct drm_device *dev = dev_priv->dev;
1584         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1585         uint32_t reg, val, pipeconf_val;
1586
1587         /* PCH only available on ILK+ */
1588         BUG_ON(dev_priv->info->gen < 5);
1589
1590         /* Make sure PCH DPLL is enabled */
1591         assert_pch_pll_enabled(dev_priv,
1592                                to_intel_crtc(crtc)->pch_pll,
1593                                to_intel_crtc(crtc));
1594
1595         /* FDI must be feeding us bits for PCH ports */
1596         assert_fdi_tx_enabled(dev_priv, pipe);
1597         assert_fdi_rx_enabled(dev_priv, pipe);
1598
1599         if (HAS_PCH_CPT(dev)) {
1600                 /* Workaround: Set the timing override bit before enabling the
1601                  * pch transcoder. */
1602                 reg = TRANS_CHICKEN2(pipe);
1603                 val = I915_READ(reg);
1604                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1605                 I915_WRITE(reg, val);
1606         }
1607
1608         reg = PCH_TRANSCONF(pipe);
1609         val = I915_READ(reg);
1610         pipeconf_val = I915_READ(PIPECONF(pipe));
1611
1612         if (HAS_PCH_IBX(dev_priv->dev)) {
1613                 /*
1614                  * make the BPC in transcoder be consistent with
1615                  * that in pipeconf reg.
1616                  */
1617                 val &= ~PIPECONF_BPC_MASK;
1618                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1619         }
1620
1621         val &= ~TRANS_INTERLACE_MASK;
1622         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1623                 if (HAS_PCH_IBX(dev_priv->dev) &&
1624                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1625                         val |= TRANS_LEGACY_INTERLACED_ILK;
1626                 else
1627                         val |= TRANS_INTERLACED;
1628         else
1629                 val |= TRANS_PROGRESSIVE;
1630
1631         I915_WRITE(reg, val | TRANS_ENABLE);
1632         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1633                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1634 }
1635
1636 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1637                                       enum transcoder cpu_transcoder)
1638 {
1639         u32 val, pipeconf_val;
1640
1641         /* PCH only available on ILK+ */
1642         BUG_ON(dev_priv->info->gen < 5);
1643
1644         /* FDI must be feeding us bits for PCH ports */
1645         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1646         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1647
1648         /* Workaround: set timing override bit. */
1649         val = I915_READ(_TRANSA_CHICKEN2);
1650         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1651         I915_WRITE(_TRANSA_CHICKEN2, val);
1652
1653         val = TRANS_ENABLE;
1654         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1655
1656         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1657             PIPECONF_INTERLACED_ILK)
1658                 val |= TRANS_INTERLACED;
1659         else
1660                 val |= TRANS_PROGRESSIVE;
1661
1662         I915_WRITE(LPT_TRANSCONF, val);
1663         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1664                 DRM_ERROR("Failed to enable PCH transcoder\n");
1665 }
1666
1667 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1668                                             enum pipe pipe)
1669 {
1670         struct drm_device *dev = dev_priv->dev;
1671         uint32_t reg, val;
1672
1673         /* FDI relies on the transcoder */
1674         assert_fdi_tx_disabled(dev_priv, pipe);
1675         assert_fdi_rx_disabled(dev_priv, pipe);
1676
1677         /* Ports must be off as well */
1678         assert_pch_ports_disabled(dev_priv, pipe);
1679
1680         reg = PCH_TRANSCONF(pipe);
1681         val = I915_READ(reg);
1682         val &= ~TRANS_ENABLE;
1683         I915_WRITE(reg, val);
1684         /* wait for PCH transcoder off, transcoder state */
1685         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1686                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1687
1688         if (!HAS_PCH_IBX(dev)) {
1689                 /* Workaround: Clear the timing override chicken bit again. */
1690                 reg = TRANS_CHICKEN2(pipe);
1691                 val = I915_READ(reg);
1692                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1693                 I915_WRITE(reg, val);
1694         }
1695 }
1696
1697 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1698 {
1699         u32 val;
1700
1701         val = I915_READ(LPT_TRANSCONF);
1702         val &= ~TRANS_ENABLE;
1703         I915_WRITE(LPT_TRANSCONF, val);
1704         /* wait for PCH transcoder off, transcoder state */
1705         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1706                 DRM_ERROR("Failed to disable PCH transcoder\n");
1707
1708         /* Workaround: clear timing override bit. */
1709         val = I915_READ(_TRANSA_CHICKEN2);
1710         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1711         I915_WRITE(_TRANSA_CHICKEN2, val);
1712 }
1713
1714 /**
1715  * intel_enable_pipe - enable a pipe, asserting requirements
1716  * @dev_priv: i915 private structure
1717  * @pipe: pipe to enable
1718  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1719  *
1720  * Enable @pipe, making sure that various hardware specific requirements
1721  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1722  *
1723  * @pipe should be %PIPE_A or %PIPE_B.
1724  *
1725  * Will wait until the pipe is actually running (i.e. first vblank) before
1726  * returning.
1727  */
1728 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1729                               bool pch_port)
1730 {
1731         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1732                                                                       pipe);
1733         enum pipe pch_transcoder;
1734         int reg;
1735         u32 val;
1736
1737         assert_planes_disabled(dev_priv, pipe);
1738         assert_sprites_disabled(dev_priv, pipe);
1739
1740         if (HAS_PCH_LPT(dev_priv->dev))
1741                 pch_transcoder = TRANSCODER_A;
1742         else
1743                 pch_transcoder = pipe;
1744
1745         /*
1746          * A pipe without a PLL won't actually be able to drive bits from
1747          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1748          * need the check.
1749          */
1750         if (!HAS_PCH_SPLIT(dev_priv->dev))
1751                 assert_pll_enabled(dev_priv, pipe);
1752         else {
1753                 if (pch_port) {
1754                         /* if driving the PCH, we need FDI enabled */
1755                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1756                         assert_fdi_tx_pll_enabled(dev_priv,
1757                                                   (enum pipe) cpu_transcoder);
1758                 }
1759                 /* FIXME: assert CPU port conditions for SNB+ */
1760         }
1761
1762         reg = PIPECONF(cpu_transcoder);
1763         val = I915_READ(reg);
1764         if (val & PIPECONF_ENABLE)
1765                 return;
1766
1767         I915_WRITE(reg, val | PIPECONF_ENABLE);
1768         intel_wait_for_vblank(dev_priv->dev, pipe);
1769 }
1770
1771 /**
1772  * intel_disable_pipe - disable a pipe, asserting requirements
1773  * @dev_priv: i915 private structure
1774  * @pipe: pipe to disable
1775  *
1776  * Disable @pipe, making sure that various hardware specific requirements
1777  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1778  *
1779  * @pipe should be %PIPE_A or %PIPE_B.
1780  *
1781  * Will wait until the pipe has shut down before returning.
1782  */
1783 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1784                                enum pipe pipe)
1785 {
1786         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1787                                                                       pipe);
1788         int reg;
1789         u32 val;
1790
1791         /*
1792          * Make sure planes won't keep trying to pump pixels to us,
1793          * or we might hang the display.
1794          */
1795         assert_planes_disabled(dev_priv, pipe);
1796         assert_sprites_disabled(dev_priv, pipe);
1797
1798         /* Don't disable pipe A or pipe A PLLs if needed */
1799         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1800                 return;
1801
1802         reg = PIPECONF(cpu_transcoder);
1803         val = I915_READ(reg);
1804         if ((val & PIPECONF_ENABLE) == 0)
1805                 return;
1806
1807         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1808         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1809 }
1810
1811 /*
1812  * Plane regs are double buffered, going from enabled->disabled needs a
1813  * trigger in order to latch.  The display address reg provides this.
1814  */
1815 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1816                                       enum plane plane)
1817 {
1818         if (dev_priv->info->gen >= 4)
1819                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1820         else
1821                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1822 }
1823
1824 /**
1825  * intel_enable_plane - enable a display plane on a given pipe
1826  * @dev_priv: i915 private structure
1827  * @plane: plane to enable
1828  * @pipe: pipe being fed
1829  *
1830  * Enable @plane on @pipe, making sure that @pipe is running first.
1831  */
1832 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1833                                enum plane plane, enum pipe pipe)
1834 {
1835         int reg;
1836         u32 val;
1837
1838         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1839         assert_pipe_enabled(dev_priv, pipe);
1840
1841         reg = DSPCNTR(plane);
1842         val = I915_READ(reg);
1843         if (val & DISPLAY_PLANE_ENABLE)
1844                 return;
1845
1846         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1847         intel_flush_display_plane(dev_priv, plane);
1848         intel_wait_for_vblank(dev_priv->dev, pipe);
1849 }
1850
1851 /**
1852  * intel_disable_plane - disable a display plane
1853  * @dev_priv: i915 private structure
1854  * @plane: plane to disable
1855  * @pipe: pipe consuming the data
1856  *
1857  * Disable @plane; should be an independent operation.
1858  */
1859 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1860                                 enum plane plane, enum pipe pipe)
1861 {
1862         int reg;
1863         u32 val;
1864
1865         reg = DSPCNTR(plane);
1866         val = I915_READ(reg);
1867         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1868                 return;
1869
1870         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1871         intel_flush_display_plane(dev_priv, plane);
1872         intel_wait_for_vblank(dev_priv->dev, pipe);
1873 }
1874
1875 static bool need_vtd_wa(struct drm_device *dev)
1876 {
1877 #ifdef CONFIG_INTEL_IOMMU
1878         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1879                 return true;
1880 #endif
1881         return false;
1882 }
1883
1884 int
1885 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1886                            struct drm_i915_gem_object *obj,
1887                            struct intel_ring_buffer *pipelined)
1888 {
1889         struct drm_i915_private *dev_priv = dev->dev_private;
1890         u32 alignment;
1891         int ret;
1892
1893         switch (obj->tiling_mode) {
1894         case I915_TILING_NONE:
1895                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1896                         alignment = 128 * 1024;
1897                 else if (INTEL_INFO(dev)->gen >= 4)
1898                         alignment = 4 * 1024;
1899                 else
1900                         alignment = 64 * 1024;
1901                 break;
1902         case I915_TILING_X:
1903                 /* pin() will align the object as required by fence */
1904                 alignment = 0;
1905                 break;
1906         case I915_TILING_Y:
1907                 /* Despite that we check this in framebuffer_init userspace can
1908                  * screw us over and change the tiling after the fact. Only
1909                  * pinned buffers can't change their tiling. */
1910                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1911                 return -EINVAL;
1912         default:
1913                 BUG();
1914         }
1915
1916         /* Note that the w/a also requires 64 PTE of padding following the
1917          * bo. We currently fill all unused PTE with the shadow page and so
1918          * we should always have valid PTE following the scanout preventing
1919          * the VT-d warning.
1920          */
1921         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1922                 alignment = 256 * 1024;
1923
1924         dev_priv->mm.interruptible = false;
1925         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1926         if (ret)
1927                 goto err_interruptible;
1928
1929         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1930          * fence, whereas 965+ only requires a fence if using
1931          * framebuffer compression.  For simplicity, we always install
1932          * a fence as the cost is not that onerous.
1933          */
1934         ret = i915_gem_object_get_fence(obj);
1935         if (ret)
1936                 goto err_unpin;
1937
1938         i915_gem_object_pin_fence(obj);
1939
1940         dev_priv->mm.interruptible = true;
1941         return 0;
1942
1943 err_unpin:
1944         i915_gem_object_unpin(obj);
1945 err_interruptible:
1946         dev_priv->mm.interruptible = true;
1947         return ret;
1948 }
1949
1950 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1951 {
1952         i915_gem_object_unpin_fence(obj);
1953         i915_gem_object_unpin(obj);
1954 }
1955
1956 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1957  * is assumed to be a power-of-two. */
1958 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1959                                              unsigned int tiling_mode,
1960                                              unsigned int cpp,
1961                                              unsigned int pitch)
1962 {
1963         if (tiling_mode != I915_TILING_NONE) {
1964                 unsigned int tile_rows, tiles;
1965
1966                 tile_rows = *y / 8;
1967                 *y %= 8;
1968
1969                 tiles = *x / (512/cpp);
1970                 *x %= 512/cpp;
1971
1972                 return tile_rows * pitch * 8 + tiles * 4096;
1973         } else {
1974                 unsigned int offset;
1975
1976                 offset = *y * pitch + *x * cpp;
1977                 *y = 0;
1978                 *x = (offset & 4095) / cpp;
1979                 return offset & -4096;
1980         }
1981 }
1982
1983 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1984                              int x, int y)
1985 {
1986         struct drm_device *dev = crtc->dev;
1987         struct drm_i915_private *dev_priv = dev->dev_private;
1988         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1989         struct intel_framebuffer *intel_fb;
1990         struct drm_i915_gem_object *obj;
1991         int plane = intel_crtc->plane;
1992         unsigned long linear_offset;
1993         u32 dspcntr;
1994         u32 reg;
1995
1996         switch (plane) {
1997         case 0:
1998         case 1:
1999                 break;
2000         default:
2001                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2002                 return -EINVAL;
2003         }
2004
2005         intel_fb = to_intel_framebuffer(fb);
2006         obj = intel_fb->obj;
2007
2008         reg = DSPCNTR(plane);
2009         dspcntr = I915_READ(reg);
2010         /* Mask out pixel format bits in case we change it */
2011         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2012         switch (fb->pixel_format) {
2013         case DRM_FORMAT_C8:
2014                 dspcntr |= DISPPLANE_8BPP;
2015                 break;
2016         case DRM_FORMAT_XRGB1555:
2017         case DRM_FORMAT_ARGB1555:
2018                 dspcntr |= DISPPLANE_BGRX555;
2019                 break;
2020         case DRM_FORMAT_RGB565:
2021                 dspcntr |= DISPPLANE_BGRX565;
2022                 break;
2023         case DRM_FORMAT_XRGB8888:
2024         case DRM_FORMAT_ARGB8888:
2025                 dspcntr |= DISPPLANE_BGRX888;
2026                 break;
2027         case DRM_FORMAT_XBGR8888:
2028         case DRM_FORMAT_ABGR8888:
2029                 dspcntr |= DISPPLANE_RGBX888;
2030                 break;
2031         case DRM_FORMAT_XRGB2101010:
2032         case DRM_FORMAT_ARGB2101010:
2033                 dspcntr |= DISPPLANE_BGRX101010;
2034                 break;
2035         case DRM_FORMAT_XBGR2101010:
2036         case DRM_FORMAT_ABGR2101010:
2037                 dspcntr |= DISPPLANE_RGBX101010;
2038                 break;
2039         default:
2040                 BUG();
2041         }
2042
2043         if (INTEL_INFO(dev)->gen >= 4) {
2044                 if (obj->tiling_mode != I915_TILING_NONE)
2045                         dspcntr |= DISPPLANE_TILED;
2046                 else
2047                         dspcntr &= ~DISPPLANE_TILED;
2048         }
2049
2050         I915_WRITE(reg, dspcntr);
2051
2052         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2053
2054         if (INTEL_INFO(dev)->gen >= 4) {
2055                 intel_crtc->dspaddr_offset =
2056                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2057                                                        fb->bits_per_pixel / 8,
2058                                                        fb->pitches[0]);
2059                 linear_offset -= intel_crtc->dspaddr_offset;
2060         } else {
2061                 intel_crtc->dspaddr_offset = linear_offset;
2062         }
2063
2064         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2065                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2066         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2067         if (INTEL_INFO(dev)->gen >= 4) {
2068                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2069                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2070                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2071                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2072         } else
2073                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2074         POSTING_READ(reg);
2075
2076         return 0;
2077 }
2078
2079 static int ironlake_update_plane(struct drm_crtc *crtc,
2080                                  struct drm_framebuffer *fb, int x, int y)
2081 {
2082         struct drm_device *dev = crtc->dev;
2083         struct drm_i915_private *dev_priv = dev->dev_private;
2084         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2085         struct intel_framebuffer *intel_fb;
2086         struct drm_i915_gem_object *obj;
2087         int plane = intel_crtc->plane;
2088         unsigned long linear_offset;
2089         u32 dspcntr;
2090         u32 reg;
2091
2092         switch (plane) {
2093         case 0:
2094         case 1:
2095         case 2:
2096                 break;
2097         default:
2098                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2099                 return -EINVAL;
2100         }
2101
2102         intel_fb = to_intel_framebuffer(fb);
2103         obj = intel_fb->obj;
2104
2105         reg = DSPCNTR(plane);
2106         dspcntr = I915_READ(reg);
2107         /* Mask out pixel format bits in case we change it */
2108         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2109         switch (fb->pixel_format) {
2110         case DRM_FORMAT_C8:
2111                 dspcntr |= DISPPLANE_8BPP;
2112                 break;
2113         case DRM_FORMAT_RGB565:
2114                 dspcntr |= DISPPLANE_BGRX565;
2115                 break;
2116         case DRM_FORMAT_XRGB8888:
2117         case DRM_FORMAT_ARGB8888:
2118                 dspcntr |= DISPPLANE_BGRX888;
2119                 break;
2120         case DRM_FORMAT_XBGR8888:
2121         case DRM_FORMAT_ABGR8888:
2122                 dspcntr |= DISPPLANE_RGBX888;
2123                 break;
2124         case DRM_FORMAT_XRGB2101010:
2125         case DRM_FORMAT_ARGB2101010:
2126                 dspcntr |= DISPPLANE_BGRX101010;
2127                 break;
2128         case DRM_FORMAT_XBGR2101010:
2129         case DRM_FORMAT_ABGR2101010:
2130                 dspcntr |= DISPPLANE_RGBX101010;
2131                 break;
2132         default:
2133                 BUG();
2134         }
2135
2136         if (obj->tiling_mode != I915_TILING_NONE)
2137                 dspcntr |= DISPPLANE_TILED;
2138         else
2139                 dspcntr &= ~DISPPLANE_TILED;
2140
2141         /* must disable */
2142         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2143
2144         I915_WRITE(reg, dspcntr);
2145
2146         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2147         intel_crtc->dspaddr_offset =
2148                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2149                                                fb->bits_per_pixel / 8,
2150                                                fb->pitches[0]);
2151         linear_offset -= intel_crtc->dspaddr_offset;
2152
2153         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2154                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2155         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2156         I915_MODIFY_DISPBASE(DSPSURF(plane),
2157                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2158         if (IS_HASWELL(dev)) {
2159                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2160         } else {
2161                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2162                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2163         }
2164         POSTING_READ(reg);
2165
2166         return 0;
2167 }
2168
2169 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2170 static int
2171 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2172                            int x, int y, enum mode_set_atomic state)
2173 {
2174         struct drm_device *dev = crtc->dev;
2175         struct drm_i915_private *dev_priv = dev->dev_private;
2176
2177         if (dev_priv->display.disable_fbc)
2178                 dev_priv->display.disable_fbc(dev);
2179         intel_increase_pllclock(crtc);
2180
2181         return dev_priv->display.update_plane(crtc, fb, x, y);
2182 }
2183
2184 void intel_display_handle_reset(struct drm_device *dev)
2185 {
2186         struct drm_i915_private *dev_priv = dev->dev_private;
2187         struct drm_crtc *crtc;
2188
2189         /*
2190          * Flips in the rings have been nuked by the reset,
2191          * so complete all pending flips so that user space
2192          * will get its events and not get stuck.
2193          *
2194          * Also update the base address of all primary
2195          * planes to the the last fb to make sure we're
2196          * showing the correct fb after a reset.
2197          *
2198          * Need to make two loops over the crtcs so that we
2199          * don't try to grab a crtc mutex before the
2200          * pending_flip_queue really got woken up.
2201          */
2202
2203         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2204                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2205                 enum plane plane = intel_crtc->plane;
2206
2207                 intel_prepare_page_flip(dev, plane);
2208                 intel_finish_page_flip_plane(dev, plane);
2209         }
2210
2211         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2212                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2213
2214                 mutex_lock(&crtc->mutex);
2215                 if (intel_crtc->active)
2216                         dev_priv->display.update_plane(crtc, crtc->fb,
2217                                                        crtc->x, crtc->y);
2218                 mutex_unlock(&crtc->mutex);
2219         }
2220 }
2221
2222 static int
2223 intel_finish_fb(struct drm_framebuffer *old_fb)
2224 {
2225         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2226         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2227         bool was_interruptible = dev_priv->mm.interruptible;
2228         int ret;
2229
2230         /* Big Hammer, we also need to ensure that any pending
2231          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2232          * current scanout is retired before unpinning the old
2233          * framebuffer.
2234          *
2235          * This should only fail upon a hung GPU, in which case we
2236          * can safely continue.
2237          */
2238         dev_priv->mm.interruptible = false;
2239         ret = i915_gem_object_finish_gpu(obj);
2240         dev_priv->mm.interruptible = was_interruptible;
2241
2242         return ret;
2243 }
2244
2245 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2246 {
2247         struct drm_device *dev = crtc->dev;
2248         struct drm_i915_master_private *master_priv;
2249         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2250
2251         if (!dev->primary->master)
2252                 return;
2253
2254         master_priv = dev->primary->master->driver_priv;
2255         if (!master_priv->sarea_priv)
2256                 return;
2257
2258         switch (intel_crtc->pipe) {
2259         case 0:
2260                 master_priv->sarea_priv->pipeA_x = x;
2261                 master_priv->sarea_priv->pipeA_y = y;
2262                 break;
2263         case 1:
2264                 master_priv->sarea_priv->pipeB_x = x;
2265                 master_priv->sarea_priv->pipeB_y = y;
2266                 break;
2267         default:
2268                 break;
2269         }
2270 }
2271
2272 static int
2273 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2274                     struct drm_framebuffer *fb)
2275 {
2276         struct drm_device *dev = crtc->dev;
2277         struct drm_i915_private *dev_priv = dev->dev_private;
2278         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2279         struct drm_framebuffer *old_fb;
2280         int ret;
2281
2282         /* no fb bound */
2283         if (!fb) {
2284                 DRM_ERROR("No FB bound\n");
2285                 return 0;
2286         }
2287
2288         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2289                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2290                           plane_name(intel_crtc->plane),
2291                           INTEL_INFO(dev)->num_pipes);
2292                 return -EINVAL;
2293         }
2294
2295         mutex_lock(&dev->struct_mutex);
2296         ret = intel_pin_and_fence_fb_obj(dev,
2297                                          to_intel_framebuffer(fb)->obj,
2298                                          NULL);
2299         if (ret != 0) {
2300                 mutex_unlock(&dev->struct_mutex);
2301                 DRM_ERROR("pin & fence failed\n");
2302                 return ret;
2303         }
2304
2305         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2306         if (ret) {
2307                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2308                 mutex_unlock(&dev->struct_mutex);
2309                 DRM_ERROR("failed to update base address\n");
2310                 return ret;
2311         }
2312
2313         old_fb = crtc->fb;
2314         crtc->fb = fb;
2315         crtc->x = x;
2316         crtc->y = y;
2317
2318         if (old_fb) {
2319                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2320                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2321         }
2322
2323         intel_update_fbc(dev);
2324         mutex_unlock(&dev->struct_mutex);
2325
2326         intel_crtc_update_sarea_pos(crtc, x, y);
2327
2328         return 0;
2329 }
2330
2331 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2332 {
2333         struct drm_device *dev = crtc->dev;
2334         struct drm_i915_private *dev_priv = dev->dev_private;
2335         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2336         int pipe = intel_crtc->pipe;
2337         u32 reg, temp;
2338
2339         /* enable normal train */
2340         reg = FDI_TX_CTL(pipe);
2341         temp = I915_READ(reg);
2342         if (IS_IVYBRIDGE(dev)) {
2343                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2344                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2345         } else {
2346                 temp &= ~FDI_LINK_TRAIN_NONE;
2347                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2348         }
2349         I915_WRITE(reg, temp);
2350
2351         reg = FDI_RX_CTL(pipe);
2352         temp = I915_READ(reg);
2353         if (HAS_PCH_CPT(dev)) {
2354                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2355                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2356         } else {
2357                 temp &= ~FDI_LINK_TRAIN_NONE;
2358                 temp |= FDI_LINK_TRAIN_NONE;
2359         }
2360         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2361
2362         /* wait one idle pattern time */
2363         POSTING_READ(reg);
2364         udelay(1000);
2365
2366         /* IVB wants error correction enabled */
2367         if (IS_IVYBRIDGE(dev))
2368                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2369                            FDI_FE_ERRC_ENABLE);
2370 }
2371
2372 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2373 {
2374         return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2375 }
2376
2377 static void ivb_modeset_global_resources(struct drm_device *dev)
2378 {
2379         struct drm_i915_private *dev_priv = dev->dev_private;
2380         struct intel_crtc *pipe_B_crtc =
2381                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2382         struct intel_crtc *pipe_C_crtc =
2383                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2384         uint32_t temp;
2385
2386         /*
2387          * When everything is off disable fdi C so that we could enable fdi B
2388          * with all lanes. Note that we don't care about enabled pipes without
2389          * an enabled pch encoder.
