drm/i915/ibx, cpt: Don't attempt to register eDP if LVDS was detected
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_gem_dmabuf.h"
40 #include "intel_dsi.h"
41 #include "i915_trace.h"
42 #include <drm/drm_atomic.h>
43 #include <drm/drm_atomic_helper.h>
44 #include <drm/drm_dp_helper.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_plane_helper.h>
47 #include <drm/drm_rect.h>
48 #include <linux/dma_remapping.h>
49 #include <linux/reservation.h>
50
51 static bool is_mmio_work(struct intel_flip_work *work)
52 {
53         return work->mmio_work.func;
54 }
55
56 /* Primary plane formats for gen <= 3 */
57 static const uint32_t i8xx_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB1555,
61         DRM_FORMAT_XRGB8888,
62 };
63
64 /* Primary plane formats for gen >= 4 */
65 static const uint32_t i965_primary_formats[] = {
66         DRM_FORMAT_C8,
67         DRM_FORMAT_RGB565,
68         DRM_FORMAT_XRGB8888,
69         DRM_FORMAT_XBGR8888,
70         DRM_FORMAT_XRGB2101010,
71         DRM_FORMAT_XBGR2101010,
72 };
73
74 static const uint32_t skl_primary_formats[] = {
75         DRM_FORMAT_C8,
76         DRM_FORMAT_RGB565,
77         DRM_FORMAT_XRGB8888,
78         DRM_FORMAT_XBGR8888,
79         DRM_FORMAT_ARGB8888,
80         DRM_FORMAT_ABGR8888,
81         DRM_FORMAT_XRGB2101010,
82         DRM_FORMAT_XBGR2101010,
83         DRM_FORMAT_YUYV,
84         DRM_FORMAT_YVYU,
85         DRM_FORMAT_UYVY,
86         DRM_FORMAT_VYUY,
87 };
88
89 /* Cursor formats */
90 static const uint32_t intel_cursor_formats[] = {
91         DRM_FORMAT_ARGB8888,
92 };
93
94 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
95                                 struct intel_crtc_state *pipe_config);
96 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
97                                    struct intel_crtc_state *pipe_config);
98
99 static int intel_framebuffer_init(struct drm_device *dev,
100                                   struct intel_framebuffer *ifb,
101                                   struct drm_mode_fb_cmd2 *mode_cmd,
102                                   struct drm_i915_gem_object *obj);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107                                          struct intel_link_m_n *m_n,
108                                          struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113                             const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115                             const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
119         struct intel_crtc_state *crtc_state);
120 static void skylake_pfit_enable(struct intel_crtc *crtc);
121 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122 static void ironlake_pfit_enable(struct intel_crtc *crtc);
123 static void intel_modeset_setup_hw_state(struct drm_device *dev);
124 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
125 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
126 static int bxt_calc_cdclk(int max_pixclk);
127
128 struct intel_limit {
129         struct {
130                 int min, max;
131         } dot, vco, n, m, m1, m2, p, p1;
132
133         struct {
134                 int dot_limit;
135                 int p2_slow, p2_fast;
136         } p2;
137 };
138
139 /* returns HPLL frequency in kHz */
140 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
141 {
142         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
143
144         /* Obtain SKU information */
145         mutex_lock(&dev_priv->sb_lock);
146         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
147                 CCK_FUSE_HPLL_FREQ_MASK;
148         mutex_unlock(&dev_priv->sb_lock);
149
150         return vco_freq[hpll_freq] * 1000;
151 }
152
153 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
154                       const char *name, u32 reg, int ref_freq)
155 {
156         u32 val;
157         int divider;
158
159         mutex_lock(&dev_priv->sb_lock);
160         val = vlv_cck_read(dev_priv, reg);
161         mutex_unlock(&dev_priv->sb_lock);
162
163         divider = val & CCK_FREQUENCY_VALUES;
164
165         WARN((val & CCK_FREQUENCY_STATUS) !=
166              (divider << CCK_FREQUENCY_STATUS_SHIFT),
167              "%s change in progress\n", name);
168
169         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
170 }
171
172 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
173                                   const char *name, u32 reg)
174 {
175         if (dev_priv->hpll_freq == 0)
176                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
177
178         return vlv_get_cck_clock(dev_priv, name, reg,
179                                  dev_priv->hpll_freq);
180 }
181
182 static int
183 intel_pch_rawclk(struct drm_i915_private *dev_priv)
184 {
185         return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
186 }
187
188 static int
189 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
190 {
191         /* RAWCLK_FREQ_VLV register updated from power well code */
192         return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
193                                       CCK_DISPLAY_REF_CLOCK_CONTROL);
194 }
195
196 static int
197 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
198 {
199         uint32_t clkcfg;
200
201         /* hrawclock is 1/4 the FSB frequency */
202         clkcfg = I915_READ(CLKCFG);
203         switch (clkcfg & CLKCFG_FSB_MASK) {
204         case CLKCFG_FSB_400:
205                 return 100000;
206         case CLKCFG_FSB_533:
207                 return 133333;
208         case CLKCFG_FSB_667:
209                 return 166667;
210         case CLKCFG_FSB_800:
211                 return 200000;
212         case CLKCFG_FSB_1067:
213                 return 266667;
214         case CLKCFG_FSB_1333:
215                 return 333333;
216         /* these two are just a guess; one of them might be right */
217         case CLKCFG_FSB_1600:
218         case CLKCFG_FSB_1600_ALT:
219                 return 400000;
220         default:
221                 return 133333;
222         }
223 }
224
225 void intel_update_rawclk(struct drm_i915_private *dev_priv)
226 {
227         if (HAS_PCH_SPLIT(dev_priv))
228                 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
229         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
230                 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
231         else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
232                 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
233         else
234                 return; /* no rawclk on other platforms, or no need to know it */
235
236         DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
237 }
238
239 static void intel_update_czclk(struct drm_i915_private *dev_priv)
240 {
241         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
242                 return;
243
244         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
245                                                       CCK_CZ_CLOCK_CONTROL);
246
247         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
248 }
249
250 static inline u32 /* units of 100MHz */
251 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
252                     const struct intel_crtc_state *pipe_config)
253 {
254         if (HAS_DDI(dev_priv))
255                 return pipe_config->port_clock; /* SPLL */
256         else if (IS_GEN5(dev_priv))
257                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
258         else
259                 return 270000;
260 }
261
262 static const struct intel_limit intel_limits_i8xx_dac = {
263         .dot = { .min = 25000, .max = 350000 },
264         .vco = { .min = 908000, .max = 1512000 },
265         .n = { .min = 2, .max = 16 },
266         .m = { .min = 96, .max = 140 },
267         .m1 = { .min = 18, .max = 26 },
268         .m2 = { .min = 6, .max = 16 },
269         .p = { .min = 4, .max = 128 },
270         .p1 = { .min = 2, .max = 33 },
271         .p2 = { .dot_limit = 165000,
272                 .p2_slow = 4, .p2_fast = 2 },
273 };
274
275 static const struct intel_limit intel_limits_i8xx_dvo = {
276         .dot = { .min = 25000, .max = 350000 },
277         .vco = { .min = 908000, .max = 1512000 },
278         .n = { .min = 2, .max = 16 },
279         .m = { .min = 96, .max = 140 },
280         .m1 = { .min = 18, .max = 26 },
281         .m2 = { .min = 6, .max = 16 },
282         .p = { .min = 4, .max = 128 },
283         .p1 = { .min = 2, .max = 33 },
284         .p2 = { .dot_limit = 165000,
285                 .p2_slow = 4, .p2_fast = 4 },
286 };
287
288 static const struct intel_limit intel_limits_i8xx_lvds = {
289         .dot = { .min = 25000, .max = 350000 },
290         .vco = { .min = 908000, .max = 1512000 },
291         .n = { .min = 2, .max = 16 },
292         .m = { .min = 96, .max = 140 },
293         .m1 = { .min = 18, .max = 26 },
294         .m2 = { .min = 6, .max = 16 },
295         .p = { .min = 4, .max = 128 },
296         .p1 = { .min = 1, .max = 6 },
297         .p2 = { .dot_limit = 165000,
298                 .p2_slow = 14, .p2_fast = 7 },
299 };
300
301 static const struct intel_limit intel_limits_i9xx_sdvo = {
302         .dot = { .min = 20000, .max = 400000 },
303         .vco = { .min = 1400000, .max = 2800000 },
304         .n = { .min = 1, .max = 6 },
305         .m = { .min = 70, .max = 120 },
306         .m1 = { .min = 8, .max = 18 },
307         .m2 = { .min = 3, .max = 7 },
308         .p = { .min = 5, .max = 80 },
309         .p1 = { .min = 1, .max = 8 },
310         .p2 = { .dot_limit = 200000,
311                 .p2_slow = 10, .p2_fast = 5 },
312 };
313
314 static const struct intel_limit intel_limits_i9xx_lvds = {
315         .dot = { .min = 20000, .max = 400000 },
316         .vco = { .min = 1400000, .max = 2800000 },
317         .n = { .min = 1, .max = 6 },
318         .m = { .min = 70, .max = 120 },
319         .m1 = { .min = 8, .max = 18 },
320         .m2 = { .min = 3, .max = 7 },
321         .p = { .min = 7, .max = 98 },
322         .p1 = { .min = 1, .max = 8 },
323         .p2 = { .dot_limit = 112000,
324                 .p2_slow = 14, .p2_fast = 7 },
325 };
326
327
328 static const struct intel_limit intel_limits_g4x_sdvo = {
329         .dot = { .min = 25000, .max = 270000 },
330         .vco = { .min = 1750000, .max = 3500000},
331         .n = { .min = 1, .max = 4 },
332         .m = { .min = 104, .max = 138 },
333         .m1 = { .min = 17, .max = 23 },
334         .m2 = { .min = 5, .max = 11 },
335         .p = { .min = 10, .max = 30 },
336         .p1 = { .min = 1, .max = 3},
337         .p2 = { .dot_limit = 270000,
338                 .p2_slow = 10,
339                 .p2_fast = 10
340         },
341 };
342
343 static const struct intel_limit intel_limits_g4x_hdmi = {
344         .dot = { .min = 22000, .max = 400000 },
345         .vco = { .min = 1750000, .max = 3500000},
346         .n = { .min = 1, .max = 4 },
347         .m = { .min = 104, .max = 138 },
348         .m1 = { .min = 16, .max = 23 },
349         .m2 = { .min = 5, .max = 11 },
350         .p = { .min = 5, .max = 80 },
351         .p1 = { .min = 1, .max = 8},
352         .p2 = { .dot_limit = 165000,
353                 .p2_slow = 10, .p2_fast = 5 },
354 };
355
356 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
357         .dot = { .min = 20000, .max = 115000 },
358         .vco = { .min = 1750000, .max = 3500000 },
359         .n = { .min = 1, .max = 3 },
360         .m = { .min = 104, .max = 138 },
361         .m1 = { .min = 17, .max = 23 },
362         .m2 = { .min = 5, .max = 11 },
363         .p = { .min = 28, .max = 112 },
364         .p1 = { .min = 2, .max = 8 },
365         .p2 = { .dot_limit = 0,
366                 .p2_slow = 14, .p2_fast = 14
367         },
368 };
369
370 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
371         .dot = { .min = 80000, .max = 224000 },
372         .vco = { .min = 1750000, .max = 3500000 },
373         .n = { .min = 1, .max = 3 },
374         .m = { .min = 104, .max = 138 },
375         .m1 = { .min = 17, .max = 23 },
376         .m2 = { .min = 5, .max = 11 },
377         .p = { .min = 14, .max = 42 },
378         .p1 = { .min = 2, .max = 6 },
379         .p2 = { .dot_limit = 0,
380                 .p2_slow = 7, .p2_fast = 7
381         },
382 };
383
384 static const struct intel_limit intel_limits_pineview_sdvo = {
385         .dot = { .min = 20000, .max = 400000},
386         .vco = { .min = 1700000, .max = 3500000 },
387         /* Pineview's Ncounter is a ring counter */
388         .n = { .min = 3, .max = 6 },
389         .m = { .min = 2, .max = 256 },
390         /* Pineview only has one combined m divider, which we treat as m2. */
391         .m1 = { .min = 0, .max = 0 },
392         .m2 = { .min = 0, .max = 254 },
393         .p = { .min = 5, .max = 80 },
394         .p1 = { .min = 1, .max = 8 },
395         .p2 = { .dot_limit = 200000,
396                 .p2_slow = 10, .p2_fast = 5 },
397 };
398
399 static const struct intel_limit intel_limits_pineview_lvds = {
400         .dot = { .min = 20000, .max = 400000 },
401         .vco = { .min = 1700000, .max = 3500000 },
402         .n = { .min = 3, .max = 6 },
403         .m = { .min = 2, .max = 256 },
404         .m1 = { .min = 0, .max = 0 },
405         .m2 = { .min = 0, .max = 254 },
406         .p = { .min = 7, .max = 112 },
407         .p1 = { .min = 1, .max = 8 },
408         .p2 = { .dot_limit = 112000,
409                 .p2_slow = 14, .p2_fast = 14 },
410 };
411
412 /* Ironlake / Sandybridge
413  *
414  * We calculate clock using (register_value + 2) for N/M1/M2, so here
415  * the range value for them is (actual_value - 2).
416  */
417 static const struct intel_limit intel_limits_ironlake_dac = {
418         .dot = { .min = 25000, .max = 350000 },
419         .vco = { .min = 1760000, .max = 3510000 },
420         .n = { .min = 1, .max = 5 },
421         .m = { .min = 79, .max = 127 },
422         .m1 = { .min = 12, .max = 22 },
423         .m2 = { .min = 5, .max = 9 },
424         .p = { .min = 5, .max = 80 },
425         .p1 = { .min = 1, .max = 8 },
426         .p2 = { .dot_limit = 225000,
427                 .p2_slow = 10, .p2_fast = 5 },
428 };
429
430 static const struct intel_limit intel_limits_ironlake_single_lvds = {
431         .dot = { .min = 25000, .max = 350000 },
432         .vco = { .min = 1760000, .max = 3510000 },
433         .n = { .min = 1, .max = 3 },
434         .m = { .min = 79, .max = 118 },
435         .m1 = { .min = 12, .max = 22 },
436         .m2 = { .min = 5, .max = 9 },
437         .p = { .min = 28, .max = 112 },
438         .p1 = { .min = 2, .max = 8 },
439         .p2 = { .dot_limit = 225000,
440                 .p2_slow = 14, .p2_fast = 14 },
441 };
442
443 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
444         .dot = { .min = 25000, .max = 350000 },
445         .vco = { .min = 1760000, .max = 3510000 },
446         .n = { .min = 1, .max = 3 },
447         .m = { .min = 79, .max = 127 },
448         .m1 = { .min = 12, .max = 22 },
449         .m2 = { .min = 5, .max = 9 },
450         .p = { .min = 14, .max = 56 },
451         .p1 = { .min = 2, .max = 8 },
452         .p2 = { .dot_limit = 225000,
453                 .p2_slow = 7, .p2_fast = 7 },
454 };
455
456 /* LVDS 100mhz refclk limits. */
457 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
458         .dot = { .min = 25000, .max = 350000 },
459         .vco = { .min = 1760000, .max = 3510000 },
460         .n = { .min = 1, .max = 2 },
461         .m = { .min = 79, .max = 126 },
462         .m1 = { .min = 12, .max = 22 },
463         .m2 = { .min = 5, .max = 9 },
464         .p = { .min = 28, .max = 112 },
465         .p1 = { .min = 2, .max = 8 },
466         .p2 = { .dot_limit = 225000,
467                 .p2_slow = 14, .p2_fast = 14 },
468 };
469
470 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
471         .dot = { .min = 25000, .max = 350000 },
472         .vco = { .min = 1760000, .max = 3510000 },
473         .n = { .min = 1, .max = 3 },
474         .m = { .min = 79, .max = 126 },
475         .m1 = { .min = 12, .max = 22 },
476         .m2 = { .min = 5, .max = 9 },
477         .p = { .min = 14, .max = 42 },
478         .p1 = { .min = 2, .max = 6 },
479         .p2 = { .dot_limit = 225000,
480                 .p2_slow = 7, .p2_fast = 7 },
481 };
482
483 static const struct intel_limit intel_limits_vlv = {
484          /*
485           * These are the data rate limits (measured in fast clocks)
486           * since those are the strictest limits we have. The fast
487           * clock and actual rate limits are more relaxed, so checking
488           * them would make no difference.
489           */
490         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
491         .vco = { .min = 4000000, .max = 6000000 },
492         .n = { .min = 1, .max = 7 },
493         .m1 = { .min = 2, .max = 3 },
494         .m2 = { .min = 11, .max = 156 },
495         .p1 = { .min = 2, .max = 3 },
496         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
497 };
498
499 static const struct intel_limit intel_limits_chv = {
500         /*
501          * These are the data rate limits (measured in fast clocks)
502          * since those are the strictest limits we have.  The fast
503          * clock and actual rate limits are more relaxed, so checking
504          * them would make no difference.
505          */
506         .dot = { .min = 25000 * 5, .max = 540000 * 5},
507         .vco = { .min = 4800000, .max = 6480000 },
508         .n = { .min = 1, .max = 1 },
509         .m1 = { .min = 2, .max = 2 },
510         .m2 = { .min = 24 << 22, .max = 175 << 22 },
511         .p1 = { .min = 2, .max = 4 },
512         .p2 = { .p2_slow = 1, .p2_fast = 14 },
513 };
514
515 static const struct intel_limit intel_limits_bxt = {
516         /* FIXME: find real dot limits */
517         .dot = { .min = 0, .max = INT_MAX },
518         .vco = { .min = 4800000, .max = 6700000 },
519         .n = { .min = 1, .max = 1 },
520         .m1 = { .min = 2, .max = 2 },
521         /* FIXME: find real m2 limits */
522         .m2 = { .min = 2 << 22, .max = 255 << 22 },
523         .p1 = { .min = 2, .max = 4 },
524         .p2 = { .p2_slow = 1, .p2_fast = 20 },
525 };
526
527 static bool
528 needs_modeset(struct drm_crtc_state *state)
529 {
530         return drm_atomic_crtc_needs_modeset(state);
531 }
532
533 /**
534  * Returns whether any output on the specified pipe is of the specified type
535  */
536 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
537 {
538         struct drm_device *dev = crtc->base.dev;
539         struct intel_encoder *encoder;
540
541         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
542                 if (encoder->type == type)
543                         return true;
544
545         return false;
546 }
547
548 /**
549  * Returns whether any output on the specified pipe will have the specified
550  * type after a staged modeset is complete, i.e., the same as
551  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
552  * encoder->crtc.
553  */
554 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
555                                       int type)
556 {
557         struct drm_atomic_state *state = crtc_state->base.state;
558         struct drm_connector *connector;
559         struct drm_connector_state *connector_state;
560         struct intel_encoder *encoder;
561         int i, num_connectors = 0;
562
563         for_each_connector_in_state(state, connector, connector_state, i) {
564                 if (connector_state->crtc != crtc_state->base.crtc)
565                         continue;
566
567                 num_connectors++;
568
569                 encoder = to_intel_encoder(connector_state->best_encoder);
570                 if (encoder->type == type)
571                         return true;
572         }
573
574         WARN_ON(num_connectors == 0);
575
576         return false;
577 }
578
579 /*
580  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
581  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
582  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
583  * The helpers' return value is the rate of the clock that is fed to the
584  * display engine's pipe which can be the above fast dot clock rate or a
585  * divided-down version of it.
586  */
587 /* m1 is reserved as 0 in Pineview, n is a ring counter */
588 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
589 {
590         clock->m = clock->m2 + 2;
591         clock->p = clock->p1 * clock->p2;
592         if (WARN_ON(clock->n == 0 || clock->p == 0))
593                 return 0;
594         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
595         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
596
597         return clock->dot;
598 }
599
600 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
601 {
602         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
603 }
604
605 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
606 {
607         clock->m = i9xx_dpll_compute_m(clock);
608         clock->p = clock->p1 * clock->p2;
609         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
610                 return 0;
611         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
612         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
613
614         return clock->dot;
615 }
616
617 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
618 {
619         clock->m = clock->m1 * clock->m2;
620         clock->p = clock->p1 * clock->p2;
621         if (WARN_ON(clock->n == 0 || clock->p == 0))
622                 return 0;
623         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
624         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
625
626         return clock->dot / 5;
627 }
628
629 int chv_calc_dpll_params(int refclk, struct dpll *clock)
630 {
631         clock->m = clock->m1 * clock->m2;
632         clock->p = clock->p1 * clock->p2;
633         if (WARN_ON(clock->n == 0 || clock->p == 0))
634                 return 0;
635         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
636                         clock->n << 22);
637         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
638
639         return clock->dot / 5;
640 }
641
642 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
643 /**
644  * Returns whether the given set of divisors are valid for a given refclk with
645  * the given connectors.
646  */
647
648 static bool intel_PLL_is_valid(struct drm_device *dev,
649                                const struct intel_limit *limit,
650                                const struct dpll *clock)
651 {
652         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
653                 INTELPllInvalid("n out of range\n");
654         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
655                 INTELPllInvalid("p1 out of range\n");
656         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
657                 INTELPllInvalid("m2 out of range\n");
658         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
659                 INTELPllInvalid("m1 out of range\n");
660
661         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
662             !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
663                 if (clock->m1 <= clock->m2)
664                         INTELPllInvalid("m1 <= m2\n");
665
666         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
667                 if (clock->p < limit->p.min || limit->p.max < clock->p)
668                         INTELPllInvalid("p out of range\n");
669                 if (clock->m < limit->m.min || limit->m.max < clock->m)
670                         INTELPllInvalid("m out of range\n");
671         }
672
673         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
674                 INTELPllInvalid("vco out of range\n");
675         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676          * connector, etc., rather than just a single range.
677          */
678         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
679                 INTELPllInvalid("dot out of range\n");
680
681         return true;
682 }
683
684 static int
685 i9xx_select_p2_div(const struct intel_limit *limit,
686                    const struct intel_crtc_state *crtc_state,
687                    int target)
688 {
689         struct drm_device *dev = crtc_state->base.crtc->dev;
690
691         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
692                 /*
693                  * For LVDS just rely on its current settings for dual-channel.
694                  * We haven't figured out how to reliably set up different
695                  * single/dual channel state, if we even can.
696                  */
697                 if (intel_is_dual_link_lvds(dev))
698                         return limit->p2.p2_fast;
699                 else
700                         return limit->p2.p2_slow;
701         } else {
702                 if (target < limit->p2.dot_limit)
703                         return limit->p2.p2_slow;
704                 else
705                         return limit->p2.p2_fast;
706         }
707 }
708
709 /*
710  * Returns a set of divisors for the desired target clock with the given
711  * refclk, or FALSE.  The returned values represent the clock equation:
712  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
713  *
714  * Target and reference clocks are specified in kHz.
715  *
716  * If match_clock is provided, then best_clock P divider must match the P
717  * divider from @match_clock used for LVDS downclocking.
718  */
719 static bool
720 i9xx_find_best_dpll(const struct intel_limit *limit,
721                     struct intel_crtc_state *crtc_state,
722                     int target, int refclk, struct dpll *match_clock,
723                     struct dpll *best_clock)
724 {
725         struct drm_device *dev = crtc_state->base.crtc->dev;
726         struct dpll clock;
727         int err = target;
728
729         memset(best_clock, 0, sizeof(*best_clock));
730
731         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
732
733         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
734              clock.m1++) {
735                 for (clock.m2 = limit->m2.min;
736                      clock.m2 <= limit->m2.max; clock.m2++) {
737                         if (clock.m2 >= clock.m1)
738                                 break;
739                         for (clock.n = limit->n.min;
740                              clock.n <= limit->n.max; clock.n++) {
741                                 for (clock.p1 = limit->p1.min;
742                                         clock.p1 <= limit->p1.max; clock.p1++) {
743                                         int this_err;
744
745                                         i9xx_calc_dpll_params(refclk, &clock);
746                                         if (!intel_PLL_is_valid(dev, limit,
747                                                                 &clock))
748                                                 continue;
749                                         if (match_clock &&
750                                             clock.p != match_clock->p)
751                                                 continue;
752
753                                         this_err = abs(clock.dot - target);
754                                         if (this_err < err) {
755                                                 *best_clock = clock;
756                                                 err = this_err;
757                                         }
758                                 }
759                         }
760                 }
761         }
762
763         return (err != target);
764 }
765
766 /*
767  * Returns a set of divisors for the desired target clock with the given
768  * refclk, or FALSE.  The returned values represent the clock equation:
769  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
770  *
771  * Target and reference clocks are specified in kHz.
772  *
773  * If match_clock is provided, then best_clock P divider must match the P
774  * divider from @match_clock used for LVDS downclocking.
775  */
776 static bool
777 pnv_find_best_dpll(const struct intel_limit *limit,
778                    struct intel_crtc_state *crtc_state,
779                    int target, int refclk, struct dpll *match_clock,
780                    struct dpll *best_clock)
781 {
782         struct drm_device *dev = crtc_state->base.crtc->dev;
783         struct dpll clock;
784         int err = target;
785
786         memset(best_clock, 0, sizeof(*best_clock));
787
788         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
789
790         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
791              clock.m1++) {
792                 for (clock.m2 = limit->m2.min;
793                      clock.m2 <= limit->m2.max; clock.m2++) {
794                         for (clock.n = limit->n.min;
795                              clock.n <= limit->n.max; clock.n++) {
796                                 for (clock.p1 = limit->p1.min;
797                                         clock.p1 <= limit->p1.max; clock.p1++) {
798                                         int this_err;
799
800                                         pnv_calc_dpll_params(refclk, &clock);
801                                         if (!intel_PLL_is_valid(dev, limit,
802                                                                 &clock))
803                                                 continue;
804                                         if (match_clock &&
805                                             clock.p != match_clock->p)
806                                                 continue;
807
808                                         this_err = abs(clock.dot - target);
809                                         if (this_err < err) {
810                                                 *best_clock = clock;
811                                                 err = this_err;
812                                         }
813                                 }
814                         }
815                 }
816         }
817
818         return (err != target);
819 }
820
821 /*
822  * Returns a set of divisors for the desired target clock with the given
823  * refclk, or FALSE.  The returned values represent the clock equation:
824  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
825  *
826  * Target and reference clocks are specified in kHz.
827  *
828  * If match_clock is provided, then best_clock P divider must match the P
829  * divider from @match_clock used for LVDS downclocking.
830  */
831 static bool
832 g4x_find_best_dpll(const struct intel_limit *limit,
833                    struct intel_crtc_state *crtc_state,
834                    int target, int refclk, struct dpll *match_clock,
835                    struct dpll *best_clock)
836 {
837         struct drm_device *dev = crtc_state->base.crtc->dev;
838         struct dpll clock;
839         int max_n;
840         bool found = false;
841         /* approximately equals target * 0.00585 */
842         int err_most = (target >> 8) + (target >> 9);
843
844         memset(best_clock, 0, sizeof(*best_clock));
845
846         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
847
848         max_n = limit->n.max;
849         /* based on hardware requirement, prefer smaller n to precision */
850         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
851                 /* based on hardware requirement, prefere larger m1,m2 */
852                 for (clock.m1 = limit->m1.max;
853                      clock.m1 >= limit->m1.min; clock.m1--) {
854                         for (clock.m2 = limit->m2.max;
855                              clock.m2 >= limit->m2.min; clock.m2--) {
856                                 for (clock.p1 = limit->p1.max;
857                                      clock.p1 >= limit->p1.min; clock.p1--) {
858                                         int this_err;
859
860                                         i9xx_calc_dpll_params(refclk, &clock);
861                                         if (!intel_PLL_is_valid(dev, limit,
862                                                                 &clock))
863                                                 continue;
864
865                                         this_err = abs(clock.dot - target);
866                                         if (this_err < err_most) {
867                                                 *best_clock = clock;
868                                                 err_most = this_err;
869                                                 max_n = clock.n;
870                                                 found = true;
871                                         }
872                                 }
873                         }
874                 }
875         }
876         return found;
877 }
878
879 /*
880  * Check if the calculated PLL configuration is more optimal compared to the
881  * best configuration and error found so far. Return the calculated error.
882  */
883 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
884                                const struct dpll *calculated_clock,
885                                const struct dpll *best_clock,
886                                unsigned int best_error_ppm,
887                                unsigned int *error_ppm)
888 {
889         /*
890          * For CHV ignore the error and consider only the P value.
891          * Prefer a bigger P value based on HW requirements.
892          */
893         if (IS_CHERRYVIEW(dev)) {
894                 *error_ppm = 0;
895
896                 return calculated_clock->p > best_clock->p;
897         }
898
899         if (WARN_ON_ONCE(!target_freq))
900                 return false;
901
902         *error_ppm = div_u64(1000000ULL *
903                                 abs(target_freq - calculated_clock->dot),
904                              target_freq);
905         /*
906          * Prefer a better P value over a better (smaller) error if the error
907          * is small. Ensure this preference for future configurations too by
908          * setting the error to 0.
909          */
910         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
911                 *error_ppm = 0;
912
913                 return true;
914         }
915
916         return *error_ppm + 10 < best_error_ppm;
917 }
918
919 /*
920  * Returns a set of divisors for the desired target clock with the given
921  * refclk, or FALSE.  The returned values represent the clock equation:
922  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
923  */
924 static bool
925 vlv_find_best_dpll(const struct intel_limit *limit,
926                    struct intel_crtc_state *crtc_state,
927                    int target, int refclk, struct dpll *match_clock,
928                    struct dpll *best_clock)
929 {
930         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
931         struct drm_device *dev = crtc->base.dev;
932         struct dpll clock;
933         unsigned int bestppm = 1000000;
934         /* min update 19.2 MHz */
935         int max_n = min(limit->n.max, refclk / 19200);
936         bool found = false;
937
938         target *= 5; /* fast clock */
939
940         memset(best_clock, 0, sizeof(*best_clock));
941
942         /* based on hardware requirement, prefer smaller n to precision */
943         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
944                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
945                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
946                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
947                                 clock.p = clock.p1 * clock.p2;
948                                 /* based on hardware requirement, prefer bigger m1,m2 values */
949                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
950                                         unsigned int ppm;
951
952                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
953                                                                      refclk * clock.m1);
954
955                                         vlv_calc_dpll_params(refclk, &clock);
956
957                                         if (!intel_PLL_is_valid(dev, limit,
958                                                                 &clock))
959                                                 continue;
960
961                                         if (!vlv_PLL_is_optimal(dev, target,
962                                                                 &clock,
963                                                                 best_clock,
964                                                                 bestppm, &ppm))
965                                                 continue;
966
967                                         *best_clock = clock;
968                                         bestppm = ppm;
969                                         found = true;
970                                 }
971                         }
972                 }
973         }
974
975         return found;
976 }
977
978 /*
979  * Returns a set of divisors for the desired target clock with the given
980  * refclk, or FALSE.  The returned values represent the clock equation:
981  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
982  */
983 static bool
984 chv_find_best_dpll(const struct intel_limit *limit,
985                    struct intel_crtc_state *crtc_state,
986                    int target, int refclk, struct dpll *match_clock,
987                    struct dpll *best_clock)
988 {
989         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
990         struct drm_device *dev = crtc->base.dev;
991         unsigned int best_error_ppm;
992         struct dpll clock;
993         uint64_t m2;
994         int found = false;
995
996         memset(best_clock, 0, sizeof(*best_clock));
997         best_error_ppm = 1000000;
998
999         /*
1000          * Based on hardware doc, the n always set to 1, and m1 always
1001          * set to 2.  If requires to support 200Mhz refclk, we need to
1002          * revisit this because n may not 1 anymore.
1003          */
1004         clock.n = 1, clock.m1 = 2;
1005         target *= 5;    /* fast clock */
1006
1007         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1008                 for (clock.p2 = limit->p2.p2_fast;
1009                                 clock.p2 >= limit->p2.p2_slow;
1010                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1011                         unsigned int error_ppm;
1012
1013                         clock.p = clock.p1 * clock.p2;
1014
1015                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1016                                         clock.n) << 22, refclk * clock.m1);
1017
1018                         if (m2 > INT_MAX/clock.m1)
1019                                 continue;
1020
1021                         clock.m2 = m2;
1022
1023                         chv_calc_dpll_params(refclk, &clock);
1024
1025                         if (!intel_PLL_is_valid(dev, limit, &clock))
1026                                 continue;
1027
1028                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1029                                                 best_error_ppm, &error_ppm))
1030                                 continue;
1031
1032                         *best_clock = clock;
1033                         best_error_ppm = error_ppm;
1034                         found = true;
1035                 }
1036         }
1037
1038         return found;
1039 }
1040
1041 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1042                         struct dpll *best_clock)
1043 {
1044         int refclk = 100000;
1045         const struct intel_limit *limit = &intel_limits_bxt;
1046
1047         return chv_find_best_dpll(limit, crtc_state,
1048                                   target_clock, refclk, NULL, best_clock);
1049 }
1050
1051 bool intel_crtc_active(struct drm_crtc *crtc)
1052 {
1053         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1054
1055         /* Be paranoid as we can arrive here with only partial
1056          * state retrieved from the hardware during setup.
1057          *
1058          * We can ditch the adjusted_mode.crtc_clock check as soon
1059          * as Haswell has gained clock readout/fastboot support.
1060          *
1061          * We can ditch the crtc->primary->fb check as soon as we can
1062          * properly reconstruct framebuffers.
1063          *
1064          * FIXME: The intel_crtc->active here should be switched to
1065          * crtc->state->active once we have proper CRTC states wired up
1066          * for atomic.
1067          */
1068         return intel_crtc->active && crtc->primary->state->fb &&
1069                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1070 }
1071
1072 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1073                                              enum pipe pipe)
1074 {
1075         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1076         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1077
1078         return intel_crtc->config->cpu_transcoder;
1079 }
1080
1081 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1082 {
1083         struct drm_i915_private *dev_priv = dev->dev_private;
1084         i915_reg_t reg = PIPEDSL(pipe);
1085         u32 line1, line2;
1086         u32 line_mask;
1087
1088         if (IS_GEN2(dev))
1089                 line_mask = DSL_LINEMASK_GEN2;
1090         else
1091                 line_mask = DSL_LINEMASK_GEN3;
1092
1093         line1 = I915_READ(reg) & line_mask;
1094         msleep(5);
1095         line2 = I915_READ(reg) & line_mask;
1096
1097         return line1 == line2;
1098 }
1099
1100 /*
1101  * intel_wait_for_pipe_off - wait for pipe to turn off
1102  * @crtc: crtc whose pipe to wait for
1103  *
1104  * After disabling a pipe, we can't wait for vblank in the usual way,
1105  * spinning on the vblank interrupt status bit, since we won't actually
1106  * see an interrupt when the pipe is disabled.
1107  *
1108  * On Gen4 and above:
1109  *   wait for the pipe register state bit to turn off
1110  *
1111  * Otherwise:
1112  *   wait for the display line value to settle (it usually
1113  *   ends up stopping at the start of the next frame).
1114  *
1115  */
1116 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1117 {
1118         struct drm_device *dev = crtc->base.dev;
1119         struct drm_i915_private *dev_priv = dev->dev_private;
1120         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1121         enum pipe pipe = crtc->pipe;
1122
1123         if (INTEL_INFO(dev)->gen >= 4) {
1124                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1125
1126                 /* Wait for the Pipe State to go off */
1127                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1128                              100))
1129                         WARN(1, "pipe_off wait timed out\n");
1130         } else {
1131                 /* Wait for the display line to settle */
1132                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1133                         WARN(1, "pipe_off wait timed out\n");
1134         }
1135 }
1136
1137 /* Only for pre-ILK configs */
1138 void assert_pll(struct drm_i915_private *dev_priv,
1139                 enum pipe pipe, bool state)
1140 {
1141         u32 val;
1142         bool cur_state;
1143
1144         val = I915_READ(DPLL(pipe));
1145         cur_state = !!(val & DPLL_VCO_ENABLE);
1146         I915_STATE_WARN(cur_state != state,
1147              "PLL state assertion failure (expected %s, current %s)\n",
1148                         onoff(state), onoff(cur_state));
1149 }
1150
1151 /* XXX: the dsi pll is shared between MIPI DSI ports */
1152 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1153 {
1154         u32 val;
1155         bool cur_state;
1156
1157         mutex_lock(&dev_priv->sb_lock);
1158         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1159         mutex_unlock(&dev_priv->sb_lock);
1160
1161         cur_state = val & DSI_PLL_VCO_EN;
1162         I915_STATE_WARN(cur_state != state,
1163              "DSI PLL state assertion failure (expected %s, current %s)\n",
1164                         onoff(state), onoff(cur_state));
1165 }
1166
1167 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1168                           enum pipe pipe, bool state)
1169 {
1170         bool cur_state;
1171         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1172                                                                       pipe);
1173
1174         if (HAS_DDI(dev_priv)) {
1175                 /* DDI does not have a specific FDI_TX register */
1176                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1177                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1178         } else {
1179                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1180                 cur_state = !!(val & FDI_TX_ENABLE);
1181         }
1182         I915_STATE_WARN(cur_state != state,
1183              "FDI TX state assertion failure (expected %s, current %s)\n",
1184                         onoff(state), onoff(cur_state));
1185 }
1186 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1187 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1188
1189 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1190                           enum pipe pipe, bool state)
1191 {
1192         u32 val;
1193         bool cur_state;
1194
1195         val = I915_READ(FDI_RX_CTL(pipe));
1196         cur_state = !!(val & FDI_RX_ENABLE);
1197         I915_STATE_WARN(cur_state != state,
1198              "FDI RX state assertion failure (expected %s, current %s)\n",
1199                         onoff(state), onoff(cur_state));
1200 }
1201 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1202 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1203
1204 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1205                                       enum pipe pipe)
1206 {
1207         u32 val;
1208
1209         /* ILK FDI PLL is always enabled */
1210         if (IS_GEN5(dev_priv))
1211                 return;
1212
1213         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1214         if (HAS_DDI(dev_priv))
1215                 return;
1216
1217         val = I915_READ(FDI_TX_CTL(pipe));
1218         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1219 }
1220
1221 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1222                        enum pipe pipe, bool state)
1223 {
1224         u32 val;
1225         bool cur_state;
1226
1227         val = I915_READ(FDI_RX_CTL(pipe));
1228         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1229         I915_STATE_WARN(cur_state != state,
1230              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1231                         onoff(state), onoff(cur_state));
1232 }
1233
1234 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1235                            enum pipe pipe)
1236 {
1237         struct drm_device *dev = dev_priv->dev;
1238         i915_reg_t pp_reg;
1239         u32 val;
1240         enum pipe panel_pipe = PIPE_A;
1241         bool locked = true;
1242
1243         if (WARN_ON(HAS_DDI(dev)))
1244                 return;
1245
1246         if (HAS_PCH_SPLIT(dev)) {
1247                 u32 port_sel;
1248
1249                 pp_reg = PCH_PP_CONTROL;
1250                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1251
1252                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1253                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1254                         panel_pipe = PIPE_B;
1255                 /* XXX: else fix for eDP */
1256         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1257                 /* presumably write lock depends on pipe, not port select */
1258                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1259                 panel_pipe = pipe;
1260         } else {
1261                 pp_reg = PP_CONTROL;
1262                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1263                         panel_pipe = PIPE_B;
1264         }
1265
1266         val = I915_READ(pp_reg);
1267         if (!(val & PANEL_POWER_ON) ||
1268             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1269                 locked = false;
1270
1271         I915_STATE_WARN(panel_pipe == pipe && locked,
1272              "panel assertion failure, pipe %c regs locked\n",
1273              pipe_name(pipe));
1274 }
1275
1276 static void assert_cursor(struct drm_i915_private *dev_priv,
1277                           enum pipe pipe, bool state)
1278 {
1279         struct drm_device *dev = dev_priv->dev;
1280         bool cur_state;
1281
1282         if (IS_845G(dev) || IS_I865G(dev))
1283                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1284         else
1285                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1286
1287         I915_STATE_WARN(cur_state != state,
1288              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1289                         pipe_name(pipe), onoff(state), onoff(cur_state));
1290 }
1291 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1292 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1293
1294 void assert_pipe(struct drm_i915_private *dev_priv,
1295                  enum pipe pipe, bool state)
1296 {
1297         bool cur_state;
1298         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1299                                                                       pipe);
1300         enum intel_display_power_domain power_domain;
1301
1302         /* if we need the pipe quirk it must be always on */
1303         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1304             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1305                 state = true;
1306
1307         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1308         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1309                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1310                 cur_state = !!(val & PIPECONF_ENABLE);
1311
1312                 intel_display_power_put(dev_priv, power_domain);
1313         } else {
1314                 cur_state = false;
1315         }
1316
1317         I915_STATE_WARN(cur_state != state,
1318              "pipe %c assertion failure (expected %s, current %s)\n",
1319                         pipe_name(pipe), onoff(state), onoff(cur_state));
1320 }
1321
1322 static void assert_plane(struct drm_i915_private *dev_priv,
1323                          enum plane plane, bool state)
1324 {
1325         u32 val;
1326         bool cur_state;
1327
1328         val = I915_READ(DSPCNTR(plane));
1329         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1330         I915_STATE_WARN(cur_state != state,
1331              "plane %c assertion failure (expected %s, current %s)\n",
1332                         plane_name(plane), onoff(state), onoff(cur_state));
1333 }
1334
1335 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1336 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1337
1338 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1339                                    enum pipe pipe)
1340 {
1341         struct drm_device *dev = dev_priv->dev;
1342         int i;
1343
1344         /* Primary planes are fixed to pipes on gen4+ */
1345         if (INTEL_INFO(dev)->gen >= 4) {
1346                 u32 val = I915_READ(DSPCNTR(pipe));
1347                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1348                      "plane %c assertion failure, should be disabled but not\n",
1349                      plane_name(pipe));
1350                 return;
1351         }
1352
1353         /* Need to check both planes against the pipe */
1354         for_each_pipe(dev_priv, i) {
1355                 u32 val = I915_READ(DSPCNTR(i));
1356                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1357                         DISPPLANE_SEL_PIPE_SHIFT;
1358                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1359                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1360                      plane_name(i), pipe_name(pipe));
1361         }
1362 }
1363
1364 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1365                                     enum pipe pipe)
1366 {
1367         struct drm_device *dev = dev_priv->dev;
1368         int sprite;
1369
1370         if (INTEL_INFO(dev)->gen >= 9) {
1371                 for_each_sprite(dev_priv, pipe, sprite) {
1372                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1373                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1374                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1375                              sprite, pipe_name(pipe));
1376                 }
1377         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1378                 for_each_sprite(dev_priv, pipe, sprite) {
1379                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1380                         I915_STATE_WARN(val & SP_ENABLE,
1381                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1382                              sprite_name(pipe, sprite), pipe_name(pipe));
1383                 }
1384         } else if (INTEL_INFO(dev)->gen >= 7) {
1385                 u32 val = I915_READ(SPRCTL(pipe));
1386                 I915_STATE_WARN(val & SPRITE_ENABLE,
1387                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1388                      plane_name(pipe), pipe_name(pipe));
1389         } else if (INTEL_INFO(dev)->gen >= 5) {
1390                 u32 val = I915_READ(DVSCNTR(pipe));
1391                 I915_STATE_WARN(val & DVS_ENABLE,
1392                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1393                      plane_name(pipe), pipe_name(pipe));
1394         }
1395 }
1396
1397 static void assert_vblank_disabled(struct drm_crtc *crtc)
1398 {
1399         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1400                 drm_crtc_vblank_put(crtc);
1401 }
1402
1403 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1404                                     enum pipe pipe)
1405 {
1406         u32 val;
1407         bool enabled;
1408
1409         val = I915_READ(PCH_TRANSCONF(pipe));
1410         enabled = !!(val & TRANS_ENABLE);
1411         I915_STATE_WARN(enabled,
1412              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1413              pipe_name(pipe));
1414 }
1415
1416 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1417                             enum pipe pipe, u32 port_sel, u32 val)
1418 {
1419         if ((val & DP_PORT_EN) == 0)
1420                 return false;
1421
1422         if (HAS_PCH_CPT(dev_priv)) {
1423                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1424                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1425                         return false;
1426         } else if (IS_CHERRYVIEW(dev_priv)) {
1427                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1428                         return false;
1429         } else {
1430                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1431                         return false;
1432         }
1433         return true;
1434 }
1435
1436 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1437                               enum pipe pipe, u32 val)
1438 {
1439         if ((val & SDVO_ENABLE) == 0)
1440                 return false;
1441
1442         if (HAS_PCH_CPT(dev_priv)) {
1443                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1444                         return false;
1445         } else if (IS_CHERRYVIEW(dev_priv)) {
1446                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1447                         return false;
1448         } else {
1449                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1450                         return false;
1451         }
1452         return true;
1453 }
1454
1455 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1456                               enum pipe pipe, u32 val)
1457 {
1458         if ((val & LVDS_PORT_EN) == 0)
1459                 return false;
1460
1461         if (HAS_PCH_CPT(dev_priv)) {
1462                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1463                         return false;
1464         } else {
1465                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1466                         return false;
1467         }
1468         return true;
1469 }
1470
1471 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1472                               enum pipe pipe, u32 val)
1473 {
1474         if ((val & ADPA_DAC_ENABLE) == 0)
1475                 return false;
1476         if (HAS_PCH_CPT(dev_priv)) {
1477                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1478                         return false;
1479         } else {
1480                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1481                         return false;
1482         }
1483         return true;
1484 }
1485
1486 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1487                                    enum pipe pipe, i915_reg_t reg,
1488                                    u32 port_sel)
1489 {
1490         u32 val = I915_READ(reg);
1491         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1492              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1493              i915_mmio_reg_offset(reg), pipe_name(pipe));
1494
1495         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1496              && (val & DP_PIPEB_SELECT),
1497              "IBX PCH dp port still using transcoder B\n");
1498 }
1499
1500 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1501                                      enum pipe pipe, i915_reg_t reg)
1502 {
1503         u32 val = I915_READ(reg);
1504         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1505              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1506              i915_mmio_reg_offset(reg), pipe_name(pipe));
1507
1508         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1509              && (val & SDVO_PIPE_B_SELECT),
1510              "IBX PCH hdmi port still using transcoder B\n");
1511 }
1512
1513 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1514                                       enum pipe pipe)
1515 {
1516         u32 val;
1517
1518         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1519         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1520         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1521
1522         val = I915_READ(PCH_ADPA);
1523         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1524              "PCH VGA enabled on transcoder %c, should be disabled\n",
1525              pipe_name(pipe));
1526
1527         val = I915_READ(PCH_LVDS);
1528         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1529              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1530              pipe_name(pipe));
1531
1532         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1533         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1534         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1535 }
1536
1537 static void _vlv_enable_pll(struct intel_crtc *crtc,
1538                             const struct intel_crtc_state *pipe_config)
1539 {
1540         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1541         enum pipe pipe = crtc->pipe;
1542
1543         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1544         POSTING_READ(DPLL(pipe));
1545         udelay(150);
1546
1547         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1548                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1549 }
1550
1551 static void vlv_enable_pll(struct intel_crtc *crtc,
1552                            const struct intel_crtc_state *pipe_config)
1553 {
1554         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1555         enum pipe pipe = crtc->pipe;
1556
1557         assert_pipe_disabled(dev_priv, pipe);
1558
1559         /* PLL is protected by panel, make sure we can write it */
1560         assert_panel_unlocked(dev_priv, pipe);
1561
1562         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1563                 _vlv_enable_pll(crtc, pipe_config);
1564
1565         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1566         POSTING_READ(DPLL_MD(pipe));
1567 }
1568
1569
1570 static void _chv_enable_pll(struct intel_crtc *crtc,
1571                             const struct intel_crtc_state *pipe_config)
1572 {
1573         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1574         enum pipe pipe = crtc->pipe;
1575         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1576         u32 tmp;
1577
1578         mutex_lock(&dev_priv->sb_lock);
1579
1580         /* Enable back the 10bit clock to display controller */
1581         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1582         tmp |= DPIO_DCLKP_EN;
1583         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1584
1585         mutex_unlock(&dev_priv->sb_lock);
1586
1587         /*
1588          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1589          */
1590         udelay(1);
1591
1592         /* Enable PLL */
1593         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1594
1595         /* Check PLL is locked */
1596         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1597                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1598 }
1599
1600 static void chv_enable_pll(struct intel_crtc *crtc,
1601                            const struct intel_crtc_state *pipe_config)
1602 {
1603         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1604         enum pipe pipe = crtc->pipe;
1605
1606         assert_pipe_disabled(dev_priv, pipe);
1607
1608         /* PLL is protected by panel, make sure we can write it */
1609         assert_panel_unlocked(dev_priv, pipe);
1610
1611         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1612                 _chv_enable_pll(crtc, pipe_config);
1613
1614         if (pipe != PIPE_A) {
1615                 /*
1616                  * WaPixelRepeatModeFixForC0:chv
1617                  *
1618                  * DPLLCMD is AWOL. Use chicken bits to propagate
1619                  * the value from DPLLBMD to either pipe B or C.
1620                  */
1621                 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1622                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1623                 I915_WRITE(CBR4_VLV, 0);
1624                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1625
1626                 /*
1627                  * DPLLB VGA mode also seems to cause problems.
1628                  * We should always have it disabled.
1629                  */
1630                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1631         } else {
1632                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1633                 POSTING_READ(DPLL_MD(pipe));
1634         }
1635 }
1636
1637 static int intel_num_dvo_pipes(struct drm_device *dev)
1638 {
1639         struct intel_crtc *crtc;
1640         int count = 0;
1641
1642         for_each_intel_crtc(dev, crtc)
1643                 count += crtc->base.state->active &&
1644                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1645
1646         return count;
1647 }
1648
1649 static void i9xx_enable_pll(struct intel_crtc *crtc)
1650 {
1651         struct drm_device *dev = crtc->base.dev;
1652         struct drm_i915_private *dev_priv = dev->dev_private;
1653         i915_reg_t reg = DPLL(crtc->pipe);
1654         u32 dpll = crtc->config->dpll_hw_state.dpll;
1655
1656         assert_pipe_disabled(dev_priv, crtc->pipe);
1657
1658         /* PLL is protected by panel, make sure we can write it */
1659         if (IS_MOBILE(dev) && !IS_I830(dev))
1660                 assert_panel_unlocked(dev_priv, crtc->pipe);
1661
1662         /* Enable DVO 2x clock on both PLLs if necessary */
1663         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1664                 /*
1665                  * It appears to be important that we don't enable this
1666                  * for the current pipe before otherwise configuring the
1667                  * PLL. No idea how this should be handled if multiple
1668                  * DVO outputs are enabled simultaneosly.
1669                  */
1670                 dpll |= DPLL_DVO_2X_MODE;
1671                 I915_WRITE(DPLL(!crtc->pipe),
1672                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1673         }
1674
1675         /*
1676          * Apparently we need to have VGA mode enabled prior to changing
1677          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1678          * dividers, even though the register value does change.
1679          */
1680         I915_WRITE(reg, 0);
1681
1682         I915_WRITE(reg, dpll);
1683
1684         /* Wait for the clocks to stabilize. */
1685         POSTING_READ(reg);
1686         udelay(150);
1687
1688         if (INTEL_INFO(dev)->gen >= 4) {
1689                 I915_WRITE(DPLL_MD(crtc->pipe),
1690                            crtc->config->dpll_hw_state.dpll_md);
1691         } else {
1692                 /* The pixel multiplier can only be updated once the
1693                  * DPLL is enabled and the clocks are stable.
1694                  *
1695                  * So write it again.
1696                  */
1697                 I915_WRITE(reg, dpll);
1698         }
1699
1700         /* We do this three times for luck */
1701         I915_WRITE(reg, dpll);
1702         POSTING_READ(reg);
1703         udelay(150); /* wait for warmup */
1704         I915_WRITE(reg, dpll);
1705         POSTING_READ(reg);
1706         udelay(150); /* wait for warmup */
1707         I915_WRITE(reg, dpll);
1708         POSTING_READ(reg);
1709         udelay(150); /* wait for warmup */
1710 }
1711
1712 /**
1713  * i9xx_disable_pll - disable a PLL
1714  * @dev_priv: i915 private structure
1715  * @pipe: pipe PLL to disable
1716  *
1717  * Disable the PLL for @pipe, making sure the pipe is off first.
1718  *
1719  * Note!  This is for pre-ILK only.
1720  */
1721 static void i9xx_disable_pll(struct intel_crtc *crtc)
1722 {
1723         struct drm_device *dev = crtc->base.dev;
1724         struct drm_i915_private *dev_priv = dev->dev_private;
1725         enum pipe pipe = crtc->pipe;
1726
1727         /* Disable DVO 2x clock on both PLLs if necessary */
1728         if (IS_I830(dev) &&
1729             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1730             !intel_num_dvo_pipes(dev)) {
1731                 I915_WRITE(DPLL(PIPE_B),
1732                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1733                 I915_WRITE(DPLL(PIPE_A),
1734                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1735         }
1736
1737         /* Don't disable pipe or pipe PLLs if needed */
1738         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1739             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1740                 return;
1741
1742         /* Make sure the pipe isn't still relying on us */
1743         assert_pipe_disabled(dev_priv, pipe);
1744
1745         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1746         POSTING_READ(DPLL(pipe));
1747 }
1748
1749 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1750 {
1751         u32 val;
1752
1753         /* Make sure the pipe isn't still relying on us */
1754         assert_pipe_disabled(dev_priv, pipe);
1755
1756         val = DPLL_INTEGRATED_REF_CLK_VLV |
1757                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1758         if (pipe != PIPE_A)
1759                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1760
1761         I915_WRITE(DPLL(pipe), val);
1762         POSTING_READ(DPLL(pipe));
1763 }
1764
1765 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1766 {
1767         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1768         u32 val;
1769
1770         /* Make sure the pipe isn't still relying on us */
1771         assert_pipe_disabled(dev_priv, pipe);
1772
1773         val = DPLL_SSC_REF_CLK_CHV |
1774                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1775         if (pipe != PIPE_A)
1776                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1777
1778         I915_WRITE(DPLL(pipe), val);
1779         POSTING_READ(DPLL(pipe));
1780
1781         mutex_lock(&dev_priv->sb_lock);
1782
1783         /* Disable 10bit clock to display controller */
1784         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1785         val &= ~DPIO_DCLKP_EN;
1786         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1787
1788         mutex_unlock(&dev_priv->sb_lock);
1789 }
1790
1791 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1792                          struct intel_digital_port *dport,
1793                          unsigned int expected_mask)
1794 {
1795         u32 port_mask;
1796         i915_reg_t dpll_reg;
1797
1798         switch (dport->port) {
1799         case PORT_B:
1800                 port_mask = DPLL_PORTB_READY_MASK;
1801                 dpll_reg = DPLL(0);
1802                 break;
1803         case PORT_C:
1804                 port_mask = DPLL_PORTC_READY_MASK;
1805                 dpll_reg = DPLL(0);
1806                 expected_mask <<= 4;
1807                 break;
1808         case PORT_D:
1809                 port_mask = DPLL_PORTD_READY_MASK;
1810                 dpll_reg = DPIO_PHY_STATUS;
1811                 break;
1812         default:
1813                 BUG();
1814         }
1815
1816         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1817                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1818                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1819 }
1820
1821 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1822                                            enum pipe pipe)
1823 {
1824         struct drm_device *dev = dev_priv->dev;
1825         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1826         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1827         i915_reg_t reg;
1828         uint32_t val, pipeconf_val;
1829
1830         /* Make sure PCH DPLL is enabled */
1831         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1832
1833         /* FDI must be feeding us bits for PCH ports */
1834         assert_fdi_tx_enabled(dev_priv, pipe);
1835         assert_fdi_rx_enabled(dev_priv, pipe);
1836
1837         if (HAS_PCH_CPT(dev)) {
1838                 /* Workaround: Set the timing override bit before enabling the
1839                  * pch transcoder. */
1840                 reg = TRANS_CHICKEN2(pipe);
1841                 val = I915_READ(reg);
1842                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1843                 I915_WRITE(reg, val);
1844         }
1845
1846         reg = PCH_TRANSCONF(pipe);
1847         val = I915_READ(reg);
1848         pipeconf_val = I915_READ(PIPECONF(pipe));
1849
1850         if (HAS_PCH_IBX(dev_priv)) {
1851                 /*
1852                  * Make the BPC in transcoder be consistent with
1853                  * that in pipeconf reg. For HDMI we must use 8bpc
1854                  * here for both 8bpc and 12bpc.
1855                  */
1856                 val &= ~PIPECONF_BPC_MASK;
1857                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1858                         val |= PIPECONF_8BPC;
1859                 else
1860                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1861         }
1862
1863         val &= ~TRANS_INTERLACE_MASK;
1864         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1865                 if (HAS_PCH_IBX(dev_priv) &&
1866                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1867                         val |= TRANS_LEGACY_INTERLACED_ILK;
1868                 else
1869                         val |= TRANS_INTERLACED;
1870         else
1871                 val |= TRANS_PROGRESSIVE;
1872
1873         I915_WRITE(reg, val | TRANS_ENABLE);
1874         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1875                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1876 }
1877
1878 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1879                                       enum transcoder cpu_transcoder)
1880 {
1881         u32 val, pipeconf_val;
1882
1883         /* FDI must be feeding us bits for PCH ports */
1884         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1885         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1886
1887         /* Workaround: set timing override bit. */
1888         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1889         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1890         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1891
1892         val = TRANS_ENABLE;
1893         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1894
1895         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1896             PIPECONF_INTERLACED_ILK)
1897                 val |= TRANS_INTERLACED;
1898         else
1899                 val |= TRANS_PROGRESSIVE;
1900
1901         I915_WRITE(LPT_TRANSCONF, val);
1902         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1903                 DRM_ERROR("Failed to enable PCH transcoder\n");
1904 }
1905
1906 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1907                                             enum pipe pipe)
1908 {
1909         struct drm_device *dev = dev_priv->dev;
1910         i915_reg_t reg;
1911         uint32_t val;
1912
1913         /* FDI relies on the transcoder */
1914         assert_fdi_tx_disabled(dev_priv, pipe);
1915         assert_fdi_rx_disabled(dev_priv, pipe);
1916
1917         /* Ports must be off as well */
1918         assert_pch_ports_disabled(dev_priv, pipe);
1919
1920         reg = PCH_TRANSCONF(pipe);
1921         val = I915_READ(reg);
1922         val &= ~TRANS_ENABLE;
1923         I915_WRITE(reg, val);
1924         /* wait for PCH transcoder off, transcoder state */
1925         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1926                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1927
1928         if (HAS_PCH_CPT(dev)) {
1929                 /* Workaround: Clear the timing override chicken bit again. */
1930                 reg = TRANS_CHICKEN2(pipe);
1931                 val = I915_READ(reg);
1932                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1933                 I915_WRITE(reg, val);
1934         }
1935 }
1936
1937 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1938 {
1939         u32 val;
1940
1941         val = I915_READ(LPT_TRANSCONF);
1942         val &= ~TRANS_ENABLE;
1943         I915_WRITE(LPT_TRANSCONF, val);
1944         /* wait for PCH transcoder off, transcoder state */
1945         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1946                 DRM_ERROR("Failed to disable PCH transcoder\n");
1947
1948         /* Workaround: clear timing override bit. */
1949         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1950         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1951         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1952 }
1953
1954 /**
1955  * intel_enable_pipe - enable a pipe, asserting requirements
1956  * @crtc: crtc responsible for the pipe
1957  *
1958  * Enable @crtc's pipe, making sure that various hardware specific requirements
1959  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1960  */
1961 static void intel_enable_pipe(struct intel_crtc *crtc)
1962 {
1963         struct drm_device *dev = crtc->base.dev;
1964         struct drm_i915_private *dev_priv = dev->dev_private;
1965         enum pipe pipe = crtc->pipe;
1966         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1967         enum pipe pch_transcoder;
1968         i915_reg_t reg;
1969         u32 val;
1970
1971         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1972
1973         assert_planes_disabled(dev_priv, pipe);
1974         assert_cursor_disabled(dev_priv, pipe);
1975         assert_sprites_disabled(dev_priv, pipe);
1976
1977         if (HAS_PCH_LPT(dev_priv))
1978                 pch_transcoder = TRANSCODER_A;
1979         else
1980                 pch_transcoder = pipe;
1981
1982         /*
1983          * A pipe without a PLL won't actually be able to drive bits from
1984          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1985          * need the check.
1986          */
1987         if (HAS_GMCH_DISPLAY(dev_priv))
1988                 if (crtc->config->has_dsi_encoder)
1989                         assert_dsi_pll_enabled(dev_priv);
1990                 else
1991                         assert_pll_enabled(dev_priv, pipe);
1992         else {
1993                 if (crtc->config->has_pch_encoder) {
1994                         /* if driving the PCH, we need FDI enabled */
1995                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1996                         assert_fdi_tx_pll_enabled(dev_priv,
1997                                                   (enum pipe) cpu_transcoder);
1998                 }
1999                 /* FIXME: assert CPU port conditions for SNB+ */
2000         }
2001
2002         reg = PIPECONF(cpu_transcoder);
2003         val = I915_READ(reg);
2004         if (val & PIPECONF_ENABLE) {
2005                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2006                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2007                 return;
2008         }
2009
2010         I915_WRITE(reg, val | PIPECONF_ENABLE);
2011         POSTING_READ(reg);
2012
2013         /*
2014          * Until the pipe starts DSL will read as 0, which would cause
2015          * an apparent vblank timestamp jump, which messes up also the
2016          * frame count when it's derived from the timestamps. So let's
2017          * wait for the pipe to start properly before we call
2018          * drm_crtc_vblank_on()
2019          */
2020         if (dev->max_vblank_count == 0 &&
2021             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2022                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2023 }
2024
2025 /**
2026  * intel_disable_pipe - disable a pipe, asserting requirements
2027  * @crtc: crtc whose pipes is to be disabled
2028  *
2029  * Disable the pipe of @crtc, making sure that various hardware
2030  * specific requirements are met, if applicable, e.g. plane
2031  * disabled, panel fitter off, etc.
2032  *
2033  * Will wait until the pipe has shut down before returning.
2034  */
2035 static void intel_disable_pipe(struct intel_crtc *crtc)
2036 {
2037         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2038         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2039         enum pipe pipe = crtc->pipe;
2040         i915_reg_t reg;
2041         u32 val;
2042
2043         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2044
2045         /*
2046          * Make sure planes won't keep trying to pump pixels to us,
2047          * or we might hang the display.
2048          */
2049         assert_planes_disabled(dev_priv, pipe);
2050         assert_cursor_disabled(dev_priv, pipe);
2051         assert_sprites_disabled(dev_priv, pipe);
2052
2053         reg = PIPECONF(cpu_transcoder);
2054         val = I915_READ(reg);
2055         if ((val & PIPECONF_ENABLE) == 0)
2056                 return;
2057
2058         /*
2059          * Double wide has implications for planes
2060          * so best keep it disabled when not needed.
2061          */
2062         if (crtc->config->double_wide)
2063                 val &= ~PIPECONF_DOUBLE_WIDE;
2064
2065         /* Don't disable pipe or pipe PLLs if needed */
2066         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2067             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2068                 val &= ~PIPECONF_ENABLE;
2069
2070         I915_WRITE(reg, val);
2071         if ((val & PIPECONF_ENABLE) == 0)
2072                 intel_wait_for_pipe_off(crtc);
2073 }
2074
2075 static bool need_vtd_wa(struct drm_device *dev)
2076 {
2077 #ifdef CONFIG_INTEL_IOMMU
2078         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2079                 return true;
2080 #endif
2081         return false;
2082 }
2083
2084 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2085 {
2086         return IS_GEN2(dev_priv) ? 2048 : 4096;
2087 }
2088
2089 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2090                                            uint64_t fb_modifier, unsigned int cpp)
2091 {
2092         switch (fb_modifier) {
2093         case DRM_FORMAT_MOD_NONE:
2094                 return cpp;
2095         case I915_FORMAT_MOD_X_TILED:
2096                 if (IS_GEN2(dev_priv))
2097                         return 128;
2098                 else
2099                         return 512;
2100         case I915_FORMAT_MOD_Y_TILED:
2101                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2102                         return 128;
2103                 else
2104                         return 512;
2105         case I915_FORMAT_MOD_Yf_TILED:
2106                 switch (cpp) {
2107                 case 1:
2108                         return 64;
2109                 case 2:
2110                 case 4:
2111                         return 128;
2112                 case 8:
2113                 case 16:
2114                         return 256;
2115                 default:
2116                         MISSING_CASE(cpp);
2117                         return cpp;
2118                 }
2119                 break;
2120         default:
2121                 MISSING_CASE(fb_modifier);
2122                 return cpp;
2123         }
2124 }
2125
2126 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2127                                uint64_t fb_modifier, unsigned int cpp)
2128 {
2129         if (fb_modifier == DRM_FORMAT_MOD_NONE)
2130                 return 1;
2131         else
2132                 return intel_tile_size(dev_priv) /
2133                         intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2134 }
2135
2136 /* Return the tile dimensions in pixel units */
2137 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2138                             unsigned int *tile_width,
2139                             unsigned int *tile_height,
2140                             uint64_t fb_modifier,
2141                             unsigned int cpp)
2142 {
2143         unsigned int tile_width_bytes =
2144                 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2145
2146         *tile_width = tile_width_bytes / cpp;
2147         *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2148 }
2149
2150 unsigned int
2151 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2152                       uint32_t pixel_format, uint64_t fb_modifier)
2153 {
2154         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2155         unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2156
2157         return ALIGN(height, tile_height);
2158 }
2159
2160 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2161 {
2162         unsigned int size = 0;
2163         int i;
2164
2165         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2166                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2167
2168         return size;
2169 }
2170
2171 static void
2172 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2173                         const struct drm_framebuffer *fb,
2174                         unsigned int rotation)
2175 {
2176         if (intel_rotation_90_or_270(rotation)) {
2177                 *view = i915_ggtt_view_rotated;
2178                 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2179         } else {
2180                 *view = i915_ggtt_view_normal;
2181         }
2182 }
2183
2184 static void
2185 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2186                    struct drm_framebuffer *fb)
2187 {
2188         struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2189         unsigned int tile_size, tile_width, tile_height, cpp;
2190
2191         tile_size = intel_tile_size(dev_priv);
2192
2193         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2194         intel_tile_dims(dev_priv, &tile_width, &tile_height,
2195                         fb->modifier[0], cpp);
2196
2197         info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2198         info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
2199
2200         if (info->pixel_format == DRM_FORMAT_NV12) {
2201                 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2202                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2203                                 fb->modifier[1], cpp);
2204
2205                 info->uv_offset = fb->offsets[1];
2206                 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2207                 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
2208         }
2209 }
2210
2211 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2212 {
2213         if (INTEL_INFO(dev_priv)->gen >= 9)
2214                 return 256 * 1024;
2215         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2216                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2217                 return 128 * 1024;
2218         else if (INTEL_INFO(dev_priv)->gen >= 4)
2219                 return 4 * 1024;
2220         else
2221                 return 0;
2222 }
2223
2224 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2225                                          uint64_t fb_modifier)
2226 {
2227         switch (fb_modifier) {
2228         case DRM_FORMAT_MOD_NONE:
2229                 return intel_linear_alignment(dev_priv);
2230         case I915_FORMAT_MOD_X_TILED:
2231                 if (INTEL_INFO(dev_priv)->gen >= 9)
2232                         return 256 * 1024;
2233                 return 0;
2234         case I915_FORMAT_MOD_Y_TILED:
2235         case I915_FORMAT_MOD_Yf_TILED:
2236                 return 1 * 1024 * 1024;
2237         default:
2238                 MISSING_CASE(fb_modifier);
2239                 return 0;
2240         }
2241 }
2242
2243 int
2244 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2245                            unsigned int rotation)
2246 {
2247         struct drm_device *dev = fb->dev;
2248         struct drm_i915_private *dev_priv = dev->dev_private;
2249         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2250         struct i915_ggtt_view view;
2251         u32 alignment;
2252         int ret;
2253
2254         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2255
2256         alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2257
2258         intel_fill_fb_ggtt_view(&view, fb, rotation);
2259
2260         /* Note that the w/a also requires 64 PTE of padding following the
2261          * bo. We currently fill all unused PTE with the shadow page and so
2262          * we should always have valid PTE following the scanout preventing
2263          * the VT-d warning.
2264          */
2265         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2266                 alignment = 256 * 1024;
2267
2268         /*
2269          * Global gtt pte registers are special registers which actually forward
2270          * writes to a chunk of system memory. Which means that there is no risk
2271          * that the register values disappear as soon as we call
2272          * intel_runtime_pm_put(), so it is correct to wrap only the
2273          * pin/unpin/fence and not more.
2274          */
2275         intel_runtime_pm_get(dev_priv);
2276
2277         ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2278                                                    &view);
2279         if (ret)
2280                 goto err_pm;
2281
2282         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2283          * fence, whereas 965+ only requires a fence if using
2284          * framebuffer compression.  For simplicity, we always install
2285          * a fence as the cost is not that onerous.
2286          */
2287         if (view.type == I915_GGTT_VIEW_NORMAL) {
2288                 ret = i915_gem_object_get_fence(obj);
2289                 if (ret == -EDEADLK) {
2290                         /*
2291                          * -EDEADLK means there are no free fences
2292                          * no pending flips.
2293                          *
2294                          * This is propagated to atomic, but it uses
2295                          * -EDEADLK to force a locking recovery, so
2296                          * change the returned error to -EBUSY.
2297                          */
2298                         ret = -EBUSY;
2299                         goto err_unpin;
2300                 } else if (ret)
2301                         goto err_unpin;
2302
2303                 i915_gem_object_pin_fence(obj);
2304         }
2305
2306         intel_runtime_pm_put(dev_priv);
2307         return 0;
2308
2309 err_unpin:
2310         i915_gem_object_unpin_from_display_plane(obj, &view);
2311 err_pm:
2312         intel_runtime_pm_put(dev_priv);
2313         return ret;
2314 }
2315
2316 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2317 {
2318         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2319         struct i915_ggtt_view view;
2320
2321         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2322
2323         intel_fill_fb_ggtt_view(&view, fb, rotation);
2324
2325         if (view.type == I915_GGTT_VIEW_NORMAL)
2326                 i915_gem_object_unpin_fence(obj);
2327
2328         i915_gem_object_unpin_from_display_plane(obj, &view);
2329 }
2330
2331 /*
2332  * Adjust the tile offset by moving the difference into
2333  * the x/y offsets.
2334  *
2335  * Input tile dimensions and pitch must already be
2336  * rotated to match x and y, and in pixel units.
2337  */
2338 static u32 intel_adjust_tile_offset(int *x, int *y,
2339                                     unsigned int tile_width,
2340                                     unsigned int tile_height,
2341                                     unsigned int tile_size,
2342                                     unsigned int pitch_tiles,
2343                                     u32 old_offset,
2344                                     u32 new_offset)
2345 {
2346         unsigned int tiles;
2347
2348         WARN_ON(old_offset & (tile_size - 1));
2349         WARN_ON(new_offset & (tile_size - 1));
2350         WARN_ON(new_offset > old_offset);
2351
2352         tiles = (old_offset - new_offset) / tile_size;
2353
2354         *y += tiles / pitch_tiles * tile_height;
2355         *x += tiles % pitch_tiles * tile_width;
2356
2357         return new_offset;
2358 }
2359
2360 /*
2361  * Computes the linear offset to the base tile and adjusts
2362  * x, y. bytes per pixel is assumed to be a power-of-two.
2363  *
2364  * In the 90/270 rotated case, x and y are assumed
2365  * to be already rotated to match the rotated GTT view, and
2366  * pitch is the tile_height aligned framebuffer height.
2367  */
2368 u32 intel_compute_tile_offset(int *x, int *y,
2369                               const struct drm_framebuffer *fb, int plane,
2370                               unsigned int pitch,
2371                               unsigned int rotation)
2372 {
2373         const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2374         uint64_t fb_modifier = fb->modifier[plane];
2375         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2376         u32 offset, offset_aligned, alignment;
2377
2378         alignment = intel_surf_alignment(dev_priv, fb_modifier);
2379         if (alignment)
2380                 alignment--;
2381
2382         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2383                 unsigned int tile_size, tile_width, tile_height;
2384                 unsigned int tile_rows, tiles, pitch_tiles;
2385
2386                 tile_size = intel_tile_size(dev_priv);
2387                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2388                                 fb_modifier, cpp);
2389
2390                 if (intel_rotation_90_or_270(rotation)) {
2391                         pitch_tiles = pitch / tile_height;
2392                         swap(tile_width, tile_height);
2393                 } else {
2394                         pitch_tiles = pitch / (tile_width * cpp);
2395                 }
2396
2397                 tile_rows = *y / tile_height;
2398                 *y %= tile_height;
2399
2400                 tiles = *x / tile_width;
2401                 *x %= tile_width;
2402
2403                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2404                 offset_aligned = offset & ~alignment;
2405
2406                 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2407                                          tile_size, pitch_tiles,
2408                                          offset, offset_aligned);
2409         } else {
2410                 offset = *y * pitch + *x * cpp;
2411                 offset_aligned = offset & ~alignment;
2412
2413                 *y = (offset & alignment) / pitch;
2414                 *x = ((offset & alignment) - *y * pitch) / cpp;
2415         }
2416
2417         return offset_aligned;
2418 }
2419
2420 static int i9xx_format_to_fourcc(int format)
2421 {
2422         switch (format) {
2423         case DISPPLANE_8BPP:
2424                 return DRM_FORMAT_C8;
2425         case DISPPLANE_BGRX555:
2426                 return DRM_FORMAT_XRGB1555;
2427         case DISPPLANE_BGRX565:
2428                 return DRM_FORMAT_RGB565;
2429         default:
2430         case DISPPLANE_BGRX888:
2431                 return DRM_FORMAT_XRGB8888;
2432         case DISPPLANE_RGBX888:
2433                 return DRM_FORMAT_XBGR8888;
2434         case DISPPLANE_BGRX101010:
2435                 return DRM_FORMAT_XRGB2101010;
2436         case DISPPLANE_RGBX101010:
2437                 return DRM_FORMAT_XBGR2101010;
2438         }
2439 }
2440
2441 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2442 {
2443         switch (format) {
2444         case PLANE_CTL_FORMAT_RGB_565:
2445                 return DRM_FORMAT_RGB565;
2446         default:
2447         case PLANE_CTL_FORMAT_XRGB_8888:
2448                 if (rgb_order) {
2449                         if (alpha)
2450                                 return DRM_FORMAT_ABGR8888;
2451                         else
2452                                 return DRM_FORMAT_XBGR8888;
2453                 } else {
2454                         if (alpha)
2455                                 return DRM_FORMAT_ARGB8888;
2456                         else
2457                                 return DRM_FORMAT_XRGB8888;
2458                 }
2459         case PLANE_CTL_FORMAT_XRGB_2101010:
2460                 if (rgb_order)
2461                         return DRM_FORMAT_XBGR2101010;
2462                 else
2463                         return DRM_FORMAT_XRGB2101010;
2464         }
2465 }
2466
2467 static bool
2468 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2469                               struct intel_initial_plane_config *plane_config)
2470 {
2471         struct drm_device *dev = crtc->base.dev;
2472         struct drm_i915_private *dev_priv = to_i915(dev);
2473         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2474         struct drm_i915_gem_object *obj = NULL;
2475         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2476         struct drm_framebuffer *fb = &plane_config->fb->base;
2477         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2478         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2479                                     PAGE_SIZE);
2480
2481         size_aligned -= base_aligned;
2482
2483         if (plane_config->size == 0)
2484                 return false;
2485
2486         /* If the FB is too big, just don't use it since fbdev is not very
2487          * important and we should probably use that space with FBC or other
2488          * features. */
2489         if (size_aligned * 2 > ggtt->stolen_usable_size)
2490                 return false;
2491
2492         mutex_lock(&dev->struct_mutex);
2493
2494         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2495                                                              base_aligned,
2496                                                              base_aligned,
2497                                                              size_aligned);
2498         if (!obj) {
2499                 mutex_unlock(&dev->struct_mutex);
2500                 return false;
2501         }
2502
2503         obj->tiling_mode = plane_config->tiling;
2504         if (obj->tiling_mode == I915_TILING_X)
2505                 obj->stride = fb->pitches[0];
2506
2507         mode_cmd.pixel_format = fb->pixel_format;
2508         mode_cmd.width = fb->width;
2509         mode_cmd.height = fb->height;
2510         mode_cmd.pitches[0] = fb->pitches[0];
2511         mode_cmd.modifier[0] = fb->modifier[0];
2512         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2513
2514         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2515                                    &mode_cmd, obj)) {
2516                 DRM_DEBUG_KMS("intel fb init failed\n");
2517                 goto out_unref_obj;
2518         }
2519
2520         mutex_unlock(&dev->struct_mutex);
2521
2522         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2523         return true;
2524
2525 out_unref_obj:
2526         drm_gem_object_unreference(&obj->base);
2527         mutex_unlock(&dev->struct_mutex);
2528         return false;
2529 }
2530
2531 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2532 static void
2533 update_state_fb(struct drm_plane *plane)
2534 {
2535         if (plane->fb == plane->state->fb)
2536                 return;
2537
2538         if (plane->state->fb)
2539                 drm_framebuffer_unreference(plane->state->fb);
2540         plane->state->fb = plane->fb;
2541         if (plane->state->fb)
2542                 drm_framebuffer_reference(plane->state->fb);
2543 }
2544
2545 static void
2546 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2547                              struct intel_initial_plane_config *plane_config)
2548 {
2549         struct drm_device *dev = intel_crtc->base.dev;
2550         struct drm_i915_private *dev_priv = dev->dev_private;
2551         struct drm_crtc *c;
2552         struct intel_crtc *i;
2553         struct drm_i915_gem_object *obj;
2554         struct drm_plane *primary = intel_crtc->base.primary;
2555         struct drm_plane_state *plane_state = primary->state;
2556         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2557         struct intel_plane *intel_plane = to_intel_plane(primary);
2558         struct intel_plane_state *intel_state =
2559                 to_intel_plane_state(plane_state);
2560         struct drm_framebuffer *fb;
2561
2562         if (!plane_config->fb)
2563                 return;
2564
2565         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2566                 fb = &plane_config->fb->base;
2567                 goto valid_fb;
2568         }
2569
2570         kfree(plane_config->fb);
2571
2572         /*
2573          * Failed to alloc the obj, check to see if we should share
2574          * an fb with another CRTC instead
2575          */
2576         for_each_crtc(dev, c) {
2577                 i = to_intel_crtc(c);
2578
2579                 if (c == &intel_crtc->base)
2580                         continue;
2581
2582                 if (!i->active)
2583                         continue;
2584
2585                 fb = c->primary->fb;
2586                 if (!fb)
2587                         continue;
2588
2589                 obj = intel_fb_obj(fb);
2590                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2591                         drm_framebuffer_reference(fb);
2592                         goto valid_fb;
2593                 }
2594         }
2595
2596         /*
2597          * We've failed to reconstruct the BIOS FB.  Current display state
2598          * indicates that the primary plane is visible, but has a NULL FB,
2599          * which will lead to problems later if we don't fix it up.  The
2600          * simplest solution is to just disable the primary plane now and
2601          * pretend the BIOS never had it enabled.
2602          */
2603         to_intel_plane_state(plane_state)->visible = false;
2604         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2605         intel_pre_disable_primary_noatomic(&intel_crtc->base);
2606         intel_plane->disable_plane(primary, &intel_crtc->base);
2607
2608         return;
2609
2610 valid_fb:
2611         plane_state->src_x = 0;
2612         plane_state->src_y = 0;
2613         plane_state->src_w = fb->width << 16;
2614         plane_state->src_h = fb->height << 16;
2615
2616         plane_state->crtc_x = 0;
2617         plane_state->crtc_y = 0;
2618         plane_state->crtc_w = fb->width;
2619         plane_state->crtc_h = fb->height;
2620
2621         intel_state->src.x1 = plane_state->src_x;
2622         intel_state->src.y1 = plane_state->src_y;
2623         intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2624         intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2625         intel_state->dst.x1 = plane_state->crtc_x;
2626         intel_state->dst.y1 = plane_state->crtc_y;
2627         intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2628         intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2629
2630         obj = intel_fb_obj(fb);
2631         if (obj->tiling_mode != I915_TILING_NONE)
2632                 dev_priv->preserve_bios_swizzle = true;
2633
2634         drm_framebuffer_reference(fb);
2635         primary->fb = primary->state->fb = fb;
2636         primary->crtc = primary->state->crtc = &intel_crtc->base;
2637         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2638         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2639 }
2640
2641 static void i9xx_update_primary_plane(struct drm_plane *primary,
2642                                       const struct intel_crtc_state *crtc_state,
2643                                       const struct intel_plane_state *plane_state)
2644 {
2645         struct drm_device *dev = primary->dev;
2646         struct drm_i915_private *dev_priv = dev->dev_private;
2647         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2648         struct drm_framebuffer *fb = plane_state->base.fb;
2649         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2650         int plane = intel_crtc->plane;
2651         u32 linear_offset;
2652         u32 dspcntr;
2653         i915_reg_t reg = DSPCNTR(plane);
2654         unsigned int rotation = plane_state->base.rotation;
2655         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2656         int x = plane_state->src.x1 >> 16;
2657         int y = plane_state->src.y1 >> 16;
2658
2659         dspcntr = DISPPLANE_GAMMA_ENABLE;
2660
2661         dspcntr |= DISPLAY_PLANE_ENABLE;
2662
2663         if (INTEL_INFO(dev)->gen < 4) {
2664                 if (intel_crtc->pipe == PIPE_B)
2665                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2666
2667                 /* pipesrc and dspsize control the size that is scaled from,
2668                  * which should always be the user's requested size.
2669                  */
2670                 I915_WRITE(DSPSIZE(plane),
2671                            ((crtc_state->pipe_src_h - 1) << 16) |
2672                            (crtc_state->pipe_src_w - 1));
2673                 I915_WRITE(DSPPOS(plane), 0);
2674         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2675                 I915_WRITE(PRIMSIZE(plane),
2676                            ((crtc_state->pipe_src_h - 1) << 16) |
2677                            (crtc_state->pipe_src_w - 1));
2678                 I915_WRITE(PRIMPOS(plane), 0);
2679                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2680         }
2681
2682         switch (fb->pixel_format) {
2683         case DRM_FORMAT_C8:
2684                 dspcntr |= DISPPLANE_8BPP;
2685                 break;
2686         case DRM_FORMAT_XRGB1555:
2687                 dspcntr |= DISPPLANE_BGRX555;
2688                 break;
2689         case DRM_FORMAT_RGB565:
2690                 dspcntr |= DISPPLANE_BGRX565;
2691                 break;
2692         case DRM_FORMAT_XRGB8888:
2693                 dspcntr |= DISPPLANE_BGRX888;
2694                 break;
2695         case DRM_FORMAT_XBGR8888:
2696                 dspcntr |= DISPPLANE_RGBX888;
2697                 break;
2698         case DRM_FORMAT_XRGB2101010:
2699                 dspcntr |= DISPPLANE_BGRX101010;
2700                 break;
2701         case DRM_FORMAT_XBGR2101010:
2702                 dspcntr |= DISPPLANE_RGBX101010;
2703                 break;
2704         default:
2705                 BUG();
2706         }
2707
2708         if (INTEL_INFO(dev)->gen >= 4 &&
2709             obj->tiling_mode != I915_TILING_NONE)
2710                 dspcntr |= DISPPLANE_TILED;
2711
2712         if (IS_G4X(dev))
2713                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2714
2715         linear_offset = y * fb->pitches[0] + x * cpp;
2716
2717         if (INTEL_INFO(dev)->gen >= 4) {
2718                 intel_crtc->dspaddr_offset =
2719                         intel_compute_tile_offset(&x, &y, fb, 0,
2720                                                   fb->pitches[0], rotation);
2721                 linear_offset -= intel_crtc->dspaddr_offset;
2722         } else {
2723                 intel_crtc->dspaddr_offset = linear_offset;
2724         }
2725
2726         if (rotation == BIT(DRM_ROTATE_180)) {
2727                 dspcntr |= DISPPLANE_ROTATE_180;
2728
2729                 x += (crtc_state->pipe_src_w - 1);
2730                 y += (crtc_state->pipe_src_h - 1);
2731
2732                 /* Finding the last pixel of the last line of the display
2733                 data and adding to linear_offset*/
2734                 linear_offset +=
2735                         (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2736                         (crtc_state->pipe_src_w - 1) * cpp;
2737         }
2738
2739         intel_crtc->adjusted_x = x;
2740         intel_crtc->adjusted_y = y;
2741
2742         I915_WRITE(reg, dspcntr);
2743
2744         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2745         if (INTEL_INFO(dev)->gen >= 4) {
2746                 I915_WRITE(DSPSURF(plane),
2747                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2748                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2749                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2750         } else
2751                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2752         POSTING_READ(reg);
2753 }
2754
2755 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2756                                        struct drm_crtc *crtc)
2757 {
2758         struct drm_device *dev = crtc->dev;
2759         struct drm_i915_private *dev_priv = dev->dev_private;
2760         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2761         int plane = intel_crtc->plane;
2762
2763         I915_WRITE(DSPCNTR(plane), 0);
2764         if (INTEL_INFO(dev_priv)->gen >= 4)
2765                 I915_WRITE(DSPSURF(plane), 0);
2766         else
2767                 I915_WRITE(DSPADDR(plane), 0);
2768         POSTING_READ(DSPCNTR(plane));
2769 }
2770
2771 static void ironlake_update_primary_plane(struct drm_plane *primary,
2772                                           const struct intel_crtc_state *crtc_state,
2773                                           const struct intel_plane_state *plane_state)
2774 {
2775         struct drm_device *dev = primary->dev;
2776         struct drm_i915_private *dev_priv = dev->dev_private;
2777         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2778         struct drm_framebuffer *fb = plane_state->base.fb;
2779         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2780         int plane = intel_crtc->plane;
2781         u32 linear_offset;
2782         u32 dspcntr;
2783         i915_reg_t reg = DSPCNTR(plane);
2784         unsigned int rotation = plane_state->base.rotation;
2785         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2786         int x = plane_state->src.x1 >> 16;
2787         int y = plane_state->src.y1 >> 16;
2788
2789         dspcntr = DISPPLANE_GAMMA_ENABLE;
2790         dspcntr |= DISPLAY_PLANE_ENABLE;
2791
2792         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2793                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2794
2795         switch (fb->pixel_format) {
2796         case DRM_FORMAT_C8:
2797                 dspcntr |= DISPPLANE_8BPP;
2798                 break;
2799         case DRM_FORMAT_RGB565:
2800                 dspcntr |= DISPPLANE_BGRX565;
2801                 break;
2802         case DRM_FORMAT_XRGB8888:
2803                 dspcntr |= DISPPLANE_BGRX888;
2804                 break;
2805         case DRM_FORMAT_XBGR8888:
2806                 dspcntr |= DISPPLANE_RGBX888;
2807                 break;
2808         case DRM_FORMAT_XRGB2101010:
2809                 dspcntr |= DISPPLANE_BGRX101010;
2810                 break;
2811         case DRM_FORMAT_XBGR2101010:
2812                 dspcntr |= DISPPLANE_RGBX101010;
2813                 break;
2814         default:
2815                 BUG();
2816         }
2817
2818         if (obj->tiling_mode != I915_TILING_NONE)
2819                 dspcntr |= DISPPLANE_TILED;
2820
2821         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2822                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2823
2824         linear_offset = y * fb->pitches[0] + x * cpp;
2825         intel_crtc->dspaddr_offset =
2826                 intel_compute_tile_offset(&x, &y, fb, 0,
2827                                           fb->pitches[0], rotation);
2828         linear_offset -= intel_crtc->dspaddr_offset;
2829         if (rotation == BIT(DRM_ROTATE_180)) {
2830                 dspcntr |= DISPPLANE_ROTATE_180;
2831
2832                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2833                         x += (crtc_state->pipe_src_w - 1);
2834                         y += (crtc_state->pipe_src_h - 1);
2835
2836                         /* Finding the last pixel of the last line of the display
2837                         data and adding to linear_offset*/
2838                         linear_offset +=
2839                                 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2840                                 (crtc_state->pipe_src_w - 1) * cpp;
2841                 }
2842         }
2843
2844         intel_crtc->adjusted_x = x;
2845         intel_crtc->adjusted_y = y;
2846
2847         I915_WRITE(reg, dspcntr);
2848
2849         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2850         I915_WRITE(DSPSURF(plane),
2851                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2852         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2853                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2854         } else {
2855                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2856                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2857         }
2858         POSTING_READ(reg);
2859 }
2860
2861 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2862                               uint64_t fb_modifier, uint32_t pixel_format)
2863 {
2864         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2865                 return 64;
2866         } else {
2867                 int cpp = drm_format_plane_cpp(pixel_format, 0);
2868
2869                 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2870         }
2871 }
2872
2873 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2874                            struct drm_i915_gem_object *obj,
2875                            unsigned int plane)
2876 {
2877         struct i915_ggtt_view view;
2878         struct i915_vma *vma;
2879         u64 offset;
2880
2881         intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2882                                 intel_plane->base.state->rotation);
2883
2884         vma = i915_gem_obj_to_ggtt_view(obj, &view);
2885         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2886                 view.type))
2887                 return -1;
2888
2889         offset = vma->node.start;
2890
2891         if (plane == 1) {
2892                 offset += vma->ggtt_view.params.rotated.uv_start_page *
2893                           PAGE_SIZE;
2894         }
2895
2896         WARN_ON(upper_32_bits(offset));
2897
2898         return lower_32_bits(offset);
2899 }
2900
2901 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2902 {
2903         struct drm_device *dev = intel_crtc->base.dev;
2904         struct drm_i915_private *dev_priv = dev->dev_private;
2905
2906         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2907         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2908         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2909 }
2910
2911 /*
2912  * This function detaches (aka. unbinds) unused scalers in hardware
2913  */
2914 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2915 {
2916         struct intel_crtc_scaler_state *scaler_state;
2917         int i;
2918
2919         scaler_state = &intel_crtc->config->scaler_state;
2920
2921         /* loop through and disable scalers that aren't in use */
2922         for (i = 0; i < intel_crtc->num_scalers; i++) {
2923                 if (!scaler_state->scalers[i].in_use)
2924                         skl_detach_scaler(intel_crtc, i);
2925         }
2926 }
2927
2928 u32 skl_plane_ctl_format(uint32_t pixel_format)
2929 {
2930         switch (pixel_format) {
2931         case DRM_FORMAT_C8:
2932                 return PLANE_CTL_FORMAT_INDEXED;
2933         case DRM_FORMAT_RGB565:
2934                 return PLANE_CTL_FORMAT_RGB_565;
2935         case DRM_FORMAT_XBGR8888:
2936                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2937         case DRM_FORMAT_XRGB8888:
2938                 return PLANE_CTL_FORMAT_XRGB_8888;
2939         /*
2940          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2941          * to be already pre-multiplied. We need to add a knob (or a different
2942          * DRM_FORMAT) for user-space to configure that.
2943          */
2944         case DRM_FORMAT_ABGR8888:
2945                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2946                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2947         case DRM_FORMAT_ARGB8888:
2948                 return PLANE_CTL_FORMAT_XRGB_8888 |
2949                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2950         case DRM_FORMAT_XRGB2101010:
2951                 return PLANE_CTL_FORMAT_XRGB_2101010;
2952         case DRM_FORMAT_XBGR2101010:
2953                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2954         case DRM_FORMAT_YUYV:
2955                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2956         case DRM_FORMAT_YVYU:
2957                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2958         case DRM_FORMAT_UYVY:
2959                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2960         case DRM_FORMAT_VYUY:
2961                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2962         default:
2963                 MISSING_CASE(pixel_format);
2964         }
2965
2966         return 0;
2967 }
2968
2969 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2970 {
2971         switch (fb_modifier) {
2972         case DRM_FORMAT_MOD_NONE:
2973                 break;
2974         case I915_FORMAT_MOD_X_TILED:
2975                 return PLANE_CTL_TILED_X;
2976         case I915_FORMAT_MOD_Y_TILED:
2977                 return PLANE_CTL_TILED_Y;
2978         case I915_FORMAT_MOD_Yf_TILED:
2979                 return PLANE_CTL_TILED_YF;
2980         default:
2981                 MISSING_CASE(fb_modifier);
2982         }
2983
2984         return 0;
2985 }
2986
2987 u32 skl_plane_ctl_rotation(unsigned int rotation)
2988 {
2989         switch (rotation) {
2990         case BIT(DRM_ROTATE_0):
2991                 break;
2992         /*
2993          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2994          * while i915 HW rotation is clockwise, thats why this swapping.
2995          */
2996         case BIT(DRM_ROTATE_90):
2997                 return PLANE_CTL_ROTATE_270;
2998         case BIT(DRM_ROTATE_180):
2999                 return PLANE_CTL_ROTATE_180;
3000         case BIT(DRM_ROTATE_270):
3001                 return PLANE_CTL_ROTATE_90;
3002         default:
3003                 MISSING_CASE(rotation);
3004         }
3005
3006         return 0;
3007 }
3008
3009 static void skylake_update_primary_plane(struct drm_plane *plane,
3010                                          const struct intel_crtc_state *crtc_state,
3011                                          const struct intel_plane_state *plane_state)
3012 {
3013         struct drm_device *dev = plane->dev;
3014         struct drm_i915_private *dev_priv = dev->dev_private;
3015         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3016         struct drm_framebuffer *fb = plane_state->base.fb;
3017         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3018         int pipe = intel_crtc->pipe;
3019         u32 plane_ctl, stride_div, stride;
3020         u32 tile_height, plane_offset, plane_size;
3021         unsigned int rotation = plane_state->base.rotation;
3022         int x_offset, y_offset;
3023         u32 surf_addr;
3024         int scaler_id = plane_state->scaler_id;
3025         int src_x = plane_state->src.x1 >> 16;
3026         int src_y = plane_state->src.y1 >> 16;
3027         int src_w = drm_rect_width(&plane_state->src) >> 16;
3028         int src_h = drm_rect_height(&plane_state->src) >> 16;
3029         int dst_x = plane_state->dst.x1;
3030         int dst_y = plane_state->dst.y1;
3031         int dst_w = drm_rect_width(&plane_state->dst);
3032         int dst_h = drm_rect_height(&plane_state->dst);
3033
3034         plane_ctl = PLANE_CTL_ENABLE |
3035                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3036                     PLANE_CTL_PIPE_CSC_ENABLE;
3037
3038         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3039         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3040         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3041         plane_ctl |= skl_plane_ctl_rotation(rotation);
3042
3043         stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3044                                                fb->pixel_format);
3045         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3046
3047         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3048
3049         if (intel_rotation_90_or_270(rotation)) {
3050                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3051
3052                 /* stride = Surface height in tiles */
3053                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3054                 stride = DIV_ROUND_UP(fb->height, tile_height);
3055                 x_offset = stride * tile_height - src_y - src_h;
3056                 y_offset = src_x;
3057                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3058         } else {
3059                 stride = fb->pitches[0] / stride_div;
3060                 x_offset = src_x;
3061                 y_offset = src_y;
3062                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3063         }
3064         plane_offset = y_offset << 16 | x_offset;
3065
3066         intel_crtc->adjusted_x = x_offset;
3067         intel_crtc->adjusted_y = y_offset;
3068
3069         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3070         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3071         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3072         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3073
3074         if (scaler_id >= 0) {
3075                 uint32_t ps_ctrl = 0;
3076
3077                 WARN_ON(!dst_w || !dst_h);
3078                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3079                         crtc_state->scaler_state.scalers[scaler_id].mode;
3080                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3081                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3082                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3083                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3084                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3085         } else {
3086                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3087         }
3088
3089         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3090
3091         POSTING_READ(PLANE_SURF(pipe, 0));
3092 }
3093
3094 static void skylake_disable_primary_plane(struct drm_plane *primary,
3095                                           struct drm_crtc *crtc)
3096 {
3097         struct drm_device *dev = crtc->dev;
3098         struct drm_i915_private *dev_priv = dev->dev_private;
3099         int pipe = to_intel_crtc(crtc)->pipe;
3100
3101         I915_WRITE(PLANE_CTL(pipe, 0), 0);
3102         I915_WRITE(PLANE_SURF(pipe, 0), 0);
3103         POSTING_READ(PLANE_SURF(pipe, 0));
3104 }
3105
3106 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3107 static int
3108 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3109                            int x, int y, enum mode_set_atomic state)
3110 {
3111         /* Support for kgdboc is disabled, this needs a major rework. */
3112         DRM_ERROR("legacy panic handler not supported any more.\n");
3113
3114         return -ENODEV;
3115 }
3116
3117 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3118 {
3119         struct intel_crtc *crtc;
3120
3121         for_each_intel_crtc(dev_priv->dev, crtc)
3122                 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3123 }
3124
3125 static void intel_update_primary_planes(struct drm_device *dev)
3126 {
3127         struct drm_crtc *crtc;
3128
3129         for_each_crtc(dev, crtc) {
3130                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3131                 struct intel_plane_state *plane_state;
3132
3133                 drm_modeset_lock_crtc(crtc, &plane->base);
3134                 plane_state = to_intel_plane_state(plane->base.state);
3135
3136                 if (plane_state->visible)
3137                         plane->update_plane(&plane->base,
3138                                             to_intel_crtc_state(crtc->state),
3139                                             plane_state);
3140
3141                 drm_modeset_unlock_crtc(crtc);
3142         }
3143 }
3144
3145 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3146 {
3147         /* no reset support for gen2 */
3148         if (IS_GEN2(dev_priv))
3149                 return;
3150
3151         /* reset doesn't touch the display */
3152         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
3153                 return;
3154
3155         drm_modeset_lock_all(dev_priv->dev);
3156         /*
3157          * Disabling the crtcs gracefully seems nicer. Also the
3158          * g33 docs say we should at least disable all the planes.
3159          */
3160         intel_display_suspend(dev_priv->dev);
3161 }
3162
3163 void intel_finish_reset(struct drm_i915_private *dev_priv)
3164 {
3165         /*
3166          * Flips in the rings will be nuked by the reset,
3167          * so complete all pending flips so that user space
3168          * will get its events and not get stuck.
3169          */
3170         intel_complete_page_flips(dev_priv);
3171
3172         /* no reset support for gen2 */
3173         if (IS_GEN2(dev_priv))
3174                 return;
3175
3176         /* reset doesn't touch the display */
3177         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
3178                 /*
3179                  * Flips in the rings have been nuked by the reset,
3180                  * so update the base address of all primary
3181                  * planes to the the last fb to make sure we're
3182                  * showing the correct fb after a reset.
3183                  *
3184                  * FIXME: Atomic will make this obsolete since we won't schedule
3185                  * CS-based flips (which might get lost in gpu resets) any more.
3186                  */
3187                 intel_update_primary_planes(dev_priv->dev);
3188                 return;
3189         }
3190
3191         /*
3192          * The display has been reset as well,
3193          * so need a full re-initialization.
3194          */
3195         intel_runtime_pm_disable_interrupts(dev_priv);
3196         intel_runtime_pm_enable_interrupts(dev_priv);
3197
3198         intel_modeset_init_hw(dev_priv->dev);
3199
3200         spin_lock_irq(&dev_priv->irq_lock);
3201         if (dev_priv->display.hpd_irq_setup)
3202                 dev_priv->display.hpd_irq_setup(dev_priv);
3203         spin_unlock_irq(&dev_priv->irq_lock);
3204
3205         intel_display_resume(dev_priv->dev);
3206
3207         intel_hpd_init(dev_priv);
3208
3209         drm_modeset_unlock_all(dev_priv->dev);
3210 }
3211
3212 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3213 {
3214         struct drm_device *dev = crtc->dev;
3215         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3216         unsigned reset_counter;
3217         bool pending;
3218
3219         reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
3220         if (intel_crtc->reset_counter != reset_counter)
3221                 return false;
3222
3223         spin_lock_irq(&dev->event_lock);
3224         pending = to_intel_crtc(crtc)->flip_work != NULL;
3225         spin_unlock_irq(&dev->event_lock);
3226
3227         return pending;
3228 }
3229
3230 static void intel_update_pipe_config(struct intel_crtc *crtc,
3231                                      struct intel_crtc_state *old_crtc_state)
3232 {
3233         struct drm_device *dev = crtc->base.dev;
3234         struct drm_i915_private *dev_priv = dev->dev_private;
3235         struct intel_crtc_state *pipe_config =
3236                 to_intel_crtc_state(crtc->base.state);
3237
3238         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3239         crtc->base.mode = crtc->base.state->mode;
3240
3241         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3242                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3243                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3244
3245         /*
3246          * Update pipe size and adjust fitter if needed: the reason for this is
3247          * that in compute_mode_changes we check the native mode (not the pfit
3248          * mode) to see if we can flip rather than do a full mode set. In the
3249          * fastboot case, we'll flip, but if we don't update the pipesrc and
3250          * pfit state, we'll end up with a big fb scanned out into the wrong
3251          * sized surface.
3252          */
3253
3254         I915_WRITE(PIPESRC(crtc->pipe),
3255                    ((pipe_config->pipe_src_w - 1) << 16) |
3256                    (pipe_config->pipe_src_h - 1));
3257
3258         /* on skylake this is done by detaching scalers */
3259         if (INTEL_INFO(dev)->gen >= 9) {
3260                 skl_detach_scalers(crtc);
3261
3262                 if (pipe_config->pch_pfit.enabled)
3263                         skylake_pfit_enable(crtc);
3264         } else if (HAS_PCH_SPLIT(dev)) {
3265                 if (pipe_config->pch_pfit.enabled)
3266                         ironlake_pfit_enable(crtc);
3267                 else if (old_crtc_state->pch_pfit.enabled)
3268                         ironlake_pfit_disable(crtc, true);
3269         }
3270 }
3271
3272 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3273 {
3274         struct drm_device *dev = crtc->dev;
3275         struct drm_i915_private *dev_priv = dev->dev_private;
3276         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3277         int pipe = intel_crtc->pipe;
3278         i915_reg_t reg;
3279         u32 temp;
3280
3281         /* enable normal train */
3282         reg = FDI_TX_CTL(pipe);
3283         temp = I915_READ(reg);
3284         if (IS_IVYBRIDGE(dev)) {
3285                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3286                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3287         } else {
3288                 temp &= ~FDI_LINK_TRAIN_NONE;
3289                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3290         }
3291         I915_WRITE(reg, temp);
3292
3293         reg = FDI_RX_CTL(pipe);
3294         temp = I915_READ(reg);
3295         if (HAS_PCH_CPT(dev)) {
3296                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3297                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3298         } else {
3299                 temp &= ~FDI_LINK_TRAIN_NONE;
3300                 temp |= FDI_LINK_TRAIN_NONE;
3301         }
3302         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3303
3304         /* wait one idle pattern time */
3305         POSTING_READ(reg);
3306         udelay(1000);
3307
3308         /* IVB wants error correction enabled */
3309         if (IS_IVYBRIDGE(dev))
3310                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3311                            FDI_FE_ERRC_ENABLE);
3312 }
3313
3314 /* The FDI link training functions for ILK/Ibexpeak. */
3315 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3316 {
3317         struct drm_device *dev = crtc->dev;
3318         struct drm_i915_private *dev_priv = dev->dev_private;
3319         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3320         int pipe = intel_crtc->pipe;
3321         i915_reg_t reg;
3322         u32 temp, tries;
3323
3324         /* FDI needs bits from pipe first */
3325         assert_pipe_enabled(dev_priv, pipe);
3326
3327         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3328            for train result */
3329         reg = FDI_RX_IMR(pipe);
3330         temp = I915_READ(reg);
3331         temp &= ~FDI_RX_SYMBOL_LOCK;
3332         temp &= ~FDI_RX_BIT_LOCK;
3333         I915_WRITE(reg, temp);
3334         I915_READ(reg);
3335         udelay(150);
3336
3337         /* enable CPU FDI TX and PCH FDI RX */
3338         reg = FDI_TX_CTL(pipe);
3339         temp = I915_READ(reg);
3340         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3341         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3342         temp &= ~FDI_LINK_TRAIN_NONE;
3343         temp |= FDI_LINK_TRAIN_PATTERN_1;
3344         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3345
3346         reg = FDI_RX_CTL(pipe);
3347         temp = I915_READ(reg);
3348         temp &= ~FDI_LINK_TRAIN_NONE;
3349         temp |= FDI_LINK_TRAIN_PATTERN_1;
3350         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3351
3352         POSTING_READ(reg);
3353         udelay(150);
3354
3355         /* Ironlake workaround, enable clock pointer after FDI enable*/
3356         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3357         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3358                    FDI_RX_PHASE_SYNC_POINTER_EN);
3359
3360         reg = FDI_RX_IIR(pipe);
3361         for (tries = 0; tries < 5; tries++) {
3362                 temp = I915_READ(reg);
3363                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3364
3365                 if ((temp & FDI_RX_BIT_LOCK)) {
3366                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3367                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3368                         break;
3369                 }
3370         }
3371         if (tries == 5)
3372                 DRM_ERROR("FDI train 1 fail!\n");
3373
3374         /* Train 2 */
3375         reg = FDI_TX_CTL(pipe);
3376         temp = I915_READ(reg);
3377         temp &= ~FDI_LINK_TRAIN_NONE;
3378         temp |= FDI_LINK_TRAIN_PATTERN_2;
3379         I915_WRITE(reg, temp);
3380
3381         reg = FDI_RX_CTL(pipe);
3382         temp = I915_READ(reg);
3383         temp &= ~FDI_LINK_TRAIN_NONE;
3384         temp |= FDI_LINK_TRAIN_PATTERN_2;
3385         I915_WRITE(reg, temp);
3386
3387         POSTING_READ(reg);
3388         udelay(150);
3389
3390         reg = FDI_RX_IIR(pipe);
3391         for (tries = 0; tries < 5; tries++) {
3392                 temp = I915_READ(reg);
3393                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3394
3395                 if (temp & FDI_RX_SYMBOL_LOCK) {
3396                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3397                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3398                         break;
3399                 }
3400         }
3401         if (tries == 5)
3402                 DRM_ERROR("FDI train 2 fail!\n");
3403
3404         DRM_DEBUG_KMS("FDI train done\n");
3405
3406 }
3407
3408 static const int snb_b_fdi_train_param[] = {
3409         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3410         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3411         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3412         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3413 };
3414
3415 /* The FDI link training functions for SNB/Cougarpoint. */
3416 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3417 {
3418         struct drm_device *dev = crtc->dev;
3419         struct drm_i915_private *dev_priv = dev->dev_private;
3420         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3421         int pipe = intel_crtc->pipe;
3422         i915_reg_t reg;
3423         u32 temp, i, retry;
3424
3425         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3426            for train result */
3427         reg = FDI_RX_IMR(pipe);
3428         temp = I915_READ(reg);
3429         temp &= ~FDI_RX_SYMBOL_LOCK;
3430         temp &= ~FDI_RX_BIT_LOCK;
3431         I915_WRITE(reg, temp);
3432
3433         POSTING_READ(reg);
3434         udelay(150);
3435
3436         /* enable CPU FDI TX and PCH FDI RX */
3437         reg = FDI_TX_CTL(pipe);
3438         temp = I915_READ(reg);
3439         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3440         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3441         temp &= ~FDI_LINK_TRAIN_NONE;
3442         temp |= FDI_LINK_TRAIN_PATTERN_1;
3443         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3444         /* SNB-B */
3445         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3446         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3447
3448         I915_WRITE(FDI_RX_MISC(pipe),
3449                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3450
3451         reg = FDI_RX_CTL(pipe);
3452         temp = I915_READ(reg);
3453         if (HAS_PCH_CPT(dev)) {
3454                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3455                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3456         } else {
3457                 temp &= ~FDI_LINK_TRAIN_NONE;
3458                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3459         }
3460         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3461
3462         POSTING_READ(reg);
3463         udelay(150);
3464
3465         for (i = 0; i < 4; i++) {
3466                 reg = FDI_TX_CTL(pipe);
3467                 temp = I915_READ(reg);
3468                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3469                 temp |= snb_b_fdi_train_param[i];
3470                 I915_WRITE(reg, temp);
3471
3472                 POSTING_READ(reg);
3473                 udelay(500);
3474
3475                 for (retry = 0; retry < 5; retry++) {
3476                         reg = FDI_RX_IIR(pipe);
3477                         temp = I915_READ(reg);
3478                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3479                         if (temp & FDI_RX_BIT_LOCK) {
3480                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3481                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3482                                 break;
3483                         }
3484                         udelay(50);
3485                 }
3486                 if (retry < 5)
3487                         break;
3488         }
3489         if (i == 4)
3490                 DRM_ERROR("FDI train 1 fail!\n");
3491
3492         /* Train 2 */
3493         reg = FDI_TX_CTL(pipe);
3494         temp = I915_READ(reg);
3495         temp &= ~FDI_LINK_TRAIN_NONE;
3496         temp |= FDI_LINK_TRAIN_PATTERN_2;
3497         if (IS_GEN6(dev)) {
3498                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3499                 /* SNB-B */
3500                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3501         }
3502         I915_WRITE(reg, temp);
3503
3504         reg = FDI_RX_CTL(pipe);
3505         temp = I915_READ(reg);
3506         if (HAS_PCH_CPT(dev)) {
3507                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3508                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3509         } else {
3510                 temp &= ~FDI_LINK_TRAIN_NONE;
3511                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3512         }
3513         I915_WRITE(reg, temp);
3514
3515         POSTING_READ(reg);
3516         udelay(150);
3517
3518         for (i = 0; i < 4; i++) {
3519                 reg = FDI_TX_CTL(pipe);
3520                 temp = I915_READ(reg);
3521                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3522                 temp |= snb_b_fdi_train_param[i];
3523                 I915_WRITE(reg, temp);
3524
3525                 POSTING_READ(reg);
3526                 udelay(500);
3527
3528                 for (retry = 0; retry < 5; retry++) {
3529                         reg = FDI_RX_IIR(pipe);
3530                         temp = I915_READ(reg);
3531                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3532                         if (temp & FDI_RX_SYMBOL_LOCK) {
3533                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3534                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3535                                 break;
3536                         }
3537                         udelay(50);
3538                 }
3539                 if (retry < 5)
3540                         break;
3541         }
3542         if (i == 4)
3543                 DRM_ERROR("FDI train 2 fail!\n");
3544
3545         DRM_DEBUG_KMS("FDI train done.\n");
3546 }
3547
3548 /* Manual link training for Ivy Bridge A0 parts */
3549 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3550 {
3551         struct drm_device *dev = crtc->dev;
3552         struct drm_i915_private *dev_priv = dev->dev_private;
3553         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3554         int pipe = intel_crtc->pipe;
3555         i915_reg_t reg;
3556         u32 temp, i, j;
3557
3558         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3559            for train result */
3560         reg = FDI_RX_IMR(pipe);
3561         temp = I915_READ(reg);
3562         temp &= ~FDI_RX_SYMBOL_LOCK;
3563         temp &= ~FDI_RX_BIT_LOCK;
3564         I915_WRITE(reg, temp);
3565
3566         POSTING_READ(reg);
3567         udelay(150);
3568
3569         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3570                       I915_READ(FDI_RX_IIR(pipe)));
3571
3572         /* Try each vswing and preemphasis setting twice before moving on */
3573         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3574                 /* disable first in case we need to retry */
3575                 reg = FDI_TX_CTL(pipe);
3576                 temp = I915_READ(reg);
3577                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3578                 temp &= ~FDI_TX_ENABLE;
3579                 I915_WRITE(reg, temp);
3580
3581                 reg = FDI_RX_CTL(pipe);
3582                 temp = I915_READ(reg);
3583                 temp &= ~FDI_LINK_TRAIN_AUTO;
3584                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3585                 temp &= ~FDI_RX_ENABLE;
3586                 I915_WRITE(reg, temp);
3587
3588                 /* enable CPU FDI TX and PCH FDI RX */
3589                 reg = FDI_TX_CTL(pipe);
3590                 temp = I915_READ(reg);
3591                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3592                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3593                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3594                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3595                 temp |= snb_b_fdi_train_param[j/2];
3596                 temp |= FDI_COMPOSITE_SYNC;
3597                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3598
3599                 I915_WRITE(FDI_RX_MISC(pipe),
3600                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3601
3602                 reg = FDI_RX_CTL(pipe);
3603                 temp = I915_READ(reg);
3604                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3605                 temp |= FDI_COMPOSITE_SYNC;
3606                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3607
3608                 POSTING_READ(reg);
3609                 udelay(1); /* should be 0.5us */
3610
3611                 for (i = 0; i < 4; i++) {
3612                         reg = FDI_RX_IIR(pipe);
3613                         temp = I915_READ(reg);
3614                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3615
3616                         if (temp & FDI_RX_BIT_LOCK ||
3617                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3618                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3619                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3620                                               i);
3621                                 break;
3622                         }
3623                         udelay(1); /* should be 0.5us */
3624                 }
3625                 if (i == 4) {
3626                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3627                         continue;
3628                 }
3629
3630                 /* Train 2 */
3631                 reg = FDI_TX_CTL(pipe);
3632                 temp = I915_READ(reg);
3633                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3634                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3635                 I915_WRITE(reg, temp);
3636
3637                 reg = FDI_RX_CTL(pipe);
3638                 temp = I915_READ(reg);
3639                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3640                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3641                 I915_WRITE(reg, temp);
3642
3643                 POSTING_READ(reg);
3644                 udelay(2); /* should be 1.5us */
3645
3646                 for (i = 0; i < 4; i++) {
3647                         reg = FDI_RX_IIR(pipe);
3648                         temp = I915_READ(reg);
3649                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3650
3651                         if (temp & FDI_RX_SYMBOL_LOCK ||
3652                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3653                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3654                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3655                                               i);
3656                                 goto train_done;
3657                         }
3658                         udelay(2); /* should be 1.5us */
3659                 }
3660                 if (i == 4)
3661                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3662         }
3663
3664 train_done:
3665         DRM_DEBUG_KMS("FDI train done.\n");
3666 }
3667
3668 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3669 {
3670         struct drm_device *dev = intel_crtc->base.dev;
3671         struct drm_i915_private *dev_priv = dev->dev_private;
3672         int pipe = intel_crtc->pipe;
3673         i915_reg_t reg;
3674         u32 temp;
3675
3676         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3677         reg = FDI_RX_CTL(pipe);
3678         temp = I915_READ(reg);
3679         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3680         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3681         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3682         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3683
3684         POSTING_READ(reg);
3685         udelay(200);
3686
3687         /* Switch from Rawclk to PCDclk */
3688         temp = I915_READ(reg);
3689         I915_WRITE(reg, temp | FDI_PCDCLK);
3690
3691         POSTING_READ(reg);
3692         udelay(200);
3693
3694         /* Enable CPU FDI TX PLL, always on for Ironlake */
3695         reg = FDI_TX_CTL(pipe);
3696         temp = I915_READ(reg);
3697         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3698                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3699
3700                 POSTING_READ(reg);
3701                 udelay(100);
3702         }
3703 }
3704
3705 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3706 {
3707         struct drm_device *dev = intel_crtc->base.dev;
3708         struct drm_i915_private *dev_priv = dev->dev_private;
3709         int pipe = intel_crtc->pipe;
3710         i915_reg_t reg;
3711         u32 temp;
3712
3713         /* Switch from PCDclk to Rawclk */
3714         reg = FDI_RX_CTL(pipe);
3715         temp = I915_READ(reg);
3716         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3717
3718         /* Disable CPU FDI TX PLL */
3719         reg = FDI_TX_CTL(pipe);
3720         temp = I915_READ(reg);
3721         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3722
3723         POSTING_READ(reg);
3724         udelay(100);
3725
3726         reg = FDI_RX_CTL(pipe);
3727         temp = I915_READ(reg);
3728         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3729
3730         /* Wait for the clocks to turn off. */
3731         POSTING_READ(reg);
3732         udelay(100);
3733 }
3734
3735 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3736 {
3737         struct drm_device *dev = crtc->dev;
3738         struct drm_i915_private *dev_priv = dev->dev_private;
3739         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3740         int pipe = intel_crtc->pipe;
3741         i915_reg_t reg;
3742         u32 temp;
3743
3744         /* disable CPU FDI tx and PCH FDI rx */
3745         reg = FDI_TX_CTL(pipe);
3746         temp = I915_READ(reg);
3747         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3748         POSTING_READ(reg);
3749
3750         reg = FDI_RX_CTL(pipe);
3751         temp = I915_READ(reg);
3752         temp &= ~(0x7 << 16);
3753         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3754         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3755
3756         POSTING_READ(reg);
3757         udelay(100);
3758
3759         /* Ironlake workaround, disable clock pointer after downing FDI */
3760         if (HAS_PCH_IBX(dev))
3761                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3762
3763         /* still set train pattern 1 */
3764         reg = FDI_TX_CTL(pipe);
3765         temp = I915_READ(reg);
3766         temp &= ~FDI_LINK_TRAIN_NONE;
3767         temp |= FDI_LINK_TRAIN_PATTERN_1;
3768         I915_WRITE(reg, temp);
3769
3770         reg = FDI_RX_CTL(pipe);
3771         temp = I915_READ(reg);
3772         if (HAS_PCH_CPT(dev)) {
3773                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3774                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3775         } else {
3776                 temp &= ~FDI_LINK_TRAIN_NONE;
3777                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3778         }
3779         /* BPC in FDI rx is consistent with that in PIPECONF */
3780         temp &= ~(0x07 << 16);
3781         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3782         I915_WRITE(reg, temp);
3783
3784         POSTING_READ(reg);
3785         udelay(100);
3786 }
3787
3788 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3789 {
3790         struct intel_crtc *crtc;
3791
3792         /* Note that we don't need to be called with mode_config.lock here
3793          * as our list of CRTC objects is static for the lifetime of the
3794          * device and so cannot disappear as we iterate. Similarly, we can
3795          * happily treat the predicates as racy, atomic checks as userspace
3796          * cannot claim and pin a new fb without at least acquring the
3797          * struct_mutex and so serialising with us.
3798          */
3799         for_each_intel_crtc(dev, crtc) {
3800                 if (atomic_read(&crtc->unpin_work_count) == 0)
3801                         continue;
3802
3803                 if (crtc->flip_work)
3804                         intel_wait_for_vblank(dev, crtc->pipe);
3805
3806                 return true;
3807         }
3808
3809         return false;
3810 }
3811
3812 static void page_flip_completed(struct intel_crtc *intel_crtc)
3813 {
3814         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3815         struct intel_flip_work *work = intel_crtc->flip_work;
3816
3817         intel_crtc->flip_work = NULL;
3818
3819         if (work->event)
3820                 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
3821
3822         drm_crtc_vblank_put(&intel_crtc->base);
3823
3824         wake_up_all(&dev_priv->pending_flip_queue);
3825         queue_work(dev_priv->wq, &work->unpin_work);
3826
3827         trace_i915_flip_complete(intel_crtc->plane,
3828                                  work->pending_flip_obj);
3829 }
3830
3831 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3832 {
3833         struct drm_device *dev = crtc->dev;
3834         struct drm_i915_private *dev_priv = dev->dev_private;
3835         long ret;
3836
3837         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3838
3839         ret = wait_event_interruptible_timeout(
3840                                         dev_priv->pending_flip_queue,
3841                                         !intel_crtc_has_pending_flip(crtc),
3842                                         60*HZ);
3843
3844         if (ret < 0)
3845                 return ret;
3846
3847         if (ret == 0) {
3848                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3849                 struct intel_flip_work *work;
3850
3851                 spin_lock_irq(&dev->event_lock);
3852                 work = intel_crtc->flip_work;
3853                 if (work && !is_mmio_work(work)) {
3854                         WARN_ONCE(1, "Removing stuck page flip\n");
3855                         page_flip_completed(intel_crtc);
3856                 }
3857                 spin_unlock_irq(&dev->event_lock);
3858         }
3859
3860         return 0;
3861 }
3862
3863 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3864 {
3865         u32 temp;
3866
3867         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3868
3869         mutex_lock(&dev_priv->sb_lock);
3870
3871         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3872         temp |= SBI_SSCCTL_DISABLE;
3873         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3874
3875         mutex_unlock(&dev_priv->sb_lock);
3876 }
3877
3878 /* Program iCLKIP clock to the desired frequency */
3879 static void lpt_program_iclkip(struct drm_crtc *crtc)
3880 {
3881         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3882         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3883         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3884         u32 temp;
3885
3886         lpt_disable_iclkip(dev_priv);
3887
3888         /* The iCLK virtual clock root frequency is in MHz,
3889          * but the adjusted_mode->crtc_clock in in KHz. To get the
3890          * divisors, it is necessary to divide one by another, so we
3891          * convert the virtual clock precision to KHz here for higher
3892          * precision.
3893          */
3894         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
3895                 u32 iclk_virtual_root_freq = 172800 * 1000;
3896                 u32 iclk_pi_range = 64;
3897                 u32 desired_divisor;
3898
3899                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3900                                                     clock << auxdiv);
3901                 divsel = (desired_divisor / iclk_pi_range) - 2;
3902                 phaseinc = desired_divisor % iclk_pi_range;
3903
3904                 /*
3905                  * Near 20MHz is a corner case which is
3906                  * out of range for the 7-bit divisor
3907                  */
3908                 if (divsel <= 0x7f)
3909                         break;
3910         }
3911
3912         /* This should not happen with any sane values */
3913         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3914                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3915         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3916                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3917
3918         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3919                         clock,
3920                         auxdiv,
3921                         divsel,
3922                         phasedir,
3923                         phaseinc);
3924
3925         mutex_lock(&dev_priv->sb_lock);
3926
3927         /* Program SSCDIVINTPHASE6 */
3928         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3929         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3930         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3931         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3932         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3933         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3934         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3935         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3936
3937         /* Program SSCAUXDIV */
3938         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3939         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3940         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3941         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3942
3943         /* Enable modulator and associated divider */
3944         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3945         temp &= ~SBI_SSCCTL_DISABLE;
3946         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3947
3948         mutex_unlock(&dev_priv->sb_lock);
3949
3950         /* Wait for initialization time */
3951         udelay(24);
3952
3953         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3954 }
3955
3956 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3957 {
3958         u32 divsel, phaseinc, auxdiv;
3959         u32 iclk_virtual_root_freq = 172800 * 1000;
3960         u32 iclk_pi_range = 64;
3961         u32 desired_divisor;
3962         u32 temp;
3963
3964         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3965                 return 0;
3966
3967         mutex_lock(&dev_priv->sb_lock);
3968
3969         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3970         if (temp & SBI_SSCCTL_DISABLE) {
3971                 mutex_unlock(&dev_priv->sb_lock);
3972                 return 0;
3973         }
3974
3975         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3976         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
3977                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
3978         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
3979                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
3980
3981         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3982         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
3983                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
3984
3985         mutex_unlock(&dev_priv->sb_lock);
3986
3987         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
3988
3989         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3990                                  desired_divisor << auxdiv);
3991 }
3992
3993 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3994                                                 enum pipe pch_transcoder)
3995 {
3996         struct drm_device *dev = crtc->base.dev;
3997         struct drm_i915_private *dev_priv = dev->dev_private;
3998         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3999
4000         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4001                    I915_READ(HTOTAL(cpu_transcoder)));
4002         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4003                    I915_READ(HBLANK(cpu_transcoder)));
4004         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4005                    I915_READ(HSYNC(cpu_transcoder)));
4006
4007         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4008                    I915_READ(VTOTAL(cpu_transcoder)));
4009         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4010                    I915_READ(VBLANK(cpu_transcoder)));
4011         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4012                    I915_READ(VSYNC(cpu_transcoder)));
4013         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4014                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4015 }
4016
4017 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4018 {
4019         struct drm_i915_private *dev_priv = dev->dev_private;
4020         uint32_t temp;
4021
4022         temp = I915_READ(SOUTH_CHICKEN1);
4023         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4024                 return;
4025
4026         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4027         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4028
4029         temp &= ~FDI_BC_BIFURCATION_SELECT;
4030         if (enable)
4031                 temp |= FDI_BC_BIFURCATION_SELECT;
4032
4033         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4034         I915_WRITE(SOUTH_CHICKEN1, temp);
4035         POSTING_READ(SOUTH_CHICKEN1);
4036 }
4037
4038 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4039 {
4040         struct drm_device *dev = intel_crtc->base.dev;
4041
4042         switch (intel_crtc->pipe) {
4043         case PIPE_A:
4044                 break;
4045         case PIPE_B:
4046                 if (intel_crtc->config->fdi_lanes > 2)
4047                         cpt_set_fdi_bc_bifurcation(dev, false);
4048                 else
4049                         cpt_set_fdi_bc_bifurcation(dev, true);
4050
4051                 break;
4052         case PIPE_C:
4053                 cpt_set_fdi_bc_bifurcation(dev, true);
4054
4055                 break;
4056         default:
4057                 BUG();
4058         }
4059 }
4060
4061 /* Return which DP Port should be selected for Transcoder DP control */
4062 static enum port
4063 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4064 {
4065         struct drm_device *dev = crtc->dev;
4066         struct intel_encoder *encoder;
4067
4068         for_each_encoder_on_crtc(dev, crtc, encoder) {
4069                 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4070                     encoder->type == INTEL_OUTPUT_EDP)
4071                         return enc_to_dig_port(&encoder->base)->port;
4072         }
4073
4074         return -1;
4075 }
4076
4077 /*
4078  * Enable PCH resources required for PCH ports:
4079  *   - PCH PLLs
4080  *   - FDI training & RX/TX
4081  *   - update transcoder timings
4082  *   - DP transcoding bits
4083  *   - transcoder
4084  */
4085 static void ironlake_pch_enable(struct drm_crtc *crtc)
4086 {
4087         struct drm_device *dev = crtc->dev;
4088         struct drm_i915_private *dev_priv = dev->dev_private;
4089         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4090         int pipe = intel_crtc->pipe;
4091         u32 temp;
4092
4093         assert_pch_transcoder_disabled(dev_priv, pipe);
4094
4095         if (IS_IVYBRIDGE(dev))
4096                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4097
4098         /* Write the TU size bits before fdi link training, so that error
4099          * detection works. */
4100         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4101                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4102
4103         /* For PCH output, training FDI link */
4104         dev_priv->display.fdi_link_train(crtc);
4105
4106         /* We need to program the right clock selection before writing the pixel
4107          * mutliplier into the DPLL. */
4108         if (HAS_PCH_CPT(dev)) {
4109                 u32 sel;
4110
4111                 temp = I915_READ(PCH_DPLL_SEL);
4112                 temp |= TRANS_DPLL_ENABLE(pipe);
4113                 sel = TRANS_DPLLB_SEL(pipe);
4114                 if (intel_crtc->config->shared_dpll ==
4115                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4116                         temp |= sel;
4117                 else
4118                         temp &= ~sel;
4119                 I915_WRITE(PCH_DPLL_SEL, temp);
4120         }
4121
4122         /* XXX: pch pll's can be enabled any time before we enable the PCH
4123          * transcoder, and we actually should do this to not upset any PCH
4124          * transcoder that already use the clock when we share it.