2390          */
2391         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2392             !pipe_has_enabled_pch(pipe_C_crtc)) {
2393                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2394                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2395
2396                 temp = I915_READ(SOUTH_CHICKEN1);
2397                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2398                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2399                 I915_WRITE(SOUTH_CHICKEN1, temp);
2400         }
2401 }
2402
2403 /* The FDI link training functions for ILK/Ibexpeak. */
2404 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2405 {
2406         struct drm_device *dev = crtc->dev;
2407         struct drm_i915_private *dev_priv = dev->dev_private;
2408         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2409         int pipe = intel_crtc->pipe;
2410         int plane = intel_crtc->plane;
2411         u32 reg, temp, tries;
2412
2413         /* FDI needs bits from pipe & plane first */
2414         assert_pipe_enabled(dev_priv, pipe);
2415         assert_plane_enabled(dev_priv, plane);
2416
2417         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2418            for train result */
2419         reg = FDI_RX_IMR(pipe);
2420         temp = I915_READ(reg);
2421         temp &= ~FDI_RX_SYMBOL_LOCK;
2422         temp &= ~FDI_RX_BIT_LOCK;
2423         I915_WRITE(reg, temp);
2424         I915_READ(reg);
2425         udelay(150);
2426
2427         /* enable CPU FDI TX and PCH FDI RX */
2428         reg = FDI_TX_CTL(pipe);
2429         temp = I915_READ(reg);
2430         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2431         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2432         temp &= ~FDI_LINK_TRAIN_NONE;
2433         temp |= FDI_LINK_TRAIN_PATTERN_1;
2434         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2435
2436         reg = FDI_RX_CTL(pipe);
2437         temp = I915_READ(reg);
2438         temp &= ~FDI_LINK_TRAIN_NONE;
2439         temp |= FDI_LINK_TRAIN_PATTERN_1;
2440         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2441
2442         POSTING_READ(reg);
2443         udelay(150);
2444
2445         /* Ironlake workaround, enable clock pointer after FDI enable*/
2446         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2447         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2448                    FDI_RX_PHASE_SYNC_POINTER_EN);
2449
2450         reg = FDI_RX_IIR(pipe);
2451         for (tries = 0; tries < 5; tries++) {
2452                 temp = I915_READ(reg);
2453                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2454
2455                 if ((temp & FDI_RX_BIT_LOCK)) {
2456                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2457                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2458                         break;
2459                 }
2460         }
2461         if (tries == 5)
2462                 DRM_ERROR("FDI train 1 fail!\n");
2463
2464         /* Train 2 */
2465         reg = FDI_TX_CTL(pipe);
2466         temp = I915_READ(reg);
2467         temp &= ~FDI_LINK_TRAIN_NONE;
2468         temp |= FDI_LINK_TRAIN_PATTERN_2;
2469         I915_WRITE(reg, temp);
2470
2471         reg = FDI_RX_CTL(pipe);
2472         temp = I915_READ(reg);
2473         temp &= ~FDI_LINK_TRAIN_NONE;
2474         temp |= FDI_LINK_TRAIN_PATTERN_2;
2475         I915_WRITE(reg, temp);
2476
2477         POSTING_READ(reg);
2478         udelay(150);
2479
2480         reg = FDI_RX_IIR(pipe);
2481         for (tries = 0; tries < 5; tries++) {
2482                 temp = I915_READ(reg);
2483                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2484
2485                 if (temp & FDI_RX_SYMBOL_LOCK) {
2486                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2487                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2488                         break;
2489                 }
2490         }
2491         if (tries == 5)
2492                 DRM_ERROR("FDI train 2 fail!\n");
2493
2494         DRM_DEBUG_KMS("FDI train done\n");
2495
2496 }
2497
2498 static const int snb_b_fdi_train_param[] = {
2499         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2500         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2501         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2502         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2503 };
2504
2505 /* The FDI link training functions for SNB/Cougarpoint. */
2506 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2507 {
2508         struct drm_device *dev = crtc->dev;
2509         struct drm_i915_private *dev_priv = dev->dev_private;
2510         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2511         int pipe = intel_crtc->pipe;
2512         u32 reg, temp, i, retry;
2513
2514         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2515            for train result */
2516         reg = FDI_RX_IMR(pipe);
2517         temp = I915_READ(reg);
2518         temp &= ~FDI_RX_SYMBOL_LOCK;
2519         temp &= ~FDI_RX_BIT_LOCK;
2520         I915_WRITE(reg, temp);
2521
2522         POSTING_READ(reg);
2523         udelay(150);
2524
2525         /* enable CPU FDI TX and PCH FDI RX */
2526         reg = FDI_TX_CTL(pipe);
2527         temp = I915_READ(reg);
2528         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2529         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2530         temp &= ~FDI_LINK_TRAIN_NONE;
2531         temp |= FDI_LINK_TRAIN_PATTERN_1;
2532         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2533         /* SNB-B */
2534         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2535         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2536
2537         I915_WRITE(FDI_RX_MISC(pipe),
2538                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2539
2540         reg = FDI_RX_CTL(pipe);
2541         temp = I915_READ(reg);
2542         if (HAS_PCH_CPT(dev)) {
2543                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2544                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2545         } else {
2546                 temp &= ~FDI_LINK_TRAIN_NONE;
2547                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2548         }
2549         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2550
2551         POSTING_READ(reg);
2552         udelay(150);
2553
2554         for (i = 0; i < 4; i++) {
2555                 reg = FDI_TX_CTL(pipe);
2556                 temp = I915_READ(reg);
2557                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2558                 temp |= snb_b_fdi_train_param[i];
2559                 I915_WRITE(reg, temp);
2560
2561                 POSTING_READ(reg);
2562                 udelay(500);
2563
2564                 for (retry = 0; retry < 5; retry++) {
2565                         reg = FDI_RX_IIR(pipe);
2566                         temp = I915_READ(reg);
2567                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2568                         if (temp & FDI_RX_BIT_LOCK) {
2569                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2570                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2571                                 break;
2572                         }
2573                         udelay(50);
2574                 }
2575                 if (retry < 5)
2576                         break;
2577         }
2578         if (i == 4)
2579                 DRM_ERROR("FDI train 1 fail!\n");
2580
2581         /* Train 2 */
2582         reg = FDI_TX_CTL(pipe);
2583         temp = I915_READ(reg);
2584         temp &= ~FDI_LINK_TRAIN_NONE;
2585         temp |= FDI_LINK_TRAIN_PATTERN_2;
2586         if (IS_GEN6(dev)) {
2587                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2588                 /* SNB-B */
2589                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2590         }
2591         I915_WRITE(reg, temp);
2592
2593         reg = FDI_RX_CTL(pipe);
2594         temp = I915_READ(reg);
2595         if (HAS_PCH_CPT(dev)) {
2596                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2597                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2598         } else {
2599                 temp &= ~FDI_LINK_TRAIN_NONE;
2600                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2601         }
2602         I915_WRITE(reg, temp);
2603
2604         POSTING_READ(reg);
2605         udelay(150);
2606
2607         for (i = 0; i < 4; i++) {
2608                 reg = FDI_TX_CTL(pipe);
2609                 temp = I915_READ(reg);
2610                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2611                 temp |= snb_b_fdi_train_param[i];
2612                 I915_WRITE(reg, temp);
2613
2614                 POSTING_READ(reg);
2615                 udelay(500);
2616
2617                 for (retry = 0; retry < 5; retry++) {
2618                         reg = FDI_RX_IIR(pipe);
2619                         temp = I915_READ(reg);
2620                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2621                         if (temp & FDI_RX_SYMBOL_LOCK) {
2622                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2623                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2624                                 break;
2625                         }
2626                         udelay(50);
2627                 }
2628                 if (retry < 5)
2629                         break;
2630         }
2631         if (i == 4)
2632                 DRM_ERROR("FDI train 2 fail!\n");
2633
2634         DRM_DEBUG_KMS("FDI train done.\n");
2635 }
2636
2637 /* Manual link training for Ivy Bridge A0 parts */
2638 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2639 {
2640         struct drm_device *dev = crtc->dev;
2641         struct drm_i915_private *dev_priv = dev->dev_private;
2642         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2643         int pipe = intel_crtc->pipe;
2644         u32 reg, temp, i;
2645
2646         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2647            for train result */
2648         reg = FDI_RX_IMR(pipe);
2649         temp = I915_READ(reg);
2650         temp &= ~FDI_RX_SYMBOL_LOCK;
2651         temp &= ~FDI_RX_BIT_LOCK;
2652         I915_WRITE(reg, temp);
2653
2654         POSTING_READ(reg);
2655         udelay(150);
2656
2657         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2658                       I915_READ(FDI_RX_IIR(pipe)));
2659
2660         /* enable CPU FDI TX and PCH FDI RX */
2661         reg = FDI_TX_CTL(pipe);
2662         temp = I915_READ(reg);
2663         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2664         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2665         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2666         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2667         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2668         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2669         temp |= FDI_COMPOSITE_SYNC;
2670         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2671
2672         I915_WRITE(FDI_RX_MISC(pipe),
2673                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2674
2675         reg = FDI_RX_CTL(pipe);
2676         temp = I915_READ(reg);
2677         temp &= ~FDI_LINK_TRAIN_AUTO;
2678         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2679         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2680         temp |= FDI_COMPOSITE_SYNC;
2681         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2682
2683         POSTING_READ(reg);
2684         udelay(150);
2685
2686         for (i = 0; i < 4; i++) {
2687                 reg = FDI_TX_CTL(pipe);
2688                 temp = I915_READ(reg);
2689                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2690                 temp |= snb_b_fdi_train_param[i];
2691                 I915_WRITE(reg, temp);
2692
2693                 POSTING_READ(reg);
2694                 udelay(500);
2695
2696                 reg = FDI_RX_IIR(pipe);
2697                 temp = I915_READ(reg);
2698                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2699
2700                 if (temp & FDI_RX_BIT_LOCK ||
2701                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2702                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2703                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2704                         break;
2705                 }
2706         }
2707         if (i == 4)
2708                 DRM_ERROR("FDI train 1 fail!\n");
2709
2710         /* Train 2 */
2711         reg = FDI_TX_CTL(pipe);
2712         temp = I915_READ(reg);
2713         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2714         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2715         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2716         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2717         I915_WRITE(reg, temp);
2718
2719         reg = FDI_RX_CTL(pipe);
2720         temp = I915_READ(reg);
2721         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2722         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2723         I915_WRITE(reg, temp);
2724
2725         POSTING_READ(reg);
2726         udelay(150);
2727
2728         for (i = 0; i < 4; i++) {
2729                 reg = FDI_TX_CTL(pipe);
2730                 temp = I915_READ(reg);
2731                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2732                 temp |= snb_b_fdi_train_param[i];
2733                 I915_WRITE(reg, temp);
2734
2735                 POSTING_READ(reg);
2736                 udelay(500);
2737
2738                 reg = FDI_RX_IIR(pipe);
2739                 temp = I915_READ(reg);
2740                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2741
2742                 if (temp & FDI_RX_SYMBOL_LOCK) {
2743                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2744                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2745                         break;
2746                 }
2747         }
2748         if (i == 4)
2749                 DRM_ERROR("FDI train 2 fail!\n");
2750
2751         DRM_DEBUG_KMS("FDI train done.\n");
2752 }
2753
2754 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2755 {
2756         struct drm_device *dev = intel_crtc->base.dev;
2757         struct drm_i915_private *dev_priv = dev->dev_private;
2758         int pipe = intel_crtc->pipe;
2759         u32 reg, temp;
2760
2761
2762         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2763         reg = FDI_RX_CTL(pipe);
2764         temp = I915_READ(reg);
2765         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2766         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2767         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2768         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2769
2770         POSTING_READ(reg);
2771         udelay(200);
2772
2773         /* Switch from Rawclk to PCDclk */
2774         temp = I915_READ(reg);
2775         I915_WRITE(reg, temp | FDI_PCDCLK);
2776
2777         POSTING_READ(reg);
2778         udelay(200);
2779
2780         /* Enable CPU FDI TX PLL, always on for Ironlake */
2781         reg = FDI_TX_CTL(pipe);
2782         temp = I915_READ(reg);
2783         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2784                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2785
2786                 POSTING_READ(reg);
2787                 udelay(100);
2788         }
2789 }
2790
2791 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2792 {
2793         struct drm_device *dev = intel_crtc->base.dev;
2794         struct drm_i915_private *dev_priv = dev->dev_private;
2795         int pipe = intel_crtc->pipe;
2796         u32 reg, temp;
2797
2798         /* Switch from PCDclk to Rawclk */
2799         reg = FDI_RX_CTL(pipe);
2800         temp = I915_READ(reg);
2801         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2802
2803         /* Disable CPU FDI TX PLL */
2804         reg = FDI_TX_CTL(pipe);
2805         temp = I915_READ(reg);
2806         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2807
2808         POSTING_READ(reg);
2809         udelay(100);
2810
2811         reg = FDI_RX_CTL(pipe);
2812         temp = I915_READ(reg);
2813         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2814
2815         /* Wait for the clocks to turn off. */
2816         POSTING_READ(reg);
2817         udelay(100);
2818 }
2819
2820 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2821 {
2822         struct drm_device *dev = crtc->dev;
2823         struct drm_i915_private *dev_priv = dev->dev_private;
2824         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2825         int pipe = intel_crtc->pipe;
2826         u32 reg, temp;
2827
2828         /* disable CPU FDI tx and PCH FDI rx */
2829         reg = FDI_TX_CTL(pipe);
2830         temp = I915_READ(reg);
2831         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2832         POSTING_READ(reg);
2833
2834         reg = FDI_RX_CTL(pipe);
2835         temp = I915_READ(reg);
2836         temp &= ~(0x7 << 16);
2837         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2838         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2839
2840         POSTING_READ(reg);
2841         udelay(100);
2842
2843         /* Ironlake workaround, disable clock pointer after downing FDI */
2844         if (HAS_PCH_IBX(dev)) {
2845                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2846         }
2847
2848         /* still set train pattern 1 */
2849         reg = FDI_TX_CTL(pipe);
2850         temp = I915_READ(reg);
2851         temp &= ~FDI_LINK_TRAIN_NONE;
2852         temp |= FDI_LINK_TRAIN_PATTERN_1;
2853         I915_WRITE(reg, temp);
2854
2855         reg = FDI_RX_CTL(pipe);
2856         temp = I915_READ(reg);
2857         if (HAS_PCH_CPT(dev)) {
2858                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2859                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2860         } else {
2861                 temp &= ~FDI_LINK_TRAIN_NONE;
2862                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2863         }
2864         /* BPC in FDI rx is consistent with that in PIPECONF */
2865         temp &= ~(0x07 << 16);
2866         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2867         I915_WRITE(reg, temp);
2868
2869         POSTING_READ(reg);
2870         udelay(100);
2871 }
2872
2873 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2874 {
2875         struct drm_device *dev = crtc->dev;
2876         struct drm_i915_private *dev_priv = dev->dev_private;
2877         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2878         unsigned long flags;
2879         bool pending;
2880
2881         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2882             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2883                 return false;
2884
2885         spin_lock_irqsave(&dev->event_lock, flags);
2886         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2887         spin_unlock_irqrestore(&dev->event_lock, flags);
2888
2889         return pending;
2890 }
2891
2892 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2893 {
2894         struct drm_device *dev = crtc->dev;
2895         struct drm_i915_private *dev_priv = dev->dev_private;
2896
2897         if (crtc->fb == NULL)
2898                 return;
2899
2900         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2901
2902         wait_event(dev_priv->pending_flip_queue,
2903                    !intel_crtc_has_pending_flip(crtc));
2904
2905         mutex_lock(&dev->struct_mutex);
2906         intel_finish_fb(crtc->fb);
2907         mutex_unlock(&dev->struct_mutex);
2908 }
2909
2910 /* Program iCLKIP clock to the desired frequency */
2911 static void lpt_program_iclkip(struct drm_crtc *crtc)
2912 {
2913         struct drm_device *dev = crtc->dev;
2914         struct drm_i915_private *dev_priv = dev->dev_private;
2915         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2916         u32 temp;
2917
2918         mutex_lock(&dev_priv->dpio_lock);
2919
2920         /* It is necessary to ungate the pixclk gate prior to programming
2921          * the divisors, and gate it back when it is done.
2922          */
2923         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2924
2925         /* Disable SSCCTL */
2926         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2927                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2928                                 SBI_SSCCTL_DISABLE,
2929                         SBI_ICLK);
2930
2931         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2932         if (crtc->mode.clock == 20000) {
2933                 auxdiv = 1;
2934                 divsel = 0x41;
2935                 phaseinc = 0x20;
2936         } else {
2937                 /* The iCLK virtual clock root frequency is in MHz,
2938                  * but the crtc->mode.clock in in KHz. To get the divisors,
2939                  * it is necessary to divide one by another, so we
2940                  * convert the virtual clock precision to KHz here for higher
2941                  * precision.
2942                  */
2943                 u32 iclk_virtual_root_freq = 172800 * 1000;
2944                 u32 iclk_pi_range = 64;
2945                 u32 desired_divisor, msb_divisor_value, pi_value;
2946
2947                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2948                 msb_divisor_value = desired_divisor / iclk_pi_range;
2949                 pi_value = desired_divisor % iclk_pi_range;
2950
2951                 auxdiv = 0;
2952                 divsel = msb_divisor_value - 2;
2953                 phaseinc = pi_value;
2954         }
2955
2956         /* This should not happen with any sane values */
2957         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2958                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2959         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2960                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2961
2962         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2963                         crtc->mode.clock,
2964                         auxdiv,
2965                         divsel,
2966                         phasedir,
2967                         phaseinc);
2968
2969         /* Program SSCDIVINTPHASE6 */
2970         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2971         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2972         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2973         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2974         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2975         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2976         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2977         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2978
2979         /* Program SSCAUXDIV */
2980         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2981         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2982         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2983         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2984
2985         /* Enable modulator and associated divider */
2986         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2987         temp &= ~SBI_SSCCTL_DISABLE;
2988         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2989
2990         /* Wait for initialization time */
2991         udelay(24);
2992
2993         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2994
2995         mutex_unlock(&dev_priv->dpio_lock);
2996 }
2997
2998 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2999                                                 enum pipe pch_transcoder)
3000 {
3001         struct drm_device *dev = crtc->base.dev;
3002         struct drm_i915_private *dev_priv = dev->dev_private;
3003         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3004
3005         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3006                    I915_READ(HTOTAL(cpu_transcoder)));
3007         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3008                    I915_READ(HBLANK(cpu_transcoder)));
3009         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3010                    I915_READ(HSYNC(cpu_transcoder)));
3011
3012         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3013                    I915_READ(VTOTAL(cpu_transcoder)));
3014         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3015                    I915_READ(VBLANK(cpu_transcoder)));
3016         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3017                    I915_READ(VSYNC(cpu_transcoder)));
3018         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3019                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3020 }
3021
3022 /*
3023  * Enable PCH resources required for PCH ports:
3024  *   - PCH PLLs
3025  *   - FDI training & RX/TX
3026  *   - update transcoder timings
3027  *   - DP transcoding bits
3028  *   - transcoder
3029  */
3030 static void ironlake_pch_enable(struct drm_crtc *crtc)
3031 {
3032         struct drm_device *dev = crtc->dev;
3033         struct drm_i915_private *dev_priv = dev->dev_private;
3034         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3035         int pipe = intel_crtc->pipe;
3036         u32 reg, temp;
3037
3038         assert_pch_transcoder_disabled(dev_priv, pipe);
3039
3040         /* Write the TU size bits before fdi link training, so that error
3041          * detection works. */
3042         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3043                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3044
3045         /* For PCH output, training FDI link */
3046         dev_priv->display.fdi_link_train(crtc);
3047
3048         /* XXX: pch pll's can be enabled any time before we enable the PCH
3049          * transcoder, and we actually should do this to not upset any PCH
3050          * transcoder that already use the clock when we share it.
3051          *
3052          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3053          * unconditionally resets the pll - we need that to have the right LVDS
3054          * enable sequence. */
3055         ironlake_enable_pch_pll(intel_crtc);
3056
3057         if (HAS_PCH_CPT(dev)) {
3058                 u32 sel;
3059
3060                 temp = I915_READ(PCH_DPLL_SEL);
3061                 switch (pipe) {
3062                 default:
3063                 case 0:
3064                         temp |= TRANSA_DPLL_ENABLE;
3065                         sel = TRANSA_DPLLB_SEL;
3066                         break;
3067                 case 1:
3068                         temp |= TRANSB_DPLL_ENABLE;
3069                         sel = TRANSB_DPLLB_SEL;
3070                         break;
3071                 case 2:
3072                         temp |= TRANSC_DPLL_ENABLE;
3073                         sel = TRANSC_DPLLB_SEL;
3074                         break;
3075                 }
3076                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3077                         temp |= sel;
3078                 else
3079                         temp &= ~sel;
3080                 I915_WRITE(PCH_DPLL_SEL, temp);
3081         }
3082
3083         /* set transcoder timing, panel must allow it */
3084         assert_panel_unlocked(dev_priv, pipe);
3085         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3086
3087         intel_fdi_normal_train(crtc);
3088
3089         /* For PCH DP, enable TRANS_DP_CTL */
3090         if (HAS_PCH_CPT(dev) &&
3091             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3092              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3093                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3094                 reg = TRANS_DP_CTL(pipe);
3095                 temp = I915_READ(reg);
3096                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3097                           TRANS_DP_SYNC_MASK |
3098                           TRANS_DP_BPC_MASK);
3099                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3100                          TRANS_DP_ENH_FRAMING);
3101                 temp |= bpc << 9; /* same format but at 11:9 */
3102
3103                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3104                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3105                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3106                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3107
3108                 switch (intel_trans_dp_port_sel(crtc)) {
3109                 case PCH_DP_B:
3110                         temp |= TRANS_DP_PORT_SEL_B;
3111                         break;
3112                 case PCH_DP_C:
3113                         temp |= TRANS_DP_PORT_SEL_C;
3114                         break;
3115                 case PCH_DP_D:
3116                         temp |= TRANS_DP_PORT_SEL_D;
3117                         break;
3118                 default:
3119                         BUG();
3120                 }
3121
3122                 I915_WRITE(reg, temp);
3123         }
3124
3125         ironlake_enable_pch_transcoder(dev_priv, pipe);
3126 }
3127
3128 static void lpt_pch_enable(struct drm_crtc *crtc)
3129 {
3130         struct drm_device *dev = crtc->dev;
3131         struct drm_i915_private *dev_priv = dev->dev_private;
3132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3133         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3134
3135         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3136
3137         lpt_program_iclkip(crtc);
3138
3139         /* Set transcoder timing. */
3140         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3141
3142         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3143 }
3144
3145 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3146 {
3147         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3148
3149         if (pll == NULL)
3150                 return;
3151
3152         if (pll->refcount == 0) {
3153                 WARN(1, "bad PCH PLL refcount\n");
3154                 return;
3155         }
3156
3157         --pll->refcount;
3158         intel_crtc->pch_pll = NULL;
3159 }
3160
3161 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3162 {
3163         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3164         struct intel_pch_pll *pll;
3165         int i;
3166
3167         pll = intel_crtc->pch_pll;
3168         if (pll) {
3169                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3170                               intel_crtc->base.base.id, pll->pll_reg);
3171                 goto prepare;
3172         }
3173
3174         if (HAS_PCH_IBX(dev_priv->dev)) {
3175                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3176                 i = intel_crtc->pipe;
3177                 pll = &dev_priv->pch_plls[i];
3178
3179                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3180                               intel_crtc->base.base.id, pll->pll_reg);
3181
3182                 goto found;
3183         }
3184
3185         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3186                 pll = &dev_priv->pch_plls[i];
3187
3188                 /* Only want to check enabled timings first */
3189                 if (pll->refcount == 0)
3190                         continue;
3191
3192                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3193                     fp == I915_READ(pll->fp0_reg)) {
3194                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3195                                       intel_crtc->base.base.id,
3196                                       pll->pll_reg, pll->refcount, pll->active);
3197
3198                         goto found;
3199                 }
3200         }
3201
3202         /* Ok no matching timings, maybe there's a free one? */
3203         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3204                 pll = &dev_priv->pch_plls[i];
3205                 if (pll->refcount == 0) {
3206                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3207                                       intel_crtc->base.base.id, pll->pll_reg);
3208                         goto found;
3209                 }
3210         }
3211
3212         return NULL;
3213
3214 found:
3215         intel_crtc->pch_pll = pll;
3216         pll->refcount++;
3217         DRM_DEBUG_DRIVER("using pll %d for pipe %c\n", i, pipe_name(intel_crtc->pipe));
3218 prepare: /* separate function? */
3219         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3220
3221         /* Wait for the clocks to stabilize before rewriting the regs */
3222         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3223         POSTING_READ(pll->pll_reg);
3224         udelay(150);
3225
3226         I915_WRITE(pll->fp0_reg, fp);
3227         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3228         pll->on = false;
3229         return pll;
3230 }
3231
3232 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3233 {
3234         struct drm_i915_private *dev_priv = dev->dev_private;
3235         int dslreg = PIPEDSL(pipe);
3236         u32 temp;
3237
3238         temp = I915_READ(dslreg);
3239         udelay(500);
3240         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3241                 if (wait_for(I915_READ(dslreg) != temp, 5))
3242                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3243         }
3244 }
3245
3246 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3247 {
3248         struct drm_device *dev = crtc->base.dev;
3249         struct drm_i915_private *dev_priv = dev->dev_private;
3250         int pipe = crtc->pipe;
3251
3252         if (crtc->config.pch_pfit.size) {
3253                 /* Force use of hard-coded filter coefficients
3254                  * as some pre-programmed values are broken,
3255                  * e.g. x201.
3256                  */
3257                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3258                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3259                                                  PF_PIPE_SEL_IVB(pipe));
3260                 else
3261                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3262                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3263                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3264         }
3265 }
3266
3267 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3268 {
3269         struct drm_device *dev = crtc->dev;
3270         struct drm_i915_private *dev_priv = dev->dev_private;
3271         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3272         struct intel_encoder *encoder;
3273         int pipe = intel_crtc->pipe;
3274         int plane = intel_crtc->plane;
3275         u32 temp;
3276
3277         WARN_ON(!crtc->enabled);
3278
3279         if (intel_crtc->active)
3280                 return;
3281
3282         intel_crtc->active = true;
3283
3284         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3285         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3286
3287         intel_update_watermarks(dev);
3288
3289         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3290                 temp = I915_READ(PCH_LVDS);
3291                 if ((temp & LVDS_PORT_EN) == 0)
3292                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3293         }
3294
3295
3296         if (intel_crtc->config.has_pch_encoder) {
3297                 /* Note: FDI PLL enabling _must_ be done before we enable the
3298                  * cpu pipes, hence this is separate from all the other fdi/pch
3299                  * enabling. */
3300                 ironlake_fdi_pll_enable(intel_crtc);
3301         } else {
3302                 assert_fdi_tx_disabled(dev_priv, pipe);
3303                 assert_fdi_rx_disabled(dev_priv, pipe);
3304         }
3305
3306         for_each_encoder_on_crtc(dev, crtc, encoder)
3307                 if (encoder->pre_enable)
3308                         encoder->pre_enable(encoder);
3309
3310         /* Enable panel fitting for LVDS */
3311         ironlake_pfit_enable(intel_crtc);
3312
3313         /*
3314          * On ILK+ LUT must be loaded before the pipe is running but with
3315          * clocks enabled
3316          */
3317         intel_crtc_load_lut(crtc);
3318
3319         intel_enable_pipe(dev_priv, pipe,
3320                           intel_crtc->config.has_pch_encoder);
3321         intel_enable_plane(dev_priv, plane, pipe);
3322
3323         if (intel_crtc->config.has_pch_encoder)
3324                 ironlake_pch_enable(crtc);
3325
3326         mutex_lock(&dev->struct_mutex);
3327         intel_update_fbc(dev);
3328         mutex_unlock(&dev->struct_mutex);
3329
3330         intel_crtc_update_cursor(crtc, true);
3331
3332         for_each_encoder_on_crtc(dev, crtc, encoder)
3333                 encoder->enable(encoder);
3334
3335         if (HAS_PCH_CPT(dev))
3336                 cpt_verify_modeset(dev, intel_crtc->pipe);
3337
3338         /*
3339          * There seems to be a race in PCH platform hw (at least on some
3340          * outputs) where an enabled pipe still completes any pageflip right
3341          * away (as if the pipe is off) instead of waiting for vblank. As soon
3342          * as the first vblank happend, everything works as expected. Hence just
3343          * wait for one vblank before returning to avoid strange things
3344          * happening.
3345          */
3346         intel_wait_for_vblank(dev, intel_crtc->pipe);
3347 }
3348
3349 static void haswell_crtc_enable(struct drm_crtc *crtc)
3350 {
3351         struct drm_device *dev = crtc->dev;
3352         struct drm_i915_private *dev_priv = dev->dev_private;
3353         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3354         struct intel_encoder *encoder;
3355         int pipe = intel_crtc->pipe;
3356         int plane = intel_crtc->plane;
3357
3358         WARN_ON(!crtc->enabled);
3359
3360         if (intel_crtc->active)
3361                 return;
3362
3363         intel_crtc->active = true;
3364
3365         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3366         if (intel_crtc->config.has_pch_encoder)
3367                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3368
3369         intel_update_watermarks(dev);
3370
3371         if (intel_crtc->config.has_pch_encoder)
3372                 dev_priv->display.fdi_link_train(crtc);
3373
3374         for_each_encoder_on_crtc(dev, crtc, encoder)
3375                 if (encoder->pre_enable)
3376                         encoder->pre_enable(encoder);
3377
3378         intel_ddi_enable_pipe_clock(intel_crtc);
3379
3380         /* Enable panel fitting for eDP */
3381         ironlake_pfit_enable(intel_crtc);
3382
3383         /*
3384          * On ILK+ LUT must be loaded before the pipe is running but with
3385          * clocks enabled
3386          */
3387         intel_crtc_load_lut(crtc);
3388
3389         intel_ddi_set_pipe_settings(crtc);
3390         intel_ddi_enable_transcoder_func(crtc);
3391
3392         intel_enable_pipe(dev_priv, pipe,
3393                           intel_crtc->config.has_pch_encoder);
3394         intel_enable_plane(dev_priv, plane, pipe);
3395
3396         if (intel_crtc->config.has_pch_encoder)
3397                 lpt_pch_enable(crtc);
3398
3399         mutex_lock(&dev->struct_mutex);
3400         intel_update_fbc(dev);
3401         mutex_unlock(&dev->struct_mutex);
3402
3403         intel_crtc_update_cursor(crtc, true);
3404
3405         for_each_encoder_on_crtc(dev, crtc, encoder)
3406                 encoder->enable(encoder);
3407
3408         /*
3409          * There seems to be a race in PCH platform hw (at least on some
3410          * outputs) where an enabled pipe still completes any pageflip right
3411          * away (as if the pipe is off) instead of waiting for vblank. As soon
3412          * as the first vblank happend, everything works as expected. Hence just
3413          * wait for one vblank before returning to avoid strange things
3414          * happening.
3415          */
3416         intel_wait_for_vblank(dev, intel_crtc->pipe);
3417 }
3418
3419 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3420 {
3421         struct drm_device *dev = crtc->dev;
3422         struct drm_i915_private *dev_priv = dev->dev_private;
3423         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3424         struct intel_encoder *encoder;
3425         int pipe = intel_crtc->pipe;
3426         int plane = intel_crtc->plane;
3427         u32 reg, temp;
3428
3429
3430         if (!intel_crtc->active)
3431                 return;
3432
3433         for_each_encoder_on_crtc(dev, crtc, encoder)
3434                 encoder->disable(encoder);
3435
3436         intel_crtc_wait_for_pending_flips(crtc);
3437         drm_vblank_off(dev, pipe);
3438         intel_crtc_update_cursor(crtc, false);
3439
3440         intel_disable_plane(dev_priv, plane, pipe);
3441
3442         if (dev_priv->cfb_plane == plane)
3443                 intel_disable_fbc(dev);
3444
3445         intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3446         intel_disable_pipe(dev_priv, pipe);
3447
3448         /* Disable PF */
3449         I915_WRITE(PF_CTL(pipe), 0);
3450         I915_WRITE(PF_WIN_SZ(pipe), 0);
3451
3452         for_each_encoder_on_crtc(dev, crtc, encoder)
3453                 if (encoder->post_disable)
3454                         encoder->post_disable(encoder);
3455
3456         ironlake_fdi_disable(crtc);
3457
3458         ironlake_disable_pch_transcoder(dev_priv, pipe);
3459         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3460
3461         if (HAS_PCH_CPT(dev)) {
3462                 /* disable TRANS_DP_CTL */
3463                 reg = TRANS_DP_CTL(pipe);
3464                 temp = I915_READ(reg);
3465                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3466                 temp |= TRANS_DP_PORT_SEL_NONE;
3467                 I915_WRITE(reg, temp);
3468
3469                 /* disable DPLL_SEL */
3470                 temp = I915_READ(PCH_DPLL_SEL);
3471                 switch (pipe) {
3472                 case 0:
3473                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3474                         break;
3475                 case 1:
3476                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3477                         break;
3478                 case 2:
3479                         /* C shares PLL A or B */
3480                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3481                         break;
3482                 default:
3483                         BUG(); /* wtf */
3484                 }
3485                 I915_WRITE(PCH_DPLL_SEL, temp);
3486         }
3487
3488         /* disable PCH DPLL */
3489         intel_disable_pch_pll(intel_crtc);
3490
3491         ironlake_fdi_pll_disable(intel_crtc);
3492
3493         intel_crtc->active = false;
3494         intel_update_watermarks(dev);
3495
3496         mutex_lock(&dev->struct_mutex);
3497         intel_update_fbc(dev);
3498         mutex_unlock(&dev->struct_mutex);
3499 }
3500
3501 static void haswell_crtc_disable(struct drm_crtc *crtc)
3502 {
3503         struct drm_device *dev = crtc->dev;
3504         struct drm_i915_private *dev_priv = dev->dev_private;
3505         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3506         struct intel_encoder *encoder;
3507         int pipe = intel_crtc->pipe;
3508         int plane = intel_crtc->plane;
3509         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3510
3511         if (!intel_crtc->active)
3512                 return;
3513
3514         for_each_encoder_on_crtc(dev, crtc, encoder)
3515                 encoder->disable(encoder);
3516
3517         intel_crtc_wait_for_pending_flips(crtc);
3518         drm_vblank_off(dev, pipe);
3519         intel_crtc_update_cursor(crtc, false);
3520
3521         /* FBC must be disabled before disabling the plane on HSW. */
3522         if (dev_priv->cfb_plane == plane)
3523                 intel_disable_fbc(dev);
3524
3525         intel_disable_plane(dev_priv, plane, pipe);
3526
3527         if (intel_crtc->config.has_pch_encoder)
3528                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3529         intel_disable_pipe(dev_priv, pipe);
3530
3531         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3532
3533         /* XXX: Once we have proper panel fitter state tracking implemented with
3534          * hardware state read/check support we should switch to only disable
3535          * the panel fitter when we know it's used. */
3536         if (intel_display_power_enabled(dev,
3537                                         POWER_DOMAIN_PIPE_PANEL_FITTER(pipe))) {
3538                 I915_WRITE(PF_CTL(pipe), 0);
3539                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3540         }
3541
3542         intel_ddi_disable_pipe_clock(intel_crtc);
3543
3544         for_each_encoder_on_crtc(dev, crtc, encoder)
3545                 if (encoder->post_disable)
3546                         encoder->post_disable(encoder);
3547
3548         if (intel_crtc->config.has_pch_encoder) {
3549                 lpt_disable_pch_transcoder(dev_priv);
3550                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3551                 intel_ddi_fdi_disable(crtc);
3552         }
3553
3554         intel_crtc->active = false;
3555         intel_update_watermarks(dev);
3556
3557         mutex_lock(&dev->struct_mutex);
3558         intel_update_fbc(dev);
3559         mutex_unlock(&dev->struct_mutex);
3560 }
3561
3562 static void ironlake_crtc_off(struct drm_crtc *crtc)
3563 {
3564         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3565         intel_put_pch_pll(intel_crtc);
3566 }
3567
3568 static void haswell_crtc_off(struct drm_crtc *crtc)
3569 {
3570         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3571
3572         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3573          * start using it. */
3574         intel_crtc->config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3575
3576         intel_ddi_put_crtc_pll(crtc);
3577 }
3578
3579 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3580 {
3581         if (!enable && intel_crtc->overlay) {
3582                 struct drm_device *dev = intel_crtc->base.dev;
3583                 struct drm_i915_private *dev_priv = dev->dev_private;
3584
3585                 mutex_lock(&dev->struct_mutex);
3586                 dev_priv->mm.interruptible = false;
3587                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3588                 dev_priv->mm.interruptible = true;
3589                 mutex_unlock(&dev->struct_mutex);
3590         }
3591
3592         /* Let userspace switch the overlay on again. In most cases userspace
3593          * has to recompute where to put it anyway.