4125          *
4126          * Note that enable_shared_dpll tries to do the right thing, but
4127          * get_shared_dpll unconditionally resets the pll - we need that to have
4128          * the right LVDS enable sequence. */
4129         intel_enable_shared_dpll(intel_crtc);
4130
4131         /* set transcoder timing, panel must allow it */
4132         assert_panel_unlocked(dev_priv, pipe);
4133         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4134
4135         intel_fdi_normal_train(crtc);
4136
4137         /* For PCH DP, enable TRANS_DP_CTL */
4138         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4139                 const struct drm_display_mode *adjusted_mode =
4140                         &intel_crtc->config->base.adjusted_mode;
4141                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4142                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4143                 temp = I915_READ(reg);
4144                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4145                           TRANS_DP_SYNC_MASK |
4146                           TRANS_DP_BPC_MASK);
4147                 temp |= TRANS_DP_OUTPUT_ENABLE;
4148                 temp |= bpc << 9; /* same format but at 11:9 */
4149
4150                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4151                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4152                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4153                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4154
4155                 switch (intel_trans_dp_port_sel(crtc)) {
4156                 case PORT_B:
4157                         temp |= TRANS_DP_PORT_SEL_B;
4158                         break;
4159                 case PORT_C:
4160                         temp |= TRANS_DP_PORT_SEL_C;
4161                         break;
4162                 case PORT_D:
4163                         temp |= TRANS_DP_PORT_SEL_D;
4164                         break;
4165                 default:
4166                         BUG();
4167                 }
4168
4169                 I915_WRITE(reg, temp);
4170         }
4171
4172         ironlake_enable_pch_transcoder(dev_priv, pipe);
4173 }
4174
4175 static void lpt_pch_enable(struct drm_crtc *crtc)
4176 {
4177         struct drm_device *dev = crtc->dev;
4178         struct drm_i915_private *dev_priv = dev->dev_private;
4179         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4180         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4181
4182         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4183
4184         lpt_program_iclkip(crtc);
4185
4186         /* Set transcoder timing. */
4187         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4188
4189         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4190 }
4191
4192 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4193 {
4194         struct drm_i915_private *dev_priv = dev->dev_private;
4195         i915_reg_t dslreg = PIPEDSL(pipe);
4196         u32 temp;
4197
4198         temp = I915_READ(dslreg);
4199         udelay(500);
4200         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4201                 if (wait_for(I915_READ(dslreg) != temp, 5))
4202                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4203         }
4204 }
4205
4206 static int
4207 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4208                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4209                   int src_w, int src_h, int dst_w, int dst_h)
4210 {
4211         struct intel_crtc_scaler_state *scaler_state =
4212                 &crtc_state->scaler_state;
4213         struct intel_crtc *intel_crtc =
4214                 to_intel_crtc(crtc_state->base.crtc);
4215         int need_scaling;
4216
4217         need_scaling = intel_rotation_90_or_270(rotation) ?
4218                 (src_h != dst_w || src_w != dst_h):
4219                 (src_w != dst_w || src_h != dst_h);
4220
4221         /*
4222          * if plane is being disabled or scaler is no more required or force detach
4223          *  - free scaler binded to this plane/crtc
4224          *  - in order to do this, update crtc->scaler_usage
4225          *
4226          * Here scaler state in crtc_state is set free so that
4227          * scaler can be assigned to other user. Actual register
4228          * update to free the scaler is done in plane/panel-fit programming.
4229          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4230          */
4231         if (force_detach || !need_scaling) {
4232                 if (*scaler_id >= 0) {
4233                         scaler_state->scaler_users &= ~(1 << scaler_user);
4234                         scaler_state->scalers[*scaler_id].in_use = 0;
4235
4236                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4237                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4238                                 intel_crtc->pipe, scaler_user, *scaler_id,
4239                                 scaler_state->scaler_users);
4240                         *scaler_id = -1;
4241                 }
4242                 return 0;
4243         }
4244
4245         /* range checks */
4246         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4247                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4248
4249                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4250                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4251                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4252                         "size is out of scaler range\n",
4253                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4254                 return -EINVAL;
4255         }
4256
4257         /* mark this plane as a scaler user in crtc_state */
4258         scaler_state->scaler_users |= (1 << scaler_user);
4259         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4260                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4261                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4262                 scaler_state->scaler_users);
4263
4264         return 0;
4265 }
4266
4267 /**
4268  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4269  *
4270  * @state: crtc's scaler state
4271  *
4272  * Return
4273  *     0 - scaler_usage updated successfully
4274  *    error - requested scaling cannot be supported or other error condition
4275  */
4276 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4277 {
4278         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4279         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4280
4281         DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n",
4282                       intel_crtc->base.base.id, intel_crtc->base.name,
4283                       intel_crtc->pipe, SKL_CRTC_INDEX);
4284
4285         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4286                 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4287                 state->pipe_src_w, state->pipe_src_h,
4288                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4289 }
4290
4291 /**
4292  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4293  *
4294  * @state: crtc's scaler state
4295  * @plane_state: atomic plane state to update
4296  *
4297  * Return
4298  *     0 - scaler_usage updated successfully
4299  *    error - requested scaling cannot be supported or other error condition
4300  */
4301 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4302                                    struct intel_plane_state *plane_state)
4303 {
4304
4305         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4306         struct intel_plane *intel_plane =
4307                 to_intel_plane(plane_state->base.plane);
4308         struct drm_framebuffer *fb = plane_state->base.fb;
4309         int ret;
4310
4311         bool force_detach = !fb || !plane_state->visible;
4312
4313         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n",
4314                       intel_plane->base.base.id, intel_plane->base.name,
4315                       intel_crtc->pipe, drm_plane_index(&intel_plane->base));
4316
4317         ret = skl_update_scaler(crtc_state, force_detach,
4318                                 drm_plane_index(&intel_plane->base),
4319                                 &plane_state->scaler_id,
4320                                 plane_state->base.rotation,
4321                                 drm_rect_width(&plane_state->src) >> 16,
4322                                 drm_rect_height(&plane_state->src) >> 16,
4323                                 drm_rect_width(&plane_state->dst),
4324                                 drm_rect_height(&plane_state->dst));
4325
4326         if (ret || plane_state->scaler_id < 0)
4327                 return ret;
4328
4329         /* check colorkey */
4330         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4331                 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4332                               intel_plane->base.base.id,
4333                               intel_plane->base.name);
4334                 return -EINVAL;
4335         }
4336
4337         /* Check src format */
4338         switch (fb->pixel_format) {
4339         case DRM_FORMAT_RGB565:
4340         case DRM_FORMAT_XBGR8888:
4341         case DRM_FORMAT_XRGB8888:
4342         case DRM_FORMAT_ABGR8888:
4343         case DRM_FORMAT_ARGB8888:
4344         case DRM_FORMAT_XRGB2101010:
4345         case DRM_FORMAT_XBGR2101010:
4346         case DRM_FORMAT_YUYV:
4347         case DRM_FORMAT_YVYU:
4348         case DRM_FORMAT_UYVY:
4349         case DRM_FORMAT_VYUY:
4350                 break;
4351         default:
4352                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4353                               intel_plane->base.base.id, intel_plane->base.name,
4354                               fb->base.id, fb->pixel_format);
4355                 return -EINVAL;
4356         }
4357
4358         return 0;
4359 }
4360
4361 static void skylake_scaler_disable(struct intel_crtc *crtc)
4362 {
4363         int i;
4364
4365         for (i = 0; i < crtc->num_scalers; i++)
4366                 skl_detach_scaler(crtc, i);
4367 }
4368
4369 static void skylake_pfit_enable(struct intel_crtc *crtc)
4370 {
4371         struct drm_device *dev = crtc->base.dev;
4372         struct drm_i915_private *dev_priv = dev->dev_private;
4373         int pipe = crtc->pipe;
4374         struct intel_crtc_scaler_state *scaler_state =
4375                 &crtc->config->scaler_state;
4376
4377         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4378
4379         if (crtc->config->pch_pfit.enabled) {
4380                 int id;
4381
4382                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4383                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4384                         return;
4385                 }
4386
4387                 id = scaler_state->scaler_id;
4388                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4389                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4390                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4391                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4392
4393                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4394         }
4395 }
4396
4397 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4398 {
4399         struct drm_device *dev = crtc->base.dev;
4400         struct drm_i915_private *dev_priv = dev->dev_private;
4401         int pipe = crtc->pipe;
4402
4403         if (crtc->config->pch_pfit.enabled) {
4404                 /* Force use of hard-coded filter coefficients
4405                  * as some pre-programmed values are broken,
4406                  * e.g. x201.
4407                  */
4408                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4409                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4410                                                  PF_PIPE_SEL_IVB(pipe));
4411                 else
4412                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4413                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4414                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4415         }
4416 }
4417
4418 void hsw_enable_ips(struct intel_crtc *crtc)
4419 {
4420         struct drm_device *dev = crtc->base.dev;
4421         struct drm_i915_private *dev_priv = dev->dev_private;
4422
4423         if (!crtc->config->ips_enabled)
4424                 return;
4425
4426         /*
4427          * We can only enable IPS after we enable a plane and wait for a vblank
4428          * This function is called from post_plane_update, which is run after
4429          * a vblank wait.
4430          */
4431
4432         assert_plane_enabled(dev_priv, crtc->plane);
4433         if (IS_BROADWELL(dev)) {
4434                 mutex_lock(&dev_priv->rps.hw_lock);
4435                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4436                 mutex_unlock(&dev_priv->rps.hw_lock);
4437                 /* Quoting Art Runyan: "its not safe to expect any particular
4438                  * value in IPS_CTL bit 31 after enabling IPS through the
4439                  * mailbox." Moreover, the mailbox may return a bogus state,
4440                  * so we need to just enable it and continue on.
4441                  */
4442         } else {
4443                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4444                 /* The bit only becomes 1 in the next vblank, so this wait here
4445                  * is essentially intel_wait_for_vblank. If we don't have this
4446                  * and don't wait for vblanks until the end of crtc_enable, then
4447                  * the HW state readout code will complain that the expected
4448                  * IPS_CTL value is not the one we read. */
4449                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4450                         DRM_ERROR("Timed out waiting for IPS enable\n");
4451         }
4452 }
4453
4454 void hsw_disable_ips(struct intel_crtc *crtc)
4455 {
4456         struct drm_device *dev = crtc->base.dev;
4457         struct drm_i915_private *dev_priv = dev->dev_private;
4458
4459         if (!crtc->config->ips_enabled)
4460                 return;
4461
4462         assert_plane_enabled(dev_priv, crtc->plane);
4463         if (IS_BROADWELL(dev)) {
4464                 mutex_lock(&dev_priv->rps.hw_lock);
4465                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4466                 mutex_unlock(&dev_priv->rps.hw_lock);
4467                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4468                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4469                         DRM_ERROR("Timed out waiting for IPS disable\n");
4470         } else {
4471                 I915_WRITE(IPS_CTL, 0);
4472                 POSTING_READ(IPS_CTL);
4473         }
4474
4475         /* We need to wait for a vblank before we can disable the plane. */
4476         intel_wait_for_vblank(dev, crtc->pipe);
4477 }
4478
4479 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4480 {
4481         if (intel_crtc->overlay) {
4482                 struct drm_device *dev = intel_crtc->base.dev;
4483                 struct drm_i915_private *dev_priv = dev->dev_private;
4484
4485                 mutex_lock(&dev->struct_mutex);
4486                 dev_priv->mm.interruptible = false;
4487                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4488                 dev_priv->mm.interruptible = true;
4489                 mutex_unlock(&dev->struct_mutex);
4490         }
4491
4492         /* Let userspace switch the overlay on again. In most cases userspace
4493          * has to recompute where to put it anyway.
4494          */
4495 }
4496
4497 /**
4498  * intel_post_enable_primary - Perform operations after enabling primary plane
4499  * @crtc: the CRTC whose primary plane was just enabled
4500  *
4501  * Performs potentially sleeping operations that must be done after the primary
4502  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4503  * called due to an explicit primary plane update, or due to an implicit
4504  * re-enable that is caused when a sprite plane is updated to no longer
4505  * completely hide the primary plane.
4506  */
4507 static void
4508 intel_post_enable_primary(struct drm_crtc *crtc)
4509 {
4510         struct drm_device *dev = crtc->dev;
4511         struct drm_i915_private *dev_priv = dev->dev_private;
4512         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4513         int pipe = intel_crtc->pipe;
4514
4515         /*
4516          * FIXME IPS should be fine as long as one plane is
4517          * enabled, but in practice it seems to have problems
4518          * when going from primary only to sprite only and vice
4519          * versa.
4520          */
4521         hsw_enable_ips(intel_crtc);
4522
4523         /*
4524          * Gen2 reports pipe underruns whenever all planes are disabled.
4525          * So don't enable underrun reporting before at least some planes
4526          * are enabled.
4527          * FIXME: Need to fix the logic to work when we turn off all planes
4528          * but leave the pipe running.
4529          */
4530         if (IS_GEN2(dev))
4531                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4532
4533         /* Underruns don't always raise interrupts, so check manually. */
4534         intel_check_cpu_fifo_underruns(dev_priv);
4535         intel_check_pch_fifo_underruns(dev_priv);
4536 }
4537
4538 /* FIXME move all this to pre_plane_update() with proper state tracking */
4539 static void
4540 intel_pre_disable_primary(struct drm_crtc *crtc)
4541 {
4542         struct drm_device *dev = crtc->dev;
4543         struct drm_i915_private *dev_priv = dev->dev_private;
4544         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4545         int pipe = intel_crtc->pipe;
4546
4547         /*
4548          * Gen2 reports pipe underruns whenever all planes are disabled.
4549          * So diasble underrun reporting before all the planes get disabled.
4550          * FIXME: Need to fix the logic to work when we turn off all planes
4551          * but leave the pipe running.
4552          */
4553         if (IS_GEN2(dev))
4554                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4555
4556         /*
4557          * FIXME IPS should be fine as long as one plane is
4558          * enabled, but in practice it seems to have problems
4559          * when going from primary only to sprite only and vice
4560          * versa.
4561          */
4562         hsw_disable_ips(intel_crtc);
4563 }
4564
4565 /* FIXME get rid of this and use pre_plane_update */
4566 static void
4567 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4568 {
4569         struct drm_device *dev = crtc->dev;
4570         struct drm_i915_private *dev_priv = dev->dev_private;
4571         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4572         int pipe = intel_crtc->pipe;
4573
4574         intel_pre_disable_primary(crtc);
4575
4576         /*
4577          * Vblank time updates from the shadow to live plane control register
4578          * are blocked if the memory self-refresh mode is active at that
4579          * moment. So to make sure the plane gets truly disabled, disable
4580          * first the self-refresh mode. The self-refresh enable bit in turn
4581          * will be checked/applied by the HW only at the next frame start
4582          * event which is after the vblank start event, so we need to have a
4583          * wait-for-vblank between disabling the plane and the pipe.
4584          */
4585         if (HAS_GMCH_DISPLAY(dev)) {
4586                 intel_set_memory_cxsr(dev_priv, false);
4587                 dev_priv->wm.vlv.cxsr = false;
4588                 intel_wait_for_vblank(dev, pipe);
4589         }
4590 }
4591
4592 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4593 {
4594         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4595         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4596         struct intel_crtc_state *pipe_config =
4597                 to_intel_crtc_state(crtc->base.state);
4598         struct drm_device *dev = crtc->base.dev;
4599         struct drm_plane *primary = crtc->base.primary;
4600         struct drm_plane_state *old_pri_state =
4601                 drm_atomic_get_existing_plane_state(old_state, primary);
4602
4603         intel_frontbuffer_flip(dev, pipe_config->fb_bits);
4604
4605         crtc->wm.cxsr_allowed = true;
4606
4607         if (pipe_config->update_wm_post && pipe_config->base.active)
4608                 intel_update_watermarks(&crtc->base);
4609
4610         if (old_pri_state) {
4611                 struct intel_plane_state *primary_state =
4612                         to_intel_plane_state(primary->state);
4613                 struct intel_plane_state *old_primary_state =
4614                         to_intel_plane_state(old_pri_state);
4615
4616                 intel_fbc_post_update(crtc);
4617
4618                 if (primary_state->visible &&
4619                     (needs_modeset(&pipe_config->base) ||
4620                      !old_primary_state->visible))
4621                         intel_post_enable_primary(&crtc->base);
4622         }
4623 }
4624
4625 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4626 {
4627         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4628         struct drm_device *dev = crtc->base.dev;
4629         struct drm_i915_private *dev_priv = dev->dev_private;
4630         struct intel_crtc_state *pipe_config =
4631                 to_intel_crtc_state(crtc->base.state);
4632         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4633         struct drm_plane *primary = crtc->base.primary;
4634         struct drm_plane_state *old_pri_state =
4635                 drm_atomic_get_existing_plane_state(old_state, primary);
4636         bool modeset = needs_modeset(&pipe_config->base);
4637
4638         if (old_pri_state) {
4639                 struct intel_plane_state *primary_state =
4640                         to_intel_plane_state(primary->state);
4641                 struct intel_plane_state *old_primary_state =
4642                         to_intel_plane_state(old_pri_state);
4643
4644                 intel_fbc_pre_update(crtc, pipe_config, primary_state);
4645
4646                 if (old_primary_state->visible &&
4647                     (modeset || !primary_state->visible))
4648                         intel_pre_disable_primary(&crtc->base);
4649         }
4650
4651         if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev)) {
4652                 crtc->wm.cxsr_allowed = false;
4653
4654                 /*
4655                  * Vblank time updates from the shadow to live plane control register
4656                  * are blocked if the memory self-refresh mode is active at that
4657                  * moment. So to make sure the plane gets truly disabled, disable
4658                  * first the self-refresh mode. The self-refresh enable bit in turn
4659                  * will be checked/applied by the HW only at the next frame start
4660                  * event which is after the vblank start event, so we need to have a
4661                  * wait-for-vblank between disabling the plane and the pipe.
4662                  */
4663                 if (old_crtc_state->base.active) {
4664                         intel_set_memory_cxsr(dev_priv, false);
4665                         dev_priv->wm.vlv.cxsr = false;
4666                         intel_wait_for_vblank(dev, crtc->pipe);
4667                 }
4668         }
4669
4670         /*
4671          * IVB workaround: must disable low power watermarks for at least
4672          * one frame before enabling scaling.  LP watermarks can be re-enabled
4673          * when scaling is disabled.
4674          *
4675          * WaCxSRDisabledForSpriteScaling:ivb
4676          */
4677         if (pipe_config->disable_lp_wm) {
4678                 ilk_disable_lp_wm(dev);
4679                 intel_wait_for_vblank(dev, crtc->pipe);
4680         }
4681
4682         /*
4683          * If we're doing a modeset, we're done.  No need to do any pre-vblank
4684          * watermark programming here.
4685          */
4686         if (needs_modeset(&pipe_config->base))
4687                 return;
4688
4689         /*
4690          * For platforms that support atomic watermarks, program the
4691          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
4692          * will be the intermediate values that are safe for both pre- and
4693          * post- vblank; when vblank happens, the 'active' values will be set
4694          * to the final 'target' values and we'll do this again to get the
4695          * optimal watermarks.  For gen9+ platforms, the values we program here
4696          * will be the final target values which will get automatically latched
4697          * at vblank time; no further programming will be necessary.
4698          *
4699          * If a platform hasn't been transitioned to atomic watermarks yet,
4700          * we'll continue to update watermarks the old way, if flags tell
4701          * us to.
4702          */
4703         if (dev_priv->display.initial_watermarks != NULL)
4704                 dev_priv->display.initial_watermarks(pipe_config);
4705         else if (pipe_config->update_wm_pre)
4706                 intel_update_watermarks(&crtc->base);
4707 }
4708
4709 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4710 {
4711         struct drm_device *dev = crtc->dev;
4712         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4713         struct drm_plane *p;
4714         int pipe = intel_crtc->pipe;
4715
4716         intel_crtc_dpms_overlay_disable(intel_crtc);
4717
4718         drm_for_each_plane_mask(p, dev, plane_mask)
4719                 to_intel_plane(p)->disable_plane(p, crtc);
4720
4721         /*
4722          * FIXME: Once we grow proper nuclear flip support out of this we need
4723          * to compute the mask of flip planes precisely. For the time being
4724          * consider this a flip to a NULL plane.
4725          */
4726         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4727 }
4728
4729 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4730 {
4731         struct drm_device *dev = crtc->dev;
4732         struct drm_i915_private *dev_priv = dev->dev_private;
4733         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4734         struct intel_encoder *encoder;
4735         int pipe = intel_crtc->pipe;
4736         struct intel_crtc_state *pipe_config =
4737                 to_intel_crtc_state(crtc->state);
4738
4739         if (WARN_ON(intel_crtc->active))
4740                 return;
4741
4742         /*
4743          * Sometimes spurious CPU pipe underruns happen during FDI
4744          * training, at least with VGA+HDMI cloning. Suppress them.
4745          *
4746          * On ILK we get an occasional spurious CPU pipe underruns
4747          * between eDP port A enable and vdd enable. Also PCH port
4748          * enable seems to result in the occasional CPU pipe underrun.
4749          *
4750          * Spurious PCH underruns also occur during PCH enabling.
4751          */
4752         if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
4753                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4754         if (intel_crtc->config->has_pch_encoder)
4755                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4756
4757         if (intel_crtc->config->has_pch_encoder)
4758                 intel_prepare_shared_dpll(intel_crtc);
4759
4760         if (intel_crtc->config->has_dp_encoder)
4761                 intel_dp_set_m_n(intel_crtc, M1_N1);
4762
4763         intel_set_pipe_timings(intel_crtc);
4764         intel_set_pipe_src_size(intel_crtc);
4765
4766         if (intel_crtc->config->has_pch_encoder) {
4767                 intel_cpu_transcoder_set_m_n(intel_crtc,
4768                                      &intel_crtc->config->fdi_m_n, NULL);
4769         }
4770
4771         ironlake_set_pipeconf(crtc);
4772
4773         intel_crtc->active = true;
4774
4775         for_each_encoder_on_crtc(dev, crtc, encoder)
4776                 if (encoder->pre_enable)
4777                         encoder->pre_enable(encoder);
4778
4779         if (intel_crtc->config->has_pch_encoder) {
4780                 /* Note: FDI PLL enabling _must_ be done before we enable the
4781                  * cpu pipes, hence this is separate from all the other fdi/pch
4782                  * enabling. */
4783                 ironlake_fdi_pll_enable(intel_crtc);
4784         } else {
4785                 assert_fdi_tx_disabled(dev_priv, pipe);
4786                 assert_fdi_rx_disabled(dev_priv, pipe);
4787         }
4788
4789         ironlake_pfit_enable(intel_crtc);
4790
4791         /*
4792          * On ILK+ LUT must be loaded before the pipe is running but with
4793          * clocks enabled
4794          */
4795         intel_color_load_luts(&pipe_config->base);
4796
4797         if (dev_priv->display.initial_watermarks != NULL)
4798                 dev_priv->display.initial_watermarks(intel_crtc->config);
4799         intel_enable_pipe(intel_crtc);
4800
4801         if (intel_crtc->config->has_pch_encoder)
4802                 ironlake_pch_enable(crtc);
4803
4804         assert_vblank_disabled(crtc);
4805         drm_crtc_vblank_on(crtc);
4806
4807         for_each_encoder_on_crtc(dev, crtc, encoder)
4808                 encoder->enable(encoder);
4809
4810         if (HAS_PCH_CPT(dev))
4811                 cpt_verify_modeset(dev, intel_crtc->pipe);
4812
4813         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4814         if (intel_crtc->config->has_pch_encoder)
4815                 intel_wait_for_vblank(dev, pipe);
4816         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4817         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4818 }
4819
4820 /* IPS only exists on ULT machines and is tied to pipe A. */
4821 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4822 {
4823         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4824 }
4825
4826 static void haswell_crtc_enable(struct drm_crtc *crtc)
4827 {
4828         struct drm_device *dev = crtc->dev;
4829         struct drm_i915_private *dev_priv = dev->dev_private;
4830         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4831         struct intel_encoder *encoder;
4832         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4833         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4834         struct intel_crtc_state *pipe_config =
4835                 to_intel_crtc_state(crtc->state);
4836
4837         if (WARN_ON(intel_crtc->active))
4838                 return;
4839
4840         if (intel_crtc->config->has_pch_encoder)
4841                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4842                                                       false);
4843
4844         for_each_encoder_on_crtc(dev, crtc, encoder)
4845                 if (encoder->pre_pll_enable)
4846                         encoder->pre_pll_enable(encoder);
4847
4848         if (intel_crtc->config->shared_dpll)
4849                 intel_enable_shared_dpll(intel_crtc);
4850
4851         if (intel_crtc->config->has_dp_encoder)
4852                 intel_dp_set_m_n(intel_crtc, M1_N1);
4853
4854         if (!intel_crtc->config->has_dsi_encoder)
4855                 intel_set_pipe_timings(intel_crtc);
4856
4857         intel_set_pipe_src_size(intel_crtc);
4858
4859         if (cpu_transcoder != TRANSCODER_EDP &&
4860             !transcoder_is_dsi(cpu_transcoder)) {
4861                 I915_WRITE(PIPE_MULT(cpu_transcoder),
4862                            intel_crtc->config->pixel_multiplier - 1);
4863         }
4864
4865         if (intel_crtc->config->has_pch_encoder) {
4866                 intel_cpu_transcoder_set_m_n(intel_crtc,
4867                                      &intel_crtc->config->fdi_m_n, NULL);
4868         }
4869
4870         if (!intel_crtc->config->has_dsi_encoder)
4871                 haswell_set_pipeconf(crtc);
4872
4873         haswell_set_pipemisc(crtc);
4874
4875         intel_color_set_csc(&pipe_config->base);
4876
4877         intel_crtc->active = true;
4878
4879         if (intel_crtc->config->has_pch_encoder)
4880                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4881         else
4882                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4883
4884         for_each_encoder_on_crtc(dev, crtc, encoder) {
4885                 if (encoder->pre_enable)
4886                         encoder->pre_enable(encoder);
4887         }
4888
4889         if (intel_crtc->config->has_pch_encoder)
4890                 dev_priv->display.fdi_link_train(crtc);
4891
4892         if (!intel_crtc->config->has_dsi_encoder)
4893                 intel_ddi_enable_pipe_clock(intel_crtc);
4894
4895         if (INTEL_INFO(dev)->gen >= 9)
4896                 skylake_pfit_enable(intel_crtc);
4897         else
4898                 ironlake_pfit_enable(intel_crtc);
4899
4900         /*
4901          * On ILK+ LUT must be loaded before the pipe is running but with
4902          * clocks enabled
4903          */
4904         intel_color_load_luts(&pipe_config->base);
4905
4906         intel_ddi_set_pipe_settings(crtc);
4907         if (!intel_crtc->config->has_dsi_encoder)
4908                 intel_ddi_enable_transcoder_func(crtc);
4909
4910         if (dev_priv->display.initial_watermarks != NULL)
4911                 dev_priv->display.initial_watermarks(pipe_config);
4912         else
4913                 intel_update_watermarks(crtc);
4914
4915         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4916         if (!intel_crtc->config->has_dsi_encoder)
4917                 intel_enable_pipe(intel_crtc);
4918
4919         if (intel_crtc->config->has_pch_encoder)
4920                 lpt_pch_enable(crtc);
4921
4922         if (intel_crtc->config->dp_encoder_is_mst)
4923                 intel_ddi_set_vc_payload_alloc(crtc, true);
4924
4925         assert_vblank_disabled(crtc);
4926         drm_crtc_vblank_on(crtc);
4927
4928         for_each_encoder_on_crtc(dev, crtc, encoder) {
4929                 encoder->enable(encoder);
4930                 intel_opregion_notify_encoder(encoder, true);
4931         }
4932
4933         if (intel_crtc->config->has_pch_encoder) {
4934                 intel_wait_for_vblank(dev, pipe);
4935                 intel_wait_for_vblank(dev, pipe);
4936                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4937                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4938                                                       true);
4939         }
4940
4941         /* If we change the relative order between pipe/planes enabling, we need
4942          * to change the workaround. */
4943         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4944         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4945                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4946                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4947         }
4948 }
4949
4950 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4951 {
4952         struct drm_device *dev = crtc->base.dev;
4953         struct drm_i915_private *dev_priv = dev->dev_private;
4954         int pipe = crtc->pipe;
4955
4956         /* To avoid upsetting the power well on haswell only disable the pfit if
4957          * it's in use. The hw state code will make sure we get this right. */
4958         if (force || crtc->config->pch_pfit.enabled) {
4959                 I915_WRITE(PF_CTL(pipe), 0);
4960                 I915_WRITE(PF_WIN_POS(pipe), 0);
4961                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4962         }
4963 }
4964
4965 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4966 {
4967         struct drm_device *dev = crtc->dev;
4968         struct drm_i915_private *dev_priv = dev->dev_private;
4969         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4970         struct intel_encoder *encoder;
4971         int pipe = intel_crtc->pipe;
4972
4973         /*
4974          * Sometimes spurious CPU pipe underruns happen when the
4975          * pipe is already disabled, but FDI RX/TX is still enabled.
4976          * Happens at least with VGA+HDMI cloning. Suppress them.
4977          */
4978         if (intel_crtc->config->has_pch_encoder) {
4979                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4980                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4981         }
4982
4983         for_each_encoder_on_crtc(dev, crtc, encoder)
4984                 encoder->disable(encoder);
4985
4986         drm_crtc_vblank_off(crtc);
4987         assert_vblank_disabled(crtc);
4988
4989         intel_disable_pipe(intel_crtc);
4990
4991         ironlake_pfit_disable(intel_crtc, false);
4992
4993         if (intel_crtc->config->has_pch_encoder)
4994                 ironlake_fdi_disable(crtc);
4995
4996         for_each_encoder_on_crtc(dev, crtc, encoder)
4997                 if (encoder->post_disable)
4998                         encoder->post_disable(encoder);
4999
5000         if (intel_crtc->config->has_pch_encoder) {
5001                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5002
5003                 if (HAS_PCH_CPT(dev)) {
5004                         i915_reg_t reg;
5005                         u32 temp;
5006
5007                         /* disable TRANS_DP_CTL */
5008                         reg = TRANS_DP_CTL(pipe);
5009                         temp = I915_READ(reg);
5010                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5011                                   TRANS_DP_PORT_SEL_MASK);
5012                         temp |= TRANS_DP_PORT_SEL_NONE;
5013                         I915_WRITE(reg, temp);
5014
5015                         /* disable DPLL_SEL */
5016                         temp = I915_READ(PCH_DPLL_SEL);
5017                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5018                         I915_WRITE(PCH_DPLL_SEL, temp);
5019                 }
5020
5021                 ironlake_fdi_pll_disable(intel_crtc);
5022         }
5023
5024         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5025         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5026 }
5027
5028 static void haswell_crtc_disable(struct drm_crtc *crtc)
5029 {
5030         struct drm_device *dev = crtc->dev;
5031         struct drm_i915_private *dev_priv = dev->dev_private;
5032         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5033         struct intel_encoder *encoder;
5034         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5035
5036         if (intel_crtc->config->has_pch_encoder)
5037                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5038                                                       false);
5039
5040         for_each_encoder_on_crtc(dev, crtc, encoder) {
5041                 intel_opregion_notify_encoder(encoder, false);
5042                 encoder->disable(encoder);
5043         }
5044
5045         drm_crtc_vblank_off(crtc);
5046         assert_vblank_disabled(crtc);
5047
5048         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5049         if (!intel_crtc->config->has_dsi_encoder)
5050                 intel_disable_pipe(intel_crtc);
5051
5052         if (intel_crtc->config->dp_encoder_is_mst)
5053                 intel_ddi_set_vc_payload_alloc(crtc, false);
5054
5055         if (!intel_crtc->config->has_dsi_encoder)
5056                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5057
5058         if (INTEL_INFO(dev)->gen >= 9)
5059                 skylake_scaler_disable(intel_crtc);
5060         else
5061                 ironlake_pfit_disable(intel_crtc, false);
5062
5063         if (!intel_crtc->config->has_dsi_encoder)
5064                 intel_ddi_disable_pipe_clock(intel_crtc);
5065
5066         for_each_encoder_on_crtc(dev, crtc, encoder)
5067                 if (encoder->post_disable)
5068                         encoder->post_disable(encoder);
5069
5070         if (intel_crtc->config->has_pch_encoder) {
5071                 lpt_disable_pch_transcoder(dev_priv);
5072                 lpt_disable_iclkip(dev_priv);
5073                 intel_ddi_fdi_disable(crtc);
5074
5075                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5076                                                       true);
5077         }
5078 }
5079
5080 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5081 {
5082         struct drm_device *dev = crtc->base.dev;
5083         struct drm_i915_private *dev_priv = dev->dev_private;
5084         struct intel_crtc_state *pipe_config = crtc->config;
5085
5086         if (!pipe_config->gmch_pfit.control)
5087                 return;
5088
5089         /*
5090          * The panel fitter should only be adjusted whilst the pipe is disabled,
5091          * according to register description and PRM.
5092          */
5093         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5094         assert_pipe_disabled(dev_priv, crtc->pipe);
5095
5096         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5097         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5098
5099         /* Border color in case we don't scale up to the full screen. Black by
5100          * default, change to something else for debugging. */
5101         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5102 }
5103
5104 static enum intel_display_power_domain port_to_power_domain(enum port port)
5105 {
5106         switch (port) {
5107         case PORT_A:
5108                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5109         case PORT_B:
5110                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5111         case PORT_C:
5112                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5113         case PORT_D:
5114                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5115         case PORT_E:
5116                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5117         default:
5118                 MISSING_CASE(port);
5119                 return POWER_DOMAIN_PORT_OTHER;
5120         }
5121 }
5122
5123 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5124 {
5125         switch (port) {
5126         case PORT_A:
5127                 return POWER_DOMAIN_AUX_A;
5128         case PORT_B:
5129                 return POWER_DOMAIN_AUX_B;
5130         case PORT_C:
5131                 return POWER_DOMAIN_AUX_C;
5132         case PORT_D:
5133                 return POWER_DOMAIN_AUX_D;
5134         case PORT_E:
5135                 /* FIXME: Check VBT for actual wiring of PORT E */
5136                 return POWER_DOMAIN_AUX_D;
5137         default:
5138                 MISSING_CASE(port);
5139                 return POWER_DOMAIN_AUX_A;
5140         }
5141 }
5142
5143 enum intel_display_power_domain
5144 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5145 {
5146         struct drm_device *dev = intel_encoder->base.dev;
5147         struct intel_digital_port *intel_dig_port;
5148
5149         switch (intel_encoder->type) {
5150         case INTEL_OUTPUT_UNKNOWN:
5151                 /* Only DDI platforms should ever use this output type */
5152                 WARN_ON_ONCE(!HAS_DDI(dev));
5153         case INTEL_OUTPUT_DISPLAYPORT:
5154         case INTEL_OUTPUT_HDMI:
5155         case INTEL_OUTPUT_EDP:
5156                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5157                 return port_to_power_domain(intel_dig_port->port);
5158         case INTEL_OUTPUT_DP_MST:
5159                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5160                 return port_to_power_domain(intel_dig_port->port);
5161         case INTEL_OUTPUT_ANALOG:
5162                 return POWER_DOMAIN_PORT_CRT;
5163         case INTEL_OUTPUT_DSI:
5164                 return POWER_DOMAIN_PORT_DSI;
5165         default:
5166                 return POWER_DOMAIN_PORT_OTHER;
5167         }
5168 }
5169
5170 enum intel_display_power_domain
5171 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5172 {
5173         struct drm_device *dev = intel_encoder->base.dev;
5174         struct intel_digital_port *intel_dig_port;
5175
5176         switch (intel_encoder->type) {
5177         case INTEL_OUTPUT_UNKNOWN:
5178         case INTEL_OUTPUT_HDMI:
5179                 /*
5180                  * Only DDI platforms should ever use these output types.
5181                  * We can get here after the HDMI detect code has already set
5182                  * the type of the shared encoder. Since we can't be sure
5183                  * what's the status of the given connectors, play safe and
5184                  * run the DP detection too.
5185                  */
5186                 WARN_ON_ONCE(!HAS_DDI(dev));
5187         case INTEL_OUTPUT_DISPLAYPORT:
5188         case INTEL_OUTPUT_EDP:
5189                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5190                 return port_to_aux_power_domain(intel_dig_port->port);
5191         case INTEL_OUTPUT_DP_MST:
5192                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5193                 return port_to_aux_power_domain(intel_dig_port->port);
5194         default:
5195                 MISSING_CASE(intel_encoder->type);
5196                 return POWER_DOMAIN_AUX_A;
5197         }
5198 }
5199
5200 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5201                                             struct intel_crtc_state *crtc_state)
5202 {
5203         struct drm_device *dev = crtc->dev;
5204         struct drm_encoder *encoder;
5205         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5206         enum pipe pipe = intel_crtc->pipe;
5207         unsigned long mask;
5208         enum transcoder transcoder = crtc_state->cpu_transcoder;
5209
5210         if (!crtc_state->base.active)
5211                 return 0;
5212
5213         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5214         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5215         if (crtc_state->pch_pfit.enabled ||
5216             crtc_state->pch_pfit.force_thru)
5217                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5218
5219         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5220                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5221
5222                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5223         }
5224
5225         if (crtc_state->shared_dpll)
5226                 mask |= BIT(POWER_DOMAIN_PLLS);
5227
5228         return mask;
5229 }
5230
5231 static unsigned long
5232 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5233                                struct intel_crtc_state *crtc_state)
5234 {
5235         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5236         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5237         enum intel_display_power_domain domain;
5238         unsigned long domains, new_domains, old_domains;
5239
5240         old_domains = intel_crtc->enabled_power_domains;
5241         intel_crtc->enabled_power_domains = new_domains =
5242                 get_crtc_power_domains(crtc, crtc_state);
5243
5244         domains = new_domains & ~old_domains;
5245
5246         for_each_power_domain(domain, domains)
5247                 intel_display_power_get(dev_priv, domain);
5248
5249         return old_domains & ~new_domains;
5250 }
5251
5252 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5253                                       unsigned long domains)
5254 {
5255         enum intel_display_power_domain domain;
5256
5257         for_each_power_domain(domain, domains)
5258                 intel_display_power_put(dev_priv, domain);
5259 }
5260
5261 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5262 {
5263         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5264
5265         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5266             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5267                 return max_cdclk_freq;
5268         else if (IS_CHERRYVIEW(dev_priv))
5269                 return max_cdclk_freq*95/100;
5270         else if (INTEL_INFO(dev_priv)->gen < 4)
5271                 return 2*max_cdclk_freq*90/100;
5272         else
5273                 return max_cdclk_freq*90/100;
5274 }
5275
5276 static int skl_calc_cdclk(int max_pixclk, int vco);
5277
5278 static void intel_update_max_cdclk(struct drm_device *dev)
5279 {
5280         struct drm_i915_private *dev_priv = dev->dev_private;
5281
5282         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5283                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5284                 int max_cdclk, vco;
5285
5286                 vco = dev_priv->skl_preferred_vco_freq;
5287                 WARN_ON(vco != 8100000 && vco != 8640000);
5288
5289                 /*
5290                  * Use the lower (vco 8640) cdclk values as a
5291                  * first guess. skl_calc_cdclk() will correct it
5292                  * if the preferred vco is 8100 instead.
5293                  */
5294                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5295                         max_cdclk = 617143;
5296                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5297                         max_cdclk = 540000;
5298                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5299                         max_cdclk = 432000;
5300                 else
5301                         max_cdclk = 308571;
5302
5303                 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5304         } else if (IS_BROXTON(dev)) {
5305                 dev_priv->max_cdclk_freq = 624000;
5306         } else if (IS_BROADWELL(dev))  {
5307                 /*
5308                  * FIXME with extra cooling we can allow
5309                  * 540 MHz for ULX and 675 Mhz for ULT.
5310                  * How can we know if extra cooling is
5311                  * available? PCI ID, VTB, something else?
5312                  */
5313                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5314                         dev_priv->max_cdclk_freq = 450000;
5315                 else if (IS_BDW_ULX(dev))
5316                         dev_priv->max_cdclk_freq = 450000;
5317                 else if (IS_BDW_ULT(dev))
5318                         dev_priv->max_cdclk_freq = 540000;
5319                 else
5320                         dev_priv->max_cdclk_freq = 675000;
5321         } else if (IS_CHERRYVIEW(dev)) {
5322                 dev_priv->max_cdclk_freq = 320000;
5323         } else if (IS_VALLEYVIEW(dev)) {
5324                 dev_priv->max_cdclk_freq = 400000;
5325         } else {
5326                 /* otherwise assume cdclk is fixed */
5327                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5328         }
5329
5330         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5331
5332         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5333                          dev_priv->max_cdclk_freq);
5334
5335         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5336                          dev_priv->max_dotclk_freq);
5337 }
5338
5339 static void intel_update_cdclk(struct drm_device *dev)
5340 {
5341         struct drm_i915_private *dev_priv = dev->dev_private;
5342
5343         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5344
5345         if (INTEL_GEN(dev_priv) >= 9)
5346                 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5347                                  dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5348                                  dev_priv->cdclk_pll.ref);
5349         else
5350                 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5351                                  dev_priv->cdclk_freq);
5352
5353         /*
5354          * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5355          * Programmng [sic] note: bit[9:2] should be programmed to the number
5356          * of cdclk that generates 4MHz reference clock freq which is used to
5357          * generate GMBus clock. This will vary with the cdclk freq.
5358          */
5359         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5360                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5361 }
5362
5363 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5364 static int skl_cdclk_decimal(int cdclk)
5365 {
5366         return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5367 }
5368
5369 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5370 {
5371         int ratio;
5372
5373         if (cdclk == dev_priv->cdclk_pll.ref)
5374                 return 0;
5375
5376         switch (cdclk) {
5377         default:
5378                 MISSING_CASE(cdclk);
5379         case 144000:
5380         case 288000:
5381         case 384000:
5382         case 576000:
5383                 ratio = 60;
5384                 break;
5385         case 624000:
5386                 ratio = 65;
5387                 break;
5388         }
5389
5390         return dev_priv->cdclk_pll.ref * ratio;
5391 }
5392
5393 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5394 {
5395         I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5396
5397         /* Timeout 200us */
5398         if (wait_for((I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK) == 0, 1))
5399                 DRM_ERROR("timeout waiting for DE PLL unlock\n");
5400
5401         dev_priv->cdclk_pll.vco = 0;
5402 }
5403
5404 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5405 {
5406         int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5407         u32 val;
5408
5409         val = I915_READ(BXT_DE_PLL_CTL);
5410         val &= ~BXT_DE_PLL_RATIO_MASK;
5411         val |= BXT_DE_PLL_RATIO(ratio);
5412         I915_WRITE(BXT_DE_PLL_CTL, val);
5413
5414         I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5415
5416         /* Timeout 200us */
5417         if (wait_for((I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK) != 0, 1))
5418                 DRM_ERROR("timeout waiting for DE PLL lock\n");
5419
5420         dev_priv->cdclk_pll.vco = vco;
5421 }
5422
5423 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5424 {
5425         u32 val, divider;
5426         int vco, ret;
5427
5428         vco = bxt_de_pll_vco(dev_priv, cdclk);
5429
5430         DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5431
5432         /* cdclk = vco / 2 / div{1,1.5,2,4} */
5433         switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5434         case 8:
5435                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5436                 break;
5437         case 4:
5438                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5439                 break;
5440         case 3:
5441                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5442                 break;
5443         case 2:
5444                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5445                 break;
5446         default:
5447                 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
5448                 WARN_ON(vco != 0);
5449
5450                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5451                 break;
5452         }
5453
5454         /* Inform power controller of upcoming frequency change */
5455         mutex_lock(&dev_priv->rps.hw_lock);
5456         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5457                                       0x80000000);
5458         mutex_unlock(&dev_priv->rps.hw_lock);
5459
5460         if (ret) {
5461                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5462                           ret, cdclk);
5463                 return;
5464         }
5465
5466         if (dev_priv->cdclk_pll.vco != 0 &&
5467             dev_priv->cdclk_pll.vco != vco)
5468                 bxt_de_pll_disable(dev_priv);
5469
5470         if (dev_priv->cdclk_pll.vco != vco)
5471                 bxt_de_pll_enable(dev_priv, vco);
5472
5473         val = divider | skl_cdclk_decimal(cdclk);
5474         /*
5475          * FIXME if only the cd2x divider needs changing, it could be done
5476          * without shutting off the pipe (if only one pipe is active).
5477          */
5478         val |= BXT_CDCLK_CD2X_PIPE_NONE;
5479         /*
5480          * Disable SSA Precharge when CD clock frequency < 500 MHz,
5481          * enable otherwise.
5482          */
5483         if (cdclk >= 500000)
5484                 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5485         I915_WRITE(CDCLK_CTL, val);
5486
5487         mutex_lock(&dev_priv->rps.hw_lock);
5488         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5489                                       DIV_ROUND_UP(cdclk, 25000));
5490         mutex_unlock(&dev_priv->rps.hw_lock);
5491
5492         if (ret) {
5493                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5494                           ret, cdclk);
5495                 return;
5496         }
5497
5498         intel_update_cdclk(dev_priv->dev);
5499 }
5500
5501 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
5502 {
5503         u32 cdctl, expected;
5504
5505         intel_update_cdclk(dev_priv->dev);
5506
5507         if (dev_priv->cdclk_pll.vco == 0 ||
5508             dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
5509                 goto sanitize;
5510
5511         /* DPLL okay; verify the cdclock
5512          *
5513          * Some BIOS versions leave an incorrect decimal frequency value and
5514          * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
5515          * so sanitize this register.
5516          */
5517         cdctl = I915_READ(CDCLK_CTL);
5518         /*
5519          * Let's ignore the pipe field, since BIOS could have configured the
5520          * dividers both synching to an active pipe, or asynchronously
5521          * (PIPE_NONE).
5522          */
5523         cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
5524
5525         expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
5526                    skl_cdclk_decimal(dev_priv->cdclk_freq);
5527         /*
5528          * Disable SSA Precharge when CD clock frequency < 500 MHz,
5529          * enable otherwise.
5530          */
5531         if (dev_priv->cdclk_freq >= 500000)
5532                 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5533
5534         if (cdctl == expected)
5535                 /* All well; nothing to sanitize */
5536                 return;
5537
5538 sanitize:
5539         DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
5540
5541         /* force cdclk programming */
5542         dev_priv->cdclk_freq = 0;
5543
5544         /* force full PLL disable + enable */
5545         dev_priv->cdclk_pll.vco = -1;
5546 }
5547
5548 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
5549 {
5550         bxt_sanitize_cdclk(dev_priv);
5551
5552         if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
5553                 return;
5554
5555         /*
5556          * FIXME:
5557          * - The initial CDCLK needs to be read from VBT.
5558          *   Need to make this change after VBT has changes for BXT.
5559          */
5560         bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
5561 }
5562
5563 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
5564 {
5565         bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
5566 }
5567
5568 static int skl_calc_cdclk(int max_pixclk, int vco)
5569 {
5570         if (vco == 8640000) {
5571                 if (max_pixclk > 540000)
5572                         return 617143;
5573                 else if (max_pixclk > 432000)
5574                         return 540000;
5575                 else if (max_pixclk > 308571)
5576                         return 432000;
5577                 else
5578                         return 308571;
5579         } else {
5580                 if (max_pixclk > 540000)
5581                         return 675000;
5582                 else if (max_pixclk > 450000)
5583                         return 540000;
5584                 else if (max_pixclk > 337500)
5585                         return 450000;
5586                 else
5587                         return 337500;
5588         }
5589 }
5590
5591 static void
5592 skl_dpll0_update(struct drm_i915_private *dev_priv)
5593 {
5594         u32 val;
5595
5596         dev_priv->cdclk_pll.ref = 24000;
5597         dev_priv->cdclk_pll.vco = 0;
5598
5599         val = I915_READ(LCPLL1_CTL);
5600         if ((val & LCPLL_PLL_ENABLE) == 0)
5601                 return;
5602
5603         if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
5604                 return;
5605
5606         val = I915_READ(DPLL_CTRL1);
5607
5608         if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
5609                             DPLL_CTRL1_SSC(SKL_DPLL0) |
5610                             DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
5611                     DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
5612                 return;
5613
5614         switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
5615         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
5616         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
5617         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
5618         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
5619                 dev_priv->cdclk_pll.vco = 8100000;
5620                 break;
5621         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
5622         case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
5623                 dev_priv->cdclk_pll.vco = 8640000;
5624                 break;
5625         default:
5626                 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5627                 break;
5628         }
5629 }
5630
5631 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
5632 {
5633         bool changed = dev_priv->skl_preferred_vco_freq != vco;
5634
5635         dev_priv->skl_preferred_vco_freq = vco;
5636
5637         if (changed)
5638                 intel_update_max_cdclk(dev_priv->dev);
5639 }
5640
5641 static void
5642 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
5643 {
5644         int min_cdclk = skl_calc_cdclk(0, vco);
5645         u32 val;
5646
5647         WARN_ON(vco != 8100000 && vco != 8640000);
5648
5649         /* select the minimum CDCLK before enabling DPLL 0 */
5650         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
5651         I915_WRITE(CDCLK_CTL, val);
5652         POSTING_READ(CDCLK_CTL);
5653
5654         /*
5655          * We always enable DPLL0 with the lowest link rate possible, but still
5656          * taking into account the VCO required to operate the eDP panel at the
5657          * desired frequency. The usual DP link rates operate with a VCO of
5658          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5659          * The modeset code is responsible for the selection of the exact link
5660          * rate later on, with the constraint of choosing a frequency that
5661          * works with vco.
5662          */
5663         val = I915_READ(DPLL_CTRL1);
5664
5665         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5666                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5667         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5668         if (vco == 8640000)
5669                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5670                                             SKL_DPLL0);
5671         else
5672                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5673                                             SKL_DPLL0);
5674
5675         I915_WRITE(DPLL_CTRL1, val);
5676         POSTING_READ(DPLL_CTRL1);
5677
5678         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5679
5680         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5681                 DRM_ERROR("DPLL0 not locked\n");
5682
5683         dev_priv->cdclk_pll.vco = vco;
5684
5685         /* We'll want to keep using the current vco from now on. */
5686         skl_set_preferred_cdclk_vco(dev_priv, vco);
5687 }
5688
5689 static void
5690 skl_dpll0_disable(struct drm_i915_private *dev_priv)
5691 {
5692         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5693         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5694                 DRM_ERROR("Couldn't disable DPLL0\n");
5695
5696         dev_priv->cdclk_pll.vco = 0;
5697 }
5698
5699 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5700 {
5701         int ret;
5702         u32 val;
5703
5704         /* inform PCU we want to change CDCLK */
5705         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5706         mutex_lock(&dev_priv->rps.hw_lock);
5707         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5708         mutex_unlock(&dev_priv->rps.hw_lock);
5709
5710         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5711 }
5712
5713 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5714 {
5715         unsigned int i;
5716
5717         for (i = 0; i < 15; i++) {
5718                 if (skl_cdclk_pcu_ready(dev_priv))
5719                         return true;
5720                 udelay(10);
5721         }
5722
5723         return false;
5724 }
5725
5726 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
5727 {
5728         struct drm_device *dev = dev_priv->dev;
5729         u32 freq_select, pcu_ack;
5730
5731         WARN_ON((cdclk == 24000) != (vco == 0));
5732
5733         DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5734
5735         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5736                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5737                 return;
5738         }
5739
5740         /* set CDCLK_CTL */
5741         switch (cdclk) {
5742         case 450000:
5743         case 432000:
5744                 freq_select = CDCLK_FREQ_450_432;
5745                 pcu_ack = 1;
5746                 break;
5747         case 540000:
5748                 freq_select = CDCLK_FREQ_540;
5749                 pcu_ack = 2;
5750                 break;
5751         case 308571:
5752         case 337500:
5753         default:
5754                 freq_select = CDCLK_FREQ_337_308;
5755                 pcu_ack = 0;
5756                 break;
5757         case 617143:
5758         case 675000:
5759                 freq_select = CDCLK_FREQ_675_617;
5760                 pcu_ack = 3;
5761                 break;
5762         }
5763
5764         if (dev_priv->cdclk_pll.vco != 0 &&
5765             dev_priv->cdclk_pll.vco != vco)
5766                 skl_dpll0_disable(dev_priv);
5767
5768         if (dev_priv->cdclk_pll.vco != vco)
5769                 skl_dpll0_enable(dev_priv, vco);
5770
5771         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
5772         POSTING_READ(CDCLK_CTL);
5773
5774         /* inform PCU of the change */
5775         mutex_lock(&dev_priv->rps.hw_lock);
5776         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5777         mutex_unlock(&dev_priv->rps.hw_lock);
5778
5779         intel_update_cdclk(dev);
5780 }
5781
5782 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
5783
5784 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5785 {
5786         skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
5787 }
5788
5789 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5790 {
5791         int cdclk, vco;
5792
5793         skl_sanitize_cdclk(dev_priv);
5794
5795         if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
5796                 /*
5797                  * Use the current vco as our initial
5798                  * guess as to what the preferred vco is.
5799                  */
5800                 if (dev_priv->skl_preferred_vco_freq == 0)
5801                         skl_set_preferred_cdclk_vco(dev_priv,
5802                                                     dev_priv->cdclk_pll.vco);
5803                 return;
5804         }
5805
5806         vco = dev_priv->skl_preferred_vco_freq;
5807         if (vco == 0)
5808                 vco = 8100000;
5809         cdclk = skl_calc_cdclk(0, vco);
5810
5811         skl_set_cdclk(dev_priv, cdclk, vco);
5812 }
5813
5814 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5815 {
5816         uint32_t cdctl, expected;
5817
5818         /*
5819          * check if the pre-os intialized the display
5820          * There is SWF18 scratchpad register defined which is set by the
5821          * pre-os which can be used by the OS drivers to check the status
5822          */
5823         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5824                 goto sanitize;
5825
5826         intel_update_cdclk(dev_priv->dev);
5827         /* Is PLL enabled and locked ? */
5828         if (dev_priv->cdclk_pll.vco == 0 ||
5829             dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
5830                 goto sanitize;
5831
5832         /* DPLL okay; verify the cdclock
5833          *
5834          * Noticed in some instances that the freq selection is correct but
5835          * decimal part is programmed wrong from BIOS where pre-os does not
5836          * enable display. Verify the same as well.
5837          */
5838         cdctl = I915_READ(CDCLK_CTL);
5839         expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
5840                 skl_cdclk_decimal(dev_priv->cdclk_freq);
5841         if (cdctl == expected)
5842                 /* All well; nothing to sanitize */
5843                 return;
5844
5845 sanitize:
5846         DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
5847
5848         /* force cdclk programming */
5849         dev_priv->cdclk_freq = 0;
5850         /* force full PLL disable + enable */
5851         dev_priv->cdclk_pll.vco = -1;
5852 }
5853
5854 /* Adjust CDclk dividers to allow high res or save power if possible */
5855 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5856 {
5857         struct drm_i915_private *dev_priv = dev->dev_private;
5858         u32 val, cmd;
5859
5860         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5861                                         != dev_priv->cdclk_freq);
5862
5863         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5864                 cmd = 2;
5865         else if (cdclk == 266667)
5866                 cmd = 1;
5867         else
5868                 cmd = 0;
5869
5870         mutex_lock(&dev_priv->rps.hw_lock);
5871         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5872         val &= ~DSPFREQGUAR_MASK;
5873         val |= (cmd << DSPFREQGUAR_SHIFT);
5874         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5875         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5876                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5877                      50)) {
5878                 DRM_ERROR("timed out waiting for CDclk change\n");
5879         }
5880         mutex_unlock(&dev_priv->rps.hw_lock);
5881
5882         mutex_lock(&dev_priv->sb_lock);
5883
5884         if (cdclk == 400000) {
5885                 u32 divider;
5886
5887                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5888
5889                 /* adjust cdclk divider */
5890                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5891                 val &= ~CCK_FREQUENCY_VALUES;
5892                 val |= divider;
5893                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5894
5895                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5896                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5897                              50))
5898                         DRM_ERROR("timed out waiting for CDclk change\n");
5899         }
5900
5901         /* adjust self-refresh exit latency value */
5902         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5903         val &= ~0x7f;
5904
5905         /*
5906          * For high bandwidth configs, we set a higher latency in the bunit
5907          * so that the core display fetch happens in time to avoid underruns.
5908          */
5909         if (cdclk == 400000)
5910                 val |= 4500 / 250; /* 4.5 usec */
5911         else
5912                 val |= 3000 / 250; /* 3.0 usec */
5913         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5914
5915         mutex_unlock(&dev_priv->sb_lock);
5916
5917         intel_update_cdclk(dev);
5918 }
5919
5920 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5921 {
5922         struct drm_i915_private *dev_priv = dev->dev_private;
5923         u32 val, cmd;
5924
5925         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5926                                                 != dev_priv->cdclk_freq);
5927
5928         switch (cdclk) {
5929         case 333333:
5930         case 320000:
5931         case 266667:
5932         case 200000:
5933                 break;
5934         default:
5935                 MISSING_CASE(cdclk);
5936                 return;
5937         }
5938
5939         /*
5940          * Specs are full of misinformation, but testing on actual
5941          * hardware has shown that we just need to write the desired
5942          * CCK divider into the Punit register.
5943          */
5944         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5945
5946         mutex_lock(&dev_priv->rps.hw_lock);
5947         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5948         val &= ~DSPFREQGUAR_MASK_CHV;
5949         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5950         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5951         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5952                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5953                      50)) {
5954                 DRM_ERROR("timed out waiting for CDclk change\n");
5955         }
5956         mutex_unlock(&dev_priv->rps.hw_lock);
5957
5958         intel_update_cdclk(dev);
5959 }
5960
5961 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5962                                  int max_pixclk)
5963 {
5964         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5965         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5966
5967         /*
5968          * Really only a few cases to deal with, as only 4 CDclks are supported:
5969          *   200MHz
5970          *   267MHz
5971          *   320/333MHz (depends on HPLL freq)
5972          *   400MHz (VLV only)
5973          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5974          * of the lower bin and adjust if needed.
5975          *
5976          * We seem to get an unstable or solid color picture at 200MHz.
5977          * Not sure what's wrong. For now use 200MHz only when all pipes
5978          * are off.
5979          */
5980         if (!IS_CHERRYVIEW(dev_priv) &&
5981             max_pixclk > freq_320*limit/100)
5982                 return 400000;
5983         else if (max_pixclk > 266667*limit/100)
5984                 return freq_320;
5985         else if (max_pixclk > 0)
5986                 return 266667;
5987         else
5988                 return 200000;
5989 }
5990
5991 static int bxt_calc_cdclk(int max_pixclk)
5992 {
5993         if (max_pixclk > 576000)
5994                 return 624000;
5995         else if (max_pixclk > 384000)
5996                 return 576000;
5997         else if (max_pixclk > 288000)
5998                 return 384000;
5999         else if (max_pixclk > 144000)
6000                 return 288000;
6001         else
6002                 return 144000;
6003 }
6004
6005 /* Compute the max pixel clock for new configuration. */
6006 static int intel_mode_max_pixclk(struct drm_device *dev,
6007                                  struct drm_atomic_state *state)
6008 {
6009         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6010         struct drm_i915_private *dev_priv = dev->dev_private;
6011         struct drm_crtc *crtc;
6012         struct drm_crtc_state *crtc_state;
6013         unsigned max_pixclk = 0, i;
6014         enum pipe pipe;
6015
6016         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6017                sizeof(intel_state->min_pixclk));
6018
6019         for_each_crtc_in_state(state, crtc, crtc_state, i) {
6020                 int pixclk = 0;
6021
6022                 if (crtc_state->enable)
6023                         pixclk = crtc_state->adjusted_mode.crtc_clock;
6024
6025                 intel_state->min_pixclk[i] = pixclk;
6026         }
6027
6028         for_each_pipe(dev_priv, pipe)
6029                 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6030
6031         return max_pixclk;
6032 }
6033
6034 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6035 {
6036         struct drm_device *dev = state->dev;
6037         struct drm_i915_private *dev_priv = dev->dev_private;
6038         int max_pixclk = intel_mode_max_pixclk(dev, state);
6039         struct intel_atomic_state *intel_state =
6040                 to_intel_atomic_state(state);
6041
6042         intel_state->cdclk = intel_state->dev_cdclk =
6043                 valleyview_calc_cdclk(dev_priv, max_pixclk);
6044
6045         if (!intel_state->active_crtcs)
6046                 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6047
6048         return 0;
6049 }
6050
6051 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6052 {
6053         int max_pixclk = ilk_max_pixel_rate(state);
6054         struct intel_atomic_state *intel_state =
6055                 to_intel_atomic_state(state);
6056
6057         intel_state->cdclk = intel_state->dev_cdclk =
6058                 bxt_calc_cdclk(max_pixclk);
6059
6060         if (!intel_state->active_crtcs)
6061                 intel_state->dev_cdclk = bxt_calc_cdclk(0);
6062
6063         return 0;
6064 }
6065
6066 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6067 {
6068         unsigned int credits, default_credits;
6069
6070         if (IS_CHERRYVIEW(dev_priv))
6071                 default_credits = PFI_CREDIT(12);
6072         else
6073                 default_credits = PFI_CREDIT(8);
6074
6075         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6076                 /* CHV suggested value is 31 or 63 */
6077                 if (IS_CHERRYVIEW(dev_priv))
6078                         credits = PFI_CREDIT_63;
6079                 else
6080                         credits = PFI_CREDIT(15);
6081         } else {
6082                 credits = default_credits;
6083         }
6084
6085         /*
6086          * WA - write default credits before re-programming
6087          * FIXME: should we also set the resend bit here?
6088          */
6089         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6090                    default_credits);
6091
6092         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6093                    credits | PFI_CREDIT_RESEND);
6094
6095         /*
6096          * FIXME is this guaranteed to clear
6097          * immediately or should we poll for it?