3594          */
3595 }
3596
3597 /**
3598  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3599  * cursor plane briefly if not already running after enabling the display
3600  * plane.
3601  * This workaround avoids occasional blank screens when self refresh is
3602  * enabled.
3603  */
3604 static void
3605 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3606 {
3607         u32 cntl = I915_READ(CURCNTR(pipe));
3608
3609         if ((cntl & CURSOR_MODE) == 0) {
3610                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3611
3612                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3613                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3614                 intel_wait_for_vblank(dev_priv->dev, pipe);
3615                 I915_WRITE(CURCNTR(pipe), cntl);
3616                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3617                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3618         }
3619 }
3620
3621 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3622 {
3623         struct drm_device *dev = crtc->base.dev;
3624         struct drm_i915_private *dev_priv = dev->dev_private;
3625         struct intel_crtc_config *pipe_config = &crtc->config;
3626
3627         if (!(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
3628               intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)))
3629                 return;
3630
3631         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3632         assert_pipe_disabled(dev_priv, crtc->pipe);
3633
3634         /*
3635          * Enable automatic panel scaling so that non-native modes
3636          * fill the screen.  The panel fitter should only be
3637          * adjusted whilst the pipe is disabled, according to
3638          * register description and PRM.
3639          */
3640         DRM_DEBUG_KMS("applying panel-fitter: %x, %x\n",
3641                       pipe_config->gmch_pfit.control,
3642                       pipe_config->gmch_pfit.pgm_ratios);
3643
3644         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3645         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3646
3647         /* Border color in case we don't scale up to the full screen. Black by
3648          * default, change to something else for debugging. */
3649         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3650 }
3651
3652 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3653 {
3654         struct drm_device *dev = crtc->dev;
3655         struct drm_i915_private *dev_priv = dev->dev_private;
3656         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3657         struct intel_encoder *encoder;
3658         int pipe = intel_crtc->pipe;
3659         int plane = intel_crtc->plane;
3660
3661         WARN_ON(!crtc->enabled);
3662
3663         if (intel_crtc->active)
3664                 return;
3665
3666         intel_crtc->active = true;
3667         intel_update_watermarks(dev);
3668
3669         mutex_lock(&dev_priv->dpio_lock);
3670
3671         for_each_encoder_on_crtc(dev, crtc, encoder)
3672                 if (encoder->pre_pll_enable)
3673                         encoder->pre_pll_enable(encoder);
3674
3675         intel_enable_pll(dev_priv, pipe);
3676
3677         for_each_encoder_on_crtc(dev, crtc, encoder)
3678                 if (encoder->pre_enable)
3679                         encoder->pre_enable(encoder);
3680
3681         /* VLV wants encoder enabling _before_ the pipe is up. */
3682         for_each_encoder_on_crtc(dev, crtc, encoder)
3683                 encoder->enable(encoder);
3684
3685         /* Enable panel fitting for eDP */
3686         i9xx_pfit_enable(intel_crtc);
3687
3688         intel_enable_pipe(dev_priv, pipe, false);
3689         intel_enable_plane(dev_priv, plane, pipe);
3690
3691         intel_crtc_load_lut(crtc);
3692         intel_update_fbc(dev);
3693
3694         /* Give the overlay scaler a chance to enable if it's on this pipe */
3695         intel_crtc_dpms_overlay(intel_crtc, true);
3696         intel_crtc_update_cursor(crtc, true);
3697
3698         mutex_unlock(&dev_priv->dpio_lock);
3699 }
3700
3701 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3702 {
3703         struct drm_device *dev = crtc->dev;
3704         struct drm_i915_private *dev_priv = dev->dev_private;
3705         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3706         struct intel_encoder *encoder;
3707         int pipe = intel_crtc->pipe;
3708         int plane = intel_crtc->plane;
3709
3710         WARN_ON(!crtc->enabled);
3711
3712         if (intel_crtc->active)
3713                 return;
3714
3715         intel_crtc->active = true;
3716         intel_update_watermarks(dev);
3717
3718         intel_enable_pll(dev_priv, pipe);
3719
3720         for_each_encoder_on_crtc(dev, crtc, encoder)
3721                 if (encoder->pre_enable)
3722                         encoder->pre_enable(encoder);
3723
3724         /* Enable panel fitting for LVDS */
3725         i9xx_pfit_enable(intel_crtc);
3726
3727         intel_enable_pipe(dev_priv, pipe, false);
3728         intel_enable_plane(dev_priv, plane, pipe);
3729         if (IS_G4X(dev))
3730                 g4x_fixup_plane(dev_priv, pipe);
3731
3732         intel_crtc_load_lut(crtc);
3733         intel_update_fbc(dev);
3734
3735         /* Give the overlay scaler a chance to enable if it's on this pipe */
3736         intel_crtc_dpms_overlay(intel_crtc, true);
3737         intel_crtc_update_cursor(crtc, true);
3738
3739         for_each_encoder_on_crtc(dev, crtc, encoder)
3740                 encoder->enable(encoder);
3741 }
3742
3743 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3744 {
3745         struct drm_device *dev = crtc->base.dev;
3746         struct drm_i915_private *dev_priv = dev->dev_private;
3747         enum pipe pipe;
3748         uint32_t pctl = I915_READ(PFIT_CONTROL);
3749
3750         assert_pipe_disabled(dev_priv, crtc->pipe);
3751
3752         if (INTEL_INFO(dev)->gen >= 4)
3753                 pipe = (pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT;
3754         else
3755                 pipe = PIPE_B;
3756
3757         if (pipe == crtc->pipe) {
3758                 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n", pctl);
3759                 I915_WRITE(PFIT_CONTROL, 0);
3760         }
3761 }
3762
3763 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3764 {
3765         struct drm_device *dev = crtc->dev;
3766         struct drm_i915_private *dev_priv = dev->dev_private;
3767         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3768         struct intel_encoder *encoder;
3769         int pipe = intel_crtc->pipe;
3770         int plane = intel_crtc->plane;
3771
3772         if (!intel_crtc->active)
3773                 return;
3774
3775         for_each_encoder_on_crtc(dev, crtc, encoder)
3776                 encoder->disable(encoder);
3777
3778         /* Give the overlay scaler a chance to disable if it's on this pipe */
3779         intel_crtc_wait_for_pending_flips(crtc);
3780         drm_vblank_off(dev, pipe);
3781         intel_crtc_dpms_overlay(intel_crtc, false);
3782         intel_crtc_update_cursor(crtc, false);
3783
3784         if (dev_priv->cfb_plane == plane)
3785                 intel_disable_fbc(dev);
3786
3787         intel_disable_plane(dev_priv, plane, pipe);
3788         intel_disable_pipe(dev_priv, pipe);
3789
3790         i9xx_pfit_disable(intel_crtc);
3791
3792         for_each_encoder_on_crtc(dev, crtc, encoder)
3793                 if (encoder->post_disable)
3794                         encoder->post_disable(encoder);
3795
3796         intel_disable_pll(dev_priv, pipe);
3797
3798         intel_crtc->active = false;
3799         intel_update_fbc(dev);
3800         intel_update_watermarks(dev);
3801 }
3802
3803 static void i9xx_crtc_off(struct drm_crtc *crtc)
3804 {
3805 }
3806
3807 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3808                                     bool enabled)
3809 {
3810         struct drm_device *dev = crtc->dev;
3811         struct drm_i915_master_private *master_priv;
3812         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3813         int pipe = intel_crtc->pipe;
3814
3815         if (!dev->primary->master)
3816                 return;
3817
3818         master_priv = dev->primary->master->driver_priv;
3819         if (!master_priv->sarea_priv)
3820                 return;
3821
3822         switch (pipe) {
3823         case 0:
3824                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3825                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3826                 break;
3827         case 1:
3828                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3829                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3830                 break;
3831         default:
3832                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3833                 break;
3834         }
3835 }
3836
3837 /**
3838  * Sets the power management mode of the pipe and plane.
3839  */
3840 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3841 {
3842         struct drm_device *dev = crtc->dev;
3843         struct drm_i915_private *dev_priv = dev->dev_private;
3844         struct intel_encoder *intel_encoder;
3845         bool enable = false;
3846
3847         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3848                 enable |= intel_encoder->connectors_active;
3849
3850         if (enable)
3851                 dev_priv->display.crtc_enable(crtc);
3852         else
3853                 dev_priv->display.crtc_disable(crtc);
3854
3855         intel_crtc_update_sarea(crtc, enable);
3856 }
3857
3858 static void intel_crtc_disable(struct drm_crtc *crtc)
3859 {
3860         struct drm_device *dev = crtc->dev;
3861         struct drm_connector *connector;
3862         struct drm_i915_private *dev_priv = dev->dev_private;
3863         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3864
3865         /* crtc should still be enabled when we disable it. */
3866         WARN_ON(!crtc->enabled);
3867
3868         dev_priv->display.crtc_disable(crtc);
3869         intel_crtc->eld_vld = false;
3870         intel_crtc_update_sarea(crtc, false);
3871         dev_priv->display.off(crtc);
3872
3873         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3874         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3875
3876         if (crtc->fb) {
3877                 mutex_lock(&dev->struct_mutex);
3878                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3879                 mutex_unlock(&dev->struct_mutex);
3880                 crtc->fb = NULL;
3881         }
3882
3883         /* Update computed state. */
3884         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3885                 if (!connector->encoder || !connector->encoder->crtc)
3886                         continue;
3887
3888                 if (connector->encoder->crtc != crtc)
3889                         continue;
3890
3891                 connector->dpms = DRM_MODE_DPMS_OFF;
3892                 to_intel_encoder(connector->encoder)->connectors_active = false;
3893         }
3894 }
3895
3896 void intel_modeset_disable(struct drm_device *dev)
3897 {
3898         struct drm_crtc *crtc;
3899
3900         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3901                 if (crtc->enabled)
3902                         intel_crtc_disable(crtc);
3903         }
3904 }
3905
3906 void intel_encoder_destroy(struct drm_encoder *encoder)
3907 {
3908         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3909
3910         drm_encoder_cleanup(encoder);
3911         kfree(intel_encoder);
3912 }
3913
3914 /* Simple dpms helper for encodres with just one connector, no cloning and only
3915  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3916  * state of the entire output pipe. */
3917 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3918 {
3919         if (mode == DRM_MODE_DPMS_ON) {
3920                 encoder->connectors_active = true;
3921
3922                 intel_crtc_update_dpms(encoder->base.crtc);
3923         } else {
3924                 encoder->connectors_active = false;
3925
3926                 intel_crtc_update_dpms(encoder->base.crtc);
3927         }
3928 }
3929
3930 /* Cross check the actual hw state with our own modeset state tracking (and it's
3931  * internal consistency). */
3932 static void intel_connector_check_state(struct intel_connector *connector)
3933 {
3934         if (connector->get_hw_state(connector)) {
3935                 struct intel_encoder *encoder = connector->encoder;
3936                 struct drm_crtc *crtc;
3937                 bool encoder_enabled;
3938                 enum pipe pipe;
3939
3940                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3941                               connector->base.base.id,
3942                               drm_get_connector_name(&connector->base));
3943
3944                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3945                      "wrong connector dpms state\n");
3946                 WARN(connector->base.encoder != &encoder->base,
3947                      "active connector not linked to encoder\n");
3948                 WARN(!encoder->connectors_active,
3949                      "encoder->connectors_active not set\n");
3950
3951                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3952                 WARN(!encoder_enabled, "encoder not enabled\n");
3953                 if (WARN_ON(!encoder->base.crtc))
3954                         return;
3955
3956                 crtc = encoder->base.crtc;
3957
3958                 WARN(!crtc->enabled, "crtc not enabled\n");
3959                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3960                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3961                      "encoder active on the wrong pipe\n");
3962         }
3963 }
3964
3965 /* Even simpler default implementation, if there's really no special case to
3966  * consider. */
3967 void intel_connector_dpms(struct drm_connector *connector, int mode)
3968 {
3969         struct intel_encoder *encoder = intel_attached_encoder(connector);
3970
3971         /* All the simple cases only support two dpms states. */
3972         if (mode != DRM_MODE_DPMS_ON)
3973                 mode = DRM_MODE_DPMS_OFF;
3974
3975         if (mode == connector->dpms)
3976                 return;
3977
3978         connector->dpms = mode;
3979
3980         /* Only need to change hw state when actually enabled */
3981         if (encoder->base.crtc)
3982                 intel_encoder_dpms(encoder, mode);
3983         else
3984                 WARN_ON(encoder->connectors_active != false);
3985
3986         intel_modeset_check_state(connector->dev);
3987 }
3988
3989 /* Simple connector->get_hw_state implementation for encoders that support only
3990  * one connector and no cloning and hence the encoder state determines the state
3991  * of the connector. */
3992 bool intel_connector_get_hw_state(struct intel_connector *connector)
3993 {
3994         enum pipe pipe = 0;
3995         struct intel_encoder *encoder = connector->encoder;
3996
3997         return encoder->get_hw_state(encoder, &pipe);
3998 }
3999
4000 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4001                                      struct intel_crtc_config *pipe_config)
4002 {
4003         struct drm_i915_private *dev_priv = dev->dev_private;
4004         struct intel_crtc *pipe_B_crtc =
4005                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4006
4007         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4008                       pipe_name(pipe), pipe_config->fdi_lanes);
4009         if (pipe_config->fdi_lanes > 4) {
4010                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4011                               pipe_name(pipe), pipe_config->fdi_lanes);
4012                 return false;
4013         }
4014
4015         if (IS_HASWELL(dev)) {
4016                 if (pipe_config->fdi_lanes > 2) {
4017                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4018                                       pipe_config->fdi_lanes);
4019                         return false;
4020                 } else {
4021                         return true;
4022                 }
4023         }
4024
4025         if (INTEL_INFO(dev)->num_pipes == 2)
4026                 return true;
4027
4028         /* Ivybridge 3 pipe is really complicated */
4029         switch (pipe) {
4030         case PIPE_A:
4031                 return true;
4032         case PIPE_B:
4033                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4034                     pipe_config->fdi_lanes > 2) {
4035                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4036                                       pipe_name(pipe), pipe_config->fdi_lanes);
4037                         return false;
4038                 }
4039                 return true;
4040         case PIPE_C:
4041                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4042                     pipe_B_crtc->config.fdi_lanes <= 2) {
4043                         if (pipe_config->fdi_lanes > 2) {
4044                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4045                                               pipe_name(pipe), pipe_config->fdi_lanes);
4046                                 return false;
4047                         }
4048                 } else {
4049                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4050                         return false;
4051                 }
4052                 return true;
4053         default:
4054                 BUG();
4055         }
4056 }
4057
4058 #define RETRY 1
4059 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4060                                        struct intel_crtc_config *pipe_config)
4061 {
4062         struct drm_device *dev = intel_crtc->base.dev;
4063         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4064         int target_clock, lane, link_bw;
4065         bool setup_ok, needs_recompute = false;
4066
4067 retry:
4068         /* FDI is a binary signal running at ~2.7GHz, encoding
4069          * each output octet as 10 bits. The actual frequency
4070          * is stored as a divider into a 100MHz clock, and the
4071          * mode pixel clock is stored in units of 1KHz.
4072          * Hence the bw of each lane in terms of the mode signal
4073          * is:
4074          */
4075         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4076
4077         if (pipe_config->pixel_target_clock)
4078                 target_clock = pipe_config->pixel_target_clock;
4079         else
4080                 target_clock = adjusted_mode->clock;
4081
4082         lane = ironlake_get_lanes_required(target_clock, link_bw,
4083                                            pipe_config->pipe_bpp);
4084
4085         pipe_config->fdi_lanes = lane;
4086
4087         if (pipe_config->pixel_multiplier > 1)
4088                 link_bw *= pipe_config->pixel_multiplier;
4089         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, target_clock,
4090                                link_bw, &pipe_config->fdi_m_n);
4091
4092         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4093                                             intel_crtc->pipe, pipe_config);
4094         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4095                 pipe_config->pipe_bpp -= 2*3;
4096                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4097                               pipe_config->pipe_bpp);
4098                 needs_recompute = true;
4099                 pipe_config->bw_constrained = true;
4100
4101                 goto retry;
4102         }
4103
4104         if (needs_recompute)
4105                 return RETRY;
4106
4107         return setup_ok ? 0 : -EINVAL;
4108 }
4109
4110 static int intel_crtc_compute_config(struct drm_crtc *crtc,
4111                                      struct intel_crtc_config *pipe_config)
4112 {
4113         struct drm_device *dev = crtc->dev;
4114         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4115
4116         if (HAS_PCH_SPLIT(dev)) {
4117                 /* FDI link clock is fixed at 2.7G */
4118                 if (pipe_config->requested_mode.clock * 3
4119                     > IRONLAKE_FDI_FREQ * 4)
4120                         return -EINVAL;
4121         }
4122
4123         /* All interlaced capable intel hw wants timings in frames. Note though
4124          * that intel_lvds_mode_fixup does some funny tricks with the crtc
4125          * timings, so we need to be careful not to clobber these.*/
4126         if (!pipe_config->timings_set)
4127                 drm_mode_set_crtcinfo(adjusted_mode, 0);
4128
4129         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4130          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4131          */
4132         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4133                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4134                 return -EINVAL;
4135
4136         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4137                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4138         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4139                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4140                  * for lvds. */
4141                 pipe_config->pipe_bpp = 8*3;
4142         }
4143
4144         if (pipe_config->has_pch_encoder)
4145                 return ironlake_fdi_compute_config(to_intel_crtc(crtc), pipe_config);
4146
4147         return 0;
4148 }
4149
4150 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4151 {
4152         return 400000; /* FIXME */
4153 }
4154
4155 static int i945_get_display_clock_speed(struct drm_device *dev)
4156 {
4157         return 400000;
4158 }
4159
4160 static int i915_get_display_clock_speed(struct drm_device *dev)
4161 {
4162         return 333000;
4163 }
4164
4165 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4166 {
4167         return 200000;
4168 }
4169
4170 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4171 {
4172         u16 gcfgc = 0;
4173
4174         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4175
4176         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4177                 return 133000;
4178         else {
4179                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4180                 case GC_DISPLAY_CLOCK_333_MHZ:
4181                         return 333000;
4182                 default:
4183                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4184                         return 190000;
4185                 }
4186         }
4187 }
4188
4189 static int i865_get_display_clock_speed(struct drm_device *dev)
4190 {
4191         return 266000;
4192 }
4193
4194 static int i855_get_display_clock_speed(struct drm_device *dev)
4195 {
4196         u16 hpllcc = 0;
4197         /* Assume that the hardware is in the high speed state.  This
4198          * should be the default.
4199          */
4200         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4201         case GC_CLOCK_133_200:
4202         case GC_CLOCK_100_200:
4203                 return 200000;
4204         case GC_CLOCK_166_250:
4205                 return 250000;
4206         case GC_CLOCK_100_133:
4207                 return 133000;
4208         }
4209
4210         /* Shouldn't happen */
4211         return 0;
4212 }
4213
4214 static int i830_get_display_clock_speed(struct drm_device *dev)
4215 {
4216         return 133000;
4217 }
4218
4219 static void
4220 intel_reduce_ratio(uint32_t *num, uint32_t *den)
4221 {
4222         while (*num > 0xffffff || *den > 0xffffff) {
4223                 *num >>= 1;
4224                 *den >>= 1;
4225         }
4226 }
4227
4228 void
4229 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4230                        int pixel_clock, int link_clock,
4231                        struct intel_link_m_n *m_n)
4232 {
4233         m_n->tu = 64;
4234         m_n->gmch_m = bits_per_pixel * pixel_clock;
4235         m_n->gmch_n = link_clock * nlanes * 8;
4236         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4237         m_n->link_m = pixel_clock;
4238         m_n->link_n = link_clock;
4239         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
4240 }
4241
4242 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4243 {
4244         if (i915_panel_use_ssc >= 0)
4245                 return i915_panel_use_ssc != 0;
4246         return dev_priv->vbt.lvds_use_ssc
4247                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4248 }
4249
4250 static int vlv_get_refclk(struct drm_crtc *crtc)
4251 {
4252         struct drm_device *dev = crtc->dev;
4253         struct drm_i915_private *dev_priv = dev->dev_private;
4254         int refclk = 27000; /* for DP & HDMI */
4255
4256         return 100000; /* only one validated so far */
4257
4258         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4259                 refclk = 96000;
4260         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4261                 if (intel_panel_use_ssc(dev_priv))
4262                         refclk = 100000;
4263                 else
4264                         refclk = 96000;
4265         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4266                 refclk = 100000;
4267         }
4268
4269         return refclk;
4270 }
4271
4272 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4273 {
4274         struct drm_device *dev = crtc->dev;
4275         struct drm_i915_private *dev_priv = dev->dev_private;
4276         int refclk;
4277
4278         if (IS_VALLEYVIEW(dev)) {
4279                 refclk = vlv_get_refclk(crtc);
4280         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4281             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4282                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4283                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4284                               refclk / 1000);
4285         } else if (!IS_GEN2(dev)) {
4286                 refclk = 96000;
4287         } else {
4288                 refclk = 48000;
4289         }
4290
4291         return refclk;
4292 }
4293
4294 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4295 {
4296         return (1 << dpll->n) << 16 | dpll->m1 << 8 | dpll->m2;
4297 }
4298
4299 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4300 {
4301         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4302 }
4303
4304 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4305                                      intel_clock_t *reduced_clock)
4306 {
4307         struct drm_device *dev = crtc->base.dev;
4308         struct drm_i915_private *dev_priv = dev->dev_private;
4309         int pipe = crtc->pipe;
4310         u32 fp, fp2 = 0;
4311
4312         if (IS_PINEVIEW(dev)) {
4313                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4314                 if (reduced_clock)
4315                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4316         } else {
4317                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4318                 if (reduced_clock)
4319                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4320         }
4321
4322         I915_WRITE(FP0(pipe), fp);
4323
4324         crtc->lowfreq_avail = false;
4325         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4326             reduced_clock && i915_powersave) {
4327                 I915_WRITE(FP1(pipe), fp2);
4328                 crtc->lowfreq_avail = true;
4329         } else {
4330                 I915_WRITE(FP1(pipe), fp);
4331         }
4332 }
4333
4334 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4335 {
4336         u32 reg_val;
4337
4338         /*
4339          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4340          * and set it to a reasonable value instead.
4341          */
4342         reg_val = intel_dpio_read(dev_priv, DPIO_IREF(1));
4343         reg_val &= 0xffffff00;
4344         reg_val |= 0x00000030;
4345         intel_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4346
4347         reg_val = intel_dpio_read(dev_priv, DPIO_CALIBRATION);
4348         reg_val &= 0x8cffffff;
4349         reg_val = 0x8c000000;
4350         intel_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4351
4352         reg_val = intel_dpio_read(dev_priv, DPIO_IREF(1));
4353         reg_val &= 0xffffff00;
4354         intel_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4355
4356         reg_val = intel_dpio_read(dev_priv, DPIO_CALIBRATION);
4357         reg_val &= 0x00ffffff;
4358         reg_val |= 0xb0000000;
4359         intel_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4360 }
4361
4362 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4363                                          struct intel_link_m_n *m_n)
4364 {
4365         struct drm_device *dev = crtc->base.dev;
4366         struct drm_i915_private *dev_priv = dev->dev_private;
4367         int pipe = crtc->pipe;
4368
4369         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4370         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4371         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4372         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4373 }
4374
4375 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4376                                          struct intel_link_m_n *m_n)
4377 {
4378         struct drm_device *dev = crtc->base.dev;
4379         struct drm_i915_private *dev_priv = dev->dev_private;
4380         int pipe = crtc->pipe;
4381         enum transcoder transcoder = crtc->config.cpu_transcoder;
4382
4383         if (INTEL_INFO(dev)->gen >= 5) {
4384                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4385                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4386                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4387                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4388         } else {
4389                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4390                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4391                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4392                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4393         }
4394 }
4395
4396 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4397 {
4398         if (crtc->config.has_pch_encoder)
4399                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4400         else
4401                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4402 }
4403
4404 static void vlv_update_pll(struct intel_crtc *crtc)
4405 {
4406         struct drm_device *dev = crtc->base.dev;
4407         struct drm_i915_private *dev_priv = dev->dev_private;
4408         struct drm_display_mode *adjusted_mode =
4409                 &crtc->config.adjusted_mode;
4410         struct intel_encoder *encoder;
4411         int pipe = crtc->pipe;
4412         u32 dpll, mdiv;
4413         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4414         bool is_hdmi;
4415         u32 coreclk, reg_val, dpll_md;
4416
4417         mutex_lock(&dev_priv->dpio_lock);
4418
4419         is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4420
4421         bestn = crtc->config.dpll.n;
4422         bestm1 = crtc->config.dpll.m1;
4423         bestm2 = crtc->config.dpll.m2;
4424         bestp1 = crtc->config.dpll.p1;
4425         bestp2 = crtc->config.dpll.p2;
4426
4427         /* See eDP HDMI DPIO driver vbios notes doc */
4428
4429         /* PLL B needs special handling */
4430         if (pipe)
4431                 vlv_pllb_recal_opamp(dev_priv);
4432
4433         /* Set up Tx target for periodic Rcomp update */
4434         intel_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4435
4436         /* Disable target IRef on PLL */
4437         reg_val = intel_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4438         reg_val &= 0x00ffffff;
4439         intel_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4440
4441         /* Disable fast lock */
4442         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4443
4444         /* Set idtafcrecal before PLL is enabled */
4445         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4446         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4447         mdiv |= ((bestn << DPIO_N_SHIFT));
4448         mdiv |= (1 << DPIO_K_SHIFT);
4449
4450         /*
4451          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4452          * but we don't support that).
4453          * Note: don't use the DAC post divider as it seems unstable.
4454          */
4455         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4456         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4457
4458         mdiv |= DPIO_ENABLE_CALIBRATION;
4459         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4460
4461         /* Set HBR and RBR LPF coefficients */
4462         if (adjusted_mode->clock == 162000 ||
4463             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4464                 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
4465                                  0x005f0021);
4466         else
4467                 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
4468                                  0x00d0000f);
4469
4470         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4471             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4472                 /* Use SSC source */
4473                 if (!pipe)
4474                         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4475                                          0x0df40000);
4476                 else
4477                         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4478                                          0x0df70000);
4479         } else { /* HDMI or VGA */
4480                 /* Use bend source */
4481                 if (!pipe)
4482                         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4483                                          0x0df70000);
4484                 else
4485                         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4486                                          0x0df40000);
4487         }
4488
4489         coreclk = intel_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4490         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4491         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4492             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4493                 coreclk |= 0x01000000;
4494         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4495
4496         intel_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4497
4498         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4499                 if (encoder->pre_pll_enable)
4500                         encoder->pre_pll_enable(encoder);
4501
4502         /* Enable DPIO clock input */
4503         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4504                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4505         if (pipe)
4506                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4507
4508         dpll |= DPLL_VCO_ENABLE;
4509         I915_WRITE(DPLL(pipe), dpll);
4510         POSTING_READ(DPLL(pipe));
4511         udelay(150);
4512
4513         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4514                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4515
4516         dpll_md = 0;
4517         if (crtc->config.pixel_multiplier > 1) {
4518                 dpll_md = (crtc->config.pixel_multiplier - 1)
4519                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4520         }
4521         I915_WRITE(DPLL_MD(pipe), dpll_md);
4522         POSTING_READ(DPLL_MD(pipe));
4523
4524         if (crtc->config.has_dp_encoder)
4525                 intel_dp_set_m_n(crtc);
4526
4527         mutex_unlock(&dev_priv->dpio_lock);
4528 }
4529
4530 static void i9xx_update_pll(struct intel_crtc *crtc,
4531                             intel_clock_t *reduced_clock,
4532                             int num_connectors)
4533 {
4534         struct drm_device *dev = crtc->base.dev;
4535         struct drm_i915_private *dev_priv = dev->dev_private;
4536         struct intel_encoder *encoder;
4537         int pipe = crtc->pipe;
4538         u32 dpll;
4539         bool is_sdvo;
4540         struct dpll *clock = &crtc->config.dpll;
4541
4542         i9xx_update_pll_dividers(crtc, reduced_clock);
4543
4544         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4545                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4546
4547         dpll = DPLL_VGA_MODE_DIS;
4548
4549         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4550                 dpll |= DPLLB_MODE_LVDS;
4551         else
4552                 dpll |= DPLLB_MODE_DAC_SERIAL;
4553
4554         if ((crtc->config.pixel_multiplier > 1) &&
4555             (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
4556                 dpll |= (crtc->config.pixel_multiplier - 1)
4557                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4558         }
4559
4560         if (is_sdvo)
4561                 dpll |= DPLL_DVO_HIGH_SPEED;
4562
4563         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4564                 dpll |= DPLL_DVO_HIGH_SPEED;
4565
4566         /* compute bitmask from p1 value */
4567         if (IS_PINEVIEW(dev))
4568                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4569         else {
4570                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4571                 if (IS_G4X(dev) && reduced_clock)
4572                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4573         }
4574         switch (clock->p2) {
4575         case 5:
4576                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4577                 break;
4578         case 7:
4579                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4580                 break;
4581         case 10:
4582                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4583                 break;
4584         case 14:
4585                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4586                 break;
4587         }
4588         if (INTEL_INFO(dev)->gen >= 4)
4589                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4590
4591         if (crtc->config.sdvo_tv_clock)
4592                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4593         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4594                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4595                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4596         else
4597                 dpll |= PLL_REF_INPUT_DREFCLK;
4598
4599         dpll |= DPLL_VCO_ENABLE;
4600         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4601         POSTING_READ(DPLL(pipe));
4602         udelay(150);
4603
4604         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4605                 if (encoder->pre_pll_enable)
4606                         encoder->pre_pll_enable(encoder);
4607
4608         if (crtc->config.has_dp_encoder)
4609                 intel_dp_set_m_n(crtc);
4610
4611         I915_WRITE(DPLL(pipe), dpll);
4612
4613         /* Wait for the clocks to stabilize. */
4614         POSTING_READ(DPLL(pipe));
4615         udelay(150);
4616
4617         if (INTEL_INFO(dev)->gen >= 4) {
4618                 u32 dpll_md = 0;
4619                 if (crtc->config.pixel_multiplier > 1) {
4620                         dpll_md = (crtc->config.pixel_multiplier - 1)
4621                                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4622                 }
4623                 I915_WRITE(DPLL_MD(pipe), dpll_md);
4624         } else {
4625                 /* The pixel multiplier can only be updated once the
4626                  * DPLL is enabled and the clocks are stable.
4627                  *
4628                  * So write it again.