6098          */
6099         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6100 }
6101
6102 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6103 {
6104         struct drm_device *dev = old_state->dev;
6105         struct drm_i915_private *dev_priv = dev->dev_private;
6106         struct intel_atomic_state *old_intel_state =
6107                 to_intel_atomic_state(old_state);
6108         unsigned req_cdclk = old_intel_state->dev_cdclk;
6109
6110         /*
6111          * FIXME: We can end up here with all power domains off, yet
6112          * with a CDCLK frequency other than the minimum. To account
6113          * for this take the PIPE-A power domain, which covers the HW
6114          * blocks needed for the following programming. This can be
6115          * removed once it's guaranteed that we get here either with
6116          * the minimum CDCLK set, or the required power domains
6117          * enabled.
6118          */
6119         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6120
6121         if (IS_CHERRYVIEW(dev))
6122                 cherryview_set_cdclk(dev, req_cdclk);
6123         else
6124                 valleyview_set_cdclk(dev, req_cdclk);
6125
6126         vlv_program_pfi_credits(dev_priv);
6127
6128         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6129 }
6130
6131 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6132 {
6133         struct drm_device *dev = crtc->dev;
6134         struct drm_i915_private *dev_priv = to_i915(dev);
6135         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6136         struct intel_encoder *encoder;
6137         struct intel_crtc_state *pipe_config =
6138                 to_intel_crtc_state(crtc->state);
6139         int pipe = intel_crtc->pipe;
6140
6141         if (WARN_ON(intel_crtc->active))
6142                 return;
6143
6144         if (intel_crtc->config->has_dp_encoder)
6145                 intel_dp_set_m_n(intel_crtc, M1_N1);
6146
6147         intel_set_pipe_timings(intel_crtc);
6148         intel_set_pipe_src_size(intel_crtc);
6149
6150         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6151                 struct drm_i915_private *dev_priv = dev->dev_private;
6152
6153                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6154                 I915_WRITE(CHV_CANVAS(pipe), 0);
6155         }
6156
6157         i9xx_set_pipeconf(intel_crtc);
6158
6159         intel_crtc->active = true;
6160
6161         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6162
6163         for_each_encoder_on_crtc(dev, crtc, encoder)
6164                 if (encoder->pre_pll_enable)
6165                         encoder->pre_pll_enable(encoder);
6166
6167         if (IS_CHERRYVIEW(dev)) {
6168                 chv_prepare_pll(intel_crtc, intel_crtc->config);
6169                 chv_enable_pll(intel_crtc, intel_crtc->config);
6170         } else {
6171                 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6172                 vlv_enable_pll(intel_crtc, intel_crtc->config);
6173         }
6174
6175         for_each_encoder_on_crtc(dev, crtc, encoder)
6176                 if (encoder->pre_enable)
6177                         encoder->pre_enable(encoder);
6178
6179         i9xx_pfit_enable(intel_crtc);
6180
6181         intel_color_load_luts(&pipe_config->base);
6182
6183         intel_update_watermarks(crtc);
6184         intel_enable_pipe(intel_crtc);
6185
6186         assert_vblank_disabled(crtc);
6187         drm_crtc_vblank_on(crtc);
6188
6189         for_each_encoder_on_crtc(dev, crtc, encoder)
6190                 encoder->enable(encoder);
6191 }
6192
6193 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6194 {
6195         struct drm_device *dev = crtc->base.dev;
6196         struct drm_i915_private *dev_priv = dev->dev_private;
6197
6198         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6199         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6200 }
6201
6202 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6203 {
6204         struct drm_device *dev = crtc->dev;
6205         struct drm_i915_private *dev_priv = to_i915(dev);
6206         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6207         struct intel_encoder *encoder;
6208         struct intel_crtc_state *pipe_config =
6209                 to_intel_crtc_state(crtc->state);
6210         enum pipe pipe = intel_crtc->pipe;
6211
6212         if (WARN_ON(intel_crtc->active))
6213                 return;
6214
6215         i9xx_set_pll_dividers(intel_crtc);
6216
6217         if (intel_crtc->config->has_dp_encoder)
6218                 intel_dp_set_m_n(intel_crtc, M1_N1);
6219
6220         intel_set_pipe_timings(intel_crtc);
6221         intel_set_pipe_src_size(intel_crtc);
6222
6223         i9xx_set_pipeconf(intel_crtc);
6224
6225         intel_crtc->active = true;
6226
6227         if (!IS_GEN2(dev))
6228                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6229
6230         for_each_encoder_on_crtc(dev, crtc, encoder)
6231                 if (encoder->pre_enable)
6232                         encoder->pre_enable(encoder);
6233
6234         i9xx_enable_pll(intel_crtc);
6235
6236         i9xx_pfit_enable(intel_crtc);
6237
6238         intel_color_load_luts(&pipe_config->base);
6239
6240         intel_update_watermarks(crtc);
6241         intel_enable_pipe(intel_crtc);
6242
6243         assert_vblank_disabled(crtc);
6244         drm_crtc_vblank_on(crtc);
6245
6246         for_each_encoder_on_crtc(dev, crtc, encoder)
6247                 encoder->enable(encoder);
6248 }
6249
6250 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6251 {
6252         struct drm_device *dev = crtc->base.dev;
6253         struct drm_i915_private *dev_priv = dev->dev_private;
6254
6255         if (!crtc->config->gmch_pfit.control)
6256                 return;
6257
6258         assert_pipe_disabled(dev_priv, crtc->pipe);
6259
6260         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6261                          I915_READ(PFIT_CONTROL));
6262         I915_WRITE(PFIT_CONTROL, 0);
6263 }
6264
6265 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6266 {
6267         struct drm_device *dev = crtc->dev;
6268         struct drm_i915_private *dev_priv = dev->dev_private;
6269         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6270         struct intel_encoder *encoder;
6271         int pipe = intel_crtc->pipe;
6272
6273         /*
6274          * On gen2 planes are double buffered but the pipe isn't, so we must
6275          * wait for planes to fully turn off before disabling the pipe.
6276          */
6277         if (IS_GEN2(dev))
6278                 intel_wait_for_vblank(dev, pipe);
6279
6280         for_each_encoder_on_crtc(dev, crtc, encoder)
6281                 encoder->disable(encoder);
6282
6283         drm_crtc_vblank_off(crtc);
6284         assert_vblank_disabled(crtc);
6285
6286         intel_disable_pipe(intel_crtc);
6287
6288         i9xx_pfit_disable(intel_crtc);
6289
6290         for_each_encoder_on_crtc(dev, crtc, encoder)
6291                 if (encoder->post_disable)
6292                         encoder->post_disable(encoder);
6293
6294         if (!intel_crtc->config->has_dsi_encoder) {
6295                 if (IS_CHERRYVIEW(dev))
6296                         chv_disable_pll(dev_priv, pipe);
6297                 else if (IS_VALLEYVIEW(dev))
6298                         vlv_disable_pll(dev_priv, pipe);
6299                 else
6300                         i9xx_disable_pll(intel_crtc);
6301         }
6302
6303         for_each_encoder_on_crtc(dev, crtc, encoder)
6304                 if (encoder->post_pll_disable)
6305                         encoder->post_pll_disable(encoder);
6306
6307         if (!IS_GEN2(dev))
6308                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6309 }
6310
6311 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6312 {
6313         struct intel_encoder *encoder;
6314         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6315         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6316         enum intel_display_power_domain domain;
6317         unsigned long domains;
6318
6319         if (!intel_crtc->active)
6320                 return;
6321
6322         if (to_intel_plane_state(crtc->primary->state)->visible) {
6323                 WARN_ON(intel_crtc->flip_work);
6324
6325                 intel_pre_disable_primary_noatomic(crtc);
6326
6327                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6328                 to_intel_plane_state(crtc->primary->state)->visible = false;
6329         }
6330
6331         dev_priv->display.crtc_disable(crtc);
6332
6333         DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6334                       crtc->base.id, crtc->name);
6335
6336         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6337         crtc->state->active = false;
6338         intel_crtc->active = false;
6339         crtc->enabled = false;
6340         crtc->state->connector_mask = 0;
6341         crtc->state->encoder_mask = 0;
6342
6343         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6344                 encoder->base.crtc = NULL;
6345
6346         intel_fbc_disable(intel_crtc);
6347         intel_update_watermarks(crtc);
6348         intel_disable_shared_dpll(intel_crtc);
6349
6350         domains = intel_crtc->enabled_power_domains;
6351         for_each_power_domain(domain, domains)
6352                 intel_display_power_put(dev_priv, domain);
6353         intel_crtc->enabled_power_domains = 0;
6354
6355         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6356         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6357 }
6358
6359 /*
6360  * turn all crtc's off, but do not adjust state
6361  * This has to be paired with a call to intel_modeset_setup_hw_state.
6362  */
6363 int intel_display_suspend(struct drm_device *dev)
6364 {
6365         struct drm_i915_private *dev_priv = to_i915(dev);
6366         struct drm_atomic_state *state;
6367         int ret;
6368
6369         state = drm_atomic_helper_suspend(dev);
6370         ret = PTR_ERR_OR_ZERO(state);
6371         if (ret)
6372                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6373         else
6374                 dev_priv->modeset_restore_state = state;
6375         return ret;
6376 }
6377
6378 void intel_encoder_destroy(struct drm_encoder *encoder)
6379 {
6380         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6381
6382         drm_encoder_cleanup(encoder);
6383         kfree(intel_encoder);
6384 }
6385
6386 /* Cross check the actual hw state with our own modeset state tracking (and it's
6387  * internal consistency). */
6388 static void intel_connector_verify_state(struct intel_connector *connector)
6389 {
6390         struct drm_crtc *crtc = connector->base.state->crtc;
6391
6392         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6393                       connector->base.base.id,
6394                       connector->base.name);
6395
6396         if (connector->get_hw_state(connector)) {
6397                 struct intel_encoder *encoder = connector->encoder;
6398                 struct drm_connector_state *conn_state = connector->base.state;
6399
6400                 I915_STATE_WARN(!crtc,
6401                          "connector enabled without attached crtc\n");
6402
6403                 if (!crtc)
6404                         return;
6405
6406                 I915_STATE_WARN(!crtc->state->active,
6407                       "connector is active, but attached crtc isn't\n");
6408
6409                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6410                         return;
6411
6412                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6413                         "atomic encoder doesn't match attached encoder\n");
6414
6415                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6416                         "attached encoder crtc differs from connector crtc\n");
6417         } else {
6418                 I915_STATE_WARN(crtc && crtc->state->active,
6419                         "attached crtc is active, but connector isn't\n");
6420                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6421                         "best encoder set without crtc!\n");
6422         }
6423 }
6424
6425 int intel_connector_init(struct intel_connector *connector)
6426 {
6427         drm_atomic_helper_connector_reset(&connector->base);
6428
6429         if (!connector->base.state)
6430                 return -ENOMEM;
6431
6432         return 0;
6433 }
6434
6435 struct intel_connector *intel_connector_alloc(void)
6436 {
6437         struct intel_connector *connector;
6438
6439         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6440         if (!connector)
6441                 return NULL;
6442
6443         if (intel_connector_init(connector) < 0) {
6444                 kfree(connector);
6445                 return NULL;
6446         }
6447
6448         return connector;
6449 }
6450
6451 /* Simple connector->get_hw_state implementation for encoders that support only
6452  * one connector and no cloning and hence the encoder state determines the state
6453  * of the connector. */
6454 bool intel_connector_get_hw_state(struct intel_connector *connector)
6455 {
6456         enum pipe pipe = 0;
6457         struct intel_encoder *encoder = connector->encoder;
6458
6459         return encoder->get_hw_state(encoder, &pipe);
6460 }
6461
6462 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6463 {
6464         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6465                 return crtc_state->fdi_lanes;
6466
6467         return 0;
6468 }
6469
6470 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6471                                      struct intel_crtc_state *pipe_config)
6472 {
6473         struct drm_atomic_state *state = pipe_config->base.state;
6474         struct intel_crtc *other_crtc;
6475         struct intel_crtc_state *other_crtc_state;
6476
6477         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6478                       pipe_name(pipe), pipe_config->fdi_lanes);
6479         if (pipe_config->fdi_lanes > 4) {
6480                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6481                               pipe_name(pipe), pipe_config->fdi_lanes);
6482                 return -EINVAL;
6483         }
6484
6485         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6486                 if (pipe_config->fdi_lanes > 2) {
6487                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6488                                       pipe_config->fdi_lanes);
6489                         return -EINVAL;
6490                 } else {
6491                         return 0;
6492                 }
6493         }
6494
6495         if (INTEL_INFO(dev)->num_pipes == 2)
6496                 return 0;
6497
6498         /* Ivybridge 3 pipe is really complicated */
6499         switch (pipe) {
6500         case PIPE_A:
6501                 return 0;
6502         case PIPE_B:
6503                 if (pipe_config->fdi_lanes <= 2)
6504                         return 0;
6505
6506                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6507                 other_crtc_state =
6508                         intel_atomic_get_crtc_state(state, other_crtc);
6509                 if (IS_ERR(other_crtc_state))
6510                         return PTR_ERR(other_crtc_state);
6511
6512                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6513                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6514                                       pipe_name(pipe), pipe_config->fdi_lanes);
6515                         return -EINVAL;
6516                 }
6517                 return 0;
6518         case PIPE_C:
6519                 if (pipe_config->fdi_lanes > 2) {
6520                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6521                                       pipe_name(pipe), pipe_config->fdi_lanes);
6522                         return -EINVAL;
6523                 }
6524
6525                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6526                 other_crtc_state =
6527                         intel_atomic_get_crtc_state(state, other_crtc);
6528                 if (IS_ERR(other_crtc_state))
6529                         return PTR_ERR(other_crtc_state);
6530
6531                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6532                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6533                         return -EINVAL;
6534                 }
6535                 return 0;
6536         default:
6537                 BUG();
6538         }
6539 }
6540
6541 #define RETRY 1
6542 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6543                                        struct intel_crtc_state *pipe_config)
6544 {
6545         struct drm_device *dev = intel_crtc->base.dev;
6546         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6547         int lane, link_bw, fdi_dotclock, ret;
6548         bool needs_recompute = false;
6549
6550 retry:
6551         /* FDI is a binary signal running at ~2.7GHz, encoding
6552          * each output octet as 10 bits. The actual frequency
6553          * is stored as a divider into a 100MHz clock, and the
6554          * mode pixel clock is stored in units of 1KHz.
6555          * Hence the bw of each lane in terms of the mode signal
6556          * is:
6557          */
6558         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6559
6560         fdi_dotclock = adjusted_mode->crtc_clock;
6561
6562         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6563                                            pipe_config->pipe_bpp);
6564
6565         pipe_config->fdi_lanes = lane;
6566
6567         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6568                                link_bw, &pipe_config->fdi_m_n);
6569
6570         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6571         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6572                 pipe_config->pipe_bpp -= 2*3;
6573                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6574                               pipe_config->pipe_bpp);
6575                 needs_recompute = true;
6576                 pipe_config->bw_constrained = true;
6577
6578                 goto retry;
6579         }
6580
6581         if (needs_recompute)
6582                 return RETRY;
6583
6584         return ret;
6585 }
6586
6587 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6588                                      struct intel_crtc_state *pipe_config)
6589 {
6590         if (pipe_config->pipe_bpp > 24)
6591                 return false;
6592
6593         /* HSW can handle pixel rate up to cdclk? */
6594         if (IS_HASWELL(dev_priv))
6595                 return true;
6596
6597         /*
6598          * We compare against max which means we must take
6599          * the increased cdclk requirement into account when
6600          * calculating the new cdclk.
6601          *
6602          * Should measure whether using a lower cdclk w/o IPS
6603          */
6604         return ilk_pipe_pixel_rate(pipe_config) <=
6605                 dev_priv->max_cdclk_freq * 95 / 100;
6606 }
6607
6608 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6609                                    struct intel_crtc_state *pipe_config)
6610 {
6611         struct drm_device *dev = crtc->base.dev;
6612         struct drm_i915_private *dev_priv = dev->dev_private;
6613
6614         pipe_config->ips_enabled = i915.enable_ips &&
6615                 hsw_crtc_supports_ips(crtc) &&
6616                 pipe_config_supports_ips(dev_priv, pipe_config);
6617 }
6618
6619 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6620 {
6621         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6622
6623         /* GDG double wide on either pipe, otherwise pipe A only */
6624         return INTEL_INFO(dev_priv)->gen < 4 &&
6625                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6626 }
6627
6628 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6629                                      struct intel_crtc_state *pipe_config)
6630 {
6631         struct drm_device *dev = crtc->base.dev;
6632         struct drm_i915_private *dev_priv = dev->dev_private;
6633         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6634         int clock_limit = dev_priv->max_dotclk_freq;
6635
6636         if (INTEL_INFO(dev)->gen < 4) {
6637                 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6638
6639                 /*
6640                  * Enable double wide mode when the dot clock
6641                  * is > 90% of the (display) core speed.
6642                  */
6643                 if (intel_crtc_supports_double_wide(crtc) &&
6644                     adjusted_mode->crtc_clock > clock_limit) {
6645                         clock_limit = dev_priv->max_dotclk_freq;
6646                         pipe_config->double_wide = true;
6647                 }
6648         }
6649
6650         if (adjusted_mode->crtc_clock > clock_limit) {
6651                 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6652                               adjusted_mode->crtc_clock, clock_limit,
6653                               yesno(pipe_config->double_wide));
6654                 return -EINVAL;
6655         }
6656
6657         /*
6658          * Pipe horizontal size must be even in:
6659          * - DVO ganged mode
6660          * - LVDS dual channel mode
6661          * - Double wide pipe
6662          */
6663         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6664              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6665                 pipe_config->pipe_src_w &= ~1;
6666
6667         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6668          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6669          */
6670         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6671                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6672                 return -EINVAL;
6673
6674         if (HAS_IPS(dev))
6675                 hsw_compute_ips_config(crtc, pipe_config);
6676
6677         if (pipe_config->has_pch_encoder)
6678                 return ironlake_fdi_compute_config(crtc, pipe_config);
6679
6680         return 0;
6681 }
6682
6683 static int skylake_get_display_clock_speed(struct drm_device *dev)
6684 {
6685         struct drm_i915_private *dev_priv = to_i915(dev);
6686         uint32_t cdctl;
6687
6688         skl_dpll0_update(dev_priv);
6689
6690         if (dev_priv->cdclk_pll.vco == 0)
6691                 return dev_priv->cdclk_pll.ref;
6692
6693         cdctl = I915_READ(CDCLK_CTL);
6694
6695         if (dev_priv->cdclk_pll.vco == 8640000) {
6696                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6697                 case CDCLK_FREQ_450_432:
6698                         return 432000;
6699                 case CDCLK_FREQ_337_308:
6700                         return 308571;
6701                 case CDCLK_FREQ_540:
6702                         return 540000;
6703                 case CDCLK_FREQ_675_617:
6704                         return 617143;
6705                 default:
6706                         MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
6707                 }
6708         } else {
6709                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6710                 case CDCLK_FREQ_450_432:
6711                         return 450000;
6712                 case CDCLK_FREQ_337_308:
6713                         return 337500;
6714                 case CDCLK_FREQ_540:
6715                         return 540000;
6716                 case CDCLK_FREQ_675_617:
6717                         return 675000;
6718                 default:
6719                         MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
6720                 }
6721         }
6722
6723         return dev_priv->cdclk_pll.ref;
6724 }
6725
6726 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
6727 {
6728         u32 val;
6729
6730         dev_priv->cdclk_pll.ref = 19200;
6731         dev_priv->cdclk_pll.vco = 0;
6732
6733         val = I915_READ(BXT_DE_PLL_ENABLE);
6734         if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
6735                 return;
6736
6737         if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
6738                 return;
6739
6740         val = I915_READ(BXT_DE_PLL_CTL);
6741         dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
6742                 dev_priv->cdclk_pll.ref;
6743 }
6744
6745 static int broxton_get_display_clock_speed(struct drm_device *dev)
6746 {
6747         struct drm_i915_private *dev_priv = to_i915(dev);
6748         u32 divider;
6749         int div, vco;
6750
6751         bxt_de_pll_update(dev_priv);
6752
6753         vco = dev_priv->cdclk_pll.vco;
6754         if (vco == 0)
6755                 return dev_priv->cdclk_pll.ref;
6756
6757         divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
6758
6759         switch (divider) {
6760         case BXT_CDCLK_CD2X_DIV_SEL_1:
6761                 div = 2;
6762                 break;
6763         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6764                 div = 3;
6765                 break;
6766         case BXT_CDCLK_CD2X_DIV_SEL_2:
6767                 div = 4;
6768                 break;
6769         case BXT_CDCLK_CD2X_DIV_SEL_4:
6770                 div = 8;
6771                 break;
6772         default:
6773                 MISSING_CASE(divider);
6774                 return dev_priv->cdclk_pll.ref;
6775         }
6776
6777         return DIV_ROUND_CLOSEST(vco, div);
6778 }
6779
6780 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6781 {
6782         struct drm_i915_private *dev_priv = dev->dev_private;
6783         uint32_t lcpll = I915_READ(LCPLL_CTL);
6784         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6785
6786         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6787                 return 800000;
6788         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6789                 return 450000;
6790         else if (freq == LCPLL_CLK_FREQ_450)
6791                 return 450000;
6792         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6793                 return 540000;
6794         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6795                 return 337500;
6796         else
6797                 return 675000;
6798 }
6799
6800 static int haswell_get_display_clock_speed(struct drm_device *dev)
6801 {
6802         struct drm_i915_private *dev_priv = dev->dev_private;
6803         uint32_t lcpll = I915_READ(LCPLL_CTL);
6804         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6805
6806         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6807                 return 800000;
6808         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6809                 return 450000;
6810         else if (freq == LCPLL_CLK_FREQ_450)
6811                 return 450000;
6812         else if (IS_HSW_ULT(dev))
6813                 return 337500;
6814         else
6815                 return 540000;
6816 }
6817
6818 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6819 {
6820         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6821                                       CCK_DISPLAY_CLOCK_CONTROL);
6822 }
6823
6824 static int ilk_get_display_clock_speed(struct drm_device *dev)
6825 {
6826         return 450000;
6827 }
6828
6829 static int i945_get_display_clock_speed(struct drm_device *dev)
6830 {
6831         return 400000;
6832 }
6833
6834 static int i915_get_display_clock_speed(struct drm_device *dev)
6835 {
6836         return 333333;
6837 }
6838
6839 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6840 {
6841         return 200000;
6842 }
6843
6844 static int pnv_get_display_clock_speed(struct drm_device *dev)
6845 {
6846         u16 gcfgc = 0;
6847
6848         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6849
6850         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6851         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6852                 return 266667;
6853         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6854                 return 333333;
6855         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6856                 return 444444;
6857         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6858                 return 200000;
6859         default:
6860                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6861         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6862                 return 133333;
6863         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6864                 return 166667;
6865         }
6866 }
6867
6868 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6869 {
6870         u16 gcfgc = 0;
6871
6872         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6873
6874         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6875                 return 133333;
6876         else {
6877                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6878                 case GC_DISPLAY_CLOCK_333_MHZ:
6879                         return 333333;
6880                 default:
6881                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6882                         return 190000;
6883                 }
6884         }
6885 }
6886
6887 static int i865_get_display_clock_speed(struct drm_device *dev)
6888 {
6889         return 266667;
6890 }
6891
6892 static int i85x_get_display_clock_speed(struct drm_device *dev)
6893 {
6894         u16 hpllcc = 0;
6895
6896         /*
6897          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6898          * encoding is different :(
6899          * FIXME is this the right way to detect 852GM/852GMV?
6900          */
6901         if (dev->pdev->revision == 0x1)
6902                 return 133333;
6903
6904         pci_bus_read_config_word(dev->pdev->bus,
6905                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6906
6907         /* Assume that the hardware is in the high speed state.  This
6908          * should be the default.
6909          */
6910         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6911         case GC_CLOCK_133_200:
6912         case GC_CLOCK_133_200_2:
6913         case GC_CLOCK_100_200:
6914                 return 200000;
6915         case GC_CLOCK_166_250:
6916                 return 250000;
6917         case GC_CLOCK_100_133:
6918                 return 133333;
6919         case GC_CLOCK_133_266:
6920         case GC_CLOCK_133_266_2:
6921         case GC_CLOCK_166_266:
6922                 return 266667;
6923         }
6924
6925         /* Shouldn't happen */
6926         return 0;
6927 }
6928
6929 static int i830_get_display_clock_speed(struct drm_device *dev)
6930 {
6931         return 133333;
6932 }
6933
6934 static unsigned int intel_hpll_vco(struct drm_device *dev)
6935 {
6936         struct drm_i915_private *dev_priv = dev->dev_private;
6937         static const unsigned int blb_vco[8] = {
6938                 [0] = 3200000,
6939                 [1] = 4000000,
6940                 [2] = 5333333,
6941                 [3] = 4800000,
6942                 [4] = 6400000,
6943         };
6944         static const unsigned int pnv_vco[8] = {
6945                 [0] = 3200000,
6946                 [1] = 4000000,
6947                 [2] = 5333333,
6948                 [3] = 4800000,
6949                 [4] = 2666667,
6950         };
6951         static const unsigned int cl_vco[8] = {
6952                 [0] = 3200000,
6953                 [1] = 4000000,
6954                 [2] = 5333333,
6955                 [3] = 6400000,
6956                 [4] = 3333333,
6957                 [5] = 3566667,
6958                 [6] = 4266667,
6959         };
6960         static const unsigned int elk_vco[8] = {
6961                 [0] = 3200000,
6962                 [1] = 4000000,
6963                 [2] = 5333333,
6964                 [3] = 4800000,
6965         };
6966         static const unsigned int ctg_vco[8] = {
6967                 [0] = 3200000,
6968                 [1] = 4000000,
6969                 [2] = 5333333,
6970                 [3] = 6400000,
6971                 [4] = 2666667,
6972                 [5] = 4266667,
6973         };
6974         const unsigned int *vco_table;
6975         unsigned int vco;
6976         uint8_t tmp = 0;
6977
6978         /* FIXME other chipsets? */
6979         if (IS_GM45(dev))
6980                 vco_table = ctg_vco;
6981         else if (IS_G4X(dev))
6982                 vco_table = elk_vco;
6983         else if (IS_CRESTLINE(dev))
6984                 vco_table = cl_vco;
6985         else if (IS_PINEVIEW(dev))
6986                 vco_table = pnv_vco;
6987         else if (IS_G33(dev))
6988                 vco_table = blb_vco;
6989         else
6990                 return 0;
6991
6992         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6993
6994         vco = vco_table[tmp & 0x7];
6995         if (vco == 0)
6996                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6997         else
6998                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6999
7000         return vco;
7001 }
7002
7003 static int gm45_get_display_clock_speed(struct drm_device *dev)
7004 {
7005         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7006         uint16_t tmp = 0;
7007
7008         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7009
7010         cdclk_sel = (tmp >> 12) & 0x1;
7011
7012         switch (vco) {
7013         case 2666667:
7014         case 4000000:
7015         case 5333333:
7016                 return cdclk_sel ? 333333 : 222222;
7017         case 3200000:
7018                 return cdclk_sel ? 320000 : 228571;
7019         default:
7020                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7021                 return 222222;
7022         }
7023 }
7024
7025 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7026 {
7027         static const uint8_t div_3200[] = { 16, 10,  8 };
7028         static const uint8_t div_4000[] = { 20, 12, 10 };
7029         static const uint8_t div_5333[] = { 24, 16, 14 };
7030         const uint8_t *div_table;
7031         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7032         uint16_t tmp = 0;
7033
7034         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7035
7036         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7037
7038         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7039                 goto fail;
7040
7041         switch (vco) {
7042         case 3200000:
7043                 div_table = div_3200;
7044                 break;
7045         case 4000000:
7046                 div_table = div_4000;
7047                 break;
7048         case 5333333:
7049                 div_table = div_5333;
7050                 break;
7051         default:
7052                 goto fail;
7053         }
7054
7055         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7056
7057 fail:
7058         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7059         return 200000;
7060 }
7061
7062 static int g33_get_display_clock_speed(struct drm_device *dev)
7063 {
7064         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7065         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7066         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7067         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7068         const uint8_t *div_table;
7069         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7070         uint16_t tmp = 0;
7071
7072         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7073
7074         cdclk_sel = (tmp >> 4) & 0x7;
7075
7076         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7077                 goto fail;
7078
7079         switch (vco) {
7080         case 3200000:
7081                 div_table = div_3200;
7082                 break;
7083         case 4000000:
7084                 div_table = div_4000;
7085                 break;
7086         case 4800000:
7087                 div_table = div_4800;
7088                 break;
7089         case 5333333:
7090                 div_table = div_5333;
7091                 break;
7092         default:
7093                 goto fail;
7094         }
7095
7096         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7097
7098 fail:
7099         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7100         return 190476;
7101 }
7102
7103 static void
7104 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7105 {
7106         while (*num > DATA_LINK_M_N_MASK ||
7107                *den > DATA_LINK_M_N_MASK) {
7108                 *num >>= 1;
7109                 *den >>= 1;
7110         }
7111 }
7112
7113 static void compute_m_n(unsigned int m, unsigned int n,
7114                         uint32_t *ret_m, uint32_t *ret_n)
7115 {
7116         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7117         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7118         intel_reduce_m_n_ratio(ret_m, ret_n);
7119 }
7120
7121 void
7122 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7123                        int pixel_clock, int link_clock,
7124                        struct intel_link_m_n *m_n)
7125 {
7126         m_n->tu = 64;
7127
7128         compute_m_n(bits_per_pixel * pixel_clock,
7129                     link_clock * nlanes * 8,
7130                     &m_n->gmch_m, &m_n->gmch_n);
7131
7132         compute_m_n(pixel_clock, link_clock,
7133                     &m_n->link_m, &m_n->link_n);
7134 }
7135
7136 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7137 {
7138         if (i915.panel_use_ssc >= 0)
7139                 return i915.panel_use_ssc != 0;
7140         return dev_priv->vbt.lvds_use_ssc
7141                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7142 }
7143
7144 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7145 {
7146         return (1 << dpll->n) << 16 | dpll->m2;
7147 }
7148
7149 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7150 {
7151         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7152 }
7153
7154 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7155                                      struct intel_crtc_state *crtc_state,
7156                                      struct dpll *reduced_clock)
7157 {
7158         struct drm_device *dev = crtc->base.dev;
7159         u32 fp, fp2 = 0;
7160
7161         if (IS_PINEVIEW(dev)) {
7162                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7163                 if (reduced_clock)
7164                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7165         } else {
7166                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7167                 if (reduced_clock)
7168                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7169         }
7170
7171         crtc_state->dpll_hw_state.fp0 = fp;
7172
7173         crtc->lowfreq_avail = false;
7174         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7175             reduced_clock) {
7176                 crtc_state->dpll_hw_state.fp1 = fp2;
7177                 crtc->lowfreq_avail = true;
7178         } else {
7179                 crtc_state->dpll_hw_state.fp1 = fp;
7180         }
7181 }
7182
7183 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7184                 pipe)
7185 {
7186         u32 reg_val;
7187
7188         /*
7189          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7190          * and set it to a reasonable value instead.
7191          */
7192         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7193         reg_val &= 0xffffff00;
7194         reg_val |= 0x00000030;
7195         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7196
7197         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7198         reg_val &= 0x8cffffff;
7199         reg_val = 0x8c000000;
7200         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7201
7202         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7203         reg_val &= 0xffffff00;
7204         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7205
7206         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7207         reg_val &= 0x00ffffff;
7208         reg_val |= 0xb0000000;
7209         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7210 }
7211
7212 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7213                                          struct intel_link_m_n *m_n)
7214 {
7215         struct drm_device *dev = crtc->base.dev;
7216         struct drm_i915_private *dev_priv = dev->dev_private;
7217         int pipe = crtc->pipe;
7218
7219         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7220         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7221         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7222         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7223 }
7224
7225 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7226                                          struct intel_link_m_n *m_n,
7227                                          struct intel_link_m_n *m2_n2)
7228 {
7229         struct drm_device *dev = crtc->base.dev;
7230         struct drm_i915_private *dev_priv = dev->dev_private;
7231         int pipe = crtc->pipe;
7232         enum transcoder transcoder = crtc->config->cpu_transcoder;
7233
7234         if (INTEL_INFO(dev)->gen >= 5) {
7235                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7236                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7237                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7238                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7239                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7240                  * for gen < 8) and if DRRS is supported (to make sure the
7241                  * registers are not unnecessarily accessed).
7242                  */
7243                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7244                         crtc->config->has_drrs) {
7245                         I915_WRITE(PIPE_DATA_M2(transcoder),
7246                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7247                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7248                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7249                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7250                 }
7251         } else {
7252                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7253                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7254                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7255                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7256         }
7257 }
7258
7259 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7260 {
7261         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7262
7263         if (m_n == M1_N1) {
7264                 dp_m_n = &crtc->config->dp_m_n;
7265                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7266         } else if (m_n == M2_N2) {
7267
7268                 /*
7269                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7270                  * needs to be programmed into M1_N1.
7271                  */
7272                 dp_m_n = &crtc->config->dp_m2_n2;
7273         } else {
7274                 DRM_ERROR("Unsupported divider value\n");
7275                 return;
7276         }
7277
7278         if (crtc->config->has_pch_encoder)
7279                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7280         else
7281                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7282 }
7283
7284 static void vlv_compute_dpll(struct intel_crtc *crtc,
7285                              struct intel_crtc_state *pipe_config)
7286 {
7287         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7288                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7289         if (crtc->pipe != PIPE_A)
7290                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7291
7292         /* DPLL not used with DSI, but still need the rest set up */
7293         if (!pipe_config->has_dsi_encoder)
7294                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7295                         DPLL_EXT_BUFFER_ENABLE_VLV;
7296
7297         pipe_config->dpll_hw_state.dpll_md =
7298                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7299 }
7300
7301 static void chv_compute_dpll(struct intel_crtc *crtc,
7302                              struct intel_crtc_state *pipe_config)
7303 {
7304         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7305                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7306         if (crtc->pipe != PIPE_A)
7307                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7308
7309         /* DPLL not used with DSI, but still need the rest set up */
7310         if (!pipe_config->has_dsi_encoder)
7311                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7312
7313         pipe_config->dpll_hw_state.dpll_md =
7314                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7315 }
7316
7317 static void vlv_prepare_pll(struct intel_crtc *crtc,
7318                             const struct intel_crtc_state *pipe_config)
7319 {
7320         struct drm_device *dev = crtc->base.dev;
7321         struct drm_i915_private *dev_priv = dev->dev_private;
7322         enum pipe pipe = crtc->pipe;
7323         u32 mdiv;
7324         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7325         u32 coreclk, reg_val;
7326
7327         /* Enable Refclk */
7328         I915_WRITE(DPLL(pipe),
7329                    pipe_config->dpll_hw_state.dpll &
7330                    ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7331
7332         /* No need to actually set up the DPLL with DSI */
7333         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7334                 return;
7335
7336         mutex_lock(&dev_priv->sb_lock);
7337
7338         bestn = pipe_config->dpll.n;
7339         bestm1 = pipe_config->dpll.m1;
7340         bestm2 = pipe_config->dpll.m2;
7341         bestp1 = pipe_config->dpll.p1;
7342         bestp2 = pipe_config->dpll.p2;
7343
7344         /* See eDP HDMI DPIO driver vbios notes doc */
7345
7346         /* PLL B needs special handling */
7347         if (pipe == PIPE_B)
7348                 vlv_pllb_recal_opamp(dev_priv, pipe);
7349
7350         /* Set up Tx target for periodic Rcomp update */
7351         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7352
7353         /* Disable target IRef on PLL */
7354         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7355         reg_val &= 0x00ffffff;
7356         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7357
7358         /* Disable fast lock */
7359         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7360
7361         /* Set idtafcrecal before PLL is enabled */
7362         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7363         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7364         mdiv |= ((bestn << DPIO_N_SHIFT));
7365         mdiv |= (1 << DPIO_K_SHIFT);
7366
7367         /*
7368          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7369          * but we don't support that).
7370          * Note: don't use the DAC post divider as it seems unstable.
7371          */
7372         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7373         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7374
7375         mdiv |= DPIO_ENABLE_CALIBRATION;
7376         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7377
7378         /* Set HBR and RBR LPF coefficients */
7379         if (pipe_config->port_clock == 162000 ||
7380             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7381             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7382                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7383                                  0x009f0003);
7384         else
7385                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7386                                  0x00d0000f);
7387
7388         if (pipe_config->has_dp_encoder) {
7389                 /* Use SSC source */
7390                 if (pipe == PIPE_A)
7391                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7392                                          0x0df40000);
7393                 else
7394                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7395                                          0x0df70000);
7396         } else { /* HDMI or VGA */
7397                 /* Use bend source */
7398                 if (pipe == PIPE_A)
7399                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7400                                          0x0df70000);
7401                 else
7402                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7403                                          0x0df40000);
7404         }
7405
7406         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7407         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7408         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7409             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7410                 coreclk |= 0x01000000;
7411         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7412
7413         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7414         mutex_unlock(&dev_priv->sb_lock);
7415 }
7416
7417 static void chv_prepare_pll(struct intel_crtc *crtc,
7418                             const struct intel_crtc_state *pipe_config)
7419 {
7420         struct drm_device *dev = crtc->base.dev;
7421         struct drm_i915_private *dev_priv = dev->dev_private;
7422         enum pipe pipe = crtc->pipe;
7423         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7424         u32 loopfilter, tribuf_calcntr;
7425         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7426         u32 dpio_val;
7427         int vco;
7428
7429         /* Enable Refclk and SSC */
7430         I915_WRITE(DPLL(pipe),
7431                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7432
7433         /* No need to actually set up the DPLL with DSI */
7434         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7435                 return;
7436
7437         bestn = pipe_config->dpll.n;
7438         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7439         bestm1 = pipe_config->dpll.m1;
7440         bestm2 = pipe_config->dpll.m2 >> 22;
7441         bestp1 = pipe_config->dpll.p1;
7442         bestp2 = pipe_config->dpll.p2;
7443         vco = pipe_config->dpll.vco;
7444         dpio_val = 0;
7445         loopfilter = 0;
7446
7447         mutex_lock(&dev_priv->sb_lock);
7448
7449         /* p1 and p2 divider */
7450         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7451                         5 << DPIO_CHV_S1_DIV_SHIFT |
7452                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7453                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7454                         1 << DPIO_CHV_K_DIV_SHIFT);
7455
7456         /* Feedback post-divider - m2 */
7457         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7458
7459         /* Feedback refclk divider - n and m1 */
7460         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7461                         DPIO_CHV_M1_DIV_BY_2 |
7462                         1 << DPIO_CHV_N_DIV_SHIFT);
7463
7464         /* M2 fraction division */
7465         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7466
7467         /* M2 fraction division enable */
7468         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7469         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7470         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7471         if (bestm2_frac)
7472                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7473         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7474
7475         /* Program digital lock detect threshold */
7476         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7477         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7478                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7479         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7480         if (!bestm2_frac)
7481                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7482         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7483
7484         /* Loop filter */
7485         if (vco == 5400000) {
7486                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7487                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7488                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7489                 tribuf_calcntr = 0x9;
7490         } else if (vco <= 6200000) {
7491                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7492                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7493                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7494                 tribuf_calcntr = 0x9;
7495         } else if (vco <= 6480000) {
7496                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7497                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7498                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7499                 tribuf_calcntr = 0x8;
7500         } else {
7501                 /* Not supported. Apply the same limits as in the max case */
7502                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7503                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7504                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7505                 tribuf_calcntr = 0;
7506         }
7507         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7508
7509         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7510         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7511         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7512         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7513
7514         /* AFC Recal */
7515         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7516                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7517                         DPIO_AFC_RECAL);
7518
7519         mutex_unlock(&dev_priv->sb_lock);
7520 }
7521
7522 /**
7523  * vlv_force_pll_on - forcibly enable just the PLL
7524  * @dev_priv: i915 private structure
7525  * @pipe: pipe PLL to enable
7526  * @dpll: PLL configuration
7527  *
7528  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7529  * in cases where we need the PLL enabled even when @pipe is not going to
7530  * be enabled.
7531  */
7532 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7533                      const struct dpll *dpll)
7534 {
7535         struct intel_crtc *crtc =
7536                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7537         struct intel_crtc_state *pipe_config;
7538
7539         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7540         if (!pipe_config)
7541                 return -ENOMEM;
7542
7543         pipe_config->base.crtc = &crtc->base;
7544         pipe_config->pixel_multiplier = 1;
7545         pipe_config->dpll = *dpll;
7546
7547         if (IS_CHERRYVIEW(dev)) {
7548                 chv_compute_dpll(crtc, pipe_config);
7549                 chv_prepare_pll(crtc, pipe_config);
7550                 chv_enable_pll(crtc, pipe_config);
7551         } else {
7552                 vlv_compute_dpll(crtc, pipe_config);
7553                 vlv_prepare_pll(crtc, pipe_config);
7554                 vlv_enable_pll(crtc, pipe_config);
7555         }
7556
7557         kfree(pipe_config);
7558
7559         return 0;
7560 }
7561
7562 /**
7563  * vlv_force_pll_off - forcibly disable just the PLL
7564  * @dev_priv: i915 private structure
7565  * @pipe: pipe PLL to disable
7566  *
7567  * Disable the PLL for @pipe. To be used in cases where we need
7568  * the PLL enabled even when @pipe is not going to be enabled.
7569  */
7570 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7571 {
7572         if (IS_CHERRYVIEW(dev))
7573                 chv_disable_pll(to_i915(dev), pipe);
7574         else
7575                 vlv_disable_pll(to_i915(dev), pipe);
7576 }
7577
7578 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7579                               struct intel_crtc_state *crtc_state,
7580                               struct dpll *reduced_clock)
7581 {
7582         struct drm_device *dev = crtc->base.dev;
7583         struct drm_i915_private *dev_priv = dev->dev_private;
7584         u32 dpll;
7585         bool is_sdvo;
7586         struct dpll *clock = &crtc_state->dpll;
7587
7588         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7589
7590         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7591                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7592
7593         dpll = DPLL_VGA_MODE_DIS;
7594
7595         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7596                 dpll |= DPLLB_MODE_LVDS;
7597         else
7598                 dpll |= DPLLB_MODE_DAC_SERIAL;
7599
7600         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7601                 dpll |= (crtc_state->pixel_multiplier - 1)
7602                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7603         }
7604
7605         if (is_sdvo)
7606                 dpll |= DPLL_SDVO_HIGH_SPEED;
7607
7608         if (crtc_state->has_dp_encoder)
7609                 dpll |= DPLL_SDVO_HIGH_SPEED;
7610
7611         /* compute bitmask from p1 value */
7612         if (IS_PINEVIEW(dev))
7613                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7614         else {
7615                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7616                 if (IS_G4X(dev) && reduced_clock)
7617                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7618         }
7619         switch (clock->p2) {
7620         case 5:
7621                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7622                 break;
7623         case 7:
7624                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7625                 break;
7626         case 10:
7627                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7628                 break;
7629         case 14:
7630                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7631                 break;
7632         }
7633         if (INTEL_INFO(dev)->gen >= 4)
7634                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7635
7636         if (crtc_state->sdvo_tv_clock)
7637                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7638         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7639                  intel_panel_use_ssc(dev_priv))
7640                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7641         else
7642                 dpll |= PLL_REF_INPUT_DREFCLK;
7643
7644         dpll |= DPLL_VCO_ENABLE;
7645         crtc_state->dpll_hw_state.dpll = dpll;
7646
7647         if (INTEL_INFO(dev)->gen >= 4) {
7648                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7649                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7650                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7651         }
7652 }
7653
7654 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7655                               struct intel_crtc_state *crtc_state,
7656                               struct dpll *reduced_clock)
7657 {
7658         struct drm_device *dev = crtc->base.dev;
7659         struct drm_i915_private *dev_priv = dev->dev_private;
7660         u32 dpll;
7661         struct dpll *clock = &crtc_state->dpll;
7662
7663         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7664
7665         dpll = DPLL_VGA_MODE_DIS;
7666
7667         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7668                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7669         } else {
7670                 if (clock->p1 == 2)
7671                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7672                 else
7673                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7674                 if (clock->p2 == 4)
7675                         dpll |= PLL_P2_DIVIDE_BY_4;
7676         }
7677
7678         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7679                 dpll |= DPLL_DVO_2X_MODE;
7680
7681         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7682             intel_panel_use_ssc(dev_priv))
7683                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7684         else
7685                 dpll |= PLL_REF_INPUT_DREFCLK;
7686
7687         dpll |= DPLL_VCO_ENABLE;
7688         crtc_state->dpll_hw_state.dpll = dpll;
7689 }
7690
7691 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7692 {
7693         struct drm_device *dev = intel_crtc->base.dev;
7694         struct drm_i915_private *dev_priv = dev->dev_private;
7695         enum pipe pipe = intel_crtc->pipe;
7696         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7697         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7698         uint32_t crtc_vtotal, crtc_vblank_end;
7699         int vsyncshift = 0;
7700
7701         /* We need to be careful not to changed the adjusted mode, for otherwise
7702          * the hw state checker will get angry at the mismatch. */
7703         crtc_vtotal = adjusted_mode->crtc_vtotal;
7704         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7705
7706         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7707                 /* the chip adds 2 halflines automatically */
7708                 crtc_vtotal -= 1;
7709                 crtc_vblank_end -= 1;
7710
7711                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7712                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7713                 else
7714                         vsyncshift = adjusted_mode->crtc_hsync_start -
7715                                 adjusted_mode->crtc_htotal / 2;
7716                 if (vsyncshift < 0)
7717                         vsyncshift += adjusted_mode->crtc_htotal;
7718         }
7719
7720         if (INTEL_INFO(dev)->gen > 3)
7721                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7722
7723         I915_WRITE(HTOTAL(cpu_transcoder),
7724                    (adjusted_mode->crtc_hdisplay - 1) |
7725                    ((adjusted_mode->crtc_htotal - 1) << 16));
7726         I915_WRITE(HBLANK(cpu_transcoder),
7727                    (adjusted_mode->crtc_hblank_start - 1) |
7728                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7729         I915_WRITE(HSYNC(cpu_transcoder),
7730                    (adjusted_mode->crtc_hsync_start - 1) |
7731                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7732
7733         I915_WRITE(VTOTAL(cpu_transcoder),
7734                    (adjusted_mode->crtc_vdisplay - 1) |
7735                    ((crtc_vtotal - 1) << 16));
7736         I915_WRITE(VBLANK(cpu_transcoder),
7737                    (adjusted_mode->crtc_vblank_start - 1) |
7738                    ((crtc_vblank_end - 1) << 16));
7739         I915_WRITE(VSYNC(cpu_transcoder),
7740                    (adjusted_mode->crtc_vsync_start - 1) |
7741                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7742
7743         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7744          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7745          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7746          * bits. */
7747         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7748             (pipe == PIPE_B || pipe == PIPE_C))
7749                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7750
7751 }
7752
7753 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7754 {
7755         struct drm_device *dev = intel_crtc->base.dev;
7756         struct drm_i915_private *dev_priv = dev->dev_private;
7757         enum pipe pipe = intel_crtc->pipe;
7758
7759         /* pipesrc controls the size that is scaled from, which should
7760          * always be the user's requested size.
7761          */
7762         I915_WRITE(PIPESRC(pipe),
7763                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7764                    (intel_crtc->config->pipe_src_h - 1));
7765 }
7766
7767 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7768                                    struct intel_crtc_state *pipe_config)
7769 {
7770         struct drm_device *dev = crtc->base.dev;
7771         struct drm_i915_private *dev_priv = dev->dev_private;
7772         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7773         uint32_t tmp;
7774
7775         tmp = I915_READ(HTOTAL(cpu_transcoder));
7776         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7777         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7778         tmp = I915_READ(HBLANK(cpu_transcoder));
7779         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7780         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7781         tmp = I915_READ(HSYNC(cpu_transcoder));
7782         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7783         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7784
7785         tmp = I915_READ(VTOTAL(cpu_transcoder));
7786         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7787         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7788         tmp = I915_READ(VBLANK(cpu_transcoder));
7789         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7790         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7791         tmp = I915_READ(VSYNC(cpu_transcoder));
7792         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7793         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7794
7795         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7796                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7797                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7798                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7799         }
7800 }
7801
7802 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7803                                     struct intel_crtc_state *pipe_config)
7804 {
7805         struct drm_device *dev = crtc->base.dev;
7806         struct drm_i915_private *dev_priv = dev->dev_private;
7807         u32 tmp;
7808
7809         tmp = I915_READ(PIPESRC(crtc->pipe));
7810         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7811         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7812
7813         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7814         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7815 }
7816
7817 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7818                                  struct intel_crtc_state *pipe_config)
7819 {
7820         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7821         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7822         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7823         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7824
7825         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7826         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7827         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7828         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7829
7830         mode->flags = pipe_config->base.adjusted_mode.flags;
7831         mode->type = DRM_MODE_TYPE_DRIVER;
7832
7833         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7834         mode->flags |= pipe_config->base.adjusted_mode.flags;
7835
7836         mode->hsync = drm_mode_hsync(mode);
7837         mode->vrefresh = drm_mode_vrefresh(mode);
7838         drm_mode_set_name(mode);
7839 }
7840
7841 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7842 {
7843         struct drm_device *dev = intel_crtc->base.dev;
7844         struct drm_i915_private *dev_priv = dev->dev_private;
7845         uint32_t pipeconf;
7846
7847         pipeconf = 0;
7848
7849         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7850             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7851                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7852
7853         if (intel_crtc->config->double_wide)
7854                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7855
7856         /* only g4x and later have fancy bpc/dither controls */
7857         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7858                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7859                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7860                         pipeconf |= PIPECONF_DITHER_EN |
7861                                     PIPECONF_DITHER_TYPE_SP;
7862
7863                 switch (intel_crtc->config->pipe_bpp) {
7864                 case 18:
7865                         pipeconf |= PIPECONF_6BPC;
7866                         break;
7867                 case 24:
7868                         pipeconf |= PIPECONF_8BPC;
7869                         break;
7870                 case 30:
7871                         pipeconf |= PIPECONF_10BPC;
7872                         break;
7873                 default:
7874                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7875                         BUG();
7876                 }
7877         }
7878
7879         if (HAS_PIPE_CXSR(dev)) {
7880                 if (intel_crtc->lowfreq_avail) {
7881                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7882                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7883                 } else {
7884                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7885                 }
7886         }
7887
7888         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7889                 if (INTEL_INFO(dev)->gen < 4 ||
7890                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7891                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7892                 else
7893                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7894         } else
7895                 pipeconf |= PIPECONF_PROGRESSIVE;
7896
7897         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7898              intel_crtc->config->limited_color_range)
7899                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7900
7901         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7902         POSTING_READ(PIPECONF(intel_crtc->pipe));
7903 }
7904
7905 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7906                                    struct intel_crtc_state *crtc_state)
7907 {
7908         struct drm_device *dev = crtc->base.dev;
7909         struct drm_i915_private *dev_priv = dev->dev_private;
7910         const struct intel_limit *limit;
7911         int refclk = 48000;
7912
7913         memset(&crtc_state->dpll_hw_state, 0,
7914                sizeof(crtc_state->dpll_hw_state));
7915
7916         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7917                 if (intel_panel_use_ssc(dev_priv)) {
7918                         refclk = dev_priv->vbt.lvds_ssc_freq;
7919                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7920                 }
7921
7922                 limit = &intel_limits_i8xx_lvds;
7923         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO)) {
7924                 limit = &intel_limits_i8xx_dvo;
7925         } else {
7926                 limit = &intel_limits_i8xx_dac;
7927         }
7928
7929         if (!crtc_state->clock_set &&
7930             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7931                                  refclk, NULL, &crtc_state->dpll)) {
7932                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7933                 return -EINVAL;
7934         }
7935
7936         i8xx_compute_dpll(crtc, crtc_state, NULL);
7937
7938         return 0;
7939 }
7940
7941 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7942                                   struct intel_crtc_state *crtc_state)
7943 {
7944         struct drm_device *dev = crtc->base.dev;
7945         struct drm_i915_private *dev_priv = dev->dev_private;
7946         const struct intel_limit *limit;
7947         int refclk = 96000;
7948
7949         memset(&crtc_state->dpll_hw_state, 0,
7950                sizeof(crtc_state->dpll_hw_state));
7951
7952         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7953                 if (intel_panel_use_ssc(dev_priv)) {
7954                         refclk = dev_priv->vbt.lvds_ssc_freq;
7955                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7956                 }
7957
7958                 if (intel_is_dual_link_lvds(dev))
7959                         limit = &intel_limits_g4x_dual_channel_lvds;
7960                 else
7961                         limit = &intel_limits_g4x_single_channel_lvds;
7962         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7963                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7964                 limit = &intel_limits_g4x_hdmi;
7965         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7966                 limit = &intel_limits_g4x_sdvo;
7967         } else {
7968                 /* The option is for other outputs */
7969                 limit = &intel_limits_i9xx_sdvo;
7970         }
7971
7972         if (!crtc_state->clock_set &&
7973             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7974                                 refclk, NULL, &crtc_state->dpll)) {
7975                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7976                 return -EINVAL;
7977         }
7978
7979         i9xx_compute_dpll(crtc, crtc_state, NULL);
7980
7981         return 0;
7982 }
7983
7984 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7985                                   struct intel_crtc_state *crtc_state)
7986 {
7987         struct drm_device *dev = crtc->base.dev;
7988         struct drm_i915_private *dev_priv = dev->dev_private;
7989         const struct intel_limit *limit;
7990         int refclk = 96000;
7991
7992         memset(&crtc_state->dpll_hw_state, 0,
7993                sizeof(crtc_state->dpll_hw_state));
7994
7995         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7996                 if (intel_panel_use_ssc(dev_priv)) {
7997                         refclk = dev_priv->vbt.lvds_ssc_freq;
7998                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7999                 }
8000
8001                 limit = &intel_limits_pineview_lvds;
8002         } else {
8003                 limit = &intel_limits_pineview_sdvo;
8004         }
8005
8006         if (!crtc_state->clock_set &&
8007             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8008                                 refclk, NULL, &crtc_state->dpll)) {
8009                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8010                 return -EINVAL;
8011         }
8012
8013         i9xx_compute_dpll(crtc, crtc_state, NULL);
8014
8015         return 0;
8016 }
8017
8018 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8019                                    struct intel_crtc_state *crtc_state)
8020 {
8021         struct drm_device *dev = crtc->base.dev;
8022         struct drm_i915_private *dev_priv = dev->dev_private;
8023         const struct intel_limit *limit;
8024         int refclk = 96000;
8025
8026         memset(&crtc_state->dpll_hw_state, 0,
8027                sizeof(crtc_state->dpll_hw_state));
8028
8029         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8030                 if (intel_panel_use_ssc(dev_priv)) {
8031                         refclk = dev_priv->vbt.lvds_ssc_freq;
8032                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8033                 }
8034
8035                 limit = &intel_limits_i9xx_lvds;
8036         } else {
8037                 limit = &intel_limits_i9xx_sdvo;
8038         }
8039
8040         if (!crtc_state->clock_set &&
8041             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8042                                  refclk, NULL, &crtc_state->dpll)) {
8043                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8044                 return -EINVAL;
8045         }
8046
8047         i9xx_compute_dpll(crtc, crtc_state, NULL);
8048
8049         return 0;
8050 }
8051
8052 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8053                                   struct intel_crtc_state *crtc_state)
8054 {
8055         int refclk = 100000;
8056         const struct intel_limit *limit = &intel_limits_chv;
8057
8058         memset(&crtc_state->dpll_hw_state, 0,
8059                sizeof(crtc_state->dpll_hw_state));
8060
8061         if (!crtc_state->clock_set &&
8062             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8063                                 refclk, NULL, &crtc_state->dpll)) {
8064                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8065                 return -EINVAL;
8066         }
8067
8068         chv_compute_dpll(crtc, crtc_state);
8069
8070         return 0;
8071 }
8072
8073 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8074                                   struct intel_crtc_state *crtc_state)
8075 {
8076         int refclk = 100000;
8077         const struct intel_limit *limit = &intel_limits_vlv;
8078
8079         memset(&crtc_state->dpll_hw_state, 0,
8080                sizeof(crtc_state->dpll_hw_state));
8081
8082         if (!crtc_state->clock_set &&
8083             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8084                                 refclk, NULL, &crtc_state->dpll)) {
8085                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8086                 return -EINVAL;
8087         }
8088
8089         vlv_compute_dpll(crtc, crtc_state);
8090
8091         return 0;
8092 }
8093
8094 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8095                                  struct intel_crtc_state *pipe_config)
8096 {
8097         struct drm_device *dev = crtc->base.dev;
8098         struct drm_i915_private *dev_priv = dev->dev_private;
8099         uint32_t tmp;
8100
8101         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8102                 return;
8103
8104         tmp = I915_READ(PFIT_CONTROL);
8105         if (!(tmp & PFIT_ENABLE))
8106                 return;
8107
8108         /* Check whether the pfit is attached to our pipe. */
8109         if (INTEL_INFO(dev)->gen < 4) {
8110                 if (crtc->pipe != PIPE_B)
8111                         return;
8112         } else {
8113                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8114                         return;
8115         }
8116
8117         pipe_config->gmch_pfit.control = tmp;
8118         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8119 }
8120
8121 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8122                                struct intel_crtc_state *pipe_config)
8123 {
8124         struct drm_device *dev = crtc->base.dev;
8125         struct drm_i915_private *dev_priv = dev->dev_private;
8126         int pipe = pipe_config->cpu_transcoder;
8127         struct dpll clock;
8128         u32 mdiv;
8129         int refclk = 100000;
8130
8131         /* In case of DSI, DPLL will not be used */
8132         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8133                 return;
8134
8135         mutex_lock(&dev_priv->sb_lock);
8136         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8137         mutex_unlock(&dev_priv->sb_lock);
8138
8139         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8140         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8141         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8142         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8143         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8144
8145         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8146 }
8147
8148 static void
8149 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8150                               struct intel_initial_plane_config *plane_config)
8151 {
8152         struct drm_device *dev = crtc->base.dev;
8153         struct drm_i915_private *dev_priv = dev->dev_private;
8154         u32 val, base, offset;
8155         int pipe = crtc->pipe, plane = crtc->plane;
8156         int fourcc, pixel_format;
8157         unsigned int aligned_height;
8158         struct drm_framebuffer *fb;
8159         struct intel_framebuffer *intel_fb;
8160
8161         val = I915_READ(DSPCNTR(plane));
8162         if (!(val & DISPLAY_PLANE_ENABLE))
8163                 return;
8164
8165         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8166         if (!intel_fb) {
8167                 DRM_DEBUG_KMS("failed to alloc fb\n");
8168                 return;
8169         }
8170
8171         fb = &intel_fb->base;
8172
8173         if (INTEL_INFO(dev)->gen >= 4) {
8174                 if (val & DISPPLANE_TILED) {
8175                         plane_config->tiling = I915_TILING_X;
8176                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8177                 }
8178         }
8179
8180         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8181         fourcc = i9xx_format_to_fourcc(pixel_format);
8182         fb->pixel_format = fourcc;
8183         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8184
8185         if (INTEL_INFO(dev)->gen >= 4) {
8186                 if (plane_config->tiling)
8187                         offset = I915_READ(DSPTILEOFF(plane));
8188                 else
8189                         offset = I915_READ(DSPLINOFF(plane));
8190                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8191         } else {
8192                 base = I915_READ(DSPADDR(plane));
8193         }
8194         plane_config->base = base;
8195
8196         val = I915_READ(PIPESRC(pipe));
8197         fb->width = ((val >> 16) & 0xfff) + 1;
8198         fb->height = ((val >> 0) & 0xfff) + 1;
8199
8200         val = I915_READ(DSPSTRIDE(pipe));
8201         fb->pitches[0] = val & 0xffffffc0;
8202
8203         aligned_height = intel_fb_align_height(dev, fb->height,
8204                                                fb->pixel_format,
8205                                                fb->modifier[0]);
8206
8207         plane_config->size = fb->pitches[0] * aligned_height;
8208
8209         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8210                       pipe_name(pipe), plane, fb->width, fb->height,
8211                       fb->bits_per_pixel, base, fb->pitches[0],
8212                       plane_config->size);
8213
8214         plane_config->fb = intel_fb;
8215 }
8216
8217 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8218                                struct intel_crtc_state *pipe_config)
8219 {
8220         struct drm_device *dev = crtc->base.dev;
8221         struct drm_i915_private *dev_priv = dev->dev_private;
8222         int pipe = pipe_config->cpu_transcoder;
8223         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8224         struct dpll clock;
8225         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8226         int refclk = 100000;
8227
8228         /* In case of DSI, DPLL will not be used */
8229         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8230                 return;
8231
8232         mutex_lock(&dev_priv->sb_lock);
8233         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8234         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8235         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8236         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8237         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8238         mutex_unlock(&dev_priv->sb_lock);
8239
8240         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8241         clock.m2 = (pll_dw0 & 0xff) << 22;
8242         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8243                 clock.m2 |= pll_dw2 & 0x3fffff;
8244         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8245         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8246         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8247
8248         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8249 }
8250
8251 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8252                                  struct intel_crtc_state *pipe_config)
8253 {
8254         struct drm_device *dev = crtc->base.dev;
8255         struct drm_i915_private *dev_priv = dev->dev_private;
8256         enum intel_display_power_domain power_domain;
8257         uint32_t tmp;
8258         bool ret;
8259
8260         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8261         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8262                 return false;
8263
8264         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8265         pipe_config->shared_dpll = NULL;
8266
8267         ret = false;
8268
8269         tmp = I915_READ(PIPECONF(crtc->pipe));
8270         if (!(tmp & PIPECONF_ENABLE))
8271                 goto out;
8272
8273         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8274                 switch (tmp & PIPECONF_BPC_MASK) {
8275                 case PIPECONF_6BPC:
8276                         pipe_config->pipe_bpp = 18;
8277                         break;
8278                 case PIPECONF_8BPC:
8279                         pipe_config->pipe_bpp = 24;
8280                         break;
8281                 case PIPECONF_10BPC:
8282                         pipe_config->pipe_bpp = 30;
8283                         break;
8284                 default:
8285                         break;
8286                 }
8287         }
8288
8289         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8290             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8291                 pipe_config->limited_color_range = true;
8292
8293         if (INTEL_INFO(dev)->gen < 4)
8294                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8295
8296         intel_get_pipe_timings(crtc, pipe_config);
8297         intel_get_pipe_src_size(crtc, pipe_config);
8298
8299         i9xx_get_pfit_config(crtc, pipe_config);
8300
8301         if (INTEL_INFO(dev)->gen >= 4) {
8302                 /* No way to read it out on pipes B and C */
8303                 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8304                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
8305                 else
8306                         tmp = I915_READ(DPLL_MD(crtc->pipe));
8307                 pipe_config->pixel_multiplier =
8308                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8309                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8310                 pipe_config->dpll_hw_state.dpll_md = tmp;
8311         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8312                 tmp = I915_READ(DPLL(crtc->pipe));
8313                 pipe_config->pixel_multiplier =
8314                         ((tmp & SDVO_MULTIPLIER_MASK)
8315                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8316         } else {
8317                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8318                  * port and will be fixed up in the encoder->get_config
8319                  * function. */
8320                 pipe_config->pixel_multiplier = 1;
8321         }
8322         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8323         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8324                 /*
8325                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8326                  * on 830. Filter it out here so that we don't
8327                  * report errors due to that.