4629                  */
4630                 I915_WRITE(DPLL(pipe), dpll);
4631         }
4632 }
4633
4634 static void i8xx_update_pll(struct intel_crtc *crtc,
4635                             struct drm_display_mode *adjusted_mode,
4636                             intel_clock_t *reduced_clock,
4637                             int num_connectors)
4638 {
4639         struct drm_device *dev = crtc->base.dev;
4640         struct drm_i915_private *dev_priv = dev->dev_private;
4641         struct intel_encoder *encoder;
4642         int pipe = crtc->pipe;
4643         u32 dpll;
4644         struct dpll *clock = &crtc->config.dpll;
4645
4646         i9xx_update_pll_dividers(crtc, reduced_clock);
4647
4648         dpll = DPLL_VGA_MODE_DIS;
4649
4650         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4651                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4652         } else {
4653                 if (clock->p1 == 2)
4654                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4655                 else
4656                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4657                 if (clock->p2 == 4)
4658                         dpll |= PLL_P2_DIVIDE_BY_4;
4659         }
4660
4661         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4662                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4663                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4664         else
4665                 dpll |= PLL_REF_INPUT_DREFCLK;
4666
4667         dpll |= DPLL_VCO_ENABLE;
4668         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4669         POSTING_READ(DPLL(pipe));
4670         udelay(150);
4671
4672         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4673                 if (encoder->pre_pll_enable)
4674                         encoder->pre_pll_enable(encoder);
4675
4676         I915_WRITE(DPLL(pipe), dpll);
4677
4678         /* Wait for the clocks to stabilize. */
4679         POSTING_READ(DPLL(pipe));
4680         udelay(150);
4681
4682         /* The pixel multiplier can only be updated once the
4683          * DPLL is enabled and the clocks are stable.
4684          *
4685          * So write it again.
4686          */
4687         I915_WRITE(DPLL(pipe), dpll);
4688 }
4689
4690 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4691                                    struct drm_display_mode *mode,
4692                                    struct drm_display_mode *adjusted_mode)
4693 {
4694         struct drm_device *dev = intel_crtc->base.dev;
4695         struct drm_i915_private *dev_priv = dev->dev_private;
4696         enum pipe pipe = intel_crtc->pipe;
4697         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4698         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4699
4700         /* We need to be careful not to changed the adjusted mode, for otherwise
4701          * the hw state checker will get angry at the mismatch. */
4702         crtc_vtotal = adjusted_mode->crtc_vtotal;
4703         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4704
4705         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4706                 /* the chip adds 2 halflines automatically */
4707                 crtc_vtotal -= 1;
4708                 crtc_vblank_end -= 1;
4709                 vsyncshift = adjusted_mode->crtc_hsync_start
4710                              - adjusted_mode->crtc_htotal / 2;
4711         } else {
4712                 vsyncshift = 0;
4713         }
4714
4715         if (INTEL_INFO(dev)->gen > 3)
4716                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4717
4718         I915_WRITE(HTOTAL(cpu_transcoder),
4719                    (adjusted_mode->crtc_hdisplay - 1) |
4720                    ((adjusted_mode->crtc_htotal - 1) << 16));
4721         I915_WRITE(HBLANK(cpu_transcoder),
4722                    (adjusted_mode->crtc_hblank_start - 1) |
4723                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4724         I915_WRITE(HSYNC(cpu_transcoder),
4725                    (adjusted_mode->crtc_hsync_start - 1) |
4726                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4727
4728         I915_WRITE(VTOTAL(cpu_transcoder),
4729                    (adjusted_mode->crtc_vdisplay - 1) |
4730                    ((crtc_vtotal - 1) << 16));
4731         I915_WRITE(VBLANK(cpu_transcoder),
4732                    (adjusted_mode->crtc_vblank_start - 1) |
4733                    ((crtc_vblank_end - 1) << 16));
4734         I915_WRITE(VSYNC(cpu_transcoder),
4735                    (adjusted_mode->crtc_vsync_start - 1) |
4736                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4737
4738         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4739          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4740          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4741          * bits. */
4742         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4743             (pipe == PIPE_B || pipe == PIPE_C))
4744                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4745
4746         /* pipesrc controls the size that is scaled from, which should
4747          * always be the user's requested size.
4748          */
4749         I915_WRITE(PIPESRC(pipe),
4750                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4751 }
4752
4753 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4754                                    struct intel_crtc_config *pipe_config)
4755 {
4756         struct drm_device *dev = crtc->base.dev;
4757         struct drm_i915_private *dev_priv = dev->dev_private;
4758         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4759         uint32_t tmp;
4760
4761         tmp = I915_READ(HTOTAL(cpu_transcoder));
4762         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4763         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4764         tmp = I915_READ(HBLANK(cpu_transcoder));
4765         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4766         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4767         tmp = I915_READ(HSYNC(cpu_transcoder));
4768         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4769         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4770
4771         tmp = I915_READ(VTOTAL(cpu_transcoder));
4772         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4773         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4774         tmp = I915_READ(VBLANK(cpu_transcoder));
4775         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4776         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4777         tmp = I915_READ(VSYNC(cpu_transcoder));
4778         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4779         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4780
4781         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4782                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4783                 pipe_config->adjusted_mode.crtc_vtotal += 1;
4784                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4785         }
4786
4787         tmp = I915_READ(PIPESRC(crtc->pipe));
4788         pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4789         pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4790 }
4791
4792 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4793 {
4794         struct drm_device *dev = intel_crtc->base.dev;
4795         struct drm_i915_private *dev_priv = dev->dev_private;
4796         uint32_t pipeconf;
4797
4798         pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
4799
4800         if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4801                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4802                  * core speed.
4803                  *
4804                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4805                  * pipe == 0 check?
4806                  */
4807                 if (intel_crtc->config.requested_mode.clock >
4808                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4809                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4810                 else
4811                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4812         }
4813
4814         /* only g4x and later have fancy bpc/dither controls */
4815         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4816                 pipeconf &= ~(PIPECONF_BPC_MASK |
4817                               PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4818
4819                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4820                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4821                         pipeconf |= PIPECONF_DITHER_EN |
4822                                     PIPECONF_DITHER_TYPE_SP;
4823
4824                 switch (intel_crtc->config.pipe_bpp) {
4825                 case 18:
4826                         pipeconf |= PIPECONF_6BPC;
4827                         break;
4828                 case 24:
4829                         pipeconf |= PIPECONF_8BPC;
4830                         break;
4831                 case 30:
4832                         pipeconf |= PIPECONF_10BPC;
4833                         break;
4834                 default:
4835                         /* Case prevented by intel_choose_pipe_bpp_dither. */
4836                         BUG();
4837                 }
4838         }
4839
4840         if (HAS_PIPE_CXSR(dev)) {
4841                 if (intel_crtc->lowfreq_avail) {
4842                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4843                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4844                 } else {
4845                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4846                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4847                 }
4848         }
4849
4850         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4851         if (!IS_GEN2(dev) &&
4852             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4853                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4854         else
4855                 pipeconf |= PIPECONF_PROGRESSIVE;
4856
4857         if (IS_VALLEYVIEW(dev)) {
4858                 if (intel_crtc->config.limited_color_range)
4859                         pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4860                 else
4861                         pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
4862         }
4863
4864         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4865         POSTING_READ(PIPECONF(intel_crtc->pipe));
4866 }
4867
4868 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4869                               int x, int y,
4870                               struct drm_framebuffer *fb)
4871 {
4872         struct drm_device *dev = crtc->dev;
4873         struct drm_i915_private *dev_priv = dev->dev_private;
4874         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4875         struct drm_display_mode *adjusted_mode =
4876                 &intel_crtc->config.adjusted_mode;
4877         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4878         int pipe = intel_crtc->pipe;
4879         int plane = intel_crtc->plane;
4880         int refclk, num_connectors = 0;
4881         intel_clock_t clock, reduced_clock;
4882         u32 dspcntr;
4883         bool ok, has_reduced_clock = false;
4884         bool is_lvds = false;
4885         struct intel_encoder *encoder;
4886         const intel_limit_t *limit;
4887         int ret;
4888
4889         for_each_encoder_on_crtc(dev, crtc, encoder) {
4890                 switch (encoder->type) {
4891                 case INTEL_OUTPUT_LVDS:
4892                         is_lvds = true;
4893                         break;
4894                 }
4895
4896                 num_connectors++;
4897         }
4898
4899         refclk = i9xx_get_refclk(crtc, num_connectors);
4900
4901         /*
4902          * Returns a set of divisors for the desired target clock with the given
4903          * refclk, or FALSE.  The returned values represent the clock equation:
4904          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4905          */
4906         limit = intel_limit(crtc, refclk);
4907         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4908                              &clock);
4909         if (!ok) {
4910                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4911                 return -EINVAL;
4912         }
4913
4914         /* Ensure that the cursor is valid for the new mode before changing... */
4915         intel_crtc_update_cursor(crtc, true);
4916
4917         if (is_lvds && dev_priv->lvds_downclock_avail) {
4918                 /*
4919                  * Ensure we match the reduced clock's P to the target clock.
4920                  * If the clocks don't match, we can't switch the display clock
4921                  * by using the FP0/FP1. In such case we will disable the LVDS
4922                  * downclock feature.
4923                 */
4924                 has_reduced_clock = limit->find_pll(limit, crtc,
4925                                                     dev_priv->lvds_downclock,
4926                                                     refclk,
4927                                                     &clock,
4928                                                     &reduced_clock);
4929         }
4930         /* Compat-code for transition, will disappear. */
4931         if (!intel_crtc->config.clock_set) {
4932                 intel_crtc->config.dpll.n = clock.n;
4933                 intel_crtc->config.dpll.m1 = clock.m1;
4934                 intel_crtc->config.dpll.m2 = clock.m2;
4935                 intel_crtc->config.dpll.p1 = clock.p1;
4936                 intel_crtc->config.dpll.p2 = clock.p2;
4937         }
4938
4939         if (IS_GEN2(dev))
4940                 i8xx_update_pll(intel_crtc, adjusted_mode,
4941                                 has_reduced_clock ? &reduced_clock : NULL,
4942                                 num_connectors);
4943         else if (IS_VALLEYVIEW(dev))
4944                 vlv_update_pll(intel_crtc);
4945         else
4946                 i9xx_update_pll(intel_crtc,
4947                                 has_reduced_clock ? &reduced_clock : NULL,
4948                                 num_connectors);
4949
4950         /* Set up the display plane register */
4951         dspcntr = DISPPLANE_GAMMA_ENABLE;
4952
4953         if (!IS_VALLEYVIEW(dev)) {
4954                 if (pipe == 0)
4955                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4956                 else
4957                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4958         }
4959
4960         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
4961         drm_mode_debug_printmodeline(mode);
4962
4963         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4964
4965         /* pipesrc and dspsize control the size that is scaled from,
4966          * which should always be the user's requested size.
4967          */
4968         I915_WRITE(DSPSIZE(plane),
4969                    ((mode->vdisplay - 1) << 16) |
4970                    (mode->hdisplay - 1));
4971         I915_WRITE(DSPPOS(plane), 0);
4972
4973         i9xx_set_pipeconf(intel_crtc);
4974
4975         I915_WRITE(DSPCNTR(plane), dspcntr);
4976         POSTING_READ(DSPCNTR(plane));
4977
4978         ret = intel_pipe_set_base(crtc, x, y, fb);
4979
4980         intel_update_watermarks(dev);
4981
4982         return ret;
4983 }
4984
4985 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4986                                  struct intel_crtc_config *pipe_config)
4987 {
4988         struct drm_device *dev = crtc->base.dev;
4989         struct drm_i915_private *dev_priv = dev->dev_private;
4990         uint32_t tmp;
4991
4992         tmp = I915_READ(PIPECONF(crtc->pipe));
4993         if (!(tmp & PIPECONF_ENABLE))
4994                 return false;
4995
4996         intel_get_pipe_timings(crtc, pipe_config);
4997
4998         return true;
4999 }
5000
5001 static void ironlake_init_pch_refclk(struct drm_device *dev)
5002 {
5003         struct drm_i915_private *dev_priv = dev->dev_private;
5004         struct drm_mode_config *mode_config = &dev->mode_config;
5005         struct intel_encoder *encoder;
5006         u32 val, final;
5007         bool has_lvds = false;
5008         bool has_cpu_edp = false;
5009         bool has_panel = false;
5010         bool has_ck505 = false;
5011         bool can_ssc = false;
5012
5013         /* We need to take the global config into account */
5014         list_for_each_entry(encoder, &mode_config->encoder_list,
5015                             base.head) {
5016                 switch (encoder->type) {
5017                 case INTEL_OUTPUT_LVDS:
5018                         has_panel = true;
5019                         has_lvds = true;
5020                         break;
5021                 case INTEL_OUTPUT_EDP:
5022                         has_panel = true;
5023                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5024                                 has_cpu_edp = true;
5025                         break;
5026                 }
5027         }
5028
5029         if (HAS_PCH_IBX(dev)) {
5030                 has_ck505 = dev_priv->vbt.display_clock_mode;
5031                 can_ssc = has_ck505;
5032         } else {
5033                 has_ck505 = false;
5034                 can_ssc = true;
5035         }
5036
5037         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5038                       has_panel, has_lvds, has_ck505);
5039
5040         /* Ironlake: try to setup display ref clock before DPLL
5041          * enabling. This is only under driver's control after
5042          * PCH B stepping, previous chipset stepping should be
5043          * ignoring this setting.
5044          */
5045         val = I915_READ(PCH_DREF_CONTROL);
5046
5047         /* As we must carefully and slowly disable/enable each source in turn,
5048          * compute the final state we want first and check if we need to
5049          * make any changes at all.
5050          */
5051         final = val;
5052         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5053         if (has_ck505)
5054                 final |= DREF_NONSPREAD_CK505_ENABLE;
5055         else
5056                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5057
5058         final &= ~DREF_SSC_SOURCE_MASK;
5059         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5060         final &= ~DREF_SSC1_ENABLE;
5061
5062         if (has_panel) {
5063                 final |= DREF_SSC_SOURCE_ENABLE;
5064
5065                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5066                         final |= DREF_SSC1_ENABLE;
5067
5068                 if (has_cpu_edp) {
5069                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5070                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5071                         else
5072                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5073                 } else
5074                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5075         } else {
5076                 final |= DREF_SSC_SOURCE_DISABLE;
5077                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5078         }
5079
5080         if (final == val)
5081                 return;
5082
5083         /* Always enable nonspread source */
5084         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5085
5086         if (has_ck505)
5087                 val |= DREF_NONSPREAD_CK505_ENABLE;
5088         else
5089                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5090
5091         if (has_panel) {
5092                 val &= ~DREF_SSC_SOURCE_MASK;
5093                 val |= DREF_SSC_SOURCE_ENABLE;
5094
5095                 /* SSC must be turned on before enabling the CPU output  */
5096                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5097                         DRM_DEBUG_KMS("Using SSC on panel\n");
5098                         val |= DREF_SSC1_ENABLE;
5099                 } else
5100                         val &= ~DREF_SSC1_ENABLE;
5101
5102                 /* Get SSC going before enabling the outputs */
5103                 I915_WRITE(PCH_DREF_CONTROL, val);
5104                 POSTING_READ(PCH_DREF_CONTROL);
5105                 udelay(200);
5106
5107                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5108
5109                 /* Enable CPU source on CPU attached eDP */
5110                 if (has_cpu_edp) {
5111                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5112                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5113                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5114                         }
5115                         else
5116                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5117                 } else
5118                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5119
5120                 I915_WRITE(PCH_DREF_CONTROL, val);
5121                 POSTING_READ(PCH_DREF_CONTROL);
5122                 udelay(200);
5123         } else {
5124                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5125
5126                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5127
5128                 /* Turn off CPU output */
5129                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5130
5131                 I915_WRITE(PCH_DREF_CONTROL, val);
5132                 POSTING_READ(PCH_DREF_CONTROL);
5133                 udelay(200);
5134
5135                 /* Turn off the SSC source */
5136                 val &= ~DREF_SSC_SOURCE_MASK;
5137                 val |= DREF_SSC_SOURCE_DISABLE;
5138
5139                 /* Turn off SSC1 */
5140                 val &= ~DREF_SSC1_ENABLE;
5141
5142                 I915_WRITE(PCH_DREF_CONTROL, val);
5143                 POSTING_READ(PCH_DREF_CONTROL);
5144                 udelay(200);
5145         }
5146
5147         BUG_ON(val != final);
5148 }
5149
5150 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
5151 static void lpt_init_pch_refclk(struct drm_device *dev)
5152 {
5153         struct drm_i915_private *dev_priv = dev->dev_private;
5154         struct drm_mode_config *mode_config = &dev->mode_config;
5155         struct intel_encoder *encoder;
5156         bool has_vga = false;
5157         bool is_sdv = false;
5158         u32 tmp;
5159
5160         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5161                 switch (encoder->type) {
5162                 case INTEL_OUTPUT_ANALOG:
5163                         has_vga = true;
5164                         break;
5165                 }
5166         }
5167
5168         if (!has_vga)
5169                 return;
5170
5171         mutex_lock(&dev_priv->dpio_lock);
5172
5173         /* XXX: Rip out SDV support once Haswell ships for real. */
5174         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
5175                 is_sdv = true;
5176
5177         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5178         tmp &= ~SBI_SSCCTL_DISABLE;
5179         tmp |= SBI_SSCCTL_PATHALT;
5180         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5181
5182         udelay(24);
5183
5184         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5185         tmp &= ~SBI_SSCCTL_PATHALT;
5186         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5187
5188         if (!is_sdv) {
5189                 tmp = I915_READ(SOUTH_CHICKEN2);
5190                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5191                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5192
5193                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5194                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5195                         DRM_ERROR("FDI mPHY reset assert timeout\n");
5196
5197                 tmp = I915_READ(SOUTH_CHICKEN2);
5198                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5199                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5200
5201                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5202                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
5203                                        100))
5204                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5205         }
5206
5207         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5208         tmp &= ~(0xFF << 24);
5209         tmp |= (0x12 << 24);
5210         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5211
5212         if (is_sdv) {
5213                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
5214                 tmp |= 0x7FFF;
5215                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
5216         }
5217
5218         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5219         tmp |= (1 << 11);
5220         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5221
5222         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5223         tmp |= (1 << 11);
5224         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5225
5226         if (is_sdv) {
5227                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
5228                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5229                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5230
5231                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5232                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5233                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5234
5235                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5236                 tmp |= (0x3F << 8);
5237                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5238
5239                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5240                 tmp |= (0x3F << 8);
5241                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5242         }
5243
5244         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5245         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5246         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5247
5248         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5249         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5250         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5251
5252         if (!is_sdv) {
5253                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5254                 tmp &= ~(7 << 13);
5255                 tmp |= (5 << 13);
5256                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5257
5258                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5259                 tmp &= ~(7 << 13);
5260                 tmp |= (5 << 13);
5261                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5262         }
5263
5264         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5265         tmp &= ~0xFF;
5266         tmp |= 0x1C;
5267         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5268
5269         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5270         tmp &= ~0xFF;
5271         tmp |= 0x1C;
5272         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5273
5274         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5275         tmp &= ~(0xFF << 16);
5276         tmp |= (0x1C << 16);
5277         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5278
5279         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5280         tmp &= ~(0xFF << 16);
5281         tmp |= (0x1C << 16);
5282         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5283
5284         if (!is_sdv) {
5285                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5286                 tmp |= (1 << 27);
5287                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5288
5289                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5290                 tmp |= (1 << 27);
5291                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5292
5293                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5294                 tmp &= ~(0xF << 28);
5295                 tmp |= (4 << 28);
5296                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5297
5298                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5299                 tmp &= ~(0xF << 28);
5300                 tmp |= (4 << 28);
5301                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5302         }
5303
5304         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5305         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5306         tmp |= SBI_DBUFF0_ENABLE;
5307         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5308
5309         mutex_unlock(&dev_priv->dpio_lock);
5310 }
5311
5312 /*
5313  * Initialize reference clocks when the driver loads
5314  */
5315 void intel_init_pch_refclk(struct drm_device *dev)
5316 {
5317         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5318                 ironlake_init_pch_refclk(dev);
5319         else if (HAS_PCH_LPT(dev))
5320                 lpt_init_pch_refclk(dev);
5321 }
5322
5323 static int ironlake_get_refclk(struct drm_crtc *crtc)
5324 {
5325         struct drm_device *dev = crtc->dev;
5326         struct drm_i915_private *dev_priv = dev->dev_private;
5327         struct intel_encoder *encoder;
5328         int num_connectors = 0;
5329         bool is_lvds = false;
5330
5331         for_each_encoder_on_crtc(dev, crtc, encoder) {
5332                 switch (encoder->type) {
5333                 case INTEL_OUTPUT_LVDS:
5334                         is_lvds = true;
5335                         break;
5336                 }
5337                 num_connectors++;
5338         }
5339
5340         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5341                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5342                               dev_priv->vbt.lvds_ssc_freq);
5343                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5344         }
5345
5346         return 120000;
5347 }
5348
5349 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5350 {
5351         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5352         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5353         int pipe = intel_crtc->pipe;
5354         uint32_t val;
5355
5356         val = I915_READ(PIPECONF(pipe));
5357
5358         val &= ~PIPECONF_BPC_MASK;
5359         switch (intel_crtc->config.pipe_bpp) {
5360         case 18:
5361                 val |= PIPECONF_6BPC;
5362                 break;
5363         case 24:
5364                 val |= PIPECONF_8BPC;
5365                 break;
5366         case 30:
5367                 val |= PIPECONF_10BPC;
5368                 break;
5369         case 36:
5370                 val |= PIPECONF_12BPC;
5371                 break;
5372         default:
5373                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5374                 BUG();
5375         }
5376
5377         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5378         if (intel_crtc->config.dither)
5379                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5380
5381         val &= ~PIPECONF_INTERLACE_MASK;
5382         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5383                 val |= PIPECONF_INTERLACED_ILK;
5384         else
5385                 val |= PIPECONF_PROGRESSIVE;
5386
5387         if (intel_crtc->config.limited_color_range)
5388                 val |= PIPECONF_COLOR_RANGE_SELECT;
5389         else
5390                 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5391
5392         I915_WRITE(PIPECONF(pipe), val);
5393         POSTING_READ(PIPECONF(pipe));
5394 }
5395
5396 /*
5397  * Set up the pipe CSC unit.
5398  *
5399  * Currently only full range RGB to limited range RGB conversion
5400  * is supported, but eventually this should handle various
5401  * RGB<->YCbCr scenarios as well.
5402  */
5403 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5404 {
5405         struct drm_device *dev = crtc->dev;
5406         struct drm_i915_private *dev_priv = dev->dev_private;
5407         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5408         int pipe = intel_crtc->pipe;
5409         uint16_t coeff = 0x7800; /* 1.0 */
5410
5411         /*
5412          * TODO: Check what kind of values actually come out of the pipe
5413          * with these coeff/postoff values and adjust to get the best
5414          * accuracy. Perhaps we even need to take the bpc value into
5415          * consideration.
5416          */
5417
5418         if (intel_crtc->config.limited_color_range)
5419                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5420
5421         /*
5422          * GY/GU and RY/RU should be the other way around according
5423          * to BSpec, but reality doesn't agree. Just set them up in
5424          * a way that results in the correct picture.
5425          */
5426         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5427         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5428
5429         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5430         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5431
5432         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5433         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5434
5435         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5436         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5437         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5438
5439         if (INTEL_INFO(dev)->gen > 6) {
5440                 uint16_t postoff = 0;
5441
5442                 if (intel_crtc->config.limited_color_range)
5443                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5444
5445                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5446                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5447                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5448
5449                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5450         } else {
5451                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5452
5453                 if (intel_crtc->config.limited_color_range)
5454                         mode |= CSC_BLACK_SCREEN_OFFSET;
5455
5456                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5457         }
5458 }
5459
5460 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5461 {
5462         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5463         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5464         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5465         uint32_t val;
5466
5467         val = I915_READ(PIPECONF(cpu_transcoder));
5468
5469         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5470         if (intel_crtc->config.dither)
5471                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5472
5473         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5474         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5475                 val |= PIPECONF_INTERLACED_ILK;
5476         else
5477                 val |= PIPECONF_PROGRESSIVE;
5478
5479         I915_WRITE(PIPECONF(cpu_transcoder), val);
5480         POSTING_READ(PIPECONF(cpu_transcoder));
5481 }
5482
5483 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5484                                     struct drm_display_mode *adjusted_mode,
5485                                     intel_clock_t *clock,
5486                                     bool *has_reduced_clock,
5487                                     intel_clock_t *reduced_clock)
5488 {
5489         struct drm_device *dev = crtc->dev;
5490         struct drm_i915_private *dev_priv = dev->dev_private;
5491         struct intel_encoder *intel_encoder;
5492         int refclk;
5493         const intel_limit_t *limit;
5494         bool ret, is_lvds = false;
5495
5496         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5497                 switch (intel_encoder->type) {
5498                 case INTEL_OUTPUT_LVDS:
5499                         is_lvds = true;
5500                         break;
5501                 }
5502         }
5503
5504         refclk = ironlake_get_refclk(crtc);
5505
5506         /*
5507          * Returns a set of divisors for the desired target clock with the given
5508          * refclk, or FALSE.  The returned values represent the clock equation:
5509          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5510          */
5511         limit = intel_limit(crtc, refclk);
5512         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5513                               clock);
5514         if (!ret)
5515                 return false;
5516
5517         if (is_lvds && dev_priv->lvds_downclock_avail) {
5518                 /*
5519                  * Ensure we match the reduced clock's P to the target clock.
5520                  * If the clocks don't match, we can't switch the display clock
5521                  * by using the FP0/FP1. In such case we will disable the LVDS
5522                  * downclock feature.
5523                 */
5524                 *has_reduced_clock = limit->find_pll(limit, crtc,
5525                                                      dev_priv->lvds_downclock,
5526                                                      refclk,
5527                                                      clock,
5528                                                      reduced_clock);
5529         }
5530
5531         return true;
5532 }
5533
5534 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5535 {
5536         struct drm_i915_private *dev_priv = dev->dev_private;
5537         uint32_t temp;
5538
5539         temp = I915_READ(SOUTH_CHICKEN1);
5540         if (temp & FDI_BC_BIFURCATION_SELECT)
5541                 return;
5542
5543         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5544         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5545
5546         temp |= FDI_BC_BIFURCATION_SELECT;
5547         DRM_DEBUG_KMS("enabling fdi C rx\n");
5548         I915_WRITE(SOUTH_CHICKEN1, temp);
5549         POSTING_READ(SOUTH_CHICKEN1);
5550 }
5551
5552 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5553 {
5554         struct drm_device *dev = intel_crtc->base.dev;
5555         struct drm_i915_private *dev_priv = dev->dev_private;
5556
5557         switch (intel_crtc->pipe) {
5558         case PIPE_A:
5559                 break;
5560         case PIPE_B:
5561                 if (intel_crtc->config.fdi_lanes > 2)
5562                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5563                 else
5564                         cpt_enable_fdi_bc_bifurcation(dev);
5565
5566                 break;
5567         case PIPE_C:
5568                 cpt_enable_fdi_bc_bifurcation(dev);
5569
5570                 break;
5571         default:
5572                 BUG();
5573         }
5574 }
5575
5576 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5577 {
5578         /*
5579          * Account for spread spectrum to avoid
5580          * oversubscribing the link. Max center spread
5581          * is 2.5%; use 5% for safety's sake.
5582          */
5583         u32 bps = target_clock * bpp * 21 / 20;
5584         return bps / (link_bw * 8) + 1;
5585 }
5586
5587 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5588 {
5589         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5590 }
5591
5592 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5593                                       u32 *fp,
5594                                       intel_clock_t *reduced_clock, u32 *fp2)
5595 {
5596         struct drm_crtc *crtc = &intel_crtc->base;
5597         struct drm_device *dev = crtc->dev;
5598         struct drm_i915_private *dev_priv = dev->dev_private;
5599         struct intel_encoder *intel_encoder;
5600         uint32_t dpll;
5601         int factor, num_connectors = 0;
5602         bool is_lvds = false, is_sdvo = false;
5603
5604         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5605                 switch (intel_encoder->type) {
5606                 case INTEL_OUTPUT_LVDS:
5607                         is_lvds = true;
5608                         break;
5609                 case INTEL_OUTPUT_SDVO:
5610                 case INTEL_OUTPUT_HDMI:
5611                         is_sdvo = true;
5612                         break;
5613                 }
5614
5615                 num_connectors++;
5616         }
5617
5618         /* Enable autotuning of the PLL clock (if permissible) */
5619         factor = 21;
5620         if (is_lvds) {
5621                 if ((intel_panel_use_ssc(dev_priv) &&
5622                      dev_priv->vbt.lvds_ssc_freq == 100) ||
5623                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5624                         factor = 25;
5625         } else if (intel_crtc->config.sdvo_tv_clock)
5626                 factor = 20;
5627
5628         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5629                 *fp |= FP_CB_TUNE;
5630
5631         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5632                 *fp2 |= FP_CB_TUNE;
5633
5634         dpll = 0;
5635
5636         if (is_lvds)
5637                 dpll |= DPLLB_MODE_LVDS;
5638         else
5639                 dpll |= DPLLB_MODE_DAC_SERIAL;
5640
5641         if (intel_crtc->config.pixel_multiplier > 1) {
5642                 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5643                         << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5644         }
5645
5646         if (is_sdvo)
5647                 dpll |= DPLL_DVO_HIGH_SPEED;
5648         if (intel_crtc->config.has_dp_encoder)
5649                 dpll |= DPLL_DVO_HIGH_SPEED;
5650
5651         /* compute bitmask from p1 value */
5652         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5653         /* also FPA1 */
5654         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5655
5656         switch (intel_crtc->config.dpll.p2) {
5657         case 5:
5658                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5659                 break;
5660         case 7:
5661                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5662                 break;
5663         case 10:
5664                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5665                 break;
5666         case 14:
5667                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5668                 break;
5669         }
5670
5671         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5672                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5673         else
5674                 dpll |= PLL_REF_INPUT_DREFCLK;
5675
5676         return dpll;
5677 }
5678
5679 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5680                                   int x, int y,
5681                                   struct drm_framebuffer *fb)
5682 {
5683         struct drm_device *dev = crtc->dev;
5684         struct drm_i915_private *dev_priv = dev->dev_private;
5685         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5686         struct drm_display_mode *adjusted_mode =
5687                 &intel_crtc->config.adjusted_mode;
5688         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5689         int pipe = intel_crtc->pipe;
5690         int plane = intel_crtc->plane;
5691         int num_connectors = 0;
5692         intel_clock_t clock, reduced_clock;
5693         u32 dpll = 0, fp = 0, fp2 = 0;
5694         bool ok, has_reduced_clock = false;
5695         bool is_lvds = false;
5696         struct intel_encoder *encoder;
5697         int ret;
5698
5699         for_each_encoder_on_crtc(dev, crtc, encoder) {
5700                 switch (encoder->type) {
5701                 case INTEL_OUTPUT_LVDS:
5702                         is_lvds = true;
5703                         break;
5704                 }
5705
5706                 num_connectors++;
5707         }
5708
5709         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5710              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5711
5712         intel_crtc->config.cpu_transcoder = pipe;
5713
5714         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5715                                      &has_reduced_clock, &reduced_clock);
5716         if (!ok) {
5717                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5718                 return -EINVAL;
5719         }
5720         /* Compat-code for transition, will disappear. */
5721         if (!intel_crtc->config.clock_set) {
5722                 intel_crtc->config.dpll.n = clock.n;
5723                 intel_crtc->config.dpll.m1 = clock.m1;
5724                 intel_crtc->config.dpll.m2 = clock.m2;
5725                 intel_crtc->config.dpll.p1 = clock.p1;
5726                 intel_crtc->config.dpll.p2 = clock.p2;
5727         }
5728
5729         /* Ensure that the cursor is valid for the new mode before changing... */
5730         intel_crtc_update_cursor(crtc, true);
5731
5732         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
5733         drm_mode_debug_printmodeline(mode);
5734
5735         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5736         if (intel_crtc->config.has_pch_encoder) {
5737                 struct intel_pch_pll *pll;
5738
5739                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5740                 if (has_reduced_clock)
5741                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5742
5743                 dpll = ironlake_compute_dpll(intel_crtc,
5744                                              &fp, &reduced_clock,
5745                                              has_reduced_clock ? &fp2 : NULL);
5746
5747                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5748                 if (pll == NULL) {
5749                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5750                                          pipe_name(pipe));
5751                         return -EINVAL;
5752                 }
5753         } else
5754                 intel_put_pch_pll(intel_crtc);
5755
5756         if (intel_crtc->config.has_dp_encoder)
5757                 intel_dp_set_m_n(intel_crtc);
5758
5759         for_each_encoder_on_crtc(dev, crtc, encoder)
5760                 if (encoder->pre_pll_enable)
5761                         encoder->pre_pll_enable(encoder);
5762
5763         if (intel_crtc->pch_pll) {
5764                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5765
5766                 /* Wait for the clocks to stabilize. */
5767                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5768                 udelay(150);
5769
5770                 /* The pixel multiplier can only be updated once the
5771                  * DPLL is enabled and the clocks are stable.