8328                  */
8329                 if (IS_I830(dev))
8330                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8331
8332                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8333                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8334         } else {
8335                 /* Mask out read-only status bits. */
8336                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8337                                                      DPLL_PORTC_READY_MASK |
8338                                                      DPLL_PORTB_READY_MASK);
8339         }
8340
8341         if (IS_CHERRYVIEW(dev))
8342                 chv_crtc_clock_get(crtc, pipe_config);
8343         else if (IS_VALLEYVIEW(dev))
8344                 vlv_crtc_clock_get(crtc, pipe_config);
8345         else
8346                 i9xx_crtc_clock_get(crtc, pipe_config);
8347
8348         /*
8349          * Normally the dotclock is filled in by the encoder .get_config()
8350          * but in case the pipe is enabled w/o any ports we need a sane
8351          * default.
8352          */
8353         pipe_config->base.adjusted_mode.crtc_clock =
8354                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8355
8356         ret = true;
8357
8358 out:
8359         intel_display_power_put(dev_priv, power_domain);
8360
8361         return ret;
8362 }
8363
8364 static void ironlake_init_pch_refclk(struct drm_device *dev)
8365 {
8366         struct drm_i915_private *dev_priv = dev->dev_private;
8367         struct intel_encoder *encoder;
8368         int i;
8369         u32 val, final;
8370         bool has_lvds = false;
8371         bool has_cpu_edp = false;
8372         bool has_panel = false;
8373         bool has_ck505 = false;
8374         bool can_ssc = false;
8375         bool using_ssc_source = false;
8376
8377         /* We need to take the global config into account */
8378         for_each_intel_encoder(dev, encoder) {
8379                 switch (encoder->type) {
8380                 case INTEL_OUTPUT_LVDS:
8381                         has_panel = true;
8382                         has_lvds = true;
8383                         break;
8384                 case INTEL_OUTPUT_EDP:
8385                         has_panel = true;
8386                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8387                                 has_cpu_edp = true;
8388                         break;
8389                 default:
8390                         break;
8391                 }
8392         }
8393
8394         if (HAS_PCH_IBX(dev)) {
8395                 has_ck505 = dev_priv->vbt.display_clock_mode;
8396                 can_ssc = has_ck505;
8397         } else {
8398                 has_ck505 = false;
8399                 can_ssc = true;
8400         }
8401
8402         /* Check if any DPLLs are using the SSC source */
8403         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8404                 u32 temp = I915_READ(PCH_DPLL(i));
8405
8406                 if (!(temp & DPLL_VCO_ENABLE))
8407                         continue;
8408
8409                 if ((temp & PLL_REF_INPUT_MASK) ==
8410                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8411                         using_ssc_source = true;
8412                         break;
8413                 }
8414         }
8415
8416         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8417                       has_panel, has_lvds, has_ck505, using_ssc_source);
8418
8419         /* Ironlake: try to setup display ref clock before DPLL
8420          * enabling. This is only under driver's control after
8421          * PCH B stepping, previous chipset stepping should be
8422          * ignoring this setting.
8423          */
8424         val = I915_READ(PCH_DREF_CONTROL);
8425
8426         /* As we must carefully and slowly disable/enable each source in turn,
8427          * compute the final state we want first and check if we need to
8428          * make any changes at all.
8429          */
8430         final = val;
8431         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8432         if (has_ck505)
8433                 final |= DREF_NONSPREAD_CK505_ENABLE;
8434         else
8435                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8436
8437         final &= ~DREF_SSC_SOURCE_MASK;
8438         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8439         final &= ~DREF_SSC1_ENABLE;
8440
8441         if (has_panel) {
8442                 final |= DREF_SSC_SOURCE_ENABLE;
8443
8444                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8445                         final |= DREF_SSC1_ENABLE;
8446
8447                 if (has_cpu_edp) {
8448                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8449                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8450                         else
8451                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8452                 } else
8453                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8454         } else if (using_ssc_source) {
8455                 final |= DREF_SSC_SOURCE_ENABLE;
8456                 final |= DREF_SSC1_ENABLE;
8457         }
8458
8459         if (final == val)
8460                 return;
8461
8462         /* Always enable nonspread source */
8463         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8464
8465         if (has_ck505)
8466                 val |= DREF_NONSPREAD_CK505_ENABLE;
8467         else
8468                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8469
8470         if (has_panel) {
8471                 val &= ~DREF_SSC_SOURCE_MASK;
8472                 val |= DREF_SSC_SOURCE_ENABLE;
8473
8474                 /* SSC must be turned on before enabling the CPU output  */
8475                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8476                         DRM_DEBUG_KMS("Using SSC on panel\n");
8477                         val |= DREF_SSC1_ENABLE;
8478                 } else
8479                         val &= ~DREF_SSC1_ENABLE;
8480
8481                 /* Get SSC going before enabling the outputs */
8482                 I915_WRITE(PCH_DREF_CONTROL, val);
8483                 POSTING_READ(PCH_DREF_CONTROL);
8484                 udelay(200);
8485
8486                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8487
8488                 /* Enable CPU source on CPU attached eDP */
8489                 if (has_cpu_edp) {
8490                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8491                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8492                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8493                         } else
8494                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8495                 } else
8496                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8497
8498                 I915_WRITE(PCH_DREF_CONTROL, val);
8499                 POSTING_READ(PCH_DREF_CONTROL);
8500                 udelay(200);
8501         } else {
8502                 DRM_DEBUG_KMS("Disabling CPU source output\n");
8503
8504                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8505
8506                 /* Turn off CPU output */
8507                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8508
8509                 I915_WRITE(PCH_DREF_CONTROL, val);
8510                 POSTING_READ(PCH_DREF_CONTROL);
8511                 udelay(200);
8512
8513                 if (!using_ssc_source) {
8514                         DRM_DEBUG_KMS("Disabling SSC source\n");
8515
8516                         /* Turn off the SSC source */
8517                         val &= ~DREF_SSC_SOURCE_MASK;
8518                         val |= DREF_SSC_SOURCE_DISABLE;
8519
8520                         /* Turn off SSC1 */
8521                         val &= ~DREF_SSC1_ENABLE;
8522
8523                         I915_WRITE(PCH_DREF_CONTROL, val);
8524                         POSTING_READ(PCH_DREF_CONTROL);
8525                         udelay(200);
8526                 }
8527         }
8528
8529         BUG_ON(val != final);
8530 }
8531
8532 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8533 {
8534         uint32_t tmp;
8535
8536         tmp = I915_READ(SOUTH_CHICKEN2);
8537         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8538         I915_WRITE(SOUTH_CHICKEN2, tmp);
8539
8540         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8541                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8542                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8543
8544         tmp = I915_READ(SOUTH_CHICKEN2);
8545         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8546         I915_WRITE(SOUTH_CHICKEN2, tmp);
8547
8548         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8549                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8550                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8551 }
8552
8553 /* WaMPhyProgramming:hsw */
8554 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8555 {
8556         uint32_t tmp;
8557
8558         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8559         tmp &= ~(0xFF << 24);
8560         tmp |= (0x12 << 24);
8561         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8562
8563         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8564         tmp |= (1 << 11);
8565         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8566
8567         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8568         tmp |= (1 << 11);
8569         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8570
8571         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8572         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8573         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8574
8575         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8576         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8577         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8578
8579         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8580         tmp &= ~(7 << 13);
8581         tmp |= (5 << 13);
8582         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8583
8584         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8585         tmp &= ~(7 << 13);
8586         tmp |= (5 << 13);
8587         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8588
8589         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8590         tmp &= ~0xFF;
8591         tmp |= 0x1C;
8592         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8593
8594         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8595         tmp &= ~0xFF;
8596         tmp |= 0x1C;
8597         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8598
8599         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8600         tmp &= ~(0xFF << 16);
8601         tmp |= (0x1C << 16);
8602         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8603
8604         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8605         tmp &= ~(0xFF << 16);
8606         tmp |= (0x1C << 16);
8607         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8608
8609         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8610         tmp |= (1 << 27);
8611         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8612
8613         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8614         tmp |= (1 << 27);
8615         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8616
8617         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8618         tmp &= ~(0xF << 28);
8619         tmp |= (4 << 28);
8620         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8621
8622         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8623         tmp &= ~(0xF << 28);
8624         tmp |= (4 << 28);
8625         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8626 }
8627
8628 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8629  * Programming" based on the parameters passed:
8630  * - Sequence to enable CLKOUT_DP
8631  * - Sequence to enable CLKOUT_DP without spread
8632  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8633  */
8634 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8635                                  bool with_fdi)
8636 {
8637         struct drm_i915_private *dev_priv = dev->dev_private;
8638         uint32_t reg, tmp;
8639
8640         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8641                 with_spread = true;
8642         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8643                 with_fdi = false;
8644
8645         mutex_lock(&dev_priv->sb_lock);
8646
8647         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8648         tmp &= ~SBI_SSCCTL_DISABLE;
8649         tmp |= SBI_SSCCTL_PATHALT;
8650         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8651
8652         udelay(24);
8653
8654         if (with_spread) {
8655                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8656                 tmp &= ~SBI_SSCCTL_PATHALT;
8657                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8658
8659                 if (with_fdi) {
8660                         lpt_reset_fdi_mphy(dev_priv);
8661                         lpt_program_fdi_mphy(dev_priv);
8662                 }
8663         }
8664
8665         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8666         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8667         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8668         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8669
8670         mutex_unlock(&dev_priv->sb_lock);
8671 }
8672
8673 /* Sequence to disable CLKOUT_DP */
8674 static void lpt_disable_clkout_dp(struct drm_device *dev)
8675 {
8676         struct drm_i915_private *dev_priv = dev->dev_private;
8677         uint32_t reg, tmp;
8678
8679         mutex_lock(&dev_priv->sb_lock);
8680
8681         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8682         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8683         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8684         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8685
8686         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8687         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8688                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8689                         tmp |= SBI_SSCCTL_PATHALT;
8690                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8691                         udelay(32);
8692                 }
8693                 tmp |= SBI_SSCCTL_DISABLE;
8694                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8695         }
8696
8697         mutex_unlock(&dev_priv->sb_lock);
8698 }
8699
8700 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8701
8702 static const uint16_t sscdivintphase[] = {
8703         [BEND_IDX( 50)] = 0x3B23,
8704         [BEND_IDX( 45)] = 0x3B23,
8705         [BEND_IDX( 40)] = 0x3C23,
8706         [BEND_IDX( 35)] = 0x3C23,
8707         [BEND_IDX( 30)] = 0x3D23,
8708         [BEND_IDX( 25)] = 0x3D23,
8709         [BEND_IDX( 20)] = 0x3E23,
8710         [BEND_IDX( 15)] = 0x3E23,
8711         [BEND_IDX( 10)] = 0x3F23,
8712         [BEND_IDX(  5)] = 0x3F23,
8713         [BEND_IDX(  0)] = 0x0025,
8714         [BEND_IDX( -5)] = 0x0025,
8715         [BEND_IDX(-10)] = 0x0125,
8716         [BEND_IDX(-15)] = 0x0125,
8717         [BEND_IDX(-20)] = 0x0225,
8718         [BEND_IDX(-25)] = 0x0225,
8719         [BEND_IDX(-30)] = 0x0325,
8720         [BEND_IDX(-35)] = 0x0325,
8721         [BEND_IDX(-40)] = 0x0425,
8722         [BEND_IDX(-45)] = 0x0425,
8723         [BEND_IDX(-50)] = 0x0525,
8724 };
8725
8726 /*
8727  * Bend CLKOUT_DP
8728  * steps -50 to 50 inclusive, in steps of 5
8729  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8730  * change in clock period = -(steps / 10) * 5.787 ps
8731  */
8732 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8733 {
8734         uint32_t tmp;
8735         int idx = BEND_IDX(steps);
8736
8737         if (WARN_ON(steps % 5 != 0))
8738                 return;
8739
8740         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8741                 return;
8742
8743         mutex_lock(&dev_priv->sb_lock);
8744
8745         if (steps % 10 != 0)
8746                 tmp = 0xAAAAAAAB;
8747         else
8748                 tmp = 0x00000000;
8749         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8750
8751         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8752         tmp &= 0xffff0000;
8753         tmp |= sscdivintphase[idx];
8754         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8755
8756         mutex_unlock(&dev_priv->sb_lock);
8757 }
8758
8759 #undef BEND_IDX
8760
8761 static void lpt_init_pch_refclk(struct drm_device *dev)
8762 {
8763         struct intel_encoder *encoder;
8764         bool has_vga = false;
8765
8766         for_each_intel_encoder(dev, encoder) {
8767                 switch (encoder->type) {
8768                 case INTEL_OUTPUT_ANALOG:
8769                         has_vga = true;
8770                         break;
8771                 default:
8772                         break;
8773                 }
8774         }
8775
8776         if (has_vga) {
8777                 lpt_bend_clkout_dp(to_i915(dev), 0);
8778                 lpt_enable_clkout_dp(dev, true, true);
8779         } else {
8780                 lpt_disable_clkout_dp(dev);
8781         }
8782 }
8783
8784 /*
8785  * Initialize reference clocks when the driver loads
8786  */
8787 void intel_init_pch_refclk(struct drm_device *dev)
8788 {
8789         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8790                 ironlake_init_pch_refclk(dev);
8791         else if (HAS_PCH_LPT(dev))
8792                 lpt_init_pch_refclk(dev);
8793 }
8794
8795 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8796 {
8797         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8798         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8799         int pipe = intel_crtc->pipe;
8800         uint32_t val;
8801
8802         val = 0;
8803
8804         switch (intel_crtc->config->pipe_bpp) {
8805         case 18:
8806                 val |= PIPECONF_6BPC;
8807                 break;
8808         case 24:
8809                 val |= PIPECONF_8BPC;
8810                 break;
8811         case 30:
8812                 val |= PIPECONF_10BPC;
8813                 break;
8814         case 36:
8815                 val |= PIPECONF_12BPC;
8816                 break;
8817         default:
8818                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8819                 BUG();
8820         }
8821
8822         if (intel_crtc->config->dither)
8823                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8824
8825         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8826                 val |= PIPECONF_INTERLACED_ILK;
8827         else
8828                 val |= PIPECONF_PROGRESSIVE;
8829
8830         if (intel_crtc->config->limited_color_range)
8831                 val |= PIPECONF_COLOR_RANGE_SELECT;
8832
8833         I915_WRITE(PIPECONF(pipe), val);
8834         POSTING_READ(PIPECONF(pipe));
8835 }
8836
8837 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8838 {
8839         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8840         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8841         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8842         u32 val = 0;
8843
8844         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8845                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8846
8847         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8848                 val |= PIPECONF_INTERLACED_ILK;
8849         else
8850                 val |= PIPECONF_PROGRESSIVE;
8851
8852         I915_WRITE(PIPECONF(cpu_transcoder), val);
8853         POSTING_READ(PIPECONF(cpu_transcoder));
8854 }
8855
8856 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8857 {
8858         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8859         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8860
8861         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8862                 u32 val = 0;
8863
8864                 switch (intel_crtc->config->pipe_bpp) {
8865                 case 18:
8866                         val |= PIPEMISC_DITHER_6_BPC;
8867                         break;
8868                 case 24:
8869                         val |= PIPEMISC_DITHER_8_BPC;
8870                         break;
8871                 case 30:
8872                         val |= PIPEMISC_DITHER_10_BPC;
8873                         break;
8874                 case 36:
8875                         val |= PIPEMISC_DITHER_12_BPC;
8876                         break;
8877                 default:
8878                         /* Case prevented by pipe_config_set_bpp. */
8879                         BUG();
8880                 }
8881
8882                 if (intel_crtc->config->dither)
8883                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8884
8885                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8886         }
8887 }
8888
8889 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8890 {
8891         /*
8892          * Account for spread spectrum to avoid
8893          * oversubscribing the link. Max center spread
8894          * is 2.5%; use 5% for safety's sake.
8895          */
8896         u32 bps = target_clock * bpp * 21 / 20;
8897         return DIV_ROUND_UP(bps, link_bw * 8);
8898 }
8899
8900 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8901 {
8902         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8903 }
8904
8905 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8906                                   struct intel_crtc_state *crtc_state,
8907                                   struct dpll *reduced_clock)
8908 {
8909         struct drm_crtc *crtc = &intel_crtc->base;
8910         struct drm_device *dev = crtc->dev;
8911         struct drm_i915_private *dev_priv = dev->dev_private;
8912         struct drm_atomic_state *state = crtc_state->base.state;
8913         struct drm_connector *connector;
8914         struct drm_connector_state *connector_state;
8915         struct intel_encoder *encoder;
8916         u32 dpll, fp, fp2;
8917         int factor, i;
8918         bool is_lvds = false, is_sdvo = false;
8919
8920         for_each_connector_in_state(state, connector, connector_state, i) {
8921                 if (connector_state->crtc != crtc_state->base.crtc)
8922                         continue;
8923
8924                 encoder = to_intel_encoder(connector_state->best_encoder);
8925
8926                 switch (encoder->type) {
8927                 case INTEL_OUTPUT_LVDS:
8928                         is_lvds = true;
8929                         break;
8930                 case INTEL_OUTPUT_SDVO:
8931                 case INTEL_OUTPUT_HDMI:
8932                         is_sdvo = true;
8933                         break;
8934                 default:
8935                         break;
8936                 }
8937         }
8938
8939         /* Enable autotuning of the PLL clock (if permissible) */
8940         factor = 21;
8941         if (is_lvds) {
8942                 if ((intel_panel_use_ssc(dev_priv) &&
8943                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8944                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8945                         factor = 25;
8946         } else if (crtc_state->sdvo_tv_clock)
8947                 factor = 20;
8948
8949         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8950
8951         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8952                 fp |= FP_CB_TUNE;
8953
8954         if (reduced_clock) {
8955                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8956
8957                 if (reduced_clock->m < factor * reduced_clock->n)
8958                         fp2 |= FP_CB_TUNE;
8959         } else {
8960                 fp2 = fp;
8961         }
8962
8963         dpll = 0;
8964
8965         if (is_lvds)
8966                 dpll |= DPLLB_MODE_LVDS;
8967         else
8968                 dpll |= DPLLB_MODE_DAC_SERIAL;
8969
8970         dpll |= (crtc_state->pixel_multiplier - 1)
8971                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8972
8973         if (is_sdvo)
8974                 dpll |= DPLL_SDVO_HIGH_SPEED;
8975         if (crtc_state->has_dp_encoder)
8976                 dpll |= DPLL_SDVO_HIGH_SPEED;
8977
8978         /* compute bitmask from p1 value */
8979         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8980         /* also FPA1 */
8981         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8982
8983         switch (crtc_state->dpll.p2) {
8984         case 5:
8985                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8986                 break;
8987         case 7:
8988                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8989                 break;
8990         case 10:
8991                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8992                 break;
8993         case 14:
8994                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8995                 break;
8996         }
8997
8998         if (is_lvds && intel_panel_use_ssc(dev_priv))
8999                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9000         else
9001                 dpll |= PLL_REF_INPUT_DREFCLK;
9002
9003         dpll |= DPLL_VCO_ENABLE;
9004
9005         crtc_state->dpll_hw_state.dpll = dpll;
9006         crtc_state->dpll_hw_state.fp0 = fp;
9007         crtc_state->dpll_hw_state.fp1 = fp2;
9008 }
9009
9010 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9011                                        struct intel_crtc_state *crtc_state)
9012 {
9013         struct drm_device *dev = crtc->base.dev;
9014         struct drm_i915_private *dev_priv = dev->dev_private;
9015         struct dpll reduced_clock;
9016         bool has_reduced_clock = false;
9017         struct intel_shared_dpll *pll;
9018         const struct intel_limit *limit;
9019         int refclk = 120000;
9020
9021         memset(&crtc_state->dpll_hw_state, 0,
9022                sizeof(crtc_state->dpll_hw_state));
9023
9024         crtc->lowfreq_avail = false;
9025
9026         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9027         if (!crtc_state->has_pch_encoder)
9028                 return 0;
9029
9030         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9031                 if (intel_panel_use_ssc(dev_priv)) {
9032                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9033                                       dev_priv->vbt.lvds_ssc_freq);
9034                         refclk = dev_priv->vbt.lvds_ssc_freq;
9035                 }
9036
9037                 if (intel_is_dual_link_lvds(dev)) {
9038                         if (refclk == 100000)
9039                                 limit = &intel_limits_ironlake_dual_lvds_100m;
9040                         else
9041                                 limit = &intel_limits_ironlake_dual_lvds;
9042                 } else {
9043                         if (refclk == 100000)
9044                                 limit = &intel_limits_ironlake_single_lvds_100m;
9045                         else
9046                                 limit = &intel_limits_ironlake_single_lvds;
9047                 }
9048         } else {
9049                 limit = &intel_limits_ironlake_dac;
9050         }
9051
9052         if (!crtc_state->clock_set &&
9053             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9054                                 refclk, NULL, &crtc_state->dpll)) {
9055                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9056                 return -EINVAL;
9057         }
9058
9059         ironlake_compute_dpll(crtc, crtc_state,
9060                               has_reduced_clock ? &reduced_clock : NULL);
9061
9062         pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9063         if (pll == NULL) {
9064                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9065                                  pipe_name(crtc->pipe));
9066                 return -EINVAL;
9067         }
9068
9069         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9070             has_reduced_clock)
9071                 crtc->lowfreq_avail = true;
9072
9073         return 0;
9074 }
9075
9076 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9077                                          struct intel_link_m_n *m_n)
9078 {
9079         struct drm_device *dev = crtc->base.dev;
9080         struct drm_i915_private *dev_priv = dev->dev_private;
9081         enum pipe pipe = crtc->pipe;
9082
9083         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9084         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9085         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9086                 & ~TU_SIZE_MASK;
9087         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9088         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9089                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9090 }
9091
9092 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9093                                          enum transcoder transcoder,
9094                                          struct intel_link_m_n *m_n,
9095                                          struct intel_link_m_n *m2_n2)
9096 {
9097         struct drm_device *dev = crtc->base.dev;
9098         struct drm_i915_private *dev_priv = dev->dev_private;
9099         enum pipe pipe = crtc->pipe;
9100
9101         if (INTEL_INFO(dev)->gen >= 5) {
9102                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9103                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9104                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9105                         & ~TU_SIZE_MASK;
9106                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9107                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9108                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9109                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9110                  * gen < 8) and if DRRS is supported (to make sure the
9111                  * registers are not unnecessarily read).
9112                  */
9113                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9114                         crtc->config->has_drrs) {
9115                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9116                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9117                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9118                                         & ~TU_SIZE_MASK;
9119                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9120                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9121                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9122                 }
9123         } else {
9124                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9125                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9126                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9127                         & ~TU_SIZE_MASK;
9128                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9129                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9130                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9131         }
9132 }
9133
9134 void intel_dp_get_m_n(struct intel_crtc *crtc,
9135                       struct intel_crtc_state *pipe_config)
9136 {
9137         if (pipe_config->has_pch_encoder)
9138                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9139         else
9140                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9141                                              &pipe_config->dp_m_n,
9142                                              &pipe_config->dp_m2_n2);
9143 }
9144
9145 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9146                                         struct intel_crtc_state *pipe_config)
9147 {
9148         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9149                                      &pipe_config->fdi_m_n, NULL);
9150 }
9151
9152 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9153                                     struct intel_crtc_state *pipe_config)
9154 {
9155         struct drm_device *dev = crtc->base.dev;
9156         struct drm_i915_private *dev_priv = dev->dev_private;
9157         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9158         uint32_t ps_ctrl = 0;
9159         int id = -1;
9160         int i;
9161
9162         /* find scaler attached to this pipe */
9163         for (i = 0; i < crtc->num_scalers; i++) {
9164                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9165                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9166                         id = i;
9167                         pipe_config->pch_pfit.enabled = true;
9168                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9169                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9170                         break;
9171                 }
9172         }
9173
9174         scaler_state->scaler_id = id;
9175         if (id >= 0) {
9176                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9177         } else {
9178                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9179         }
9180 }
9181
9182 static void
9183 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9184                                  struct intel_initial_plane_config *plane_config)
9185 {
9186         struct drm_device *dev = crtc->base.dev;
9187         struct drm_i915_private *dev_priv = dev->dev_private;
9188         u32 val, base, offset, stride_mult, tiling;
9189         int pipe = crtc->pipe;
9190         int fourcc, pixel_format;
9191         unsigned int aligned_height;
9192         struct drm_framebuffer *fb;
9193         struct intel_framebuffer *intel_fb;
9194
9195         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9196         if (!intel_fb) {
9197                 DRM_DEBUG_KMS("failed to alloc fb\n");
9198                 return;
9199         }
9200
9201         fb = &intel_fb->base;
9202
9203         val = I915_READ(PLANE_CTL(pipe, 0));
9204         if (!(val & PLANE_CTL_ENABLE))
9205                 goto error;
9206
9207         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9208         fourcc = skl_format_to_fourcc(pixel_format,
9209                                       val & PLANE_CTL_ORDER_RGBX,
9210                                       val & PLANE_CTL_ALPHA_MASK);
9211         fb->pixel_format = fourcc;
9212         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9213
9214         tiling = val & PLANE_CTL_TILED_MASK;
9215         switch (tiling) {
9216         case PLANE_CTL_TILED_LINEAR:
9217                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9218                 break;
9219         case PLANE_CTL_TILED_X:
9220                 plane_config->tiling = I915_TILING_X;
9221                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9222                 break;
9223         case PLANE_CTL_TILED_Y:
9224                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9225                 break;
9226         case PLANE_CTL_TILED_YF:
9227                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9228                 break;
9229         default:
9230                 MISSING_CASE(tiling);
9231                 goto error;
9232         }
9233
9234         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9235         plane_config->base = base;
9236
9237         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9238
9239         val = I915_READ(PLANE_SIZE(pipe, 0));
9240         fb->height = ((val >> 16) & 0xfff) + 1;
9241         fb->width = ((val >> 0) & 0x1fff) + 1;
9242
9243         val = I915_READ(PLANE_STRIDE(pipe, 0));
9244         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9245                                                 fb->pixel_format);
9246         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9247
9248         aligned_height = intel_fb_align_height(dev, fb->height,
9249                                                fb->pixel_format,
9250                                                fb->modifier[0]);
9251
9252         plane_config->size = fb->pitches[0] * aligned_height;
9253
9254         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9255                       pipe_name(pipe), fb->width, fb->height,
9256                       fb->bits_per_pixel, base, fb->pitches[0],
9257                       plane_config->size);
9258
9259         plane_config->fb = intel_fb;
9260         return;
9261
9262 error:
9263         kfree(fb);
9264 }
9265
9266 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9267                                      struct intel_crtc_state *pipe_config)
9268 {
9269         struct drm_device *dev = crtc->base.dev;
9270         struct drm_i915_private *dev_priv = dev->dev_private;
9271         uint32_t tmp;
9272
9273         tmp = I915_READ(PF_CTL(crtc->pipe));
9274
9275         if (tmp & PF_ENABLE) {
9276                 pipe_config->pch_pfit.enabled = true;
9277                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9278                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9279
9280                 /* We currently do not free assignements of panel fitters on
9281                  * ivb/hsw (since we don't use the higher upscaling modes which
9282                  * differentiates them) so just WARN about this case for now. */
9283                 if (IS_GEN7(dev)) {
9284                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9285                                 PF_PIPE_SEL_IVB(crtc->pipe));
9286                 }
9287         }
9288 }
9289
9290 static void
9291 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9292                                   struct intel_initial_plane_config *plane_config)
9293 {
9294         struct drm_device *dev = crtc->base.dev;
9295         struct drm_i915_private *dev_priv = dev->dev_private;
9296         u32 val, base, offset;
9297         int pipe = crtc->pipe;
9298         int fourcc, pixel_format;
9299         unsigned int aligned_height;
9300         struct drm_framebuffer *fb;
9301         struct intel_framebuffer *intel_fb;
9302
9303         val = I915_READ(DSPCNTR(pipe));
9304         if (!(val & DISPLAY_PLANE_ENABLE))
9305                 return;
9306
9307         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9308         if (!intel_fb) {
9309                 DRM_DEBUG_KMS("failed to alloc fb\n");
9310                 return;
9311         }
9312
9313         fb = &intel_fb->base;
9314
9315         if (INTEL_INFO(dev)->gen >= 4) {
9316                 if (val & DISPPLANE_TILED) {
9317                         plane_config->tiling = I915_TILING_X;
9318                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9319                 }
9320         }
9321
9322         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9323         fourcc = i9xx_format_to_fourcc(pixel_format);
9324         fb->pixel_format = fourcc;
9325         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9326
9327         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9328         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9329                 offset = I915_READ(DSPOFFSET(pipe));
9330         } else {
9331                 if (plane_config->tiling)
9332                         offset = I915_READ(DSPTILEOFF(pipe));
9333                 else
9334                         offset = I915_READ(DSPLINOFF(pipe));
9335         }
9336         plane_config->base = base;
9337
9338         val = I915_READ(PIPESRC(pipe));
9339         fb->width = ((val >> 16) & 0xfff) + 1;
9340         fb->height = ((val >> 0) & 0xfff) + 1;
9341
9342         val = I915_READ(DSPSTRIDE(pipe));
9343         fb->pitches[0] = val & 0xffffffc0;
9344
9345         aligned_height = intel_fb_align_height(dev, fb->height,
9346                                                fb->pixel_format,
9347                                                fb->modifier[0]);
9348
9349         plane_config->size = fb->pitches[0] * aligned_height;
9350
9351         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9352                       pipe_name(pipe), fb->width, fb->height,
9353                       fb->bits_per_pixel, base, fb->pitches[0],
9354                       plane_config->size);
9355
9356         plane_config->fb = intel_fb;
9357 }
9358
9359 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9360                                      struct intel_crtc_state *pipe_config)
9361 {
9362         struct drm_device *dev = crtc->base.dev;
9363         struct drm_i915_private *dev_priv = dev->dev_private;
9364         enum intel_display_power_domain power_domain;
9365         uint32_t tmp;
9366         bool ret;
9367
9368         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9369         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9370                 return false;
9371
9372         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9373         pipe_config->shared_dpll = NULL;
9374
9375         ret = false;
9376         tmp = I915_READ(PIPECONF(crtc->pipe));
9377         if (!(tmp & PIPECONF_ENABLE))
9378                 goto out;
9379
9380         switch (tmp & PIPECONF_BPC_MASK) {
9381         case PIPECONF_6BPC:
9382                 pipe_config->pipe_bpp = 18;
9383                 break;
9384         case PIPECONF_8BPC:
9385                 pipe_config->pipe_bpp = 24;
9386                 break;
9387         case PIPECONF_10BPC:
9388                 pipe_config->pipe_bpp = 30;
9389                 break;
9390         case PIPECONF_12BPC:
9391                 pipe_config->pipe_bpp = 36;
9392                 break;
9393         default:
9394                 break;
9395         }
9396
9397         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9398                 pipe_config->limited_color_range = true;
9399
9400         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9401                 struct intel_shared_dpll *pll;
9402                 enum intel_dpll_id pll_id;
9403
9404                 pipe_config->has_pch_encoder = true;
9405
9406                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9407                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9408                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9409
9410                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9411
9412                 if (HAS_PCH_IBX(dev_priv)) {
9413                         /*
9414                          * The pipe->pch transcoder and pch transcoder->pll
9415                          * mapping is fixed.
9416                          */
9417                         pll_id = (enum intel_dpll_id) crtc->pipe;
9418                 } else {
9419                         tmp = I915_READ(PCH_DPLL_SEL);
9420                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9421                                 pll_id = DPLL_ID_PCH_PLL_B;
9422                         else
9423                                 pll_id= DPLL_ID_PCH_PLL_A;
9424                 }
9425
9426                 pipe_config->shared_dpll =
9427                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
9428                 pll = pipe_config->shared_dpll;
9429
9430                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9431                                                  &pipe_config->dpll_hw_state));
9432
9433                 tmp = pipe_config->dpll_hw_state.dpll;
9434                 pipe_config->pixel_multiplier =
9435                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9436                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9437
9438                 ironlake_pch_clock_get(crtc, pipe_config);
9439         } else {
9440                 pipe_config->pixel_multiplier = 1;
9441         }
9442
9443         intel_get_pipe_timings(crtc, pipe_config);
9444         intel_get_pipe_src_size(crtc, pipe_config);
9445
9446         ironlake_get_pfit_config(crtc, pipe_config);
9447
9448         ret = true;
9449
9450 out:
9451         intel_display_power_put(dev_priv, power_domain);
9452
9453         return ret;
9454 }
9455
9456 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9457 {
9458         struct drm_device *dev = dev_priv->dev;
9459         struct intel_crtc *crtc;
9460
9461         for_each_intel_crtc(dev, crtc)
9462                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9463                      pipe_name(crtc->pipe));
9464
9465         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9466         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9467         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9468         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9469         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9470         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9471              "CPU PWM1 enabled\n");
9472         if (IS_HASWELL(dev))
9473                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9474                      "CPU PWM2 enabled\n");
9475         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9476              "PCH PWM1 enabled\n");
9477         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9478              "Utility pin enabled\n");
9479         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9480
9481         /*
9482          * In theory we can still leave IRQs enabled, as long as only the HPD
9483          * interrupts remain enabled. We used to check for that, but since it's
9484          * gen-specific and since we only disable LCPLL after we fully disable
9485          * the interrupts, the check below should be enough.
9486          */
9487         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9488 }
9489
9490 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9491 {
9492         struct drm_device *dev = dev_priv->dev;
9493
9494         if (IS_HASWELL(dev))
9495                 return I915_READ(D_COMP_HSW);
9496         else
9497                 return I915_READ(D_COMP_BDW);
9498 }
9499
9500 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9501 {
9502         struct drm_device *dev = dev_priv->dev;
9503
9504         if (IS_HASWELL(dev)) {
9505                 mutex_lock(&dev_priv->rps.hw_lock);
9506                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9507                                             val))
9508                         DRM_ERROR("Failed to write to D_COMP\n");
9509                 mutex_unlock(&dev_priv->rps.hw_lock);
9510         } else {
9511                 I915_WRITE(D_COMP_BDW, val);
9512                 POSTING_READ(D_COMP_BDW);
9513         }
9514 }
9515
9516 /*
9517  * This function implements pieces of two sequences from BSpec:
9518  * - Sequence for display software to disable LCPLL
9519  * - Sequence for display software to allow package C8+
9520  * The steps implemented here are just the steps that actually touch the LCPLL
9521  * register. Callers should take care of disabling all the display engine
9522  * functions, doing the mode unset, fixing interrupts, etc.
9523  */
9524 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9525                               bool switch_to_fclk, bool allow_power_down)
9526 {
9527         uint32_t val;
9528
9529         assert_can_disable_lcpll(dev_priv);
9530
9531         val = I915_READ(LCPLL_CTL);
9532
9533         if (switch_to_fclk) {
9534                 val |= LCPLL_CD_SOURCE_FCLK;
9535                 I915_WRITE(LCPLL_CTL, val);
9536
9537                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9538                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9539                         DRM_ERROR("Switching to FCLK failed\n");
9540
9541                 val = I915_READ(LCPLL_CTL);
9542         }
9543
9544         val |= LCPLL_PLL_DISABLE;
9545         I915_WRITE(LCPLL_CTL, val);
9546         POSTING_READ(LCPLL_CTL);
9547
9548         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9549                 DRM_ERROR("LCPLL still locked\n");
9550
9551         val = hsw_read_dcomp(dev_priv);
9552         val |= D_COMP_COMP_DISABLE;
9553         hsw_write_dcomp(dev_priv, val);
9554         ndelay(100);
9555
9556         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9557                      1))
9558                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9559
9560         if (allow_power_down) {
9561                 val = I915_READ(LCPLL_CTL);
9562                 val |= LCPLL_POWER_DOWN_ALLOW;
9563                 I915_WRITE(LCPLL_CTL, val);
9564                 POSTING_READ(LCPLL_CTL);
9565         }
9566 }
9567
9568 /*
9569  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9570  * source.
9571  */
9572 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9573 {
9574         uint32_t val;
9575
9576         val = I915_READ(LCPLL_CTL);
9577
9578         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9579                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9580                 return;
9581
9582         /*
9583          * Make sure we're not on PC8 state before disabling PC8, otherwise
9584          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9585          */
9586         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9587
9588         if (val & LCPLL_POWER_DOWN_ALLOW) {
9589                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9590                 I915_WRITE(LCPLL_CTL, val);
9591                 POSTING_READ(LCPLL_CTL);
9592         }
9593
9594         val = hsw_read_dcomp(dev_priv);
9595         val |= D_COMP_COMP_FORCE;
9596         val &= ~D_COMP_COMP_DISABLE;
9597         hsw_write_dcomp(dev_priv, val);
9598
9599         val = I915_READ(LCPLL_CTL);
9600         val &= ~LCPLL_PLL_DISABLE;
9601         I915_WRITE(LCPLL_CTL, val);
9602
9603         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9604                 DRM_ERROR("LCPLL not locked yet\n");
9605
9606         if (val & LCPLL_CD_SOURCE_FCLK) {
9607                 val = I915_READ(LCPLL_CTL);
9608                 val &= ~LCPLL_CD_SOURCE_FCLK;
9609                 I915_WRITE(LCPLL_CTL, val);
9610
9611                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9612                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9613                         DRM_ERROR("Switching back to LCPLL failed\n");
9614         }
9615
9616         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9617         intel_update_cdclk(dev_priv->dev);
9618 }
9619
9620 /*
9621  * Package states C8 and deeper are really deep PC states that can only be
9622  * reached when all the devices on the system allow it, so even if the graphics
9623  * device allows PC8+, it doesn't mean the system will actually get to these
9624  * states. Our driver only allows PC8+ when going into runtime PM.
9625  *
9626  * The requirements for PC8+ are that all the outputs are disabled, the power
9627  * well is disabled and most interrupts are disabled, and these are also
9628  * requirements for runtime PM. When these conditions are met, we manually do
9629  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9630  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9631  * hang the machine.
9632  *
9633  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9634  * the state of some registers, so when we come back from PC8+ we need to
9635  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9636  * need to take care of the registers kept by RC6. Notice that this happens even
9637  * if we don't put the device in PCI D3 state (which is what currently happens
9638  * because of the runtime PM support).
9639  *
9640  * For more, read "Display Sequences for Package C8" on the hardware
9641  * documentation.
9642  */
9643 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9644 {
9645         struct drm_device *dev = dev_priv->dev;
9646         uint32_t val;
9647
9648         DRM_DEBUG_KMS("Enabling package C8+\n");
9649
9650         if (HAS_PCH_LPT_LP(dev)) {
9651                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9652                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9653                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9654         }
9655
9656         lpt_disable_clkout_dp(dev);
9657         hsw_disable_lcpll(dev_priv, true, true);
9658 }
9659
9660 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9661 {
9662         struct drm_device *dev = dev_priv->dev;
9663         uint32_t val;
9664
9665         DRM_DEBUG_KMS("Disabling package C8+\n");
9666
9667         hsw_restore_lcpll(dev_priv);
9668         lpt_init_pch_refclk(dev);
9669
9670         if (HAS_PCH_LPT_LP(dev)) {
9671                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9672                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9673                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9674         }
9675 }
9676
9677 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9678 {
9679         struct drm_device *dev = old_state->dev;
9680         struct intel_atomic_state *old_intel_state =
9681                 to_intel_atomic_state(old_state);
9682         unsigned int req_cdclk = old_intel_state->dev_cdclk;
9683
9684         bxt_set_cdclk(to_i915(dev), req_cdclk);
9685 }
9686
9687 /* compute the max rate for new configuration */
9688 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9689 {
9690         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9691         struct drm_i915_private *dev_priv = state->dev->dev_private;
9692         struct drm_crtc *crtc;
9693         struct drm_crtc_state *cstate;
9694         struct intel_crtc_state *crtc_state;
9695         unsigned max_pixel_rate = 0, i;
9696         enum pipe pipe;
9697
9698         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9699                sizeof(intel_state->min_pixclk));
9700
9701         for_each_crtc_in_state(state, crtc, cstate, i) {
9702                 int pixel_rate;
9703
9704                 crtc_state = to_intel_crtc_state(cstate);
9705                 if (!crtc_state->base.enable) {
9706                         intel_state->min_pixclk[i] = 0;
9707                         continue;
9708                 }
9709
9710                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9711
9712                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9713                 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9714                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9715
9716                 intel_state->min_pixclk[i] = pixel_rate;
9717         }
9718
9719         for_each_pipe(dev_priv, pipe)
9720                 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9721
9722         return max_pixel_rate;
9723 }
9724
9725 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9726 {
9727         struct drm_i915_private *dev_priv = dev->dev_private;
9728         uint32_t val, data;
9729         int ret;
9730
9731         if (WARN((I915_READ(LCPLL_CTL) &
9732                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9733                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9734                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9735                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9736                  "trying to change cdclk frequency with cdclk not enabled\n"))
9737                 return;
9738
9739         mutex_lock(&dev_priv->rps.hw_lock);
9740         ret = sandybridge_pcode_write(dev_priv,
9741                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9742         mutex_unlock(&dev_priv->rps.hw_lock);
9743         if (ret) {
9744                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9745                 return;
9746         }
9747
9748         val = I915_READ(LCPLL_CTL);
9749         val |= LCPLL_CD_SOURCE_FCLK;
9750         I915_WRITE(LCPLL_CTL, val);
9751
9752         if (wait_for_us(I915_READ(LCPLL_CTL) &
9753                         LCPLL_CD_SOURCE_FCLK_DONE, 1))
9754                 DRM_ERROR("Switching to FCLK failed\n");
9755
9756         val = I915_READ(LCPLL_CTL);
9757         val &= ~LCPLL_CLK_FREQ_MASK;
9758
9759         switch (cdclk) {
9760         case 450000:
9761                 val |= LCPLL_CLK_FREQ_450;
9762                 data = 0;
9763                 break;
9764         case 540000:
9765                 val |= LCPLL_CLK_FREQ_54O_BDW;
9766                 data = 1;
9767                 break;
9768         case 337500:
9769                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9770                 data = 2;
9771                 break;
9772         case 675000:
9773                 val |= LCPLL_CLK_FREQ_675_BDW;
9774                 data = 3;
9775                 break;
9776         default:
9777                 WARN(1, "invalid cdclk frequency\n");
9778                 return;
9779         }
9780
9781         I915_WRITE(LCPLL_CTL, val);
9782
9783         val = I915_READ(LCPLL_CTL);
9784         val &= ~LCPLL_CD_SOURCE_FCLK;
9785         I915_WRITE(LCPLL_CTL, val);
9786
9787         if (wait_for_us((I915_READ(LCPLL_CTL) &
9788                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9789                 DRM_ERROR("Switching back to LCPLL failed\n");
9790
9791         mutex_lock(&dev_priv->rps.hw_lock);
9792         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9793         mutex_unlock(&dev_priv->rps.hw_lock);
9794
9795         I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9796
9797         intel_update_cdclk(dev);
9798
9799         WARN(cdclk != dev_priv->cdclk_freq,
9800              "cdclk requested %d kHz but got %d kHz\n",
9801              cdclk, dev_priv->cdclk_freq);
9802 }
9803
9804 static int broadwell_calc_cdclk(int max_pixclk)
9805 {
9806         if (max_pixclk > 540000)
9807                 return 675000;
9808         else if (max_pixclk > 450000)
9809                 return 540000;
9810         else if (max_pixclk > 337500)
9811                 return 450000;
9812         else
9813                 return 337500;
9814 }
9815
9816 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9817 {
9818         struct drm_i915_private *dev_priv = to_i915(state->dev);
9819         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9820         int max_pixclk = ilk_max_pixel_rate(state);
9821         int cdclk;
9822
9823         /*
9824          * FIXME should also account for plane ratio
9825          * once 64bpp pixel formats are supported.
9826          */
9827         cdclk = broadwell_calc_cdclk(max_pixclk);
9828
9829         if (cdclk > dev_priv->max_cdclk_freq) {
9830                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9831                               cdclk, dev_priv->max_cdclk_freq);
9832                 return -EINVAL;
9833         }
9834
9835         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9836         if (!intel_state->active_crtcs)
9837                 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
9838
9839         return 0;
9840 }
9841
9842 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9843 {
9844         struct drm_device *dev = old_state->dev;
9845         struct intel_atomic_state *old_intel_state =
9846                 to_intel_atomic_state(old_state);
9847         unsigned req_cdclk = old_intel_state->dev_cdclk;
9848
9849         broadwell_set_cdclk(dev, req_cdclk);
9850 }
9851
9852 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
9853 {
9854         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9855         struct drm_i915_private *dev_priv = to_i915(state->dev);
9856         const int max_pixclk = ilk_max_pixel_rate(state);
9857         int vco = intel_state->cdclk_pll_vco;
9858         int cdclk;
9859
9860         /*
9861          * FIXME should also account for plane ratio
9862          * once 64bpp pixel formats are supported.
9863          */
9864         cdclk = skl_calc_cdclk(max_pixclk, vco);
9865
9866         /*
9867          * FIXME move the cdclk caclulation to
9868          * compute_config() so we can fail gracegully.
9869          */
9870         if (cdclk > dev_priv->max_cdclk_freq) {
9871                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9872                           cdclk, dev_priv->max_cdclk_freq);
9873                 cdclk = dev_priv->max_cdclk_freq;
9874         }
9875
9876         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9877         if (!intel_state->active_crtcs)
9878                 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
9879
9880         return 0;
9881 }
9882
9883 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9884 {
9885         struct drm_i915_private *dev_priv = to_i915(old_state->dev);
9886         struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
9887         unsigned int req_cdclk = intel_state->dev_cdclk;
9888         unsigned int req_vco = intel_state->cdclk_pll_vco;
9889
9890         skl_set_cdclk(dev_priv, req_cdclk, req_vco);
9891 }
9892
9893 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9894                                       struct intel_crtc_state *crtc_state)
9895 {
9896         struct intel_encoder *intel_encoder =
9897                 intel_ddi_get_crtc_new_encoder(crtc_state);
9898
9899         if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9900                 if (!intel_ddi_pll_select(crtc, crtc_state))
9901                         return -EINVAL;
9902         }
9903
9904         crtc->lowfreq_avail = false;
9905
9906         return 0;
9907 }
9908
9909 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9910                                 enum port port,
9911                                 struct intel_crtc_state *pipe_config)
9912 {
9913         enum intel_dpll_id id;
9914
9915         switch (port) {
9916         case PORT_A:
9917                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9918                 id = DPLL_ID_SKL_DPLL0;
9919                 break;
9920         case PORT_B:
9921                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9922                 id = DPLL_ID_SKL_DPLL1;
9923                 break;
9924         case PORT_C:
9925                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9926                 id = DPLL_ID_SKL_DPLL2;
9927                 break;
9928         default:
9929                 DRM_ERROR("Incorrect port type\n");
9930                 return;
9931         }
9932
9933         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9934 }
9935
9936 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9937                                 enum port port,
9938                                 struct intel_crtc_state *pipe_config)
9939 {
9940         enum intel_dpll_id id;
9941         u32 temp;
9942
9943         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9944         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9945
9946         switch (pipe_config->ddi_pll_sel) {
9947         case SKL_DPLL0:
9948                 id = DPLL_ID_SKL_DPLL0;
9949                 break;
9950         case SKL_DPLL1:
9951                 id = DPLL_ID_SKL_DPLL1;
9952                 break;
9953         case SKL_DPLL2:
9954                 id = DPLL_ID_SKL_DPLL2;
9955                 break;
9956         case SKL_DPLL3:
9957                 id = DPLL_ID_SKL_DPLL3;
9958                 break;
9959         default:
9960                 MISSING_CASE(pipe_config->ddi_pll_sel);
9961                 return;
9962         }
9963
9964         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9965 }
9966
9967 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9968                                 enum port port,
9969                                 struct intel_crtc_state *pipe_config)
9970 {
9971         enum intel_dpll_id id;
9972
9973         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9974
9975         switch (pipe_config->ddi_pll_sel) {
9976         case PORT_CLK_SEL_WRPLL1:
9977                 id = DPLL_ID_WRPLL1;
9978                 break;
9979         case PORT_CLK_SEL_WRPLL2:
9980                 id = DPLL_ID_WRPLL2;
9981                 break;
9982         case PORT_CLK_SEL_SPLL:
9983                 id = DPLL_ID_SPLL;
9984                 break;
9985         case PORT_CLK_SEL_LCPLL_810:
9986                 id = DPLL_ID_LCPLL_810;
9987                 break;
9988         case PORT_CLK_SEL_LCPLL_1350:
9989                 id = DPLL_ID_LCPLL_1350;
9990                 break;
9991         case PORT_CLK_SEL_LCPLL_2700:
9992                 id = DPLL_ID_LCPLL_2700;
9993                 break;
9994         default:
9995                 MISSING_CASE(pipe_config->ddi_pll_sel);
9996                 /* fall through */
9997         case PORT_CLK_SEL_NONE:
9998                 return;
9999         }
10000
10001         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10002 }
10003
10004 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10005                                      struct intel_crtc_state *pipe_config,
10006                                      unsigned long *power_domain_mask)
10007 {
10008         struct drm_device *dev = crtc->base.dev;
10009         struct drm_i915_private *dev_priv = dev->dev_private;
10010         enum intel_display_power_domain power_domain;
10011         u32 tmp;
10012
10013         /*
10014          * The pipe->transcoder mapping is fixed with the exception of the eDP
10015          * transcoder handled below.
10016          */
10017         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10018
10019         /*
10020          * XXX: Do intel_display_power_get_if_enabled before reading this (for
10021          * consistency and less surprising code; it's in always on power).
10022          */
10023         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10024         if (tmp & TRANS_DDI_FUNC_ENABLE) {
10025                 enum pipe trans_edp_pipe;
10026                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10027                 default:
10028                         WARN(1, "unknown pipe linked to edp transcoder\n");
10029                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10030                 case TRANS_DDI_EDP_INPUT_A_ON:
10031                         trans_edp_pipe = PIPE_A;
10032                         break;
10033                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10034                         trans_edp_pipe = PIPE_B;
10035                         break;
10036                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10037                         trans_edp_pipe = PIPE_C;
10038                         break;
10039                 }
10040
10041                 if (trans_edp_pipe == crtc->pipe)
10042                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
10043         }
10044
10045         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10046         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10047                 return false;
10048         *power_domain_mask |= BIT(power_domain);
10049
10050         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10051
10052         return tmp & PIPECONF_ENABLE;
10053 }
10054
10055 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10056                                          struct intel_crtc_state *pipe_config,
10057                                          unsigned long *power_domain_mask)
10058 {
10059         struct drm_device *dev = crtc->base.dev;
10060         struct drm_i915_private *dev_priv = dev->dev_private;
10061         enum intel_display_power_domain power_domain;
10062         enum port port;
10063         enum transcoder cpu_transcoder;
10064         u32 tmp;
10065
10066         pipe_config->has_dsi_encoder = false;
10067
10068         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10069                 if (port == PORT_A)
10070                         cpu_transcoder = TRANSCODER_DSI_A;
10071                 else
10072                         cpu_transcoder = TRANSCODER_DSI_C;
10073
10074                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10075                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10076                         continue;
10077                 *power_domain_mask |= BIT(power_domain);
10078
10079                 /*
10080                  * The PLL needs to be enabled with a valid divider
10081                  * configuration, otherwise accessing DSI registers will hang
10082                  * the machine. See BSpec North Display Engine
10083                  * registers/MIPI[BXT]. We can break out here early, since we
10084                  * need the same DSI PLL to be enabled for both DSI ports.
10085                  */
10086                 if (!intel_dsi_pll_is_enabled(dev_priv))
10087                         break;
10088
10089                 /* XXX: this works for video mode only */
10090                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10091                 if (!(tmp & DPI_ENABLE))
10092                         continue;
10093
10094                 tmp = I915_READ(MIPI_CTRL(port));
10095                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10096                         continue;
10097
10098                 pipe_config->cpu_transcoder = cpu_transcoder;
10099                 pipe_config->has_dsi_encoder = true;
10100                 break;
10101         }
10102
10103         return pipe_config->has_dsi_encoder;
10104 }
10105
10106 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10107                                        struct intel_crtc_state *pipe_config)
10108 {
10109         struct drm_device *dev = crtc->base.dev;
10110         struct drm_i915_private *dev_priv = dev->dev_private;
10111         struct intel_shared_dpll *pll;
10112         enum port port;
10113         uint32_t tmp;
10114
10115         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10116
10117         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10118
10119         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
10120                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10121         else if (IS_BROXTON(dev))
10122                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10123         else
10124                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10125
10126         pll = pipe_config->shared_dpll;
10127         if (pll) {
10128                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10129                                                  &pipe_config->dpll_hw_state));
10130         }
10131
10132         /*
10133          * Haswell has only FDI/PCH transcoder A. It is which is connected to
10134          * DDI E. So just check whether this pipe is wired to DDI E and whether
10135          * the PCH transcoder is on.
10136          */
10137         if (INTEL_INFO(dev)->gen < 9 &&
10138             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10139                 pipe_config->has_pch_encoder = true;
10140
10141                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10142                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10143                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
10144
10145                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10146         }
10147 }
10148
10149 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10150                                     struct intel_crtc_state *pipe_config)
10151 {
10152         struct drm_device *dev = crtc->base.dev;
10153         struct drm_i915_private *dev_priv = dev->dev_private;
10154         enum intel_display_power_domain power_domain;
10155         unsigned long power_domain_mask;
10156         bool active;
10157
10158         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10159         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10160                 return false;
10161         power_domain_mask = BIT(power_domain);
10162
10163         pipe_config->shared_dpll = NULL;
10164
10165         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10166
10167         if (IS_BROXTON(dev_priv)) {
10168                 bxt_get_dsi_transcoder_state(crtc, pipe_config,
10169                                              &power_domain_mask);
10170                 WARN_ON(active && pipe_config->has_dsi_encoder);
10171                 if (pipe_config->has_dsi_encoder)
10172                         active = true;
10173         }
10174
10175         if (!active)
10176                 goto out;
10177
10178         if (!pipe_config->has_dsi_encoder) {
10179                 haswell_get_ddi_port_state(crtc, pipe_config);
10180                 intel_get_pipe_timings(crtc, pipe_config);
10181         }
10182
10183         intel_get_pipe_src_size(crtc, pipe_config);
10184
10185         pipe_config->gamma_mode =
10186                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10187
10188         if (INTEL_INFO(dev)->gen >= 9) {
10189                 skl_init_scalers(dev, crtc, pipe_config);
10190         }
10191
10192         if (INTEL_INFO(dev)->gen >= 9) {
10193                 pipe_config->scaler_state.scaler_id = -1;
10194                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10195         }
10196
10197         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10198         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10199                 power_domain_mask |= BIT(power_domain);
10200                 if (INTEL_INFO(dev)->gen >= 9)
10201                         skylake_get_pfit_config(crtc, pipe_config);
10202                 else
10203                         ironlake_get_pfit_config(crtc, pipe_config);
10204         }
10205
10206         if (IS_HASWELL(dev))
10207                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10208                         (I915_READ(IPS_CTL) & IPS_ENABLE);
10209
10210         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10211             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10212                 pipe_config->pixel_multiplier =
10213                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10214         } else {
10215                 pipe_config->pixel_multiplier = 1;
10216         }
10217
10218 out:
10219         for_each_power_domain(power_domain, power_domain_mask)
10220                 intel_display_power_put(dev_priv, power_domain);
10221
10222         return active;
10223 }
10224
10225 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10226                                const struct intel_plane_state *plane_state)
10227 {
10228         struct drm_device *dev = crtc->dev;
10229         struct drm_i915_private *dev_priv = dev->dev_private;
10230         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10231         uint32_t cntl = 0, size = 0;
10232
10233         if (plane_state && plane_state->visible) {
10234                 unsigned int width = plane_state->base.crtc_w;
10235                 unsigned int height = plane_state->base.crtc_h;
10236                 unsigned int stride = roundup_pow_of_two(width) * 4;
10237
10238                 switch (stride) {
10239                 default:
10240                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10241                                   width, stride);
10242                         stride = 256;
10243                         /* fallthrough */
10244                 case 256:
10245                 case 512:
10246                 case 1024:
10247                 case 2048:
10248                         break;
10249                 }
10250
10251                 cntl |= CURSOR_ENABLE |
10252                         CURSOR_GAMMA_ENABLE |
10253                         CURSOR_FORMAT_ARGB |
10254                         CURSOR_STRIDE(stride);
10255
10256                 size = (height << 12) | width;
10257         }
10258
10259         if (intel_crtc->cursor_cntl != 0 &&
10260             (intel_crtc->cursor_base != base ||
10261              intel_crtc->cursor_size != size ||
10262              intel_crtc->cursor_cntl != cntl)) {
10263                 /* On these chipsets we can only modify the base/size/stride
10264                  * whilst the cursor is disabled.
10265                  */
10266                 I915_WRITE(CURCNTR(PIPE_A), 0);
10267                 POSTING_READ(CURCNTR(PIPE_A));
10268                 intel_crtc->cursor_cntl = 0;
10269         }
10270
10271         if (intel_crtc->cursor_base != base) {
10272                 I915_WRITE(CURBASE(PIPE_A), base);
10273                 intel_crtc->cursor_base = base;
10274         }
10275
10276         if (intel_crtc->cursor_size != size) {
10277                 I915_WRITE(CURSIZE, size);
10278                 intel_crtc->cursor_size = size;
10279         }
10280
10281         if (intel_crtc->cursor_cntl != cntl) {
10282                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10283                 POSTING_READ(CURCNTR(PIPE_A));
10284                 intel_crtc->cursor_cntl = cntl;
10285         }
10286 }
10287
10288 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10289                                const struct intel_plane_state *plane_state)
10290 {
10291         struct drm_device *dev = crtc->dev;
10292         struct drm_i915_private *dev_priv = dev->dev_private;
10293         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10294         int pipe = intel_crtc->pipe;
10295         uint32_t cntl = 0;
10296
10297         if (plane_state && plane_state->visible) {
10298                 cntl = MCURSOR_GAMMA_ENABLE;
10299                 switch (plane_state->base.crtc_w) {
10300                         case 64:
10301                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10302                                 break;
10303                         case 128:
10304                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10305                                 break;
10306                         case 256:
10307                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10308                                 break;
10309                         default:
10310                                 MISSING_CASE(plane_state->base.crtc_w);
10311                                 return;
10312                 }
10313                 cntl |= pipe << 28; /* Connect to correct pipe */
10314
10315                 if (HAS_DDI(dev))
10316                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10317
10318                 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10319                         cntl |= CURSOR_ROTATE_180;
10320         }
10321
10322         if (intel_crtc->cursor_cntl != cntl) {
10323                 I915_WRITE(CURCNTR(pipe), cntl);
10324                 POSTING_READ(CURCNTR(pipe));
10325                 intel_crtc->cursor_cntl = cntl;
10326         }
10327
10328         /* and commit changes on next vblank */
10329         I915_WRITE(CURBASE(pipe), base);
10330         POSTING_READ(CURBASE(pipe));
10331
10332         intel_crtc->cursor_base = base;
10333 }
10334
10335 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10336 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10337                                      const struct intel_plane_state *plane_state)
10338 {
10339         struct drm_device *dev = crtc->dev;
10340         struct drm_i915_private *dev_priv = dev->dev_private;
10341         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10342         int pipe = intel_crtc->pipe;
10343         u32 base = intel_crtc->cursor_addr;
10344         u32 pos = 0;
10345
10346         if (plane_state) {
10347                 int x = plane_state->base.crtc_x;
10348                 int y = plane_state->base.crtc_y;
10349
10350                 if (x < 0) {
10351                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10352                         x = -x;
10353                 }
10354                 pos |= x << CURSOR_X_SHIFT;
10355
10356                 if (y < 0) {
10357                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10358                         y = -y;
10359                 }
10360                 pos |= y << CURSOR_Y_SHIFT;
10361
10362                 /* ILK+ do this automagically */
10363                 if (HAS_GMCH_DISPLAY(dev) &&
10364                     plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10365                         base += (plane_state->base.crtc_h *
10366                                  plane_state->base.crtc_w - 1) * 4;
10367                 }
10368         }
10369
10370         I915_WRITE(CURPOS(pipe), pos);
10371
10372         if (IS_845G(dev) || IS_I865G(dev))
10373                 i845_update_cursor(crtc, base, plane_state);
10374         else
10375                 i9xx_update_cursor(crtc, base, plane_state);
10376 }
10377
10378 static bool cursor_size_ok(struct drm_device *dev,
10379                            uint32_t width, uint32_t height)
10380 {
10381         if (width == 0 || height == 0)
10382                 return false;
10383
10384         /*
10385          * 845g/865g are special in that they are only limited by
10386          * the width of their cursors, the height is arbitrary up to
10387          * the precision of the register. Everything else requires
10388          * square cursors, limited to a few power-of-two sizes.