5772                  *
5773                  * So write it again.
5774                  */
5775                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5776         }
5777
5778         intel_crtc->lowfreq_avail = false;
5779         if (intel_crtc->pch_pll) {
5780                 if (is_lvds && has_reduced_clock && i915_powersave) {
5781                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5782                         intel_crtc->lowfreq_avail = true;
5783                 } else {
5784                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5785                 }
5786         }
5787
5788         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5789
5790         if (intel_crtc->config.has_pch_encoder) {
5791                 intel_cpu_transcoder_set_m_n(intel_crtc,
5792                                              &intel_crtc->config.fdi_m_n);
5793         }
5794
5795         if (IS_IVYBRIDGE(dev))
5796                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5797
5798         ironlake_set_pipeconf(crtc);
5799
5800         /* Set up the display plane register */
5801         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5802         POSTING_READ(DSPCNTR(plane));
5803
5804         ret = intel_pipe_set_base(crtc, x, y, fb);
5805
5806         intel_update_watermarks(dev);
5807
5808         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5809
5810         return ret;
5811 }
5812
5813 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5814                                         struct intel_crtc_config *pipe_config)
5815 {
5816         struct drm_device *dev = crtc->base.dev;
5817         struct drm_i915_private *dev_priv = dev->dev_private;
5818         enum transcoder transcoder = pipe_config->cpu_transcoder;
5819
5820         pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5821         pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5822         pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5823                                         & ~TU_SIZE_MASK;
5824         pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5825         pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5826                                    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5827 }
5828
5829 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5830                                      struct intel_crtc_config *pipe_config)
5831 {
5832         struct drm_device *dev = crtc->base.dev;
5833         struct drm_i915_private *dev_priv = dev->dev_private;
5834         uint32_t tmp;
5835
5836         tmp = I915_READ(PIPECONF(crtc->pipe));
5837         if (!(tmp & PIPECONF_ENABLE))
5838                 return false;
5839
5840         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5841                 pipe_config->has_pch_encoder = true;
5842
5843                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5844                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5845                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
5846
5847                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5848         }
5849
5850         intel_get_pipe_timings(crtc, pipe_config);
5851
5852         return true;
5853 }
5854
5855 static void haswell_modeset_global_resources(struct drm_device *dev)
5856 {
5857         bool enable = false;
5858         struct intel_crtc *crtc;
5859         struct intel_encoder *encoder;
5860
5861         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5862                 if (crtc->pipe != PIPE_A && crtc->base.enabled)
5863                         enable = true;
5864                 /* XXX: Should check for edp transcoder here, but thanks to init
5865                  * sequence that's not yet available. Just in case desktop eDP
5866                  * on PORT D is possible on haswell, too. */
5867                 /* Even the eDP panel fitter is outside the always-on well. */
5868                 if (crtc->config.pch_pfit.size && crtc->base.enabled)
5869                         enable = true;
5870         }
5871
5872         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5873                             base.head) {
5874                 if (encoder->type != INTEL_OUTPUT_EDP &&
5875                     encoder->connectors_active)
5876                         enable = true;
5877         }
5878
5879         intel_set_power_well(dev, enable);
5880 }
5881
5882 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5883                                  int x, int y,
5884                                  struct drm_framebuffer *fb)
5885 {
5886         struct drm_device *dev = crtc->dev;
5887         struct drm_i915_private *dev_priv = dev->dev_private;
5888         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5889         struct drm_display_mode *adjusted_mode =
5890                 &intel_crtc->config.adjusted_mode;
5891         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5892         int pipe = intel_crtc->pipe;
5893         int plane = intel_crtc->plane;
5894         int num_connectors = 0;
5895         bool is_cpu_edp = false;
5896         struct intel_encoder *encoder;
5897         int ret;
5898
5899         for_each_encoder_on_crtc(dev, crtc, encoder) {
5900                 switch (encoder->type) {
5901                 case INTEL_OUTPUT_EDP:
5902                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5903                                 is_cpu_edp = true;
5904                         break;
5905                 }
5906
5907                 num_connectors++;
5908         }
5909
5910         if (is_cpu_edp)
5911                 intel_crtc->config.cpu_transcoder = TRANSCODER_EDP;
5912         else
5913                 intel_crtc->config.cpu_transcoder = pipe;
5914
5915         /* We are not sure yet this won't happen. */
5916         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5917              INTEL_PCH_TYPE(dev));
5918
5919         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5920              num_connectors, pipe_name(pipe));
5921
5922         WARN_ON(I915_READ(PIPECONF(intel_crtc->config.cpu_transcoder)) &
5923                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5924
5925         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5926
5927         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5928                 return -EINVAL;
5929
5930         /* Ensure that the cursor is valid for the new mode before changing... */
5931         intel_crtc_update_cursor(crtc, true);
5932
5933         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
5934         drm_mode_debug_printmodeline(mode);
5935
5936         if (intel_crtc->config.has_dp_encoder)
5937                 intel_dp_set_m_n(intel_crtc);
5938
5939         intel_crtc->lowfreq_avail = false;
5940
5941         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5942
5943         if (intel_crtc->config.has_pch_encoder) {
5944                 intel_cpu_transcoder_set_m_n(intel_crtc,
5945                                              &intel_crtc->config.fdi_m_n);
5946         }
5947
5948         haswell_set_pipeconf(crtc);
5949
5950         intel_set_pipe_csc(crtc);
5951
5952         /* Set up the display plane register */
5953         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5954         POSTING_READ(DSPCNTR(plane));
5955
5956         ret = intel_pipe_set_base(crtc, x, y, fb);
5957
5958         intel_update_watermarks(dev);
5959
5960         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5961
5962         return ret;
5963 }
5964
5965 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5966                                     struct intel_crtc_config *pipe_config)
5967 {
5968         struct drm_device *dev = crtc->base.dev;
5969         struct drm_i915_private *dev_priv = dev->dev_private;
5970         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
5971         uint32_t tmp;
5972
5973         if (!intel_display_power_enabled(dev,
5974                         POWER_DOMAIN_TRANSCODER(cpu_transcoder)))
5975                 return false;
5976
5977         tmp = I915_READ(PIPECONF(cpu_transcoder));
5978         if (!(tmp & PIPECONF_ENABLE))
5979                 return false;
5980
5981         /*
5982          * Haswell has only FDI/PCH transcoder A. It is which is connected to
5983          * DDI E. So just check whether this pipe is wired to DDI E and whether
5984          * the PCH transcoder is on.
5985          */
5986         tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
5987         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
5988             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
5989                 pipe_config->has_pch_encoder = true;
5990
5991                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
5992                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5993                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
5994
5995                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5996         }
5997
5998         intel_get_pipe_timings(crtc, pipe_config);
5999
6000         return true;
6001 }
6002
6003 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6004                                int x, int y,
6005                                struct drm_framebuffer *fb)
6006 {
6007         struct drm_device *dev = crtc->dev;
6008         struct drm_i915_private *dev_priv = dev->dev_private;
6009         struct drm_encoder_helper_funcs *encoder_funcs;
6010         struct intel_encoder *encoder;
6011         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6012         struct drm_display_mode *adjusted_mode =
6013                 &intel_crtc->config.adjusted_mode;
6014         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6015         int pipe = intel_crtc->pipe;
6016         int ret;
6017
6018         drm_vblank_pre_modeset(dev, pipe);
6019
6020         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6021
6022         drm_vblank_post_modeset(dev, pipe);
6023
6024         if (ret != 0)
6025                 return ret;
6026
6027         for_each_encoder_on_crtc(dev, crtc, encoder) {
6028                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6029                         encoder->base.base.id,
6030                         drm_get_encoder_name(&encoder->base),
6031                         mode->base.id, mode->name);
6032                 if (encoder->mode_set) {
6033                         encoder->mode_set(encoder);
6034                 } else {
6035                         encoder_funcs = encoder->base.helper_private;
6036                         encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
6037                 }
6038         }
6039
6040         return 0;
6041 }
6042
6043 static bool intel_eld_uptodate(struct drm_connector *connector,
6044                                int reg_eldv, uint32_t bits_eldv,
6045                                int reg_elda, uint32_t bits_elda,
6046                                int reg_edid)
6047 {
6048         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6049         uint8_t *eld = connector->eld;
6050         uint32_t i;
6051
6052         i = I915_READ(reg_eldv);
6053         i &= bits_eldv;
6054
6055         if (!eld[0])
6056                 return !i;
6057
6058         if (!i)
6059                 return false;
6060
6061         i = I915_READ(reg_elda);
6062         i &= ~bits_elda;
6063         I915_WRITE(reg_elda, i);
6064
6065         for (i = 0; i < eld[2]; i++)
6066                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6067                         return false;
6068
6069         return true;
6070 }
6071
6072 static void g4x_write_eld(struct drm_connector *connector,
6073                           struct drm_crtc *crtc)
6074 {
6075         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6076         uint8_t *eld = connector->eld;
6077         uint32_t eldv;
6078         uint32_t len;
6079         uint32_t i;
6080
6081         i = I915_READ(G4X_AUD_VID_DID);
6082
6083         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6084                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6085         else
6086                 eldv = G4X_ELDV_DEVCTG;
6087
6088         if (intel_eld_uptodate(connector,
6089                                G4X_AUD_CNTL_ST, eldv,
6090                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6091                                G4X_HDMIW_HDMIEDID))
6092                 return;
6093
6094         i = I915_READ(G4X_AUD_CNTL_ST);
6095         i &= ~(eldv | G4X_ELD_ADDR);
6096         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6097         I915_WRITE(G4X_AUD_CNTL_ST, i);
6098
6099         if (!eld[0])
6100                 return;
6101
6102         len = min_t(uint8_t, eld[2], len);
6103         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6104         for (i = 0; i < len; i++)
6105                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6106
6107         i = I915_READ(G4X_AUD_CNTL_ST);
6108         i |= eldv;
6109         I915_WRITE(G4X_AUD_CNTL_ST, i);
6110 }
6111
6112 static void haswell_write_eld(struct drm_connector *connector,
6113                                      struct drm_crtc *crtc)
6114 {
6115         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6116         uint8_t *eld = connector->eld;
6117         struct drm_device *dev = crtc->dev;
6118         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6119         uint32_t eldv;
6120         uint32_t i;
6121         int len;
6122         int pipe = to_intel_crtc(crtc)->pipe;
6123         int tmp;
6124
6125         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6126         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6127         int aud_config = HSW_AUD_CFG(pipe);
6128         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6129
6130
6131         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6132
6133         /* Audio output enable */
6134         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6135         tmp = I915_READ(aud_cntrl_st2);
6136         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6137         I915_WRITE(aud_cntrl_st2, tmp);
6138
6139         /* Wait for 1 vertical blank */
6140         intel_wait_for_vblank(dev, pipe);
6141
6142         /* Set ELD valid state */
6143         tmp = I915_READ(aud_cntrl_st2);
6144         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6145         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6146         I915_WRITE(aud_cntrl_st2, tmp);
6147         tmp = I915_READ(aud_cntrl_st2);
6148         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6149
6150         /* Enable HDMI mode */
6151         tmp = I915_READ(aud_config);
6152         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6153         /* clear N_programing_enable and N_value_index */
6154         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6155         I915_WRITE(aud_config, tmp);
6156
6157         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6158
6159         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6160         intel_crtc->eld_vld = true;
6161
6162         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6163                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6164                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6165                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6166         } else
6167                 I915_WRITE(aud_config, 0);
6168
6169         if (intel_eld_uptodate(connector,
6170                                aud_cntrl_st2, eldv,
6171                                aud_cntl_st, IBX_ELD_ADDRESS,
6172                                hdmiw_hdmiedid))
6173                 return;
6174
6175         i = I915_READ(aud_cntrl_st2);
6176         i &= ~eldv;
6177         I915_WRITE(aud_cntrl_st2, i);
6178
6179         if (!eld[0])
6180                 return;
6181
6182         i = I915_READ(aud_cntl_st);
6183         i &= ~IBX_ELD_ADDRESS;
6184         I915_WRITE(aud_cntl_st, i);
6185         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6186         DRM_DEBUG_DRIVER("port num:%d\n", i);
6187
6188         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6189         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6190         for (i = 0; i < len; i++)
6191                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6192
6193         i = I915_READ(aud_cntrl_st2);
6194         i |= eldv;
6195         I915_WRITE(aud_cntrl_st2, i);
6196
6197 }
6198
6199 static void ironlake_write_eld(struct drm_connector *connector,
6200                                      struct drm_crtc *crtc)
6201 {
6202         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6203         uint8_t *eld = connector->eld;
6204         uint32_t eldv;
6205         uint32_t i;
6206         int len;
6207         int hdmiw_hdmiedid;
6208         int aud_config;
6209         int aud_cntl_st;
6210         int aud_cntrl_st2;
6211         int pipe = to_intel_crtc(crtc)->pipe;
6212
6213         if (HAS_PCH_IBX(connector->dev)) {
6214                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6215                 aud_config = IBX_AUD_CFG(pipe);
6216                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6217                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6218         } else {
6219                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6220                 aud_config = CPT_AUD_CFG(pipe);
6221                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6222                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6223         }
6224
6225         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6226
6227         i = I915_READ(aud_cntl_st);
6228         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6229         if (!i) {
6230                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6231                 /* operate blindly on all ports */
6232                 eldv = IBX_ELD_VALIDB;
6233                 eldv |= IBX_ELD_VALIDB << 4;
6234                 eldv |= IBX_ELD_VALIDB << 8;
6235         } else {
6236                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6237                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6238         }
6239
6240         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6241                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6242                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6243                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6244         } else
6245                 I915_WRITE(aud_config, 0);
6246
6247         if (intel_eld_uptodate(connector,
6248                                aud_cntrl_st2, eldv,
6249                                aud_cntl_st, IBX_ELD_ADDRESS,
6250                                hdmiw_hdmiedid))
6251                 return;
6252
6253         i = I915_READ(aud_cntrl_st2);
6254         i &= ~eldv;
6255         I915_WRITE(aud_cntrl_st2, i);
6256
6257         if (!eld[0])
6258                 return;
6259
6260         i = I915_READ(aud_cntl_st);
6261         i &= ~IBX_ELD_ADDRESS;
6262         I915_WRITE(aud_cntl_st, i);
6263
6264         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6265         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6266         for (i = 0; i < len; i++)
6267                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6268
6269         i = I915_READ(aud_cntrl_st2);
6270         i |= eldv;
6271         I915_WRITE(aud_cntrl_st2, i);
6272 }
6273
6274 void intel_write_eld(struct drm_encoder *encoder,
6275                      struct drm_display_mode *mode)
6276 {
6277         struct drm_crtc *crtc = encoder->crtc;
6278         struct drm_connector *connector;
6279         struct drm_device *dev = encoder->dev;
6280         struct drm_i915_private *dev_priv = dev->dev_private;
6281
6282         connector = drm_select_eld(encoder, mode);
6283         if (!connector)
6284                 return;
6285
6286         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6287                          connector->base.id,
6288                          drm_get_connector_name(connector),
6289                          connector->encoder->base.id,
6290                          drm_get_encoder_name(connector->encoder));
6291
6292         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6293
6294         if (dev_priv->display.write_eld)
6295                 dev_priv->display.write_eld(connector, crtc);
6296 }
6297
6298 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6299 void intel_crtc_load_lut(struct drm_crtc *crtc)
6300 {
6301         struct drm_device *dev = crtc->dev;
6302         struct drm_i915_private *dev_priv = dev->dev_private;
6303         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6304         int palreg = PALETTE(intel_crtc->pipe);
6305         int i;
6306
6307         /* The clocks have to be on to load the palette. */
6308         if (!crtc->enabled || !intel_crtc->active)
6309                 return;
6310
6311         /* use legacy palette for Ironlake */
6312         if (HAS_PCH_SPLIT(dev))
6313                 palreg = LGC_PALETTE(intel_crtc->pipe);
6314
6315         for (i = 0; i < 256; i++) {
6316                 I915_WRITE(palreg + 4 * i,
6317                            (intel_crtc->lut_r[i] << 16) |
6318                            (intel_crtc->lut_g[i] << 8) |
6319                            intel_crtc->lut_b[i]);
6320         }
6321 }
6322
6323 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6324 {
6325         struct drm_device *dev = crtc->dev;
6326         struct drm_i915_private *dev_priv = dev->dev_private;
6327         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6328         bool visible = base != 0;
6329         u32 cntl;
6330
6331         if (intel_crtc->cursor_visible == visible)
6332                 return;
6333
6334         cntl = I915_READ(_CURACNTR);
6335         if (visible) {
6336                 /* On these chipsets we can only modify the base whilst
6337                  * the cursor is disabled.
6338                  */
6339                 I915_WRITE(_CURABASE, base);
6340
6341                 cntl &= ~(CURSOR_FORMAT_MASK);
6342                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6343                 cntl |= CURSOR_ENABLE |
6344                         CURSOR_GAMMA_ENABLE |
6345                         CURSOR_FORMAT_ARGB;
6346         } else
6347                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6348         I915_WRITE(_CURACNTR, cntl);
6349
6350         intel_crtc->cursor_visible = visible;
6351 }
6352
6353 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6354 {
6355         struct drm_device *dev = crtc->dev;
6356         struct drm_i915_private *dev_priv = dev->dev_private;
6357         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6358         int pipe = intel_crtc->pipe;
6359         bool visible = base != 0;
6360
6361         if (intel_crtc->cursor_visible != visible) {
6362                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6363                 if (base) {
6364                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6365                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6366                         cntl |= pipe << 28; /* Connect to correct pipe */
6367                 } else {
6368                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6369                         cntl |= CURSOR_MODE_DISABLE;
6370                 }
6371                 I915_WRITE(CURCNTR(pipe), cntl);
6372
6373                 intel_crtc->cursor_visible = visible;
6374         }
6375         /* and commit changes on next vblank */
6376         I915_WRITE(CURBASE(pipe), base);
6377 }
6378
6379 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6380 {
6381         struct drm_device *dev = crtc->dev;
6382         struct drm_i915_private *dev_priv = dev->dev_private;
6383         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6384         int pipe = intel_crtc->pipe;
6385         bool visible = base != 0;
6386
6387         if (intel_crtc->cursor_visible != visible) {
6388                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6389                 if (base) {
6390                         cntl &= ~CURSOR_MODE;
6391                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6392                 } else {
6393                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6394                         cntl |= CURSOR_MODE_DISABLE;
6395                 }
6396                 if (IS_HASWELL(dev))
6397                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6398                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6399
6400                 intel_crtc->cursor_visible = visible;
6401         }
6402         /* and commit changes on next vblank */
6403         I915_WRITE(CURBASE_IVB(pipe), base);
6404 }
6405
6406 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6407 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6408                                      bool on)
6409 {
6410         struct drm_device *dev = crtc->dev;
6411         struct drm_i915_private *dev_priv = dev->dev_private;
6412         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6413         int pipe = intel_crtc->pipe;
6414         int x = intel_crtc->cursor_x;
6415         int y = intel_crtc->cursor_y;
6416         u32 base, pos;
6417         bool visible;
6418
6419         pos = 0;
6420
6421         if (on && crtc->enabled && crtc->fb) {
6422                 base = intel_crtc->cursor_addr;
6423                 if (x > (int) crtc->fb->width)
6424                         base = 0;
6425
6426                 if (y > (int) crtc->fb->height)
6427                         base = 0;
6428         } else
6429                 base = 0;
6430
6431         if (x < 0) {
6432                 if (x + intel_crtc->cursor_width < 0)
6433                         base = 0;
6434
6435                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6436                 x = -x;
6437         }
6438         pos |= x << CURSOR_X_SHIFT;
6439
6440         if (y < 0) {
6441                 if (y + intel_crtc->cursor_height < 0)
6442                         base = 0;
6443
6444                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6445                 y = -y;
6446         }
6447         pos |= y << CURSOR_Y_SHIFT;
6448
6449         visible = base != 0;
6450         if (!visible && !intel_crtc->cursor_visible)
6451                 return;
6452
6453         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6454                 I915_WRITE(CURPOS_IVB(pipe), pos);
6455                 ivb_update_cursor(crtc, base);
6456         } else {
6457                 I915_WRITE(CURPOS(pipe), pos);
6458                 if (IS_845G(dev) || IS_I865G(dev))
6459                         i845_update_cursor(crtc, base);
6460                 else
6461                         i9xx_update_cursor(crtc, base);
6462         }
6463 }
6464
6465 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6466                                  struct drm_file *file,
6467                                  uint32_t handle,
6468                                  uint32_t width, uint32_t height)
6469 {
6470         struct drm_device *dev = crtc->dev;
6471         struct drm_i915_private *dev_priv = dev->dev_private;
6472         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6473         struct drm_i915_gem_object *obj;
6474         uint32_t addr;
6475         int ret;
6476
6477         /* if we want to turn off the cursor ignore width and height */
6478         if (!handle) {
6479                 DRM_DEBUG_KMS("cursor off\n");
6480                 addr = 0;
6481                 obj = NULL;
6482                 mutex_lock(&dev->struct_mutex);
6483                 goto finish;
6484         }
6485
6486         /* Currently we only support 64x64 cursors */
6487         if (width != 64 || height != 64) {
6488                 DRM_ERROR("we currently only support 64x64 cursors\n");
6489                 return -EINVAL;
6490         }
6491
6492         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6493         if (&obj->base == NULL)
6494                 return -ENOENT;
6495
6496         if (obj->base.size < width * height * 4) {
6497                 DRM_ERROR("buffer is to small\n");
6498                 ret = -ENOMEM;
6499                 goto fail;
6500         }
6501
6502         /* we only need to pin inside GTT if cursor is non-phy */
6503         mutex_lock(&dev->struct_mutex);
6504         if (!dev_priv->info->cursor_needs_physical) {
6505                 unsigned alignment;
6506
6507                 if (obj->tiling_mode) {
6508                         DRM_ERROR("cursor cannot be tiled\n");
6509                         ret = -EINVAL;
6510                         goto fail_locked;
6511                 }
6512
6513                 /* Note that the w/a also requires 2 PTE of padding following
6514                  * the bo. We currently fill all unused PTE with the shadow
6515                  * page and so we should always have valid PTE following the
6516                  * cursor preventing the VT-d warning.
6517                  */
6518                 alignment = 0;
6519                 if (need_vtd_wa(dev))
6520                         alignment = 64*1024;
6521
6522                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6523                 if (ret) {
6524                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6525                         goto fail_locked;
6526                 }
6527
6528                 ret = i915_gem_object_put_fence(obj);
6529                 if (ret) {
6530                         DRM_ERROR("failed to release fence for cursor");
6531                         goto fail_unpin;
6532                 }
6533
6534                 addr = obj->gtt_offset;
6535         } else {
6536                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6537                 ret = i915_gem_attach_phys_object(dev, obj,
6538                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6539                                                   align);
6540                 if (ret) {
6541                         DRM_ERROR("failed to attach phys object\n");
6542                         goto fail_locked;
6543                 }
6544                 addr = obj->phys_obj->handle->busaddr;
6545         }
6546
6547         if (IS_GEN2(dev))
6548                 I915_WRITE(CURSIZE, (height << 12) | width);
6549
6550  finish:
6551         if (intel_crtc->cursor_bo) {
6552                 if (dev_priv->info->cursor_needs_physical) {
6553                         if (intel_crtc->cursor_bo != obj)
6554                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6555                 } else
6556                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6557                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6558         }
6559
6560         mutex_unlock(&dev->struct_mutex);
6561
6562         intel_crtc->cursor_addr = addr;
6563         intel_crtc->cursor_bo = obj;
6564         intel_crtc->cursor_width = width;
6565         intel_crtc->cursor_height = height;
6566
6567         intel_crtc_update_cursor(crtc, true);
6568
6569         return 0;
6570 fail_unpin:
6571         i915_gem_object_unpin(obj);
6572 fail_locked:
6573         mutex_unlock(&dev->struct_mutex);
6574 fail:
6575         drm_gem_object_unreference_unlocked(&obj->base);
6576         return ret;
6577 }
6578
6579 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6580 {
6581         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6582
6583         intel_crtc->cursor_x = x;
6584         intel_crtc->cursor_y = y;
6585
6586         intel_crtc_update_cursor(crtc, true);
6587
6588         return 0;
6589 }
6590
6591 /** Sets the color ramps on behalf of RandR */
6592 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6593                                  u16 blue, int regno)
6594 {
6595         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6596
6597         intel_crtc->lut_r[regno] = red >> 8;
6598         intel_crtc->lut_g[regno] = green >> 8;
6599         intel_crtc->lut_b[regno] = blue >> 8;
6600 }
6601
6602 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6603                              u16 *blue, int regno)
6604 {
6605         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6606
6607         *red = intel_crtc->lut_r[regno] << 8;
6608         *green = intel_crtc->lut_g[regno] << 8;
6609         *blue = intel_crtc->lut_b[regno] << 8;
6610 }
6611
6612 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6613                                  u16 *blue, uint32_t start, uint32_t size)
6614 {
6615         int end = (start + size > 256) ? 256 : start + size, i;
6616         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6617
6618         for (i = start; i < end; i++) {
6619                 intel_crtc->lut_r[i] = red[i] >> 8;
6620                 intel_crtc->lut_g[i] = green[i] >> 8;
6621                 intel_crtc->lut_b[i] = blue[i] >> 8;
6622         }
6623
6624         intel_crtc_load_lut(crtc);
6625 }
6626
6627 /* VESA 640x480x72Hz mode to set on the pipe */
6628 static struct drm_display_mode load_detect_mode = {
6629         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6630                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6631 };
6632
6633 static struct drm_framebuffer *
6634 intel_framebuffer_create(struct drm_device *dev,
6635                          struct drm_mode_fb_cmd2 *mode_cmd,
6636                          struct drm_i915_gem_object *obj)
6637 {
6638         struct intel_framebuffer *intel_fb;
6639         int ret;
6640
6641         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6642         if (!intel_fb) {
6643                 drm_gem_object_unreference_unlocked(&obj->base);
6644                 return ERR_PTR(-ENOMEM);
6645         }
6646
6647         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6648         if (ret) {
6649                 drm_gem_object_unreference_unlocked(&obj->base);
6650                 kfree(intel_fb);
6651                 return ERR_PTR(ret);
6652         }
6653
6654         return &intel_fb->base;
6655 }
6656
6657 static u32
6658 intel_framebuffer_pitch_for_width(int width, int bpp)
6659 {
6660         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6661         return ALIGN(pitch, 64);
6662 }
6663
6664 static u32
6665 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6666 {
6667         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6668         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6669 }
6670
6671 static struct drm_framebuffer *
6672 intel_framebuffer_create_for_mode(struct drm_device *dev,
6673                                   struct drm_display_mode *mode,
6674                                   int depth, int bpp)
6675 {
6676         struct drm_i915_gem_object *obj;
6677         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6678
6679         obj = i915_gem_alloc_object(dev,
6680                                     intel_framebuffer_size_for_mode(mode, bpp));
6681         if (obj == NULL)
6682                 return ERR_PTR(-ENOMEM);
6683
6684         mode_cmd.width = mode->hdisplay;
6685         mode_cmd.height = mode->vdisplay;
6686         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6687                                                                 bpp);
6688         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6689
6690         return intel_framebuffer_create(dev, &mode_cmd, obj);
6691 }
6692
6693 static struct drm_framebuffer *
6694 mode_fits_in_fbdev(struct drm_device *dev,
6695                    struct drm_display_mode *mode)
6696 {
6697         struct drm_i915_private *dev_priv = dev->dev_private;
6698         struct drm_i915_gem_object *obj;
6699         struct drm_framebuffer *fb;
6700
6701         if (dev_priv->fbdev == NULL)
6702                 return NULL;
6703
6704         obj = dev_priv->fbdev->ifb.obj;
6705         if (obj == NULL)
6706                 return NULL;
6707
6708         fb = &dev_priv->fbdev->ifb.base;
6709         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6710                                                                fb->bits_per_pixel))
6711                 return NULL;
6712
6713         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6714                 return NULL;
6715
6716         return fb;
6717 }
6718
6719 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6720                                 struct drm_display_mode *mode,
6721                                 struct intel_load_detect_pipe *old)
6722 {
6723         struct intel_crtc *intel_crtc;
6724         struct intel_encoder *intel_encoder =
6725                 intel_attached_encoder(connector);
6726         struct drm_crtc *possible_crtc;
6727         struct drm_encoder *encoder = &intel_encoder->base;
6728         struct drm_crtc *crtc = NULL;
6729         struct drm_device *dev = encoder->dev;
6730         struct drm_framebuffer *fb;
6731         int i = -1;
6732
6733         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6734                       connector->base.id, drm_get_connector_name(connector),
6735                       encoder->base.id, drm_get_encoder_name(encoder));
6736
6737         /*
6738          * Algorithm gets a little messy:
6739          *
6740          *   - if the connector already has an assigned crtc, use it (but make
6741          *     sure it's on first)
6742          *
6743          *   - try to find the first unused crtc that can drive this connector,
6744          *     and use that if we find one
6745          */
6746
6747         /* See if we already have a CRTC for this connector */
6748         if (encoder->crtc) {
6749                 crtc = encoder->crtc;
6750
6751                 mutex_lock(&crtc->mutex);
6752
6753                 old->dpms_mode = connector->dpms;
6754                 old->load_detect_temp = false;
6755
6756                 /* Make sure the crtc and connector are running */
6757                 if (connector->dpms != DRM_MODE_DPMS_ON)
6758                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6759
6760                 return true;
6761         }
6762
6763         /* Find an unused one (if possible) */
6764         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6765                 i++;
6766                 if (!(encoder->possible_crtcs & (1 << i)))
6767                         continue;
6768                 if (!possible_crtc->enabled) {
6769                         crtc = possible_crtc;
6770                         break;
6771                 }
6772         }
6773
6774         /*
6775          * If we didn't find an unused CRTC, don't use any.
6776          */
6777         if (!crtc) {
6778                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6779                 return false;
6780         }
6781
6782         mutex_lock(&crtc->mutex);
6783         intel_encoder->new_crtc = to_intel_crtc(crtc);
6784         to_intel_connector(connector)->new_encoder = intel_encoder;
6785
6786         intel_crtc = to_intel_crtc(crtc);
6787         old->dpms_mode = connector->dpms;
6788         old->load_detect_temp = true;
6789         old->release_fb = NULL;
6790
6791         if (!mode)
6792                 mode = &load_detect_mode;
6793
6794         /* We need a framebuffer large enough to accommodate all accesses
6795          * that the plane may generate whilst we perform load detection.
6796          * We can not rely on the fbcon either being present (we get called
6797          * during its initialisation to detect all boot displays, or it may
6798          * not even exist) or that it is large enough to satisfy the
6799          * requested mode.
6800          */
6801         fb = mode_fits_in_fbdev(dev, mode);
6802         if (fb == NULL) {
6803                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6804                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6805                 old->release_fb = fb;
6806         } else
6807                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6808         if (IS_ERR(fb)) {
6809                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6810                 mutex_unlock(&crtc->mutex);
6811                 return false;
6812         }
6813
6814         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6815                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6816                 if (old->release_fb)
6817                         old->release_fb->funcs->destroy(old->release_fb);
6818                 mutex_unlock(&crtc->mutex);
6819                 return false;
6820         }
6821
6822         /* let the connector get through one full cycle before testing */
6823         intel_wait_for_vblank(dev, intel_crtc->pipe);
6824         return true;
6825 }
6826
6827 void intel_release_load_detect_pipe(struct drm_connector *connector,
6828                                     struct intel_load_detect_pipe *old)
6829 {
6830         struct intel_encoder *intel_encoder =
6831                 intel_attached_encoder(connector);
6832         struct drm_encoder *encoder = &intel_encoder->base;
6833         struct drm_crtc *crtc = encoder->crtc;
6834
6835         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6836                       connector->base.id, drm_get_connector_name(connector),
6837                       encoder->base.id, drm_get_encoder_name(encoder));
6838
6839         if (old->load_detect_temp) {
6840                 to_intel_connector(connector)->new_encoder = NULL;
6841                 intel_encoder->new_crtc = NULL;
6842                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6843
6844                 if (old->release_fb) {
6845                         drm_framebuffer_unregister_private(old->release_fb);
6846                         drm_framebuffer_unreference(old->release_fb);
6847                 }
6848
6849                 mutex_unlock(&crtc->mutex);
6850                 return;
6851         }
6852
6853         /* Switch crtc and encoder back off if necessary */
6854         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6855                 connector->funcs->dpms(connector, old->dpms_mode);
6856
6857         mutex_unlock(&crtc->mutex);
6858 }
6859
6860 /* Returns the clock of the currently programmed mode of the given pipe. */
6861 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6862 {
6863         struct drm_i915_private *dev_priv = dev->dev_private;
6864         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6865         int pipe = intel_crtc->pipe;
6866         u32 dpll = I915_READ(DPLL(pipe));
6867         u32 fp;
6868         intel_clock_t clock;
6869
6870         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6871                 fp = I915_READ(FP0(pipe));
6872         else
6873                 fp = I915_READ(FP1(pipe));
6874
6875         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6876         if (IS_PINEVIEW(dev)) {
6877                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6878                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6879         } else {
6880                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6881                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6882         }
6883
6884         if (!IS_GEN2(dev)) {
6885                 if (IS_PINEVIEW(dev))
6886                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6887                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6888                 else
6889                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6890                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6891
6892                 switch (dpll & DPLL_MODE_MASK) {
6893                 case DPLLB_MODE_DAC_SERIAL:
6894                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6895                                 5 : 10;
6896                         break;
6897                 case DPLLB_MODE_LVDS:
6898                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6899                                 7 : 14;
6900                         break;
6901                 default:
6902                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6903                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6904                         return 0;
6905                 }
6906
6907                 /* XXX: Handle the 100Mhz refclk */
6908                 intel_clock(dev, 96000, &clock);
6909         } else {
6910                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6911
6912                 if (is_lvds) {
6913                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6914                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6915                         clock.p2 = 14;
6916
6917                         if ((dpll & PLL_REF_INPUT_MASK) ==
6918                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6919                                 /* XXX: might not be 66MHz */
6920                                 intel_clock(dev, 66000, &clock);
6921                         } else
6922                                 intel_clock(dev, 48000, &clock);
6923                 } else {
6924                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6925                                 clock.p1 = 2;
6926                         else {
6927                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6928                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6929                         }
6930                         if (dpll & PLL_P2_DIVIDE_BY_4)
6931                                 clock.p2 = 4;
6932                         else
6933                                 clock.p2 = 2;
6934
6935                         intel_clock(dev, 48000, &clock);
6936                 }
6937         }
6938
6939         /* XXX: It would be nice to validate the clocks, but we can't reuse
6940          * i830PllIsValid() because it relies on the xf86_config connector
6941          * configuration being accurate, which it isn't necessarily.
6942          */
6943
6944         return clock.dot;
6945 }
6946
6947 /** Returns the currently programmed mode of the given pipe. */
6948 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6949                                              struct drm_crtc *crtc)
6950 {
6951         struct drm_i915_private *dev_priv = dev->dev_private;
6952         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6953         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6954         struct drm_display_mode *mode;
6955         int htot = I915_READ(HTOTAL(cpu_transcoder));
6956         int hsync = I915_READ(HSYNC(cpu_transcoder));
6957         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6958         int vsync = I915_READ(VSYNC(cpu_transcoder));
6959
6960         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6961         if (!mode)
6962                 return NULL;
6963
6964         mode->clock = intel_crtc_clock_get(dev, crtc);
6965         mode->hdisplay = (htot & 0xffff) + 1;
6966         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6967         mode->hsync_start = (hsync & 0xffff) + 1;
6968         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6969         mode->vdisplay = (vtot & 0xffff) + 1;
6970         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6971         mode->vsync_start = (vsync & 0xffff) + 1;
6972         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6973
6974         drm_mode_set_name(mode);
6975
6976         return mode;
6977 }
6978
6979 static void intel_increase_pllclock(struct drm_crtc *crtc)
6980 {
6981         struct drm_device *dev = crtc->dev;
6982         drm_i915_private_t *dev_priv = dev->dev_private;
6983         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6984         int pipe = intel_crtc->pipe;
6985         int dpll_reg = DPLL(pipe);
6986         int dpll;
6987
6988         if (HAS_PCH_SPLIT(dev))
6989                 return;
6990
6991         if (!dev_priv->lvds_downclock_avail)
6992                 return;
6993
6994         dpll = I915_READ(dpll_reg);
6995         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6996                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6997
6998                 assert_panel_unlocked(dev_priv, pipe);
6999
7000                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7001                 I915_WRITE(dpll_reg, dpll);
7002                 intel_wait_for_vblank(dev, pipe);
7003
7004                 dpll = I915_READ(dpll_reg);
7005                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7006                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7007         }
7008 }
7009
7010 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7011 {
7012         struct drm_device *dev = crtc->dev;
7013         drm_i915_private_t *dev_priv = dev->dev_private;
7014         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7015
7016         if (HAS_PCH_SPLIT(dev))
7017                 return;
7018
7019         if (!dev_priv->lvds_downclock_avail)
7020                 return;
7021
7022         /*
7023          * Since this is called by a timer, we should never get here in
7024          * the manual case.
7025          */
7026         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7027                 int pipe = intel_crtc->pipe;
7028                 int dpll_reg = DPLL(pipe);
7029                 int dpll;
7030
7031                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7032
7033                 assert_panel_unlocked(dev_priv, pipe);
7034
7035                 dpll = I915_READ(dpll_reg);
7036                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7037                 I915_WRITE(dpll_reg, dpll);
7038                 intel_wait_for_vblank(dev, pipe);
7039                 dpll = I915_READ(dpll_reg);
7040                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7041                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7042         }
7043
7044 }
7045
7046 void intel_mark_busy(struct drm_device *dev)
7047 {
7048         i915_update_gfx_val(dev->dev_private);
7049 }
7050
7051 void intel_mark_idle(struct drm_device *dev)
7052 {
7053         struct drm_crtc *crtc;
7054
7055         if (!i915_powersave)
7056                 return;
7057
7058         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7059                 if (!crtc->fb)
7060                         continue;
7061
7062                 intel_decrease_pllclock(crtc);
7063         }
7064 }
7065
7066 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
7067 {
7068         struct drm_device *dev = obj->base.dev;
7069         struct drm_crtc *crtc;
7070
7071         if (!i915_powersave)
7072                 return;
7073
7074         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7075                 if (!crtc->fb)
7076                         continue;
7077
7078                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
7079                         intel_increase_pllclock(crtc);
7080         }
7081 }
7082
7083 static void intel_crtc_destroy(struct drm_crtc *crtc)
7084 {
7085         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7086         struct drm_device *dev = crtc->dev;
7087         struct intel_unpin_work *work;
7088         unsigned long flags;
7089
7090         spin_lock_irqsave(&dev->event_lock, flags);
7091         work = intel_crtc->unpin_work;
7092         intel_crtc->unpin_work = NULL;
7093         spin_unlock_irqrestore(&dev->event_lock, flags);
7094
7095         if (work) {
7096                 cancel_work_sync(&work->work);
7097                 kfree(work);
7098         }
7099
7100         drm_crtc_cleanup(crtc);
7101
7102         kfree(intel_crtc);
7103 }
7104
7105 static void intel_unpin_work_fn(struct work_struct *__work)
7106 {
7107         struct intel_unpin_work *work =
7108                 container_of(__work, struct intel_unpin_work, work);
7109         struct drm_device *dev = work->crtc->dev;
7110
7111         mutex_lock(&dev->struct_mutex);
7112         intel_unpin_fb_obj(work->old_fb_obj);
7113         drm_gem_object_unreference(&work->pending_flip_obj->base);
7114         drm_gem_object_unreference(&work->old_fb_obj->base);
7115
7116         intel_update_fbc(dev);
7117         mutex_unlock(&dev->struct_mutex);
7118
7119         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7120         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7121
7122         kfree(work);
7123 }
7124
7125 static void do_intel_finish_page_flip(struct drm_device *dev,
7126                                       struct drm_crtc *crtc)
7127 {
7128         drm_i915_private_t *dev_priv = dev->dev_private;
7129         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7130         struct intel_unpin_work *work;
7131         unsigned long flags;
7132
7133         /* Ignore early vblank irqs */
7134         if (intel_crtc == NULL)
7135                 return;
7136
7137         spin_lock_irqsave(&dev->event_lock, flags);
7138         work = intel_crtc->unpin_work;
7139
7140         /* Ensure we don't miss a work->pending update ... */
7141         smp_rmb();
7142
7143         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7144                 spin_unlock_irqrestore(&dev->event_lock, flags);
7145                 return;
7146         }
7147
7148         /* and that the unpin work is consistent wrt ->pending. */
7149         smp_rmb();
7150
7151         intel_crtc->unpin_work = NULL;
7152
7153         if (work->event)
7154                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7155
7156         drm_vblank_put(dev, intel_crtc->pipe);
7157
7158         spin_unlock_irqrestore(&dev->event_lock, flags);
7159
7160         wake_up_all(&dev_priv->pending_flip_queue);
7161
7162         queue_work(dev_priv->wq, &work->work);
7163
7164         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7165 }
7166
7167 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7168 {
7169         drm_i915_private_t *dev_priv = dev->dev_private;
7170         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7171
7172         do_intel_finish_page_flip(dev, crtc);
7173 }
7174
7175 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7176 {
7177         drm_i915_private_t *dev_priv = dev->dev_private;
7178         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7179
7180         do_intel_finish_page_flip(dev, crtc);
7181 }
7182
7183 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7184 {
7185         drm_i915_private_t *dev_priv = dev->dev_private;
7186         struct intel_crtc *intel_crtc =
7187                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7188         unsigned long flags;
7189
7190         /* NB: An MMIO update of the plane base pointer will also
7191          * generate a page-flip completion irq, i.e. every modeset
7192          * is also accompanied by a spurious intel_prepare_page_flip().
7193          */
7194         spin_lock_irqsave(&dev->event_lock, flags);
7195         if (intel_crtc->unpin_work)
7196                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7197         spin_unlock_irqrestore(&dev->event_lock, flags);
7198 }
7199
7200 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7201 {
7202         /* Ensure that the work item is consistent when activating it ... */
7203         smp_wmb();
7204         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7205         /* and that it is marked active as soon as the irq could fire. */
7206         smp_wmb();
7207 }
7208
7209 static int intel_gen2_queue_flip(struct drm_device *dev,
7210                                  struct drm_crtc *crtc,
7211                                  struct drm_framebuffer *fb,
7212                                  struct drm_i915_gem_object *obj)
7213 {
7214         struct drm_i915_private *dev_priv = dev->dev_private;
7215         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7216         u32 flip_mask;
7217         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7218         int ret;
7219
7220         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7221         if (ret)
7222                 goto err;
7223
7224         ret = intel_ring_begin(ring, 6);
7225         if (ret)
7226                 goto err_unpin;
7227
7228         /* Can't queue multiple flips, so wait for the previous
7229          * one to finish before executing the next.
7230          */
7231         if (intel_crtc->plane)
7232                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7233         else
7234                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7235         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7236         intel_ring_emit(ring, MI_NOOP);
7237         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7238                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7239         intel_ring_emit(ring, fb->pitches[0]);
7240         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7241         intel_ring_emit(ring, 0); /* aux display base address, unused */
7242
7243         intel_mark_page_flip_active(intel_crtc);
7244         intel_ring_advance(ring);
7245         return 0;
7246
7247 err_unpin:
7248         intel_unpin_fb_obj(obj);
7249 err:
7250         return ret;
7251 }
7252
7253 static int intel_gen3_queue_flip(struct drm_device *dev,
7254                                  struct drm_crtc *crtc,
7255                                  struct drm_framebuffer *fb,
7256                                  struct drm_i915_gem_object *obj)
7257 {
7258         struct drm_i915_private *dev_priv = dev->dev_private;
7259         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7260         u32 flip_mask;
7261         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7262         int ret;
7263
7264         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7265         if (ret)
7266                 goto err;
7267
7268         ret = intel_ring_begin(ring, 6);
7269         if (ret)
7270                 goto err_unpin;
7271
7272         if (intel_crtc->plane)
7273                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7274         else
7275                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7276         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7277         intel_ring_emit(ring, MI_NOOP);
7278         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7279                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7280         intel_ring_emit(ring, fb->pitches[0]);
7281         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7282         intel_ring_emit(ring, MI_NOOP);
7283
7284         intel_mark_page_flip_active(intel_crtc);
7285         intel_ring_advance(ring);
7286         return 0;
7287
7288 err_unpin:
7289         intel_unpin_fb_obj(obj);
7290 err:
7291         return ret;
7292 }
7293
7294 static int intel_gen4_queue_flip(struct drm_device *dev,
7295                                  struct drm_crtc *crtc,
7296                                  struct drm_framebuffer *fb,
7297                                  struct drm_i915_gem_object *obj)
7298 {
7299         struct drm_i915_private *dev_priv = dev->dev_private;
7300         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7301         uint32_t pf, pipesrc;
7302         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7303         int ret;
7304
7305         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7306         if (ret)
7307                 goto err;
7308
7309         ret = intel_ring_begin(ring, 4);
7310         if (ret)
7311                 goto err_unpin;
7312
7313         /* i965+ uses the linear or tiled offsets from the
7314          * Display Registers (which do not change across a page-flip)
7315          * so we need only reprogram the base address.
7316          */
7317         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7318                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7319         intel_ring_emit(ring, fb->pitches[0]);
7320         intel_ring_emit(ring,
7321                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7322                         obj->tiling_mode);
7323
7324         /* XXX Enabling the panel-fitter across page-flip is so far
7325          * untested on non-native modes, so ignore it for now.
7326          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7327          */
7328         pf = 0;
7329         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7330         intel_ring_emit(ring, pf | pipesrc);
7331
7332         intel_mark_page_flip_active(intel_crtc);
7333         intel_ring_advance(ring);
7334         return 0;
7335
7336 err_unpin:
7337         intel_unpin_fb_obj(obj);
7338 err:
7339         return ret;
7340 }
7341
7342 static int intel_gen6_queue_flip(struct drm_device *dev,
7343                                  struct drm_crtc *crtc,
7344                                  struct drm_framebuffer *fb,
7345                                  struct drm_i915_gem_object *obj)
7346 {
7347         struct drm_i915_private *dev_priv = dev->dev_private;
7348         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7349         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7350         uint32_t pf, pipesrc;
7351         int ret;
7352
7353         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7354         if (ret)
7355                 goto err;
7356
7357         ret = intel_ring_begin(ring, 4);
7358         if (ret)
7359                 goto err_unpin;
7360
7361         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7362                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7363         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7364         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7365
7366         /* Contrary to the suggestions in the documentation,
7367          * "Enable Panel Fitter" does not seem to be required when page
7368          * flipping with a non-native mode, and worse causes a normal
7369          * modeset to fail.
7370          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7371          */
7372         pf = 0;
7373         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7374         intel_ring_emit(ring, pf | pipesrc);
7375
7376         intel_mark_page_flip_active(intel_crtc);
7377         intel_ring_advance(ring);
7378         return 0;
7379
7380 err_unpin:
7381         intel_unpin_fb_obj(obj);
7382 err:
7383         return ret;
7384 }
7385
7386 /*
7387  * On gen7 we currently use the blit ring because (in early silicon at least)
7388  * the render ring doesn't give us interrpts for page flip completion, which
7389  * means clients will hang after the first flip is queued.  Fortunately the
7390  * blit ring generates interrupts properly, so use it instead.
7391  */
7392 static int intel_gen7_queue_flip(struct drm_device *dev,
7393                                  struct drm_crtc *crtc,
7394                                  struct drm_framebuffer *fb,
7395                                  struct drm_i915_gem_object *obj)
7396 {
7397         struct drm_i915_private *dev_priv = dev->dev_private;
7398         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7399         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7400         uint32_t plane_bit = 0;
7401         int ret;
7402
7403         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7404         if (ret)
7405                 goto err;
7406
7407         switch(intel_crtc->plane) {
7408         case PLANE_A:
7409                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7410                 break;
7411         case PLANE_B:
7412                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7413                 break;
7414         case PLANE_C:
7415                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7416                 break;
7417         default:
7418                 WARN_ONCE(1, "unknown plane in flip command\n");
7419                 ret = -ENODEV;
7420                 goto err_unpin;
7421         }
7422
7423         ret = intel_ring_begin(ring, 4);
7424         if (ret)
7425                 goto err_unpin;
7426
7427         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7428         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7429         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7430         intel_ring_emit(ring, (MI_NOOP));
7431
7432         intel_mark_page_flip_active(intel_crtc);
7433         intel_ring_advance(ring);
7434         return 0;
7435
7436 err_unpin:
7437         intel_unpin_fb_obj(obj);
7438 err:
7439         return ret;
7440 }
7441
7442 static int intel_default_queue_flip(struct drm_device *dev,
7443                                     struct drm_crtc *crtc,
7444                                     struct drm_framebuffer *fb,
7445                                     struct drm_i915_gem_object *obj)
7446 {
7447         return -ENODEV;
7448 }
7449
7450 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7451                                 struct drm_framebuffer *fb,
7452                                 struct drm_pending_vblank_event *event)
7453 {
7454         struct drm_device *dev = crtc->dev;
7455         struct drm_i915_private *dev_priv = dev->dev_private;
7456         struct drm_framebuffer *old_fb = crtc->fb;
7457         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7458         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7459         struct intel_unpin_work *work;
7460         unsigned long flags;
7461         int ret;
7462
7463         /* Can't change pixel format via MI display flips. */
7464         if (fb->pixel_format != crtc->fb->pixel_format)
7465                 return -EINVAL;
7466
7467         /*
7468          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7469          * Note that pitch changes could also affect these register.
7470          */
7471         if (INTEL_INFO(dev)->gen > 3 &&
7472             (fb->offsets[0] != crtc->fb->offsets[0] ||
7473              fb->pitches[0] != crtc->fb->pitches[0]))
7474                 return -EINVAL;
7475
7476         work = kzalloc(sizeof *work, GFP_KERNEL);
7477         if (work == NULL)
7478                 return -ENOMEM;
7479
7480         work->event = event;
7481         work->crtc = crtc;
7482         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7483         INIT_WORK(&work->work, intel_unpin_work_fn);
7484
7485         ret = drm_vblank_get(dev, intel_crtc->pipe);
7486         if (ret)
7487                 goto free_work;
7488
7489         /* We borrow the event spin lock for protecting unpin_work */
7490         spin_lock_irqsave(&dev->event_lock, flags);
7491         if (intel_crtc->unpin_work) {
7492                 spin_unlock_irqrestore(&dev->event_lock, flags);
7493                 kfree(work);
7494                 drm_vblank_put(dev, intel_crtc->pipe);
7495
7496                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7497                 return -EBUSY;
7498         }
7499         intel_crtc->unpin_work = work;
7500         spin_unlock_irqrestore(&dev->event_lock, flags);
7501
7502         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7503                 flush_workqueue(dev_priv->wq);
7504
7505         ret = i915_mutex_lock_interruptible(dev);
7506         if (ret)
7507                 goto cleanup;
7508
7509         /* Reference the objects for the scheduled work. */
7510         drm_gem_object_reference(&work->old_fb_obj->base);
7511         drm_gem_object_reference(&obj->base);
7512
7513         crtc->fb = fb;
7514
7515         work->pending_flip_obj = obj;
7516
7517         work->enable_stall_check = true;
7518
7519         atomic_inc(&intel_crtc->unpin_work_count);
7520         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7521
7522         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7523         if (ret)
7524                 goto cleanup_pending;
7525
7526         intel_disable_fbc(dev);
7527         intel_mark_fb_busy(obj);
7528         mutex_unlock(&dev->struct_mutex);
7529
7530         trace_i915_flip_request(intel_crtc->plane, obj);
7531
7532         return 0;
7533
7534 cleanup_pending:
7535         atomic_dec(&intel_crtc->unpin_work_count);
7536         crtc->fb = old_fb;
7537         drm_gem_object_unreference(&work->old_fb_obj->base);
7538         drm_gem_object_unreference(&obj->base);
7539         mutex_unlock(&dev->struct_mutex);
7540
7541 cleanup:
7542         spin_lock_irqsave(&dev->event_lock, flags);
7543         intel_crtc->unpin_work = NULL;
7544         spin_unlock_irqrestore(&dev->event_lock, flags);
7545
7546         drm_vblank_put(dev, intel_crtc->pipe);
7547 free_work:
7548         kfree(work);
7549
7550         return ret;
7551 }
7552
7553 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7554         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7555         .load_lut = intel_crtc_load_lut,
7556 };
7557
7558 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7559 {
7560         struct intel_encoder *other_encoder;
7561         struct drm_crtc *crtc = &encoder->new_crtc->base;
7562
7563         if (WARN_ON(!crtc))
7564                 return false;
7565
7566         list_for_each_entry(other_encoder,
7567                             &crtc->dev->mode_config.encoder_list,
7568                             base.head) {
7569
7570                 if (&other_encoder->new_crtc->base != crtc ||
7571                     encoder == other_encoder)
7572                         continue;
7573                 else
7574                         return true;
7575         }
7576
7577         return false;
7578 }
7579
7580 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7581                                   struct drm_crtc *crtc)
7582 {
7583         struct drm_device *dev;
7584         struct drm_crtc *tmp;
7585         int crtc_mask = 1;
7586
7587         WARN(!crtc, "checking null crtc?\n");
7588
7589         dev = crtc->dev;
7590
7591         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7592                 if (tmp == crtc)
7593                         break;
7594                 crtc_mask <<= 1;
7595         }
7596
7597         if (encoder->possible_crtcs & crtc_mask)
7598                 return true;
7599         return false;
7600 }
7601
7602 /**
7603  * intel_modeset_update_staged_output_state
7604  *
7605  * Updates the staged output configuration state, e.g. after we've read out the
7606  * current hw state.
7607  */
7608 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7609 {
7610         struct intel_encoder *encoder;
7611         struct intel_connector *connector;
7612
7613         list_for_each_entry(connector, &dev->mode_config.connector_list,
7614                             base.head) {
7615                 connector->new_encoder =
7616                         to_intel_encoder(connector->base.encoder);
7617         }
7618
7619         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7620                             base.head) {
7621                 encoder->new_crtc =
7622                         to_intel_crtc(encoder->base.crtc);
7623         }
7624 }
7625
7626 /**
7627  * intel_modeset_commit_output_state
7628  *
7629  * This function copies the stage display pipe configuration to the real one.
7630  */
7631 static void intel_modeset_commit_output_state(struct drm_device *dev)
7632 {
7633         struct intel_encoder *encoder;
7634         struct intel_connector *connector;
7635
7636         list_for_each_entry(connector, &dev->mode_config.connector_list,
7637                             base.head) {
7638                 connector->base.encoder = &connector->new_encoder->base;
7639         }
7640
7641         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7642                             base.head) {
7643                 encoder->base.crtc = &encoder->new_crtc->base;
7644         }
7645 }
7646
7647 static int
7648 pipe_config_set_bpp(struct drm_crtc *crtc,
7649                     struct drm_framebuffer *fb,
7650                     struct intel_crtc_config *pipe_config)
7651 {
7652         struct drm_device *dev = crtc->dev;
7653         struct drm_connector *connector;
7654         int bpp;
7655
7656         switch (fb->pixel_format) {
7657         case DRM_FORMAT_C8:
7658                 bpp = 8*3; /* since we go through a colormap */
7659                 break;
7660         case DRM_FORMAT_XRGB1555:
7661         case DRM_FORMAT_ARGB1555:
7662                 /* checked in intel_framebuffer_init already */
7663                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7664                         return -EINVAL;
7665         case DRM_FORMAT_RGB565:
7666                 bpp = 6*3; /* min is 18bpp */
7667                 break;
7668         case DRM_FORMAT_XBGR8888:
7669         case DRM_FORMAT_ABGR8888:
7670                 /* checked in intel_framebuffer_init already */
7671                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7672                         return -EINVAL;
7673         case DRM_FORMAT_XRGB8888:
7674         case DRM_FORMAT_ARGB8888:
7675                 bpp = 8*3;
7676                 break;
7677         case DRM_FORMAT_XRGB2101010:
7678         case DRM_FORMAT_ARGB2101010:
7679         case DRM_FORMAT_XBGR2101010:
7680         case DRM_FORMAT_ABGR2101010:
7681                 /* checked in intel_framebuffer_init already */
7682                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7683                         return -EINVAL;
7684                 bpp = 10*3;
7685                 break;
7686         /* TODO: gen4+ supports 16 bpc floating point, too. */
7687         default:
7688                 DRM_DEBUG_KMS("unsupported depth\n");
7689                 return -EINVAL;
7690         }
7691
7692         pipe_config->pipe_bpp = bpp;
7693
7694         /* Clamp display bpp to EDID value */
7695         list_for_each_entry(connector, &dev->mode_config.connector_list,
7696                             head) {
7697                 if (connector->encoder && connector->encoder->crtc != crtc)
7698                         continue;
7699
7700                 /* Don't use an invalid EDID bpc value */
7701                 if (connector->display_info.bpc &&
7702                     connector->display_info.bpc * 3 < bpp) {
7703                         DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7704                                       bpp, connector->display_info.bpc*3);
7705                         pipe_config->pipe_bpp = connector->display_info.bpc*3;
7706                 }
7707
7708                 /* Clamp bpp to 8 on screens without EDID 1.4 */
7709                 if (connector->display_info.bpc == 0 && bpp > 24) {
7710                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
7711                                       bpp);
7712                         pipe_config->pipe_bpp = 24;
7713                 }
7714         }
7715
7716         return bpp;
7717 }
7718
7719 static struct intel_crtc_config *
7720 intel_modeset_pipe_config(struct drm_crtc *crtc,
7721                           struct drm_framebuffer *fb,
7722                           struct drm_display_mode *mode)
7723 {
7724         struct drm_device *dev = crtc->dev;
7725         struct drm_encoder_helper_funcs *encoder_funcs;
7726         struct intel_encoder *encoder;
7727         struct intel_crtc_config *pipe_config;
7728         int plane_bpp, ret = -EINVAL;
7729         bool retry = true;
7730
7731         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7732         if (!pipe_config)
7733                 return ERR_PTR(-ENOMEM);
7734
7735         drm_mode_copy(&pipe_config->adjusted_mode, mode);
7736         drm_mode_copy(&pipe_config->requested_mode, mode);
7737
7738         plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
7739         if (plane_bpp < 0)
7740                 goto fail;
7741
7742 encoder_retry:
7743         /* Pass our mode to the connectors and the CRTC to give them a chance to
7744          * adjust it according to limitations or connector properties, and also
7745          * a chance to reject the mode entirely.