10389          */
10390         if (IS_845G(dev) || IS_I865G(dev)) {
10391                 if ((width & 63) != 0)
10392                         return false;
10393
10394                 if (width > (IS_845G(dev) ? 64 : 512))
10395                         return false;
10396
10397                 if (height > 1023)
10398                         return false;
10399         } else {
10400                 switch (width | height) {
10401                 case 256:
10402                 case 128:
10403                         if (IS_GEN2(dev))
10404                                 return false;
10405                 case 64:
10406                         break;
10407                 default:
10408                         return false;
10409                 }
10410         }
10411
10412         return true;
10413 }
10414
10415 /* VESA 640x480x72Hz mode to set on the pipe */
10416 static struct drm_display_mode load_detect_mode = {
10417         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10418                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10419 };
10420
10421 struct drm_framebuffer *
10422 __intel_framebuffer_create(struct drm_device *dev,
10423                            struct drm_mode_fb_cmd2 *mode_cmd,
10424                            struct drm_i915_gem_object *obj)
10425 {
10426         struct intel_framebuffer *intel_fb;
10427         int ret;
10428
10429         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10430         if (!intel_fb)
10431                 return ERR_PTR(-ENOMEM);
10432
10433         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10434         if (ret)
10435                 goto err;
10436
10437         return &intel_fb->base;
10438
10439 err:
10440         kfree(intel_fb);
10441         return ERR_PTR(ret);
10442 }
10443
10444 static struct drm_framebuffer *
10445 intel_framebuffer_create(struct drm_device *dev,
10446                          struct drm_mode_fb_cmd2 *mode_cmd,
10447                          struct drm_i915_gem_object *obj)
10448 {
10449         struct drm_framebuffer *fb;
10450         int ret;
10451
10452         ret = i915_mutex_lock_interruptible(dev);
10453         if (ret)
10454                 return ERR_PTR(ret);
10455         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10456         mutex_unlock(&dev->struct_mutex);
10457
10458         return fb;
10459 }
10460
10461 static u32
10462 intel_framebuffer_pitch_for_width(int width, int bpp)
10463 {
10464         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10465         return ALIGN(pitch, 64);
10466 }
10467
10468 static u32
10469 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10470 {
10471         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10472         return PAGE_ALIGN(pitch * mode->vdisplay);
10473 }
10474
10475 static struct drm_framebuffer *
10476 intel_framebuffer_create_for_mode(struct drm_device *dev,
10477                                   struct drm_display_mode *mode,
10478                                   int depth, int bpp)
10479 {
10480         struct drm_framebuffer *fb;
10481         struct drm_i915_gem_object *obj;
10482         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10483
10484         obj = i915_gem_object_create(dev,
10485                                     intel_framebuffer_size_for_mode(mode, bpp));
10486         if (IS_ERR(obj))
10487                 return ERR_CAST(obj);
10488
10489         mode_cmd.width = mode->hdisplay;
10490         mode_cmd.height = mode->vdisplay;
10491         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10492                                                                 bpp);
10493         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10494
10495         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10496         if (IS_ERR(fb))
10497                 drm_gem_object_unreference_unlocked(&obj->base);
10498
10499         return fb;
10500 }
10501
10502 static struct drm_framebuffer *
10503 mode_fits_in_fbdev(struct drm_device *dev,
10504                    struct drm_display_mode *mode)
10505 {
10506 #ifdef CONFIG_DRM_FBDEV_EMULATION
10507         struct drm_i915_private *dev_priv = dev->dev_private;
10508         struct drm_i915_gem_object *obj;
10509         struct drm_framebuffer *fb;
10510
10511         if (!dev_priv->fbdev)
10512                 return NULL;
10513
10514         if (!dev_priv->fbdev->fb)
10515                 return NULL;
10516
10517         obj = dev_priv->fbdev->fb->obj;
10518         BUG_ON(!obj);
10519
10520         fb = &dev_priv->fbdev->fb->base;
10521         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10522                                                                fb->bits_per_pixel))
10523                 return NULL;
10524
10525         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10526                 return NULL;
10527
10528         drm_framebuffer_reference(fb);
10529         return fb;
10530 #else
10531         return NULL;
10532 #endif
10533 }
10534
10535 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10536                                            struct drm_crtc *crtc,
10537                                            struct drm_display_mode *mode,
10538                                            struct drm_framebuffer *fb,
10539                                            int x, int y)
10540 {
10541         struct drm_plane_state *plane_state;
10542         int hdisplay, vdisplay;
10543         int ret;
10544
10545         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10546         if (IS_ERR(plane_state))
10547                 return PTR_ERR(plane_state);
10548
10549         if (mode)
10550                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10551         else
10552                 hdisplay = vdisplay = 0;
10553
10554         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10555         if (ret)
10556                 return ret;
10557         drm_atomic_set_fb_for_plane(plane_state, fb);
10558         plane_state->crtc_x = 0;
10559         plane_state->crtc_y = 0;
10560         plane_state->crtc_w = hdisplay;
10561         plane_state->crtc_h = vdisplay;
10562         plane_state->src_x = x << 16;
10563         plane_state->src_y = y << 16;
10564         plane_state->src_w = hdisplay << 16;
10565         plane_state->src_h = vdisplay << 16;
10566
10567         return 0;
10568 }
10569
10570 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10571                                 struct drm_display_mode *mode,
10572                                 struct intel_load_detect_pipe *old,
10573                                 struct drm_modeset_acquire_ctx *ctx)
10574 {
10575         struct intel_crtc *intel_crtc;
10576         struct intel_encoder *intel_encoder =
10577                 intel_attached_encoder(connector);
10578         struct drm_crtc *possible_crtc;
10579         struct drm_encoder *encoder = &intel_encoder->base;
10580         struct drm_crtc *crtc = NULL;
10581         struct drm_device *dev = encoder->dev;
10582         struct drm_framebuffer *fb;
10583         struct drm_mode_config *config = &dev->mode_config;
10584         struct drm_atomic_state *state = NULL, *restore_state = NULL;
10585         struct drm_connector_state *connector_state;
10586         struct intel_crtc_state *crtc_state;
10587         int ret, i = -1;
10588
10589         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10590                       connector->base.id, connector->name,
10591                       encoder->base.id, encoder->name);
10592
10593         old->restore_state = NULL;
10594
10595 retry:
10596         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10597         if (ret)
10598                 goto fail;
10599
10600         /*
10601          * Algorithm gets a little messy:
10602          *
10603          *   - if the connector already has an assigned crtc, use it (but make
10604          *     sure it's on first)
10605          *
10606          *   - try to find the first unused crtc that can drive this connector,
10607          *     and use that if we find one
10608          */
10609
10610         /* See if we already have a CRTC for this connector */
10611         if (connector->state->crtc) {
10612                 crtc = connector->state->crtc;
10613
10614                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10615                 if (ret)
10616                         goto fail;
10617
10618                 /* Make sure the crtc and connector are running */
10619                 goto found;
10620         }
10621
10622         /* Find an unused one (if possible) */
10623         for_each_crtc(dev, possible_crtc) {
10624                 i++;
10625                 if (!(encoder->possible_crtcs & (1 << i)))
10626                         continue;
10627
10628                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10629                 if (ret)
10630                         goto fail;
10631
10632                 if (possible_crtc->state->enable) {
10633                         drm_modeset_unlock(&possible_crtc->mutex);
10634                         continue;
10635                 }
10636
10637                 crtc = possible_crtc;
10638                 break;
10639         }
10640
10641         /*
10642          * If we didn't find an unused CRTC, don't use any.
10643          */
10644         if (!crtc) {
10645                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10646                 goto fail;
10647         }
10648
10649 found:
10650         intel_crtc = to_intel_crtc(crtc);
10651
10652         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10653         if (ret)
10654                 goto fail;
10655
10656         state = drm_atomic_state_alloc(dev);
10657         restore_state = drm_atomic_state_alloc(dev);
10658         if (!state || !restore_state) {
10659                 ret = -ENOMEM;
10660                 goto fail;
10661         }
10662
10663         state->acquire_ctx = ctx;
10664         restore_state->acquire_ctx = ctx;
10665
10666         connector_state = drm_atomic_get_connector_state(state, connector);
10667         if (IS_ERR(connector_state)) {
10668                 ret = PTR_ERR(connector_state);
10669                 goto fail;
10670         }
10671
10672         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10673         if (ret)
10674                 goto fail;
10675
10676         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10677         if (IS_ERR(crtc_state)) {
10678                 ret = PTR_ERR(crtc_state);
10679                 goto fail;
10680         }
10681
10682         crtc_state->base.active = crtc_state->base.enable = true;
10683
10684         if (!mode)
10685                 mode = &load_detect_mode;
10686
10687         /* We need a framebuffer large enough to accommodate all accesses
10688          * that the plane may generate whilst we perform load detection.
10689          * We can not rely on the fbcon either being present (we get called
10690          * during its initialisation to detect all boot displays, or it may
10691          * not even exist) or that it is large enough to satisfy the
10692          * requested mode.
10693          */
10694         fb = mode_fits_in_fbdev(dev, mode);
10695         if (fb == NULL) {
10696                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10697                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10698         } else
10699                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10700         if (IS_ERR(fb)) {
10701                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10702                 goto fail;
10703         }
10704
10705         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10706         if (ret)
10707                 goto fail;
10708
10709         drm_framebuffer_unreference(fb);
10710
10711         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10712         if (ret)
10713                 goto fail;
10714
10715         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10716         if (!ret)
10717                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10718         if (!ret)
10719                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10720         if (ret) {
10721                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10722                 goto fail;
10723         }
10724
10725         ret = drm_atomic_commit(state);
10726         if (ret) {
10727                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10728                 goto fail;
10729         }
10730
10731         old->restore_state = restore_state;
10732
10733         /* let the connector get through one full cycle before testing */
10734         intel_wait_for_vblank(dev, intel_crtc->pipe);
10735         return true;
10736
10737 fail:
10738         drm_atomic_state_free(state);
10739         drm_atomic_state_free(restore_state);
10740         restore_state = state = NULL;
10741
10742         if (ret == -EDEADLK) {
10743                 drm_modeset_backoff(ctx);
10744                 goto retry;
10745         }
10746
10747         return false;
10748 }
10749
10750 void intel_release_load_detect_pipe(struct drm_connector *connector,
10751                                     struct intel_load_detect_pipe *old,
10752                                     struct drm_modeset_acquire_ctx *ctx)
10753 {
10754         struct intel_encoder *intel_encoder =
10755                 intel_attached_encoder(connector);
10756         struct drm_encoder *encoder = &intel_encoder->base;
10757         struct drm_atomic_state *state = old->restore_state;
10758         int ret;
10759
10760         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10761                       connector->base.id, connector->name,
10762                       encoder->base.id, encoder->name);
10763
10764         if (!state)
10765                 return;
10766
10767         ret = drm_atomic_commit(state);
10768         if (ret) {
10769                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10770                 drm_atomic_state_free(state);
10771         }
10772 }
10773
10774 static int i9xx_pll_refclk(struct drm_device *dev,
10775                            const struct intel_crtc_state *pipe_config)
10776 {
10777         struct drm_i915_private *dev_priv = dev->dev_private;
10778         u32 dpll = pipe_config->dpll_hw_state.dpll;
10779
10780         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10781                 return dev_priv->vbt.lvds_ssc_freq;
10782         else if (HAS_PCH_SPLIT(dev))
10783                 return 120000;
10784         else if (!IS_GEN2(dev))
10785                 return 96000;
10786         else
10787                 return 48000;
10788 }
10789
10790 /* Returns the clock of the currently programmed mode of the given pipe. */
10791 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10792                                 struct intel_crtc_state *pipe_config)
10793 {
10794         struct drm_device *dev = crtc->base.dev;
10795         struct drm_i915_private *dev_priv = dev->dev_private;
10796         int pipe = pipe_config->cpu_transcoder;
10797         u32 dpll = pipe_config->dpll_hw_state.dpll;
10798         u32 fp;
10799         struct dpll clock;
10800         int port_clock;
10801         int refclk = i9xx_pll_refclk(dev, pipe_config);
10802
10803         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10804                 fp = pipe_config->dpll_hw_state.fp0;
10805         else
10806                 fp = pipe_config->dpll_hw_state.fp1;
10807
10808         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10809         if (IS_PINEVIEW(dev)) {
10810                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10811                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10812         } else {
10813                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10814                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10815         }
10816
10817         if (!IS_GEN2(dev)) {
10818                 if (IS_PINEVIEW(dev))
10819                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10820                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10821                 else
10822                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10823                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10824
10825                 switch (dpll & DPLL_MODE_MASK) {
10826                 case DPLLB_MODE_DAC_SERIAL:
10827                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10828                                 5 : 10;
10829                         break;
10830                 case DPLLB_MODE_LVDS:
10831                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10832                                 7 : 14;
10833                         break;
10834                 default:
10835                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10836                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10837                         return;
10838                 }
10839
10840                 if (IS_PINEVIEW(dev))
10841                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10842                 else
10843                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10844         } else {
10845                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10846                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10847
10848                 if (is_lvds) {
10849                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10850                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10851
10852                         if (lvds & LVDS_CLKB_POWER_UP)
10853                                 clock.p2 = 7;
10854                         else
10855                                 clock.p2 = 14;
10856                 } else {
10857                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10858                                 clock.p1 = 2;
10859                         else {
10860                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10861                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10862                         }
10863                         if (dpll & PLL_P2_DIVIDE_BY_4)
10864                                 clock.p2 = 4;
10865                         else
10866                                 clock.p2 = 2;
10867                 }
10868
10869                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10870         }
10871
10872         /*
10873          * This value includes pixel_multiplier. We will use
10874          * port_clock to compute adjusted_mode.crtc_clock in the
10875          * encoder's get_config() function.
10876          */
10877         pipe_config->port_clock = port_clock;
10878 }
10879
10880 int intel_dotclock_calculate(int link_freq,
10881                              const struct intel_link_m_n *m_n)
10882 {
10883         /*
10884          * The calculation for the data clock is:
10885          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10886          * But we want to avoid losing precison if possible, so:
10887          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10888          *
10889          * and the link clock is simpler:
10890          * link_clock = (m * link_clock) / n
10891          */
10892
10893         if (!m_n->link_n)
10894                 return 0;
10895
10896         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10897 }
10898
10899 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10900                                    struct intel_crtc_state *pipe_config)
10901 {
10902         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10903
10904         /* read out port_clock from the DPLL */
10905         i9xx_crtc_clock_get(crtc, pipe_config);
10906
10907         /*
10908          * In case there is an active pipe without active ports,
10909          * we may need some idea for the dotclock anyway.
10910          * Calculate one based on the FDI configuration.
10911          */
10912         pipe_config->base.adjusted_mode.crtc_clock =
10913                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10914                                          &pipe_config->fdi_m_n);
10915 }
10916
10917 /** Returns the currently programmed mode of the given pipe. */
10918 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10919                                              struct drm_crtc *crtc)
10920 {
10921         struct drm_i915_private *dev_priv = dev->dev_private;
10922         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10923         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10924         struct drm_display_mode *mode;
10925         struct intel_crtc_state *pipe_config;
10926         int htot = I915_READ(HTOTAL(cpu_transcoder));
10927         int hsync = I915_READ(HSYNC(cpu_transcoder));
10928         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10929         int vsync = I915_READ(VSYNC(cpu_transcoder));
10930         enum pipe pipe = intel_crtc->pipe;
10931
10932         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10933         if (!mode)
10934                 return NULL;
10935
10936         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10937         if (!pipe_config) {
10938                 kfree(mode);
10939                 return NULL;
10940         }
10941
10942         /*
10943          * Construct a pipe_config sufficient for getting the clock info
10944          * back out of crtc_clock_get.
10945          *
10946          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10947          * to use a real value here instead.
10948          */
10949         pipe_config->cpu_transcoder = (enum transcoder) pipe;
10950         pipe_config->pixel_multiplier = 1;
10951         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10952         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10953         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10954         i9xx_crtc_clock_get(intel_crtc, pipe_config);
10955
10956         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10957         mode->hdisplay = (htot & 0xffff) + 1;
10958         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10959         mode->hsync_start = (hsync & 0xffff) + 1;
10960         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10961         mode->vdisplay = (vtot & 0xffff) + 1;
10962         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10963         mode->vsync_start = (vsync & 0xffff) + 1;
10964         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10965
10966         drm_mode_set_name(mode);
10967
10968         kfree(pipe_config);
10969
10970         return mode;
10971 }
10972
10973 void intel_mark_busy(struct drm_i915_private *dev_priv)
10974 {
10975         if (dev_priv->mm.busy)
10976                 return;
10977
10978         intel_runtime_pm_get(dev_priv);
10979         i915_update_gfx_val(dev_priv);
10980         if (INTEL_GEN(dev_priv) >= 6)
10981                 gen6_rps_busy(dev_priv);
10982         dev_priv->mm.busy = true;
10983 }
10984
10985 void intel_mark_idle(struct drm_i915_private *dev_priv)
10986 {
10987         if (!dev_priv->mm.busy)
10988                 return;
10989
10990         dev_priv->mm.busy = false;
10991
10992         if (INTEL_GEN(dev_priv) >= 6)
10993                 gen6_rps_idle(dev_priv);
10994
10995         intel_runtime_pm_put(dev_priv);
10996 }
10997
10998 static void intel_crtc_destroy(struct drm_crtc *crtc)
10999 {
11000         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11001         struct drm_device *dev = crtc->dev;
11002         struct intel_flip_work *work;
11003
11004         spin_lock_irq(&dev->event_lock);
11005         work = intel_crtc->flip_work;
11006         intel_crtc->flip_work = NULL;
11007         spin_unlock_irq(&dev->event_lock);
11008
11009         if (work) {
11010                 cancel_work_sync(&work->mmio_work);
11011                 cancel_work_sync(&work->unpin_work);
11012                 kfree(work);
11013         }
11014
11015         drm_crtc_cleanup(crtc);
11016
11017         kfree(intel_crtc);
11018 }
11019
11020 static void intel_unpin_work_fn(struct work_struct *__work)
11021 {
11022         struct intel_flip_work *work =
11023                 container_of(__work, struct intel_flip_work, unpin_work);
11024         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11025         struct drm_device *dev = crtc->base.dev;
11026         struct drm_plane *primary = crtc->base.primary;
11027
11028         if (is_mmio_work(work))
11029                 flush_work(&work->mmio_work);
11030
11031         mutex_lock(&dev->struct_mutex);
11032         intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
11033         drm_gem_object_unreference(&work->pending_flip_obj->base);
11034
11035         if (work->flip_queued_req)
11036                 i915_gem_request_assign(&work->flip_queued_req, NULL);
11037         mutex_unlock(&dev->struct_mutex);
11038
11039         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
11040         intel_fbc_post_update(crtc);
11041         drm_framebuffer_unreference(work->old_fb);
11042
11043         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11044         atomic_dec(&crtc->unpin_work_count);
11045
11046         kfree(work);
11047 }
11048
11049 /* Is 'a' after or equal to 'b'? */
11050 static bool g4x_flip_count_after_eq(u32 a, u32 b)
11051 {
11052         return !((a - b) & 0x80000000);
11053 }
11054
11055 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11056                                    struct intel_flip_work *work)
11057 {
11058         struct drm_device *dev = crtc->base.dev;
11059         struct drm_i915_private *dev_priv = dev->dev_private;
11060         unsigned reset_counter;
11061
11062         reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11063         if (crtc->reset_counter != reset_counter)
11064                 return true;
11065
11066         /*
11067          * The relevant registers doen't exist on pre-ctg.
11068          * As the flip done interrupt doesn't trigger for mmio
11069          * flips on gmch platforms, a flip count check isn't
11070          * really needed there. But since ctg has the registers,
11071          * include it in the check anyway.
11072          */
11073         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
11074                 return true;
11075
11076         /*
11077          * BDW signals flip done immediately if the plane
11078          * is disabled, even if the plane enable is already
11079          * armed to occur at the next vblank :(
11080          */
11081
11082         /*
11083          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11084          * used the same base address. In that case the mmio flip might
11085          * have completed, but the CS hasn't even executed the flip yet.
11086          *
11087          * A flip count check isn't enough as the CS might have updated
11088          * the base address just after start of vblank, but before we
11089          * managed to process the interrupt. This means we'd complete the
11090          * CS flip too soon.
11091          *
11092          * Combining both checks should get us a good enough result. It may
11093          * still happen that the CS flip has been executed, but has not
11094          * yet actually completed. But in case the base address is the same
11095          * anyway, we don't really care.
11096          */
11097         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11098                 crtc->flip_work->gtt_offset &&
11099                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11100                                     crtc->flip_work->flip_count);
11101 }
11102
11103 static bool
11104 __pageflip_finished_mmio(struct intel_crtc *crtc,
11105                                struct intel_flip_work *work)
11106 {
11107         /*
11108          * MMIO work completes when vblank is different from
11109          * flip_queued_vblank.
11110          *
11111          * Reset counter value doesn't matter, this is handled by
11112          * i915_wait_request finishing early, so no need to handle
11113          * reset here.
11114          */
11115         return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11116 }
11117
11118
11119 static bool pageflip_finished(struct intel_crtc *crtc,
11120                               struct intel_flip_work *work)
11121 {
11122         if (!atomic_read(&work->pending))
11123                 return false;
11124
11125         smp_rmb();
11126
11127         if (is_mmio_work(work))
11128                 return __pageflip_finished_mmio(crtc, work);
11129         else
11130                 return __pageflip_finished_cs(crtc, work);
11131 }
11132
11133 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11134 {
11135         struct drm_device *dev = dev_priv->dev;
11136         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11137         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11138         struct intel_flip_work *work;
11139         unsigned long flags;
11140
11141         /* Ignore early vblank irqs */
11142         if (!crtc)
11143                 return;
11144
11145         /*
11146          * This is called both by irq handlers and the reset code (to complete
11147          * lost pageflips) so needs the full irqsave spinlocks.
11148          */
11149         spin_lock_irqsave(&dev->event_lock, flags);
11150         work = intel_crtc->flip_work;
11151
11152         if (work != NULL &&
11153             !is_mmio_work(work) &&
11154             pageflip_finished(intel_crtc, work))
11155                 page_flip_completed(intel_crtc);
11156
11157         spin_unlock_irqrestore(&dev->event_lock, flags);
11158 }
11159
11160 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11161 {
11162         struct drm_device *dev = dev_priv->dev;
11163         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11164         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11165         struct intel_flip_work *work;
11166         unsigned long flags;
11167
11168         /* Ignore early vblank irqs */
11169         if (!crtc)
11170                 return;
11171
11172         /*
11173          * This is called both by irq handlers and the reset code (to complete
11174          * lost pageflips) so needs the full irqsave spinlocks.
11175          */
11176         spin_lock_irqsave(&dev->event_lock, flags);
11177         work = intel_crtc->flip_work;
11178
11179         if (work != NULL &&
11180             is_mmio_work(work) &&
11181             pageflip_finished(intel_crtc, work))
11182                 page_flip_completed(intel_crtc);
11183
11184         spin_unlock_irqrestore(&dev->event_lock, flags);
11185 }
11186
11187 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11188                                                struct intel_flip_work *work)
11189 {
11190         work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11191
11192         /* Ensure that the work item is consistent when activating it ... */
11193         smp_mb__before_atomic();
11194         atomic_set(&work->pending, 1);
11195 }
11196
11197 static int intel_gen2_queue_flip(struct drm_device *dev,
11198                                  struct drm_crtc *crtc,
11199                                  struct drm_framebuffer *fb,
11200                                  struct drm_i915_gem_object *obj,
11201                                  struct drm_i915_gem_request *req,
11202                                  uint32_t flags)
11203 {
11204         struct intel_engine_cs *engine = req->engine;
11205         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11206         u32 flip_mask;
11207         int ret;
11208
11209         ret = intel_ring_begin(req, 6);
11210         if (ret)
11211                 return ret;
11212
11213         /* Can't queue multiple flips, so wait for the previous
11214          * one to finish before executing the next.
11215          */
11216         if (intel_crtc->plane)
11217                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11218         else
11219                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11220         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11221         intel_ring_emit(engine, MI_NOOP);
11222         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11223                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11224         intel_ring_emit(engine, fb->pitches[0]);
11225         intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11226         intel_ring_emit(engine, 0); /* aux display base address, unused */
11227
11228         return 0;
11229 }
11230
11231 static int intel_gen3_queue_flip(struct drm_device *dev,
11232                                  struct drm_crtc *crtc,
11233                                  struct drm_framebuffer *fb,
11234                                  struct drm_i915_gem_object *obj,
11235                                  struct drm_i915_gem_request *req,
11236                                  uint32_t flags)
11237 {
11238         struct intel_engine_cs *engine = req->engine;
11239         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11240         u32 flip_mask;
11241         int ret;
11242
11243         ret = intel_ring_begin(req, 6);
11244         if (ret)
11245                 return ret;
11246
11247         if (intel_crtc->plane)
11248                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11249         else
11250                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11251         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11252         intel_ring_emit(engine, MI_NOOP);
11253         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
11254                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11255         intel_ring_emit(engine, fb->pitches[0]);
11256         intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11257         intel_ring_emit(engine, MI_NOOP);
11258
11259         return 0;
11260 }
11261
11262 static int intel_gen4_queue_flip(struct drm_device *dev,
11263                                  struct drm_crtc *crtc,
11264                                  struct drm_framebuffer *fb,
11265                                  struct drm_i915_gem_object *obj,
11266                                  struct drm_i915_gem_request *req,
11267                                  uint32_t flags)
11268 {
11269         struct intel_engine_cs *engine = req->engine;
11270         struct drm_i915_private *dev_priv = dev->dev_private;
11271         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11272         uint32_t pf, pipesrc;
11273         int ret;
11274
11275         ret = intel_ring_begin(req, 4);
11276         if (ret)
11277                 return ret;
11278
11279         /* i965+ uses the linear or tiled offsets from the
11280          * Display Registers (which do not change across a page-flip)
11281          * so we need only reprogram the base address.
11282          */
11283         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11284                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11285         intel_ring_emit(engine, fb->pitches[0]);
11286         intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset |
11287                         obj->tiling_mode);
11288
11289         /* XXX Enabling the panel-fitter across page-flip is so far
11290          * untested on non-native modes, so ignore it for now.
11291          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11292          */
11293         pf = 0;
11294         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11295         intel_ring_emit(engine, pf | pipesrc);
11296
11297         return 0;
11298 }
11299
11300 static int intel_gen6_queue_flip(struct drm_device *dev,
11301                                  struct drm_crtc *crtc,
11302                                  struct drm_framebuffer *fb,
11303                                  struct drm_i915_gem_object *obj,
11304                                  struct drm_i915_gem_request *req,
11305                                  uint32_t flags)
11306 {
11307         struct intel_engine_cs *engine = req->engine;
11308         struct drm_i915_private *dev_priv = dev->dev_private;
11309         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11310         uint32_t pf, pipesrc;
11311         int ret;
11312
11313         ret = intel_ring_begin(req, 4);
11314         if (ret)
11315                 return ret;
11316
11317         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11318                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11319         intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11320         intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11321
11322         /* Contrary to the suggestions in the documentation,
11323          * "Enable Panel Fitter" does not seem to be required when page
11324          * flipping with a non-native mode, and worse causes a normal
11325          * modeset to fail.
11326          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11327          */
11328         pf = 0;
11329         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11330         intel_ring_emit(engine, pf | pipesrc);
11331
11332         return 0;
11333 }
11334
11335 static int intel_gen7_queue_flip(struct drm_device *dev,
11336                                  struct drm_crtc *crtc,
11337                                  struct drm_framebuffer *fb,
11338                                  struct drm_i915_gem_object *obj,
11339                                  struct drm_i915_gem_request *req,
11340                                  uint32_t flags)
11341 {
11342         struct intel_engine_cs *engine = req->engine;
11343         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11344         uint32_t plane_bit = 0;
11345         int len, ret;
11346
11347         switch (intel_crtc->plane) {
11348         case PLANE_A:
11349                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11350                 break;
11351         case PLANE_B:
11352                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11353                 break;
11354         case PLANE_C:
11355                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11356                 break;
11357         default:
11358                 WARN_ONCE(1, "unknown plane in flip command\n");
11359                 return -ENODEV;
11360         }
11361
11362         len = 4;
11363         if (engine->id == RCS) {
11364                 len += 6;
11365                 /*
11366                  * On Gen 8, SRM is now taking an extra dword to accommodate
11367                  * 48bits addresses, and we need a NOOP for the batch size to
11368                  * stay even.
11369                  */
11370                 if (IS_GEN8(dev))
11371                         len += 2;
11372         }
11373
11374         /*
11375          * BSpec MI_DISPLAY_FLIP for IVB:
11376          * "The full packet must be contained within the same cache line."
11377          *
11378          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11379          * cacheline, if we ever start emitting more commands before
11380          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11381          * then do the cacheline alignment, and finally emit the
11382          * MI_DISPLAY_FLIP.
11383          */
11384         ret = intel_ring_cacheline_align(req);
11385         if (ret)
11386                 return ret;
11387
11388         ret = intel_ring_begin(req, len);
11389         if (ret)
11390                 return ret;
11391
11392         /* Unmask the flip-done completion message. Note that the bspec says that
11393          * we should do this for both the BCS and RCS, and that we must not unmask
11394          * more than one flip event at any time (or ensure that one flip message
11395          * can be sent by waiting for flip-done prior to queueing new flips).
11396          * Experimentation says that BCS works despite DERRMR masking all
11397          * flip-done completion events and that unmasking all planes at once
11398          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11399          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11400          */
11401         if (engine->id == RCS) {
11402                 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11403                 intel_ring_emit_reg(engine, DERRMR);
11404                 intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11405                                           DERRMR_PIPEB_PRI_FLIP_DONE |
11406                                           DERRMR_PIPEC_PRI_FLIP_DONE));
11407                 if (IS_GEN8(dev))
11408                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
11409                                               MI_SRM_LRM_GLOBAL_GTT);
11410                 else
11411                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
11412                                               MI_SRM_LRM_GLOBAL_GTT);
11413                 intel_ring_emit_reg(engine, DERRMR);
11414                 intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
11415                 if (IS_GEN8(dev)) {
11416                         intel_ring_emit(engine, 0);
11417                         intel_ring_emit(engine, MI_NOOP);
11418                 }
11419         }
11420
11421         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11422         intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11423         intel_ring_emit(engine, intel_crtc->flip_work->gtt_offset);
11424         intel_ring_emit(engine, (MI_NOOP));
11425
11426         return 0;
11427 }
11428
11429 static bool use_mmio_flip(struct intel_engine_cs *engine,
11430                           struct drm_i915_gem_object *obj)
11431 {
11432         struct reservation_object *resv;
11433
11434         /*
11435          * This is not being used for older platforms, because
11436          * non-availability of flip done interrupt forces us to use
11437          * CS flips. Older platforms derive flip done using some clever
11438          * tricks involving the flip_pending status bits and vblank irqs.
11439          * So using MMIO flips there would disrupt this mechanism.
11440          */
11441
11442         if (engine == NULL)
11443                 return true;
11444
11445         if (INTEL_GEN(engine->i915) < 5)
11446                 return false;
11447
11448         if (i915.use_mmio_flip < 0)
11449                 return false;
11450         else if (i915.use_mmio_flip > 0)
11451                 return true;
11452         else if (i915.enable_execlists)
11453                 return true;
11454
11455         resv = i915_gem_object_get_dmabuf_resv(obj);
11456         if (resv && !reservation_object_test_signaled_rcu(resv, false))
11457                 return true;
11458
11459         return engine != i915_gem_request_get_engine(obj->last_write_req);
11460 }
11461
11462 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11463                              unsigned int rotation,
11464                              struct intel_flip_work *work)
11465 {
11466         struct drm_device *dev = intel_crtc->base.dev;
11467         struct drm_i915_private *dev_priv = dev->dev_private;
11468         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11469         const enum pipe pipe = intel_crtc->pipe;
11470         u32 ctl, stride, tile_height;
11471
11472         ctl = I915_READ(PLANE_CTL(pipe, 0));
11473         ctl &= ~PLANE_CTL_TILED_MASK;
11474         switch (fb->modifier[0]) {
11475         case DRM_FORMAT_MOD_NONE:
11476                 break;
11477         case I915_FORMAT_MOD_X_TILED:
11478                 ctl |= PLANE_CTL_TILED_X;
11479                 break;
11480         case I915_FORMAT_MOD_Y_TILED:
11481                 ctl |= PLANE_CTL_TILED_Y;
11482                 break;
11483         case I915_FORMAT_MOD_Yf_TILED:
11484                 ctl |= PLANE_CTL_TILED_YF;
11485                 break;
11486         default:
11487                 MISSING_CASE(fb->modifier[0]);
11488         }
11489
11490         /*
11491          * The stride is either expressed as a multiple of 64 bytes chunks for
11492          * linear buffers or in number of tiles for tiled buffers.
11493          */
11494         if (intel_rotation_90_or_270(rotation)) {
11495                 /* stride = Surface height in tiles */
11496                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11497                 stride = DIV_ROUND_UP(fb->height, tile_height);
11498         } else {
11499                 stride = fb->pitches[0] /
11500                         intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11501                                                   fb->pixel_format);
11502         }
11503
11504         /*
11505          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11506          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11507          */
11508         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11509         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11510
11511         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11512         POSTING_READ(PLANE_SURF(pipe, 0));
11513 }
11514
11515 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11516                              struct intel_flip_work *work)
11517 {
11518         struct drm_device *dev = intel_crtc->base.dev;
11519         struct drm_i915_private *dev_priv = dev->dev_private;
11520         struct intel_framebuffer *intel_fb =
11521                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11522         struct drm_i915_gem_object *obj = intel_fb->obj;
11523         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11524         u32 dspcntr;
11525
11526         dspcntr = I915_READ(reg);
11527
11528         if (obj->tiling_mode != I915_TILING_NONE)
11529                 dspcntr |= DISPPLANE_TILED;
11530         else
11531                 dspcntr &= ~DISPPLANE_TILED;
11532
11533         I915_WRITE(reg, dspcntr);
11534
11535         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11536         POSTING_READ(DSPSURF(intel_crtc->plane));
11537 }
11538
11539 static void intel_mmio_flip_work_func(struct work_struct *w)
11540 {
11541         struct intel_flip_work *work =
11542                 container_of(w, struct intel_flip_work, mmio_work);
11543         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11544         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11545         struct intel_framebuffer *intel_fb =
11546                 to_intel_framebuffer(crtc->base.primary->fb);
11547         struct drm_i915_gem_object *obj = intel_fb->obj;
11548         struct reservation_object *resv;
11549
11550         if (work->flip_queued_req)
11551                 WARN_ON(__i915_wait_request(work->flip_queued_req,
11552                                             false, NULL,
11553                                             &dev_priv->rps.mmioflips));
11554
11555         /* For framebuffer backed by dmabuf, wait for fence */
11556         resv = i915_gem_object_get_dmabuf_resv(obj);
11557         if (resv)
11558                 WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false,
11559                                                             MAX_SCHEDULE_TIMEOUT) < 0);
11560
11561         intel_pipe_update_start(crtc);
11562
11563         if (INTEL_GEN(dev_priv) >= 9)
11564                 skl_do_mmio_flip(crtc, work->rotation, work);
11565         else
11566                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11567                 ilk_do_mmio_flip(crtc, work);
11568
11569         intel_pipe_update_end(crtc, work);
11570 }
11571
11572 static int intel_default_queue_flip(struct drm_device *dev,
11573                                     struct drm_crtc *crtc,
11574                                     struct drm_framebuffer *fb,
11575                                     struct drm_i915_gem_object *obj,
11576                                     struct drm_i915_gem_request *req,
11577                                     uint32_t flags)
11578 {
11579         return -ENODEV;
11580 }
11581
11582 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
11583                                       struct intel_crtc *intel_crtc,
11584                                       struct intel_flip_work *work)
11585 {
11586         u32 addr, vblank;
11587
11588         if (!atomic_read(&work->pending))
11589                 return false;
11590
11591         smp_rmb();
11592
11593         vblank = intel_crtc_get_vblank_counter(intel_crtc);
11594         if (work->flip_ready_vblank == 0) {
11595                 if (work->flip_queued_req &&
11596                     !i915_gem_request_completed(work->flip_queued_req, true))
11597                         return false;
11598
11599                 work->flip_ready_vblank = vblank;
11600         }
11601
11602         if (vblank - work->flip_ready_vblank < 3)
11603                 return false;
11604
11605         /* Potential stall - if we see that the flip has happened,
11606          * assume a missed interrupt. */
11607         if (INTEL_GEN(dev_priv) >= 4)
11608                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11609         else
11610                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11611
11612         /* There is a potential issue here with a false positive after a flip
11613          * to the same address. We could address this by checking for a
11614          * non-incrementing frame counter.
11615          */
11616         return addr == work->gtt_offset;
11617 }
11618
11619 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
11620 {
11621         struct drm_device *dev = dev_priv->dev;
11622         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11623         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11624         struct intel_flip_work *work;
11625
11626         WARN_ON(!in_interrupt());
11627
11628         if (crtc == NULL)
11629                 return;
11630
11631         spin_lock(&dev->event_lock);
11632         work = intel_crtc->flip_work;
11633
11634         if (work != NULL && !is_mmio_work(work) &&
11635             __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
11636                 WARN_ONCE(1,
11637                           "Kicking stuck page flip: queued at %d, now %d\n",
11638                         work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
11639                 page_flip_completed(intel_crtc);
11640                 work = NULL;
11641         }
11642
11643         if (work != NULL && !is_mmio_work(work) &&
11644             intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
11645                 intel_queue_rps_boost_for_request(work->flip_queued_req);
11646         spin_unlock(&dev->event_lock);
11647 }
11648
11649 __maybe_unused
11650 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11651                                 struct drm_framebuffer *fb,
11652                                 struct drm_pending_vblank_event *event,
11653                                 uint32_t page_flip_flags)
11654 {
11655         struct drm_device *dev = crtc->dev;
11656         struct drm_i915_private *dev_priv = dev->dev_private;
11657         struct drm_framebuffer *old_fb = crtc->primary->fb;
11658         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11659         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11660         struct drm_plane *primary = crtc->primary;
11661         enum pipe pipe = intel_crtc->pipe;
11662         struct intel_flip_work *work;
11663         struct intel_engine_cs *engine;
11664         bool mmio_flip;
11665         struct drm_i915_gem_request *request = NULL;
11666         int ret;
11667
11668         /*
11669          * drm_mode_page_flip_ioctl() should already catch this, but double
11670          * check to be safe.  In the future we may enable pageflipping from
11671          * a disabled primary plane.
11672          */
11673         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11674                 return -EBUSY;
11675
11676         /* Can't change pixel format via MI display flips. */
11677         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11678                 return -EINVAL;
11679
11680         /*
11681          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11682          * Note that pitch changes could also affect these register.
11683          */
11684         if (INTEL_INFO(dev)->gen > 3 &&
11685             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11686              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11687                 return -EINVAL;
11688
11689         if (i915_terminally_wedged(&dev_priv->gpu_error))
11690                 goto out_hang;
11691
11692         work = kzalloc(sizeof(*work), GFP_KERNEL);
11693         if (work == NULL)
11694                 return -ENOMEM;
11695
11696         work->event = event;
11697         work->crtc = crtc;
11698         work->old_fb = old_fb;
11699         INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
11700
11701         ret = drm_crtc_vblank_get(crtc);
11702         if (ret)
11703                 goto free_work;
11704
11705         /* We borrow the event spin lock for protecting flip_work */
11706         spin_lock_irq(&dev->event_lock);
11707         if (intel_crtc->flip_work) {
11708                 /* Before declaring the flip queue wedged, check if
11709                  * the hardware completed the operation behind our backs.
11710                  */
11711                 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
11712                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11713                         page_flip_completed(intel_crtc);
11714                 } else {
11715                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11716                         spin_unlock_irq(&dev->event_lock);
11717
11718                         drm_crtc_vblank_put(crtc);
11719                         kfree(work);
11720                         return -EBUSY;
11721                 }
11722         }
11723         intel_crtc->flip_work = work;
11724         spin_unlock_irq(&dev->event_lock);
11725
11726         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11727                 flush_workqueue(dev_priv->wq);
11728
11729         /* Reference the objects for the scheduled work. */
11730         drm_framebuffer_reference(work->old_fb);
11731         drm_gem_object_reference(&obj->base);
11732
11733         crtc->primary->fb = fb;
11734         update_state_fb(crtc->primary);
11735
11736         intel_fbc_pre_update(intel_crtc, intel_crtc->config,
11737                              to_intel_plane_state(primary->state));
11738
11739         work->pending_flip_obj = obj;
11740
11741         ret = i915_mutex_lock_interruptible(dev);
11742         if (ret)
11743                 goto cleanup;
11744
11745         intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11746         if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
11747                 ret = -EIO;
11748                 goto cleanup;
11749         }
11750
11751         atomic_inc(&intel_crtc->unpin_work_count);
11752
11753         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11754                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11755
11756         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11757                 engine = &dev_priv->engine[BCS];
11758                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11759                         /* vlv: DISPLAY_FLIP fails to change tiling */
11760                         engine = NULL;
11761         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11762                 engine = &dev_priv->engine[BCS];
11763         } else if (INTEL_INFO(dev)->gen >= 7) {
11764                 engine = i915_gem_request_get_engine(obj->last_write_req);
11765                 if (engine == NULL || engine->id != RCS)
11766                         engine = &dev_priv->engine[BCS];
11767         } else {
11768                 engine = &dev_priv->engine[RCS];
11769         }
11770
11771         mmio_flip = use_mmio_flip(engine, obj);
11772
11773         /* When using CS flips, we want to emit semaphores between rings.
11774          * However, when using mmio flips we will create a task to do the
11775          * synchronisation, so all we want here is to pin the framebuffer
11776          * into the display plane and skip any waits.
11777          */
11778         if (!mmio_flip) {
11779                 ret = i915_gem_object_sync(obj, engine, &request);
11780                 if (!ret && !request) {
11781                         request = i915_gem_request_alloc(engine, NULL);
11782                         ret = PTR_ERR_OR_ZERO(request);
11783                 }
11784
11785                 if (ret)
11786                         goto cleanup_pending;
11787         }
11788
11789         ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11790         if (ret)
11791                 goto cleanup_pending;
11792
11793         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11794                                                   obj, 0);
11795         work->gtt_offset += intel_crtc->dspaddr_offset;
11796         work->rotation = crtc->primary->state->rotation;
11797
11798         if (mmio_flip) {
11799                 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
11800
11801                 i915_gem_request_assign(&work->flip_queued_req,
11802                                         obj->last_write_req);
11803
11804                 schedule_work(&work->mmio_work);
11805         } else {
11806                 i915_gem_request_assign(&work->flip_queued_req, request);
11807                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11808                                                    page_flip_flags);
11809                 if (ret)
11810                         goto cleanup_unpin;
11811
11812                 intel_mark_page_flip_active(intel_crtc, work);
11813
11814                 i915_add_request_no_flush(request);
11815         }
11816
11817         i915_gem_track_fb(intel_fb_obj(old_fb), obj,
11818                           to_intel_plane(primary)->frontbuffer_bit);
11819         mutex_unlock(&dev->struct_mutex);
11820
11821         intel_frontbuffer_flip_prepare(dev,
11822                                        to_intel_plane(primary)->frontbuffer_bit);
11823
11824         trace_i915_flip_request(intel_crtc->plane, obj);
11825
11826         return 0;
11827
11828 cleanup_unpin:
11829         intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11830 cleanup_pending:
11831         if (!IS_ERR_OR_NULL(request))
11832                 i915_add_request_no_flush(request);
11833         atomic_dec(&intel_crtc->unpin_work_count);
11834         mutex_unlock(&dev->struct_mutex);
11835 cleanup:
11836         crtc->primary->fb = old_fb;
11837         update_state_fb(crtc->primary);
11838
11839         drm_gem_object_unreference_unlocked(&obj->base);
11840         drm_framebuffer_unreference(work->old_fb);
11841
11842         spin_lock_irq(&dev->event_lock);
11843         intel_crtc->flip_work = NULL;
11844         spin_unlock_irq(&dev->event_lock);
11845
11846         drm_crtc_vblank_put(crtc);
11847 free_work:
11848         kfree(work);
11849
11850         if (ret == -EIO) {
11851                 struct drm_atomic_state *state;
11852                 struct drm_plane_state *plane_state;
11853
11854 out_hang:
11855                 state = drm_atomic_state_alloc(dev);
11856                 if (!state)
11857                         return -ENOMEM;
11858                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11859
11860 retry:
11861                 plane_state = drm_atomic_get_plane_state(state, primary);
11862                 ret = PTR_ERR_OR_ZERO(plane_state);
11863                 if (!ret) {
11864                         drm_atomic_set_fb_for_plane(plane_state, fb);
11865
11866                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11867                         if (!ret)
11868                                 ret = drm_atomic_commit(state);
11869                 }
11870
11871                 if (ret == -EDEADLK) {
11872                         drm_modeset_backoff(state->acquire_ctx);
11873                         drm_atomic_state_clear(state);
11874                         goto retry;
11875                 }
11876
11877                 if (ret)
11878                         drm_atomic_state_free(state);
11879
11880                 if (ret == 0 && event) {
11881                         spin_lock_irq(&dev->event_lock);
11882                         drm_crtc_send_vblank_event(crtc, event);
11883                         spin_unlock_irq(&dev->event_lock);
11884                 }
11885         }
11886         return ret;
11887 }
11888
11889
11890 /**
11891  * intel_wm_need_update - Check whether watermarks need updating
11892  * @plane: drm plane
11893  * @state: new plane state
11894  *
11895  * Check current plane state versus the new one to determine whether
11896  * watermarks need to be recalculated.
11897  *
11898  * Returns true or false.
11899  */
11900 static bool intel_wm_need_update(struct drm_plane *plane,
11901                                  struct drm_plane_state *state)
11902 {
11903         struct intel_plane_state *new = to_intel_plane_state(state);
11904         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11905
11906         /* Update watermarks on tiling or size changes. */
11907         if (new->visible != cur->visible)
11908                 return true;
11909
11910         if (!cur->base.fb || !new->base.fb)
11911                 return false;
11912
11913         if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11914             cur->base.rotation != new->base.rotation ||
11915             drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11916             drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11917             drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11918             drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11919                 return true;
11920
11921         return false;
11922 }
11923
11924 static bool needs_scaling(struct intel_plane_state *state)
11925 {
11926         int src_w = drm_rect_width(&state->src) >> 16;
11927         int src_h = drm_rect_height(&state->src) >> 16;
11928         int dst_w = drm_rect_width(&state->dst);
11929         int dst_h = drm_rect_height(&state->dst);
11930
11931         return (src_w != dst_w || src_h != dst_h);
11932 }
11933
11934 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11935                                     struct drm_plane_state *plane_state)
11936 {
11937         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11938         struct drm_crtc *crtc = crtc_state->crtc;
11939         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11940         struct drm_plane *plane = plane_state->plane;
11941         struct drm_device *dev = crtc->dev;
11942         struct drm_i915_private *dev_priv = to_i915(dev);
11943         struct intel_plane_state *old_plane_state =
11944                 to_intel_plane_state(plane->state);
11945         bool mode_changed = needs_modeset(crtc_state);
11946         bool was_crtc_enabled = crtc->state->active;
11947         bool is_crtc_enabled = crtc_state->active;
11948         bool turn_off, turn_on, visible, was_visible;
11949         struct drm_framebuffer *fb = plane_state->fb;
11950         int ret;
11951
11952         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11953             plane->type != DRM_PLANE_TYPE_CURSOR) {
11954                 ret = skl_update_scaler_plane(
11955                         to_intel_crtc_state(crtc_state),
11956                         to_intel_plane_state(plane_state));
11957                 if (ret)
11958                         return ret;
11959         }
11960
11961         was_visible = old_plane_state->visible;
11962         visible = to_intel_plane_state(plane_state)->visible;
11963
11964         if (!was_crtc_enabled && WARN_ON(was_visible))
11965                 was_visible = false;
11966
11967         /*
11968          * Visibility is calculated as if the crtc was on, but
11969          * after scaler setup everything depends on it being off
11970          * when the crtc isn't active.
11971          *
11972          * FIXME this is wrong for watermarks. Watermarks should also
11973          * be computed as if the pipe would be active. Perhaps move
11974          * per-plane wm computation to the .check_plane() hook, and
11975          * only combine the results from all planes in the current place?
11976          */
11977         if (!is_crtc_enabled)
11978                 to_intel_plane_state(plane_state)->visible = visible = false;
11979
11980         if (!was_visible && !visible)
11981                 return 0;
11982
11983         if (fb != old_plane_state->base.fb)
11984                 pipe_config->fb_changed = true;
11985
11986         turn_off = was_visible && (!visible || mode_changed);
11987         turn_on = visible && (!was_visible || mode_changed);
11988
11989         DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
11990                          intel_crtc->base.base.id,
11991                          intel_crtc->base.name,
11992                          plane->base.id, plane->name,
11993                          fb ? fb->base.id : -1);
11994
11995         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
11996                          plane->base.id, plane->name,
11997                          was_visible, visible,
11998                          turn_off, turn_on, mode_changed);
11999
12000         if (turn_on) {
12001                 pipe_config->update_wm_pre = true;
12002
12003                 /* must disable cxsr around plane enable/disable */
12004                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12005                         pipe_config->disable_cxsr = true;
12006         } else if (turn_off) {
12007                 pipe_config->update_wm_post = true;
12008
12009                 /* must disable cxsr around plane enable/disable */
12010                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12011                         pipe_config->disable_cxsr = true;
12012         } else if (intel_wm_need_update(plane, plane_state)) {
12013                 /* FIXME bollocks */
12014                 pipe_config->update_wm_pre = true;
12015                 pipe_config->update_wm_post = true;
12016         }
12017
12018         /* Pre-gen9 platforms need two-step watermark updates */
12019         if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12020             INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
12021                 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12022
12023         if (visible || was_visible)
12024                 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12025
12026         /*
12027          * WaCxSRDisabledForSpriteScaling:ivb
12028          *
12029          * cstate->update_wm was already set above, so this flag will
12030          * take effect when we commit and program watermarks.
12031          */
12032         if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
12033             needs_scaling(to_intel_plane_state(plane_state)) &&
12034             !needs_scaling(old_plane_state))
12035                 pipe_config->disable_lp_wm = true;
12036
12037         return 0;
12038 }
12039
12040 static bool encoders_cloneable(const struct intel_encoder *a,
12041                                const struct intel_encoder *b)
12042 {
12043         /* masks could be asymmetric, so check both ways */
12044         return a == b || (a->cloneable & (1 << b->type) &&
12045                           b->cloneable & (1 << a->type));
12046 }
12047
12048 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12049                                          struct intel_crtc *crtc,
12050                                          struct intel_encoder *encoder)
12051 {
12052         struct intel_encoder *source_encoder;
12053         struct drm_connector *connector;
12054         struct drm_connector_state *connector_state;
12055         int i;
12056
12057         for_each_connector_in_state(state, connector, connector_state, i) {
12058                 if (connector_state->crtc != &crtc->base)
12059                         continue;
12060
12061                 source_encoder =
12062                         to_intel_encoder(connector_state->best_encoder);
12063                 if (!encoders_cloneable(encoder, source_encoder))
12064                         return false;
12065         }
12066
12067         return true;
12068 }
12069
12070 static bool check_encoder_cloning(struct drm_atomic_state *state,
12071                                   struct intel_crtc *crtc)
12072 {
12073         struct intel_encoder *encoder;
12074         struct drm_connector *connector;
12075         struct drm_connector_state *connector_state;
12076         int i;
12077
12078         for_each_connector_in_state(state, connector, connector_state, i) {
12079                 if (connector_state->crtc != &crtc->base)
12080                         continue;
12081
12082                 encoder = to_intel_encoder(connector_state->best_encoder);
12083                 if (!check_single_encoder_cloning(state, crtc, encoder))
12084                         return false;
12085         }
12086
12087         return true;
12088 }
12089
12090 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12091                                    struct drm_crtc_state *crtc_state)
12092 {
12093         struct drm_device *dev = crtc->dev;
12094         struct drm_i915_private *dev_priv = dev->dev_private;
12095         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12096         struct intel_crtc_state *pipe_config =
12097                 to_intel_crtc_state(crtc_state);
12098         struct drm_atomic_state *state = crtc_state->state;
12099         int ret;
12100         bool mode_changed = needs_modeset(crtc_state);
12101
12102         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
12103                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12104                 return -EINVAL;
12105         }
12106
12107         if (mode_changed && !crtc_state->active)
12108                 pipe_config->update_wm_post = true;
12109
12110         if (mode_changed && crtc_state->enable &&
12111             dev_priv->display.crtc_compute_clock &&
12112             !WARN_ON(pipe_config->shared_dpll)) {
12113                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12114                                                            pipe_config);
12115                 if (ret)
12116                         return ret;
12117         }
12118
12119         if (crtc_state->color_mgmt_changed) {
12120                 ret = intel_color_check(crtc, crtc_state);
12121                 if (ret)
12122                         return ret;
12123         }
12124
12125         ret = 0;
12126         if (dev_priv->display.compute_pipe_wm) {
12127                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12128                 if (ret) {
12129                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12130                         return ret;
12131                 }
12132         }
12133
12134         if (dev_priv->display.compute_intermediate_wm &&
12135             !to_intel_atomic_state(state)->skip_intermediate_wm) {
12136                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12137                         return 0;
12138
12139                 /*
12140                  * Calculate 'intermediate' watermarks that satisfy both the
12141                  * old state and the new state.  We can program these
12142                  * immediately.
12143                  */
12144                 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12145                                                                 intel_crtc,
12146                                                                 pipe_config);
12147                 if (ret) {
12148                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12149                         return ret;
12150                 }
12151         } else if (dev_priv->display.compute_intermediate_wm) {
12152                 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12153                         pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12154         }
12155
12156         if (INTEL_INFO(dev)->gen >= 9) {
12157                 if (mode_changed)
12158                         ret = skl_update_scaler_crtc(pipe_config);
12159
12160                 if (!ret)
12161                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
12162                                                          pipe_config);
12163         }
12164
12165         return ret;
12166 }
12167
12168 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12169         .mode_set_base_atomic = intel_pipe_set_base_atomic,
12170         .atomic_begin = intel_begin_crtc_commit,
12171         .atomic_flush = intel_finish_crtc_commit,
12172         .atomic_check = intel_crtc_atomic_check,
12173 };
12174
12175 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12176 {
12177         struct intel_connector *connector;
12178
12179         for_each_intel_connector(dev, connector) {
12180                 if (connector->base.state->crtc)
12181                         drm_connector_unreference(&connector->base);
12182
12183                 if (connector->base.encoder) {
12184                         connector->base.state->best_encoder =
12185                                 connector->base.encoder;
12186                         connector->base.state->crtc =
12187                                 connector->base.encoder->crtc;
12188
12189                         drm_connector_reference(&connector->base);
12190                 } else {
12191                         connector->base.state->best_encoder = NULL;
12192                         connector->base.state->crtc = NULL;
12193                 }
12194         }
12195 }
12196
12197 static void
12198 connected_sink_compute_bpp(struct intel_connector *connector,
12199                            struct intel_crtc_state *pipe_config)
12200 {
12201         int bpp = pipe_config->pipe_bpp;
12202
12203         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12204                 connector->base.base.id,
12205                 connector->base.name);
12206
12207         /* Don't use an invalid EDID bpc value */
12208         if (connector->base.display_info.bpc &&
12209             connector->base.display_info.bpc * 3 < bpp) {
12210                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12211                               bpp, connector->base.display_info.bpc*3);
12212                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12213         }
12214
12215         /* Clamp bpp to default limit on screens without EDID 1.4 */
12216         if (connector->base.display_info.bpc == 0) {
12217                 int type = connector->base.connector_type;
12218                 int clamp_bpp = 24;
12219
12220                 /* Fall back to 18 bpp when DP sink capability is unknown. */
12221                 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12222                     type == DRM_MODE_CONNECTOR_eDP)
12223                         clamp_bpp = 18;
12224
12225                 if (bpp > clamp_bpp) {
12226                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12227                                       bpp, clamp_bpp);
12228                         pipe_config->pipe_bpp = clamp_bpp;
12229                 }
12230         }
12231 }
12232
12233 static int
12234 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12235                           struct intel_crtc_state *pipe_config)
12236 {
12237         struct drm_device *dev = crtc->base.dev;
12238         struct drm_atomic_state *state;
12239         struct drm_connector *connector;
12240         struct drm_connector_state *connector_state;
12241         int bpp, i;
12242
12243         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12244                 bpp = 10*3;
12245         else if (INTEL_INFO(dev)->gen >= 5)
12246                 bpp = 12*3;
12247         else
12248                 bpp = 8*3;
12249
12250
12251         pipe_config->pipe_bpp = bpp;
12252
12253         state = pipe_config->base.state;
12254
12255         /* Clamp display bpp to EDID value */
12256         for_each_connector_in_state(state, connector, connector_state, i) {
12257                 if (connector_state->crtc != &crtc->base)
12258                         continue;
12259
12260                 connected_sink_compute_bpp(to_intel_connector(connector),
12261                                            pipe_config);
12262         }
12263
12264         return bpp;
12265 }
12266
12267 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12268 {
12269         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12270                         "type: 0x%x flags: 0x%x\n",
12271                 mode->crtc_clock,
12272                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12273                 mode->crtc_hsync_end, mode->crtc_htotal,
12274                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12275                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12276 }
12277
12278 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12279                                    struct intel_crtc_state *pipe_config,
12280                                    const char *context)
12281 {
12282         struct drm_device *dev = crtc->base.dev;
12283         struct drm_plane *plane;
12284         struct intel_plane *intel_plane;
12285         struct intel_plane_state *state;
12286         struct drm_framebuffer *fb;
12287
12288         DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n",
12289                       crtc->base.base.id, crtc->base.name,
12290                       context, pipe_config, pipe_name(crtc->pipe));
12291
12292         DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12293         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12294                       pipe_config->pipe_bpp, pipe_config->dither);
12295         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12296                       pipe_config->has_pch_encoder,
12297                       pipe_config->fdi_lanes,
12298                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12299                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12300                       pipe_config->fdi_m_n.tu);
12301         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12302                       pipe_config->has_dp_encoder,
12303                       pipe_config->lane_count,
12304                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12305                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12306                       pipe_config->dp_m_n.tu);
12307
12308         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12309                       pipe_config->has_dp_encoder,
12310                       pipe_config->lane_count,
12311                       pipe_config->dp_m2_n2.gmch_m,
12312                       pipe_config->dp_m2_n2.gmch_n,
12313                       pipe_config->dp_m2_n2.link_m,
12314                       pipe_config->dp_m2_n2.link_n,
12315                       pipe_config->dp_m2_n2.tu);
12316
12317         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12318                       pipe_config->has_audio,
12319                       pipe_config->has_infoframe);
12320
12321         DRM_DEBUG_KMS("requested mode:\n");
12322         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12323         DRM_DEBUG_KMS("adjusted mode:\n");
12324         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12325         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12326         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12327         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12328                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12329         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12330                       crtc->num_scalers,
12331                       pipe_config->scaler_state.scaler_users,
12332                       pipe_config->scaler_state.scaler_id);
12333         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12334                       pipe_config->gmch_pfit.control,
12335                       pipe_config->gmch_pfit.pgm_ratios,
12336                       pipe_config->gmch_pfit.lvds_border_bits);
12337         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12338                       pipe_config->pch_pfit.pos,
12339                       pipe_config->pch_pfit.size,
12340                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12341         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12342         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12343
12344         if (IS_BROXTON(dev)) {
12345                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12346                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12347                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12348                               pipe_config->ddi_pll_sel,
12349                               pipe_config->dpll_hw_state.ebb0,
12350                               pipe_config->dpll_hw_state.ebb4,
12351                               pipe_config->dpll_hw_state.pll0,
12352                               pipe_config->dpll_hw_state.pll1,
12353                               pipe_config->dpll_hw_state.pll2,
12354                               pipe_config->dpll_hw_state.pll3,
12355                               pipe_config->dpll_hw_state.pll6,
12356                               pipe_config->dpll_hw_state.pll8,
12357                               pipe_config->dpll_hw_state.pll9,
12358                               pipe_config->dpll_hw_state.pll10,
12359                               pipe_config->dpll_hw_state.pcsdw12);
12360         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12361                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12362                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12363                               pipe_config->ddi_pll_sel,
12364                               pipe_config->dpll_hw_state.ctrl1,
12365                               pipe_config->dpll_hw_state.cfgcr1,
12366                               pipe_config->dpll_hw_state.cfgcr2);
12367         } else if (HAS_DDI(dev)) {
12368                 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12369                               pipe_config->ddi_pll_sel,
12370                               pipe_config->dpll_hw_state.wrpll,
12371                               pipe_config->dpll_hw_state.spll);
12372         } else {
12373                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12374                               "fp0: 0x%x, fp1: 0x%x\n",
12375                               pipe_config->dpll_hw_state.dpll,
12376                               pipe_config->dpll_hw_state.dpll_md,
12377                               pipe_config->dpll_hw_state.fp0,
12378                               pipe_config->dpll_hw_state.fp1);
12379         }
12380
12381         DRM_DEBUG_KMS("planes on this crtc\n");
12382         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12383                 intel_plane = to_intel_plane(plane);
12384                 if (intel_plane->pipe != crtc->pipe)
12385                         continue;
12386
12387                 state = to_intel_plane_state(plane->state);
12388                 fb = state->base.fb;
12389                 if (!fb) {
12390                         DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12391                                       plane->base.id, plane->name, state->scaler_id);
12392                         continue;
12393                 }
12394
12395                 DRM_DEBUG_KMS("[PLANE:%d:%s] enabled",
12396                               plane->base.id, plane->name);
12397                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s",
12398                               fb->base.id, fb->width, fb->height,
12399                               drm_get_format_name(fb->pixel_format));
12400                 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12401                               state->scaler_id,
12402                               state->src.x1 >> 16, state->src.y1 >> 16,
12403                               drm_rect_width(&state->src) >> 16,
12404                               drm_rect_height(&state->src) >> 16,
12405                               state->dst.x1, state->dst.y1,
12406                               drm_rect_width(&state->dst),
12407                               drm_rect_height(&state->dst));
12408         }
12409 }
12410
12411 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12412 {
12413         struct drm_device *dev = state->dev;
12414         struct drm_connector *connector;
12415         unsigned int used_ports = 0;
12416
12417         /*
12418          * Walk the connector list instead of the encoder
12419          * list to detect the problem on ddi platforms
12420          * where there's just one encoder per digital port.
12421          */
12422         drm_for_each_connector(connector, dev) {
12423                 struct drm_connector_state *connector_state;
12424                 struct intel_encoder *encoder;
12425
12426                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12427                 if (!connector_state)
12428                         connector_state = connector->state;
12429
12430                 if (!connector_state->best_encoder)
12431                         continue;
12432
12433                 encoder = to_intel_encoder(connector_state->best_encoder);
12434
12435                 WARN_ON(!connector_state->crtc);
12436
12437                 switch (encoder->type) {
12438                         unsigned int port_mask;
12439                 case INTEL_OUTPUT_UNKNOWN:
12440                         if (WARN_ON(!HAS_DDI(dev)))
12441                                 break;
12442                 case INTEL_OUTPUT_DISPLAYPORT:
12443                 case INTEL_OUTPUT_HDMI:
12444                 case INTEL_OUTPUT_EDP:
12445                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12446
12447                         /* the same port mustn't appear more than once */
12448                         if (used_ports & port_mask)
12449                                 return false;
12450
12451                         used_ports |= port_mask;
12452                 default:
12453                         break;
12454                 }
12455         }
12456
12457         return true;
12458 }
12459
12460 static void
12461 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12462 {
12463         struct drm_crtc_state tmp_state;
12464         struct intel_crtc_scaler_state scaler_state;
12465         struct intel_dpll_hw_state dpll_hw_state;
12466         struct intel_shared_dpll *shared_dpll;
12467         uint32_t ddi_pll_sel;
12468         bool force_thru;
12469
12470         /* FIXME: before the switch to atomic started, a new pipe_config was
12471          * kzalloc'd. Code that depends on any field being zero should be
12472          * fixed, so that the crtc_state can be safely duplicated. For now,
12473          * only fields that are know to not cause problems are preserved. */
12474
12475         tmp_state = crtc_state->base;
12476         scaler_state = crtc_state->scaler_state;
12477         shared_dpll = crtc_state->shared_dpll;
12478         dpll_hw_state = crtc_state->dpll_hw_state;
12479         ddi_pll_sel = crtc_state->ddi_pll_sel;
12480         force_thru = crtc_state->pch_pfit.force_thru;
12481
12482         memset(crtc_state, 0, sizeof *crtc_state);
12483
12484         crtc_state->base = tmp_state;
12485         crtc_state->scaler_state = scaler_state;
12486         crtc_state->shared_dpll = shared_dpll;
12487         crtc_state->dpll_hw_state = dpll_hw_state;
12488         crtc_state->ddi_pll_sel = ddi_pll_sel;
12489         crtc_state->pch_pfit.force_thru = force_thru;
12490 }
12491
12492 static int
12493 intel_modeset_pipe_config(struct drm_crtc *crtc,
12494                           struct intel_crtc_state *pipe_config)
12495 {
12496         struct drm_atomic_state *state = pipe_config->base.state;
12497         struct intel_encoder *encoder;
12498         struct drm_connector *connector;
12499         struct drm_connector_state *connector_state;
12500         int base_bpp, ret = -EINVAL;
12501         int i;
12502         bool retry = true;
12503
12504         clear_intel_crtc_state(pipe_config);
12505
12506         pipe_config->cpu_transcoder =
12507                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12508
12509         /*
12510          * Sanitize sync polarity flags based on requested ones. If neither
12511          * positive or negative polarity is requested, treat this as meaning
12512          * negative polarity.
12513          */
12514         if (!(pipe_config->base.adjusted_mode.flags &
12515               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12516                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12517
12518         if (!(pipe_config->base.adjusted_mode.flags &
12519               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12520                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12521
12522         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12523                                              pipe_config);
12524         if (base_bpp < 0)
12525                 goto fail;
12526
12527         /*
12528          * Determine the real pipe dimensions. Note that stereo modes can
12529          * increase the actual pipe size due to the frame doubling and
12530          * insertion of additional space for blanks between the frame. This
12531          * is stored in the crtc timings. We use the requested mode to do this
12532          * computation to clearly distinguish it from the adjusted mode, which
12533          * can be changed by the connectors in the below retry loop.
12534          */
12535         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12536                                &pipe_config->pipe_src_w,
12537                                &pipe_config->pipe_src_h);
12538
12539 encoder_retry:
12540         /* Ensure the port clock defaults are reset when retrying. */
12541         pipe_config->port_clock = 0;
12542         pipe_config->pixel_multiplier = 1;
12543
12544         /* Fill in default crtc timings, allow encoders to overwrite them. */
12545         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12546                               CRTC_STEREO_DOUBLE);
12547
12548         /* Pass our mode to the connectors and the CRTC to give them a chance to
12549          * adjust it according to limitations or connector properties, and also
12550          * a chance to reject the mode entirely.
12551          */
12552         for_each_connector_in_state(state, connector, connector_state, i) {
12553                 if (connector_state->crtc != crtc)
12554                         continue;
12555
12556                 encoder = to_intel_encoder(connector_state->best_encoder);
12557
12558                 if (!(encoder->compute_config(encoder, pipe_config))) {
12559                         DRM_DEBUG_KMS("Encoder config failure\n");
12560                         goto fail;
12561                 }
12562         }
12563
12564         /* Set default port clock if not overwritten by the encoder. Needs to be
12565          * done afterwards in case the encoder adjusts the mode. */
12566         if (!pipe_config->port_clock)
12567                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12568                         * pipe_config->pixel_multiplier;
12569
12570         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12571         if (ret < 0) {
12572                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12573                 goto fail;
12574         }
12575
12576         if (ret == RETRY) {
12577                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12578                         ret = -EINVAL;
12579                         goto fail;
12580                 }
12581
12582                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12583                 retry = false;
12584                 goto encoder_retry;
12585         }
12586
12587         /* Dithering seems to not pass-through bits correctly when it should, so
12588          * only enable it on 6bpc panels. */
12589         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12590         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12591                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12592
12593 fail:
12594         return ret;
12595 }
12596
12597 static void
12598 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12599 {
12600         struct drm_crtc *crtc;
12601         struct drm_crtc_state *crtc_state;
12602         int i;
12603
12604         /* Double check state. */
12605         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12606                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12607
12608                 /* Update hwmode for vblank functions */
12609                 if (crtc->state->active)
12610                         crtc->hwmode = crtc->state->adjusted_mode;
12611                 else
12612                         crtc->hwmode.crtc_clock = 0;
12613
12614                 /*
12615                  * Update legacy state to satisfy fbc code. This can
12616                  * be removed when fbc uses the atomic state.
12617                  */
12618                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12619                         struct drm_plane_state *plane_state = crtc->primary->state;
12620
12621                         crtc->primary->fb = plane_state->fb;
12622                         crtc->x = plane_state->src_x >> 16;
12623                         crtc->y = plane_state->src_y >> 16;
12624                 }
12625         }
12626 }
12627
12628 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12629 {
12630         int diff;
12631
12632         if (clock1 == clock2)
12633                 return true;
12634
12635         if (!clock1 || !clock2)
12636                 return false;
12637
12638         diff = abs(clock1 - clock2);
12639
12640         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12641                 return true;
12642
12643         return false;
12644 }
12645
12646 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12647         list_for_each_entry((intel_crtc), \
12648                             &(dev)->mode_config.crtc_list, \
12649                             base.head) \
12650                 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12651
12652 static bool
12653 intel_compare_m_n(unsigned int m, unsigned int n,
12654                   unsigned int m2, unsigned int n2,
12655                   bool exact)
12656 {
12657         if (m == m2 && n == n2)
12658                 return true;
12659
12660         if (exact || !m || !n || !m2 || !n2)
12661                 return false;
12662
12663         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12664
12665         if (n > n2) {
12666                 while (n > n2) {
12667                         m2 <<= 1;
12668                         n2 <<= 1;
12669                 }
12670         } else if (n < n2) {
12671                 while (n < n2) {
12672                         m <<= 1;
12673                         n <<= 1;
12674                 }
12675         }
12676
12677         if (n != n2)
12678                 return false;
12679
12680         return intel_fuzzy_clock_check(m, m2);
12681 }
12682
12683 static bool
12684 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12685                        struct intel_link_m_n *m2_n2,
12686                        bool adjust)
12687 {
12688         if (m_n->tu == m2_n2->tu &&
12689             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12690                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12691             intel_compare_m_n(m_n->link_m, m_n->link_n,
12692                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12693                 if (adjust)
12694                         *m2_n2 = *m_n;
12695
12696                 return true;
12697         }
12698
12699         return false;
12700 }
12701
12702 static bool
12703 intel_pipe_config_compare(struct drm_device *dev,
12704                           struct intel_crtc_state *current_config,
12705                           struct intel_crtc_state *pipe_config,
12706                           bool adjust)
12707 {
12708         bool ret = true;
12709
12710 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12711         do { \
12712                 if (!adjust) \
12713                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12714                 else \
12715                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12716         } while (0)
12717
12718 #define PIPE_CONF_CHECK_X(name) \
12719         if (current_config->name != pipe_config->name) { \
12720                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12721                           "(expected 0x%08x, found 0x%08x)\n", \
12722                           current_config->name, \
12723                           pipe_config->name); \
12724                 ret = false; \
12725         }
12726
12727 #define PIPE_CONF_CHECK_I(name) \
12728         if (current_config->name != pipe_config->name) { \
12729                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12730                           "(expected %i, found %i)\n", \
12731                           current_config->name, \
12732                           pipe_config->name); \
12733                 ret = false; \
12734         }
12735
12736 #define PIPE_CONF_CHECK_P(name) \
12737         if (current_config->name != pipe_config->name) { \
12738                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12739                           "(expected %p, found %p)\n", \
12740                           current_config->name, \
12741                           pipe_config->name); \
12742                 ret = false; \
12743         }
12744
12745 #define PIPE_CONF_CHECK_M_N(name) \
12746         if (!intel_compare_link_m_n(&current_config->name, \
12747                                     &pipe_config->name,\
12748                                     adjust)) { \
12749                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12750                           "(expected tu %i gmch %i/%i link %i/%i, " \
12751                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12752                           current_config->name.tu, \
12753                           current_config->name.gmch_m, \
12754                           current_config->name.gmch_n, \
12755                           current_config->name.link_m, \
12756                           current_config->name.link_n, \
12757                           pipe_config->name.tu, \
12758                           pipe_config->name.gmch_m, \
12759                           pipe_config->name.gmch_n, \
12760                           pipe_config->name.link_m, \
12761                           pipe_config->name.link_n); \
12762                 ret = false; \
12763         }
12764
12765 /* This is required for BDW+ where there is only one set of registers for
12766  * switching between high and low RR.
12767  * This macro can be used whenever a comparison has to be made between one
12768  * hw state and multiple sw state variables.
12769  */
12770 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12771         if (!intel_compare_link_m_n(&current_config->name, \
12772                                     &pipe_config->name, adjust) && \
12773             !intel_compare_link_m_n(&current_config->alt_name, \
12774                                     &pipe_config->name, adjust)) { \
12775                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12776                           "(expected tu %i gmch %i/%i link %i/%i, " \
12777                           "or tu %i gmch %i/%i link %i/%i, " \
12778                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12779                           current_config->name.tu, \
12780                           current_config->name.gmch_m, \
12781                           current_config->name.gmch_n, \
12782                           current_config->name.link_m, \
12783                           current_config->name.link_n, \
12784                           current_config->alt_name.tu, \
12785                           current_config->alt_name.gmch_m, \
12786                           current_config->alt_name.gmch_n, \
12787                           current_config->alt_name.link_m, \
12788                           current_config->alt_name.link_n, \
12789                           pipe_config->name.tu, \
12790                           pipe_config->name.gmch_m, \
12791                           pipe_config->name.gmch_n, \
12792                           pipe_config->name.link_m, \
12793                           pipe_config->name.link_n); \
12794                 ret = false; \
12795         }
12796
12797 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12798         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12799                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12800                           "(expected %i, found %i)\n", \
12801                           current_config->name & (mask), \
12802                           pipe_config->name & (mask)); \
12803                 ret = false; \
12804         }
12805
12806 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12807         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12808                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12809                           "(expected %i, found %i)\n", \
12810                           current_config->name, \
12811                           pipe_config->name); \
12812                 ret = false; \
12813         }
12814
12815 #define PIPE_CONF_QUIRK(quirk)  \
12816         ((current_config->quirks | pipe_config->quirks) & (quirk))
12817
12818         PIPE_CONF_CHECK_I(cpu_transcoder);
12819
12820         PIPE_CONF_CHECK_I(has_pch_encoder);
12821         PIPE_CONF_CHECK_I(fdi_lanes);
12822         PIPE_CONF_CHECK_M_N(fdi_m_n);
12823
12824         PIPE_CONF_CHECK_I(has_dp_encoder);
12825         PIPE_CONF_CHECK_I(lane_count);
12826         PIPE_CONF_CHECK_X(lane_lat_optim_mask);
12827
12828         if (INTEL_INFO(dev)->gen < 8) {
12829                 PIPE_CONF_CHECK_M_N(dp_m_n);
12830
12831                 if (current_config->has_drrs)
12832                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12833         } else
12834                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12835
12836         PIPE_CONF_CHECK_I(has_dsi_encoder);
12837
12838         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12839         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12840         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12841         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12842         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12843         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12844
12845         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12846         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12847         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12848         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12849         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12850         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12851
12852         PIPE_CONF_CHECK_I(pixel_multiplier);
12853         PIPE_CONF_CHECK_I(has_hdmi_sink);
12854         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12855             IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12856                 PIPE_CONF_CHECK_I(limited_color_range);
12857         PIPE_CONF_CHECK_I(has_infoframe);
12858
12859         PIPE_CONF_CHECK_I(has_audio);
12860
12861         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12862                               DRM_MODE_FLAG_INTERLACE);
12863
12864         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12865                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12866                                       DRM_MODE_FLAG_PHSYNC);
12867                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12868                                       DRM_MODE_FLAG_NHSYNC);
12869                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12870                                       DRM_MODE_FLAG_PVSYNC);
12871                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12872                                       DRM_MODE_FLAG_NVSYNC);
12873         }
12874
12875         PIPE_CONF_CHECK_X(gmch_pfit.control);
12876         /* pfit ratios are autocomputed by the hw on gen4+ */
12877         if (INTEL_INFO(dev)->gen < 4)
12878                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
12879         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12880
12881         if (!adjust) {
12882                 PIPE_CONF_CHECK_I(pipe_src_w);
12883                 PIPE_CONF_CHECK_I(pipe_src_h);
12884
12885                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12886                 if (current_config->pch_pfit.enabled) {
12887                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12888                         PIPE_CONF_CHECK_X(pch_pfit.size);
12889                 }
12890
12891                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12892         }
12893
12894         /* BDW+ don't expose a synchronous way to read the state */
12895         if (IS_HASWELL(dev))
12896                 PIPE_CONF_CHECK_I(ips_enabled);
12897
12898         PIPE_CONF_CHECK_I(double_wide);
12899
12900         PIPE_CONF_CHECK_X(ddi_pll_sel);
12901
12902         PIPE_CONF_CHECK_P(shared_dpll);
12903         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12904         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12905         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12906         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12907         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12908         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12909         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12910         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12911         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12912
12913         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12914         PIPE_CONF_CHECK_X(dsi_pll.div);
12915
12916         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12917                 PIPE_CONF_CHECK_I(pipe_bpp);
12918
12919         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12920         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12921
12922 #undef PIPE_CONF_CHECK_X
12923 #undef PIPE_CONF_CHECK_I
12924 #undef PIPE_CONF_CHECK_P
12925 #undef PIPE_CONF_CHECK_FLAGS
12926 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12927 #undef PIPE_CONF_QUIRK
12928 #undef INTEL_ERR_OR_DBG_KMS
12929
12930         return ret;
12931 }
12932
12933 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12934                                            const struct intel_crtc_state *pipe_config)
12935 {
12936         if (pipe_config->has_pch_encoder) {
12937                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12938                                                             &pipe_config->fdi_m_n);
12939                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12940
12941                 /*
12942                  * FDI already provided one idea for the dotclock.
12943                  * Yell if the encoder disagrees.
12944                  */
12945                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12946                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12947                      fdi_dotclock, dotclock);
12948         }
12949 }
12950
12951 static void verify_wm_state(struct drm_crtc *crtc,
12952                             struct drm_crtc_state *new_state)
12953 {
12954         struct drm_device *dev = crtc->dev;
12955         struct drm_i915_private *dev_priv = dev->dev_private;
12956         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12957         struct skl_ddb_entry *hw_entry, *sw_entry;
12958         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12959         const enum pipe pipe = intel_crtc->pipe;
12960         int plane;
12961
12962         if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
12963                 return;
12964
12965         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12966         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12967
12968         /* planes */
12969         for_each_plane(dev_priv, pipe, plane) {
12970                 hw_entry = &hw_ddb.plane[pipe][plane];
12971                 sw_entry = &sw_ddb->plane[pipe][plane];
12972
12973                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12974                         continue;
12975
12976                 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12977                           "(expected (%u,%u), found (%u,%u))\n",
12978                           pipe_name(pipe), plane + 1,
12979                           sw_entry->start, sw_entry->end,
12980                           hw_entry->start, hw_entry->end);
12981         }
12982
12983         /* cursor */
12984         hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12985         sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12986
12987         if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
12988                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12989                           "(expected (%u,%u), found (%u,%u))\n",
12990                           pipe_name(pipe),
12991                           sw_entry->start, sw_entry->end,
12992                           hw_entry->start, hw_entry->end);
12993         }
12994 }
12995
12996 static void
12997 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
12998 {
12999         struct drm_connector *connector;
13000
13001         drm_for_each_connector(connector, dev) {
13002                 struct drm_encoder *encoder = connector->encoder;
13003                 struct drm_connector_state *state = connector->state;
13004
13005                 if (state->crtc != crtc)
13006                         continue;
13007
13008                 intel_connector_verify_state(to_intel_connector(connector));
13009
13010                 I915_STATE_WARN(state->best_encoder != encoder,
13011                      "connector's atomic encoder doesn't match legacy encoder\n");
13012         }
13013 }
13014
13015 static void
13016 verify_encoder_state(struct drm_device *dev)
13017 {
13018         struct intel_encoder *encoder;
13019         struct intel_connector *connector;
13020
13021         for_each_intel_encoder(dev, encoder) {
13022                 bool enabled = false;
13023                 enum pipe pipe;
13024
13025                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13026                               encoder->base.base.id,
13027                               encoder->base.name);
13028
13029                 for_each_intel_connector(dev, connector) {
13030                         if (connector->base.state->best_encoder != &encoder->base)
13031                                 continue;
13032                         enabled = true;
13033
13034                         I915_STATE_WARN(connector->base.state->crtc !=
13035                                         encoder->base.crtc,
13036                              "connector's crtc doesn't match encoder crtc\n");
13037                 }
13038
13039                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
13040                      "encoder's enabled state mismatch "
13041                      "(expected %i, found %i)\n",
13042                      !!encoder->base.crtc, enabled);
13043
13044                 if (!encoder->base.crtc) {
13045                         bool active;
13046
13047                         active = encoder->get_hw_state(encoder, &pipe);
13048                         I915_STATE_WARN(active,
13049                              "encoder detached but still enabled on pipe %c.\n",
13050                              pipe_name(pipe));
13051                 }
13052         }
13053 }
13054
13055 static void
13056 verify_crtc_state(struct drm_crtc *crtc,
13057                   struct drm_crtc_state *old_crtc_state,
13058                   struct drm_crtc_state *new_crtc_state)
13059 {
13060         struct drm_device *dev = crtc->dev;
13061         struct drm_i915_private *dev_priv = dev->dev_private;
13062         struct intel_encoder *encoder;
13063         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13064         struct intel_crtc_state *pipe_config, *sw_config;
13065         struct drm_atomic_state *old_state;
13066         bool active;
13067
13068         old_state = old_crtc_state->state;
13069         __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13070         pipe_config = to_intel_crtc_state(old_crtc_state);
13071         memset(pipe_config, 0, sizeof(*pipe_config));
13072         pipe_config->base.crtc = crtc;
13073         pipe_config->base.state = old_state;
13074
13075         DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13076
13077         active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13078
13079         /* hw state is inconsistent with the pipe quirk */
13080         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13081             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13082                 active = new_crtc_state->active;
13083
13084         I915_STATE_WARN(new_crtc_state->active != active,
13085              "crtc active state doesn't match with hw state "
13086              "(expected %i, found %i)\n", new_crtc_state->active, active);
13087
13088         I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13089              "transitional active state does not match atomic hw state "
13090              "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13091
13092         for_each_encoder_on_crtc(dev, crtc, encoder) {
13093                 enum pipe pipe;
13094
13095                 active = encoder->get_hw_state(encoder, &pipe);
13096                 I915_STATE_WARN(active != new_crtc_state->active,
13097                         "[ENCODER:%i] active %i with crtc active %i\n",
13098                         encoder->base.base.id, active, new_crtc_state->active);
13099
13100                 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13101                                 "Encoder connected to wrong pipe %c\n",
13102                                 pipe_name(pipe));
13103
13104                 if (active)
13105                         encoder->get_config(encoder, pipe_config);
13106         }
13107
13108         if (!new_crtc_state->active)
13109                 return;
13110
13111         intel_pipe_config_sanity_check(dev_priv, pipe_config);
13112
13113         sw_config = to_intel_crtc_state(crtc->state);
13114         if (!intel_pipe_config_compare(dev, sw_config,
13115                                        pipe_config, false)) {
13116                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13117                 intel_dump_pipe_config(intel_crtc, pipe_config,
13118                                        "[hw state]");
13119                 intel_dump_pipe_config(intel_crtc, sw_config,
13120                                        "[sw state]");
13121         }
13122 }
13123
13124 static void
13125 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13126                          struct intel_shared_dpll *pll,
13127                          struct drm_crtc *crtc,
13128                          struct drm_crtc_state *new_state)
13129 {
13130         struct intel_dpll_hw_state dpll_hw_state;
13131         unsigned crtc_mask;
13132         bool active;
13133
13134         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13135
13136         DRM_DEBUG_KMS("%s\n", pll->name);
13137
13138         active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13139
13140         if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13141                 I915_STATE_WARN(!pll->on && pll->active_mask,
13142                      "pll in active use but not on in sw tracking\n");
13143                 I915_STATE_WARN(pll->on && !pll->active_mask,
13144                      "pll is on but not used by any active crtc\n");
13145                 I915_STATE_WARN(pll->on != active,
13146                      "pll on state mismatch (expected %i, found %i)\n",
13147                      pll->on, active);
13148         }
13149
13150         if (!crtc) {
13151                 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13152                                 "more active pll users than references: %x vs %x\n",
13153                                 pll->active_mask, pll->config.crtc_mask);
13154
13155                 return;
13156         }
13157
13158         crtc_mask = 1 << drm_crtc_index(crtc);
13159
13160         if (new_state->active)
13161                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13162                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13163                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13164         else
13165                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13166                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13167                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13168
13169         I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13170                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13171                         crtc_mask, pll->config.crtc_mask);
13172
13173         I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13174                                           &dpll_hw_state,
13175                                           sizeof(dpll_hw_state)),
13176                         "pll hw state mismatch\n");
13177 }
13178
13179 static void
13180 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13181                          struct drm_crtc_state *old_crtc_state,
13182                          struct drm_crtc_state *new_crtc_state)
13183 {
13184         struct drm_i915_private *dev_priv = dev->dev_private;
13185         struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13186         struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13187
13188         if (new_state->shared_dpll)
13189                 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13190
13191         if (old_state->shared_dpll &&
13192             old_state->shared_dpll != new_state->shared_dpll) {
13193                 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13194                 struct intel_shared_dpll *pll = old_state->shared_dpll;
13195
13196                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13197                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13198                                 pipe_name(drm_crtc_index(crtc)));
13199                 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13200                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13201                                 pipe_name(drm_crtc_index(crtc)));
13202         }
13203 }
13204
13205 static void
13206 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13207                          struct drm_crtc_state *old_state,
13208                          struct drm_crtc_state *new_state)
13209 {
13210         if (!needs_modeset(new_state) &&
13211             !to_intel_crtc_state(new_state)->update_pipe)
13212                 return;
13213
13214         verify_wm_state(crtc, new_state);
13215         verify_connector_state(crtc->dev, crtc);
13216         verify_crtc_state(crtc, old_state, new_state);
13217         verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13218 }
13219
13220 static void
13221 verify_disabled_dpll_state(struct drm_device *dev)
13222 {
13223         struct drm_i915_private *dev_priv = dev->dev_private;
13224         int i;
13225
13226         for (i = 0; i < dev_priv->num_shared_dpll; i++)
13227                 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13228 }
13229
13230 static void
13231 intel_modeset_verify_disabled(struct drm_device *dev)
13232 {
13233         verify_encoder_state(dev);
13234         verify_connector_state(dev, NULL);
13235         verify_disabled_dpll_state(dev);
13236 }
13237
13238 static void update_scanline_offset(struct intel_crtc *crtc)
13239 {
13240         struct drm_device *dev = crtc->base.dev;
13241
13242         /*
13243          * The scanline counter increments at the leading edge of hsync.
13244          *
13245          * On most platforms it starts counting from vtotal-1 on the
13246          * first active line. That means the scanline counter value is
13247          * always one less than what we would expect. Ie. just after
13248          * start of vblank, which also occurs at start of hsync (on the
13249          * last active line), the scanline counter will read vblank_start-1.
13250          *
13251          * On gen2 the scanline counter starts counting from 1 instead
13252          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13253          * to keep the value positive), instead of adding one.
13254          *
13255          * On HSW+ the behaviour of the scanline counter depends on the output
13256          * type. For DP ports it behaves like most other platforms, but on HDMI
13257          * there's an extra 1 line difference. So we need to add two instead of
13258          * one to the value.
13259          */
13260         if (IS_GEN2(dev)) {
13261                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13262                 int vtotal;
13263
13264                 vtotal = adjusted_mode->crtc_vtotal;
13265                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13266                         vtotal /= 2;
13267
13268                 crtc->scanline_offset = vtotal - 1;
13269         } else if (HAS_DDI(dev) &&
13270                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13271                 crtc->scanline_offset = 2;
13272         } else
13273                 crtc->scanline_offset = 1;
13274 }
13275
13276 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13277 {
13278         struct drm_device *dev = state->dev;
13279         struct drm_i915_private *dev_priv = to_i915(dev);
13280         struct intel_shared_dpll_config *shared_dpll = NULL;
13281         struct drm_crtc *crtc;
13282         struct drm_crtc_state *crtc_state;
13283         int i;
13284
13285         if (!dev_priv->display.crtc_compute_clock)
13286                 return;
13287
13288         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13289                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13290                 struct intel_shared_dpll *old_dpll =
13291                         to_intel_crtc_state(crtc->state)->shared_dpll;
13292
13293                 if (!needs_modeset(crtc_state))
13294                         continue;
13295
13296                 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13297
13298                 if (!old_dpll)
13299                         continue;
13300
13301                 if (!shared_dpll)
13302                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13303
13304                 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13305         }
13306 }
13307
13308 /*
13309  * This implements the workaround described in the "notes" section of the mode
13310  * set sequence documentation. When going from no pipes or single pipe to
13311  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13312  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13313  */
13314 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13315 {
13316         struct drm_crtc_state *crtc_state;
13317         struct intel_crtc *intel_crtc;
13318         struct drm_crtc *crtc;
13319         struct intel_crtc_state *first_crtc_state = NULL;
13320         struct intel_crtc_state *other_crtc_state = NULL;
13321         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13322         int i;
13323
13324         /* look at all crtc's that are going to be enabled in during modeset */
13325         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13326                 intel_crtc = to_intel_crtc(crtc);
13327
13328                 if (!crtc_state->active || !needs_modeset(crtc_state))
13329                         continue;
13330
13331                 if (first_crtc_state) {
13332                         other_crtc_state = to_intel_crtc_state(crtc_state);
13333                         break;
13334                 } else {
13335                         first_crtc_state = to_intel_crtc_state(crtc_state);
13336                         first_pipe = intel_crtc->pipe;
13337                 }
13338         }
13339
13340         /* No workaround needed? */
13341         if (!first_crtc_state)
13342                 return 0;
13343
13344         /* w/a possibly needed, check how many crtc's are already enabled. */
13345         for_each_intel_crtc(state->dev, intel_crtc) {
13346                 struct intel_crtc_state *pipe_config;
13347
13348                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13349                 if (IS_ERR(pipe_config))
13350                         return PTR_ERR(pipe_config);
13351
13352                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13353
13354                 if (!pipe_config->base.active ||
13355                     needs_modeset(&pipe_config->base))
13356                         continue;
13357
13358                 /* 2 or more enabled crtcs means no need for w/a */
13359                 if (enabled_pipe != INVALID_PIPE)
13360                         return 0;
13361
13362                 enabled_pipe = intel_crtc->pipe;
13363         }
13364
13365         if (enabled_pipe != INVALID_PIPE)
13366                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13367         else if (other_crtc_state)
13368                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13369
13370         return 0;
13371 }
13372
13373 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13374 {
13375         struct drm_crtc *crtc;
13376         struct drm_crtc_state *crtc_state;
13377         int ret = 0;
13378
13379         /* add all active pipes to the state */
13380         for_each_crtc(state->dev, crtc) {
13381                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13382                 if (IS_ERR(crtc_state))
13383                         return PTR_ERR(crtc_state);
13384
13385                 if (!crtc_state->active || needs_modeset(crtc_state))
13386                         continue;
13387
13388                 crtc_state->mode_changed = true;
13389
13390                 ret = drm_atomic_add_affected_connectors(state, crtc);
13391                 if (ret)
13392                         break;
13393
13394                 ret = drm_atomic_add_affected_planes(state, crtc);
13395                 if (ret)
13396                         break;
13397         }
13398
13399         return ret;
13400 }
13401
13402 static int intel_modeset_checks(struct drm_atomic_state *state)
13403 {
13404         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13405         struct drm_i915_private *dev_priv = state->dev->dev_private;
13406         struct drm_crtc *crtc;
13407         struct drm_crtc_state *crtc_state;
13408         int ret = 0, i;
13409
13410         if (!check_digital_port_conflicts(state)) {
13411                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13412                 return -EINVAL;
13413         }
13414
13415         intel_state->modeset = true;
13416         intel_state->active_crtcs = dev_priv->active_crtcs;
13417
13418         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13419                 if (crtc_state->active)
13420                         intel_state->active_crtcs |= 1 << i;
13421                 else
13422                         intel_state->active_crtcs &= ~(1 << i);
13423
13424                 if (crtc_state->active != crtc->state->active)
13425                         intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13426         }
13427
13428         /*
13429          * See if the config requires any additional preparation, e.g.
13430          * to adjust global state with pipes off.  We need to do this
13431          * here so we can get the modeset_pipe updated config for the new
13432          * mode set on this crtc.  For other crtcs we need to use the
13433          * adjusted_mode bits in the crtc directly.
13434          */
13435         if (dev_priv->display.modeset_calc_cdclk) {
13436                 if (!intel_state->cdclk_pll_vco)
13437                         intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
13438                 if (!intel_state->cdclk_pll_vco)
13439                         intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
13440
13441                 ret = dev_priv->display.modeset_calc_cdclk(state);
13442                 if (ret < 0)
13443                         return ret;
13444
13445                 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13446                     intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
13447                         ret = intel_modeset_all_pipes(state);
13448
13449                 if (ret < 0)
13450                         return ret;
13451
13452                 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13453                               intel_state->cdclk, intel_state->dev_cdclk);
13454         } else
13455                 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13456
13457         intel_modeset_clear_plls(state);
13458
13459         if (IS_HASWELL(dev_priv))
13460                 return haswell_mode_set_planes_workaround(state);
13461
13462         return 0;
13463 }
13464
13465 /*
13466  * Handle calculation of various watermark data at the end of the atomic check
13467  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13468  * handlers to ensure that all derived state has been updated.
13469  */
13470 static int calc_watermark_data(struct drm_atomic_state *state)
13471 {
13472         struct drm_device *dev = state->dev;
13473         struct drm_i915_private *dev_priv = to_i915(dev);
13474
13475         /* Is there platform-specific watermark information to calculate? */
13476         if (dev_priv->display.compute_global_watermarks)
13477                 return dev_priv->display.compute_global_watermarks(state);
13478
13479         return 0;
13480 }
13481
13482 /**
13483  * intel_atomic_check - validate state object
13484  * @dev: drm device
13485  * @state: state to validate
13486  */
13487 static int intel_atomic_check(struct drm_device *dev,
13488                               struct drm_atomic_state *state)
13489 {
13490         struct drm_i915_private *dev_priv = to_i915(dev);
13491         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13492         struct drm_crtc *crtc;
13493         struct drm_crtc_state *crtc_state;
13494         int ret, i;
13495         bool any_ms = false;
13496
13497         ret = drm_atomic_helper_check_modeset(dev, state);
13498         if (ret)
13499                 return ret;
13500
13501         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13502                 struct intel_crtc_state *pipe_config =
13503                         to_intel_crtc_state(crtc_state);
13504
13505                 /* Catch I915_MODE_FLAG_INHERITED */
13506                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13507                         crtc_state->mode_changed = true;
13508
13509                 if (!needs_modeset(crtc_state))
13510                         continue;
13511
13512                 if (!crtc_state->enable) {
13513                         any_ms = true;
13514                         continue;
13515                 }
13516
13517                 /* FIXME: For only active_changed we shouldn't need to do any
13518                  * state recomputation at all. */
13519
13520                 ret = drm_atomic_add_affected_connectors(state, crtc);
13521                 if (ret)
13522                         return ret;
13523
13524                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13525                 if (ret) {
13526                         intel_dump_pipe_config(to_intel_crtc(crtc),
13527                                                pipe_config, "[failed]");
13528                         return ret;
13529                 }
13530
13531                 if (i915.fastboot &&
13532                     intel_pipe_config_compare(dev,
13533                                         to_intel_crtc_state(crtc->state),
13534                                         pipe_config, true)) {
13535                         crtc_state->mode_changed = false;
13536                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13537                 }
13538
13539                 if (needs_modeset(crtc_state))
13540                         any_ms = true;
13541
13542                 ret = drm_atomic_add_affected_planes(state, crtc);
13543                 if (ret)
13544                         return ret;
13545
13546                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13547                                        needs_modeset(crtc_state) ?
13548                                        "[modeset]" : "[fastset]");
13549         }
13550
13551         if (any_ms) {
13552                 ret = intel_modeset_checks(state);
13553
13554                 if (ret)
13555                         return ret;
13556         } else
13557                 intel_state->cdclk = dev_priv->cdclk_freq;
13558
13559         ret = drm_atomic_helper_check_planes(dev, state);
13560         if (ret)
13561                 return ret;
13562
13563         intel_fbc_choose_crtc(dev_priv, state);
13564         return calc_watermark_data(state);
13565 }
13566
13567 static int intel_atomic_prepare_commit(struct drm_device *dev,
13568                                        struct drm_atomic_state *state,
13569                                        bool nonblock)
13570 {
13571         struct drm_i915_private *dev_priv = dev->dev_private;
13572         struct drm_plane_state *plane_state;
13573         struct drm_crtc_state *crtc_state;
13574         struct drm_plane *plane;
13575         struct drm_crtc *crtc;
13576         int i, ret;
13577
13578         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13579                 if (state->legacy_cursor_update)
13580                         continue;
13581
13582                 ret = intel_crtc_wait_for_pending_flips(crtc);
13583                 if (ret)
13584                         return ret;
13585
13586                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13587                         flush_workqueue(dev_priv->wq);
13588         }
13589
13590         ret = mutex_lock_interruptible(&dev->struct_mutex);
13591         if (ret)
13592                 return ret;
13593
13594         ret = drm_atomic_helper_prepare_planes(dev, state);
13595         mutex_unlock(&dev->struct_mutex);
13596
13597         if (!ret && !nonblock) {
13598                 for_each_plane_in_state(state, plane, plane_state, i) {
13599                         struct intel_plane_state *intel_plane_state =
13600                                 to_intel_plane_state(plane_state);
13601
13602                         if (!intel_plane_state->wait_req)
13603                                 continue;
13604
13605                         ret = __i915_wait_request(intel_plane_state->wait_req,
13606                                                   true, NULL, NULL);
13607                         if (ret) {
13608                                 /* Any hang should be swallowed by the wait */
13609                                 WARN_ON(ret == -EIO);
13610                                 mutex_lock(&dev->struct_mutex);
13611                                 drm_atomic_helper_cleanup_planes(dev, state);
13612                                 mutex_unlock(&dev->struct_mutex);
13613                                 break;
13614                         }
13615                 }
13616         }
13617
13618         return ret;
13619 }
13620
13621 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
13622 {
13623         struct drm_device *dev = crtc->base.dev;
13624
13625         if (!dev->max_vblank_count)
13626                 return drm_accurate_vblank_count(&crtc->base);
13627
13628         return dev->driver->get_vblank_counter(dev, crtc->pipe);
13629 }
13630
13631 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13632                                           struct drm_i915_private *dev_priv,
13633                                           unsigned crtc_mask)
13634 {
13635         unsigned last_vblank_count[I915_MAX_PIPES];
13636         enum pipe pipe;
13637         int ret;
13638
13639         if (!crtc_mask)
13640                 return;
13641
13642         for_each_pipe(dev_priv, pipe) {
13643                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13644
13645                 if (!((1 << pipe) & crtc_mask))
13646                         continue;
13647
13648                 ret = drm_crtc_vblank_get(crtc);
13649                 if (WARN_ON(ret != 0)) {
13650                         crtc_mask &= ~(1 << pipe);
13651                         continue;
13652                 }
13653
13654                 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13655         }
13656
13657         for_each_pipe(dev_priv, pipe) {
13658                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13659                 long lret;
13660
13661                 if (!((1 << pipe) & crtc_mask))
13662                         continue;
13663
13664                 lret = wait_event_timeout(dev->vblank[pipe].queue,
13665                                 last_vblank_count[pipe] !=
13666                                         drm_crtc_vblank_count(crtc),
13667                                 msecs_to_jiffies(50));
13668
13669                 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
13670
13671                 drm_crtc_vblank_put(crtc);
13672         }
13673 }
13674
13675 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13676 {
13677         /* fb updated, need to unpin old fb */
13678         if (crtc_state->fb_changed)
13679                 return true;
13680
13681         /* wm changes, need vblank before final wm's */
13682         if (crtc_state->update_wm_post)
13683                 return true;
13684
13685         /*
13686          * cxsr is re-enabled after vblank.
13687          * This is already handled by crtc_state->update_wm_post,
13688          * but added for clarity.
13689          */
13690         if (crtc_state->disable_cxsr)
13691                 return true;
13692
13693         return false;
13694 }
13695
13696 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
13697 {
13698         struct drm_device *dev = state->dev;
13699         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13700         struct drm_i915_private *dev_priv = dev->dev_private;
13701         struct drm_crtc_state *old_crtc_state;
13702         struct drm_crtc *crtc;
13703         struct intel_crtc_state *intel_cstate;
13704         struct drm_plane *plane;
13705         struct drm_plane_state *plane_state;
13706         bool hw_check = intel_state->modeset;
13707         unsigned long put_domains[I915_MAX_PIPES] = {};
13708         unsigned crtc_vblank_mask = 0;
13709         int i, ret;
13710
13711         for_each_plane_in_state(state, plane, plane_state, i) {
13712                 struct intel_plane_state *intel_plane_state =
13713                         to_intel_plane_state(plane_state);
13714
13715                 if (!intel_plane_state->wait_req)
13716                         continue;
13717
13718                 ret = __i915_wait_request(intel_plane_state->wait_req,
13719                                           true, NULL, NULL);
13720                 /* EIO should be eaten, and we can't get interrupted in the
13721                  * worker, and blocking commits have waited already. */
13722                 WARN_ON(ret);
13723         }
13724
13725         drm_atomic_helper_wait_for_dependencies(state);
13726
13727         if (intel_state->modeset) {
13728                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13729                        sizeof(intel_state->min_pixclk));
13730                 dev_priv->active_crtcs = intel_state->active_crtcs;
13731                 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13732
13733                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13734         }
13735
13736         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13737                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13738
13739                 if (needs_modeset(crtc->state) ||
13740                     to_intel_crtc_state(crtc->state)->update_pipe) {
13741                         hw_check = true;
13742
13743                         put_domains[to_intel_crtc(crtc)->pipe] =
13744                                 modeset_get_crtc_power_domains(crtc,
13745                                         to_intel_crtc_state(crtc->state));
13746                 }
13747
13748                 if (!needs_modeset(crtc->state))
13749                         continue;
13750
13751                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13752
13753                 if (old_crtc_state->active) {
13754                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13755                         dev_priv->display.crtc_disable(crtc);
13756                         intel_crtc->active = false;
13757                         intel_fbc_disable(intel_crtc);
13758                         intel_disable_shared_dpll(intel_crtc);
13759
13760                         /*
13761                          * Underruns don't always raise
13762                          * interrupts, so check manually.
13763                          */
13764                         intel_check_cpu_fifo_underruns(dev_priv);
13765                         intel_check_pch_fifo_underruns(dev_priv);
13766
13767                         if (!crtc->state->active)
13768                                 intel_update_watermarks(crtc);
13769                 }
13770         }
13771
13772         /* Only after disabling all output pipelines that will be changed can we
13773          * update the the output configuration. */
13774         intel_modeset_update_crtc_state(state);
13775
13776         if (intel_state->modeset) {
13777                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13778
13779                 if (dev_priv->display.modeset_commit_cdclk &&
13780                     (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13781                      intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
13782                         dev_priv->display.modeset_commit_cdclk(state);
13783
13784                 intel_modeset_verify_disabled(dev);
13785         }
13786
13787         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13788         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13789                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13790                 bool modeset = needs_modeset(crtc->state);
13791                 struct intel_crtc_state *pipe_config =
13792                         to_intel_crtc_state(crtc->state);
13793
13794                 if (modeset && crtc->state->active) {
13795                         update_scanline_offset(to_intel_crtc(crtc));
13796                         dev_priv->display.crtc_enable(crtc);
13797                 }
13798
13799                 /* Complete events for now disable pipes here. */
13800                 if (modeset && !crtc->state->active && crtc->state->event) {
13801                         spin_lock_irq(&dev->event_lock);
13802                         drm_crtc_send_vblank_event(crtc, crtc->state->event);
13803                         spin_unlock_irq(&dev->event_lock);
13804
13805                         crtc->state->event = NULL;
13806                 }
13807
13808                 if (!modeset)
13809                         intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13810
13811                 if (crtc->state->active &&
13812                     drm_atomic_get_existing_plane_state(state, crtc->primary))
13813                         intel_fbc_enable(intel_crtc, pipe_config, to_intel_plane_state(crtc->primary->state));
13814
13815                 if (crtc->state->active)
13816                         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
13817
13818                 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13819                         crtc_vblank_mask |= 1 << i;
13820         }
13821
13822         /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
13823          * already, but still need the state for the delayed optimization. To
13824          * fix this:
13825          * - wrap the optimization/post_plane_update stuff into a per-crtc work.
13826          * - schedule that vblank worker _before_ calling hw_done
13827          * - at the start of commit_tail, cancel it _synchrously
13828          * - switch over to the vblank wait helper in the core after that since
13829          *   we don't need out special handling any more.
13830          */
13831         if (!state->legacy_cursor_update)
13832                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13833
13834         /*
13835          * Now that the vblank has passed, we can go ahead and program the
13836          * optimal watermarks on platforms that need two-step watermark
13837          * programming.
13838          *
13839          * TODO: Move this (and other cleanup) to an async worker eventually.
13840          */
13841         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13842                 intel_cstate = to_intel_crtc_state(crtc->state);
13843
13844                 if (dev_priv->display.optimize_watermarks)
13845                         dev_priv->display.optimize_watermarks(intel_cstate);
13846         }
13847
13848         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13849                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13850
13851                 if (put_domains[i])
13852                         modeset_put_power_domains(dev_priv, put_domains[i]);
13853
13854                 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
13855         }
13856
13857         drm_atomic_helper_commit_hw_done(state);
13858
13859         if (intel_state->modeset)
13860                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13861
13862         mutex_lock(&dev->struct_mutex);
13863         drm_atomic_helper_cleanup_planes(dev, state);
13864         mutex_unlock(&dev->struct_mutex);
13865
13866         drm_atomic_helper_commit_cleanup_done(state);
13867
13868         drm_atomic_state_free(state);
13869
13870         /* As one of the primary mmio accessors, KMS has a high likelihood
13871          * of triggering bugs in unclaimed access. After we finish
13872          * modesetting, see if an error has been flagged, and if so
13873          * enable debugging for the next modeset - and hope we catch
13874          * the culprit.
13875          *
13876          * XXX note that we assume display power is on at this point.
13877          * This might hold true now but we need to add pm helper to check
13878          * unclaimed only when the hardware is on, as atomic commits
13879          * can happen also when the device is completely off.
13880          */
13881         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13882 }
13883
13884 static void intel_atomic_commit_work(struct work_struct *work)
13885 {
13886         struct drm_atomic_state *state = container_of(work,
13887                                                       struct drm_atomic_state,
13888                                                       commit_work);
13889         intel_atomic_commit_tail(state);
13890 }
13891
13892 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
13893 {
13894         struct drm_plane_state *old_plane_state;
13895         struct drm_plane *plane;
13896         struct drm_i915_gem_object *obj, *old_obj;
13897         struct intel_plane *intel_plane;
13898         int i;
13899
13900         mutex_lock(&state->dev->struct_mutex);
13901         for_each_plane_in_state(state, plane, old_plane_state, i) {
13902                 obj = intel_fb_obj(plane->state->fb);
13903                 old_obj = intel_fb_obj(old_plane_state->fb);
13904                 intel_plane = to_intel_plane(plane);
13905
13906                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13907         }
13908         mutex_unlock(&state->dev->struct_mutex);
13909 }
13910
13911 /**
13912  * intel_atomic_commit - commit validated state object
13913  * @dev: DRM device
13914  * @state: the top-level driver state object
13915  * @nonblock: nonblocking commit
13916  *
13917  * This function commits a top-level state object that has been validated
13918  * with drm_atomic_helper_check().
13919  *
13920  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13921  * nonblocking commits are only safe for pure plane updates. Everything else
13922  * should work though.
13923  *
13924  * RETURNS
13925  * Zero for success or -errno.
13926  */
13927 static int intel_atomic_commit(struct drm_device *dev,
13928                                struct drm_atomic_state *state,
13929                                bool nonblock)
13930 {
13931         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13932         struct drm_i915_private *dev_priv = dev->dev_private;
13933         int ret = 0;
13934
13935         if (intel_state->modeset && nonblock) {
13936                 DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n");
13937                 return -EINVAL;
13938         }
13939
13940         ret = drm_atomic_helper_setup_commit(state, nonblock);
13941         if (ret)
13942                 return ret;
13943
13944         INIT_WORK(&state->commit_work, intel_atomic_commit_work);
13945
13946         ret = intel_atomic_prepare_commit(dev, state, nonblock);
13947         if (ret) {
13948                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13949                 return ret;
13950         }
13951
13952         drm_atomic_helper_swap_state(state, true);
13953         dev_priv->wm.distrust_bios_wm = false;
13954         dev_priv->wm.skl_results = intel_state->wm_results;
13955         intel_shared_dpll_commit(state);
13956         intel_atomic_track_fbs(state);
13957
13958         if (nonblock)
13959                 queue_work(system_unbound_wq, &state->commit_work);
13960         else
13961                 intel_atomic_commit_tail(state);
13962
13963         return 0;
13964 }
13965
13966 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13967 {
13968         struct drm_device *dev = crtc->dev;
13969         struct drm_atomic_state *state;
13970         struct drm_crtc_state *crtc_state;
13971         int ret;
13972
13973         state = drm_atomic_state_alloc(dev);
13974         if (!state) {
13975                 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
13976                               crtc->base.id, crtc->name);
13977                 return;
13978         }
13979
13980         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13981
13982 retry:
13983         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13984         ret = PTR_ERR_OR_ZERO(crtc_state);
13985         if (!ret) {
13986                 if (!crtc_state->active)
13987                         goto out;
13988
13989                 crtc_state->mode_changed = true;
13990                 ret = drm_atomic_commit(state);
13991         }
13992
13993         if (ret == -EDEADLK) {
13994                 drm_atomic_state_clear(state);
13995                 drm_modeset_backoff(state->acquire_ctx);
13996                 goto retry;
13997         }
13998
13999         if (ret)
14000 out:
14001                 drm_atomic_state_free(state);
14002 }
14003
14004 #undef for_each_intel_crtc_masked
14005
14006 static const struct drm_crtc_funcs intel_crtc_funcs = {
14007         .gamma_set = drm_atomic_helper_legacy_gamma_set,
14008         .set_config = drm_atomic_helper_set_config,
14009         .set_property = drm_atomic_helper_crtc_set_property,
14010         .destroy = intel_crtc_destroy,
14011         .page_flip = drm_atomic_helper_page_flip,
14012         .atomic_duplicate_state = intel_crtc_duplicate_state,
14013         .atomic_destroy_state = intel_crtc_destroy_state,
14014 };
14015
14016 /**
14017  * intel_prepare_plane_fb - Prepare fb for usage on plane
14018  * @plane: drm plane to prepare for
14019  * @fb: framebuffer to prepare for presentation
14020  *
14021  * Prepares a framebuffer for usage on a display plane.  Generally this
14022  * involves pinning the underlying object and updating the frontbuffer tracking
14023  * bits.  Some older platforms need special physical address handling for
14024  * cursor planes.
14025  *
14026  * Must be called with struct_mutex held.
14027  *
14028  * Returns 0 on success, negative error code on failure.
14029  */
14030 int
14031 intel_prepare_plane_fb(struct drm_plane *plane,
14032                        const struct drm_plane_state *new_state)
14033 {
14034         struct drm_device *dev = plane->dev;
14035         struct drm_framebuffer *fb = new_state->fb;
14036         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14037         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14038         struct reservation_object *resv;
14039         int ret = 0;
14040
14041         if (!obj && !old_obj)
14042                 return 0;
14043
14044         if (old_obj) {
14045                 struct drm_crtc_state *crtc_state =
14046                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
14047
14048                 /* Big Hammer, we also need to ensure that any pending
14049                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14050                  * current scanout is retired before unpinning the old
14051                  * framebuffer. Note that we rely on userspace rendering
14052                  * into the buffer attached to the pipe they are waiting
14053                  * on. If not, userspace generates a GPU hang with IPEHR
14054                  * point to the MI_WAIT_FOR_EVENT.
14055                  *
14056                  * This should only fail upon a hung GPU, in which case we
14057                  * can safely continue.
14058                  */
14059                 if (needs_modeset(crtc_state))
14060                         ret = i915_gem_object_wait_rendering(old_obj, true);
14061                 if (ret) {
14062                         /* GPU hangs should have been swallowed by the wait */
14063                         WARN_ON(ret == -EIO);
14064                         return ret;
14065                 }
14066         }
14067
14068         if (!obj)
14069                 return 0;
14070
14071         /* For framebuffer backed by dmabuf, wait for fence */
14072         resv = i915_gem_object_get_dmabuf_resv(obj);
14073         if (resv) {
14074                 long lret;
14075
14076                 lret = reservation_object_wait_timeout_rcu(resv, false, true,
14077                                                            MAX_SCHEDULE_TIMEOUT);
14078                 if (lret == -ERESTARTSYS)
14079                         return lret;
14080
14081                 WARN(lret < 0, "waiting returns %li\n", lret);
14082         }
14083
14084         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14085             INTEL_INFO(dev)->cursor_needs_physical) {
14086                 int align = IS_I830(dev) ? 16 * 1024 : 256;
14087                 ret = i915_gem_object_attach_phys(obj, align);
14088                 if (ret)
14089                         DRM_DEBUG_KMS("failed to attach phys object\n");
14090         } else {
14091                 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14092         }
14093
14094         if (ret == 0) {
14095                 struct intel_plane_state *plane_state =
14096                         to_intel_plane_state(new_state);
14097
14098                 i915_gem_request_assign(&plane_state->wait_req,
14099                                         obj->last_write_req);
14100         }
14101
14102         return ret;
14103 }
14104
14105 /**
14106  * intel_cleanup_plane_fb - Cleans up an fb after plane use
14107  * @plane: drm plane to clean up for
14108  * @fb: old framebuffer that was on plane
14109  *
14110  * Cleans up a framebuffer that has just been removed from a plane.
14111  *
14112  * Must be called with struct_mutex held.
14113  */
14114 void
14115 intel_cleanup_plane_fb(struct drm_plane *plane,
14116                        const struct drm_plane_state *old_state)
14117 {
14118         struct drm_device *dev = plane->dev;
14119         struct intel_plane_state *old_intel_state;
14120         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14121         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
14122
14123         old_intel_state = to_intel_plane_state(old_state);
14124
14125         if (!obj && !old_obj)
14126                 return;
14127
14128         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14129             !INTEL_INFO(dev)->cursor_needs_physical))
14130                 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
14131
14132         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
14133 }
14134
14135 int
14136 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14137 {
14138         int max_scale;
14139         struct drm_device *dev;
14140         struct drm_i915_private *dev_priv;
14141         int crtc_clock, cdclk;
14142
14143         if (!intel_crtc || !crtc_state->base.enable)
14144                 return DRM_PLANE_HELPER_NO_SCALING;
14145
14146         dev = intel_crtc->base.dev;
14147         dev_priv = dev->dev_private;
14148         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14149         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14150
14151         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14152                 return DRM_PLANE_HELPER_NO_SCALING;
14153
14154         /*
14155          * skl max scale is lower of:
14156          *    close to 3 but not 3, -1 is for that purpose
14157          *            or
14158          *    cdclk/crtc_clock
14159          */
14160         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14161
14162         return max_scale;
14163 }
14164
14165 static int
14166 intel_check_primary_plane(struct drm_plane *plane,
14167                           struct intel_crtc_state *crtc_state,
14168                           struct intel_plane_state *state)
14169 {
14170         struct drm_crtc *crtc = state->base.crtc;
14171         struct drm_framebuffer *fb = state->base.fb;
14172         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14173         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14174         bool can_position = false;
14175
14176         if (INTEL_INFO(plane->dev)->gen >= 9) {
14177                 /* use scaler when colorkey is not required */
14178                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14179                         min_scale = 1;
14180                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14181                 }
14182                 can_position = true;
14183         }
14184
14185         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14186                                              &state->dst, &state->clip,
14187                                              min_scale, max_scale,
14188                                              can_position, true,
14189                                              &state->visible);
14190 }
14191
14192 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14193                                     struct drm_crtc_state *old_crtc_state)
14194 {
14195         struct drm_device *dev = crtc->dev;
14196         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14197         struct intel_crtc_state *old_intel_state =
14198                 to_intel_crtc_state(old_crtc_state);
14199         bool modeset = needs_modeset(crtc->state);
14200
14201         /* Perform vblank evasion around commit operation */
14202         intel_pipe_update_start(intel_crtc);
14203
14204         if (modeset)
14205                 return;
14206
14207         if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14208                 intel_color_set_csc(crtc->state);
14209                 intel_color_load_luts(crtc->state);
14210         }
14211
14212         if (to_intel_crtc_state(crtc->state)->update_pipe)
14213                 intel_update_pipe_config(intel_crtc, old_intel_state);
14214         else if (INTEL_INFO(dev)->gen >= 9)
14215                 skl_detach_scalers(intel_crtc);
14216 }
14217
14218 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14219                                      struct drm_crtc_state *old_crtc_state)
14220 {
14221         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14222
14223         intel_pipe_update_end(intel_crtc, NULL);
14224 }
14225
14226 /**
14227  * intel_plane_destroy - destroy a plane
14228  * @plane: plane to destroy
14229  *
14230  * Common destruction function for all types of planes (primary, cursor,
14231  * sprite).
14232  */
14233 void intel_plane_destroy(struct drm_plane *plane)
14234 {
14235         if (!plane)
14236                 return;
14237
14238         drm_plane_cleanup(plane);
14239         kfree(to_intel_plane(plane));
14240 }
14241
14242 const struct drm_plane_funcs intel_plane_funcs = {
14243         .update_plane = drm_atomic_helper_update_plane,
14244         .disable_plane = drm_atomic_helper_disable_plane,
14245         .destroy = intel_plane_destroy,
14246         .set_property = drm_atomic_helper_plane_set_property,
14247         .atomic_get_property = intel_plane_atomic_get_property,
14248         .atomic_set_property = intel_plane_atomic_set_property,
14249         .atomic_duplicate_state = intel_plane_duplicate_state,
14250         .atomic_destroy_state = intel_plane_destroy_state,
14251
14252 };
14253
14254 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14255                                                     int pipe)
14256 {
14257         struct intel_plane *primary = NULL;
14258         struct intel_plane_state *state = NULL;
14259         const uint32_t *intel_primary_formats;
14260         unsigned int num_formats;
14261         int ret;
14262
14263         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14264         if (!primary)
14265                 goto fail;
14266
14267         state = intel_create_plane_state(&primary->base);
14268         if (!state)
14269                 goto fail;
14270         primary->base.state = &state->base;
14271
14272         primary->can_scale = false;
14273         primary->max_downscale = 1;
14274         if (INTEL_INFO(dev)->gen >= 9) {
14275                 primary->can_scale = true;
14276                 state->scaler_id = -1;
14277         }
14278         primary->pipe = pipe;
14279         primary->plane = pipe;
14280         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14281         primary->check_plane = intel_check_primary_plane;
14282         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14283                 primary->plane = !pipe;
14284
14285         if (INTEL_INFO(dev)->gen >= 9) {
14286                 intel_primary_formats = skl_primary_formats;
14287                 num_formats = ARRAY_SIZE(skl_primary_formats);
14288
14289                 primary->update_plane = skylake_update_primary_plane;
14290                 primary->disable_plane = skylake_disable_primary_plane;
14291         } else if (HAS_PCH_SPLIT(dev)) {
14292                 intel_primary_formats = i965_primary_formats;
14293                 num_formats = ARRAY_SIZE(i965_primary_formats);
14294
14295                 primary->update_plane = ironlake_update_primary_plane;
14296                 primary->disable_plane = i9xx_disable_primary_plane;
14297         } else if (INTEL_INFO(dev)->gen >= 4) {
14298                 intel_primary_formats = i965_primary_formats;
14299                 num_formats = ARRAY_SIZE(i965_primary_formats);
14300
14301                 primary->update_plane = i9xx_update_primary_plane;
14302                 primary->disable_plane = i9xx_disable_primary_plane;
14303         } else {
14304                 intel_primary_formats = i8xx_primary_formats;
14305                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14306
14307                 primary->update_plane = i9xx_update_primary_plane;
14308                 primary->disable_plane = i9xx_disable_primary_plane;
14309         }
14310
14311         if (INTEL_INFO(dev)->gen >= 9)
14312                 ret = drm_universal_plane_init(dev, &primary->base, 0,
14313                                                &intel_plane_funcs,
14314                                                intel_primary_formats, num_formats,
14315                                                DRM_PLANE_TYPE_PRIMARY,
14316                                                "plane 1%c", pipe_name(pipe));
14317         else if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
14318                 ret = drm_universal_plane_init(dev, &primary->base, 0,
14319                                                &intel_plane_funcs,
14320                                                intel_primary_formats, num_formats,
14321                                                DRM_PLANE_TYPE_PRIMARY,
14322                                                "primary %c", pipe_name(pipe));
14323         else
14324                 ret = drm_universal_plane_init(dev, &primary->base, 0,
14325                                                &intel_plane_funcs,
14326                                                intel_primary_formats, num_formats,
14327                                                DRM_PLANE_TYPE_PRIMARY,
14328                                                "plane %c", plane_name(primary->plane));
14329         if (ret)
14330                 goto fail;
14331
14332         if (INTEL_INFO(dev)->gen >= 4)
14333                 intel_create_rotation_property(dev, primary);
14334
14335         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14336
14337         return &primary->base;
14338
14339 fail:
14340         kfree(state);
14341         kfree(primary);
14342
14343         return NULL;
14344 }
14345
14346 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14347 {
14348         if (!dev->mode_config.rotation_property) {
14349                 unsigned long flags = BIT(DRM_ROTATE_0) |
14350                         BIT(DRM_ROTATE_180);
14351
14352                 if (INTEL_INFO(dev)->gen >= 9)
14353                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14354
14355                 dev->mode_config.rotation_property =
14356                         drm_mode_create_rotation_property(dev, flags);
14357         }
14358         if (dev->mode_config.rotation_property)
14359                 drm_object_attach_property(&plane->base.base,
14360                                 dev->mode_config.rotation_property,
14361                                 plane->base.state->rotation);
14362 }
14363
14364 static int
14365 intel_check_cursor_plane(struct drm_plane *plane,
14366                          struct intel_crtc_state *crtc_state,
14367                          struct intel_plane_state *state)
14368 {
14369         struct drm_crtc *crtc = crtc_state->base.crtc;
14370         struct drm_framebuffer *fb = state->base.fb;
14371         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14372         enum pipe pipe = to_intel_plane(plane)->pipe;
14373         unsigned stride;
14374         int ret;
14375
14376         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14377                                             &state->dst, &state->clip,
14378                                             DRM_PLANE_HELPER_NO_SCALING,
14379                                             DRM_PLANE_HELPER_NO_SCALING,
14380                                             true, true, &state->visible);
14381         if (ret)
14382                 return ret;
14383
14384         /* if we want to turn off the cursor ignore width and height */
14385         if (!obj)
14386                 return 0;
14387
14388         /* Check for which cursor types we support */
14389         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14390                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14391                           state->base.crtc_w, state->base.crtc_h);
14392                 return -EINVAL;
14393         }
14394
14395         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14396         if (obj->base.size < stride * state->base.crtc_h) {
14397                 DRM_DEBUG_KMS("buffer is too small\n");
14398                 return -ENOMEM;
14399         }
14400
14401         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14402                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14403                 return -EINVAL;
14404         }
14405
14406         /*
14407          * There's something wrong with the cursor on CHV pipe C.
14408          * If it straddles the left edge of the screen then
14409          * moving it away from the edge or disabling it often
14410          * results in a pipe underrun, and often that can lead to
14411          * dead pipe (constant underrun reported, and it scans
14412          * out just a solid color). To recover from that, the
14413          * display power well must be turned off and on again.
14414          * Refuse the put the cursor into that compromised position.