7746          */
7747         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7748                             base.head) {
7749
7750                 if (&encoder->new_crtc->base != crtc)
7751                         continue;
7752
7753                 if (encoder->compute_config) {
7754                         if (!(encoder->compute_config(encoder, pipe_config))) {
7755                                 DRM_DEBUG_KMS("Encoder config failure\n");
7756                                 goto fail;
7757                         }
7758
7759                         continue;
7760                 }
7761
7762                 encoder_funcs = encoder->base.helper_private;
7763                 if (!(encoder_funcs->mode_fixup(&encoder->base,
7764                                                 &pipe_config->requested_mode,
7765                                                 &pipe_config->adjusted_mode))) {
7766                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7767                         goto fail;
7768                 }
7769         }
7770
7771         ret = intel_crtc_compute_config(crtc, pipe_config);
7772         if (ret < 0) {
7773                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7774                 goto fail;
7775         }
7776
7777         if (ret == RETRY) {
7778                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
7779                         ret = -EINVAL;
7780                         goto fail;
7781                 }
7782
7783                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
7784                 retry = false;
7785                 goto encoder_retry;
7786         }
7787
7788         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7789
7790         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7791         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7792                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7793
7794         return pipe_config;
7795 fail:
7796         kfree(pipe_config);
7797         return ERR_PTR(ret);
7798 }
7799
7800 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7801  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7802 static void
7803 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7804                              unsigned *prepare_pipes, unsigned *disable_pipes)
7805 {
7806         struct intel_crtc *intel_crtc;
7807         struct drm_device *dev = crtc->dev;
7808         struct intel_encoder *encoder;
7809         struct intel_connector *connector;
7810         struct drm_crtc *tmp_crtc;
7811
7812         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7813
7814         /* Check which crtcs have changed outputs connected to them, these need
7815          * to be part of the prepare_pipes mask. We don't (yet) support global
7816          * modeset across multiple crtcs, so modeset_pipes will only have one
7817          * bit set at most. */
7818         list_for_each_entry(connector, &dev->mode_config.connector_list,
7819                             base.head) {
7820                 if (connector->base.encoder == &connector->new_encoder->base)
7821                         continue;
7822
7823                 if (connector->base.encoder) {
7824                         tmp_crtc = connector->base.encoder->crtc;
7825
7826                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7827                 }
7828
7829                 if (connector->new_encoder)
7830                         *prepare_pipes |=
7831                                 1 << connector->new_encoder->new_crtc->pipe;
7832         }
7833
7834         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7835                             base.head) {
7836                 if (encoder->base.crtc == &encoder->new_crtc->base)
7837                         continue;
7838
7839                 if (encoder->base.crtc) {
7840                         tmp_crtc = encoder->base.crtc;
7841
7842                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7843                 }
7844
7845                 if (encoder->new_crtc)
7846                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7847         }
7848
7849         /* Check for any pipes that will be fully disabled ... */
7850         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7851                             base.head) {
7852                 bool used = false;
7853
7854                 /* Don't try to disable disabled crtcs. */
7855                 if (!intel_crtc->base.enabled)
7856                         continue;
7857
7858                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7859                                     base.head) {
7860                         if (encoder->new_crtc == intel_crtc)
7861                                 used = true;
7862                 }
7863
7864                 if (!used)
7865                         *disable_pipes |= 1 << intel_crtc->pipe;
7866         }
7867
7868
7869         /* set_mode is also used to update properties on life display pipes. */
7870         intel_crtc = to_intel_crtc(crtc);
7871         if (crtc->enabled)
7872                 *prepare_pipes |= 1 << intel_crtc->pipe;
7873
7874         /*
7875          * For simplicity do a full modeset on any pipe where the output routing
7876          * changed. We could be more clever, but that would require us to be
7877          * more careful with calling the relevant encoder->mode_set functions.
7878          */
7879         if (*prepare_pipes)
7880                 *modeset_pipes = *prepare_pipes;
7881
7882         /* ... and mask these out. */
7883         *modeset_pipes &= ~(*disable_pipes);
7884         *prepare_pipes &= ~(*disable_pipes);
7885
7886         /*
7887          * HACK: We don't (yet) fully support global modesets. intel_set_config
7888          * obies this rule, but the modeset restore mode of
7889          * intel_modeset_setup_hw_state does not.
7890          */
7891         *modeset_pipes &= 1 << intel_crtc->pipe;
7892         *prepare_pipes &= 1 << intel_crtc->pipe;
7893
7894         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7895                       *modeset_pipes, *prepare_pipes, *disable_pipes);
7896 }
7897
7898 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7899 {
7900         struct drm_encoder *encoder;
7901         struct drm_device *dev = crtc->dev;
7902
7903         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7904                 if (encoder->crtc == crtc)
7905                         return true;
7906
7907         return false;
7908 }
7909
7910 static void
7911 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7912 {
7913         struct intel_encoder *intel_encoder;
7914         struct intel_crtc *intel_crtc;
7915         struct drm_connector *connector;
7916
7917         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7918                             base.head) {
7919                 if (!intel_encoder->base.crtc)
7920                         continue;
7921
7922                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7923
7924                 if (prepare_pipes & (1 << intel_crtc->pipe))
7925                         intel_encoder->connectors_active = false;
7926         }
7927
7928         intel_modeset_commit_output_state(dev);
7929
7930         /* Update computed state. */
7931         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7932                             base.head) {
7933                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7934         }
7935
7936         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7937                 if (!connector->encoder || !connector->encoder->crtc)
7938                         continue;
7939
7940                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7941
7942                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7943                         struct drm_property *dpms_property =
7944                                 dev->mode_config.dpms_property;
7945
7946                         connector->dpms = DRM_MODE_DPMS_ON;
7947                         drm_object_property_set_value(&connector->base,
7948                                                          dpms_property,
7949                                                          DRM_MODE_DPMS_ON);
7950
7951                         intel_encoder = to_intel_encoder(connector->encoder);
7952                         intel_encoder->connectors_active = true;
7953                 }
7954         }
7955
7956 }
7957
7958 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7959         list_for_each_entry((intel_crtc), \
7960                             &(dev)->mode_config.crtc_list, \
7961                             base.head) \
7962                 if (mask & (1 <<(intel_crtc)->pipe))
7963
7964 static bool
7965 intel_pipe_config_compare(struct intel_crtc_config *current_config,
7966                           struct intel_crtc_config *pipe_config)
7967 {
7968 #define PIPE_CONF_CHECK_I(name) \
7969         if (current_config->name != pipe_config->name) { \
7970                 DRM_ERROR("mismatch in " #name " " \
7971                           "(expected %i, found %i)\n", \
7972                           current_config->name, \
7973                           pipe_config->name); \
7974                 return false; \
7975         }
7976
7977 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
7978         if ((current_config->name ^ pipe_config->name) & (mask)) { \
7979                 DRM_ERROR("mismatch in " #name " " \
7980                           "(expected %i, found %i)\n", \
7981                           current_config->name & (mask), \
7982                           pipe_config->name & (mask)); \
7983                 return false; \
7984         }
7985
7986         PIPE_CONF_CHECK_I(has_pch_encoder);
7987         PIPE_CONF_CHECK_I(fdi_lanes);
7988         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
7989         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
7990         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
7991         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
7992         PIPE_CONF_CHECK_I(fdi_m_n.tu);
7993
7994         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
7995         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
7996         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
7997         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
7998         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
7999         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8000
8001         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8002         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8003         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8004         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8005         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8006         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8007
8008         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8009                               DRM_MODE_FLAG_INTERLACE);
8010
8011         PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8012         PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8013
8014 #undef PIPE_CONF_CHECK_I
8015 #undef PIPE_CONF_CHECK_FLAGS
8016
8017         return true;
8018 }
8019
8020 void
8021 intel_modeset_check_state(struct drm_device *dev)
8022 {
8023         drm_i915_private_t *dev_priv = dev->dev_private;
8024         struct intel_crtc *crtc;
8025         struct intel_encoder *encoder;
8026         struct intel_connector *connector;
8027         struct intel_crtc_config pipe_config;
8028
8029         list_for_each_entry(connector, &dev->mode_config.connector_list,
8030                             base.head) {
8031                 /* This also checks the encoder/connector hw state with the
8032                  * ->get_hw_state callbacks. */
8033                 intel_connector_check_state(connector);
8034
8035                 WARN(&connector->new_encoder->base != connector->base.encoder,
8036                      "connector's staged encoder doesn't match current encoder\n");
8037         }
8038
8039         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8040                             base.head) {
8041                 bool enabled = false;
8042                 bool active = false;
8043                 enum pipe pipe, tracked_pipe;
8044
8045                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8046                               encoder->base.base.id,
8047                               drm_get_encoder_name(&encoder->base));
8048
8049                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8050                      "encoder's stage crtc doesn't match current crtc\n");
8051                 WARN(encoder->connectors_active && !encoder->base.crtc,
8052                      "encoder's active_connectors set, but no crtc\n");
8053
8054                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8055                                     base.head) {
8056                         if (connector->base.encoder != &encoder->base)
8057                                 continue;
8058                         enabled = true;
8059                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8060                                 active = true;
8061                 }
8062                 WARN(!!encoder->base.crtc != enabled,
8063                      "encoder's enabled state mismatch "
8064                      "(expected %i, found %i)\n",
8065                      !!encoder->base.crtc, enabled);
8066                 WARN(active && !encoder->base.crtc,
8067                      "active encoder with no crtc\n");
8068
8069                 WARN(encoder->connectors_active != active,
8070                      "encoder's computed active state doesn't match tracked active state "
8071                      "(expected %i, found %i)\n", active, encoder->connectors_active);
8072
8073                 active = encoder->get_hw_state(encoder, &pipe);
8074                 WARN(active != encoder->connectors_active,
8075                      "encoder's hw state doesn't match sw tracking "
8076                      "(expected %i, found %i)\n",
8077                      encoder->connectors_active, active);
8078
8079                 if (!encoder->base.crtc)
8080                         continue;
8081
8082                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8083                 WARN(active && pipe != tracked_pipe,
8084                      "active encoder's pipe doesn't match"
8085                      "(expected %i, found %i)\n",
8086                      tracked_pipe, pipe);
8087
8088         }
8089
8090         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8091                             base.head) {
8092                 bool enabled = false;
8093                 bool active = false;
8094
8095                 DRM_DEBUG_KMS("[CRTC:%d]\n",
8096                               crtc->base.base.id);
8097
8098                 WARN(crtc->active && !crtc->base.enabled,
8099                      "active crtc, but not enabled in sw tracking\n");
8100
8101                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8102                                     base.head) {
8103                         if (encoder->base.crtc != &crtc->base)
8104                                 continue;
8105                         enabled = true;
8106                         if (encoder->connectors_active)
8107                                 active = true;
8108                 }
8109                 WARN(active != crtc->active,
8110                      "crtc's computed active state doesn't match tracked active state "
8111                      "(expected %i, found %i)\n", active, crtc->active);
8112                 WARN(enabled != crtc->base.enabled,
8113                      "crtc's computed enabled state doesn't match tracked enabled state "
8114                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8115
8116                 memset(&pipe_config, 0, sizeof(pipe_config));
8117                 pipe_config.cpu_transcoder = crtc->config.cpu_transcoder;
8118                 active = dev_priv->display.get_pipe_config(crtc,
8119                                                            &pipe_config);
8120                 WARN(crtc->active != active,
8121                      "crtc active state doesn't match with hw state "
8122                      "(expected %i, found %i)\n", crtc->active, active);
8123
8124                 WARN(active &&
8125                      !intel_pipe_config_compare(&crtc->config, &pipe_config),
8126                      "pipe state doesn't match!\n");
8127         }
8128 }
8129
8130 static int __intel_set_mode(struct drm_crtc *crtc,
8131                             struct drm_display_mode *mode,
8132                             int x, int y, struct drm_framebuffer *fb)
8133 {
8134         struct drm_device *dev = crtc->dev;
8135         drm_i915_private_t *dev_priv = dev->dev_private;
8136         struct drm_display_mode *saved_mode, *saved_hwmode;
8137         struct intel_crtc_config *pipe_config = NULL;
8138         struct intel_crtc *intel_crtc;
8139         unsigned disable_pipes, prepare_pipes, modeset_pipes;
8140         int ret = 0;
8141
8142         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8143         if (!saved_mode)
8144                 return -ENOMEM;
8145         saved_hwmode = saved_mode + 1;
8146
8147         intel_modeset_affected_pipes(crtc, &modeset_pipes,
8148                                      &prepare_pipes, &disable_pipes);
8149
8150         *saved_hwmode = crtc->hwmode;
8151         *saved_mode = crtc->mode;
8152
8153         /* Hack: Because we don't (yet) support global modeset on multiple
8154          * crtcs, we don't keep track of the new mode for more than one crtc.
8155          * Hence simply check whether any bit is set in modeset_pipes in all the
8156          * pieces of code that are not yet converted to deal with mutliple crtcs
8157          * changing their mode at the same time. */
8158         if (modeset_pipes) {
8159                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8160                 if (IS_ERR(pipe_config)) {
8161                         ret = PTR_ERR(pipe_config);
8162                         pipe_config = NULL;
8163
8164                         goto out;
8165                 }
8166         }
8167
8168         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8169                 intel_crtc_disable(&intel_crtc->base);
8170
8171         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8172                 if (intel_crtc->base.enabled)
8173                         dev_priv->display.crtc_disable(&intel_crtc->base);
8174         }
8175
8176         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8177          * to set it here already despite that we pass it down the callchain.
8178          */
8179         if (modeset_pipes) {
8180                 enum transcoder tmp = to_intel_crtc(crtc)->config.cpu_transcoder;
8181                 crtc->mode = *mode;
8182                 /* mode_set/enable/disable functions rely on a correct pipe
8183                  * config. */
8184                 to_intel_crtc(crtc)->config = *pipe_config;
8185                 to_intel_crtc(crtc)->config.cpu_transcoder = tmp;
8186         }
8187
8188         /* Only after disabling all output pipelines that will be changed can we
8189          * update the the output configuration. */
8190         intel_modeset_update_state(dev, prepare_pipes);
8191
8192         if (dev_priv->display.modeset_global_resources)
8193                 dev_priv->display.modeset_global_resources(dev);
8194
8195         /* Set up the DPLL and any encoders state that needs to adjust or depend
8196          * on the DPLL.
8197          */
8198         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8199                 ret = intel_crtc_mode_set(&intel_crtc->base,
8200                                           x, y, fb);
8201                 if (ret)
8202                         goto done;
8203         }
8204
8205         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8206         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8207                 dev_priv->display.crtc_enable(&intel_crtc->base);
8208
8209         if (modeset_pipes) {
8210                 /* Store real post-adjustment hardware mode. */
8211                 crtc->hwmode = pipe_config->adjusted_mode;
8212
8213                 /* Calculate and store various constants which
8214                  * are later needed by vblank and swap-completion
8215                  * timestamping. They are derived from true hwmode.
8216                  */
8217                 drm_calc_timestamping_constants(crtc);
8218         }
8219
8220         /* FIXME: add subpixel order */
8221 done:
8222         if (ret && crtc->enabled) {
8223                 crtc->hwmode = *saved_hwmode;
8224                 crtc->mode = *saved_mode;
8225         }
8226
8227 out:
8228         kfree(pipe_config);
8229         kfree(saved_mode);
8230         return ret;
8231 }
8232
8233 int intel_set_mode(struct drm_crtc *crtc,
8234                      struct drm_display_mode *mode,
8235                      int x, int y, struct drm_framebuffer *fb)
8236 {
8237         int ret;
8238
8239         ret = __intel_set_mode(crtc, mode, x, y, fb);
8240
8241         if (ret == 0)
8242                 intel_modeset_check_state(crtc->dev);
8243
8244         return ret;
8245 }
8246
8247 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8248 {
8249         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8250 }
8251
8252 #undef for_each_intel_crtc_masked
8253
8254 static void intel_set_config_free(struct intel_set_config *config)
8255 {
8256         if (!config)
8257                 return;
8258
8259         kfree(config->save_connector_encoders);
8260         kfree(config->save_encoder_crtcs);
8261         kfree(config);
8262 }
8263
8264 static int intel_set_config_save_state(struct drm_device *dev,
8265                                        struct intel_set_config *config)
8266 {
8267         struct drm_encoder *encoder;
8268         struct drm_connector *connector;
8269         int count;
8270
8271         config->save_encoder_crtcs =
8272                 kcalloc(dev->mode_config.num_encoder,
8273                         sizeof(struct drm_crtc *), GFP_KERNEL);
8274         if (!config->save_encoder_crtcs)
8275                 return -ENOMEM;
8276
8277         config->save_connector_encoders =
8278                 kcalloc(dev->mode_config.num_connector,
8279                         sizeof(struct drm_encoder *), GFP_KERNEL);
8280         if (!config->save_connector_encoders)
8281                 return -ENOMEM;
8282
8283         /* Copy data. Note that driver private data is not affected.
8284          * Should anything bad happen only the expected state is
8285          * restored, not the drivers personal bookkeeping.
8286          */
8287         count = 0;
8288         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8289                 config->save_encoder_crtcs[count++] = encoder->crtc;
8290         }
8291
8292         count = 0;
8293         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8294                 config->save_connector_encoders[count++] = connector->encoder;
8295         }
8296
8297         return 0;
8298 }
8299
8300 static void intel_set_config_restore_state(struct drm_device *dev,
8301                                            struct intel_set_config *config)
8302 {
8303         struct intel_encoder *encoder;
8304         struct intel_connector *connector;
8305         int count;
8306
8307         count = 0;
8308         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8309                 encoder->new_crtc =
8310                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8311         }
8312
8313         count = 0;
8314         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8315                 connector->new_encoder =
8316                         to_intel_encoder(config->save_connector_encoders[count++]);
8317         }
8318 }
8319
8320 static void
8321 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8322                                       struct intel_set_config *config)
8323 {
8324
8325         /* We should be able to check here if the fb has the same properties
8326          * and then just flip_or_move it */
8327         if (set->crtc->fb != set->fb) {
8328                 /* If we have no fb then treat it as a full mode set */
8329                 if (set->crtc->fb == NULL) {
8330                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8331                         config->mode_changed = true;
8332                 } else if (set->fb == NULL) {
8333                         config->mode_changed = true;
8334                 } else if (set->fb->pixel_format !=
8335                            set->crtc->fb->pixel_format) {
8336                         config->mode_changed = true;
8337                 } else
8338                         config->fb_changed = true;
8339         }
8340
8341         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8342                 config->fb_changed = true;
8343
8344         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8345                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8346                 drm_mode_debug_printmodeline(&set->crtc->mode);
8347                 drm_mode_debug_printmodeline(set->mode);
8348                 config->mode_changed = true;
8349         }
8350 }
8351
8352 static int
8353 intel_modeset_stage_output_state(struct drm_device *dev,
8354                                  struct drm_mode_set *set,
8355                                  struct intel_set_config *config)
8356 {
8357         struct drm_crtc *new_crtc;
8358         struct intel_connector *connector;
8359         struct intel_encoder *encoder;
8360         int count, ro;
8361
8362         /* The upper layers ensure that we either disable a crtc or have a list
8363          * of connectors. For paranoia, double-check this. */
8364         WARN_ON(!set->fb && (set->num_connectors != 0));
8365         WARN_ON(set->fb && (set->num_connectors == 0));
8366
8367         count = 0;
8368         list_for_each_entry(connector, &dev->mode_config.connector_list,
8369                             base.head) {
8370                 /* Otherwise traverse passed in connector list and get encoders
8371                  * for them. */
8372                 for (ro = 0; ro < set->num_connectors; ro++) {
8373                         if (set->connectors[ro] == &connector->base) {
8374                                 connector->new_encoder = connector->encoder;
8375                                 break;
8376                         }
8377                 }
8378
8379                 /* If we disable the crtc, disable all its connectors. Also, if
8380                  * the connector is on the changing crtc but not on the new
8381                  * connector list, disable it. */
8382                 if ((!set->fb || ro == set->num_connectors) &&
8383                     connector->base.encoder &&
8384                     connector->base.encoder->crtc == set->crtc) {
8385                         connector->new_encoder = NULL;
8386
8387                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8388                                 connector->base.base.id,
8389                                 drm_get_connector_name(&connector->base));
8390                 }
8391
8392
8393                 if (&connector->new_encoder->base != connector->base.encoder) {
8394                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8395                         config->mode_changed = true;
8396                 }
8397         }
8398         /* connector->new_encoder is now updated for all connectors. */
8399
8400         /* Update crtc of enabled connectors. */
8401         count = 0;
8402         list_for_each_entry(connector, &dev->mode_config.connector_list,
8403                             base.head) {
8404                 if (!connector->new_encoder)
8405                         continue;
8406
8407                 new_crtc = connector->new_encoder->base.crtc;
8408
8409                 for (ro = 0; ro < set->num_connectors; ro++) {
8410                         if (set->connectors[ro] == &connector->base)
8411                                 new_crtc = set->crtc;
8412                 }
8413
8414                 /* Make sure the new CRTC will work with the encoder */
8415                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8416                                            new_crtc)) {
8417                         return -EINVAL;
8418                 }
8419                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8420
8421                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8422                         connector->base.base.id,
8423                         drm_get_connector_name(&connector->base),
8424                         new_crtc->base.id);
8425         }
8426
8427         /* Check for any encoders that needs to be disabled. */
8428         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8429                             base.head) {
8430                 list_for_each_entry(connector,
8431                                     &dev->mode_config.connector_list,
8432                                     base.head) {
8433                         if (connector->new_encoder == encoder) {
8434                                 WARN_ON(!connector->new_encoder->new_crtc);
8435
8436                                 goto next_encoder;
8437                         }
8438                 }
8439                 encoder->new_crtc = NULL;
8440 next_encoder:
8441                 /* Only now check for crtc changes so we don't miss encoders
8442                  * that will be disabled. */
8443                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8444                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8445                         config->mode_changed = true;
8446                 }
8447         }
8448         /* Now we've also updated encoder->new_crtc for all encoders. */
8449
8450         return 0;
8451 }
8452
8453 static int intel_crtc_set_config(struct drm_mode_set *set)
8454 {
8455         struct drm_device *dev;
8456         struct drm_mode_set save_set;
8457         struct intel_set_config *config;
8458         int ret;
8459
8460         BUG_ON(!set);
8461         BUG_ON(!set->crtc);
8462         BUG_ON(!set->crtc->helper_private);
8463
8464         /* Enforce sane interface api - has been abused by the fb helper. */
8465         BUG_ON(!set->mode && set->fb);
8466         BUG_ON(set->fb && set->num_connectors == 0);
8467
8468         if (set->fb) {
8469                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8470                                 set->crtc->base.id, set->fb->base.id,
8471                                 (int)set->num_connectors, set->x, set->y);
8472         } else {
8473                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8474         }
8475
8476         dev = set->crtc->dev;
8477
8478         ret = -ENOMEM;
8479         config = kzalloc(sizeof(*config), GFP_KERNEL);
8480         if (!config)
8481                 goto out_config;
8482
8483         ret = intel_set_config_save_state(dev, config);
8484         if (ret)
8485                 goto out_config;
8486
8487         save_set.crtc = set->crtc;
8488         save_set.mode = &set->crtc->mode;
8489         save_set.x = set->crtc->x;
8490         save_set.y = set->crtc->y;
8491         save_set.fb = set->crtc->fb;
8492
8493         /* Compute whether we need a full modeset, only an fb base update or no
8494          * change at all. In the future we might also check whether only the
8495          * mode changed, e.g. for LVDS where we only change the panel fitter in
8496          * such cases. */
8497         intel_set_config_compute_mode_changes(set, config);
8498
8499         ret = intel_modeset_stage_output_state(dev, set, config);
8500         if (ret)
8501                 goto fail;
8502
8503         if (config->mode_changed) {
8504                 if (set->mode) {
8505                         DRM_DEBUG_KMS("attempting to set mode from"
8506                                         " userspace\n");
8507                         drm_mode_debug_printmodeline(set->mode);
8508                 }
8509
8510                 ret = intel_set_mode(set->crtc, set->mode,
8511                                      set->x, set->y, set->fb);
8512                 if (ret) {
8513                         DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8514                                   set->crtc->base.id, ret);
8515                         goto fail;
8516                 }
8517         } else if (config->fb_changed) {
8518                 intel_crtc_wait_for_pending_flips(set->crtc);
8519
8520                 ret = intel_pipe_set_base(set->crtc,
8521                                           set->x, set->y, set->fb);
8522         }
8523
8524         intel_set_config_free(config);
8525
8526         return 0;
8527
8528 fail:
8529         intel_set_config_restore_state(dev, config);
8530
8531         /* Try to restore the config */
8532         if (config->mode_changed &&
8533             intel_set_mode(save_set.crtc, save_set.mode,
8534                            save_set.x, save_set.y, save_set.fb))
8535                 DRM_ERROR("failed to restore config after modeset failure\n");
8536
8537 out_config:
8538         intel_set_config_free(config);
8539         return ret;
8540 }
8541
8542 static const struct drm_crtc_funcs intel_crtc_funcs = {
8543         .cursor_set = intel_crtc_cursor_set,
8544         .cursor_move = intel_crtc_cursor_move,
8545         .gamma_set = intel_crtc_gamma_set,
8546         .set_config = intel_crtc_set_config,
8547         .destroy = intel_crtc_destroy,
8548         .page_flip = intel_crtc_page_flip,
8549 };
8550
8551 static void intel_cpu_pll_init(struct drm_device *dev)
8552 {
8553         if (HAS_DDI(dev))
8554                 intel_ddi_pll_init(dev);
8555 }
8556
8557 static void intel_pch_pll_init(struct drm_device *dev)
8558 {
8559         drm_i915_private_t *dev_priv = dev->dev_private;
8560         int i;
8561
8562         if (dev_priv->num_pch_pll == 0) {
8563                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8564                 return;
8565         }
8566
8567         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8568                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8569                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8570                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8571         }
8572 }
8573
8574 static void intel_crtc_init(struct drm_device *dev, int pipe)
8575 {
8576         drm_i915_private_t *dev_priv = dev->dev_private;
8577         struct intel_crtc *intel_crtc;
8578         int i;
8579
8580         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8581         if (intel_crtc == NULL)
8582                 return;
8583
8584         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8585
8586         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8587         for (i = 0; i < 256; i++) {
8588                 intel_crtc->lut_r[i] = i;
8589                 intel_crtc->lut_g[i] = i;
8590                 intel_crtc->lut_b[i] = i;
8591         }
8592
8593         /* Swap pipes & planes for FBC on pre-965 */
8594         intel_crtc->pipe = pipe;
8595         intel_crtc->plane = pipe;
8596         intel_crtc->config.cpu_transcoder = pipe;
8597         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8598                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8599                 intel_crtc->plane = !pipe;
8600         }
8601
8602         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8603                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8604         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8605         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8606
8607         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8608 }
8609
8610 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8611                                 struct drm_file *file)
8612 {
8613         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8614         struct drm_mode_object *drmmode_obj;
8615         struct intel_crtc *crtc;
8616
8617         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8618                 return -ENODEV;
8619
8620         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8621                         DRM_MODE_OBJECT_CRTC);
8622
8623         if (!drmmode_obj) {
8624                 DRM_ERROR("no such CRTC id\n");
8625                 return -EINVAL;
8626         }
8627
8628         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8629         pipe_from_crtc_id->pipe = crtc->pipe;
8630
8631         return 0;
8632 }
8633
8634 static int intel_encoder_clones(struct intel_encoder *encoder)
8635 {
8636         struct drm_device *dev = encoder->base.dev;
8637         struct intel_encoder *source_encoder;
8638         int index_mask = 0;
8639         int entry = 0;
8640
8641         list_for_each_entry(source_encoder,
8642                             &dev->mode_config.encoder_list, base.head) {
8643
8644                 if (encoder == source_encoder)
8645                         index_mask |= (1 << entry);
8646
8647                 /* Intel hw has only one MUX where enocoders could be cloned. */
8648                 if (encoder->cloneable && source_encoder->cloneable)
8649                         index_mask |= (1 << entry);
8650
8651                 entry++;
8652         }
8653
8654         return index_mask;
8655 }
8656
8657 static bool has_edp_a(struct drm_device *dev)
8658 {
8659         struct drm_i915_private *dev_priv = dev->dev_private;
8660
8661         if (!IS_MOBILE(dev))
8662                 return false;
8663
8664         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8665                 return false;
8666
8667         if (IS_GEN5(dev) &&
8668             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8669                 return false;
8670
8671         return true;
8672 }
8673
8674 static void intel_setup_outputs(struct drm_device *dev)
8675 {
8676         struct drm_i915_private *dev_priv = dev->dev_private;
8677         struct intel_encoder *encoder;
8678         bool dpd_is_edp = false;
8679         bool has_lvds;
8680
8681         has_lvds = intel_lvds_init(dev);
8682         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8683                 /* disable the panel fitter on everything but LVDS */
8684                 I915_WRITE(PFIT_CONTROL, 0);
8685         }
8686
8687         if (!IS_ULT(dev))
8688                 intel_crt_init(dev);
8689
8690         if (HAS_DDI(dev)) {
8691                 int found;
8692
8693                 /* Haswell uses DDI functions to detect digital outputs */
8694                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8695                 /* DDI A only supports eDP */
8696                 if (found)
8697                         intel_ddi_init(dev, PORT_A);
8698
8699                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8700                  * register */
8701                 found = I915_READ(SFUSE_STRAP);
8702
8703                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8704                         intel_ddi_init(dev, PORT_B);
8705                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8706                         intel_ddi_init(dev, PORT_C);
8707                 if (found & SFUSE_STRAP_DDID_DETECTED)
8708                         intel_ddi_init(dev, PORT_D);
8709         } else if (HAS_PCH_SPLIT(dev)) {
8710                 int found;
8711                 dpd_is_edp = intel_dpd_is_edp(dev);
8712
8713                 if (has_edp_a(dev))
8714                         intel_dp_init(dev, DP_A, PORT_A);
8715
8716                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8717                         /* PCH SDVOB multiplex with HDMIB */
8718                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8719                         if (!found)
8720                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
8721                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8722                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8723                 }
8724
8725                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
8726                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
8727
8728                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
8729                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
8730
8731                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8732                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8733
8734                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8735                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8736         } else if (IS_VALLEYVIEW(dev)) {
8737                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8738                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8739                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8740
8741                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
8742                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
8743                                         PORT_B);
8744                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8745                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8746                 }
8747         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8748                 bool found = false;
8749
8750                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8751                         DRM_DEBUG_KMS("probing SDVOB\n");
8752                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
8753                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8754                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8755                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
8756                         }
8757
8758                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
8759                                 intel_dp_init(dev, DP_B, PORT_B);
8760                 }
8761
8762                 /* Before G4X SDVOC doesn't have its own detect register */
8763
8764                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8765                         DRM_DEBUG_KMS("probing SDVOC\n");
8766                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
8767                 }
8768
8769                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
8770
8771                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8772                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8773                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
8774                         }
8775                         if (SUPPORTS_INTEGRATED_DP(dev))
8776                                 intel_dp_init(dev, DP_C, PORT_C);
8777                 }
8778
8779                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8780                     (I915_READ(DP_D) & DP_DETECTED))
8781                         intel_dp_init(dev, DP_D, PORT_D);
8782         } else if (IS_GEN2(dev))
8783                 intel_dvo_init(dev);
8784
8785         if (SUPPORTS_TV(dev))
8786                 intel_tv_init(dev);
8787
8788         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8789                 encoder->base.possible_crtcs = encoder->crtc_mask;
8790                 encoder->base.possible_clones =
8791                         intel_encoder_clones(encoder);
8792         }
8793
8794         intel_init_pch_refclk(dev);
8795
8796         drm_helper_move_panel_connectors_to_head(dev);
8797 }
8798
8799 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8800 {
8801         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8802
8803         drm_framebuffer_cleanup(fb);
8804         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8805
8806         kfree(intel_fb);
8807 }
8808
8809 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8810                                                 struct drm_file *file,
8811                                                 unsigned int *handle)
8812 {
8813         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8814         struct drm_i915_gem_object *obj = intel_fb->obj;
8815
8816         return drm_gem_handle_create(file, &obj->base, handle);
8817 }
8818
8819 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8820         .destroy = intel_user_framebuffer_destroy,
8821         .create_handle = intel_user_framebuffer_create_handle,
8822 };
8823
8824 int intel_framebuffer_init(struct drm_device *dev,
8825                            struct intel_framebuffer *intel_fb,
8826                            struct drm_mode_fb_cmd2 *mode_cmd,
8827                            struct drm_i915_gem_object *obj)
8828 {
8829         int ret;
8830
8831         if (obj->tiling_mode == I915_TILING_Y) {
8832                 DRM_DEBUG("hardware does not support tiling Y\n");
8833                 return -EINVAL;
8834         }
8835
8836         if (mode_cmd->pitches[0] & 63) {
8837                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8838                           mode_cmd->pitches[0]);
8839                 return -EINVAL;
8840         }
8841
8842         /* FIXME <= Gen4 stride limits are bit unclear */
8843         if (mode_cmd->pitches[0] > 32768) {
8844                 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8845                           mode_cmd->pitches[0]);
8846                 return -EINVAL;
8847         }
8848
8849         if (obj->tiling_mode != I915_TILING_NONE &&
8850             mode_cmd->pitches[0] != obj->stride) {
8851                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8852                           mode_cmd->pitches[0], obj->stride);
8853                 return -EINVAL;
8854         }
8855
8856         /* Reject formats not supported by any plane early. */
8857         switch (mode_cmd->pixel_format) {
8858         case DRM_FORMAT_C8:
8859         case DRM_FORMAT_RGB565:
8860         case DRM_FORMAT_XRGB8888:
8861         case DRM_FORMAT_ARGB8888:
8862                 break;
8863         case DRM_FORMAT_XRGB1555:
8864         case DRM_FORMAT_ARGB1555:
8865                 if (INTEL_INFO(dev)->gen > 3) {
8866                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8867                         return -EINVAL;
8868                 }
8869                 break;
8870         case DRM_FORMAT_XBGR8888:
8871         case DRM_FORMAT_ABGR8888:
8872         case DRM_FORMAT_XRGB2101010:
8873         case DRM_FORMAT_ARGB2101010:
8874         case DRM_FORMAT_XBGR2101010:
8875         case DRM_FORMAT_ABGR2101010:
8876                 if (INTEL_INFO(dev)->gen < 4) {
8877                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8878                         return -EINVAL;
8879                 }
8880                 break;
8881         case DRM_FORMAT_YUYV:
8882         case DRM_FORMAT_UYVY:
8883         case DRM_FORMAT_YVYU:
8884         case DRM_FORMAT_VYUY:
8885                 if (INTEL_INFO(dev)->gen < 5) {
8886                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8887                         return -EINVAL;
8888                 }
8889                 break;
8890         default:
8891                 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8892                 return -EINVAL;
8893         }
8894
8895         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8896         if (mode_cmd->offsets[0] != 0)
8897                 return -EINVAL;
8898
8899         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8900         intel_fb->obj = obj;
8901
8902         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8903         if (ret) {
8904                 DRM_ERROR("framebuffer init failed %d\n", ret);
8905                 return ret;
8906         }
8907
8908         return 0;
8909 }
8910
8911 static struct drm_framebuffer *
8912 intel_user_framebuffer_create(struct drm_device *dev,
8913                               struct drm_file *filp,
8914                               struct drm_mode_fb_cmd2 *mode_cmd)
8915 {
8916         struct drm_i915_gem_object *obj;
8917
8918         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8919                                                 mode_cmd->handles[0]));
8920         if (&obj->base == NULL)
8921                 return ERR_PTR(-ENOENT);
8922
8923         return intel_framebuffer_create(dev, mode_cmd, obj);
8924 }
8925
8926 static const struct drm_mode_config_funcs intel_mode_funcs = {
8927         .fb_create = intel_user_framebuffer_create,
8928         .output_poll_changed = intel_fb_output_poll_changed,
8929 };
8930
8931 /* Set up chip specific display functions */
8932 static void intel_init_display(struct drm_device *dev)
8933 {
8934         struct drm_i915_private *dev_priv = dev->dev_private;
8935
8936         if (HAS_DDI(dev)) {
8937                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
8938                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8939                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8940                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8941                 dev_priv->display.off = haswell_crtc_off;
8942                 dev_priv->display.update_plane = ironlake_update_plane;
8943         } else if (HAS_PCH_SPLIT(dev)) {
8944                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
8945                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8946                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8947                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8948                 dev_priv->display.off = ironlake_crtc_off;
8949                 dev_priv->display.update_plane = ironlake_update_plane;
8950         } else if (IS_VALLEYVIEW(dev)) {
8951                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
8952                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8953                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
8954                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8955                 dev_priv->display.off = i9xx_crtc_off;
8956                 dev_priv->display.update_plane = i9xx_update_plane;
8957         } else {
8958                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
8959                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8960                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8961                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8962                 dev_priv->display.off = i9xx_crtc_off;
8963                 dev_priv->display.update_plane = i9xx_update_plane;
8964         }
8965
8966         /* Returns the core display clock speed */
8967         if (IS_VALLEYVIEW(dev))
8968                 dev_priv->display.get_display_clock_speed =
8969                         valleyview_get_display_clock_speed;
8970         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8971                 dev_priv->display.get_display_clock_speed =
8972                         i945_get_display_clock_speed;
8973         else if (IS_I915G(dev))
8974                 dev_priv->display.get_display_clock_speed =
8975                         i915_get_display_clock_speed;
8976         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8977                 dev_priv->display.get_display_clock_speed =
8978                         i9xx_misc_get_display_clock_speed;
8979         else if (IS_I915GM(dev))
8980                 dev_priv->display.get_display_clock_speed =
8981                         i915gm_get_display_clock_speed;
8982         else if (IS_I865G(dev))
8983                 dev_priv->display.get_display_clock_speed =
8984                         i865_get_display_clock_speed;
8985         else if (IS_I85X(dev))
8986                 dev_priv->display.get_display_clock_speed =
8987                         i855_get_display_clock_speed;
8988         else /* 852, 830 */
8989                 dev_priv->display.get_display_clock_speed =
8990                         i830_get_display_clock_speed;
8991
8992         if (HAS_PCH_SPLIT(dev)) {
8993                 if (IS_GEN5(dev)) {
8994                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8995                         dev_priv->display.write_eld = ironlake_write_eld;
8996                 } else if (IS_GEN6(dev)) {
8997                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8998                         dev_priv->display.write_eld = ironlake_write_eld;
8999                 } else if (IS_IVYBRIDGE(dev)) {
9000                         /* FIXME: detect B0+ stepping and use auto training */
9001                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9002                         dev_priv->display.write_eld = ironlake_write_eld;
9003                         dev_priv->display.modeset_global_resources =
9004                                 ivb_modeset_global_resources;
9005                 } else if (IS_HASWELL(dev)) {
9006                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9007                         dev_priv->display.write_eld = haswell_write_eld;
9008                         dev_priv->display.modeset_global_resources =
9009                                 haswell_modeset_global_resources;
9010                 }
9011         } else if (IS_G4X(dev)) {
9012                 dev_priv->display.write_eld = g4x_write_eld;
9013         }
9014
9015         /* Default just returns -ENODEV to indicate unsupported */
9016         dev_priv->display.queue_flip = intel_default_queue_flip;
9017
9018         switch (INTEL_INFO(dev)->gen) {
9019         case 2:
9020                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9021                 break;
9022
9023         case 3:
9024                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9025                 break;
9026
9027         case 4:
9028         case 5:
9029                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9030                 break;
9031
9032         case 6:
9033                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9034                 break;
9035         case 7:
9036                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9037                 break;
9038         }
9039 }
9040
9041 /*
9042  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9043  * resume, or other times.  This quirk makes sure that's the case for
9044  * affected systems.