14415          */
14416         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14417             state->visible && state->base.crtc_x < 0) {
14418                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14419                 return -EINVAL;
14420         }
14421
14422         return 0;
14423 }
14424
14425 static void
14426 intel_disable_cursor_plane(struct drm_plane *plane,
14427                            struct drm_crtc *crtc)
14428 {
14429         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14430
14431         intel_crtc->cursor_addr = 0;
14432         intel_crtc_update_cursor(crtc, NULL);
14433 }
14434
14435 static void
14436 intel_update_cursor_plane(struct drm_plane *plane,
14437                           const struct intel_crtc_state *crtc_state,
14438                           const struct intel_plane_state *state)
14439 {
14440         struct drm_crtc *crtc = crtc_state->base.crtc;
14441         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14442         struct drm_device *dev = plane->dev;
14443         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14444         uint32_t addr;
14445
14446         if (!obj)
14447                 addr = 0;
14448         else if (!INTEL_INFO(dev)->cursor_needs_physical)
14449                 addr = i915_gem_obj_ggtt_offset(obj);
14450         else
14451                 addr = obj->phys_handle->busaddr;
14452
14453         intel_crtc->cursor_addr = addr;
14454         intel_crtc_update_cursor(crtc, state);
14455 }
14456
14457 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14458                                                    int pipe)
14459 {
14460         struct intel_plane *cursor = NULL;
14461         struct intel_plane_state *state = NULL;
14462         int ret;
14463
14464         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14465         if (!cursor)
14466                 goto fail;
14467
14468         state = intel_create_plane_state(&cursor->base);
14469         if (!state)
14470                 goto fail;
14471         cursor->base.state = &state->base;
14472
14473         cursor->can_scale = false;
14474         cursor->max_downscale = 1;
14475         cursor->pipe = pipe;
14476         cursor->plane = pipe;
14477         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14478         cursor->check_plane = intel_check_cursor_plane;
14479         cursor->update_plane = intel_update_cursor_plane;
14480         cursor->disable_plane = intel_disable_cursor_plane;
14481
14482         ret = drm_universal_plane_init(dev, &cursor->base, 0,
14483                                        &intel_plane_funcs,
14484                                        intel_cursor_formats,
14485                                        ARRAY_SIZE(intel_cursor_formats),
14486                                        DRM_PLANE_TYPE_CURSOR,
14487                                        "cursor %c", pipe_name(pipe));
14488         if (ret)
14489                 goto fail;
14490
14491         if (INTEL_INFO(dev)->gen >= 4) {
14492                 if (!dev->mode_config.rotation_property)
14493                         dev->mode_config.rotation_property =
14494                                 drm_mode_create_rotation_property(dev,
14495                                                         BIT(DRM_ROTATE_0) |
14496                                                         BIT(DRM_ROTATE_180));
14497                 if (dev->mode_config.rotation_property)
14498                         drm_object_attach_property(&cursor->base.base,
14499                                 dev->mode_config.rotation_property,
14500                                 state->base.rotation);
14501         }
14502
14503         if (INTEL_INFO(dev)->gen >=9)
14504                 state->scaler_id = -1;
14505
14506         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14507
14508         return &cursor->base;
14509
14510 fail:
14511         kfree(state);
14512         kfree(cursor);
14513
14514         return NULL;
14515 }
14516
14517 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14518         struct intel_crtc_state *crtc_state)
14519 {
14520         int i;
14521         struct intel_scaler *intel_scaler;
14522         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14523
14524         for (i = 0; i < intel_crtc->num_scalers; i++) {
14525                 intel_scaler = &scaler_state->scalers[i];
14526                 intel_scaler->in_use = 0;
14527                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14528         }
14529
14530         scaler_state->scaler_id = -1;
14531 }
14532
14533 static void intel_crtc_init(struct drm_device *dev, int pipe)
14534 {
14535         struct drm_i915_private *dev_priv = dev->dev_private;
14536         struct intel_crtc *intel_crtc;
14537         struct intel_crtc_state *crtc_state = NULL;
14538         struct drm_plane *primary = NULL;
14539         struct drm_plane *cursor = NULL;
14540         int ret;
14541
14542         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14543         if (intel_crtc == NULL)
14544                 return;
14545
14546         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14547         if (!crtc_state)
14548                 goto fail;
14549         intel_crtc->config = crtc_state;
14550         intel_crtc->base.state = &crtc_state->base;
14551         crtc_state->base.crtc = &intel_crtc->base;
14552
14553         /* initialize shared scalers */
14554         if (INTEL_INFO(dev)->gen >= 9) {
14555                 if (pipe == PIPE_C)
14556                         intel_crtc->num_scalers = 1;
14557                 else
14558                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14559
14560                 skl_init_scalers(dev, intel_crtc, crtc_state);
14561         }
14562
14563         primary = intel_primary_plane_create(dev, pipe);
14564         if (!primary)
14565                 goto fail;
14566
14567         cursor = intel_cursor_plane_create(dev, pipe);
14568         if (!cursor)
14569                 goto fail;
14570
14571         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14572                                         cursor, &intel_crtc_funcs,
14573                                         "pipe %c", pipe_name(pipe));
14574         if (ret)
14575                 goto fail;
14576
14577         /*
14578          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14579          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14580          */
14581         intel_crtc->pipe = pipe;
14582         intel_crtc->plane = pipe;
14583         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14584                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14585                 intel_crtc->plane = !pipe;
14586         }
14587
14588         intel_crtc->cursor_base = ~0;
14589         intel_crtc->cursor_cntl = ~0;
14590         intel_crtc->cursor_size = ~0;
14591
14592         intel_crtc->wm.cxsr_allowed = true;
14593
14594         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14595                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14596         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14597         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14598
14599         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14600
14601         intel_color_init(&intel_crtc->base);
14602
14603         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14604         return;
14605
14606 fail:
14607         intel_plane_destroy(primary);
14608         intel_plane_destroy(cursor);
14609         kfree(crtc_state);
14610         kfree(intel_crtc);
14611 }
14612
14613 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14614 {
14615         struct drm_encoder *encoder = connector->base.encoder;
14616         struct drm_device *dev = connector->base.dev;
14617
14618         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14619
14620         if (!encoder || WARN_ON(!encoder->crtc))
14621                 return INVALID_PIPE;
14622
14623         return to_intel_crtc(encoder->crtc)->pipe;
14624 }
14625
14626 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14627                                 struct drm_file *file)
14628 {
14629         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14630         struct drm_crtc *drmmode_crtc;
14631         struct intel_crtc *crtc;
14632
14633         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14634
14635         if (!drmmode_crtc) {
14636                 DRM_ERROR("no such CRTC id\n");
14637                 return -ENOENT;
14638         }
14639
14640         crtc = to_intel_crtc(drmmode_crtc);
14641         pipe_from_crtc_id->pipe = crtc->pipe;
14642
14643         return 0;
14644 }
14645
14646 static int intel_encoder_clones(struct intel_encoder *encoder)
14647 {
14648         struct drm_device *dev = encoder->base.dev;
14649         struct intel_encoder *source_encoder;
14650         int index_mask = 0;
14651         int entry = 0;
14652
14653         for_each_intel_encoder(dev, source_encoder) {
14654                 if (encoders_cloneable(encoder, source_encoder))
14655                         index_mask |= (1 << entry);
14656
14657                 entry++;
14658         }
14659
14660         return index_mask;
14661 }
14662
14663 static bool has_edp_a(struct drm_device *dev)
14664 {
14665         struct drm_i915_private *dev_priv = dev->dev_private;
14666
14667         if (!IS_MOBILE(dev))
14668                 return false;
14669
14670         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14671                 return false;
14672
14673         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14674                 return false;
14675
14676         return true;
14677 }
14678
14679 static bool intel_crt_present(struct drm_device *dev)
14680 {
14681         struct drm_i915_private *dev_priv = dev->dev_private;
14682
14683         if (INTEL_INFO(dev)->gen >= 9)
14684                 return false;
14685
14686         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14687                 return false;
14688
14689         if (IS_CHERRYVIEW(dev))
14690                 return false;
14691
14692         if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14693                 return false;
14694
14695         /* DDI E can't be used if DDI A requires 4 lanes */
14696         if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14697                 return false;
14698
14699         if (!dev_priv->vbt.int_crt_support)
14700                 return false;
14701
14702         return true;
14703 }
14704
14705 static void intel_setup_outputs(struct drm_device *dev)
14706 {
14707         struct drm_i915_private *dev_priv = dev->dev_private;
14708         struct intel_encoder *encoder;
14709         bool dpd_is_edp = false;
14710
14711         /*
14712          * intel_edp_init_connector() depends on this completing first, to
14713          * prevent the registeration of both eDP and LVDS and the incorrect
14714          * sharing of the PPS.
14715          */
14716         intel_lvds_init(dev);
14717
14718         if (intel_crt_present(dev))
14719                 intel_crt_init(dev);
14720
14721         if (IS_BROXTON(dev)) {
14722                 /*
14723                  * FIXME: Broxton doesn't support port detection via the
14724                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14725                  * detect the ports.
14726                  */
14727                 intel_ddi_init(dev, PORT_A);
14728                 intel_ddi_init(dev, PORT_B);
14729                 intel_ddi_init(dev, PORT_C);
14730
14731                 intel_dsi_init(dev);
14732         } else if (HAS_DDI(dev)) {
14733                 int found;
14734
14735                 /*
14736                  * Haswell uses DDI functions to detect digital outputs.
14737                  * On SKL pre-D0 the strap isn't connected, so we assume
14738                  * it's there.
14739                  */
14740                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14741                 /* WaIgnoreDDIAStrap: skl */
14742                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14743                         intel_ddi_init(dev, PORT_A);
14744
14745                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14746                  * register */
14747                 found = I915_READ(SFUSE_STRAP);
14748
14749                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14750                         intel_ddi_init(dev, PORT_B);
14751                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14752                         intel_ddi_init(dev, PORT_C);
14753                 if (found & SFUSE_STRAP_DDID_DETECTED)
14754                         intel_ddi_init(dev, PORT_D);
14755                 /*
14756                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14757                  */
14758                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14759                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14760                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14761                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14762                         intel_ddi_init(dev, PORT_E);
14763
14764         } else if (HAS_PCH_SPLIT(dev)) {
14765                 int found;
14766                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14767
14768                 if (has_edp_a(dev))
14769                         intel_dp_init(dev, DP_A, PORT_A);
14770
14771                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14772                         /* PCH SDVOB multiplex with HDMIB */
14773                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14774                         if (!found)
14775                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14776                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14777                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14778                 }
14779
14780                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14781                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14782
14783                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14784                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14785
14786                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14787                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14788
14789                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14790                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14791         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14792                 bool has_edp, has_port;
14793
14794                 /*
14795                  * The DP_DETECTED bit is the latched state of the DDC
14796                  * SDA pin at boot. However since eDP doesn't require DDC
14797                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14798                  * eDP ports may have been muxed to an alternate function.
14799                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14800                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14801                  * detect eDP ports.
14802                  *
14803                  * Sadly the straps seem to be missing sometimes even for HDMI
14804                  * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14805                  * and VBT for the presence of the port. Additionally we can't
14806                  * trust the port type the VBT declares as we've seen at least
14807                  * HDMI ports that the VBT claim are DP or eDP.
14808                  */
14809                 has_edp = intel_dp_is_edp(dev, PORT_B);
14810                 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14811                 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14812                         has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
14813                 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14814                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14815
14816                 has_edp = intel_dp_is_edp(dev, PORT_C);
14817                 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14818                 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14819                         has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
14820                 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14821                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14822
14823                 if (IS_CHERRYVIEW(dev)) {
14824                         /*
14825                          * eDP not supported on port D,
14826                          * so no need to worry about it
14827                          */
14828                         has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14829                         if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14830                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14831                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14832                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14833                 }
14834
14835                 intel_dsi_init(dev);
14836         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14837                 bool found = false;
14838
14839                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14840                         DRM_DEBUG_KMS("probing SDVOB\n");
14841                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14842                         if (!found && IS_G4X(dev)) {
14843                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14844                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14845                         }
14846
14847                         if (!found && IS_G4X(dev))
14848                                 intel_dp_init(dev, DP_B, PORT_B);
14849                 }
14850
14851                 /* Before G4X SDVOC doesn't have its own detect register */
14852
14853                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14854                         DRM_DEBUG_KMS("probing SDVOC\n");
14855                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14856                 }
14857
14858                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14859
14860                         if (IS_G4X(dev)) {
14861                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14862                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14863                         }
14864                         if (IS_G4X(dev))
14865                                 intel_dp_init(dev, DP_C, PORT_C);
14866                 }
14867
14868                 if (IS_G4X(dev) &&
14869                     (I915_READ(DP_D) & DP_DETECTED))
14870                         intel_dp_init(dev, DP_D, PORT_D);
14871         } else if (IS_GEN2(dev))
14872                 intel_dvo_init(dev);
14873
14874         if (SUPPORTS_TV(dev))
14875                 intel_tv_init(dev);
14876
14877         intel_psr_init(dev);
14878
14879         for_each_intel_encoder(dev, encoder) {
14880                 encoder->base.possible_crtcs = encoder->crtc_mask;
14881                 encoder->base.possible_clones =
14882                         intel_encoder_clones(encoder);
14883         }
14884
14885         intel_init_pch_refclk(dev);
14886
14887         drm_helper_move_panel_connectors_to_head(dev);
14888 }
14889
14890 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14891 {
14892         struct drm_device *dev = fb->dev;
14893         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14894
14895         drm_framebuffer_cleanup(fb);
14896         mutex_lock(&dev->struct_mutex);
14897         WARN_ON(!intel_fb->obj->framebuffer_references--);
14898         drm_gem_object_unreference(&intel_fb->obj->base);
14899         mutex_unlock(&dev->struct_mutex);
14900         kfree(intel_fb);
14901 }
14902
14903 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14904                                                 struct drm_file *file,
14905                                                 unsigned int *handle)
14906 {
14907         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14908         struct drm_i915_gem_object *obj = intel_fb->obj;
14909
14910         if (obj->userptr.mm) {
14911                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14912                 return -EINVAL;
14913         }
14914
14915         return drm_gem_handle_create(file, &obj->base, handle);
14916 }
14917
14918 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14919                                         struct drm_file *file,
14920                                         unsigned flags, unsigned color,
14921                                         struct drm_clip_rect *clips,
14922                                         unsigned num_clips)
14923 {
14924         struct drm_device *dev = fb->dev;
14925         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14926         struct drm_i915_gem_object *obj = intel_fb->obj;
14927
14928         mutex_lock(&dev->struct_mutex);
14929         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14930         mutex_unlock(&dev->struct_mutex);
14931
14932         return 0;
14933 }
14934
14935 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14936         .destroy = intel_user_framebuffer_destroy,
14937         .create_handle = intel_user_framebuffer_create_handle,
14938         .dirty = intel_user_framebuffer_dirty,
14939 };
14940
14941 static
14942 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14943                          uint32_t pixel_format)
14944 {
14945         u32 gen = INTEL_INFO(dev)->gen;
14946
14947         if (gen >= 9) {
14948                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14949
14950                 /* "The stride in bytes must not exceed the of the size of 8K
14951                  *  pixels and 32K bytes."
14952                  */
14953                 return min(8192 * cpp, 32768);
14954         } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14955                 return 32*1024;
14956         } else if (gen >= 4) {
14957                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14958                         return 16*1024;
14959                 else
14960                         return 32*1024;
14961         } else if (gen >= 3) {
14962                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14963                         return 8*1024;
14964                 else
14965                         return 16*1024;
14966         } else {
14967                 /* XXX DSPC is limited to 4k tiled */
14968                 return 8*1024;
14969         }
14970 }
14971
14972 static int intel_framebuffer_init(struct drm_device *dev,
14973                                   struct intel_framebuffer *intel_fb,
14974                                   struct drm_mode_fb_cmd2 *mode_cmd,
14975                                   struct drm_i915_gem_object *obj)
14976 {
14977         struct drm_i915_private *dev_priv = to_i915(dev);
14978         unsigned int aligned_height;
14979         int ret;
14980         u32 pitch_limit, stride_alignment;
14981
14982         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14983
14984         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14985                 /* Enforce that fb modifier and tiling mode match, but only for
14986                  * X-tiled. This is needed for FBC. */
14987                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14988                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14989                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14990                         return -EINVAL;
14991                 }
14992         } else {
14993                 if (obj->tiling_mode == I915_TILING_X)
14994                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14995                 else if (obj->tiling_mode == I915_TILING_Y) {
14996                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14997                         return -EINVAL;
14998                 }
14999         }
15000
15001         /* Passed in modifier sanity checking. */
15002         switch (mode_cmd->modifier[0]) {
15003         case I915_FORMAT_MOD_Y_TILED:
15004         case I915_FORMAT_MOD_Yf_TILED:
15005                 if (INTEL_INFO(dev)->gen < 9) {
15006                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15007                                   mode_cmd->modifier[0]);
15008                         return -EINVAL;
15009                 }
15010         case DRM_FORMAT_MOD_NONE:
15011         case I915_FORMAT_MOD_X_TILED:
15012                 break;
15013         default:
15014                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15015                           mode_cmd->modifier[0]);
15016                 return -EINVAL;
15017         }
15018
15019         stride_alignment = intel_fb_stride_alignment(dev_priv,
15020                                                      mode_cmd->modifier[0],
15021                                                      mode_cmd->pixel_format);
15022         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15023                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15024                           mode_cmd->pitches[0], stride_alignment);
15025                 return -EINVAL;
15026         }
15027
15028         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
15029                                            mode_cmd->pixel_format);
15030         if (mode_cmd->pitches[0] > pitch_limit) {
15031                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15032                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15033                           "tiled" : "linear",
15034                           mode_cmd->pitches[0], pitch_limit);
15035                 return -EINVAL;
15036         }
15037
15038         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
15039             mode_cmd->pitches[0] != obj->stride) {
15040                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15041                           mode_cmd->pitches[0], obj->stride);
15042                 return -EINVAL;
15043         }
15044
15045         /* Reject formats not supported by any plane early. */
15046         switch (mode_cmd->pixel_format) {
15047         case DRM_FORMAT_C8:
15048         case DRM_FORMAT_RGB565:
15049         case DRM_FORMAT_XRGB8888:
15050         case DRM_FORMAT_ARGB8888:
15051                 break;
15052         case DRM_FORMAT_XRGB1555:
15053                 if (INTEL_INFO(dev)->gen > 3) {
15054                         DRM_DEBUG("unsupported pixel format: %s\n",
15055                                   drm_get_format_name(mode_cmd->pixel_format));
15056                         return -EINVAL;
15057                 }
15058                 break;
15059         case DRM_FORMAT_ABGR8888:
15060                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
15061                     INTEL_INFO(dev)->gen < 9) {
15062                         DRM_DEBUG("unsupported pixel format: %s\n",
15063                                   drm_get_format_name(mode_cmd->pixel_format));
15064                         return -EINVAL;
15065                 }
15066                 break;
15067         case DRM_FORMAT_XBGR8888:
15068         case DRM_FORMAT_XRGB2101010:
15069         case DRM_FORMAT_XBGR2101010:
15070                 if (INTEL_INFO(dev)->gen < 4) {
15071                         DRM_DEBUG("unsupported pixel format: %s\n",
15072                                   drm_get_format_name(mode_cmd->pixel_format));
15073                         return -EINVAL;
15074                 }
15075                 break;
15076         case DRM_FORMAT_ABGR2101010:
15077                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
15078                         DRM_DEBUG("unsupported pixel format: %s\n",
15079                                   drm_get_format_name(mode_cmd->pixel_format));
15080                         return -EINVAL;
15081                 }
15082                 break;
15083         case DRM_FORMAT_YUYV:
15084         case DRM_FORMAT_UYVY:
15085         case DRM_FORMAT_YVYU:
15086         case DRM_FORMAT_VYUY:
15087                 if (INTEL_INFO(dev)->gen < 5) {
15088                         DRM_DEBUG("unsupported pixel format: %s\n",
15089                                   drm_get_format_name(mode_cmd->pixel_format));
15090                         return -EINVAL;
15091                 }
15092                 break;
15093         default:
15094                 DRM_DEBUG("unsupported pixel format: %s\n",
15095                           drm_get_format_name(mode_cmd->pixel_format));
15096                 return -EINVAL;
15097         }
15098
15099         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15100         if (mode_cmd->offsets[0] != 0)
15101                 return -EINVAL;
15102
15103         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
15104                                                mode_cmd->pixel_format,
15105                                                mode_cmd->modifier[0]);
15106         /* FIXME drm helper for size checks (especially planar formats)? */
15107         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
15108                 return -EINVAL;
15109
15110         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15111         intel_fb->obj = obj;
15112
15113         intel_fill_fb_info(dev_priv, &intel_fb->base);
15114
15115         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15116         if (ret) {
15117                 DRM_ERROR("framebuffer init failed %d\n", ret);
15118                 return ret;
15119         }
15120
15121         intel_fb->obj->framebuffer_references++;
15122
15123         return 0;
15124 }
15125
15126 static struct drm_framebuffer *
15127 intel_user_framebuffer_create(struct drm_device *dev,
15128                               struct drm_file *filp,
15129                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
15130 {
15131         struct drm_framebuffer *fb;
15132         struct drm_i915_gem_object *obj;
15133         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15134
15135         obj = to_intel_bo(drm_gem_object_lookup(filp, mode_cmd.handles[0]));
15136         if (&obj->base == NULL)
15137                 return ERR_PTR(-ENOENT);
15138
15139         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15140         if (IS_ERR(fb))
15141                 drm_gem_object_unreference_unlocked(&obj->base);
15142
15143         return fb;
15144 }
15145
15146 #ifndef CONFIG_DRM_FBDEV_EMULATION
15147 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
15148 {
15149 }
15150 #endif
15151
15152 static const struct drm_mode_config_funcs intel_mode_funcs = {
15153         .fb_create = intel_user_framebuffer_create,
15154         .output_poll_changed = intel_fbdev_output_poll_changed,
15155         .atomic_check = intel_atomic_check,
15156         .atomic_commit = intel_atomic_commit,
15157         .atomic_state_alloc = intel_atomic_state_alloc,
15158         .atomic_state_clear = intel_atomic_state_clear,
15159 };
15160
15161 /**
15162  * intel_init_display_hooks - initialize the display modesetting hooks
15163  * @dev_priv: device private
15164  */
15165 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15166 {
15167         if (INTEL_INFO(dev_priv)->gen >= 9) {
15168                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15169                 dev_priv->display.get_initial_plane_config =
15170                         skylake_get_initial_plane_config;
15171                 dev_priv->display.crtc_compute_clock =
15172                         haswell_crtc_compute_clock;
15173                 dev_priv->display.crtc_enable = haswell_crtc_enable;
15174                 dev_priv->display.crtc_disable = haswell_crtc_disable;
15175         } else if (HAS_DDI(dev_priv)) {
15176                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15177                 dev_priv->display.get_initial_plane_config =
15178                         ironlake_get_initial_plane_config;
15179                 dev_priv->display.crtc_compute_clock =
15180                         haswell_crtc_compute_clock;
15181                 dev_priv->display.crtc_enable = haswell_crtc_enable;
15182                 dev_priv->display.crtc_disable = haswell_crtc_disable;
15183         } else if (HAS_PCH_SPLIT(dev_priv)) {
15184                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15185                 dev_priv->display.get_initial_plane_config =
15186                         ironlake_get_initial_plane_config;
15187                 dev_priv->display.crtc_compute_clock =
15188                         ironlake_crtc_compute_clock;
15189                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15190                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
15191         } else if (IS_CHERRYVIEW(dev_priv)) {
15192                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15193                 dev_priv->display.get_initial_plane_config =
15194                         i9xx_get_initial_plane_config;
15195                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15196                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15197                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15198         } else if (IS_VALLEYVIEW(dev_priv)) {
15199                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15200                 dev_priv->display.get_initial_plane_config =
15201                         i9xx_get_initial_plane_config;
15202                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15203                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15204                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15205         } else if (IS_G4X(dev_priv)) {
15206                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15207                 dev_priv->display.get_initial_plane_config =
15208                         i9xx_get_initial_plane_config;
15209                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15210                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15211                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15212         } else if (IS_PINEVIEW(dev_priv)) {
15213                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15214                 dev_priv->display.get_initial_plane_config =
15215                         i9xx_get_initial_plane_config;
15216                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15217                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15218                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15219         } else if (!IS_GEN2(dev_priv)) {
15220                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15221                 dev_priv->display.get_initial_plane_config =
15222                         i9xx_get_initial_plane_config;
15223                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15224                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15225                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15226         } else {
15227                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15228                 dev_priv->display.get_initial_plane_config =
15229                         i9xx_get_initial_plane_config;
15230                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15231                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15232                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15233         }
15234
15235         /* Returns the core display clock speed */
15236         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15237                 dev_priv->display.get_display_clock_speed =
15238                         skylake_get_display_clock_speed;
15239         else if (IS_BROXTON(dev_priv))
15240                 dev_priv->display.get_display_clock_speed =
15241                         broxton_get_display_clock_speed;
15242         else if (IS_BROADWELL(dev_priv))
15243                 dev_priv->display.get_display_clock_speed =
15244                         broadwell_get_display_clock_speed;
15245         else if (IS_HASWELL(dev_priv))
15246                 dev_priv->display.get_display_clock_speed =
15247                         haswell_get_display_clock_speed;
15248         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15249                 dev_priv->display.get_display_clock_speed =
15250                         valleyview_get_display_clock_speed;
15251         else if (IS_GEN5(dev_priv))
15252                 dev_priv->display.get_display_clock_speed =
15253                         ilk_get_display_clock_speed;
15254         else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15255                  IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
15256                 dev_priv->display.get_display_clock_speed =
15257                         i945_get_display_clock_speed;
15258         else if (IS_GM45(dev_priv))
15259                 dev_priv->display.get_display_clock_speed =
15260                         gm45_get_display_clock_speed;
15261         else if (IS_CRESTLINE(dev_priv))
15262                 dev_priv->display.get_display_clock_speed =
15263                         i965gm_get_display_clock_speed;
15264         else if (IS_PINEVIEW(dev_priv))
15265                 dev_priv->display.get_display_clock_speed =
15266                         pnv_get_display_clock_speed;
15267         else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
15268                 dev_priv->display.get_display_clock_speed =
15269                         g33_get_display_clock_speed;
15270         else if (IS_I915G(dev_priv))
15271                 dev_priv->display.get_display_clock_speed =
15272                         i915_get_display_clock_speed;
15273         else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
15274                 dev_priv->display.get_display_clock_speed =
15275                         i9xx_misc_get_display_clock_speed;
15276         else if (IS_I915GM(dev_priv))
15277                 dev_priv->display.get_display_clock_speed =
15278                         i915gm_get_display_clock_speed;
15279         else if (IS_I865G(dev_priv))
15280                 dev_priv->display.get_display_clock_speed =
15281                         i865_get_display_clock_speed;
15282         else if (IS_I85X(dev_priv))
15283                 dev_priv->display.get_display_clock_speed =
15284                         i85x_get_display_clock_speed;
15285         else { /* 830 */
15286                 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
15287                 dev_priv->display.get_display_clock_speed =
15288                         i830_get_display_clock_speed;
15289         }
15290
15291         if (IS_GEN5(dev_priv)) {
15292                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15293         } else if (IS_GEN6(dev_priv)) {
15294                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15295         } else if (IS_IVYBRIDGE(dev_priv)) {
15296                 /* FIXME: detect B0+ stepping and use auto training */
15297                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15298         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15299                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15300         }
15301
15302         if (IS_BROADWELL(dev_priv)) {
15303                 dev_priv->display.modeset_commit_cdclk =
15304                         broadwell_modeset_commit_cdclk;
15305                 dev_priv->display.modeset_calc_cdclk =
15306                         broadwell_modeset_calc_cdclk;
15307         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15308                 dev_priv->display.modeset_commit_cdclk =
15309                         valleyview_modeset_commit_cdclk;
15310                 dev_priv->display.modeset_calc_cdclk =
15311                         valleyview_modeset_calc_cdclk;
15312         } else if (IS_BROXTON(dev_priv)) {
15313                 dev_priv->display.modeset_commit_cdclk =
15314                         bxt_modeset_commit_cdclk;
15315                 dev_priv->display.modeset_calc_cdclk =
15316                         bxt_modeset_calc_cdclk;
15317         } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
15318                 dev_priv->display.modeset_commit_cdclk =
15319                         skl_modeset_commit_cdclk;
15320                 dev_priv->display.modeset_calc_cdclk =
15321                         skl_modeset_calc_cdclk;
15322         }
15323
15324         switch (INTEL_INFO(dev_priv)->gen) {
15325         case 2:
15326                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15327                 break;
15328
15329         case 3:
15330                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15331                 break;
15332
15333         case 4:
15334         case 5:
15335                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15336                 break;
15337
15338         case 6:
15339                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15340                 break;
15341         case 7:
15342         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15343                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15344                 break;
15345         case 9:
15346                 /* Drop through - unsupported since execlist only. */
15347         default:
15348                 /* Default just returns -ENODEV to indicate unsupported */
15349                 dev_priv->display.queue_flip = intel_default_queue_flip;
15350         }
15351 }
15352
15353 /*
15354  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15355  * resume, or other times.  This quirk makes sure that's the case for
15356  * affected systems.
15357  */
15358 static void quirk_pipea_force(struct drm_device *dev)
15359 {
15360         struct drm_i915_private *dev_priv = dev->dev_private;
15361
15362         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15363         DRM_INFO("applying pipe a force quirk\n");
15364 }
15365
15366 static void quirk_pipeb_force(struct drm_device *dev)
15367 {
15368         struct drm_i915_private *dev_priv = dev->dev_private;
15369
15370         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15371         DRM_INFO("applying pipe b force quirk\n");
15372 }
15373
15374 /*
15375  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15376  */
15377 static void quirk_ssc_force_disable(struct drm_device *dev)
15378 {
15379         struct drm_i915_private *dev_priv = dev->dev_private;
15380         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15381         DRM_INFO("applying lvds SSC disable quirk\n");
15382 }
15383
15384 /*
15385  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15386  * brightness value
15387  */
15388 static void quirk_invert_brightness(struct drm_device *dev)
15389 {
15390         struct drm_i915_private *dev_priv = dev->dev_private;
15391         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15392         DRM_INFO("applying inverted panel brightness quirk\n");
15393 }
15394
15395 /* Some VBT's incorrectly indicate no backlight is present */
15396 static void quirk_backlight_present(struct drm_device *dev)
15397 {
15398         struct drm_i915_private *dev_priv = dev->dev_private;
15399         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15400         DRM_INFO("applying backlight present quirk\n");
15401 }
15402
15403 struct intel_quirk {
15404         int device;
15405         int subsystem_vendor;
15406         int subsystem_device;
15407         void (*hook)(struct drm_device *dev);
15408 };
15409
15410 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15411 struct intel_dmi_quirk {
15412         void (*hook)(struct drm_device *dev);
15413         const struct dmi_system_id (*dmi_id_list)[];
15414 };
15415
15416 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15417 {
15418         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15419         return 1;
15420 }
15421
15422 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15423         {
15424                 .dmi_id_list = &(const struct dmi_system_id[]) {
15425                         {
15426                                 .callback = intel_dmi_reverse_brightness,
15427                                 .ident = "NCR Corporation",
15428                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15429                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
15430                                 },
15431                         },
15432                         { }  /* terminating entry */
15433                 },
15434                 .hook = quirk_invert_brightness,
15435         },
15436 };
15437
15438 static struct intel_quirk intel_quirks[] = {
15439         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15440         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15441
15442         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15443         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15444
15445         /* 830 needs to leave pipe A & dpll A up */
15446         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15447
15448         /* 830 needs to leave pipe B & dpll B up */
15449         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15450
15451         /* Lenovo U160 cannot use SSC on LVDS */
15452         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15453
15454         /* Sony Vaio Y cannot use SSC on LVDS */
15455         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15456
15457         /* Acer Aspire 5734Z must invert backlight brightness */
15458         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15459
15460         /* Acer/eMachines G725 */
15461         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15462
15463         /* Acer/eMachines e725 */
15464         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15465
15466         /* Acer/Packard Bell NCL20 */
15467         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15468
15469         /* Acer Aspire 4736Z */
15470         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15471
15472         /* Acer Aspire 5336 */
15473         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15474
15475         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15476         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15477
15478         /* Acer C720 Chromebook (Core i3 4005U) */
15479         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15480
15481         /* Apple Macbook 2,1 (Core 2 T7400) */
15482         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15483
15484         /* Apple Macbook 4,1 */
15485         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15486
15487         /* Toshiba CB35 Chromebook (Celeron 2955U) */
15488         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15489
15490         /* HP Chromebook 14 (Celeron 2955U) */
15491         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15492
15493         /* Dell Chromebook 11 */
15494         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15495
15496         /* Dell Chromebook 11 (2015 version) */
15497         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15498 };
15499
15500 static void intel_init_quirks(struct drm_device *dev)
15501 {
15502         struct pci_dev *d = dev->pdev;
15503         int i;
15504
15505         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15506                 struct intel_quirk *q = &intel_quirks[i];
15507
15508                 if (d->device == q->device &&
15509                     (d->subsystem_vendor == q->subsystem_vendor ||
15510                      q->subsystem_vendor == PCI_ANY_ID) &&
15511                     (d->subsystem_device == q->subsystem_device ||
15512                      q->subsystem_device == PCI_ANY_ID))
15513                         q->hook(dev);
15514         }
15515         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15516                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15517                         intel_dmi_quirks[i].hook(dev);
15518         }
15519 }
15520
15521 /* Disable the VGA plane that we never use */
15522 static void i915_disable_vga(struct drm_device *dev)
15523 {
15524         struct drm_i915_private *dev_priv = dev->dev_private;
15525         u8 sr1;
15526         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15527
15528         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15529         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15530         outb(SR01, VGA_SR_INDEX);
15531         sr1 = inb(VGA_SR_DATA);
15532         outb(sr1 | 1<<5, VGA_SR_DATA);
15533         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15534         udelay(300);
15535
15536         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15537         POSTING_READ(vga_reg);
15538 }
15539
15540 void intel_modeset_init_hw(struct drm_device *dev)
15541 {
15542         struct drm_i915_private *dev_priv = dev->dev_private;
15543
15544         intel_update_cdclk(dev);
15545
15546         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15547
15548         intel_init_clock_gating(dev);
15549         intel_enable_gt_powersave(dev_priv);
15550 }
15551
15552 /*
15553  * Calculate what we think the watermarks should be for the state we've read
15554  * out of the hardware and then immediately program those watermarks so that
15555  * we ensure the hardware settings match our internal state.
15556  *
15557  * We can calculate what we think WM's should be by creating a duplicate of the
15558  * current state (which was constructed during hardware readout) and running it
15559  * through the atomic check code to calculate new watermark values in the
15560  * state object.
15561  */
15562 static void sanitize_watermarks(struct drm_device *dev)
15563 {
15564         struct drm_i915_private *dev_priv = to_i915(dev);
15565         struct drm_atomic_state *state;
15566         struct drm_crtc *crtc;
15567         struct drm_crtc_state *cstate;
15568         struct drm_modeset_acquire_ctx ctx;
15569         int ret;
15570         int i;
15571
15572         /* Only supported on platforms that use atomic watermark design */
15573         if (!dev_priv->display.optimize_watermarks)
15574                 return;
15575
15576         /*
15577          * We need to hold connection_mutex before calling duplicate_state so
15578          * that the connector loop is protected.
15579          */
15580         drm_modeset_acquire_init(&ctx, 0);
15581 retry:
15582         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15583         if (ret == -EDEADLK) {
15584                 drm_modeset_backoff(&ctx);
15585                 goto retry;
15586         } else if (WARN_ON(ret)) {
15587                 goto fail;
15588         }
15589
15590         state = drm_atomic_helper_duplicate_state(dev, &ctx);
15591         if (WARN_ON(IS_ERR(state)))
15592                 goto fail;
15593
15594         /*
15595          * Hardware readout is the only time we don't want to calculate
15596          * intermediate watermarks (since we don't trust the current
15597          * watermarks).
15598          */
15599         to_intel_atomic_state(state)->skip_intermediate_wm = true;
15600
15601         ret = intel_atomic_check(dev, state);
15602         if (ret) {
15603                 /*
15604                  * If we fail here, it means that the hardware appears to be
15605                  * programmed in a way that shouldn't be possible, given our
15606                  * understanding of watermark requirements.  This might mean a
15607                  * mistake in the hardware readout code or a mistake in the
15608                  * watermark calculations for a given platform.  Raise a WARN
15609                  * so that this is noticeable.
15610                  *
15611                  * If this actually happens, we'll have to just leave the
15612                  * BIOS-programmed watermarks untouched and hope for the best.
15613                  */
15614                 WARN(true, "Could not determine valid watermarks for inherited state\n");
15615                 goto fail;
15616         }
15617
15618         /* Write calculated watermark values back */
15619         for_each_crtc_in_state(state, crtc, cstate, i) {
15620                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15621
15622                 cs->wm.need_postvbl_update = true;
15623                 dev_priv->display.optimize_watermarks(cs);
15624         }
15625
15626         drm_atomic_state_free(state);
15627 fail:
15628         drm_modeset_drop_locks(&ctx);
15629         drm_modeset_acquire_fini(&ctx);
15630 }
15631
15632 void intel_modeset_init(struct drm_device *dev)
15633 {
15634         struct drm_i915_private *dev_priv = to_i915(dev);
15635         struct i915_ggtt *ggtt = &dev_priv->ggtt;
15636         int sprite, ret;
15637         enum pipe pipe;
15638         struct intel_crtc *crtc;
15639
15640         drm_mode_config_init(dev);
15641
15642         dev->mode_config.min_width = 0;
15643         dev->mode_config.min_height = 0;
15644
15645         dev->mode_config.preferred_depth = 24;
15646         dev->mode_config.prefer_shadow = 1;
15647
15648         dev->mode_config.allow_fb_modifiers = true;
15649
15650         dev->mode_config.funcs = &intel_mode_funcs;
15651
15652         intel_init_quirks(dev);
15653
15654         intel_init_pm(dev);
15655
15656         if (INTEL_INFO(dev)->num_pipes == 0)
15657                 return;
15658
15659         /*
15660          * There may be no VBT; and if the BIOS enabled SSC we can
15661          * just keep using it to avoid unnecessary flicker.  Whereas if the
15662          * BIOS isn't using it, don't assume it will work even if the VBT
15663          * indicates as much.
15664          */
15665         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15666                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15667                                             DREF_SSC1_ENABLE);
15668
15669                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15670                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15671                                      bios_lvds_use_ssc ? "en" : "dis",
15672                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15673                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15674                 }
15675         }
15676
15677         if (IS_GEN2(dev)) {
15678                 dev->mode_config.max_width = 2048;
15679                 dev->mode_config.max_height = 2048;
15680         } else if (IS_GEN3(dev)) {
15681                 dev->mode_config.max_width = 4096;
15682                 dev->mode_config.max_height = 4096;
15683         } else {
15684                 dev->mode_config.max_width = 8192;
15685                 dev->mode_config.max_height = 8192;
15686         }
15687
15688         if (IS_845G(dev) || IS_I865G(dev)) {
15689                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15690                 dev->mode_config.cursor_height = 1023;
15691         } else if (IS_GEN2(dev)) {
15692                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15693                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15694         } else {
15695                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15696                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15697         }
15698
15699         dev->mode_config.fb_base = ggtt->mappable_base;
15700
15701         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15702                       INTEL_INFO(dev)->num_pipes,
15703                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15704
15705         for_each_pipe(dev_priv, pipe) {
15706                 intel_crtc_init(dev, pipe);
15707                 for_each_sprite(dev_priv, pipe, sprite) {
15708                         ret = intel_plane_init(dev, pipe, sprite);
15709                         if (ret)
15710                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15711                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15712                 }
15713         }
15714
15715         intel_update_czclk(dev_priv);
15716         intel_update_cdclk(dev);
15717
15718         intel_shared_dpll_init(dev);
15719
15720         if (dev_priv->max_cdclk_freq == 0)
15721                 intel_update_max_cdclk(dev);
15722
15723         /* Just disable it once at startup */
15724         i915_disable_vga(dev);
15725         intel_setup_outputs(dev);
15726
15727         drm_modeset_lock_all(dev);
15728         intel_modeset_setup_hw_state(dev);
15729         drm_modeset_unlock_all(dev);
15730
15731         for_each_intel_crtc(dev, crtc) {
15732                 struct intel_initial_plane_config plane_config = {};
15733
15734                 if (!crtc->active)
15735                         continue;
15736
15737                 /*
15738                  * Note that reserving the BIOS fb up front prevents us
15739                  * from stuffing other stolen allocations like the ring
15740                  * on top.  This prevents some ugliness at boot time, and
15741                  * can even allow for smooth boot transitions if the BIOS
15742                  * fb is large enough for the active pipe configuration.
15743                  */
15744                 dev_priv->display.get_initial_plane_config(crtc,
15745                                                            &plane_config);
15746
15747                 /*
15748                  * If the fb is shared between multiple heads, we'll
15749                  * just get the first one.
15750                  */
15751                 intel_find_initial_plane_obj(crtc, &plane_config);
15752         }
15753
15754         /*
15755          * Make sure hardware watermarks really match the state we read out.
15756          * Note that we need to do this after reconstructing the BIOS fb's
15757          * since the watermark calculation done here will use pstate->fb.
15758          */
15759         sanitize_watermarks(dev);
15760 }
15761
15762 static void intel_enable_pipe_a(struct drm_device *dev)
15763 {
15764         struct intel_connector *connector;
15765         struct drm_connector *crt = NULL;
15766         struct intel_load_detect_pipe load_detect_temp;
15767         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15768
15769         /* We can't just switch on the pipe A, we need to set things up with a
15770          * proper mode and output configuration. As a gross hack, enable pipe A
15771          * by enabling the load detect pipe once. */
15772         for_each_intel_connector(dev, connector) {
15773                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15774                         crt = &connector->base;
15775                         break;
15776                 }
15777         }
15778
15779         if (!crt)
15780                 return;
15781
15782         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15783                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15784 }
15785
15786 static bool
15787 intel_check_plane_mapping(struct intel_crtc *crtc)
15788 {
15789         struct drm_device *dev = crtc->base.dev;
15790         struct drm_i915_private *dev_priv = dev->dev_private;
15791         u32 val;
15792
15793         if (INTEL_INFO(dev)->num_pipes == 1)
15794                 return true;
15795
15796         val = I915_READ(DSPCNTR(!crtc->plane));
15797
15798         if ((val & DISPLAY_PLANE_ENABLE) &&
15799             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15800                 return false;
15801
15802         return true;
15803 }
15804
15805 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15806 {
15807         struct drm_device *dev = crtc->base.dev;
15808         struct intel_encoder *encoder;
15809
15810         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15811                 return true;
15812
15813         return false;
15814 }
15815
15816 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15817 {
15818         struct drm_device *dev = encoder->base.dev;
15819         struct intel_connector *connector;
15820
15821         for_each_connector_on_encoder(dev, &encoder->base, connector)
15822                 return true;
15823
15824         return false;
15825 }
15826
15827 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15828 {
15829         struct drm_device *dev = crtc->base.dev;
15830         struct drm_i915_private *dev_priv = dev->dev_private;
15831         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15832
15833         /* Clear any frame start delays used for debugging left by the BIOS */
15834         if (!transcoder_is_dsi(cpu_transcoder)) {
15835                 i915_reg_t reg = PIPECONF(cpu_transcoder);
15836
15837                 I915_WRITE(reg,
15838                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15839         }
15840
15841         /* restore vblank interrupts to correct state */
15842         drm_crtc_vblank_reset(&crtc->base);
15843         if (crtc->active) {
15844                 struct intel_plane *plane;
15845
15846                 drm_crtc_vblank_on(&crtc->base);
15847
15848                 /* Disable everything but the primary plane */
15849                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15850                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15851                                 continue;
15852
15853                         plane->disable_plane(&plane->base, &crtc->base);
15854                 }
15855         }
15856
15857         /* We need to sanitize the plane -> pipe mapping first because this will
15858          * disable the crtc (and hence change the state) if it is wrong. Note
15859          * that gen4+ has a fixed plane -> pipe mapping.  */
15860         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15861                 bool plane;
15862
15863                 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
15864                               crtc->base.base.id, crtc->base.name);
15865
15866                 /* Pipe has the wrong plane attached and the plane is active.
15867                  * Temporarily change the plane mapping and disable everything
15868                  * ...  */
15869                 plane = crtc->plane;
15870                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15871                 crtc->plane = !plane;
15872                 intel_crtc_disable_noatomic(&crtc->base);
15873                 crtc->plane = plane;
15874         }
15875
15876         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15877             crtc->pipe == PIPE_A && !crtc->active) {
15878                 /* BIOS forgot to enable pipe A, this mostly happens after
15879                  * resume. Force-enable the pipe to fix this, the update_dpms
15880                  * call below we restore the pipe to the right state, but leave
15881                  * the required bits on. */
15882                 intel_enable_pipe_a(dev);
15883         }
15884
15885         /* Adjust the state of the output pipe according to whether we
15886          * have active connectors/encoders. */
15887         if (crtc->active && !intel_crtc_has_encoders(crtc))
15888                 intel_crtc_disable_noatomic(&crtc->base);
15889
15890         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15891                 /*
15892                  * We start out with underrun reporting disabled to avoid races.
15893                  * For correct bookkeeping mark this on active crtcs.
15894                  *
15895                  * Also on gmch platforms we dont have any hardware bits to
15896                  * disable the underrun reporting. Which means we need to start
15897                  * out with underrun reporting disabled also on inactive pipes,
15898                  * since otherwise we'll complain about the garbage we read when
15899                  * e.g. coming up after runtime pm.
15900                  *
15901                  * No protection against concurrent access is required - at
15902                  * worst a fifo underrun happens which also sets this to false.
15903                  */
15904                 crtc->cpu_fifo_underrun_disabled = true;
15905                 crtc->pch_fifo_underrun_disabled = true;
15906         }
15907 }
15908
15909 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15910 {
15911         struct intel_connector *connector;
15912         struct drm_device *dev = encoder->base.dev;
15913
15914         /* We need to check both for a crtc link (meaning that the
15915          * encoder is active and trying to read from a pipe) and the
15916          * pipe itself being active. */
15917         bool has_active_crtc = encoder->base.crtc &&
15918                 to_intel_crtc(encoder->base.crtc)->active;
15919
15920         if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15921                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15922                               encoder->base.base.id,
15923                               encoder->base.name);
15924
15925                 /* Connector is active, but has no active pipe. This is
15926                  * fallout from our resume register restoring. Disable
15927                  * the encoder manually again. */
15928                 if (encoder->base.crtc) {
15929                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15930                                       encoder->base.base.id,
15931                                       encoder->base.name);
15932                         encoder->disable(encoder);
15933                         if (encoder->post_disable)
15934                                 encoder->post_disable(encoder);
15935                 }
15936                 encoder->base.crtc = NULL;
15937
15938                 /* Inconsistent output/port/pipe state happens presumably due to
15939                  * a bug in one of the get_hw_state functions. Or someplace else
15940                  * in our code, like the register restore mess on resume. Clamp
15941                  * things to off as a safer default. */
15942                 for_each_intel_connector(dev, connector) {
15943                         if (connector->encoder != encoder)
15944                                 continue;
15945                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15946                         connector->base.encoder = NULL;
15947                 }
15948         }
15949         /* Enabled encoders without active connectors will be fixed in
15950          * the crtc fixup. */
15951 }
15952
15953 void i915_redisable_vga_power_on(struct drm_device *dev)
15954 {
15955         struct drm_i915_private *dev_priv = dev->dev_private;
15956         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15957
15958         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15959                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15960                 i915_disable_vga(dev);
15961         }
15962 }
15963
15964 void i915_redisable_vga(struct drm_device *dev)
15965 {
15966         struct drm_i915_private *dev_priv = dev->dev_private;
15967
15968         /* This function can be called both from intel_modeset_setup_hw_state or
15969          * at a very early point in our resume sequence, where the power well
15970          * structures are not yet restored. Since this function is at a very
15971          * paranoid "someone might have enabled VGA while we were not looking"
15972          * level, just check if the power well is enabled instead of trying to
15973          * follow the "don't touch the power well if we don't need it" policy
15974          * the rest of the driver uses. */
15975         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15976                 return;
15977
15978         i915_redisable_vga_power_on(dev);
15979
15980         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15981 }
15982
15983 static bool primary_get_hw_state(struct intel_plane *plane)
15984 {
15985         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15986
15987         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15988 }
15989
15990 /* FIXME read out full plane state for all planes */
15991 static void readout_plane_state(struct intel_crtc *crtc)
15992 {
15993         struct drm_plane *primary = crtc->base.primary;
15994         struct intel_plane_state *plane_state =
15995                 to_intel_plane_state(primary->state);
15996
15997         plane_state->visible = crtc->active &&
15998                 primary_get_hw_state(to_intel_plane(primary));
15999
16000         if (plane_state->visible)
16001                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
16002 }
16003
16004 static void intel_modeset_readout_hw_state(struct drm_device *dev)
16005 {
16006         struct drm_i915_private *dev_priv = dev->dev_private;
16007         enum pipe pipe;
16008         struct intel_crtc *crtc;
16009         struct intel_encoder *encoder;
16010         struct intel_connector *connector;
16011         int i;
16012
16013         dev_priv->active_crtcs = 0;
16014
16015         for_each_intel_crtc(dev, crtc) {
16016                 struct intel_crtc_state *crtc_state = crtc->config;
16017                 int pixclk = 0;
16018
16019                 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16020                 memset(crtc_state, 0, sizeof(*crtc_state));
16021                 crtc_state->base.crtc = &crtc->base;
16022
16023                 crtc_state->base.active = crtc_state->base.enable =
16024                         dev_priv->display.get_pipe_config(crtc, crtc_state);
16025
16026                 crtc->base.enabled = crtc_state->base.enable;
16027                 crtc->active = crtc_state->base.active;
16028
16029                 if (crtc_state->base.active) {
16030                         dev_priv->active_crtcs |= 1 << crtc->pipe;
16031
16032                         if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
16033                                 pixclk = ilk_pipe_pixel_rate(crtc_state);
16034                         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16035                                 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
16036                         else
16037                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
16038
16039                         /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16040                         if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
16041                                 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
16042                 }
16043
16044                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
16045
16046                 readout_plane_state(crtc);
16047
16048                 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16049                               crtc->base.base.id, crtc->base.name,
16050                               crtc->active ? "enabled" : "disabled");
16051         }
16052
16053         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16054                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16055
16056                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16057                                                   &pll->config.hw_state);
16058                 pll->config.crtc_mask = 0;
16059                 for_each_intel_crtc(dev, crtc) {
16060                         if (crtc->active && crtc->config->shared_dpll == pll)
16061                                 pll->config.crtc_mask |= 1 << crtc->pipe;
16062                 }
16063                 pll->active_mask = pll->config.crtc_mask;
16064
16065                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16066                               pll->name, pll->config.crtc_mask, pll->on);
16067         }
16068
16069         for_each_intel_encoder(dev, encoder) {
16070                 pipe = 0;
16071
16072                 if (encoder->get_hw_state(encoder, &pipe)) {
16073                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16074                         encoder->base.crtc = &crtc->base;
16075                         encoder->get_config(encoder, crtc->config);
16076                 } else {
16077                         encoder->base.crtc = NULL;
16078                 }
16079
16080                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16081                               encoder->base.base.id,
16082                               encoder->base.name,
16083                               encoder->base.crtc ? "enabled" : "disabled",
16084                               pipe_name(pipe));
16085         }
16086
16087         for_each_intel_connector(dev, connector) {
16088                 if (connector->get_hw_state(connector)) {
16089                         connector->base.dpms = DRM_MODE_DPMS_ON;
16090
16091                         encoder = connector->encoder;
16092                         connector->base.encoder = &encoder->base;
16093
16094                         if (encoder->base.crtc &&
16095                             encoder->base.crtc->state->active) {
16096                                 /*
16097                                  * This has to be done during hardware readout
16098                                  * because anything calling .crtc_disable may
16099                                  * rely on the connector_mask being accurate.
16100                                  */
16101                                 encoder->base.crtc->state->connector_mask |=
16102                                         1 << drm_connector_index(&connector->base);
16103                                 encoder->base.crtc->state->encoder_mask |=
16104                                         1 << drm_encoder_index(&encoder->base);
16105                         }
16106
16107                 } else {
16108                         connector->base.dpms = DRM_MODE_DPMS_OFF;
16109                         connector->base.encoder = NULL;
16110                 }
16111                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16112                               connector->base.base.id,
16113                               connector->base.name,
16114                               connector->base.encoder ? "enabled" : "disabled");
16115         }
16116
16117         for_each_intel_crtc(dev, crtc) {
16118                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
16119
16120                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16121                 if (crtc->base.state->active) {
16122                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16123                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16124                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16125
16126                         /*
16127                          * The initial mode needs to be set in order to keep
16128                          * the atomic core happy. It wants a valid mode if the
16129                          * crtc's enabled, so we do the above call.
16130                          *
16131                          * At this point some state updated by the connectors
16132                          * in their ->detect() callback has not run yet, so
16133                          * no recalculation can be done yet.
16134                          *
16135                          * Even if we could do a recalculation and modeset
16136                          * right now it would cause a double modeset if
16137                          * fbdev or userspace chooses a different initial mode.
16138                          *
16139                          * If that happens, someone indicated they wanted a
16140                          * mode change, which means it's safe to do a full
16141                          * recalculation.
16142                          */
16143                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16144
16145                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16146                         update_scanline_offset(crtc);
16147                 }
16148
16149                 intel_pipe_config_sanity_check(dev_priv, crtc->config);
16150         }
16151 }
16152
16153 /* Scan out the current hw modeset state,
16154  * and sanitizes it to the current state
16155  */
16156 static void
16157 intel_modeset_setup_hw_state(struct drm_device *dev)
16158 {
16159         struct drm_i915_private *dev_priv = dev->dev_private;
16160         enum pipe pipe;
16161         struct intel_crtc *crtc;
16162         struct intel_encoder *encoder;
16163         int i;
16164
16165         intel_modeset_readout_hw_state(dev);
16166
16167         /* HW state is read out, now we need to sanitize this mess. */
16168         for_each_intel_encoder(dev, encoder) {
16169                 intel_sanitize_encoder(encoder);
16170         }
16171
16172         for_each_pipe(dev_priv, pipe) {
16173                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16174                 intel_sanitize_crtc(crtc);
16175                 intel_dump_pipe_config(crtc, crtc->config,
16176                                        "[setup_hw_state]");
16177         }
16178
16179         intel_modeset_update_connector_atomic_state(dev);
16180
16181         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16182                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16183
16184                 if (!pll->on || pll->active_mask)
16185                         continue;
16186
16187                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16188
16189                 pll->funcs.disable(dev_priv, pll);
16190                 pll->on = false;
16191         }
16192
16193         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
16194                 vlv_wm_get_hw_state(dev);
16195         else if (IS_GEN9(dev))
16196                 skl_wm_get_hw_state(dev);
16197         else if (HAS_PCH_SPLIT(dev))
16198                 ilk_wm_get_hw_state(dev);
16199
16200         for_each_intel_crtc(dev, crtc) {
16201                 unsigned long put_domains;
16202
16203                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
16204                 if (WARN_ON(put_domains))
16205                         modeset_put_power_domains(dev_priv, put_domains);
16206         }
16207         intel_display_set_init_power(dev_priv, false);
16208
16209         intel_fbc_init_pipe_state(dev_priv);
16210 }
16211
16212 void intel_display_resume(struct drm_device *dev)
16213 {
16214         struct drm_i915_private *dev_priv = to_i915(dev);
16215         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16216         struct drm_modeset_acquire_ctx ctx;
16217         int ret;
16218         bool setup = false;
16219
16220         dev_priv->modeset_restore_state = NULL;
16221
16222         /*
16223          * This is a cludge because with real atomic modeset mode_config.mutex
16224          * won't be taken. Unfortunately some probed state like
16225          * audio_codec_enable is still protected by mode_config.mutex, so lock
16226          * it here for now.
16227          */
16228         mutex_lock(&dev->mode_config.mutex);
16229         drm_modeset_acquire_init(&ctx, 0);
16230
16231 retry:
16232         ret = drm_modeset_lock_all_ctx(dev, &ctx);
16233
16234         if (ret == 0 && !setup) {
16235                 setup = true;
16236
16237                 intel_modeset_setup_hw_state(dev);
16238                 i915_redisable_vga(dev);
16239         }
16240
16241         if (ret == 0 && state) {
16242                 struct drm_crtc_state *crtc_state;
16243                 struct drm_crtc *crtc;
16244                 int i;
16245
16246                 state->acquire_ctx = &ctx;
16247
16248                 /* ignore any reset values/BIOS leftovers in the WM registers */
16249                 to_intel_atomic_state(state)->skip_intermediate_wm = true;
16250
16251                 for_each_crtc_in_state(state, crtc, crtc_state, i) {
16252                         /*
16253                          * Force recalculation even if we restore
16254                          * current state. With fast modeset this may not result
16255                          * in a modeset when the state is compatible.
16256                          */
16257                         crtc_state->mode_changed = true;
16258                 }
16259
16260                 ret = drm_atomic_commit(state);
16261         }
16262
16263         if (ret == -EDEADLK) {
16264                 drm_modeset_backoff(&ctx);
16265                 goto retry;
16266         }
16267
16268         drm_modeset_drop_locks(&ctx);
16269         drm_modeset_acquire_fini(&ctx);
16270         mutex_unlock(&dev->mode_config.mutex);
16271
16272         if (ret) {
16273                 DRM_ERROR("Restoring old state failed with %i\n", ret);
16274                 drm_atomic_state_free(state);
16275         }
16276 }
16277
16278 void intel_modeset_gem_init(struct drm_device *dev)
16279 {
16280         struct drm_i915_private *dev_priv = to_i915(dev);
16281         struct drm_crtc *c;
16282         struct drm_i915_gem_object *obj;
16283         int ret;
16284
16285         intel_init_gt_powersave(dev_priv);
16286
16287         intel_modeset_init_hw(dev);
16288
16289         intel_setup_overlay(dev_priv);
16290
16291         /*
16292          * Make sure any fbs we allocated at startup are properly
16293          * pinned & fenced.  When we do the allocation it's too early
16294          * for this.
16295          */
16296         for_each_crtc(dev, c) {
16297                 obj = intel_fb_obj(c->primary->fb);
16298                 if (obj == NULL)
16299                         continue;
16300
16301                 mutex_lock(&dev->struct_mutex);
16302                 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
16303                                                  c->primary->state->rotation);
16304                 mutex_unlock(&dev->struct_mutex);
16305                 if (ret) {
16306                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
16307                                   to_intel_crtc(c)->pipe);
16308                         drm_framebuffer_unreference(c->primary->fb);
16309                         c->primary->fb = NULL;
16310                         c->primary->crtc = c->primary->state->crtc = NULL;
16311                         update_state_fb(c->primary);
16312                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16313                 }
16314         }
16315
16316         intel_backlight_register(dev);
16317 }
16318
16319 void intel_connector_unregister(struct intel_connector *intel_connector)
16320 {
16321         struct drm_connector *connector = &intel_connector->base;
16322
16323         intel_panel_destroy_backlight(connector);
16324         drm_connector_unregister(connector);
16325 }
16326
16327 void intel_modeset_cleanup(struct drm_device *dev)
16328 {
16329         struct drm_i915_private *dev_priv = dev->dev_private;
16330         struct intel_connector *connector;
16331
16332         intel_disable_gt_powersave(dev_priv);
16333
16334         intel_backlight_unregister(dev);
16335
16336         /*
16337          * Interrupts and polling as the first thing to avoid creating havoc.
16338          * Too much stuff here (turning of connectors, ...) would
16339          * experience fancy races otherwise.
16340          */
16341         intel_irq_uninstall(dev_priv);
16342
16343         /*
16344          * Due to the hpd irq storm handling the hotplug work can re-arm the
16345          * poll handlers. Hence disable polling after hpd handling is shut down.
16346          */
16347         drm_kms_helper_poll_fini(dev);
16348
16349         intel_unregister_dsm_handler();
16350
16351         intel_fbc_global_disable(dev_priv);
16352
16353         /* flush any delayed tasks or pending work */
16354         flush_scheduled_work();
16355
16356         /* destroy the backlight and sysfs files before encoders/connectors */
16357         for_each_intel_connector(dev, connector)
16358                 connector->unregister(connector);
16359
16360         drm_mode_config_cleanup(dev);
16361
16362         intel_cleanup_overlay(dev_priv);
16363
16364         intel_cleanup_gt_powersave(dev_priv);
16365
16366         intel_teardown_gmbus(dev);
16367 }
16368
16369 void intel_connector_attach_encoder(struct intel_connector *connector,
16370                                     struct intel_encoder *encoder)
16371 {
16372         connector->encoder = encoder;
16373         drm_mode_connector_attach_encoder(&connector->base,
16374                                           &encoder->base);
16375 }
16376
16377 /*
16378  * set vga decode state - true == enable VGA decode
16379  */
16380 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16381 {
16382         struct drm_i915_private *dev_priv = dev->dev_private;
16383         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16384         u16 gmch_ctrl;
16385
16386         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16387                 DRM_ERROR("failed to read control word\n");
16388                 return -EIO;
16389         }
16390
16391         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16392                 return 0;
16393
16394         if (state)
16395                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16396         else
16397                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16398
16399         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16400                 DRM_ERROR("failed to write control word\n");
16401                 return -EIO;
16402         }
16403
16404         return 0;
16405 }
16406
16407 struct intel_display_error_state {
16408
16409         u32 power_well_driver;
16410
16411         int num_transcoders;
16412
16413         struct intel_cursor_error_state {
16414                 u32 control;
16415                 u32 position;
16416                 u32 base;
16417                 u32 size;
16418         } cursor[I915_MAX_PIPES];
16419
16420         struct intel_pipe_error_state {
16421                 bool power_domain_on;
16422                 u32 source;
16423                 u32 stat;
16424         } pipe[I915_MAX_PIPES];
16425
16426         struct intel_plane_error_state {
16427                 u32 control;
16428                 u32 stride;
16429                 u32 size;
16430                 u32 pos;
16431                 u32 addr;
16432                 u32 surface;
16433                 u32 tile_offset;
16434         } plane[I915_MAX_PIPES];
16435
16436         struct intel_transcoder_error_state {
16437                 bool power_domain_on;
16438                 enum transcoder cpu_transcoder;
16439
16440                 u32 conf;
16441
16442                 u32 htotal;
16443                 u32 hblank;
16444                 u32 hsync;
16445                 u32 vtotal;
16446                 u32 vblank;
16447                 u32 vsync;
16448         } transcoder[4];
16449 };
16450
16451 struct intel_display_error_state *
16452 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
16453 {
16454         struct intel_display_error_state *error;
16455         int transcoders[] = {
16456                 TRANSCODER_A,
16457                 TRANSCODER_B,
16458                 TRANSCODER_C,
16459                 TRANSCODER_EDP,
16460         };
16461         int i;
16462
16463         if (INTEL_INFO(dev_priv)->num_pipes == 0)
16464                 return NULL;
16465
16466         error = kzalloc(sizeof(*error), GFP_ATOMIC);
16467         if (error == NULL)
16468                 return NULL;
16469
16470         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
16471                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16472
16473         for_each_pipe(dev_priv, i) {
16474                 error->pipe[i].power_domain_on =
16475                         __intel_display_power_is_enabled(dev_priv,
16476                                                          POWER_DOMAIN_PIPE(i));
16477                 if (!error->pipe[i].power_domain_on)
16478                         continue;
16479
16480                 error->cursor[i].control = I915_READ(CURCNTR(i));
16481                 error->cursor[i].position = I915_READ(CURPOS(i));
16482                 error->cursor[i].base = I915_READ(CURBASE(i));
16483
16484                 error->plane[i].control = I915_READ(DSPCNTR(i));
16485                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16486                 if (INTEL_GEN(dev_priv) <= 3) {
16487                         error->plane[i].size = I915_READ(DSPSIZE(i));
16488                         error->plane[i].pos = I915_READ(DSPPOS(i));
16489                 }
16490                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
16491                         error->plane[i].addr = I915_READ(DSPADDR(i));
16492                 if (INTEL_GEN(dev_priv) >= 4) {
16493                         error->plane[i].surface = I915_READ(DSPSURF(i));
16494                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16495                 }
16496
16497                 error->pipe[i].source = I915_READ(PIPESRC(i));
16498
16499                 if (HAS_GMCH_DISPLAY(dev_priv))
16500                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
16501         }
16502
16503         /* Note: this does not include DSI transcoders. */
16504         error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
16505         if (HAS_DDI(dev_priv))
16506                 error->num_transcoders++; /* Account for eDP. */
16507
16508         for (i = 0; i < error->num_transcoders; i++) {
16509                 enum transcoder cpu_transcoder = transcoders[i];
16510
16511                 error->transcoder[i].power_domain_on =
16512                         __intel_display_power_is_enabled(dev_priv,
16513                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16514                 if (!error->transcoder[i].power_domain_on)
16515                         continue;
16516
16517                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16518
16519                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16520                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16521                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16522                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16523                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16524                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16525                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16526         }
16527
16528         return error;
16529 }
16530
16531 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16532
16533 void
16534 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16535                                 struct drm_device *dev,
16536                                 struct intel_display_error_state *error)
16537 {
16538         struct drm_i915_private *dev_priv = dev->dev_private;
16539         int i;
16540
16541         if (!error)
16542                 return;
16543
16544         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16545         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16546                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16547                            error->power_well_driver);
16548         for_each_pipe(dev_priv, i) {
16549                 err_printf(m, "Pipe [%d]:\n", i);
16550                 err_printf(m, "  Power: %s\n",
16551                            onoff(error->pipe[i].power_domain_on));
16552                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16553                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16554
16555                 err_printf(m, "Plane [%d]:\n", i);
16556                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16557                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16558                 if (INTEL_INFO(dev)->gen <= 3) {
16559                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16560                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16561                 }
16562                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16563                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16564                 if (INTEL_INFO(dev)->gen >= 4) {
16565                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16566                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16567                 }
16568
16569                 err_printf(m, "Cursor [%d]:\n", i);
16570                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16571                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16572                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16573         }
16574
16575         for (i = 0; i < error->num_transcoders; i++) {
16576                 err_printf(m, "CPU transcoder: %s\n",
16577                            transcoder_name(error->transcoder[i].cpu_transcoder));
16578                 err_printf(m, "  Power: %s\n",
16579                            onoff(error->transcoder[i].power_domain_on));
16580                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16581                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16582                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16583                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16584                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16585                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16586                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16587         }
16588 }