9045  */
9046 static void quirk_pipea_force(struct drm_device *dev)
9047 {
9048         struct drm_i915_private *dev_priv = dev->dev_private;
9049
9050         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9051         DRM_INFO("applying pipe a force quirk\n");
9052 }
9053
9054 /*
9055  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9056  */
9057 static void quirk_ssc_force_disable(struct drm_device *dev)
9058 {
9059         struct drm_i915_private *dev_priv = dev->dev_private;
9060         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9061         DRM_INFO("applying lvds SSC disable quirk\n");
9062 }
9063
9064 /*
9065  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9066  * brightness value
9067  */
9068 static void quirk_invert_brightness(struct drm_device *dev)
9069 {
9070         struct drm_i915_private *dev_priv = dev->dev_private;
9071         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9072         DRM_INFO("applying inverted panel brightness quirk\n");
9073 }
9074
9075 struct intel_quirk {
9076         int device;
9077         int subsystem_vendor;
9078         int subsystem_device;
9079         void (*hook)(struct drm_device *dev);
9080 };
9081
9082 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9083 struct intel_dmi_quirk {
9084         void (*hook)(struct drm_device *dev);
9085         const struct dmi_system_id (*dmi_id_list)[];
9086 };
9087
9088 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9089 {
9090         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9091         return 1;
9092 }
9093
9094 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9095         {
9096                 .dmi_id_list = &(const struct dmi_system_id[]) {
9097                         {
9098                                 .callback = intel_dmi_reverse_brightness,
9099                                 .ident = "NCR Corporation",
9100                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9101                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
9102                                 },
9103                         },
9104                         { }  /* terminating entry */
9105                 },
9106                 .hook = quirk_invert_brightness,
9107         },
9108 };
9109
9110 static struct intel_quirk intel_quirks[] = {
9111         /* HP Mini needs pipe A force quirk (LP: #322104) */
9112         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9113
9114         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9115         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9116
9117         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9118         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9119
9120         /* 830/845 need to leave pipe A & dpll A up */
9121         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9122         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9123
9124         /* Lenovo U160 cannot use SSC on LVDS */
9125         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9126
9127         /* Sony Vaio Y cannot use SSC on LVDS */
9128         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9129
9130         /* Acer Aspire 5734Z must invert backlight brightness */
9131         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9132
9133         /* Acer/eMachines G725 */
9134         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9135
9136         /* Acer/eMachines e725 */
9137         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9138
9139         /* Acer/Packard Bell NCL20 */
9140         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9141
9142         /* Acer Aspire 4736Z */
9143         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9144 };
9145
9146 static void intel_init_quirks(struct drm_device *dev)
9147 {
9148         struct pci_dev *d = dev->pdev;
9149         int i;
9150
9151         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9152                 struct intel_quirk *q = &intel_quirks[i];
9153
9154                 if (d->device == q->device &&
9155                     (d->subsystem_vendor == q->subsystem_vendor ||
9156                      q->subsystem_vendor == PCI_ANY_ID) &&
9157                     (d->subsystem_device == q->subsystem_device ||
9158                      q->subsystem_device == PCI_ANY_ID))
9159                         q->hook(dev);
9160         }
9161         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9162                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9163                         intel_dmi_quirks[i].hook(dev);
9164         }
9165 }
9166
9167 /* Disable the VGA plane that we never use */
9168 static void i915_disable_vga(struct drm_device *dev)
9169 {
9170         struct drm_i915_private *dev_priv = dev->dev_private;
9171         u8 sr1;
9172         u32 vga_reg = i915_vgacntrl_reg(dev);
9173
9174         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9175         outb(SR01, VGA_SR_INDEX);
9176         sr1 = inb(VGA_SR_DATA);
9177         outb(sr1 | 1<<5, VGA_SR_DATA);
9178         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9179         udelay(300);
9180
9181         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9182         POSTING_READ(vga_reg);
9183 }
9184
9185 void intel_modeset_init_hw(struct drm_device *dev)
9186 {
9187         intel_init_power_well(dev);
9188
9189         intel_prepare_ddi(dev);
9190
9191         intel_init_clock_gating(dev);
9192
9193         mutex_lock(&dev->struct_mutex);
9194         intel_enable_gt_powersave(dev);
9195         mutex_unlock(&dev->struct_mutex);
9196 }
9197
9198 void intel_modeset_suspend_hw(struct drm_device *dev)
9199 {
9200         intel_suspend_hw(dev);
9201 }
9202
9203 void intel_modeset_init(struct drm_device *dev)
9204 {
9205         struct drm_i915_private *dev_priv = dev->dev_private;
9206         int i, j, ret;
9207
9208         drm_mode_config_init(dev);
9209
9210         dev->mode_config.min_width = 0;
9211         dev->mode_config.min_height = 0;
9212
9213         dev->mode_config.preferred_depth = 24;
9214         dev->mode_config.prefer_shadow = 1;
9215
9216         dev->mode_config.funcs = &intel_mode_funcs;
9217
9218         intel_init_quirks(dev);
9219
9220         intel_init_pm(dev);
9221
9222         if (INTEL_INFO(dev)->num_pipes == 0)
9223                 return;
9224
9225         intel_init_display(dev);
9226
9227         if (IS_GEN2(dev)) {
9228                 dev->mode_config.max_width = 2048;
9229                 dev->mode_config.max_height = 2048;
9230         } else if (IS_GEN3(dev)) {
9231                 dev->mode_config.max_width = 4096;
9232                 dev->mode_config.max_height = 4096;
9233         } else {
9234                 dev->mode_config.max_width = 8192;
9235                 dev->mode_config.max_height = 8192;
9236         }
9237         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9238
9239         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9240                       INTEL_INFO(dev)->num_pipes,
9241                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9242
9243         for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
9244                 intel_crtc_init(dev, i);
9245                 for (j = 0; j < dev_priv->num_plane; j++) {
9246                         ret = intel_plane_init(dev, i, j);
9247                         if (ret)
9248                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
9249                                               pipe_name(i), sprite_name(i, j), ret);
9250                 }
9251         }
9252
9253         intel_cpu_pll_init(dev);
9254         intel_pch_pll_init(dev);
9255
9256         /* Just disable it once at startup */
9257         i915_disable_vga(dev);
9258         intel_setup_outputs(dev);
9259
9260         /* Just in case the BIOS is doing something questionable. */
9261         intel_disable_fbc(dev);
9262 }
9263
9264 static void
9265 intel_connector_break_all_links(struct intel_connector *connector)
9266 {
9267         connector->base.dpms = DRM_MODE_DPMS_OFF;
9268         connector->base.encoder = NULL;
9269         connector->encoder->connectors_active = false;
9270         connector->encoder->base.crtc = NULL;
9271 }
9272
9273 static void intel_enable_pipe_a(struct drm_device *dev)
9274 {
9275         struct intel_connector *connector;
9276         struct drm_connector *crt = NULL;
9277         struct intel_load_detect_pipe load_detect_temp;
9278
9279         /* We can't just switch on the pipe A, we need to set things up with a
9280          * proper mode and output configuration. As a gross hack, enable pipe A
9281          * by enabling the load detect pipe once. */
9282         list_for_each_entry(connector,
9283                             &dev->mode_config.connector_list,
9284                             base.head) {
9285                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9286                         crt = &connector->base;
9287                         break;
9288                 }
9289         }
9290
9291         if (!crt)
9292                 return;
9293
9294         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9295                 intel_release_load_detect_pipe(crt, &load_detect_temp);
9296
9297
9298 }
9299
9300 static bool
9301 intel_check_plane_mapping(struct intel_crtc *crtc)
9302 {
9303         struct drm_device *dev = crtc->base.dev;
9304         struct drm_i915_private *dev_priv = dev->dev_private;
9305         u32 reg, val;
9306
9307         if (INTEL_INFO(dev)->num_pipes == 1)
9308                 return true;
9309
9310         reg = DSPCNTR(!crtc->plane);
9311         val = I915_READ(reg);
9312
9313         if ((val & DISPLAY_PLANE_ENABLE) &&
9314             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9315                 return false;
9316
9317         return true;
9318 }
9319
9320 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9321 {
9322         struct drm_device *dev = crtc->base.dev;
9323         struct drm_i915_private *dev_priv = dev->dev_private;
9324         u32 reg;
9325
9326         /* Clear any frame start delays used for debugging left by the BIOS */
9327         reg = PIPECONF(crtc->config.cpu_transcoder);
9328         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9329
9330         /* We need to sanitize the plane -> pipe mapping first because this will
9331          * disable the crtc (and hence change the state) if it is wrong. Note
9332          * that gen4+ has a fixed plane -> pipe mapping.  */
9333         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9334                 struct intel_connector *connector;
9335                 bool plane;
9336
9337                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9338                               crtc->base.base.id);
9339
9340                 /* Pipe has the wrong plane attached and the plane is active.
9341                  * Temporarily change the plane mapping and disable everything
9342                  * ...  */
9343                 plane = crtc->plane;
9344                 crtc->plane = !plane;
9345                 dev_priv->display.crtc_disable(&crtc->base);
9346                 crtc->plane = plane;
9347
9348                 /* ... and break all links. */
9349                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9350                                     base.head) {
9351                         if (connector->encoder->base.crtc != &crtc->base)
9352                                 continue;
9353
9354                         intel_connector_break_all_links(connector);
9355                 }
9356
9357                 WARN_ON(crtc->active);
9358                 crtc->base.enabled = false;
9359         }
9360
9361         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9362             crtc->pipe == PIPE_A && !crtc->active) {
9363                 /* BIOS forgot to enable pipe A, this mostly happens after
9364                  * resume. Force-enable the pipe to fix this, the update_dpms
9365                  * call below we restore the pipe to the right state, but leave
9366                  * the required bits on. */
9367                 intel_enable_pipe_a(dev);
9368         }
9369
9370         /* Adjust the state of the output pipe according to whether we
9371          * have active connectors/encoders. */
9372         intel_crtc_update_dpms(&crtc->base);
9373
9374         if (crtc->active != crtc->base.enabled) {
9375                 struct intel_encoder *encoder;
9376
9377                 /* This can happen either due to bugs in the get_hw_state
9378                  * functions or because the pipe is force-enabled due to the
9379                  * pipe A quirk. */
9380                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9381                               crtc->base.base.id,
9382                               crtc->base.enabled ? "enabled" : "disabled",
9383                               crtc->active ? "enabled" : "disabled");
9384
9385                 crtc->base.enabled = crtc->active;
9386
9387                 /* Because we only establish the connector -> encoder ->
9388                  * crtc links if something is active, this means the
9389                  * crtc is now deactivated. Break the links. connector
9390                  * -> encoder links are only establish when things are
9391                  *  actually up, hence no need to break them. */
9392                 WARN_ON(crtc->active);
9393
9394                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9395                         WARN_ON(encoder->connectors_active);
9396                         encoder->base.crtc = NULL;
9397                 }
9398         }
9399 }
9400
9401 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9402 {
9403         struct intel_connector *connector;
9404         struct drm_device *dev = encoder->base.dev;
9405
9406         /* We need to check both for a crtc link (meaning that the
9407          * encoder is active and trying to read from a pipe) and the
9408          * pipe itself being active. */
9409         bool has_active_crtc = encoder->base.crtc &&
9410                 to_intel_crtc(encoder->base.crtc)->active;
9411
9412         if (encoder->connectors_active && !has_active_crtc) {
9413                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9414                               encoder->base.base.id,
9415                               drm_get_encoder_name(&encoder->base));
9416
9417                 /* Connector is active, but has no active pipe. This is
9418                  * fallout from our resume register restoring. Disable
9419                  * the encoder manually again. */
9420                 if (encoder->base.crtc) {
9421                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9422                                       encoder->base.base.id,
9423                                       drm_get_encoder_name(&encoder->base));
9424                         encoder->disable(encoder);
9425                 }
9426
9427                 /* Inconsistent output/port/pipe state happens presumably due to
9428                  * a bug in one of the get_hw_state functions. Or someplace else
9429                  * in our code, like the register restore mess on resume. Clamp
9430                  * things to off as a safer default. */
9431                 list_for_each_entry(connector,
9432                                     &dev->mode_config.connector_list,
9433                                     base.head) {
9434                         if (connector->encoder != encoder)
9435                                 continue;
9436
9437                         intel_connector_break_all_links(connector);
9438                 }
9439         }
9440         /* Enabled encoders without active connectors will be fixed in
9441          * the crtc fixup. */
9442 }
9443
9444 void i915_redisable_vga(struct drm_device *dev)
9445 {
9446         struct drm_i915_private *dev_priv = dev->dev_private;
9447         u32 vga_reg = i915_vgacntrl_reg(dev);
9448
9449         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9450                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9451                 i915_disable_vga(dev);
9452         }
9453 }
9454
9455 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9456  * and i915 state tracking structures. */
9457 void intel_modeset_setup_hw_state(struct drm_device *dev,
9458                                   bool force_restore)
9459 {
9460         struct drm_i915_private *dev_priv = dev->dev_private;
9461         enum pipe pipe;
9462         u32 tmp;
9463         struct drm_plane *plane;
9464         struct intel_crtc *crtc;
9465         struct intel_encoder *encoder;
9466         struct intel_connector *connector;
9467
9468         if (HAS_DDI(dev)) {
9469                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9470
9471                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9472                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9473                         case TRANS_DDI_EDP_INPUT_A_ON:
9474                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9475                                 pipe = PIPE_A;
9476                                 break;
9477                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9478                                 pipe = PIPE_B;
9479                                 break;
9480                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9481                                 pipe = PIPE_C;
9482                                 break;
9483                         default:
9484                                 /* A bogus value has been programmed, disable
9485                                  * the transcoder */
9486                                 WARN(1, "Bogus eDP source %08x\n", tmp);
9487                                 intel_ddi_disable_transcoder_func(dev_priv,
9488                                                 TRANSCODER_EDP);
9489                                 goto setup_pipes;
9490                         }
9491
9492                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9493                         crtc->config.cpu_transcoder = TRANSCODER_EDP;
9494
9495                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9496                                       pipe_name(pipe));
9497                 }
9498         }
9499
9500 setup_pipes:
9501         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9502                             base.head) {
9503                 enum transcoder tmp = crtc->config.cpu_transcoder;
9504                 memset(&crtc->config, 0, sizeof(crtc->config));
9505                 crtc->config.cpu_transcoder = tmp;
9506
9507                 crtc->active = dev_priv->display.get_pipe_config(crtc,
9508                                                                  &crtc->config);
9509
9510                 crtc->base.enabled = crtc->active;
9511
9512                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9513                               crtc->base.base.id,
9514                               crtc->active ? "enabled" : "disabled");
9515         }
9516
9517         if (HAS_DDI(dev))
9518                 intel_ddi_setup_hw_pll_state(dev);
9519
9520         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9521                             base.head) {
9522                 pipe = 0;
9523
9524                 if (encoder->get_hw_state(encoder, &pipe)) {
9525                         encoder->base.crtc =
9526                                 dev_priv->pipe_to_crtc_mapping[pipe];
9527                 } else {
9528                         encoder->base.crtc = NULL;
9529                 }
9530
9531                 encoder->connectors_active = false;
9532                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9533                               encoder->base.base.id,
9534                               drm_get_encoder_name(&encoder->base),
9535                               encoder->base.crtc ? "enabled" : "disabled",
9536                               pipe);
9537         }
9538
9539         list_for_each_entry(connector, &dev->mode_config.connector_list,
9540                             base.head) {
9541                 if (connector->get_hw_state(connector)) {
9542                         connector->base.dpms = DRM_MODE_DPMS_ON;
9543                         connector->encoder->connectors_active = true;
9544                         connector->base.encoder = &connector->encoder->base;
9545                 } else {
9546                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9547                         connector->base.encoder = NULL;
9548                 }
9549                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9550                               connector->base.base.id,
9551                               drm_get_connector_name(&connector->base),
9552                               connector->base.encoder ? "enabled" : "disabled");
9553         }
9554
9555         /* HW state is read out, now we need to sanitize this mess. */
9556         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9557                             base.head) {
9558                 intel_sanitize_encoder(encoder);
9559         }
9560
9561         for_each_pipe(pipe) {
9562                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9563                 intel_sanitize_crtc(crtc);
9564         }
9565
9566         if (force_restore) {
9567                 /*
9568                  * We need to use raw interfaces for restoring state to avoid
9569                  * checking (bogus) intermediate states.
9570                  */
9571                 for_each_pipe(pipe) {
9572                         struct drm_crtc *crtc =
9573                                 dev_priv->pipe_to_crtc_mapping[pipe];
9574
9575                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
9576                                          crtc->fb);
9577                 }
9578                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9579                         intel_plane_restore(plane);
9580
9581                 i915_redisable_vga(dev);
9582         } else {
9583                 intel_modeset_update_staged_output_state(dev);
9584         }
9585
9586         intel_modeset_check_state(dev);
9587
9588         drm_mode_config_reset(dev);
9589 }
9590
9591 void intel_modeset_gem_init(struct drm_device *dev)
9592 {
9593         intel_modeset_init_hw(dev);
9594
9595         intel_setup_overlay(dev);
9596
9597         intel_modeset_setup_hw_state(dev, false);
9598 }
9599
9600 void intel_modeset_cleanup(struct drm_device *dev)
9601 {
9602         struct drm_i915_private *dev_priv = dev->dev_private;
9603         struct drm_crtc *crtc;
9604         struct intel_crtc *intel_crtc;
9605
9606         /*
9607          * Interrupts and polling as the first thing to avoid creating havoc.
9608          * Too much stuff here (turning of rps, connectors, ...) would
9609          * experience fancy races otherwise.
9610          */
9611         drm_irq_uninstall(dev);
9612         cancel_work_sync(&dev_priv->hotplug_work);
9613         /*
9614          * Due to the hpd irq storm handling the hotplug work can re-arm the
9615          * poll handlers. Hence disable polling after hpd handling is shut down.
9616          */
9617         drm_kms_helper_poll_fini(dev);
9618
9619         mutex_lock(&dev->struct_mutex);
9620
9621         intel_unregister_dsm_handler();
9622
9623         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9624                 /* Skip inactive CRTCs */
9625                 if (!crtc->fb)
9626                         continue;
9627
9628                 intel_crtc = to_intel_crtc(crtc);
9629                 intel_increase_pllclock(crtc);
9630         }
9631
9632         intel_disable_fbc(dev);
9633
9634         intel_disable_gt_powersave(dev);
9635
9636         ironlake_teardown_rc6(dev);
9637
9638         mutex_unlock(&dev->struct_mutex);
9639
9640         /* flush any delayed tasks or pending work */
9641         flush_scheduled_work();
9642
9643         /* destroy backlight, if any, before the connectors */
9644         intel_panel_destroy_backlight(dev);
9645
9646         drm_mode_config_cleanup(dev);
9647
9648         intel_cleanup_overlay(dev);
9649 }
9650
9651 /*
9652  * Return which encoder is currently attached for connector.
9653  */
9654 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9655 {
9656         return &intel_attached_encoder(connector)->base;
9657 }
9658
9659 void intel_connector_attach_encoder(struct intel_connector *connector,
9660                                     struct intel_encoder *encoder)
9661 {
9662         connector->encoder = encoder;
9663         drm_mode_connector_attach_encoder(&connector->base,
9664                                           &encoder->base);
9665 }
9666
9667 /*
9668  * set vga decode state - true == enable VGA decode
9669  */
9670 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9671 {
9672         struct drm_i915_private *dev_priv = dev->dev_private;
9673         u16 gmch_ctrl;
9674
9675         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9676         if (state)
9677                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9678         else
9679                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9680         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9681         return 0;
9682 }
9683
9684 #ifdef CONFIG_DEBUG_FS
9685 #include <linux/seq_file.h>
9686
9687 struct intel_display_error_state {
9688
9689         u32 power_well_driver;
9690
9691         struct intel_cursor_error_state {
9692                 u32 control;
9693                 u32 position;
9694                 u32 base;
9695                 u32 size;
9696         } cursor[I915_MAX_PIPES];
9697
9698         struct intel_pipe_error_state {
9699                 enum transcoder cpu_transcoder;
9700                 u32 conf;
9701                 u32 source;
9702
9703                 u32 htotal;
9704                 u32 hblank;
9705                 u32 hsync;
9706                 u32 vtotal;
9707                 u32 vblank;
9708                 u32 vsync;
9709         } pipe[I915_MAX_PIPES];
9710
9711         struct intel_plane_error_state {
9712                 u32 control;
9713                 u32 stride;
9714                 u32 size;
9715                 u32 pos;
9716                 u32 addr;
9717                 u32 surface;
9718                 u32 tile_offset;
9719         } plane[I915_MAX_PIPES];
9720 };
9721
9722 struct intel_display_error_state *
9723 intel_display_capture_error_state(struct drm_device *dev)
9724 {
9725         drm_i915_private_t *dev_priv = dev->dev_private;
9726         struct intel_display_error_state *error;
9727         enum transcoder cpu_transcoder;
9728         int i;
9729
9730         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9731         if (error == NULL)
9732                 return NULL;
9733
9734         if (HAS_POWER_WELL(dev))
9735                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
9736
9737         for_each_pipe(i) {
9738                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9739                 error->pipe[i].cpu_transcoder = cpu_transcoder;
9740
9741                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
9742                         error->cursor[i].control = I915_READ(CURCNTR(i));
9743                         error->cursor[i].position = I915_READ(CURPOS(i));
9744                         error->cursor[i].base = I915_READ(CURBASE(i));
9745                 } else {
9746                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
9747                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
9748                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
9749                 }
9750
9751                 error->plane[i].control = I915_READ(DSPCNTR(i));
9752                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9753                 if (INTEL_INFO(dev)->gen <= 3) {
9754                         error->plane[i].size = I915_READ(DSPSIZE(i));
9755                         error->plane[i].pos = I915_READ(DSPPOS(i));
9756                 }
9757                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9758                         error->plane[i].addr = I915_READ(DSPADDR(i));
9759                 if (INTEL_INFO(dev)->gen >= 4) {
9760                         error->plane[i].surface = I915_READ(DSPSURF(i));
9761                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9762                 }
9763
9764                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9765                 error->pipe[i].source = I915_READ(PIPESRC(i));
9766                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9767                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9768                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9769                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9770                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9771                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9772         }
9773
9774         /* In the code above we read the registers without checking if the power
9775          * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
9776          * prevent the next I915_WRITE from detecting it and printing an error
9777          * message. */
9778         if (HAS_POWER_WELL(dev))
9779                 I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
9780
9781         return error;
9782 }
9783
9784 void
9785 intel_display_print_error_state(struct seq_file *m,
9786                                 struct drm_device *dev,
9787                                 struct intel_display_error_state *error)
9788 {
9789         int i;
9790
9791         seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
9792         if (HAS_POWER_WELL(dev))
9793                 seq_printf(m, "PWR_WELL_CTL2: %08x\n",
9794                            error->power_well_driver);
9795         for_each_pipe(i) {
9796                 seq_printf(m, "Pipe [%d]:\n", i);
9797                 seq_printf(m, "  CPU transcoder: %c\n",
9798                            transcoder_name(error->pipe[i].cpu_transcoder));
9799                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9800                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9801                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9802                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9803                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9804                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9805                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9806                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9807
9808                 seq_printf(m, "Plane [%d]:\n", i);
9809                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9810                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9811                 if (INTEL_INFO(dev)->gen <= 3) {
9812                         seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9813                         seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9814                 }
9815                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9816                         seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9817                 if (INTEL_INFO(dev)->gen >= 4) {
9818                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9819                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9820                 }
9821
9822                 seq_printf(m, "Cursor [%d]:\n", i);
9823                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9824                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9825                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9826         }
9827 }
9828 #endif